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Abstract: This paper proposes a novel parallel hybrid training approach to conceive an
evolutionary robot. The proposed design aims to provide efficient behaviours to perform its
tasks in a complex area such as walking toward a hidden destination. Embedded in robot brain,
this training and evolution combination is typically accomplished by evolving considerable
recurrent neural networks (RNNs) using an evolutionary strategy (ES). The effectiveness of
this proposal is improved by employing CUDA technology that executes the evolutionary
process of RNNs in a parallel way. The modifications applied are indicating to meet CUDA
requirements in terms of CPU/GPU cooperation and memory management. Using a set of
experiments performed by GPGPU-based physical simulator named open dynamics engine
(ODE) and CUDA-based evolution, the effectiveness of the proposed parallel evolutionary
training technique was validated for real movements of humanoid robots. This validation showed
a promising speed-up, since this field requires very high powerful computational resources.
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1 Introduction

Defined as a sub-field of artificial intelligence, the
evolutionary computation has been used to develop
controllers for autonomous robots, which developed a new
computational discipline known as evolutionary robotics.

Researchers in biomechanics, robotics, and computer
science try to understand human natural motion in order
to find new inspirations to solve computation problems by
reproducing this human motion. One of the most important
fields which has been inspired by human motion is the
humanoid robotic.

The main goal of humanoid robotic researches is to
obtain robots that can imitate human behaviours in order
to collaborate with humans in a best way. An obvious
problem confronting humanoid robotics is the generation
of stable and efficient gaits at a reasonable time. To deal
with this problem, alternative bio-inspired control methods
have been proposed like in Ouannes et al. (2012), which
do not include any specification of reference trajectories
helping to reduce computing time. More specifically, the
best investment of the advanced computational systems
is an opportunity to find new paths that provide efficient
solutions to robotic issues.

Nevertheless, most of these robotic solutions are based
on the classical artificial intelligence paradigm relying on
human design, which are limited in terms of inefficiency
if robot control is highly constrained and submitted to
differentiable objective functions (Rubercht et al., 2011).
Classical artificial intelligence is also unable to cope with
uncertainty robot behaviours (Atyabi and Powers, 2013)
due to the explicit programming of desired behaviours
using a complete and an exact mathematical model to
conceive the robot and its environment (Wang et al., 2012).
In legged robots, various learning algorithms have been
proposed to provide autonomous operations for many
complex and challenging control and design problems such
as Tang and ER (2007). One of such problems is bipedal
walking robot control.

In order to address this issue, alternative biologically
inspired control methods have been proposed
(González-Nalda et al., 2011). To this end, training a

multilayer neural network with an evolutionary algorithm
(EA) is one of these efficient methods proposed to
conceive robot controller. However, when controlling,
the evolutionary-based neural network consumes often
an important processing time, especially if there is a
large amount of data, even with efficient neural network
trainers. To cope with this restriction, parallel architectures
have been proposed to enhance computing and processing
performances (Petrovic, 2004; Sofge et al., 2007; Capi
et al., 2005; Nageswaran et al., 2009; Luong et al.,
2010), since the technologies of current processors
(i.e., CPU-based architecture) have reached their limits as
regards speed.

Modelling and integrating different modalities and
behaviours requires complex algorithms and intensive
calculations which could be held in a reasonable time.

The main challenge of simulation modelling is
continuous evolution in terms of constraints and objectives.
However, performing this continuous evolution takes many
hours, even many days to be executed. This is heightened
by the fact that these complex models can also have many
additional parameters, which should be considered for its
important role in the model behaviour. For these reasons,
considerable efforts have been done into technologies,
methodologies and theoretical advances in order to speed
up execution without sacrificing model accuracy (Christely
et al., 2010). Nevertheless, there were few studies to
accelerate simulation of artificial intelligence performance
using GPU architectures.

While central processing units (CPUs) were optimised
to run sequential tasks, GPUs are devoted to calculate
the floating point operations and to execute massively
parallel tasks (Chu and Hsiao, 2014). Therefore, these
recent advances have contributed to the occurrence of a
new programming approach based on GPUs. Recently,
many algorithms have been rewritten and redesigned
for modern GPUs, which are characterised by a single
instruction multiple data (SIMD) processing (i.e., massive
parallelism). GPUs have been recently used to accelerate
computations for various topics [e.g., neuroscience (Liu and
Guo, 2013), evolutionary techniques (Jaros, 2012), medical
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image processing (Eklund et al., 2013), data compression
(Patel et al., 2012), etc].

We note that the availability of new appropriate
development environments such as CUDA and OpenCL
tends to further simplify the development of parallel
applications for this type of processors (Chu and Hsiao,
2014; Duran et al., 2014). At the same time, it allows the
possibility of developing more integrative, detailed and
predictive bio-inspired and artificial life models, while at
the same time decreasing the computational cost to simulate
those models.

In this study, our focus is to suggest an improved robot
controller based on two bio-inspired techniques namely EAs
and artificial neural networks (ANNs).

On one side, EAs are considered as one of the most
important optimisation methods that generate approximate
solutions, with extensive computational needs (Qin et al.,
2012; Jaros, 2012). For their parallel nature, EAs are very
suitable to distributed systems (Petrovic, 2004). Many of
them aim at providing a general computational platform. As
we are interested in this work by the graphic accelerators, a
survey and a new classification of the related works about
EAs on GPUs will be presented in the next section.

On the other side, several prior studies have
examined alternative hardware ANN solutions using
field-programmable gate array (FPGAs) and GPUs that
deliver a fine-grained parallel architecture (Magure et al.,
2007; Nageswaran et al., 2009).

The training of EA-ANN on the graphic platform
accelerator is ideal, due to the features of NVIDIA’s
compute unified device architecture (CUDA) which is a
programming framework for the massively parallel GPUs,
also to the architecture of GPU that contains thousands
of independent floating-point units connected to on-board
memory enabling high memory bandwidth, making this
device perfect for providing significant speed-up to the
intensive parallel applications (Patulea et al., 2014), by
respecting memory access rules.

As the general purpose computing graphic unit
(GPGPU) is an emerging field in many domains. There
were few approaches proposed to deal with applying this
technique in evolutionary robotics (González-Nalda et al.,
2011; Peniak et al., 2011; Shi et al., 2010; Montiel et al.,
2014).

In this paper, we propose an original GPU-based
approach in order to accelerate the training of an
evolutionary robot. This is done to provide efficient
behaviours required in several complex situations like
walking toward a hidden destination. This proposal is
based on the combination of an evolutionary strategy
(ES) and recurrent neural network (RNN) where the ES
is responsible for optimising the trajectory generation of
humanoid robots, and the RNN forms the embedded brain
of the robot. In order to speed up the evolution process
of the RNN training, we propose the use of a GPU

accelerator at multiple levels, taking into account the open
dynamics engine (ODE) of GPGPU model proposed by
Zamith et al. (2009). The process of the GPU-based robot
controller executes order of magnitude times faster than the
conventional CPU-based solution.

To achieve this, we address the effective use of the GPU
memory hierarchy where the main novelty here is about
reducing time transferring data between the two memory
sub-systems (i.e., CPU memory and GPU memory). In
addition, to improve GPU use, the judicious management
of GPU parallelism is established for all components of our
simulation or controller evolving. Furthermore, we provide
a set of generic instructions for GPU programming that
are advised to be followed in order to benefit of GPU
performance. The reached results are compared with those
obtained with the serial implementation of our algorithm by
discussing the effects of a set of parameters related to the
simulation or the evolution part.

The present paper is organised as follows. Section 2
introduces a set of basic concepts related to GPU computing
using CUDA, followed by presenting the related works
proposed to GPU-based robot controller modelling. A
detailed description of our proposal (hybrid ES-RNN robot
controller based on GPU) takes place in Section 3. The
experimental study and discussion of the obtained results
are presented in Section 4. Finally, Section 5 draws
conclusions with some future research directions in this
context.

2 CUDA model, ANNs, and EAs: background and
related work

This section consists of a set of basic concepts related
to the main tools and techniques of this work. The GPU
programming paradigm as well as the physics simulator
used to simulate the humanoid robot called ODE, have
taken place in this section. Moreover, we will present in this
section the GPU-based related works devoted to the robot
controller modelling issues concerning the programming of
such techniques are cited, namely threads distribution and
data transfer issues. After that, we present some immersed
physics simulators to graphic accelerators.

2.1 Basic concepts

2.1.1 CUDA model programming as a tool for parallel
processing on NVIDIA cards

Nowadays, NVIDIA’s CUDA technology provides a
parallel computing architecture on modern NVIDIA’s
GPUs on which hundreds of streaming processors (SPs)
are grouped into several streaming multiprocessors (SMs)
with own flow control and on-chip shared memory units
(Scalabrin et al., 2014; Duran et al., 2014). All SMs share
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a global memory with high latency. The number of SMs,
the size of global memory, the number of SPs, the size of
shared memory and the number of registers depend on GPU
compute capability (Qin et al., 2012).

The sequential operations should be programmed as host
functions that execute on CPU. Thus, parallel operations
should be programmed as a kernel or device functions that
execute on the GPU. Both host and kernel functions will be
wrapped and called via a main host function.

In CUDA environment, the basic unit of a parallel code
is a thread, thousands of threads can run concurrently with
a same instruction set called a ‘kernel’. A set of threads
can be bundled into a grid of thread blocks with each block
containing a fixed number of threads.

The communication between CPU and GPU can be done
through global device memory, constant memory, or texture
memory on a GPU board. After compilation by the CUDA
environment, a program runs as a ‘kernel’ in a GPU. A
kernel takes input parameters, conducts computations, and
outputs the results to device memory where the result can
be read by the CPU. With thousands of threads doing
similar tasks simultaneously, the computation speed can
be significantly improved. The CPU owns the host code
that prepares input data and accepts output values from
the GPU. The intensive computation task is handled by
GPU kernels. The output data is written to global device
memory in order to be retrieved by a CPU program. For
fully comprehensive description, the reader is referred to the
CUDA C Programming Guide (NVIDIA, 2011) and similar
resources.

2.1.2 Open dynamics engine

ODE is an open source library for simulating rigid body
dynamics and collisions in an efficient and accurate manner
(Giovanni et al., 2011). It consists of a high performance
library for the simulation of rigid body dynamics developed
in a simple C/C++ API.

Although ODE is a good and reliable physics engine,
computing all the physical interaction of a complex system
can take a great deal of processing power. Since ODE
uses a simple rendering engine based on OpenGL, it has
restrictions for the rendering of complex environments
comprising many objects and bodies. This can significantly
affect the simulation speed of complex robotic simulation
experiments (Bezák, 2012).

2.2 Related work

2.2.1 GPU-based ANNs for humanoid robot controller

ANN has been part of an attempt to emulate the learning
phase of the human nervous system. However, the main
difference arises from the fact that the nervous system
is massively parallel (Prabhu, 2007), while the computer
processor remains significantly sequential.

Since ANN requires a considerable number of vector
and matrix operations to get results, it is very suitable to be
implemented in a parallel programming model and run on
GPUs.

CUDA has been employed in a wide variety of
applications nevertheless, few of them investigate this
technology for the evolutionary neuro-robotics domain.
Only some of them have implemented to date CUDA to
neural networks, as this field requires further investigation
in applying the CUDA technology to neural computation
evolved with evolutionary computation and robotics
research (Peniak et al., 2011; Liu and Guo, 2013).

Peniak et al. (2011) presented a novel software
application named ‘Aquila’, useful for cognitive and
developmental robotics research. ‘Aquila’ addresses the
need for high-performance robot control by using the latest
parallel processing paradigm, based on the NVIDIA CUDA
technology.

González-Nalda et al. (2011) aimed to create through
evolution the neural network that couples with a complex
humanoid robot body, where the neural network used
was immersed in the CUDA programming model. In this
work, the problems related to a non-structured environment
and evolutionary robotics need a sub-symbolic conexionist
approach based in nouvelle AI. This novel approach can
cope with the coupling among sensorimotor, neural and
environment parts.

Various types of neural networks are used to generate
walking behaviours and control design of humanoid robots,
where a few of them have investigated the GPU parallel
processing. However, these ANN-based approaches did
not allow building robot controller that fits with the
complex humanoid robot body. To surmount this weakness,
we propose in our current study the integration of the
CUDA-based EAs to conceive the robot controller.

In the next subsection, we review the most important
GPU-based EA research activities proposed in literature to
enhance computing performance EAs.

2.2.2 GPU-based EAs

EAs are stochastic search algorithms allowing for the
search area of alternative solutions to find the optimal one.
It successes in addressing hard optimisation problems in
diverse areas such as optimisation, learning, adaptation and
others (Talbi, 2009).

The quality of the expected results depends on various
factors, including the available computing power (Arora
et al., 2010). The idea of EAs is derived from Darwin’s
evolution theory, where chromosomes are selected to form
the parents. The creation of parents is followed by the
selection step, in which chromosomes with better fitness
can be selected with a higher probability. The selected
chromosomes are reproduced using various operators to
generate new offsprings. Finally, a replacement scheme is
applied to determine which chromosomes of the population
will remain from the offsprings and the parents, and so on
until reaching a stopping criterion.
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Source: Talbi (2009)

ESs represent one the most popular methods of the EAs.
ESs are a particular kind of EAs such as genetic algorithms
(GAs) or genetic programming (GP). In ES, solution
(individual) representation is coded with vectors of real
values. An individual (a chromosome) is composed of the
float decision variables in addition to some other parameters
guiding the search. For ES, an elitist replacement is used
(Talbi, 2009).

Recently, due to their parallel nature, there have been
several attempts to accelerate the EAs on the massively
parallel GPU architecture (Luong et al., 2012).

This section reviewed various parallel EAs approaches
using GPUs. We propose a classification of parallel EAs
on GPUs based on the number of threads assigned
for each chromosome (solution). Then, GPU-EA works
can be distinguished into two categories: classification
criterion is of some works of GPU-EAs is based
on: chromosome-based category in which one thread is
assigned to each chromosome, whereas each gene of the
chromosome is attributed to each thread in the second one
(gene-based category).

a Chromosome-based GPU-EAs

In this category, Arora et al. (2010) can be cited. This
study presented an implementation based on CUDA
toolkit for GAs. The authors studied the effect of a set
of parameters (e.g., thread size, problem size or
population size) on the performance of their GPU
implementation compared to a sequential GA. The
proposed method yield to 40 times faster than their
serial counterparts.

Ogier et al. (2012) proposed porting different types of
EAs on GPGPUs for easy specification of
evolutionary algorithm (EASEA) framework which is
dedicated to help non-specialists to optimise their
problems by EA. The algorithms exposed, and the
acceleration attainable in their work are indicated on
different NVIDIA GPGPUs cards for different
optimisation algorithm families.

Pospichal et al. (2010) adopted a parallel GA with an
island model (Skolicki, 2005) for implementation
running on GPU with 256 individuals in each island.
To maintain population, the authors proposed to use
an architecture based on mapping threads to

individuals. The on-chip hardware scheduler is used in
order to rapidly exchange existing islands between
multiprocessors to hide memory latency. The authors
report speeds-up up to 7,000 times higher on GPU
compared to the CPU sequential version of the
algorithm.
Jaros and Pospichal (2012) compared an optimised
multi-core CPU implementation with a fine-tuned
GPU version of a used GA for the knapsack Problem.
The main objective of this study is to present the true
performance relationship between modern CPU and
GPU architecture and to eliminate some myths of
GPU performance environment.

Zhu (2009) made his contribution toward the
paralleling, and performance analysis of a massively
parallel evolution strategy with pattern search (ES-PS)
optimisation algorithm. His proposal exploits
continuous optimisation functions dedicated to the
optimisation of the acceleration provided by the
graphics hardware. The obtained results indicate that
GPU-accelerated ES-PS method is orders of
magnitude faster than the corresponding CPU
implementation.

b Gene-based GPU-EAs

Shah et al. (2010) is an example of this category.
Authors of this work exploited the parallelism inside a
chromosome, in addition to the parallelism performed
to evaluate multiple chromosomes. Their study
presented a generic framework for GAs speeded up
by using modern graphic cards and tested on a variety
of problems.

Krömer et al. (2011) proposed a technique using the
same analogy with the previous one, but using the
differential evolution (DE). With the help of the
CUDA toolkit, the fitness was evaluated from 2.2 to
12.5 faster than on CPU using C code and from 25.2
to 216.5 times faster than on the CPU using object
oriented C++ code.

Oiso et al. (2011) suggested a technique exploiting the
parallelism between individuals and genes
simultaneously. The proposed implementation method
yielded approximately 18 times faster results than a
CPU implementation of their benchmark tests.

Table 1 classifies the cited GPU-EA works into the
proposed classification (i.e., chromosome-based and
gene-based EA). These works are presented and
compared in terms of data organisation, number of
threads assigned to each chromosome,and the GPU
memories used).
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Table 1 Classification of EAs approaches: chromosome-based, gene-based GPU-EA

Classification: chromosome-based, gene-based GPU-EA

Study Data organisation One/many threads-based approaches Data memory management

C
hr
om

os
om

e-
ba
se
d

Arora et al. (2010) Separate 1-D integer and Different threads of a block for Variables of one type belong
float arrays. different individuals of to different individuals

the population. are stored adjacently in arrays.
Ogier et al. (2012) Collection of objects One thread per individual Individuals are grouped in a

representing individuals. for the evaluation phase. contiguous buffers.
Pospical et al. (2010) Separate 1-D arrays, where each Every individual is controlled The local island populations

array represent sub-population. by a single CUDA thread. are stored in shared on-chip
memory of GPU.

Zhu (2009) Separate 1-D arrays, where each Every individual is controlled Global, shared, and
array represent sub-population. by a single CUDA thread. texture memory

G
en
e-
ba
se
d

Kromer et al. (2011) The whole population can Each vector (solution) is The whole population resides
be seen as a real matrix. processed by a thread block. in the main memory.

Osio et al. (2011) Collection of objects Each individual is processed The whole population
representing population. by an SM, and each gene resides in the main

to an SP. memory.
Jaros et al. (2012) C structure consisting of two Each vector (solution) is Chromosomes are stored in

one-dimensional arrays. processed by a thread block. L1 cache of the GPU.
Shah et al. (2010) The whole population can Each vector (solution) is The population matrix

be seen as a real matrix. processed by a thread block. resides in the main memory
of the GPU.

Benalia et al. (2015) Collection of objects Multiple CUDA threads Global, shared, and
representing population. work on one chromosome constant memory.

to evaluate its fitness.

It is worth mentioning that all these studies exploited
parallel aspect on GPU and showed the effectiveness
of such devices to improve the evolution of complex
behaviours. Therefore, to cope with the acceleration
of the evolution of humanoid robot’s complex
behaviours, we propose to use parallel GPU-Oriented
ES. The main objective of the ES is to deal with the
training stage of the RNN which is responsible of the
control for the humanoid robot’s motion.

2.2.3 Our evolutionary approaches against the cited
approaches: a brief comparison

Basically, most approaches of the literature are based
on either the parallel evaluation of solutions on GPU or
the execution of simultaneous independent/cooperative
algorithms. These approaches can also be classified
into fully parallelised approaches (i.e., all phases are
parallelised) or partially parallelised approaches (i.e., just
the evaluation phase is parallelised), where just a few
of these works have exploited the parallelism between
genes leading to two types of exploiting parallelism:
inter-chromosome parallelism and intra-chromosome
parallelism.

Concerning data organisation (i.e., the structure
representation), arrays of 1D or 2D that collected
the objects are generally used to store the population
individuals. The majority of approaches proposed that
an individual is composed of a genome in addition to

other fields such as the fitness value and an ‘already
evaluated’ Boolean variable. However, we have proposed
in our evolutionary approach that the attributes of each
robot (individual) are gathered in one data structure,
including different physical simulation and evolutionary
parameters (e.g., mass, positions of the ground contact
in simulation world, dimensions of the used primitives,
fitness value, statistical information (i.e., min/max fitness,
average fitness) and, number of neurons and layers).
Our implementation groups the individuals in contiguous
buffers aiming to transfer all needed information in one
single transfer of direct memory access (DMA) type. Also,
the chromosome length is too large, where genes do not
represent only values of the used ANN, but also their
weights are considered. The ES parameters are stored in
GPU constant memory, whereas the shared memory is
used to facilitate the data access in the whole evolutionary
process.

For the number of the assigned threads, most of
the found implementations associate one thread to one
individual (solution) for the master/slave model. Moreover,
one threads′ block is assigned to one sub-population for
the island model or the cooperative algorithms. However,
the literature reader could find only few investigations that
met the efficient managing of the threads parallelism with
the memory constraints, especially when dealing with a
large set of solutions or large problem instances. We note
that these solutions are generally specific to a particular
problem or to problems of the same family; we can mention
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here that some compilers are provided in order to optimise
a naive code in CUDA framework. In our work, we propose
to assign a block of threads for each individual with an
efficient managing of the threads′ distribution on the card.

Concerning the data memory management, there are few
explicit efforts that handle optimisation structures with the
different available memories, which are strictly dependent
on the studied optimisation problem. For these reasons,
we have proposed our own memory management scheme
taking into account all parts of the simulation process.

2.2.4 Threads distribution issue

Several studies have addressed the auto-tuning of sensitive
parameters in CUDA, but, there were few works studying
this point for EAs, among them we can mention two
works (Ogier et al., 2012; Luong et al., 2012). The idea of
the designed algorithm of Ogier is to hold the maximum
possible SMs by maximising the threads assigned to each
block taking into account both register and scheduling
limitations. On the other side, Luong proposed a dynamic
heuristic for GPU parameters auto-tuning of the local search
method (LSM). As a result, the time measurement for each
selected configuration, according to a certain number of
trials, will deliver the best configuration parameters.

2.2.5 Data transfer issue

In a multiple device system, transfer of data between these
devices is considered as the trickier thing to be coded,
whether in the case of cluster programming or in coding
for machines equipped of CPU or GPU. Transferring data
takes many time and the programmer must be careful that
the transfer time does not overpower any performance gains
from parallelising an algorithm. In literature, this issue
is covered by many studies (Baskaran et al., 2008; Pai
et al., 2012) but a few of them have considered this point
explicitly for EAs (Ogier et al., 2012; Luong et al., 2013).

To address the problem of data transfer time, we propose
a sub-model as a memory access handler which orchestrates
data transfers between CPU and GPU, that takes into
consideration minimising CPU/GPU data transfers.

2.2.6 GPU-based physic simulators

Over the past decade, physics-based simulation has become
a key enabling technology for different applications. It has
taken a front seat role in computer games (Hirabayashi
et al., 2012), animation of virtual worlds and robotic
simulation. On the other hand, software packages for
automatic controller design are not integrated (Todorov
et al., 2012) with physics engines. As robotic hardware
becomes more complex and efficient, the importance of
simulation tools increases. Existing physics engines can be
used to test controllers that are already designed.

Robots and physics engines are composed of a multitude
of components requiring high accuracy in some areas, while
in other domains often a precise CPU time is required.

Hence, when studying this kind of machine, speed of
simulation is the most important. To reach the requested
acceleration, some physics engines are already using GPU
accelerators (Joselli et al., 2008; Zamith et al., 2009)
through CUDA or OpenCL in features like rigid body
collision detection and particle interaction. Taking some of
the physics calculations to the GPU is based on two main
reasons: first, it is possible to take out some of the typical
CPU computations, so it can perform other calculations and
second, it is possible to optimise the physics engine in order
to support more rigid bodies in the simulation.

Zamith et al. (2009) presented a modified version
of the ODE simulator that takes the benefits of the
graphics engines, focusing on the simulation of rigid bodies
with some of its methods implemented on the GPU that
yields a good result. A new method for the automatic
process distribution between the CPU and the GPU for
the presented physic engines has also taken place in their
work. Despite, Zamith used the GPU as a math coprocessor
in real-time applications in special games and physics
simulations with the intention of supporting mathematics
and physics, the proposed architecture is a valuable for the
general purpose language or for Shader language and is
tested on ODE.

In our study, we adopt GPGPU architecture proposed
by Zamith et al. (2009) to ensure the use of the GPU
as mathematics and physics coprocessor which accelerates
mathematical and physical laws of the robot movement.

3 Hybrid ES-RNN robot controller based on GPU:
design and implementation

This section explains the proposed hybrid ES-RNN robot
controller based on the GPU. We start with an overview of
our GPU-based proposal, then the model of the used robot
(i.e., geometric primitives, joints, memory hierarchy used
for robot primitives storage) is presented. The evolution of
kernel parameters and data storage are introduced, followed
by the illustration of the proposed architecture. Finally, we
conclude this section by analysing the complexity of the
proposed system as well as some GPU-based issues which
have been considered in this proposal such as the task
distribution and memory management.

3.1 Hybrid robot controller based on GPU: an
overview

To cope with the critical sides of the GPU programming
paradigm, with the aim of getting a considerable speed’s
gain of the evolution of our controller, we propose a
new hybrid architecture based on ES and RNN which
is conceived on a GPU platform. This model adopts the
GPGPU architecture proposed by Zamith et al. (2009) in
order to exploit the high accuracy of this kind of device.
In that case, the GPU is used as a math co-processor with
the intention of supporting mathematics and physics, in the
physic simulation side.
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Concerning RNN specification, the studied humanoid
robot uses Elman RNN for its biological plausibility and
powerful memory capabilities. Despite biological neural
networks do not make use of back propagation of learning,
we propose to use GPU-based ES to evolve locomotive
behaviours. For this task, we must exploit a big RNN to
connect and to simulate muscles as a proprioceptive and
a motor system in a humanoid robot with tens of degrees
of freedom. The neural network must possess more than
thousands of neurons because it is easier to extract and
to set the correct information for each joint. The number
of nodes in the hidden layers of the RNN is limited by
the GPU memory capacity. This hybridation (RNN + ES)
exploits the parallelism at a higher level; groups of
threads are formed to handle a single chromosome which
corresponds to each robot.

The purpose of the ES is to optimise the weights of
the RNN which controls the humanoid robot walk. A
synergistic relationship exists between the ES and the RNN
as shown in Figure 2. The ES optimises the RNN, and
the RNN produces robot behaviour that is then ranked. At
start-up, the simulation is launched on the CPU side, the
ES parameters are copied to the GPU constant memory,
positions of the feet of robots are copied to the GPU
global memory, the population chromosomes are initialised
to random with one (01) gene per RNN weight. The
number of connections represents the number of genes in
the chromosome; a floating-point number represents each
gene. Features values for all evolution training instances are
transferred into the GPU main memory to be prepared for
ES-RNN computations. At each simulation step, the device
will execute the phases described in Figure 4.

After the initialisation on GPU side and for each
generation, all robot sensors are activated in order
to gather information from the simulation environment.
These values represent the RNN inputs. As a result,
the RNN outputs will be updated using our parallel
evolutionary proposal. To achieve this, the distribution
of the element tasks (threads) is run in a judicious
manner using the proposed distribution algorithm and the
efficient management of the available hierarchy memory.
Furthermore, the new population (i.e., gathered from the last
generation) represents the inputs of the new RNN. We can
notice here that the sensors in Figure 2 represent the parts
in direct contact with the simulation environment. These
sensors deliver data coming from the environment like the
ground contact, whereas the effectors have the ability to
interpret the outputs′ RNN values (i.e., muscles which
are represented here by some geometric primitives). The
Kernels mentioned in GPU side represent the evolutionary
computation running on the device, from the initialisation
to the statistical kernel.

Technical details concerning implementation of the
GPU-ES, start with the ES initialisation of the first
population which is done in parallel manner. It means that
parallel initialisation of all the RNNs is efficient because
the occupation rate of the graphics cards is a factor that
directly affects the overall performance.

The GPU evolutionary process simulation is described
in the pseudo-code 2. Thereafter, next subsections will
describe the mapping of the population on the card and
details of kernels’ implementation.

3.2 Sample of demonstration: humanoid robot model
and data storage

Our demonstration is based on a model of robot that was
created from primitives available in the ODE simulation
package, which deliver a controlled environment with or
obstacle.

Algorithm 2 The simulation process on GPU

LU *#$ +,-' .&/0 #1 .%(2!,&%#3

GU 46*!+$ ()% &'0B*+('!# 6+-+0%(%-& +#$

'#'('+*'&+('!# !" ()% -!1!(&A

VU .// '#'('+*'&+('!#&A

MU 2%#%-+(% ()% '#'('+* %@!*B('!#+-, 6-!5%&&

&!*B('!#& 96!6B*+('!#=A

WU ;< '#'('+*'&+('!#&A

XU E**!5+(% 6-!1*%0 '#6B(& !# 234 0%0!-,A

YU E**!5+(% ()% 6!6B*+('!# !# 234 0%0!-,A

 U E**!5+(% ()% "'(#%&& &(-B5(B-%& !# 234 0%0!-,A

ZU J!6, 6-!1*%0 '#6B(& !# 234 0%0!-,A

LKU J!6, ()% ?%#%-+(%$ 6!6B*+('!# !# 234 0%0!-,A

LLU J!6, +$$'('!#+* &(-B5(B-%& !# 234 0%0!-,A

LGU ;@+*B+(% ()% "'(#%&& @+*B%& !" +** '#$'@'$B+*& !" ()%

6!6B*+('!# 1, B&'#? + "'(#%&& 0%+&B-% 1+&%$

!# ()% !1N%5('@% "B#5('!# (! 1% !6('0'&%$A

LVU $/0/,&

LMU 1#$ ,!! +** '#$'@'$B+*& '# 6+-+**%* 4#

LWU ;@+*B+('!# !" ()% '#$'@'$B+*A

LXU Q#&%-('!# ()% -%&B*('#? "'(#%&& '#(! ()%

"'(#%&& &(-B5(B-%&A

LYU /34 1#$

L U J!6, ()% "'(#%&& &(-B5(B-%& !# J34 0%0!-,A

LZU E66*, ()% -%5!01'#+('!# !6%-+(!-&A

GKU J!#&(-B5( ()% #%C 6!6B*+('!# 9.!1!(&=A

GLU .%6*+5% ()% !*$ 6!6B*+('!# 1, ()% #%C !#%A

GGU J!6, ()% #%C 6!6B*+('!# !# ()% 234 0%0!-,A

GVU J!6, +$$'('!#+* &(-B5(B-% !# ()% 234 0%0!-,A

GMU 23&%! + &(!66'#? 5-'(%-'!# &+('&"'%$

A physically-based model of bipedal locomotion describes
the nonlinear relationships between the forces, the moments
acting at each joint, the feet, the position, the velocity
and the acceleration of each joint angle. In addition to
the geometrical data, a dynamic model requires kinematical
data mass, center of mass and inertia matrix for each
link and joint, max/min motor torques and joint velocities,
which are difficult to be obtained and are often an
overlooked source of simulation inaccuracy. All these data
are copied into the main memory of the GPU in order to
make the largest possible computation on it.
To simulate interaction with the environment, the detection
and handling of collisions as well as the suitable models
of foot ground contacts are required. To deal with the
simulation world and after performing several trials, we
set the experimental parameters in Table 2, as the best
empirical values of our legged robot.
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Table 2 Body parameters of the robot

Body part Geometry primitive Dimendion (m)

Head Sphere Radius:0.188
Arm Caped cylinder 0.14 × 0.25 × 0.44
Torso Rectangular box 0.9 × 0.25 × 1.0
Thigh Caped cylinder 0.20 × 0.25 × 0.7
Shank Caped cylinder 0.20 × 0.25 × 0.7
Foot Rectangular box 0.4 × 0.5 × 0.1

Figure 1 Geometrics primitives, joints, and the 3D humanoid
robot (see online version for colours)

3.3 Kernels invocations, ES population and data
storage parameters

With so many different types of memory, incorrectly using
of the available memory in the device can affect the desired
speed-up. So, generally the asked question concerns the
correct type memory that must be used in each phase of
the implementation. Once the structure created in the host
side, it will be copied to the GPU constant memory, as
this type is used for cases of data that will not change
over the execution of the kernels ES. This structure includes
population size, chromosome size, mutation rate, crossover
rate, number of generations, statistical data (e.g., average
fitness, total fitness, best individual), etc.

Our ES population is laid out in main memory of
the GPU, as a two dimensional N × L matrix, where
columns refer to chromosomes and rows correspond to
genes within chromosomes. Here, N is the population size
and L is the chromosome length, taking into consideration
that storing variables of one individual sequentially in an
array does not permit efficient memory access. So, to reach
the coalescing memory, variables of one type and owned by
different individuals of the population are stored adjacently
in buffers.

3.4 Architecture of the hybrid GPU-based ES-RNN
robot controller

As mentioned above, the GPU in such applications is used
as a co-processor, where the high computational phases are

assigned to the GPU such as the RNN evolutionary process
with some physical simulation calculations.

To conceive an efficient implementation of the genetic
manipulation kernel, a low divergence of memory accessing
and enough data to use all CUDA cores are required.

3.4.1 Parameter configuration of the kernels

To find the best parameters configuration (block shape, total
number of threads) of our evolutionary kernels, we propose
and apply an algorithm which measures the time of each
configuration. The final objective of a such algorithm is to
choose at the end the most appropriate one based on the
time taken for each configuration that maximises, at the
same time, the occupancy of the used card.

Figure 2 Configuration of RNN and ES with ODE on GPUs
(see online version for colours)

The principle of our distribution strategy proposes that the
number of blocks (number of chromosomes) should not
be greater than the MPs. Moreover, the number of threads
is the number of weights in each RNN, where the block
capacity of the used card should be respected (the max
block size).

3.4.2 Memory management

It is mandatory to minimise CPU-GPU data transfers, since
there is an important information exchanged between the
proposed modules (which are simulation, nervous system,
evolution training), these modules will be explained in
detail in the next subsection. We propose to minimise
CPU-GPU data transfer by sub-module inspired from
Becchi et al. (2010) and Yang et al. (2012), taking
advantages of the rules of optimising global memory
accessing through coalescing, and scheduling capability to
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overlap memory latencies. GPGPU programmers consider
that the coalescing (Yang et al., 2012) refers to the need that
the accesses from a half warp (i.e., 16 consecutive threads
can be coalesced into a single memory access).

To minimise the rate of transfers between the two
subsystems (CPU and GPU), our proposal is based on the
memory coalescing. The basic idea of the evolution process
CPU-GPU memory mapping is the vectorisation of the used
data structures (i.e., population structure, fitness structure,
etc.) helping to save all data on vectors or 2D matrix to
facilitate the coalescing process. Therefore, the mapping
of data on GPU memory is performed using CudaMalloc,
the transfer of data is ensured using CudaMemcpy where
we check before any transfer, if this data resides on the
GPU memory or not. Before executing training evolutionary
kernels, the data coalescing is checked using rules defined
by Yang et al. (2012).

At the end of this process data is de-allocates data using
CudaFree, either at the end of the application or when the
memory of GPU is full.

Figure 3 Memory management of the simulation process
(physic motor, evolutionary training) (see online
version for colours)

3.4.3 Hybrid GPU-based ES-RNN modules

Our system is equipped with three modules, where
the first one is the simulation world module which is
responsible of simulation task in ODE environment taking
into consideration all required physics laws. The second
one is the brain module, which creates the robot brain
using the RNN. The last one is the principle module
(evolution module) of our system in which all ES phases
are implemented on GPU as kernels.

In the next subsections, kernels of the evolution module
will be detailed.

Figure 4 The main classes of the proposed model (see online
version for colours)

3.4.3.1 Random number generation

One of the factors which affect the performance of EAs
is the generation of random numbers because theses
algorithms are stochastic search processes.

However, CUDA libraries do not include any functions
of a random number generator (RNG) at present, despite
the fact that RNG is naturally necessary for executing
GA processes. In order to generate random numbers
in our application, we use the Random123 library of
‘counter-based’ random number generators (CBRNGs) as
described in Salmon et al. (2011). The Random123 library
can be used with the CPU (C and C++) and the GPU
(CUDA and OpenCL) applications. This library is chosen
due to the fastness of its generator, easier to parallelise, use
minimal memory/ cache resources (three times faster than
the standard C rand function and more than ten times faster
than the CUDA cuRand generator).

3.4.3.2 Population initialisation kernel

In each evolutionary process, the first step is the
initialisation of the population. One of the questions facing
this step, is where the chromosomes will be generated.
For responding this exigency two mainly approaches are
proposed in the literature (Luong et al., 2013):

• Generation of the population (chromosomes) on the
CPU and its evaluation on the GPU: at each iteration
of the evolution process, the population is generated
on the CPU side. Its associated structure storing the
solutions is copied on GPU. There by the data
transfers are essentially the set of population solutions
copied from the CPU to the GPU.

• Generation of the population (chromosomes) and its
evaluation on the GPU: in this approach the
population is generated on GPU. It implies that no
explicit structure needs to be allocated. Thereby, only
the representation of the solution must be copied from
the CPU to the GPU. The benefit of such an approach
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is to reduce drastically the data transfers, since the
whole population does not have to be copied.

In our case and as mentioned above, the elements of
each chromosome represent the weights of the RNN, the
operation of getting these values is fully parallelisable and
all chromosomes are initialised at the same time. This phase
is performed by block of threads for each chromosome, as
shown in Figure 5.

Figure 5 Block threads chromosome mapping (see online
version for colours)

3.4.3.3 Selection kernel

Since most selection schemes work with probabilities and
conduct random sampling of the population, and even
promote multiple sampling of the same individual, the
samplings can be done in parallel (Hofmann et al., 2013).

We note that the modified form of the roulette
wheel selection is used in our selection phase. There
are few works that contribute to the implementation
of roulette wheel selection on the GPU. For example,
Dawson and Stewart (2013) proved that a highly
parallel roulette selection algorithm must respect the
exploiting of warp-level parallelism, reducing shared
memory dependencies.

To simulate the roulette wheel selection kernel in our
case, the robots′ population is sorted (GPU method). This
fitness is calculated based on the covered distance, using
the fast GPU-based radix-sort, provided and described in
Satish et al. (2009). These score values are standardised to
calculate selection probabilities. We contribute in this phase
by using thread block for each chromosome in the process.
A reduction sum is performed on the standardised array
which contains the gathered values. This new array is stored
in global memory and used as a roulette wheel array.

3.4.3.4 Evolutionary process kernel

This kernel aims at updating the old population, by
selecting all pairs of chromosomes undergoes the process of
crossover to produce offsprings. We contribute in this phase
by applying a massively parallel one point crossover, and

mutation; these two operators are controlled by crossover
and mutation probabilities.

In order to implement one point crossover, we need to
two kernels, the first one is about finding the crossover
point. We suggest here to assign one thread to one
chromosome in order to solve the synchronisation problem
between CUDA blocks. This phenomenon occurred in the
case of assigning a thread block to each chromosome, this
means that all threads must have the information about the
crossover point. The second one is about getting back the
new offsprings. To do that, Each CUDA block is organised
as two dimensional. The x dimension corresponds to the
genes of a single chromosome, while the y dimension
corresponds to different chromosomes. The entire grid is
organised in two dimensions with the x size fixed at 1, and
the y size corresponding to the offspring population size
divided by y block size multiplied by 2.

For the mutation kernel, the distribution of threads is
used, where each thread occupied gene, this process has an
objective to remote the ES out of local maxima or minima.

3.4.3.5 Fitness function kernel

In this proposal, a fully parallel method is proposed for
the evaluation process in order to reduce computation
complexity, since this step is the most important, which
consumes more time as any EA. In our case, the best
individual is the robot that is able to travel the largest
distances in a given time. In this problem, the fitness
function is based on the initial and the final positions of
each robot (individual). The same decomposition as the
evolutionary process is used, where each warp is copied
to shared memory, as this memory can provide a great
speed-up by conserving bandwidth to global memory. This
advantage is due to its user-managed cache characteristic
(NVIDIA, 2011) when calculating the distance in the GPU.

3.4.3.6 Replacement kernel

This phase uses Roulette Wheel selection over the parents
and offspring to create the new parent population. The used
kernel parameters are the same as they used in the previous
phases with one modification which is that the dimensions
of the kernel are derived from the parent population size.

3.4.3.7 Statistics kernel

In each generation, after the calculation of the fitness
values, the statistics need to be updated. The statistics of
the population is used for the selection process and for the
termination of the decision. The maximum and minimum
values of the fitness function, the average and the deviation
constitute the structure of the statistical data.

3.5 Complexity analysis

Three parts are considered to calculate the computational
complexity of this proposal: the simulation part, the nervous
system part and the evolutionary part.
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In the simulation part, the ODE computational
complexity is of O(n2), where n is the number of objects
(geometric primitives). Moreover, the neural network
complexity is of O(2l−1) where l is the number of neural
network hidden layers. Regarding the evolution part, the
complexity depends on the evolutionary steps and operators.
As the used operators are roulette wheel selection, one-point
mutation and one-point crossover, the evolutionary part
complexity is of O (g · (t ·m+ t ·m+ n)) = O (g · t ·m);
with g is the generation number, t is the population size and
m is the individual size.

As a result, the total computational complexity of the
proposed algorithm is calculated by summing up the three
parts complexity: O(n2) + O (n2) + O(g · t ·m).

As the selected RNN is of three hidden layers, it is
complexity is negligible against the others. Consequently,
our proposed system is of a quadratic complexity equal to
O (g · t ·m).

4 Experiments, results and discussion

We remind that the first goal of this study is to demonstrate
the potential of using GPU devices for the ES used to
evolve a RNN. To achieve this, we have performed various
experiments by changing various ES parameters, namely the
chromosome length, population size, number of generations,
and the sensitive parameters of the executed kernels (block
shape, number of threads). The gain has been measured
over the entire ES. In our tests, ES phases are timed on
the CPU and the GPU. For more accuracy, the population
transfer time, to and from the GPU, is added to the kernel’s
execution time.

4.1 Experimental setup and execution environment
configuration

We have implemented the proposed model using C/C++
programming language and CUDA (4.0) framework.
These experiments are run on a PC with one processor
(Intel Core i7 870) and one GPU (NVIDIA GeForce
GTX480). The used humanoid model is a fully
three-dimensional bipedal robot with 15 degrees of
freedom, 12 rigid-body parts, and 11 ODE joints. For the
ES, we have used a crossover rate fixed at 0.7, genomic
mutation rate equal to 0.01, elitism rate of 0.2, roulette
wheel selection method and at least 100 individuals for
each population. The simulation is performed until having
the adequate movements of the robots.

4.2 Convergence of the evolutionary proposal

First and foremost, any parallelisation effort must ensure
that final reached solution is similar or better in quality
to that obtained from the serial algorithm. First, we will
demonstrate that our parallel evolutionary approach is able
to find a solution which is very close to the optimal one.
Specifically, the expected optimal solution is related to the

best RNN weight values that conduct robot to move like a
real human to perform complex tasks.

The convergence of the algorithm can be studied by
investigating the average objective function values of the
whole population generation. To discuss the algorithm
convergence, we consider the average values of the
objective function, and its taking average objective values,
minimum and maximum values for 1,000 different runs of
the ES as shown in Figures 6 and 7. We can remark that our
proposal has reached the same convergence compared to
the serial approach, with a value of 93.76 as a fine forward
walk with a slight limping gait.

Figure 7 assures our confidence that our GPU-based ES
performs better than its similar CPU-based at least 95% of
the time.

Figure 6 Fitness values over different generations on CPU and
GPU (see online version for colours)

Figure 7 The average fitness with a 95% confidence interval
for each algorithm (see online version for colours)

4.3 Impact of the ES parameters and the CUDA
parameters on evolution speed-up

Having demonstrated similar convergence characteristics,
we are now ready to study the scale-up property of
the algorithm by measuring the effect of the number of
decision variables, the population size and the problem
complexity. Each run is finished after each generation
executed over a fixed period defined by the ODE. The gain
value is computed by dividing the overall computational
time of serial implementation with respect to the time
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taken by the parallel implementations. The obtained results
showed that when the number of decision variables
increases, the speed-up of the parallel ES increases.
Also, the speed-up increases according to the population
size growth. Interestingly, in point of view complexity,
the speed-up is smaller for more complex problem, but
as the population size is increased the speed-up gets
more or less identical. For example, if we have ten
individuals in the population (which means 12 * 10 = 120
geometric primitives), the order of acceleration is about
1.11X, with 50 (600 geometric primitives). In the case of
100 individuals (1,200 geometric primitives), the gain is
improved seven times to 12X and more.

Figure 8 shows the experimental result of the
GPU-based and CPU-based implementations on different
generations of the EA. The global performance of
our system increases according to the augmentation of
individual number of the population as well as the number
of generations as shown in Figures 9 and 10.

As a conclusion, our hybrid ES-RNN robot controller
based on the CUDA toolkit has demonstrated that it can be
12 times faster than a common CPU-based robot controller
when simulating the evolving Elman neural network model.

Figure 8 Global system execution speed-up

Figure 9 CPU vs. GPU timing of EA phases (see online
version for colours)

Figure 10 System execution time on CPU and GPU over
different generation (see online version for colours)

4.4 Performance analysis and solution quality, under
time limits

Figure 9 depicts the experimental results of the GPU
and CPU-based implementations on different phases of the
proposed ES. These outcomes have been reached after
100 tests. We note that parallelising the process of both
chromosomes and their genes is more effective, as each
gene is mapped to one thread in the block which holds the
chromosome. This is due to the fact that the GPU-based
implementation enables the execution of more threads.
In addition, the execution of the most ES processes can
minimise the frequency of data transfer between the host
and the device, which is the biggest challenge in such
application on the GPU.

After discussing the differences between the results
obtained by GPU-based and CPU-based implementations,
we discuss in this subsection the impact of some parameters
on the entire performance. The devoted time and the
memory occupation (shared memory or registers) to the
distance function is longer than the other Kernels cases of
in the two chromosome sizes (n = 512) and (n = 1,024).
The reason behind this phenomenon is that the elements of
calculating the fitness kernel are coming from the physic
simulation performed by ODE. The global performance
of our system increases according to the augmentation of
individual number of the population.

4.5 Performance discussion in terms of efficiency and
effectiveness

For each step of the simulation, a mono-core CPU-based
implementation, CPU-GPU, GPU-CPU exchange data
among memories are considered. The average time has
been fixed at 100 trials. The average values of evaluation
function have been collected and the number of successful
tries is also represented.

Since the computational time can reach 1,000
generations and more, the average expected time for the
CPU-based implementation has been deduced on the basis
of two execution trials.

The generation and the evaluation of the chromosomes
in a parallel manner on GPU architectures provide an
efficient way to speed up the evolution and the search
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process in comparison with a CPU-based version. As shown
in Figure 10, GPU-based version has been already faster
than the CPU one (i.e., GPU-based order of acceleration
is 12 times faster than CPU-based implementation).
Due to high misaligned accesses to global memories,
non-coalescing memory reduces the performance of the
GPU-based implementation. To overcome the problem
and reach the coalescing memory, variables of one type
belong to different individuals of the population are
stored adjacently in buffers. GPU keeps accelerating the
hybrid evolutionary process as long as the size increases.
Concerning the solution quality, the obtained results of the
proposed hybrid ES are quite competitive compared to those
obtained with the sequential ES.

Figure 11 shows how fast every generation is evaluated,
whereas Figures 12 and 13 represent respectively the
medium time for a couple of generations compared to
the population size and the time evolution CPU vs GPU
over generations depending on the number of individuals,
through an execution on the CPU and the GPU in order to
show more information about the execution, as mentioned
above the objective function in this case is the distance
covered by each robot where all the individuals starts and
finishes at the same time (in each simulation step). In each
generation, a good phenotype is a set of parameters that
causes a character to perform the desired movement.

Figure 11 Time evolution over generations (see online
version for colours)

Figure 12 The medium time for every generation compared to
the population size (see online version for colours)

We conclude that the use of GPU provides an efficient
way to deal with this kind of application where a lot
of parameters are considered (e.g., simulator parameters,
RNN parameters, and EA parameters). Consequently,
implementing training on a GPU has allowed exploiting
parallelism in such application and improving the
robustness/quality of the provided solutions. On the other
hand, as this problem takes into account a bench of
parameters, the order of acceleration achieved is very
promising to go throw the optimisation methods, tuning the
ES parameters on the GPU device, using the multi-GPU
and the new architectures as Kepler, or others.

Figure 13 Time evolution CPU vs. GPU (see online
version for colours)

5 Conclusions and future work

The purpose of this article is to explore the feasibility
of the use of GPU technologies capabilities to simulate
a complex model using artificial bio-inspired approaches
based on ES and RNN. To achieve this, a novel hybrid
(ES-RNN) approach was proposed to construct and simulate
a 3D model of locomotion for a humanoid robot. More
specifically, movement and evolution brain of a humanoid
robot is conceived using the proposed model, which is
simulated on a physics simulator aiming to imitate their
physical phenomena such as the gravity, the collision,
etc. We have implemented our evolutionary model of
the RNN in GPU-based platform and we have discussed
various programming issues. Moreover, we have provided
a set of design guidelines that could be useful for other
modellers, in the way to avoid common pitfalls such as the
available memory limitation on GPU architectures, and the
synchronisation between threads among blocks, as well as
to exploit GPU architectures for performance gain.

In fact, it is more likely to assume that the RNN
evolution training and simulation actions operate on a much
longer time scale than other operations, which allow a time
scale separation. This work has successfully performed the
cited steps by implementing an optimised brain (controller)
that can distribute some of its processing between GPU
and CPU, allowing the developer of an automatic model to
decide where to process its computing steps.

As future work, we propose the improvement of
the accuracy of our technique by incorporating tuning
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parameters of the kernels and testing other ANNs with other
evolutionary training methods. Additionally, parallelisation
techniques of EAs involving multiple populations may
interact favourably with such type of applications. Separate
populations (GPU-based EA island model) may be trained
on different subsets of the training data, allowing more
optimal searches of the research space.
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