
European Journal of Scientific Research

ISSN 1450-216X Vol.15 No.1 (2006), pp.6-17

© EuroJournals Publishing, Inc. 2006

http://www.eurojournals.com/ejsr.htm

Collision Avoidance in Crowd Simulation with Priority Rules

Cherif Foudil

Computer Science Department, Biskra University

Biskra 07000, Algeria

E-mail: foud_cherif@yahoo.fr

Djedi Noureddine

Computer Science Department, Biskra University

Biskra 07000, Algeria

E-mail: djedi_nour@yahoo.fr

Abstract

Motion planning for multiple entities or a crowd is a challenging problem in today’s

virtual environments. We describe in this paper a system designed to simulate pedestrian

behaviour in crowds in real time, concentrating particularity on collision avoidance. On-

line planning is also referred as the navigation problem. Additional difficulties in

approaching navigation problem are that some environments are dynamic. In our model we

adopted a popular methodology in computer games, namely A* algorithm. The idea behind

A* is to look for the shortest possible routes to the destination not through exploring

exhaustively all the possible combination but utilizing all the possible directions at any

given point. The environment is formed in regions and the algorithm is used to find a path

only in visual region. In order to deal with collision avoidance, priority rules are given to

some entities as well as some social behaviour.

Keyword: Path finding, Collision avoidance, behavioural animation, Crowd simulation

1. Introduction
The autonomy of a virtual human is defined by its capacity to perceive, act and decide of its actions.

The behaviour is usually described through several simple skills that can be mixed to generate a more

complex and credible behaviour. One of the most important skills is the ability to navigate inside a

virtual environment as it is part of a large number of behaviours. Reproducing this fundamental

behaviour requires to address different topics such as the topological model of the environment, path

planning and collision avoidance techniques.

In order to animate a crowd of pedestrians in real-time, each of these techniques should be

optimized without leaving out behavioral studies. A crowd is not only a group of many individuals:

crowd modelling involves problems arising only when we focus on crowds. For instance, collision

avoidance among a large number of individuals in the same area requires different resolving strategies

in comparison with the methods used to avoid collisions between just two individuals. Also, motion

planning for a group walking together requires more information than needed to implement individual

motion planning. An important guideline for our work is that, as in real life, each virtual pedestrian

should be an autonomous, intelligent individual. More explicitly, each pedestrian should be able to

Collision Avoidance in Crowd Simulation with Priority Rules 7

control itself across perceptual, behavioural and cognitive levels, just like real people, it should be an

autonomous agent that does not require any external, global coordination whatsoever, including control

by any real human animators in order to cope with its highly dynamic environment.

In this article, we propose a general model, inspired by studies on human behaviour to simulate

the navigation process in dynamic environments. We focus our work on the methods of collision

avoidance.

2. Related Works
The simulation of behaviour has been studied since the earliest days of computer graphics research.

Early work concentrated on animal behaviour, with birds a popular choice, but recently there has been

a lot of work on human behaviour. Techniques for simulating a crowd as a single entity have been

proposed, as well as those which consider each person in the crowd separately. In the virtual

environments community, the most common approach to simulating group movement is to use

flocking. The concept of flocking was introduced by Reynolds [15]. His boids-model described the

behaviour of the units in a group using only local rules for the individual units. Later, Reynolds

extended the technique to include autonomous reactive behaviour [16]. The idea is that units steer

themselves in such a way that they avoid collisions with other units and the environment, while at the

same moment they try to align themselves with other units and try to stay close to the other units.

In open areas this leads to rather natural group behaviour as can be observed in flocks of birds

or schools of fish. When we also give the units a goal they will move toward the goal together. The big

drawback of this approach is that the units act based on local information which easily gets them stuck

in cluttered environments. Also, the combined steering behaviour can easily lead to the group breaking

up.

Another widely used technique is grid searching in which the environment is divided into a grid

that can be searched for a free path using A* like approaches [17]. Different units try to find a path

through the grid while avoiding collisions with each other. This easily leads to units getting stuck in

ways that can only be resolved by rather unnatural motions (or cheating like penetrating the walls).

The social potential field technique [14] defines potential force fields between units of the

group. Desired behaviour is then created by defining the correct force fields. However, the same

problem as in flocking arises because only local information is taken into account.

Kamphuis and Overmars [9] developed a method for planning the motion of a coherent group

of units using a multiphase algorithm. First, a path is planned for a deformable rectangle, representing

the group shape. Second, the internal motion of the units inside this deformable rectangle is calculated

using social potential fields. Third, the global and local paths are combined to give the total motion of

the units. Although the technique guarantees coherence, it lacks completeness. The approach also

generates unnatural behaviour when a group enters or leaves a narrow passage.

Bayazit, Lien and Amato [4] have combined the probabilistic roadmap approach (PRM)

approach with flocking techniques. The units use the roadmap created by PRM to guide their motion

toward the goal while they use flocking to act as a group and avoid local collisions. While this indeed

leads to better goal finding abilities, groups still split up easily.

Li and Chou [12] developed an approach that allows dynamic structuring of the units such that

the centralized planning of the motions is greatly improved. Again, this approach lacks the ability of

guaranteeing coherence.

Crowd simulation also investigates the movement of large numbers of units in a virtual

environment. This research area has received vast amounts of attention over the last few years, such as

[13],[20]. Although related to our research, the area has a different goal. The global idea behind crowd

simulation is to have virtual units behave in a natural way, interacting with each other, based on

(social) rules. The emergent behaviour of the units is then studied.

Other work in this area is by Feurtey [6], who uses a space-time approach to predict collisions

with other actors, Helbing and Molnar [8], who use a social force model to simulate movement based

8 Cherif Foudil and Djedi Noureddine

on motivations, Blue and Adler [5], who use a cellular automata model, Gillies and Dodgson [7], who

concentrated on obstacle avoidance and the simulation of attention, and Lamarche and Donikian[10],

whose work on path finding also includes ideas on behaviour simulation.

Other recent work done by Rymill and Dodgson [18] simulating human behaviour in crowds in

real-time, concentrating particularly on collision avoidance. The algorithms used are based heavily on

psychology research and their approach gives better results than conventional methods.

Shao and Terzopoulos [19] address the difficult open problem of emulating the rich complexity

of real pedestrians in urban environments. Their artificial life approach integrates motor, perceptual,

behavioral, and cognitive components within a model of pedestrians as individuals. They represent the

environment using hierarchical data structures, which efficiently support the perceptual queries of the

autonomous pedestrians that drive their behavioral responses and sustain their ability to plan their

actions on local and global scales

3. The problem of path finding
Path planning consists in finding an optimal path (generally the shortest one) between a starting point

and a destination point in a virtual environment, avoiding obstacles. Traditionally, path planning has

been solved using a heuristic search algorithm such as A* [1],[3] directly coupled with the low-level

animation of the agent. The use of A* for path planning is based on a two step process. The virtual

environment is first discretised to produce a grid of cells. This grid is formally equivalent to a

connectivity tree of branching factor eight, as each cell in the discretised environment has eight

neighbours. Searching this connectivity tree with A* using a distance based heuristic (Euclidean

distance or Manhattan distance) produces the shortest path to the destination point. This path is

calculated offline, as A* is not a real-time algorithm, and the agent is subsequently animated along this

path. As a consequence, this method cannot be applied to dynamic environments. This direct

integration of A* with low-level animation primitives is faced with a number of limitations.

In order to let an object or character move inside a scene from one location to another, a path

has to be planned that guarantees a collision-free translation from the start to the goal position. Hence,

the whole task of path planning is usually broken down into three sub-problems:

 First, one has to find a suitable discretization of the ground on which one can build a graph.

This can be done offline in a pre-processing step. The resulting graph should be as lean as

possible to allow a fast search. If the graph is too large, the search will be significantly slowed

down. One the other hand, the discretization should be as fine as possible so that the areas

corresponding to graph nodes are not too large. This would lead to an approximation error

which ends up in suboptimal paths.

 Then, the graph has to be searched for a solution which connects the found nodes. For static

environments as expected, the A* algorithm is commonly used.

Afterwards, the resulting sequence of graph nodes needs to be transferred back to the original

environment.

4. A* Algorithm
The standard search algorithm for the shortest path problem in a graph is A*. It is a directed breadth-

first search and combines the advantages of uniform-cost and greedy searches using a fitness function:

f(n) = g(n) + h(n);

Where g(n) denotes the accumulated cost from the start node to node n and h(n) is a heuristic

estimation of the remaining cost to get from node n to the goal node.

During the search, the A* algorithm maintains two lists of nodes: The open list contains the

nodes that have to be considered next and the closed list which contains the nodes already visited. The

algorithm itself consists of expanding the one node from the open list whose fitness function is

Collision Avoidance in Crowd Simulation with Priority Rules 9

minimal. Expanding a node means putting it into the closed list and inserting the neighbours into the

open list and evaluating the fitness function. The algorithm stops, when the goal node gets expanded.

The choice of a good heuristic is necessary in order to achieve both quality and efficiency of the

search. As long as the heuristic underestimates the real cost, the shortest path is guaranteed to be found.

Nevertheless, underestimating can easily lead to an expansion of too many nodes. But when the

heuristic is allowed to overestimate the remaining cost, faster results can be achieved because fewer

nodes get expanded. If overestimating the distance to the goal, the A* algorithm tends to expand nodes

that lie on the direct path to the goal before trying other nodes. But this can also lead to significantly

slower searches if the final path contains directions that lead away from the goal [11].

5. System Overview
The following section discusses various aspects of our solution. First, we present how to create the

virtual environment and how to discretizate the scene into cells in order to form a graph. Second, we

present our modified algorithm of A* in order to be used in dynamic environment. This algorithm is

used by every individual inside its visible region. Then we focus our discussion on collision avoidance

types and situations. The individuals must avoid collisions with the environment and with each other.

Given a pedestrian’s current location and a target destination, it exploits the topological map at

the top level of the environment model. By applying path search algorithms within the path maps

associated with each region, the pedestrian can plan a path from the current location to the boundary or

portal between the current region and the next. The process is repeated in the next region, and so on,

until it terminates at the target location.

5.1 Scene Modelisation

In our problem setting we are given a virtual environment in which individuals must move from a

given start point to a given goal position. The information to be given are:

 The number and position of the obstacles in order to form the desired environment.

 The number of agents, the position and the goal point for each agent. More than one agent

could have the same goal position

5.2 Dicretization

Our approach is a cell decomposition approach which used a modified A* to find paths for a set of

agents. The first task is to discretize the scene into obstacle-free regions. Each agent occupied one cell

but an obstacle can occupy several cells in the environment

5.3 Path finding

Autonomous pedestrians are capable of automatically planning paths around static and dynamic

obstacles in the virtual environment. After the discretization of the scene, each agent computes its path

by applying the A* algorithm in its visible region. The boundary or portal between the current region

and the next becomes the intermediate target location. At this stage the algorithm takes into account

only the static obstacles.

The next stage of the simulation is the pedestrian’s movement. So, for each frame of the

behavioural animation and before getting to the next position, each agent must process the collision

prediction to avoid collision with the other agents of the environment.

5.4 Collision prediction

In each frame of the simulation, every agent needs to check for future collisions with all other agents in

the scene. If a collision has been predicted the type of collision must be determined. In real life, there

are three possible types of collision, called towards, away and glancing; there shown in figure 1.

10 Cherif Foudil and Djedi Noureddine

 Toward collision : or face to face, occurs if the agents are walking toward each other;

 An away collision: or rear, when the agent is behind the collidee (an other agent or an

obstacle);

 A glancing collision: is a side-on collision between two agents walking in roughly the same

direction;

Figure 1: The three collision types

5.5 Collision Avoidance

Collision avoidance between agents can involve some problems that only appear when we deal with

many agents. A method to avoid collision between individuals can be not efficient when we have

several ones. There are more constraints and variables when a complex environment (with fixed

obstacles, mobile obstacles, and small regions to walk) includes many virtual human agents. Yet, if the

structure of the group has to be preserved, this adds another parameter in the complexity of crowd

collision avoidance.

First, consider how we avoid collisions in our human life for collision avoidance. It is very

complex but it can be defined by some simple rules. In general, one is reluctant to be far away from

one’s path. Therefore, one just goes ahead if the other goes out of way to avoid ahead-on collision. In

case of overtaking, one prefers a wide side or follows the other if obstacles (or other characters) exist

somewhere near. In case that a collision occurs while proceeding to different direction, people pass on

the backside or speed up; otherwise speed down or wait generally [2].

5.5.1 Towards Collisions

The first stage is to determine whether the collidee is to the left or right of the agent. People will prefer

to pass on the side with least deviation from their path. Observations show that the agent has three

different ways of avoiding the collision:

 Changing direction only;

 Changing speed only;

 Changing direction and speed;

If no behaviour has been found that will avoid collision, the agent simply stops walking. This

will allow the other agent involved in the collision to avoid the subject, who can then resume walking.

5.5.2 Away Collisions

An away collision is one where the collidee is in front of the agent, but the agent is walking faster than

the collidee, so will bump into the rear of the collidee. To deal with this situation, the agent has two

choices:

 Slow down to the same speed as the collidee and walk behind it.

Toward

collision

An away

collision

A glancing

collision

Collision Avoidance in Crowd Simulation with Priority Rules 11

 Walk faster and overtake the collidee by choosing the appropriate side.

5.5.3 Glancing Collisions

This type of collision is dealt with a similar way to towards collisions.

Each agent has a goal trying to reach it by following its initial path. After avoiding collision,

the agent should return to its path smoothly in order to look natural or change the path completely.

6. Avoidance behaviours
As we have seen before, each collision avoidance needs different behaviours and different treatment.

The list of behaviours that can be used in avoidance collisions are:

 moving forward,

 Changing directions (left or right)

 Waiting

 Speeding up

 Slowing down

 Moving back.

Each agent has a priority and several ones could have the same priority. These priorities are

taken from the sociological and psychological of the human society (the priority is given to the old

human, a handicap, a pregnant women, etc…).

A second level of priority is given to the behaviours. It is complex phenomena because it

depends on the type of collision and the avoidance collision situations: (two individuals, crossing

groups, queuing in an exit, queuing in two directions, crowded environment, etc…).

The process of collision avoidance is similar for all these situations by applying the above

algorithm for each pair of agents in collisions. The process is described in the figure3. The overview of

the system is described figure 2.

Figure 2: Overview of the system

For each agent apply A* to find its itinerary.

For each frame of animation do

For each agent do

Collision prediction

If not collision then

the agent goes on its way.

Else

Apply the collision avoidance agent to

agent algorithm.

End if

End for

End for

12 Cherif Foudil and Djedi Noureddine

Figure 3 Agent to agent collision avoidance algorithm

We can summarize the treatment of collision avoidance by using the priority rules in the table1.

For example we pass to the priority two if there is no space to move.

For each pair of agents do

 If toward collisions then

 If agents have the same priorities then Choose one agent in random way

 If collision 1 then (two agents reach same cell figure 4)

- Agent1 move forward, agent 2 change direction to the right if there is space

 to move

 else change direction to the left

 - Agent 1 change direction to the right, agent 2 move forward

 - Agent 1 change direction to the left, agent 2 move forward

 - Agent 1 move forward, agent 2 wait.

 Else (collision 2agents reach the cell of each other figure 4)

 - Agent1 move forward, agent 2 change direction to the right if there is space to

 move else change direction to the left

 - Agent 1 change direction to the right, agent 2 move forward

 - Agent 1 change direction to the left, agent 2 move forward

 - Agent 1 wait, agent 2 wait (these agents are blocked)

 End if

 Else begin with the agent witch has the higher priority and process the treatment as in

 the same priorities.

 End if

 Else if away collisions then (agent 2 behind agent 1)

 - agent 1 move forward, agent 2 change directions right, left to overtake, or slowing

down

 else (glancing collisions)

 - Agent1 move forward, agent 2 change direction to the right if there is space to move

 else change direction to the left

 - Agent 1 change direction to the right, agent 2 move forward

 - Agent 1 change direction to the left, agent 2 move forward

 - Agent 1 move forward, agent 2 wait.

 End if

 End if

End for

Collision Avoidance in Crowd Simulation with Priority Rules 13

Table 1: Priority rules in collision avoidance
 Collision type Agent1 Agent2 Priority

 forward right 1

 forward left 2

 right forward 3

towards collision left forward 4

Collision1

forward wait 5

 forward right 1

 forward left 2

 right forward 3

 left Forward 4

Collision2

wait wait 5

forward Overtake by right 1

forward Overtake by left 2 Away collision Collision2

forward Slowing down 3

forward right 1

forward left 2

right forward 3

left forward 4

Glancing collision Collision1

forward wait 5

6.1 Crossing groups

This situation is found in a crowded environment, when two groups of agents moving in opposite

directions and try to avoid each other. In real life, they formed opposite lines consisting of pedestrians

with the same direction. (figure 5.1)

In case of collision the agent to agent collision avoidance algorithm is applied. The collision

avoidance behaviours used are: moving forward, changing directions, waiting and moving back. The

last behaviour is used in the case of blocking when there is no space to move forward.

6.2 Bottlenecks (queuing in an exit)

Bottlenecks or passing direction of pedestrians is found in applications such as the entrance into

corridors, staircases, subways, or doors. In real life, the priority is given to the nearest to the centre of

the bottleneck. The A* algorithm resolves directly this situation and in case of collision the agent to

agent collision avoidance algorithm is applied. The collision avoidance behaviours used are: moving

forward, changing directions, and waiting. (figure 5.2)

6.3 Queuing in two directions

Pedestrians form queues in front of exits or doors of vehicles. When a vehicle arrived,

pedestrians wait for the inside passengers to get off the vehicle and then get on it. This type of

movement can be seen at elevator halls, platforms of railway stations, bus stops, and so on. (Figure 5.3)

There will be two types of situations: pedestrians gather in front of the entrance without leaving

the way for inside passengers to get off the vehicle and pedestrians leave the way for inside passengers

to get off the vehicle.

In our system a priority is given to the agents of one direction, the others wait until there will be

a free space to move. In case of collision the agent to agent collision avoidance algorithm is applied.

The collision avoidance behaviours used are: moving forward, changing directions, waiting and

moving back. The last behaviour is used when passage is blocked; there is no space to move. The

agents which have less priority have to choose between two possibilities:

 Moving back to let passage to the other agents.

 Or applying the A* to find a new path if it is possible.

14 Cherif Foudil and Djedi Noureddine

6.4 Narrow passage

This situation is observed inside corridors, in pavements, or pedestrian’s passage. Generally the

pedestrians formed line segregation, each group takes a direction and the choice of the direction is

taken from the sociological behaviours of the pedestrian (right or left). The A* algorithm provides the

path to be followed with just changing direction to overtake in case of away collision. (figure 5.4)

 Figure 5.1 Crossing groups Figure 5.2 Bottlenecks

Figure 5.3 Queuing in two directions Figure 5.4 Narrow passage

7. Results and Discussion
The behavioural algorithms described above have been implemented in C++ using Open GL library.

The system is a 3D software designed to be used in real time, so different ideas and situations can be

simulated. A crowd of about 600 agents can be simulated at an acceptable time on a Pentium IV, 3

GHz with 256 Mo of main memory.

The user interface has been designed to allow easy testing: the simulation can be paused at any

time, and replayed at any speed, or frame by frame, meaning that a collision can be viewed from a

variety of angles. He can create his virtual scene in different ways, by placing the obstacles and the

agents wherever he wants; He can also choose the destination of each agent. The system can simulate

any type of collision situations:

An environment with agents and obstacles or without obstacles, a populated environment, a

narrow space to produce a large number of potential collisions, agents acting as bottleneck, crossing

groups, queuing in two directions,etc…

Figure 5 show some results of our system. The colored cells are the goals of the agents.

Our algorithm is used for all the collision avoidance situations, with minor changes in the

priorities of the agents and the behaviors. We have separated them in order to better understand and to

compare the results of the system with the real life figure 6.

The combination of A* with the application of the behaviors of collision avoidance gave good

results similar to the everyday life. The agents moving back could use the A* to compute the new

optimum path from the actual position to the destination target. After avoiding collision, the agent has

two choices: to return to its itinerary or compute a new path to its goal from that position.

The use of priority rules solved the problem of disorder in the crowd movement. The traversed

time depends on several parameters, amongst other things, the density of crowd and the methods of

collision avoidance. We have tested the system with these priority rules and without them. And in

Collision Avoidance in Crowd Simulation with Priority Rules 15

almost the situations the traversed time is better with the use of these rules. The table 3 and table 4

show this difference in two situations for example, narrow passage and queuing in two directions.

Table 2: Traversed time in seconds in narrow passage

Agents With priority rules Without priority rules

1 50 85

2 58 99

3 43 69

4 52 73

5 44 97

6 58 107

7 54 108

8 64 114

9 56 100

10 49 90

Table 3: Traversed time in seconds in queuing in two directions

Agents With priority rules Without priority rules

1 45 55

2 39 59

3 49 60

4 56 50

5 33 43

6 32 34

7 44 59

8 32 50

9 29 29

10 46 59

11 40 54

12 34 55

8. Conclusion and Future Works
This paper has presented useful ideas towards a system that can simulate human behavior based on

theories from sociology and psychology of the human being. We concentrate our discussion on

techniques for collision avoidance as well as the path finding in dynamic environment. These two

techniques add realism to the simulation. The system can simulate a large number of agents in real time

(about 640 agents).

The use of priority rules solved the problem of disorder in the crowd movement and in almost

situations the traversed time is better with the use of these rules.

Our model could be used as a framework to simulate real situations such as: the rise and

descent of a subway or a bus, the walk in pavement, the entry or the exit of a supermarket…

There are many ideas for future work to improve the realism of the simulation:

 Actually, all agents move through the scene on their own, further work would allow agents to

move in small groups.

 Currently each agent is assigned a goal to move towards; a better system would involve the

agent being given a plan rather than a simple goal. For example, an agent could be told to visit

all the sites in a museum, get out of the scene etc...

 The notion of groups should improve the realism of the simulation by performing group

avoidance rather than individual avoidance and will allow modelling both group and individual

behaviours.

16 Cherif Foudil and Djedi Noureddine

Figure 6: a) queuing in two directions; b) open area without obstacles c) narrow passage

Collision Avoidance in Crowd Simulation with Priority Rules 17

References
[1] N. Badler, C. Phillips, and B. Webber, Simulating Humans: Computer Graphics Animation

and Control. Oxford University Press, New York, NY, 1993.

[2] S. Baek, I. K. J. Inho, Lee Motion Generation Using Motion Mining System, International

Conference on Artificial Reality and Telexistence ICAT2003, Japan, 2003.

[3] S. Bandi, and D. Thalmann, Space Discretization for Efficient Human Navigation.Computer

Graphics Forum, 17(3), 1998, pp.195-206

[4] O. B. Bayazit, J. M. Lien, and N.M. Amato, Better flocking behaviors using rule-based

roadmaps. In Algorithmic Foundations of Robotics V, Springer Tracts in Advanced Robotics

7,. Springer-Verlag Berlin Heidelberg, 2004, pp. 95–111

[5] V. Blue, J. Adler, Cellular automata model of emergent collective bi-directional pedestrian

dynamics. In Artificial Life VI, the Seventh International Conference on the Simulation and

Synthesis of Living Systems, 2000.

[6] F. Feurtey, Simulating the Collision Avoidance Behavior of Pedestrians. Master’s thesis,

Department of Electronic Engineering, University of Tokyo, 2000

[7] M. F. P.Gillies and N. A. Dodgson, Attention based obstacle avoidance for animated

characters. In Virtual Reality. To appear

[8] D. Helbing and P. Molnr, Social force model for pedestrian dynamics. Physical Review, 51,

1995, pp. 4282– 4286

[9] A. Kamphuis and M. H, Overmars, Motion planning for coherent groups of entities. In IEEE

Int. Conf. on Robotics and Automation. IEEE Press, San Diego, CA, 2004,

[10] F. Lamarche, and S. Donikian, Crowd of virtual humans: a new approach for real time

navigation in complex and structured environments. In Computer Graphics Forum, vol. 23,

2004, pp. 509–518

[11] C. Niederberger, D. Radovic, M. Gross, Generic Path Planning for Real-Time Applications,

Computer Graphics International (CGI'04), 2004, pp. 299-306.

[12] T. Y. Li, and H. C. Chou, Motion planning for a crowd of robots. In International Conference

on Robotics and Automation (ICRA). IEEE Press, San Diego, CA, 2003.

[13] S. R. Musse and D. Thalmann, Hierarchical model for real time simulation of virtual human

crowds. IEEE Transactions on Visualization and Computer Graphics, 7(2), 2001, pp. 152–

164

[14] J. Reif and H. Wang, Social potential fields: A distributed behavioral control for autonomous

robots. In K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, editors, International

Workshop on Algorithmic Foundations of Robotics (WAFR), A. K. Peters, Wellesley, MA,

1995, pp. 431–459.

[15] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model. Computer

Graphics, 21(4), 1987, pp.25–34

[16] C. W. Reynolds, Steering behaviors for autonomous characters. In Game Developers

Conference, 1999,

[17] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall, 1994.

[18] S. J. Rymill, and N.A. Dodgson, A Psychological-Based Simulation of Human Behaviour.

Theory and Practice of Computer Graphics. EG UK, 2005, pp 229-236.

[19] W. Shao and D. Terzopoulos, Autonomous Pedestrians. Eurographics / ACM SIGGRAPH

Symposium on Computer Animation. USA. 2005, pp. 19-28.

[20] B. Ulicny and D. Thalmann, Crowd simulation for interactive virtual environments and vr

training systems.

