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Introduction

Introduction

Quantum Mechanics is one the most important and the most difficult branch of physics [1]. Quantum
mechanics (QM - also known as quantum physics, or quantum theory) is a branch of physics which deals

with physical phenomena at nanoscopic scales where the action is on the order of the Planck constant [2].

The interaction of a charged particle with an electric dipole is a fundamental problem, which
received a lot of attention since the early days of nuclear and molecular physics. This received a lot of

attention in the physics literature for more than 60 years [3].

In Appendix A, we address the issue of the Coulomb problem in any dimension and calculate the
potentials of a point electric dipole and quadrupole in two dimensions. The problem of a point charge in the
field of an electric quadrupole in 2D (Fig. 1) is equivalent to the problem of a point charge in 3D moving in
a plane normal to four parallel uniform line charges [3].
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Fig. 1: An electric quadrupole configuration in 2D with d <<r.

In 2007 A.D.Alhaidari obtains analytic solution of the time-independent Schrodinger equation in
two dimensions for a charged particle moving in field of an electric quadrupole [3]. There is an other people
who had studied the bound states of the Schrddinger equation (SE) for an electron confined to two
dimensions and subject to a potential V(r,8) = Dcos8 /r where D is the strength of the "dipole” potential
(2012) [4]. And in 2013 C R Handy and D Vrinceanu examine the effectiveness of a new spectral method in
solving the two dimensional dipole problem (DP).This deceptively simple problem has a long history of
poorly approximated energy values, particularly for the ground state, until the recent work by Amore and
Fernandez (AF, 2012 Phys. Rev. B: At. Mol. Opt. Phys. 45 235004) [5].
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Introduction

In this work we will calculate the exact potential: unperturbed potential (Coulomb potential) and
perturbed potential (dipole and quadrupole parts).The corrections induced by multipolar terms that add to

the monopole term(Coulomb energies) are calculated using stationary perturbation theory.

In chapter one, we will see multipole expansion to calculate the potentials of a point electric charge,

a dipole and a quadrupole in two dimensions.

In the second chapter we write the solution of Schrédinger equation in 2D for the Coulomb potential.
First of all, we will discuss, in a general view, on the Schrédinger equation inone-dimensional hydrogen

atom and in two-dimensional hydrogen atom.

In the third chapter we will talk about perturbation theory exactly the time-independent perturbation

theory.
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Fig. 2: The electric dipole configuration in 2D with d <<r.



Multipole expansion | Chapter I

I-1- 1.1.Introduction

Recently, multipole expansion technique was applied in modern fields such as nanostructures, near-
field diffraction
, highly directional antennas. The special properties of toroid moments make them very interesting in
constructing meta-materials with particular characteristics [6-7].

In this chapter we study the multipole expansion for calculate the potentials of a point electric
monopole, dipole and quadrupole in two dimensions V (r, 8)where @is the azimuthally angle in the x — y

plane

1.2.Definition of Multipole Expansion

“...A multipole expansion is a series expansion of the effect produced by a given system in terms of
an expansion parameter which becomes small as the distance away from the system increases”[8].

The subject of multipole expansion of the electromagnetic field is treated in many textbooks on
classical electrodynamics. Nevertheless, the correct relation between the radiation source and the radiation
field was explained only together with the introduction of the class of toroid moments and distributions [9].
Previously, we have come to a conclusion that very far from a charge distribution, this charge distribution
“looked” like a point charge (e.g. the field and the potential) with charge magnitude equal to the sum of
charges in the original charge distribution [10]. Consider an extended charge distributiong(r"). We wish to
find the electrostatic potential due to this charge distribution at a given point r, we assume that this point is
at a large distance from the charge distribution, that is if »’ varies over the charge distribution thenr >> r’
the coulomb potential for a charge distribution is given by[11]:

V() = kzj% where k= — (1.1)

4mer

In cases where there is no ¢ dependence the Laplace solution in polar coordinates is:

Y (Alrl +rll%) P,(cos 0) (1.2)

—n—1
The multipole expansion of ||# —r’|| ~shows the relation and demonstrates that at long distances(r > 1),
we can expand the potential as a multipole, i.e. Eq. (2), with4; = 0.More than that, we can actually get

general expressions for the coefficients B;in terms of (r"). First let see that Eq. (1) and (2) are related, but

—py—1
doing a systematic expansion of||# — r’|| ", in the case where 7/ r < 1 [12].

Spectrum of multipolar potential by perturbation theory
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Multipole expansion | Chapter I
=
Fig.3. Extended distribution of charges
We write [12]:
1 1 1 N2 2] M2
lr=r|  [r2+r2-277]1/2 ;[ T (7) I (1-3)
“ 2 N
We usex = (r;) — erzr and make a Taylor expansion of (1 + x) ™", i.e. use:
_ 2
(1+x0)"= 1+’;—’f+—"("2,1)x + - (14)

We have [13]:

— - - — r—
7= (=T = ra@ - T

R = r(1—21c059 +£)2i
r r2
-1
1 1 r' r'z B
:=—(1—2—c050+—2)
nor r r

We use expansion of Taylor:

-1 ot U ¥ G SIPA PR
(1+x)7=1_|_21_lx+u+...

-1 _
1427 =14+ =x+2x2+...
2 8

(1.5)

(1.6)

(1.7)

(1.8)
(1.9)

2\ 2

’ !2 ! '2 ’
(1—21c059+r—2)2 =1——(—Zr—cosH+r—2)+§<—2r—c059+r—2> +-- (1.10)
r r r r 8 r r

-1
4

2

, 20— ) 2 3 . ) ,
(1—210059 +r—2)Z = 1+r—c059—lr—2+§(4r—3c0529 +r—4—4r—c059r—2> (1.11)
r r r 2r 8 r r r r

-1
3 2

' 2 ' 2
r’<<r=>r—3z O:>(1—2r—cosé?+r—2) =1+r—c059+r—2(
r r r r r

3cos26-1

) (12

Spectrum of multipolar potential by perturbation theory
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2
'* 3cos?6-1

1 1 r r_

- =1 1 +—cosf + 113

== 1 . - ) (1.13)
monopole dipole quadrupole

72

vy =kzi=k[, Dav =1 401 <1 +Zcos + rr—z(“"fg‘l)) dv'  (1.14)

1 ! !
Vinono = k;fw q(r"dv (1.15)
Vaip = krisz q(r')r' cos 6 dv' (1.16)
29_
Vawa = k = [, a0 (22222) dv'[14] (1.17)

1.2.1.Definition of Monopole:
A point charge is a hypothetical charge located at a Single point in space. While an electron can for
many purposes be considered a point charge, its size can be characterized by length scale known as the

electron radius [15].

The electric potential of an electric charge monopole is given by:
Vinono = k%fvr q(r')dv'[14]. (1.18)

11.3.Definition of Dipole:

A physical dipole consists of two equal and opposite point charges. Its field at large distances (distances
large in comparison to the separation of the poles) depends almost entirely on the dipole moment. A point
(electric) dipole is the limit obtained by letting the separation tends to 0 while keeping the dipole moment
fixed. The field of a point dipole has a particularly simple form, and the 1* order term in the multipole
expansion is precisely the point dipole field [16]. The electric potential of an electric charge dipole is given
by[14]:

Vaip = krisz q(rr'cosd dy’, (1.19)

Spectrum of multipolar potential by perturbation theory
Page 5
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Multipole expansion | Chapter I

Fig.4. Dipole Potential and Field

11.4.Definition of Quadruple:

A quadrupole is one of a sequence of configurations of electric charge or current or gravitational
mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex

structure reflecting various orders of complexity [17].

The simplest example of an electric quadrupole consists of alternating positive and negative charges,
arranged on the corners of a square. The monopole moment (just the total charge) of this arrangement is
zero. Similarly, the dipole moment is zero, but the quadrupole moment of the arrangement in the diagram

cannot be reduced to zero [16]. The electric potential of an electric charge quadrupole is given by [14]:

3cos?6-1

una = krigfv, Q(r’)rlz (T)dv, (|.20)

@ B 8

.
v

Fig.5.Quadrupole Potential and Field

Spectrum of multipolar potential by perturbation theory
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Schrédinger equation in two dimension | Chapter 11

I1.1.Introduction

One and two dimensional reductions of the three-dimensional Schrddinger equation of
the hydrogen atom are considered. These reductions are carried out from the point of view of
the two Common sets of space coordinates: Cartesian and spherical. The resulting systems
have features that relate more readily to the old quantum theory models of Bohr and
Summerfield than the general three-dimensional hydrogen atom. Furthermore, the
consideration yield interesting insights into the quantum mechanics of the hydrogen atom and
may serve as helpful intermediary preparation, in introductory presentation of the subject, for
the unreduced three-dimensional case [19].
11.2.Generality of Schrédinger equation

It is convenient for our purposes to begin with the time-independent Schrddinger
equation of a particle in a potential. This equation, when expressed in standard notation, reads

as follows [19]:

;—iinlp(x, v,z) +V(x,y,2)P(x,y,2) = EY(x,y,2) 1.1

One usually illustrates this equation, in an introductory presentation of the subject, in
terms of Cartesian one-dimensional systems have simple potentials, e.g. the square well and
the rectangular potential barrier. The important case of hydrogen atom, however, is dealt with
form the outset in three dimensions. Yet, one- and two-dimensional reductions of the
hydrogen atom system can be studied towards illustration of Schrédinger’s Eg. (1), and
towards building up to the three-dimensional case. Additionally, the study of the resulting
reduced systems leads to a better appreciation of the relation between the old quantum theory
and Schrodinger’s theory[19].
11.2.1.0ne-Dimensional Hydrogen Atom

The dimensional reduction of Schrddinger’s equation depends on the set of
coordinates in which it is expressed. Attention will be confined to the hydrogen atom in the
two Common sets: Cartesian and spherical coordinates, the potential V in Eq. (1) is then the
electrostatic Coulomb potential of the electron in the field of the proton. For the one-
dimensional reduction from the proton of view of Cartesian coordinates, there is only one
distinct reduction. This corresponds to any one of x,y, and z being variable while the
remaining two are held constant. Let the chosen variable be denoted by x. The resulting

reduced equation from Eq. (1) [19].

—h? d?p(x) e?
2m  dx2 41E) |x|

Y(x) = Ep(x) 1.1

Spectrum of multipolar potential by perturbation theory
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11.2.2. Two-Dimensional Hydrogen Atom

As in the one-dimensional case, the reduction of the hydrogen atom Schrédinger equation to
two dimensions will be carried out from the point of view of the two Common sets of
coordinates: Cartesian set of coordinates x, y ,and z , there is only one distinct reduction. This
corresponds to any pair of the three coordinates being variable while the third is held

constant. Choosing x and y to be the pair, Eq. (11.1) becomes[19].

:EGK+33¢@ Z) - ——p(x,y) = Ep(xy) 1.2
2m \0x?2 dy? Y 4”50W Y) = Yy .

Equation (3), when expressed in terms of the transformed coordinates r and 8, has the form

h? (9% 19 | 1 92 e?
[— 7m, (ﬁ + ;5 + T_ZW) - —47”:0 '—x2+y2] lIJ(I‘, 0 ) =E ljJ(r, e) 1.3

11.3. Analytic Solution of a Two-Dimensional Hydrogen Atom

The hydrogen atom is the name given to the system composed of an electron with mass m,
and charge —and apositively charged nucleus (Ze) located at the origin of the coordinate
system. The central force between the electron and the nucleus is determined by the attractive
Coulomb potential function [20].
v = -2 1.4

The three-dimensional (3D) hydrogen atom played a central role in the early
formulation and development of quantum mechanics and is now part of the standard
curriculum in modern undergraduate physics. If the motion of the electron around the nucleus
is constrained in a plane by certain boundary conditions, then such a system is called the two-
dimensional hydrogen atom. We would like to point out that "2D" in the name "2D hydrogen
atom" only emphasizes that the motion of the electron around a positive point charge (not a
line charge) is constrained in a plane. This system is not 2D in a strict sense that all fields
including electromagnetic fields, photon emission, angular momentum, and spin are not

confined to a plane [20].

The eigenstates of a 2D hydrogen atom are described by the Schrddinger equation, in

polar coordinates [20].

Spectrum of multipolar potential by perturbation theory
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[‘;:le (3 + 32+ az) + VOO () = E(r,0) 1.5
[‘ (;_-i—lai-'_ = aaez) V(r)]w(r 0)="7EW(r0) 1.6

We multiply this equation by r2:

sz

g ) Bl <

(247 5+ 5) + 22 E - vaD]wer) =0 118

Using separation of variables y(r,8) = R(r)@(8).

We have:
(S +r 2+ )+ 2522 (E-v@)|Re@@®) =0 119
[(rch(e)“(”+ 0@ L0+ R TED) 4+ 1110

(B = V()| ROIPO) = 0

We obtain two separable equations called radial part and angular part of the total solution.
For the angular solution, we have:

62tD(9) Zmr
0062

(E-=V(@)o®) =0 11.11
The solution is:

D(0) = —e™m® ;m=0,l,+2 11.12

And the radial part writes:

d? 1d 2m,
“SR() +35 R() + [ 5 11.13

For simplicity, we choose the Gaussian units h = 2m = e2/2 and for negative energy, we

use E = —qg,

drzR(H‘—R()+(-—qO—7)R(r)—0 11.14

The solution is:

Spectrum of multipolar potential by perturbation theory
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R(x) = x™e=*/2G(x) 11.15
The equation then becomes:

x%+[(2|m|+1)—x]%—(—N+|m|+%)G=o 11.16
The solution of Eq which is regular at x = 0, is the confluent hypergeometric function

G(x) =1 Fy (-N+Im|+3,21m|+1,x) 11.17
A solution which satisfies the condition at infinity is obtained only for negative integral (or
zero) values of —N+| m | +%, then the function reduces to a finite polynomial; otherwise it

diverges at r — oo .Thus we arrive

5

We have:N = 1,3,—, andletn =N+ = 1,2,3, ...
2°2°2 2

Where n, is an integer called the principal quantum number. For a given n,| m | can take the

values :
|m|=0,1,2,3,..... ,n—1 11.18
R(x) = xI™Me=*/2G(x) 11.19
RG) = x™e™/?F (~N+Im | +3,2 1m|+1x) 1120

The normalized radial eigen function is given by [20]:

1
n (n+im|-1)! /2
R, = (2|Bm|)! (2n—nl)(z—|m|—1)!] (Bpr)™exp(—Bnr/2)1Fi(—n+Im | +1,2] 1121
m | +1,B,7)
27 mee?
Where B, = n__1_mhz€
2
So we give the first few function R,,;explicitly:
_Bar
RlO = ,316 2, ”.22
R20 = ﬁz/ 1 (1 - Bzr)e_ﬁzr/z y “23
3'/2
Ry = (B3/6'/2)re Par/2, ... 11.24

We have Y (r,0) = R(r)® (0)

Spectrum of multipolar potential by perturbation theory
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¥ 0) = (2n—1)(n—|m|—1)!] (Bnr)™exp(

an)lFl(—n+| ml| .25

1 .
7€ im6 m
(2m)2

+1,2|lm | +1,8,7)

This ends this section where we have writing the global expression of the Schrédinger

equation for 2D hydrogen atom.

Spectrum of multipolar potential by perturbation theory
Page 11



perturbation theory | Chapter 111

Perturbation theory is an important tool for describing real quantum systems. As it turns
out to be very difficult to find exact solutions to Schrédinger for Hamiltonians of even moderate

complexity [21].

I11.1.Perturbations Theory

Generally finding the exact solution of most interesting problems is impossible or at least
so difficult that it is not practical to obtain it. Sometimes it is possible with a bit of work to
obtain a so-called asymptotic series approximation of the solution that gives a good
approximation to the solution. In what follows we hope to provide, mostly by way of numerous
examples, some insight into this important branch of mathematics which we refer to as
perturbation theory. Our goal is to examine several examples including the asymptotic analysis

of solutions of algebraic, transcendental, differential equations and the evaluation of integrals.

In quantum mechanics, perturbation theory is a set of approximation schemes directly
related to mathematical pert perturbation for describing a complicated quantum system in terms
of a simpler one. The idea is to start with a simple system for which a mathematical solution is
known, and add an additional "perturbing” Hamiltonian representing a weak disturbance to the
system. If the disturbance is not too large, the various physical quantities associated with the
perturbed system (e.g. its energy levels and eigenstates) can, from considerations of continuity,
be expressed as ‘corrections' to those of the simple system. These corrections, being ‘small’
compared to the size of the quantities themselves, can be calculated using approximate methods
such as asymptotic series. The complicated system can therefore be studied based on knowledge

of the simpler one [22].

111.2. Time-Independent Perturbation Theory

Time-independent perturbation theory is one of two categories of perturbation theory. In
time-independent perturbation theory the perturbation Hamiltonian is static (i.e., possesses no
time dependence). Time-independent perturbation theory was presented by Erwin Schroédinger in
a 1926 paper [23]. Shortly after he produced his theories in wave mechanics. In this paper
Schrodinger referred to earlier work of Lord Rayleigh [24], who investigated harmonic
vibrations of a string perturbed by small inhomogeneities. This is why this perturbation theory is
often referred to as Rayleigh Schrodinger perturbation theory.

Spectrum of multipolar potential by perturbation theory
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H = Ho+V 11.26
And now we go to first order corrections.
111.2.1.First Order Corrections

We begin with an unperturbed Hamiltonian H,, which is also assumed to have no time
dependence. It has known energy levels and eigenstates, arising from the time-independent
Schrodinger equation [24]:

Ho|n©@) = EQIn©) n=1, 2, 3,... (111.1)

For simplicity, we have assumed that the energies are discrete. The (0) superscripts denote that
these quantities are associated with the unperturbed system. Note the use of Bra-ket notation. We
now introduce a perturbation to the Hamiltonian. Let Vbe a Hamiltonian representing a weak
physical disturbance, such as a potential energy produced by an external field. (Thus, Vis
formally a Hermitian operator) Let A be a dimensionless parameter that can take on values
ranging continuously from 0 (no perturbation) to 1 (the full perturbation). The perturbed

Hamiltonian is[24] :
H = Hy + AVwhereA = Oor 1 (1.2)

The energy levels and eigenstates of the perturbed Hamiltonian are again given by the
Schrodinger equation:

(Hy + AWV)|n) = E,|n). (I11.3)

Our goal is to express E,and|n) in terms of the energy levels and eigenstates of the old

Hamiltonian. If the perturbation is sufficiently weak, we can write them as power series in A:

E,=EQ +2EY + 2EP + - (111.4)
|n) = [n®) +An®) + ¥ n@) + - (1-5)
(k) _ 1d¥E, )y — 1dm
Where  E," = k! ik and |n™) = k! drk (111.6)

When A = 0, these reduce to the unperturbed values, which are the first term in each series.

Since the perturbation is weak, the energy levels and eigenstates should not deviate too much

Spectrum of multipolar potential by perturbation theory
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from their unperturbed values, and the terms should rapidly become smaller as we go to higher

order.
Substituting the power series expansion into the Schrédinger equation, we obtain:

(Hy + W) (@) + 2|n®) + 2n@y + ) = (E® + 2EW + 2EP +  (11.7)
n n n

)(|n(°>) + An®) + 2|n@) 4 -..)

Expanding this equation and comparing coefficients of each power of Aresults in an infinite
series of simultaneous equations. The zeroth-order equation is simply the Schrddinger equation

for the unperturbed system. The first-order equation is
Ho|n®) + V[n©@) = E@|n@) 4+ EW n©) (111.8)

Operating through by(n(®|, the first term on the left-hand side cancels with the first term on the
right-hand side. (Recall, the unperturbed Hamiltonian is Hermitian). This leads to the first-order
energy shift [24]:

EXY = (n©@]v|n©@) (111.9)
111.2.2.Second-Order Correction

We can find the higher-order deviations by a similar procedure, though the calculations become

quite tedious with our current formulation. Our normalization prescription gives that
2(n©@[n@) + (n®O[nW) =0 (111.10)

Up to second order, the expressions for the energies and (normalized) eigenstatesare [24]:

K2 o3y i)

0) O[] + 32 [ lv @)
E,=E,” + ,1<n |V|n ) + A% Xksn g0 _g0)
n k

Spectrum of multipolar potential by perturbation theory
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my= (11.12)

0 0y (KOWVIn®) | 5 (KO VIOHO|v]n®)
|n( )) + AZk:tn |k( )) E;O)—E]((O) +A Zk:tn Zl:tn (Eflo)—E]((O))(E;O)—EI(O))

<n<0>|v|n<0>>(k<°>|v|n<0>)

(B ~57)

O PONPIOI PO
2
(#-50)

22 Sieen | K©) — 23, +0(%)
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Results and Discussion:

We present in this section the results of studying the multipole potential (monopole,
dipole and quadrupole contributions). We have calculated the exact potential: unperturbed
potential (Coulomb potential) and perturbed potential (dipole and quadrupole parts).The
corrections added to Coulomb energies are calculated using stationary perturbation theory.

We use the software Mathematica for the calculation.

> For The First Level :

4megh?
Wehave:z=1:n=1; m=0;q = —2

mee? '

e The Monopole Potential: is given with the following equation

Ve = _42; V.1
So the energy of Coulomb potential is (Z =1;n= 1)
E, = — %% = ~2.180 x 10~1¢ Klogram Meter” V.2
We plot the monopole potential
1l
ol
3l
4l
05 10 15 20 25 30

Fig.6. Monopole (Coulomb) potential
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Results and discussion | Chapter 1V

e The Dipole Potential:

COS

1/)* rdr dO = 0 in all situations:

The Confirmation of j f IIJ

2m o
2z 1 —( 221)2
= () [rmin g r\M A2
WIVply) = rdrdd 2|m|)! ((Zn—l)(n—lml—l))!\/ﬁ(lmla) e z X V.3
0 0
Cos[G]

Fyl=n+ml + 1,2Im] + 1,225 eimd x %
(n_z)a

2Z T

1

2z 1 -
( 2') \/ (n'+m’|-1) 1 (|m|—)|m|e 7 x 4 [—n +|m'|+ 1,2|m| +

(2lm|) ((Zn 1)(n'=|m’|- 1))\/__

1 2z 1 __2z r

¢ [ (e | im0
(ZImI)'\/((Zn 1)(n~|m|- 1))( ) (2|m|)'\/((2n’—1)(n’—|m’|—1))! Js (|m|g) ¢ %

_ 2Z T
1

2z

pryml _(=3) S ,
F l—n+|m|+12|m|+1(ZZ)Zl(|m|£)|m|e 7 X 1F1[—n+|m|+1,2|m|+
2

1,2,—Z l drf cos[0] ei™? x e"im® qg
(n-3)a —_—

. . 27T
Because m=m so e™ xe™mP =1 and we have fo cos[0]d6 =0 so

2T
f f 1/JC°:2[9]1/J* rdrdf = 0 in all situations
0
0

The first order correction is always zero in all situations(y|Vp|y*) = 0; so we go to second

[(¥[Vply)I?

order correction Y, «n, P
nr—Ltn

We compute the corrections for different levels and we use these abbreviations:

Spectrum of multipolar potential by perturbation theory
Page 17



Results and discussion | Chapter 1V

m, e* m, e*
E,=— . —

;E = =
2(4mey)?n2h2’ " 2(4mey)?n?h?

We haveD = qd where d is the distance between the charges.

We have the following abbreviation for the integration:

2T
<¢n,l,m|V|¢:L’,l’,m’) = f fO l»bn,l,m XV X lp;',l',m' drdo
0

e _ 2z 1
| (n-2)"
| rdrdf 2ImD!

J

2z r
(n+|m|—1) 1 ( r)|m| (""%)a
(@n—=1Dn—|m|l-D)'V2r

—

2z

r| .
X F|-n+|m|+1,2Im|+1 —|eim® x vV

(n=3)°

2z r
(n"+|m|-1) 1 (l ) r)|m'| ("_‘%)a
(@n' =D = Im'| - D)!Var

2z

2lm"D!

S

2z

(-2

X (Fy|-n'+ |m/|+1,2|m]| + 1,

We have for the first correction the following value:

1,0 D Cos
100 41.[6
m=1

e The Quadrupole Potential:

- 0) -

The quadrupole potential is given by following relation:

D? 3cos?[6]-1
4TE r3

Spectrum of multipolar potential by perturbation theory
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Results and discussion | Chapter IV

And we have for its correction the following value:

cos?[0]-1

4TTE

<1/)100| 10, >=0 Iv.7

We have found from the fact that (¥|V,|y*) = 0 for all states and fromIV-4 and IV-6, that
for the first level, there is no corrections coming from the dipole and quadrupole contributions

of the potential; so the total energy is:

1g Kilogram Meter?

Ep = Ec + Ep + Eg = Ec = —2.180 X 10~ IV.8

Second?
» For The Second Level :z = 1; n = 2 we will follow the same steps:

e The Monopole Potential: Does not change and is given by equation IV-1; So the energy of

the second level is given by:

E.=— Z’q*me 1 — _5450 x 10-1° Kilogram Meter? V.9

2(4mey)2h2 n2 Second?

e The Dipole Potential: The first order always equals zero so we have calculated the second

order which gives us a value

o

D Cos[ ]
4re,

/&, - El))

D Cos[ ]
4re

l/)100>

lpZOO

lpnlm>‘ /(Ez n))

Kilogram

= 3.748 x 10*°D? V.10

Coulomb2Second?

We plot the dipole potential
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Fig.7. Dipole potential V(r,0) = cos 8/r?
e The Quadrupole Potential : the first correction is given with (Y |V |)

D? cos?[0]-1
4T€E) r3

Kilogram

V.11

<lpz,0,0| ¢§,0,0> = 2.022 x 10*°D?

Coulomb?2Second?

We plot the quadrupole potential.

Fig.8. Quadrupole potentialV(r,8) = (3cos?8 —1)/r3
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The Total Energy: We take the values computed in 1V-8, 1V-9 and 1V-10 to write:

Er=E —E;+Ey;= V.12
(_5 450 x 107 + 5.770 x 10*° p? )KilogramMeter2
. ) Coulomb2Meter? Second?

We plot the total potential for the second level.

Fig.9. Total potential V(r,8) = —1/r + cos8/r? + (3cos? 0 — 1) /r3

» For The Third Level :z=1; n =3 We will follow the same steps that we have followed

in the first level and second level

e The Monopole Potential: Does not change and is given by equation IV-1; So the energy of

this level is given by:

Z2q*m, 1 _19 Kilogram Meter?
E,=——1T¢ — = _6975x 1071922 V.13
2(4mey)2h2 n? Second?

e The Dipole Potential: Like the second level, the first order always equals zero so we

. Vply*IZ . .
calculate the second order from the expression ).,,-n, Mwhlch gives us a value

Enr—En
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D cos[6]
dme, 1?

2
G@mo ‘%mﬂﬂ%‘%O

1
10 n—1
+ E E (|<1/’3,0,0
n=4 m=1

n=1 m=

D cos[6]
4me, 12

wmmWﬂ@—aﬂ

Kilogram

— 34 n2
= 1.066 X 10°*D CorTomb?Second? V.14
e The Quadrupole Potential : the first correction had given a value
2T
* D? cos?[0]-1] , . . 37 2 Kilogram
j JO <l/)3'0‘0| 4TEg r3 ¢3’0’0> = 8424 x10%" %D CoulombZ2Second? V.15
0
The Total Energy: Comes from the values computed in IV-13, IV-14 and 1V-15:
2 i 2
(~6.975 x 1071° + 8.425 x 10%7 D )y
CoulombZ2Meter? Second?
So we have
Kilogram KilogramMeter?
E;(32) = 8.425 x 1037 D? —6.975 x 10717
r(32) Coulomb?Second? Second?

We summarize all the results in the following table ([D] = Coulomb Meter):

Ey in Joules Epin Joules Eqin Joules

n=1|-2180x 10718 0 0
n=2|-5450x 10719 | 3.748 x 10*°D? | 2.022 x 10*°D?
n=3|-6975x1071° | 1.067 x 103*D? | 8.424 x 1037 D?

It is interesting to see from the precedent results, that we can have a total energy that

vanishes and thus the corresponding bound state disappears.
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For the second level we put E; = 0 in 1V-11 to get:

Dt = 5.795 X 1073°Coulomb Meter

And this gives us the following value for the dimension of the dipole which characterizes the

extended system considered (q is the elementary charge):
Aerie = Dcrit/q = 0.683 a
For the third level we put E; = 0 in IV-15 to get:

Dt = 9.099 X 1072°Coulomb Meter

And this gives us the following characteristic dimension of the extended system considered (q is

the elementary charge):
derit = Derie/q = 10.732 a

We see that the extended nature of the charge. has a role which is opposed to the
attractive nature of the potential of the point charge, if the characteristics dimensions of the
system exceeds a certain critical value d,;;. The higher the level considered is, the greater our
critical value is. But if this dimensions are bellow this critical value, it is the attractive nature of

the system that prevails and we have bound states.

We can explain this behaviour by the fact that the dipole and quadrupole terms decrease
the depth of the potential well that results from the Coulomb term. This makes the bound states
of the potential well disappearing one after the other with the diminution of the depth or with the
increase of the dipole moment from IVV-16 and 1V-18.

This effect is easier to see if we represent the behaviour of the potential as a function of
the distance r and giving a constant value to the angle 8: we will consider the limit casesf =

+1where the angular effect is most pronounced.

Spectrum of multipolar potential by perturbation theory
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cos@ 3cos26-1
— t D? - 3
r r

Fig.10. Representation of potential _71 +D with D = 0,0.01; 0.1,1 and

cosf = +1 from bottom to top

1
_1
.
il
Fig.11. Representation of potential _71 +D C:ie + D? 3C°S:39_1 with D = 0,0.01; 0.1,1and
cosf@ = —1 from bottom to top

Spectrum of multipolar potential by perturbation theory
Page 24



Conclusion

Conclusion

The Coulomb problem in any dimension is defined as that of an electrostatic point
charge at the origin of free space. This problem in 2D is one of the most familiar of all
problems in Physics. So in our work, we have studied the spectrum of multipolar
potential by perturbation theory in 2D system. We have calculated the exact potential:
unperturbed potential (Coulomb potential) and perturbed potential (dipole and
quadrupole parts).

In chapter one, we talk about multipole expansion to calculate the potentials of a
point electric charge, a dipole and a quadrupole in two dimensions. In the second chapter
we write the solutions of Schrddinger equation in 2D for Coulomb potential (monopole
part). In the last chapter, we use perturbation theory to calculate the corrections induced
by perturbed potential (dipole and quadrupole parts).

For the first level, we have found that there are no contributions from dipole and
quadrupole potentials; so the total energy is the energy of the monopole (coulomb)
potential and is equal to[—2.180 x 10~ 8Joules].But for the second and the third level, we
have found that there is a value for the contributions of dipole and quadrupole potential
and the total energy is the sum of monopole, dipole and quadrupole potential. For the
second level the total energy equal to (—=5.450 x 1071% + 5.770 x 10*°D?)Joules.The total
energy for the third level is equal to (—6.975 x 10719 + 8.425 x 1037 D?)]Joules.

There is a special case where the Coulomb potential is suppressed by multipole
corrections and thus the total energy becomes zero. So for the second and third levels we
put Er = Oto getd,,;;, where d is the distance between the charges. For the second level
we found that d.,;; = D+ /q = 0.68 a (a is the first Bohr radius). But for the third level
we found that d,;; = Dt /q = 10.732 a.

Finally we conclude by saying that the dipole and quadrupole terms decrease the
depth of the potential well that results from the Coulomb term. This makes the bound
states of the potential well disappearing one after the other with the diminution of the

depth or with the increase of the dipole moment.
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Abstract

We discuss in this work a very important topic in the field of quantum physics;
which refers to quantum spectrum of the multipole expansion (monopole, dipole and
quadrupole potential). We write the solutions for solutions of Schrédinger equation in
two-dimensional system for the Coulomb potential. We talked about the theory of
perturbation theory use this theory. to calculate the corrections induced by dipole and

quadrupole potentials. to the energies of the monopole term by Schrodinger theory.

Finally, we discuss the results. We have found that there is a special case wheve the
dipole and quadrupole corrections equal the Coulomb energy and thus the total energy

goes to zero and there is no bound state for our system in this case.

Key words: two-dimensional system, Schrodinger equation, perturbation theory,

monopole, dipole, quadrupole.
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	III.2.Time-Independent Perturbation Theory
	Time-independent perturbation theory is one of two categories of perturbation theory. In time-independent perturbation theory the perturbation Hamiltonian is static (i.e., possesses no time dependence). Time-independent perturbation theory was present...
	And now we go to first order corrections.
	III.2.1.First Order Corrections

