
Journal of Electrical and Control Engineering                                                                                                                         JECE                                                                                                  

JECE Vol. 3 No. 4, 2013 PP. 17-22 www.joece.org/ © American V-King Scientific Publishing 

17 

Hybrid Approach Based on ANFIS Models for 
Intelligent Fault Diagnosis in Industrial Actuator 

Lakhmissi Cherroun 1, Nadji Hadroug 2, Mohamed Boumehraz 3 
Sciences and Technology Department, University of Djelfa - 17000 - Algeria 

1 cherroun_lakh@yahoo.fr; 2 nadji_hadroug@yahoo.fr; 3 medboumehraz@netcourrier.com 
 
 

Abstract- This paper introduces the application of the hybrid 
approach Adaptive Neuro-Fuzzy Inference System (ANFIS) 
for fault classification and diagnosis in industrial actuator. The 
ANFIS can be viewed either as a fuzzy inference system, a 
neural network or fuzzy neural network (FNN). This paper 
integrates the learning capabilities of neural network to the 
robustness of fuzzy systems in the sense that fuzzy logic 
concepts are embedded in the network structure. It also 
provides a natural framework for combining both numerical 
information in the form of input/output pairs and linguistic 
information in the form of if-then rules in a uniform fashion. 
The proposed algorithm is achieved by the intelligent scheme 
ANFIS. This intelligent system is used to model the valve 
actuator and classify the fault types. Computer simulation 
results are shown in this paper to demonstrate the effectiveness 
of this approach for modeling the actuator and for 
classification of faults for different fault conditions. 

Keywords- Neuro-Fuzzy System; Hybrid Learning; Fault 
Diagnosis 

I. INTRODUCTION 

Artificial intelligent techniques, such as artificial neural 
networks (ANN) fuzzy logic (FL) have been successfully 
applied to automated detection and fault diagnosis in 
different conditions [1] [2]. They largely increase the 
reliability of fault detection and diagnosis systems. The 
adaptive neuro-fuzzy inference system (ANFIS) [3] is a 
hybrid model which combines the ANNs adaptive capability 
and the fuzzy logic qualitative approach (Jang, 1993). By 
using the mathematical properties of ANNs in tuning rule-
based fuzzy systems that approximate the way human 
process information, ANFIS harnesses the power of the two 
paradigms: ANNs and fuzzy logic, and overcomes their own 
shortcomings simultaneously [4] [5]. 

Fuzzy system is tolerant to noise and error in the 
information coming from the sensory system, and most 
importantly; it is a factual reflection of the behavior of 
human expertise. A fuzzy controller is commonly defined as 
a system that emulates a human expert. The knowledge of 
the operator would be presenting in the form of a set of 
fuzzy linguistic rules [5]. These rules produce an 
approximate decision in the same manner as an expert 
would do. Ever since the fuzzy systems were applied in 
industrial applications, developers know that the 
construction of a well performing fuzzy system is not 
always easy. 

The problem of finding appropriate membership 
functions and fuzzy rules is often a tiring process of trial and 
error. However, the design of fuzzy logic rules is often 
reliant on heuristic experience and it lacks systematic 

methodology, therefore these rules might not be correct and 
consistent, do not possess a complete domain knowledge, 
and/or could have a proportion of redundant rules. 
Furthermore, these fuzzy logic rules cannot be adjusted or 
tuned on real-time operation, and the off-line adjustment of 
their parameters is a time consuming process. Another 
problem could be raised when better precision is needed 
which is the huge expansion in the fuzzy rule-based system 

[5].  

Techniques based on the use of Artificial Neural 
Networks (ANN) have a great interest in control and 
engineering. The fastness of treatment and their capacity of 
approximating complex nonlinear functions motivate their 
use for fault diagnosis [1] [6] [7]. The learning parameters of 
neural networks made them a prime target for a given task. 
This kind of behavior learning methods can be used to solve 
control and diagnosis problems. Artificial neural networks 
are considered to be simplified mathematical models of 
brain-like systems. A neural network is a processor of 
information which can be represented in its simplest form 
by a set of connected and layered processing elements (PEs). 
Each PE is able of receiving an n-dimensional input vector 
from either external sources or PEs at previous layers, and 
processing the data to deliver a scalar output, which is the 
function of a present input. They are generally trained by 
means of training-data, and due their property of 
generalization, they can learn new associations, new 
functional dependencies and new patterns. Due to these 
properties, they have been widely used for control. The 
learning parameters of neural networks made them a prime 
target for a combination with a fuzzy system in order to 
automate or support the process of developing a fuzzy 
system for a given task. Recently the role of neural networks 
has been found to be very useful and effective when 
integrated with fuzzy control systems to produce what is 
called neuro-fuzzy systems [4]. These hybrid systems provide 
an urgent synergy can be found between the two paradigms, 
specifically the capability to mimic human experts in fuzzy 
logic, and learning from previous experience capability in 
neural networks. Generally, neuro-fuzzy systems can be 
classified into two categories, adaptive neuro-fuzzy 
inference system (ANFIS) [3] and hybrid neuro-fuzzy 
systems [4]. The first category is the most widely used, and 
they are designed to combine the learning capabilities of 
neural networks and reasoning properties of fuzzy logic. 
The main function of neural network is to learn about the 
fuzzy inference system (FIS) behavior and uses this 
knowledge to adaptively modify its parameters. The 
adaptability of the fuzzy inference system can be achieved 
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by either rule base modification and/or membership 
functions modifications. Rules can be generated, modified, 
and/or eliminated, while membership functions of the input 
variables can adjusted and tuned by scaling mechanism [3].  

In this paper, an approach to design neuro-fuzzy systems 
type ANFIS is described for an intelligent fault diagnosis 
task. The supervision system can detect and classify the 
infected fault in the industrial actuator. This paper is 
organized as follows: Section 2 gives the necessary 
background of ANFIS model. In Section 3, we will describe 
the DAMADICS benchmark. The designed ANFIS models 
are introduced and explained in Section 4. Section 5 shows 
simulation results for the three steps in this application 
(modelling, generation of residuals and fault classification). 
The Section 6 concludes this paper. 

II. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 

A. ANFIS Architecture 

In this section we introduce the basic of ANFIS network 
architecture and its hybrid learning rule. Inspired by the idea 
of basing the fuzzy inference procedure on a feed forward 
network structure, Jang [3] proposed a fuzzy neural network 
model (Adaptive Neural-based Fuzzy Inference System) 
whose architecture is shown in Fig. 1. He reported that the 
ANFIS architecture can be employed to model nonlinear 
functions, identify nonlinear components on-line in a 
control system, and predict a chaotic time series. It is a 
hybrid neuro-fuzzy technique that brings learning 
capabilities of neural networks to fuzzy inference system. 
The learning algorithm tunes the membership functions of a 
sugeno-type fuzzy inference system using the training input-
output data. ANFIS consists of five layers; the adaptive 
nodes of the neural network are the nodes in Layers 1 and 4. 
The depicted model defines a controller with two inputs and 
one output. Each input has two membership functions. We 
assume that the rule base contains two fuzzy if-then rules of 
a Takagi and Sugeno’s type:   

 
Fig. 1 ANFIS structure for TS system with 2 inputs-one output 
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The output of the nodes in Layer 1 is the membership 
values of the premise part: 

( )xO
iAi µ=1 2,1, =i                                 (1) 

Every node in Layer 2 is a fixed node labeled M, which 
multiplies the incoming signals: 
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Every node in Layer 3 is fixed node labeled N for 

normalization. it calculates the ration of the i-th rule`s firing 
strength to the sum of all rules firing strengths: 
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In Layer 4, every node is an adaptive node while the 
node function is: 

( )iiiiiii ryqxpwfwO ++=×=4 . 2,1, =i         (4) 
Where 

iw  is the output of layer 3 and pi, qi, ri are the 
parameters for the first order Sugeno rule.  

The overall output of the network can be defined as: 

∑ ×==
i

iii fwfO5

                                  (5)        

B. Hybrid Learning Techniques 

Using a given input-output data set, constructs a fuzzy 
inference system whose membership function parameters 
are tuned (adjusted) using either a back-propagation 
algorithm alone or in combination with a least squares 
method [3]. This adjustment allows the fuzzy systems to 
learn from the data they are modeling. Jang proposed that 
the learning task is done in two passes using a hybrid 
learning algorithm as shown at Table 1. In the forward pass 
the first set is fixed and S2 is optimized by the least square 
estimate (LSE). In the backward pass S1 is tuning by the 
back-propagation algorithm [3]. 

TABLE I TOW PASSES IN THE HYBRID LEARNING 

 Forward Pass Backward  Pass 
Premise Parameters Fixed Back-propagation 

Consequent Parameters Least Squares 
Estimate fixed 

III. THE DAMADICS BENCHMARK 

In order to evaluate the proposed schemes, we apply it to 
fault diagnosis in DAMADICS benchmark. The 
DAMADICS benchmark (Development and Applications of 
Methods for Actuator Diagnosis in Industrial Control 
Systems) is an engineering research case study that can be 
used to evaluate detection and isolation methods [8]. The 
industrial actuator data set is collected under various 
operating loads, and different conditions including different 
fault categories. It is possible to simulate 19 abnormal 
events from three actuators, and a fault scenario is 
characterized by the fault type in conjunction with the 
failure mode, which can be abrupt (A) or incipient (I). The 
detailed description of the fault types is shown in Table 2. 
The actuator consists of a control valve, a pneumatic 
servomotor, and a positioner as depicted in Figure 2. PC is 
the positioned processing unit, E/P is the electro-pneumatic 
transducer, V1, V2, V3 are bypass valves, PP stands for 
displacement, P1,P2 are pressures, F is the flow value of 
transducer and T1 for temperature. The output variables of 
the actuator model (F and X) are employed to construct the 
observation sequences (O = {o1,o2,…,ot,…,oT}. Were o1 = 
[Ft=1 Xt=1] [8] [9]. Different approaches and papers are 
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presented to study the fault diagnosis in DAMADICS 
benchmark likes [8-11]. 

 
Fig. 2 DAMADICS actuator 

 
Fig. 3 The general scheme for the actuator 

In the DAMADICS actuator, faults can appear in control 
valve, servomotor, electro pneumatic transducer, piston rod 
travel transducer, pressure transmitter or in control unit. 
Nineteen types of faults are considered as shown in Table 2. 
The faults are emulated under carefully monitored 
conditions, keeping the process operation within acceptable 
quality limits. Five available measurements and 1 control 
value signal have been considered for benchmarking 
purposes: process control external signal CV, values of 
liquid pressure on the valve inlet P1 and outlet P2, liquid 
flow rate F, liquid temperature T1, and displacement of the 
rod X. Table 3 summarizes the parameters of input and 
outputs variables.  

TABLE II FAULTS TO BE DETECTED AND ISOLATED 

Fault Description 
Control valve faults 

F1 Valve clogging 
F2 Valve plug or valve seat sedimentation 
F3 Valve plug or valve seat erosion 
F4 Increased of valve or bushing friction 
F5 External leakage (leaky bushing, covers) 
F6 Internal leakage (valve tightness) 
F7 Medium evaporation or critical flow 

Pneumatic servo-motor faults 
F8 Twisted servo-motor's piston rod 
F9 Servo-motor's housing tightness 
F10 Servo-motor's diaphragm perforation 
F11 Servo-motor's spring fault 

Positioner faults 
F12 Electro-pneumatic transducer fault 
F13 Rod displacement sensor fault 
F14 Pressure sensor fault 

F15 Positioner feedback fault 
General faults / external faults 

F16 Positioner supply pressure drop 
F17 Unexpected pressure change across the v 
F18 Fully or partly opened bypass valves 
F19 Flow rate sensor fault 

TABLE III INPUT AND OUTPUTS VARIABLES  

Input                 Range              Unit                Description 

CV 0 − 100 % control signal from 
external PI controller 

P1 0 −100 kPa Inlet liquid pressure 

P2 0 − 1000 kPa Outlet liquid pressure 
T1 50 − 150 °C Liquid temperature 
Output              Range                Unit                Description 
X 0 − 100 % Position of the rod 
F 0 − 500 m3/h Average flow 

IV. DESIGNING OF ANFIS MODELS 

A. Structure of the Trained Models 

In our work, we used hybrid approaches based on 
ANFIS models for modelling and fault diagnosis tasks in 
DAMADICS actuator. The positioner and the control valve 
are modelled with two hybrid models: ANFIS1 and ANFIS2. 
Each model has 4 inputs and one output as presented with 
the two following equations: 

X = ANFIS1 (CV, P1, P2,T)                             (6) 
   F = ANFIS2(X, P1, P2,T)                               (7) 

B. The Training Task 

This task consists to adjust the fuzzy models parameters 
(premise part and conclusion part) using the training data. 
This data-base contains 4 vectors of the inputs variables and 
their appropriate actions (X and F). The training and the 
testing data sets for elaborating the models are generated by 
simulation using the valve model [12]. The training data set 
has about 3600 samples extracted from measured data 
without faults. Figure 4 shows the scheme of the data based 
model used for modeling the valve (training the two neuro-
fuzzy systems ANFIS1 for the output X and ANFIS2 for the 
output F). The structures of the trained neuro-fuzzy systems 
are depicted in Figure 5. The obtained network structures 
are similar to that of a neural network, which maps inputs 
through output membership functions and associated 
parameters, and then through output membership functions 
and associated parameters to outputs, can be used to 
interpret the input/output map. 

 
Fig. 4 Data-based model 
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Fig. 5 The structures of the ANFIS models 

V. SIMULATION RESULTS 
In this section, we present the obtained simulation 

results for the application of this hybrid approach for 
modeling and fault diagnosis in the valve actuator.  

A. Generation of Residuals 

Residuals are the basic factors for fault detection during 
monitoring the actuator. The difference between the system 
outputs yk(t) and fault-free model outputs y´k(t) leads to n 
values named  residuals Rk0(t) (Eq. 8). These residuals Rk0(t) 
provide a source of information about faults for further 
processing. Fault detection is based on the evaluation of 
residuals magnitude. It is assumed that each residual rk0(t), 
where: k = 1, ..., n should normally be close to zeros in the 
fault-free case, and it should be far from zeros in the case of 
a fault. Figure 6 shows the method for generating the two 
types of residuals (Rx, Rf) as shown in Figure 5. Where:  

            Rk0(t) = yk(t) − y´k(t),  k = 1, . . ., n                         (8)  

RXfi(t) = Xreal – Xref                                       (9) 

RFfi(t) = Freal – Fref                                     (10) 

Figures 7 and 8 (up) present the results obtained as 
comparison between the output of the valve model and the 
measured data of the real actuator (Figure 7 for the output X 
of ANFIS1 and Figure 7 the output F of ANFIS2). As 
depicted, we observe a big similarity between the two 
responses. Figures 7-8 (down) show calculated error for the 
two responses.  

 
Fig. 6 Comparison of results between the system and the ANFIS model 

 
Fig. 7 (up) Actual output X with the estimated X´. (down) Residual RX(t) 

 
Fig. 8 (up) Actual output F with the estimated F´. (down) Residual RF(t) 

B. Fault Diagnosis Using ANFIS Models 

The DAMADICS valve is infected with 19 faults as 
mentioned above (Table 3) and each fault can be either 
abrupt or incipient fault. In our study, we choose 4 faults to 
demonstrate the effectiveness of the studied approach: F1, 
F10, F13 and F19. The parameters of these faults are 
summarized in Table 4. For each fault, we calculate the 
residual using the Equation 8 based on the structure depicted 
in Fig. 6 when we replace the actuator bloc by the bloc 
presented in Figure 9 infected by the 4 studied faults.   

 
Fig. 9 The symbol of infected valve by faults 
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TABLE IV PARAMETERS OF FAULTS FOR DETECTION AN ISOLATION  

Faults Fs tform tt0 Fd Type 
F1 1 1000 2000 1 Incipient long 

F10 1 1000 1500 1 Abrupt big 

F13 1 2700 3600 1 Abrupt big 

F19 0.5 0 1200 1 Abrupt medium 

C. Generation of Residuals (with Faults) 

We generated the faults based on the measurements of 
the system and the model. The Figures 10 to 13 (a-b) 
present the generated residuals of the two outputs (position 
of the rod and average flow) for each fault. 

1. Fault F1 (Valve clogging): this fault is simulated within 
time interval [1000s, 2000s]. 

 
Fig. 10 Residuals RXf1 , RFf1 

2. Fault F10 (Servomotor’s diaphragm perforation): this 
fault is simulated within time interval [1000s, 1500s].  

 
Fig. 11 Residuals RXf10 , RFf10 

3. Fault F13 (Rod Displacement): this fault is simulated 
within time interval [2700s, 3600s].  

 
Fig. 12 Residuals RXf13 , RFf13 

4. Fault F19 (Flow rate sensor fault): this fault is 
simulated within time interval [0 s, 1200s]. 

 
Fig. 13 Residuals RXf19 , RFf19 

D. Evaluation of Residuals (Faults Classification) 

After generating the residuals of each fault; the next step 
is the evaluation of these computed values in order to 
classify the detected fault. We used neuro-fuzzy classifiers 
type ANFIS based on training procedures. Each ANFIS 
classifier has two inputs which are the residual of X and F 
for calculating one output of detected. The structure is 
shown in Figure 14. The overall diagnosis system has as 
inputs the residuals (RXf1, RFf1, RXf10, RFf10, RXf13, RFf13, 
RXf19 and RFf19) and the outputs are the faults (F1, F10, F19, 
F13). The bloc diagram of the faults diagnosis system is 
defined in Figure 15. Figures 16 to 19 present the detected 
fault (F1, F10, F19 and F13). 

 
Fig. 14 The structure of fault classifier 

 
Fig. 15 Diagram bloc of the faults diagnosis system 
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Fig. 16 The detected fault F1 using hybrid approach 
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Fig. 17 The detected fault F10 

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

Fault  F13 

 
Fig. 18 The detected fault F13 
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Fig. 19 The detected fault F19 

VI. CONCLUSION 

In this paper, a hybrid approach based on ANFIS models 
is presented for intelligent fault diagnosis. The proposed 
diagnosis system is used for detecting faults in DAMADICS 
actuator. We used these models for three steps (modeling 
the valve actuator, generation of residuals and fault 
classification). ANFIS system is well suited for designing 
intelligent controllers because it is capable of making 
inference ever uncertainty with a learning capacity of neural 
networks. The simulation results show the efficiency of the 
proposed scheme for automatic fault diagnosis. The 
advantage of the proposed approach is the simplicity and the 
efficiency for industrial applications.  
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