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Abstract 
A Lyapunov based switching control design method for non 
linear systems using fuzzy models is proposed. The switching 
controller consists of several linear state feedback controllers; 
only one of the linear controllers is employed at each moment 
according to a switching scheme. The gains of the linear state 
feedback controllers are derived based on Lyapunov stability 
theory. The fuzzy design model is represented as a set of 
uncertain linear subsystems and then sufficiency conditions for 
the system to be globally stabilisable by the switching controller 
are given. The proposed design method is illustrated trough 
numerical simulations on the chaotic Lorenz system.  

1 Introduction 
Fuzzy techniques have been widely adapted to model 
complex non linear plants. By using a Takagi-Sugeno 
fuzzy model, a non linear system can be expressed as a 
weighted sum of simple subsystems. This model gives a 
fixed structure to some non linear systems and thus 
facilitates their analysis. There are two ways to obtain the 
fuzzy model: 1) - by applying identification methods with 
input-output data from the plant [1] [2], 2)-or directly 
from the mathematical model of the non linear plant [3]. 
In this paper, we propose a Lyapunov based design of a 
switching linear controller for a class of fuzzy models.  
The rest of the paper is organized as follows. Section 2 
reviews the continuous T-S fuzzy models. Section 3 gives 
the structure of the switching controller and the controller 
design method is proposed in section 4. Then we provide 
an application example; the control problem of the 
chaotic Lorenz system. Finally, we present our 
conclusions.  

2 Fuzzy model 
The continuous-time Takagi-Sugeno fuzzy dynamic 
model is a piecewise interpolation of several linear 
models through membership functions. The fuzzy model 
is described by fuzzy if-then rules. The ith rule of the 
fuzzy model for the non linear system is of the form: 
Plant rule i: 
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The output of the fuzzy model can be expressed as: 
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( ( ))ij jF z t  is the grade of membership of ( )jz t  in ijF .   

The TS fuzzy model (2) is a general non linear time 
varying equation and has been used to model the 
behaviour of complex non linear dynamic systems. 
The TS fuzzy model (2) has strong nonlinear interactions 
among the fuzzy rules, which complicates the analysis 
and the control of the system. In order to overcome these 
difficulties, the TS fuzzy model (2) is represented as a set 
of uncertain linear systems. Each sub-space is defined as:  
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i≤ α ≤  is a scalar to be determined.  

 The characteristic function of  
lS  is defined by: 
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In each subspace lS , the fuzzy model (2) can be 
represented as: 
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The fuzzy system in subspace 
lS  consists of a dominant 

nominal system with matrix lA  and a set of interacting 
systems determining the effect of the control law on the 
other non-dominant systems. The fuzzy model (6) can be 
viewed as an uncertain linear dynamical system model 
[4].  
We assume that the matrices lA∆  and lB∆  can be written 
as: 
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The matrices ( )( )l lB .D t′α and ( )( )l lB .F t′α  model the 
matched uncertainties whereas the 
term ( )( )lE t′α represent the mismatched uncertainties. 
We assume that: 
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3 Switching controller approach 
A switching controller is employed to control the fuzzy 
system (2). The switching controller consists of some 
linear state feedback controllers that will be switched 
from one to another to control the system. The switching 
controller is described by: 
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lK  is the local state feedback gain in subspace 
lS  to be 

designed. The parameter 0lγ >  is a scalar and the matrix 

lP  is the positive definite solution of the following 
algebraic Ricatti equation: 
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where n n

lQ R ×∈ is a symmetric positive definite matrix 

and lη  is any given positive constant. 
It can be seen that (11) is a linear combination of r  linear 
state-feedback controllers.  

4 Controller design 
In this section, the switching controller will be designed 
to guarantee the system stability. 
Theorem: 
The state feedback controller given by (12) where: 
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globally asymptotically stabilise the uncertain sub-system 
(6) for arbitrary ( )( )lD t′α ,  ( )( )lE t′α and 

( )( )lF t′α that satisfy the norm bounds (10) and the 
conditions (8) and (9)  if  : 
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Proof: Let define the positive definite function lV  as: 
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where n n

lP R ×∈  is the solution of  algebraic Ricatti 
equation (14). 
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min

lα  is the minimum value of  
lα  that guarantee the 

stability of  the global system using the local  subsystem 

lS  state-feedback gain lK . 
In each subspace, the command is given by: 
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The boundary of the sub-region 
lS  is determined by the 

minimal value that guarantees its stability min

lα .  
Lemma: 
The global system is asymptotically stable if there exists, 
at each moment t, at least one value ( )k tα  satisfying: 
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In overlapping regions many subsystems may satisfy this 
condition. In this case the control is inferred by selecting 
the control of the dominant system whose membership 
function is of maximum distance from the boundary of its 
stability region determined by min
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The design procedure of the switching controller is 
summarized in the following steps: 
• Step 1: Obtain the fuzzy plant model of the non linear 

plant by means of the methods in [1],[2], [4], or other 
suitable ways. 

• Step 2: Determine the subsystems 
lS  matrices l lA ,B , 

lA∆ and lB∆  for 1l , ,r= …  and check if condition (9) 
is verified for each subsystem. 

• Step 3: Design the state-feedback gain lK for each 

subsystem 
lS  according to (14), (15) and (16). And 

determine the value of min

lα  for 1l , ,r= … . 
• Step 4: Check if the condition (23) is satisfied, 

otherwise go to Step 3 and choose other values for the 
free design parameters.  

5 Simulation example 
To show the effectiveness of the proposed method, we 
simulate the control of the chaotic Lorenz system. The 
control objective is to drive its chaotic trajectory to the 
origin. The Lorenz equations are as follows [5]: 

( )
( )
( )

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2

2 1 2 1 3

3 1 2 3

x t x t x t
d

x t rx t x t x t x t
dt

x t x t x t bx t

−σ + σ

= − −

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

      (26) 



The nominal values of ( ), ,r bσ  are ( )10, 28, 8 / 3  for 
chaos to emerge. The system can be described by the 
following T-S fuzzy model [5]: 
Rule 1: If ( )1x t is about 1M  then ( ) ( )1x t A x t=�  

Rule 2: If ( )1x t is about 2M  then ( ) ( )2x t A x t=�  
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1 20M = − and 2 30M =                                                (27) 
The membership functions are given by: 
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 The input matrices 1B and 2B are chosen as: 
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The fuzzy model can be decomposed into two 
subsystems: 
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Ricatti equation (14) gives: 
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The initial values of states are ( ) [ ]0 20, 20, 20
T

x = . The 
simulation time is 40 s. The control input is activated at 
t=20s. Before the activation of the control the phase 
trajectory of the Lorenz system was chaotic. However, 
after the activation of the command the phase trajectory is 
quickly directed to the origin as shown in figures 1 and 2. 
In this example the boundary of the two sub-spaces are 
determined by min

1 0α = and min

2 0α = which means that 
the two sub-spaces are equal to the global state space and 
the chaotic system can be controlled using only one 
controller. 
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Fig. 1. The phase trajectory of the controlled Lorenz system. 
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Fig. 2. States of the Lorenz system. 

6 Conclusion 
In this paper a Lyapunov based method has been 
proposed to design a fuzzy model based switching 
controller for non linear systems. Under some conditions 
this switching controller has the ability to stabilize the 
non linear system. The control of the chaotic Lorenz 
system has been used demonstrate the effectiveness of 
this approach.  
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