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Abstract :  A Lyapunov based linear stabilising control design method for non linear systems 

using fuzzy model is proposed. The linear stabiliser is constructed using a fuzzy design model 

of the dynamical system to be controlled. The fuzzy design model is represented as an 

uncertain linear system and then sufficiency conditions for the uncertain system to be globally 

stabilisable by a linear controller are given. The proposed design method is illustrated on a 

problem of balancing an inverted pendulum on a cart. 

 

Keywords : Fuzzy models, uncertain system, stabilisation. 

 

 

1. Introduction 

The tasks of stabilization and tracking are 

two typical control  problems. In the 

stabilization problem of a non linear plant, 

we are concerned with constructing a 

controller so that starting from an arbitrary 

point in some neighborhood of the 

operating point, the controller forces the 

closed-loop system trajectory to converge 

to the operating point. On the other hand, if 

the starting point coincides with the 

operating point, the closed-loop system 

trajectory is expected to stay at this point 

for all subsequent time.   

Stabilization of non linear systems is 

difficult because no systematic 

mathematical tools exist to help find 

necessary and sufficiant conditions to 

garantee stability and performance. By 

using a Takagi-Sugeno fuzzy model, a non 

linear system can be expressed as a 

weighted sum of simple subsystems. This 

model gives a fixed structure to some non 

linear systems and thus facilate their 

analysis. There are two ways to obtain the 

fuzzy model: 1)- by applying identification 

methods with input-output data from the 

plant[1][2], 2)-or directly from the 

mathematical model of the non linear 

plant[3]. 

In this paper, we prpose a Lyapunov based 

design of linear stabilizing controllers for a 

class of fuzzy system models. We provide 

a sufficiency condition for a fuzzy model 

to be globally stabilizable by a linear 

controller.  

The rest of the paper is organized as 

follows. Section 2 reviews the continuous 

T-S fuzzy models. The controller design 

method is proposed in section 3. Then we 

provide an application example of an 

inverted pendulum on a cart. Finally, we 

present our conclusions.  

 

2. Fuzzy model  

Many physical systems are very complex 

in practice so that rigorous mathematical 

models can be very difficult to obtain, if 

not impossible. However, many of these 

systems can be expressed in some form of 

mathematical models. Takagi and Sugeno 

have proposed a fuzzy model to describe 

the complex systems[1]. The continuous-

time Takagi-Sugeno fuzzy dynamic model 

is a piecewise interpolation of several 

linear models through membership 

functions. The fuzzy model is described by 

fuzzy if-then rules and will be employed 

here to deal with the control design 

problem for the non linear system. The ith 

rule of the fuzzy model for the non linear 

system is of the form: 

Plant rule i: 
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denotes the state vector,  
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i RB  , r is the number of  if-then rules, 
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measurable system variables, i.e. the 

premise variables. 
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))(( tzF jij  is the grade of membership of 

)(tz j  in ijF . 
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The TS fuzzy model (2) is a general non 

linear time varying equation and has been 

used to model the behaviour of  complex 

non linear dynamic systems. 

The state of  the fuzzy system can be 

represented as:  
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Let  A , A , B and B  four matrices defined 
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for i=1,..,n and j=1,..,m. 

Let  ( A , B ) a completely controllable pair  

chosen so that : 
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The model (6) can be represented as: 
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model (10) can be  viewed as an uncertain 

linear dynamical system model  where 

)(t  is called the vector of uncertain 

parameters[4]. The uncertain system 

modelled  has linear uncertainty structure 

because the uncertain elements A  and 

B  are linear matrices functions[4]. 

We assume that the matrices A  and B  

can be written as: 
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The matrices ))((. tDB  and ))((. tFB   

model the matched uncertainties whereas 

the term ))(( tE  represent the mismatched 

uncertainties. 

We assume also that the matrix functions  
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3. Controller design 

The structure of the controller to be 

designed in this paper is: 
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The parameter 0 is a scalar and the 

matrix P is the positive definite solution of 

the following algebraic Ricatti equation : 
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where nnRQ  is a symmetric positive 

definite matrix and   is any given positive 

constant. 

 

Theorem : 

The state feedback controller given by (16) 
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globally asymptotically stabilise the 

uncertain system for arbitrary ))(( tD  ,  

))(( tE  and ))(( tF  that satisfy the norm 

bounds (15) and the conditions (13) and 

(14)  if  : 
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Proof : Let define the positive definite 

function V as : 
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where nnRP   is the solution of  

algebraic Ricatti equation (17). 
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A similar method was proposed by Zak[4] 

but the conditions of stability in our 

method are weaker then those in [4]. 

 

4. Simulation example  

An application example will be given here 

to show the design procedure of the linear 

stabilizer. A cart-pole inverted pendulum is 

shown in Fig. 1.  

 
Fig. 1. The inverted pendulum system 

 

The motion of the pendulum can be 

described by the following differential 

equations: 
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1x  is the angle of the pendulum from the 

vertical line, 2x  is the angular velocity of 

the pendulum, u  is the control force 

applied to the cart, 2/8.9 smg  is the 

gravity, kgm 0.2  is the mass of the 

pendulum, kgM 0.8 is the mass of the 

cart and ml 5.0 is the half length of the 

pendulum. 

The inverted pendulum can be modeled by 

a fuzzy plant model having the following 

two rules: 
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The corresponding fuzzy model is : 
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The fuzzy model can be written as : 
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The performance of the controller is 

illustrated in Fig. 2, where plots of 1x  

versus time are shown for different initial 

angular posditions. The controller was 

tested on the thruth model, the fuzzy model 

was used only to determine the parameters 

of th linear controller. As can be seen from 

Fig. 2 the linear controller can stabilize the 

pendulum in less then 2 seconds. 
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Fig. 2 Plots of 1x  for different initial values 

 

5. Conclusions  

A Lyapunov based method has been  

proposed to design a stabilizing controller 

for non linear systems via fuzzy model. 



Under some conditions this linear 

controller has the ability to stabilize the 

non linear system. A simulation example 

of an inverted pendulum on a cart has been 

given to demonstrate the effectiveness of 

this approach. 
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