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Abstract—A Software Product Line is a set of software 
products that share a number of core properties but also 
differ in others. Differences and commonalities between 
products are typically described in terms of features. A 
Feature Diagram is a hierarchically structured model that 
defines the features and their dependencies, while a 
Featured Transition System is used concisely to model 
behaviour of each product. In this context, formal modeling 
and verification are critical for managing the inherent 
complexity of systems with a high degree of variability. This 
work presents a formal specification of Software Product 
Line models based on rewriting logic. We propose an 
automatic framework for translating featured transition 
system and feature diagram into an equivalent Maude 
specification. It is based on meta-modelling and graph 
transformation. The power of this translation resides in the 
fact that the proposed formalization preserves source 
models semantics. An illustrative example is presented. The 
approach allows various verification and analysis activities. 
The obtained results are significant.  
 
Index Terms—Software Product Line, Featured Transition 
System, Feature Diagram, Specification, Verification, 
Rewriting Logic, Maude, Graph Transformation 

I.  INTRODUCTION 

Software product line engineering is an approach for 
developing families of software systems. A software 
product line (SPL) can be defined as a set of software 
products sharing a common set of features. The main 
advantage over traditional approaches is that all products 
can be developed and maintained together. 

Usually, SPLs are modeled with Featured Transition 
Systems (FTS) [1] and Feature Diagrams (FDs) [2]. FTS 
allows concisely modeling the behaviour of each product 
in the SPL with a single parameterized model to be 

instantiated differently for each product. Whereas, FDs 
permit to model the variability of the SPL. The FD 
expresses the set of valid products. Since products are 
combinations of features, formal modeling and 
verification are critical for managing the inherent 
complexity of SPLs. With a high degree of variability, to 
manage the inherent complexity of the SPL models, 
formal modeling and verification are necessary. In this 
work, we are interested in rewriting logic (RL) [3]. 

The RL is a flexible and expressive semantic 
framework for the specification of systems behavior. It 
can be used for specifying a wide range of systems in 
various application fields. Several languages based on RL 
have been designed and implemented. Maude [4] is 
widely used. It is considered as one of languages in which 
many different kinds of systems can be naturally 
specified. In addition to its power of expression, Maude 
offers many possibilities of validation and verification. 
For validation, it supports simulation in a flexible way. 
For verification purpose, Maude supports model checking.  

FTS and FD models can be expressed in RL. This 
formalization aims to use the formal analysis techniques 
developed for RL to analyze these models. In order to 
generate the Maude specification, we have proposed       
in [5] a manual approach. The main idea is that FTS 
transitions and its conditions firing are translated into 
conditional rewriting rules. The right hand side and the 
left hand side of each rule are FTS states. The condition 
is used to verify the presence and the priority of the 
feature.  

For the systems verification purpose, graph 
transformation techniques are widely used.  The aim is to 
transform system graphical models into their formal 
equivalent specifications supporting assessment and 
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analysis of characteristics. This task is performed by 
executing a graph grammar. A graph grammar [6] is 
composed of rules. Each one has a graph in their left and 
right hand sides (LHS and RHS). Rules are compared 
with an input graph called host graph. If a matching is 
found between the LHS of a rule and a subgraph in the 
host graph, then the rule can be applied and the matching 
subgraph of the host graph is replaced by the RHS of the 
rule. Furthermore, each rule may also have application 
conditions that must be satisfied, as well as actions to be 
performed when the rule is executed. A graph rewriting 
system iteratively applies rules of grammar in the host 
graph, until no rules are applicable. 

In this paper we propose an approach for analyzing 
SPL models where we develop an automatic framework 
based on graph transformation to translate FTS and FD 
diagrams into an equivalent Maude specification. To this 
end, we have defined meta-models for FTS and FD 
formalisms. Then the meta-modelling tool AToM3 [7] is 
used to automatically generate a visual modeling tool for 
each formalism according to its proposed meta-model. 
We have also proposed a graph grammar which performs 
the transformation of these models into semantically 
equivalent Maude specification. Our tool allows drawing 
FTS and FD models and transforming them automatically 
into their equivalent in RL. Once the equivalent Maude 
code is generated, the LTL model checker can be used. In 
order to perform the analysis using Maude’s LTL model 
checker, we have to generate predicates and properties in 
Maude language.  

This paper is organized as follows. Section 2 outlines 
some related works. In section 3, we recall some basic 
notions about FTS and FD diagrams. We give an 
overview of RL and Maude language in section 4.  In 
section 5, we give an overview of graph transformation 
and the AToM3 tool.  In Section 6, we first introduce the 
proposed approach to specify FTS models in Maude 
language then define the meta-models and the graph 
grammars and finally present the verification process. In 
section 7, we illustrate our framework through an 
example. Finally, section 8 concludes the paper and gives 
some perspectives of this work.  

II.  RELATED WORKS 

An SPL is a set of software intensive systems sharing a 
common, managed set of features that satisfy the specific 
needs of a particular market segment or mission and that 
are developed from a common set of core assets in a 
prescribed way [8]. SPLs are used for the development of 
embedded and critical systems. Formal modelling and 
model checking of SPL behaviour is thus vital for quality 
assurance. 

Over the past few years, several modelling and 
analysis techniques have been published. Larsen et al. [9] 
propose modal I/O automata to model variability in 
component interfaces and discuss compatibility between 
these interfaces. In a similar effort, Fischbein et al. [10] 
propose modal transition systems (MTS) to model SPLs 
and examine the notions of behavioural conformance in 
MTS that are suitable for SPLE. Fantechi and Gnesi [11] 

extended their approach by introducing explicit 
variability operators into MTS. In [12] Asirelli et al. 
apply deontic logic to express both static and behavioral 
aspects of product families. 

These approaches even though they are formal, do not 
provide mechanisms for the verification of temporal 
properties. To correct this problem, Li et al. [13] propose 
compositional approach for CTL model checking of 
features. A feature automaton can be attached to two 
precisely defined interface states of the base system.      
In [14] Lauenroth et al. propose to use automata labelled 
with features and give an algorithm for CTL model 
checking over automata. The algorithms they propose do 
not attempt to explore the state space in an efficient 
manner. Classen et al. in [1] has proposed an algorithm 
that can treat this problem more efficiently. They had 
addressed the model checking problem for SPLs and 
linear temporal logic (LTL) by introducing FTSs, a 
mathematical formalism to express the behaviour of all 
products of the SPL in one model.  

Nowadays, meta-modelling and graph grammars are 
widely used for modelling and analysis of complex 
systems in the area of software engineering. There are 
many researches working on the topic related to model-
driven engineering (MDE). In [15], it has been proposed 
a transformation between Statecharts and Petri Nets.       
In [16] the authors have proposed a tool that formally 
transforms dynamic behaviours of systems expressed 
using UML Statechart and collaboration diagrams into 
their equivalent colored petri nets (CPN) models. To 
make the analysis complete and robust, they have used 
the obtained CPN models to generate automatically their 
equivalent description in the input language of the Petri 
net analyzer INA. In [17], for analysis and verification, 
UML activity diagrams have been translated into an 
equivalent Communicating Sequential Processes (CSP) 
specification using an approach based on graph 
transformations.  

The current paper presents a first attempt towards a 
formal specification of Software Product Line models 
based on graph transformation and RL. The SPL products 
are modeled by means of FTS and FD diagrams. 

III.  VARIABILY MODELING  

For SPLs modeling, several techniques have been 
proposed. In this work, we are interested in FTS and FD 
diagrams. FD is used to express the structural view of the 
SPL. On the other side, FTS is used to describe the 
combined behaviour of the entire system family.   

A.   Feature Diagram  
FD, feature diagram, is a graphical representation 

which shows a hierarchically structured set of features of 
the product line. Features are represented as nodes and 
relationships between features as links. Possible 
relationships between features are usually categorized as 
“And” (all subfeatures must be included), “Or” (one or 
more subfeatures can be included), “Alternative” (only 
one subfeature can be included), “Mandatory” (required 
feature), and “Optional” (potential feature). A feature 
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diagram is typically represented as a tree where primitive 
features are leaves and compound features are interior 
nodes.  

In Software Product Line Engineering (SPLE), systems 
are developed in families and differences between 
members of a family are generally represented by 
features. A set of features can be seen as the specification 
of a product. An FD is a concise representation for the 
valid products of an SPL. As an example, consider the 
FD of a vending machine SPL (inspired from [1]) 
presented in Fig.1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Consider four variants of this machine: 

{v, b, s}, {v, b, s, t}, {v, b, s, c}, {v, b, s, f} 
               P1             P2                P3               P4 

 
The first variant P1 sells soda. The second P2 sells soda or 
tea. The third one P3 lets the buyer cancel her purchase 
after entering a coin. The last P4 offers free drinks.  

B.   Featured Transition System   
FTS, featured transition system, is a formalism 

designed to describe the combined behaviour of a whole 
system family. FTS is transition system (TS) in which 
transitions are labelled with features of an FD in addition 
to being labelled with actions [1]. A transition is part of a 
product if and only if its feature is part of the product. In 
FTSs there can be priorities between transitions to model 
the case in which a feature removes, rather than adds, 
transitions. The FTS for the vending machine example is 
given in Fig.2.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Intuitively, the FTS captures impact of all features in a 
single diagram.  
Priority 
A transition s → s1 labelled with f1 has priority over         
s → s2 labelled with f2, written:  s → s1  >  s → s2,                      
iff  f2 is an ancestor of f1 in FD. 

A common modeling pattern is that the behavior of a 
child feature overrides the behavior of its parents. In 
order to obtain the behavior of a particular product, it is 
necessary to project the FTS on the set of features 
corresponding to a valid product. This transformation is 
entirely syntactical and consists in removing (i) all 
transitions linked to features that are not in this product, 
and (ii) all transitions that are overridden by higher 
priority transitions. The result of the projection is an 
ordinary TS.  

Diagrams (a), (b), (c) and (d) of Figure 3 represent 
respectively the behavior of products P1, P2, P3 and P4.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV.  REWRITING LOGIC AND MAUDE 

RL is a computational logic proposed by Meseguer as 
a unified logic for concurrency [3], which builds upon 
equational logic by extending it with rewrite rules.  In RL, 
each concurrent system can be specified easily by a 
rewriting theory. A rewrite theory is defined as a 4-tuple 
(Σ, E, L, R). The signature (Σ, E) is an equational theory, 
L is a set of labels, and R is a set of possibly conditional 
labeled rewrite rules that are applied modulo the 
equations E. An important consequence of the RL 
definition is that the rewrite theory can be viewed as an 
executable specification of the concurrent system that it 
formalizes. The state is represented by an algebraic term, 

Figure 3. SPL products  
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serveSoda 
soda  

pay  change  

P1 { v, b, s } (a)

skip 

serveSoda soda  free  

P4 { v, b, s, f } (d)
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tea  serveTea 

close  

serveSoda 
soda  
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P2 { v, b, s, t } (b)

return 

open  
cancel  
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serveSoda 
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P3 { v, b, s, c } (c)

Figure 2.  Featured Transition System      
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Figure 1.  Feature Diagram  

 Products: 
• Basic:                    { v , b , s } . 
• Tea and Soda :      { v , b , s , t } . 
• Cancel Function :  { v , b , s , c } . 
• Soda for Free:       { v , b , s , f } . 
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the transition becomes a rewriting rule and the distributed 
structure is expressed as an algebraic structure. For more 
information on the subject see [3]. 

Maude is a specification and programming language 
based on RL [18]. It integrates an equational style of 
functional programming with RL computation. Maude’s 
implementation has been designed with the explicit goals 
of supporting executable specification and formal 
methods applications. Because of its efficient rewriting 
engine, it is considered as an excellent tool. It is simple, 
expressive and efficient. Three types of modules are 
defined in Maude: The functional modules, the system 
modules and the object oriented modules. In this work, 
we will use only functional and system modules. 

• Functional Modules: Functional modules define 
data types and operations on them by means of 
equational theories. By using equations like 
simplification rules, each expression could be 
evaluated to its reduced form called the canonical 
form. The result is the same regardless of the order 
of application of the equations.  This ensures that 
the initial algebra and the canonical term algebra 
of the functional module are isomorphic, and 
therefore that the module's mathematical and 
operational semantics coincide [18]. From a 
programming point of view, a functional module 
is an equational-style functional program with user 
definable syntax in which a number of sorts, their 
elements, and functions on those sorts are defined.  

• System Module:  The system module defines the 
dynamic behavior of a system. It specifies a 
rewrite theory. A rewrite theory has sorts, kinds, 
and operators, and can have three types of 
statements: equations, memberships, and rules, all 
of which can be conditional [18]. A rewriting rule 
specifies a local concurrent transition which can 
proceed in a system. The execution of such 
transition, specified by the rule, can take place 
when the left part of a rule matches to a portion of 
the global state of the system and the condition of 
the rule is valid. This type of module augments the 
functional modules by the introduction of 
rewriting rules. From a programming point of 
view, a system module is a declarative-style 
concurrent program with user definable syntax. 

In addition, Maude also integrates a model checker. 
Model-checking is an automatic method for deciding if 
specification model, expressed as a concurrent transition 
system, satisfies a set of properties. Model checking 
supported by the Maude’s platform uses LTL [19] logic 
for its simplicity and the well-defined procedures of 
decision which it offers. The Maude LTL model checker 
is efficient (for more details, see [20]). 

V.  GRAPH TRANSFORMATION 

A.   Graph Grammar 
Graphs are well-known and frequently used to 

represent complex objects and diagrams [6]. Rules have 
proved to be extremely useful for describing 

computations by local transformation. Graph 
transformation (also known as graph rewriting) combines 
the advantages of both into an individual computational 
paradigm. 

A graph transformation rule (Fig.4) is a special pair of 
pattern graphs where the instance defined by the left hand 
side (LHS) is substituted with the instance defined by the 
right hand side (RHS) when applying such rule. Rules are 
local in a sense that they handle only a small amount of 
model elements, and therefore the designer does not need 
to concentrate on the entire transformation problem. 

 
 
 
 
 
 
 
 
 
 
 
 
Graph transformation rules are usually called graph 

grammars. These are a generalization of Chomsky 
grammars for graphs [21]. In the rewriting process, rules 
are evaluated against an input graph, called the host graph. 
If a matching is found between the LHS of a rule and a 
subgraph of the host graph, then the rule can be applied. 
When a rule is applied, the matching subgraph of the host 
graph is replaced by the RHS of the rule. Rules can have 
applicability conditions, as well as actions to be 
performed when the rule is applied. Some graph rewriting 
systems have control mechanisms to determine the order 
in which rules are checked. Generally, rules are ordered 
according to a priority assigned by the user and are 
checked from the higher priority to the lower priority. 
After a rule matching and subsequent application, the 
graph rewriting system starts again the search. The graph 
grammar execution ends when no more matching rules 
are found.  

The use of small subgraphs on the LHS of graph 
grammar rules, as well as using attributes, can greatly 
reduce the search space. This is the case with the vast 
majority of the used formalisms in this field of research. 
There are three kinds of transformations. The first is 
model execution (defining the operational semantics of 
the formalism). The second is model transformation into 
formalism. A special case of this is when the target 
formalism is textual. The third one is model optimization, 
for example reducing its complexity. 

Graph grammars are a natural, formal, visual, 
declarative and high-level representation of the 
computation. 

B.   Meta-modelling  
In the field of graph transformation, the meta-

modelling technique is widely used to describe the 
different kinds of formalisms needed in the specification 
and design of systems. To define a meta-model, we have 
to provide two syntaxes. On one hand, the abstract formal 

Figure 4.  Graph transformation rule 

RHS LHS 
Host Graph Host Graph 

Apply Ri 

Transformation Rule Ri 
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syntax to denote the formalism's entities, their attributes, 
their relationships and the constraints. To do this, we 
usually use a graphical modelling notations such as UML 
class diagrams or Entity-Relationship Diagrams. On the 
other hand, the concrete graphical syntax to define 
graphical appearance of these entities and relationships.  
Once the meta-model is defined, meta-modelling 
environments are able to automatically produce a visual 
interactive tool for the defined formalism. The advantage 
of this technique is that the generated tool accepts only 
syntactically correct models according to the formalism 
definition. For more details see [22].  

C.   AToM3 
AToM3 [7] is a visual tool for multi-formalism 

modeling and meta-modelling. Being implemented in 
Python [23], it is able to run without any change on all 
platforms for which an interpreter for Python is available. 
The AToM3 meta-layer allows a high-level description of 
models using the Entity-Relationship (ER) formalism 
extended with the ability to express constraints. Based on 
these descriptions, AToM3 can automatically generate 
tools to visually manipulate (create and edit) models in 
the formalisms of interest [22].   

The AToM3 graph rewriting system uses graph 
grammars to visually guide the procedure of model 
transformation. Model transformation refers to the 
automatic process of converting, translating, or 
modifying a model of a given formalism into another 
model that might or might not be in the same formalism. 

In AToM3, rules are ordered according to a user-
assigned priority, and are checked from higher to lower 
priority. In the LHS of rules, the attributes of the nodes 
must be provided with attribute values which will be 
compared with the nodes attributes of the host graph 
during the matching process. These attributes can be set 
to <ANY> or have specific values. In order to specify the 
mapping between LHS and RHS, nodes in both LHS and 
RHS are identified by means of labels (numbers). If a 
node label appears in the LHS of a rule, but not in the 
RHS, then the node is deleted when the rule is applied. 
Conversely, if a node label appears in the RHS but not in 
the LHS, then the node is created when the rule is applied. 
Finally, if a node label appears both in the LHS and in the 
RHS of a rule, the node is not deleted. If a node is created 
or maintained by a rule, we must specify in the RHS the 
attributes' values after the rule application. In AToM3 
there are several possibilities. If the node label is already 
present in the LHS, the attribute value can be copied 
(<Copied>). We also have the option to assign it a 
specific value by giving the Python code to calculate this 
value (<Specified>), possibly using the value of other 
attributes. In addition, AToM3 allows the use of global 
attributes available in all of the graph grammar rules as 
well as constraints. 

The combined use of meta-modelling and graph 
grammars taken in AToM3 allow users not only to benefit 
from the advantages of both (meta-modelling and graph 
grammars) but also to model with multi-paradigm 
Modeling [22]. The AToM3 has been proven to be a 
powerful tool.  

 

VI.  OUR APPROACH  

In this section, we present our technique used for the 
specification and verification of the SPL models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Our approach consists of a process with three steps: 
The first step consists of meta-modelling FTS and FD 
formalisms and to generate automatically a visual 
modeling tool for each of them using AToM3. The second 
step is to define the graph transformation grammars. The 
last one is the analysis of the generated Maude 
specification.  
Before describing in detail the previous steps, it is 
preferable to begin by introducing the idea behind the 
specification of FTS models in Maude language.      

A.   Formalization 
On one hand, to manipulate features, we define a 

functional module Feature_FunctMod that contains the 
declaration of a new type called Feature and the 
definition of operations used for manipulating sets of 
features, as well as equations implementing these 
operations. On the other hand, for specification and 
treatments of FTS states, we define a second functional 
module FTS_FunctMod. Classical TS states are 
represented as constants of a new sort TsState. We define 
the operation "<_;_;_>" to specify the current FTS state. 
The first parameter of this operation is a constant of the 
sort TsState. The second one is the set of all features 
specific to the considered product. The last one is 
Boolean indicating whether or not this state is final. This 

Figure 5. The general outline of the proposed approach
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latter is introduced to stop the evolution of FTS once a 
final state reached.  
FTS transitions firing and its conditions are translated 
into conditional rules. In our approach, a rewrite rule has 
a structure of the form:   

crl  <  Trans >  :   FtsState_From  →  FtsState_To   if   Pres&Prior . 
 
where: 

- FtsState_From and FtsState_To: are respectively 
the left and the right hand sides of the rule. These 
are two FTS states.  

- Trans: is the transition name. 
- Pres&Prior: is a Boolean term that specifies the 

condition of the transition Trans.  
 

There are two possible configurations: 
• Configuration1: when there is only one output 

transition from a state (Fig.6). 

 
 
 
 
 
 
 
 
 
 

 
This transition is enabled, when the feature fi is in the set 
of selected features of the SPL considered product. This 
transition is specified in Maude language as follows: 
 
crl  <    Trani >   :   < Statei , ListSelectFeats ; false >     - >  

                                              < Statej ; ListSelectFeats ; flag >  
          if  IsIn ( fi , ListSelectFeats  ).  

where: 
- ListSelectFeats: is the set of all features specific 

to the considered product. 
- flag: is the Boolean indicating whether the Statej 

is a final state or not.  
- IsIn (fi , ListSelectFeats): Boolean function 

indicating whether the feature fi is in a 
ListSelectFeats or not.  

 
• Configuration2: when there is more than one 

output transition from a state (Fig.7). 

 

 

 

 

 

 

 

 

 

 

 
Here, the transition Transi in Fig.6 is enabled when two 
conditions are simultaneously satisfied: 

• The feature fi is in ListSelectFeats. 

• fi has a higher priority over all the features fk       
(1≤k≤n and k ≠ i ) if fk is in ListSelectFeats.  

As shown in section II, the behaviour of a child feature in 
FD overrides the behaviour of its parents. For this reason, 
we propose to use a set containing all descendants of the 
feature fi. This transition is specified in Maude language 
as follows: 

 
crl <  Transi >   :   < Statei ;  ListSelectFeats ; true >    - >     
                                                             <  Statej ;  ListSelectFeats ; flag  > 
     if  IsIn (  fi , ListSelectFeats )  and  
          (  not IsIn (fk , ListSelectFeats )  or  
               ( IsIn (fk , ListSelectFeats ) and not IsIn (fk , SetOfDesc_fi ))  ).  
 
where: 

- SetOfDesc_fi: the set of descendants of the 
feature fi. 

B.   Automatic Translation and Verification  
In the following, we present the three steps of our 
approach. 

Step1: Meta-modelling  
The meta-formalism used is the Entity-Relationship 

diagram. To implement the previous translation, we 
propose to add some additional attributes in our meta-
models.  
 
1- FD meta-model: 

FD models consist of nodes and links between these 
nodes. We propose a meta-model called FD_MetaModel 
with an entity FD-Feature representing features and a 
relationship FD-HasChild for links as shown in Fig.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FD-Feature Entity: It has two attributes: its name and the 
set of all its descendents called Set_DescFeats. Like 
shown in the previous section, this latter will be used in 
the specification of the FTS transitions. 

Figure 8. FD meta-model 
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.
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Figure 7.  Configuration2      
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FD-HasChild Relationship: It represents the family 
relationship between two features. The destination feature 
is a child of the source feature. No attribute is used.  

2- FTS meta-model:  
An FTS model (Fig.2) consists of states and transitions. 

So, we propose a meta-model called        FTS-MetaModel 
with only one entity TS-state describing states, and one 
relationship FTS-Transition describing transitions (Fig.9).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TS-State Entity: Each state has three attributes: its 
identifier (name) and two Booleans indicating respectively 
whether this state is an initial state (Initial_State) or is a 
final state (Final_State).  
FTS-Transition Relationship: It represents the transition 
from a source state to a destination state. Each transition 
has three attributes.  The first is its identifier (name). The 
second is the required feature (required_Feat). The third 
is a set of features (Set_ReqFeatCTs). This latter is 
proposed to contain all the features required in the 
transitions leaving the same state as this transition. It will 
be used to translate transitions of the second 
configuration. 

To fully define our meta-models, we have also 
specified the graphical appearance of each entity of the 
FTS and FD formalisms according to its appropriate 
notation. Given our meta-models, we use AToM3 tool to 
generate the visual modelling environments for these 
formalisms (FTS and FD). More precisely, AToM3 
generates, for each formalism, a palette of buttons 
allowing the user to manipulate the entities defined in the 
meta-model. As AToM3 is a visual tool for multi-
formalism modelling [7], we employ a user interface with 
the two generated tools at the same time (see Fig.19). 

Step2: Defining the graph grammars   
In order to make the transformation easier, we propose 

to use three complementary graph grammars (see Fig.10). 
Briefly, the first graph grammar generates the functional 
module Feature_FunctMod and produces the set 
Set_DescFeats for each feature in the FD diagram. The 
second graph grammar generates the functional module 
FTS_FunctMod and works out for each feature of the 
FTS   model    the   attribute  Set_ReqFeatCTs.   The last 

one generates the system module containing the rewriting 
rules called FTS-SysMod.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The three graph grammars are composed of 

transformation rules. In addition to the LHS and RHS, 
each rule is provided with: 
-    A priority. 
-    Conditions which must be satisfied to apply this rule. 
In the execution of each grammar, the rewriting system 
iteratively applies matching rules in this grammar to the 
host graph, until no more rules are applicable. Rules are 
tried in ascending order. 
1st GG: Gen_FeatFunctMod. 
The Feature_FunctMod module consists of three parts:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  FTS meta-model 

Figure 11. The functional module Feature_FunctMod

       
    fmod Feature_FunctMod is 
     
    sort Feature FeatSet  . 
    subsort Feature < FeatSet . 
 
    ops        f1 f2 …. fi …… fn                       : -> Feature [ctor] . 
      
   op empty : -> FeatSet [ctor] . 
    op __          : FeatSet FeatSet -> FeatSet [ctor assoc id: empty] . 
   op isEmpty : FeatSet -> Bool . 
    op size        : FeatSet -> Nat . 
    op Isin : Feature  FeatSet -> Bool . 
 
    vars E E' : Feature  . 
    vars S S' : FeatSet . 
   eq isEmpty(empty) = true . 
    eq isEmpty(E S) = false .   
   eq size(empty) = 0 . 
    eq size(E S) = 1 + size(S) . 
    eq Isin(E, empty) = false . 
    eq Isin(E, E' S) =  E == E' or Isin(E,S) . 
 
    endfm 

Part1 

Part2 
Part3

Figure 10. Transformation process 
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Feature 
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Feature 
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Gen_FeatFunctMod graph grammar has an initial action 
which creates and opens a textual file to generate the 
functional module Feature_FunctMod. At first, it 
generates the first part (Part1). Then, it decorates all nodes 
(features) in the FD model with an auxiliary attribute 
called Visited. This later is used to determine whether the 
node has been previously treated or not. Treatment begins 
with the leaves. Each time the rewriting system locates a 
leaf not yet visited, it adds his feature to the attribute 
Set_DescFeats of its parent, and this leaf will be marked 
as visited. Then, we move on to intermediate nodes. In 
this case, the rewriting system only deals the nodes 
whose children were all treated. To do this, we use 
another temporary variable Count_PrChild in order to 
count the number of treated children. Similarly, for each 
node processed, we add the feature and its descendants to 
the attribute Set_DescFeats of its parent, and it will be 
marked as visited. At last, we mark the root node as 
visited. At the same time, for each visited node the 
feature is added to the text file to generate the second part 
(Part2) of the functional module Feature_FunctMod. The 
final action is used to generate the third part of the 
functional module and to delete all used temporary 
attributes.  
The proposed graph grammar (Fig.12) is composed of 
three rules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These rules are described as follows: 
Leaves-Processing (Priority 1): is applied to process all 
leaves nodes. Each time, it locates a leaf node that has not 
been previously visited to add its name attribute in the 
Set_DescFeats attribute of its parent. Its Set_DescFeats 
attribute is set empty. To process another node, this leaf 
node will be marked as visited. 
IntermediateNodeProcessing (Priority 2): is applied to 
process nodes which are located between the root and the 
leaves. At each iteration, it locates a node not yet visited 
and whose all children have been visited. Its name 
attribute and all its descendants will be added to its parent 
Set_DescFeats attribute.  To avoid this process once 
again, it will be marked as visited.  
RootProcessing(Priority 3): marks the root node as 
visited. Its Set_DescFeats attribute is already calculated 
by the second rule.  

2nd GG: Gen_FTSFunctMod. 

The functional module FTS_FunctMod consists of 
three parts (see Fig.13). 

 
 
 
 
 
 
 
 
 
 
 
 
 
This graph grammar has an initial action that creates 

and opens a textual file to produce the functional module 
FTS_FunctMod.   At the beginning, in its initial action, it 
generates the first part (Part1) and decorates the entities in 
the FTS model with the used auxiliary attributes.  

The idea behind the transformation is to pass through 
the FTS states one by one. First, the treated state is added 
to the textual file to generate the second part (Part2). Then, 
we will treat all outgoing transitions. For each transition, 
we produce the attribute Set_ReqFeatCTs passing 
through the concurrent transitions one by one. To do this, 
we use two attributes for states, Current and Visited. The 
Current attribute is used to identify the state in the FTS 
model for which we will treat all output transitions, 
whereas the Visited attribute is used to indicate whether 
this state has already been treated or not. For the 
treatment of the outgoing transitions of the current state, 
we use three attributes Current, Visited and 
FeatureInserted. The Visited attribute is used to indicate 
whether the attribute Set_ReqFeatCTs of this transition 
has been produced or not.  The Current attribute is used 
to indicate whether it is the transition for which we 
produce the attribute Set_ReqFeatCTs. The 
FeatureInserted attribute is used to indicate whether the 
feature required in this transition has been previously 
added to the set Set_ReqFeatCTs of the current transition 

Figure 13. The functional module FTS_FunctMod    

  
  in Feature_FunctMod.txt 
  fmod FTS_FunctMod is 
  protecting Feature_FunctMod . 
 
  sorts TsState FtsState  . 
 
  ops       State1 State2 …….Statei …….Staten :     -> TsState [ctor].
 
  op < _ ; _ ; _ > : TsState FeatSet Bool -> FtsState . 
  endfm 

Part2 

Part1 
Part3

::= 

RHS 

1 

2 

3 

<COPIED> 

<COPIED> 

ACTION 
Node(2).Visited =1 
Node(1).Count_PrChild +=1 
+ Python Code  

LHS 

CONDITION 
Node(2).Visited == 0   and 
node(2).out_connections_ ==[] 

1 

2 

3 

<ANY> 

<ANY> 

1- Leaves-Processing: 

::= 

3- RootProcessing: 

CONDITION 
Node (1).Visited == 0 

LHS 

1 
<ANY> 

RHS 

1 
<COPIED> 

ACTION 
Node (1). Visited  = 1 
+ Python Code  

Figure 12.  Gen_FeatFunctMod graph grammar 

::= 

1 

2 

3 

<COPIED> 

<COPIED> 

RHS 

ACTION 
Node(2).Visited =1 
Node(1).Count_PrChild +=1 
+ Python Code  

CONDITION 
Node (2)..Visited == 0 and 
Node(2).Count_PrChild ==   
len(Node(2).out_connections_) 

1 

2 

3 

<ANY> 

<ANY> 

LHS 
2- IntermediateNodeProcessing: 
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or not. At last, the final action generates the third part of 
the file and destroys all the used temporary attributes.  

To carry out this process, we propose a graph grammar 
composed of seven rules.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Add-CF2SetReqFeatCTs (priority 1): is applied to locate 
an output transition from current state that has not been 
previously visited in order to add its required feature to 
the Set_ReqFeatCTs attribute of the transition in process. 
Set-CurrentTransitionAsVisited (priority 2): Once all 
features required in concurrent transitions are inserted in 
Set_ReqFeatCTs attribute of the current transition, this 
rule marks this latter as visited. 
Initialisation-FeatureInsertedAttributes(priority 3): This 
rule is applied to initialise the FeatureInserted attribute of 
all output transitions of the current state  to process 
another transition which is not yet treated. 
 SelectTransition: (priority 4): is applied to select a 
transition that has not been previously processed and 
which has the current state as source state to produce its 
Set_ReqFeatCTs attribute. This rule treats the case where 
there is more than one output transition from the current 
state (Configuration2). Subsequently, rules N°1, N°2 and 
N°3 will be triggered. 
ProcessSingleOutputTRansition(priority 5): This rule treats 
the case where the current transition is the single output 
transition from the current state (Configuration1). It 
marks this transition as visited and its attribute 
Set_ReqFeatCTs is set empty. In this case, the fourth first 
rules are not applied. 
Set-ProcessedStateAsVisited (priority 6): This rule, once 
all the output transition(s) of the current state have been 

::= 

  CONDITION 
  Node(1).Current == 1 and Node(1).Visited == 0  
  and Node(4).Current == 1 and  
  Node(4).Visited ==0  and Node(5).Current == 0 
 And  Node(5). FeatureInserted ==0 

1- Add-CF2SetReqFeatCTs: 
LHS 

1 

5 
2 

<ANY> 

3 
4 

 

 

 

<ANY> 

<ANY> 

<ANY> 

<ANY> / <ANY>  

<ANY> / <ANY>  

RHS 

    ACTION 
   Node(5).FeatureInserted = 1 
   + Python Code  

 

1 

5 

2

<ANY> 

3

4 

 

 

 

<COPIED> 

<COPIED> 

<COPIED> 

<COPIED> / <COPIED>  

<COPIED> / <COPIED>  

  2- Set-CurrentTransitionAsVisited: 

RHS 

ACTION 
Node(3).Current = 0 
Node(3).Visited = 1 

1 
3 

2

  

<COPIED>  /  <COPIED>  

<COPIED> <COPIED> 

  CONDITION 
  Node(1).Current == 1 and Node(1).Visited == 0  
  and Node(3).Current == 1 and 
  Node(3).Visited ==0 

::= 

LHS 

1 
3 

2 

  

<ANY>  /  <ANY>  

<ANY> <ANY> 

  3- Initialisation-FeatureInsertedAttributes: 

RHS 

ACTION 
Node(3).FeatureInserted = 0 

1 
3 

2

  

<COPIED>  /  <COPIED>  

<COPIED> <COPIED> 

  CONDITION 
Node(1).Current == 1 and Node(1).Visited == 0  
and Node(3).FeatureInserted ==1 

 

::= 

LHS 

1 
3 

2 

  

<ANY>  /  <ANY>  

<ANY> <ANY> 

::= 

  CONDITION 
  Node(1).Current == 1 and Node(1).Visited == 0  
  and Node(4).Current ==0 and 
  Node(4).Visited == 0 
 

4- SelectTransition: 

LHS 

1 

5 
2 

<ANY> 

3 
4 

 

 

 

<ANY> 

<ANY> 

<ANY> 

<ANY> / <ANY>  

<ANY> / <ANY>  

RHS 

    ACTION 
  Node(4).Current =1  
    Node(4).Visited = 0 
 

1 

5 

2

<ANY> 

3

4 

 

 

 

<COPIED> 

<COPIED> 

<COPIED> 

<COPIED> / <COPIED>  

<COPIED> / <COPIED>  

::= 

ACTION 
Node(1).Current =0 
Node(1).Visited =1 

RHS 

 
1 

<COPIED> 

6- Set-ProcessedStateAsVisited:

CONDITION 
Node(1).Current == 1 and  
Node(1).Visited == 0 

1

 <ANY> 

LHS 

5- ProcessSingleOutputTRansition:   
RHS 

   ACTION 
   Node(3).Visited = 1      
 

1 
3 

2

  

<COPIED>  /  <COPIED>  

<COPIED> <COPIED> 

  CONDITION 
  Node(1).Current == 1 and Node(1).Visited == 0  
  and Node(3).Current ==0 and  
 Node(3).Visited == 0

::= 

LHS 

1
3

2

  

<ANY>  /  <ANY>  

<ANY> <ANY> 

::= 

ACTION 
Node(1).Current =1 
Node(1).Visited = 0  
+ Python Code 

RHS 

 
1 

<COPIED> 

7- SelectState:

CONDITION 
Node(1).Current == 0 and  
Node(1).Visited == 0 

1

 <ANY> 

LHS 

Figure 14.  Gen_FTSFunctMod graph grammar 
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processed, is applied in order to update temporary 
attributes of the processed state and set it as visited. 
SelectState(priority 7): is applied to select a state from 
FTS model that has not been previously visited to 
produce  the  Set_ReqFeatCTs attribute of  all its output 
transitions. The name of the selected state is added to the 
text file to generate the second part (Part2) of the 
functional module FTS_FunctMod. 
3rd GG : Gen_SystemMod. 

FTS_SysMod module (Fig.15) consists of two parts. 
The first is standard for all SPL families, while the second 
contains the rewriting rules specific to the studied SPL. 
Each transition of the FTS model and its firing conditions 
is translated into a conditional rule. The FTS transitions 
will be treated one after another. The rewriting system 
looks for a transition that is not already translated and 
treats it, then passes it to another. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As proposed in our specification, each rewriting rule has a 
structure of the form:  

crl  <  Trans >  :  FtsState_From  →  FtsState_To  if   Pres&Prior . 
 

To facilitate the publication of a rule, we propose to 
divide it into two segments as shown in Fig.16.  

The proposed Gen_SystemMod graph grammar has an 
initial action that creates and opens a textual file. Then, it   
generates the first part of the FTS_SysMod module and 
decorates all the states and transitions elements in the 
FTS model with temporary attributes to be used in the 
conditions specified in the rules. To generate the second 
part (Part2), we propose to visit and to generate the 
specification of all FTS transitions one by one. For each 
transition, the first segment is generated in the same way. 
It contains the FTS_StateFrom and the FTS_StateTo. To 
generate the second segment, there are two configurations. 
If there are no other output transitions from its source 
state, we have to generate just the code verifying the 
presence of the required feature. Whereas, if there are 
more that one output transitions from its source state, we 
have to add the code specifying the priority conditions. 
The feature required in the considered transition must 
have higher priority over all features required in the 
concurrent transitions which are already in the 
Set_ReqFeatCTs attribute.  This attribute has been 
calculated by the second graph grammar. To do this, we 
propose to use the following temporary attributes in 
transitions elements: Visited to indicate whether the code 

for this transition has been yet generated or not. Current 
to identify the transition in the FTS model whose code 
has to be generated. We add a third attribute called Step 
to generate  the  firing conditions in  two  stages.  We first  
edit the presence condition (Step=1). Then, if it is the 
second configuration, we edit the priority conditions 
(Step=2).  This   process will   be repeated for all other 
transitions in the FTS model which are not yet visited. 
The final action deletes all used auxiliary attributes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To generate the module system, we propose a graph 
grammar with four rules. These rules are shown in       
Fig.17 and described as follows:  
GenLHSandRHS-Rule (priority 1): is applied to generate 
in the text file the left hand side and the right hand side of 
the rewriting rule (segment1). This part contains the name 
of the current transition (Trani), the source state (Statei), 
the destination state (Statej) and the Boolean flag. If the 
destination state’s attribute final is true, this Boolean is set 
true. Otherwise, it is set false. 
GenPresAndPriority-Conds (priority 2):  is applied to 
generate firing conditions. First, it generates in the text file 
the appropriate Maude code for checking the presence of 
the required feature (fi) in the set of selected features for 
the considered product (ListSelectFeats). Then, in the case 
of the second configuration (Set_ReqFeatCTs is not 
empty), it generates the appropriate Maude code checking 
the priority conditions. To do this, the rule runs through all 
elements of Set_ReqFeatCTs attribute, and for each one it 
checks whether it is one of the descendants of the required 
feature or not. For this, we use the attribute Set_DescFeats 
of the node feature in FD diagram that has the same name 
as the required feature in the current transition (fi). 
SetCurrentTransitionAsVisited (priority 3): it locates the 
current transition whose processing has been terminated 
and marks it as Visited. 
Select-Transition (priority 4): is applied to locate an FTS 
transition that has not been previously processed to 
translate it into a rewriting rule and marks it as current. 

Figure 15.  The system module FTS_SysMod    

 
    in  FTS_FunctMod.txt 
    mod FTS-SysMod    is 
    including FTS_FunctMod  . 
    var  ListSelectFeats :  FeatSet .  
 
  
                    Rule1. 
                    Rule2. 
                      . 
                  . 
                   . 
                       Rulen                  
      endm   

Part1 

Part2 

Figure 16.  Specification of an FTS transition in Maude 

crl <Trani >:<Statei ; ListSelectFeats ; false> -> <Statej ; ListSelectFeats ; flag>

    if  IsIn (  fi    , ListSelectFeats  ) 

. 

. 

. 

. 

and ( not IsIn (fk , ListSelectFeats ) 

or ( IsIn (fk , ListSelectFeats ) and not IsIn (fk , SetOfDesc fi ) ) )

and ( not IsIn (fn , ListSelectFeats ) 

or ( IsIn (fn , ListSelectFeats ) and not IsIn (fn , SetOfDesc fi ) ) ).

FtsState_From and  FtsState_To
Segment1 

Segment2

Presence Condition

Priority Conditions 
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Step3: Verification and analysis  
After generating automatically the SPL Maude 
specification, we pass to the verification and analysis. To 
check the behaviour of a given product, the user has to: 
• Specify this product by giving an initial state.  This 

latter is an FTS state that contains the set of its 
specific features.  

• Describe manually the property to be verified with an 
LTL formula. 

Then, the model-check function can be called. Maude 
model checker verifies automatically if the LTL formula 

is valid in this state or in the set of all accessible states 
from the initial state. If the formula is not valid, a 
counterexample is displayed (Fig.18). In this case, the 
FTS and FD models present errors. They must be 
corrected.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
It should be noted that: 

• The proposed meta-models and graph grammars 
are standards and applicable for all SPLs, whereas 
the LTL formulas must be redefined to each 
family of products studied according on the 
property to check. 

• For the three graph grammars, we are concerned 
by calculating attributes value or code generation.  
So, none of the proposed rules changes the input 
models.  

• The resulting Maude specification expresses the 
behaviour of all products of the SPL. 

VII.  ILLUSTRATIVE EXAMPLE 

To illustrate our framework, let us consider the 
vending machine example which was seen previously 
(Section 2).  As input, we have to create FD and FTS 
models using the generated user interface as shown in 
Fig.19. The toolkit provided allows manipulating all 
entities of the two formalisms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

::= 

  CONDITION 
  Node(3).Current ==1 and Node(3).Visited ==0  
  and Node(3).step == 0 

1- GenLHSandRHS-Rule: 

1 

LHS 

3 
2 

  

<ANY>  / <ANY>  

<ANY> <ANY> 

RHS 

ACTION 
Node(3).step = 1   
+ Python Code  

1 
3 

2

  

<COPIED>  / <COPIED>  

<COPIED> <COPIED> 

::= 

3- SetCurrentTransitionAsVisited: 

ACTION 
Node(3).Current = 0  
Node(3).Visited = 1 

RHS 

1 
3 

2

  

<COPIED>  /  <COPIED>  

<COPIED> <COPIED> 

   CONDITION 
   Node(3).Current ==1 and Node(3).Visited ==0 

LHS 

1 
3 

2 

  

<ANY>  / <ANY>  

<ANY> <ANY> 

   CONDITION 
   Node(3).Current ==1 and Node(3).Visited ==0  
   and Node(3).step ==1 and  
   Node(4).name. == Node(3).required_Feat. 

4 
<ANY> 

::= 

  2- GenPresAndPriority-Conds: 
LHS 

1 
3 

2 

  

<ANY>  /  <ANY>  

<ANY> <ANY> 

RHS 

ACTION 
Node(3).step = 2    
 + Python Code  
 

1 
3 

2

  

<COPIED>  /  <COPIED>  

<COPIED> <COPIED> 

4 
<COPIED> 

::= 

ACTION 
Node(3).Current =1  
Node(3).Visited =0 

RHS 

1 
3 

2

  

<COPIED>  /  <COPIED>  

<COPIED> <COPIED> 

   CONDITION 
   Node(3).Current ==0 and  
   Node(3).Visited ==0 
 

 4- Select-Transition:  
LHS 

1 
3 

2 

  

<ANY>  /  <ANY>  

<ANY> <ANY> 

Figure 17.  Gen_SystemMod Graph Grammar 

Figure 19. Initial FD and FTS models 

Figure 18. Model Checking 
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In order to translate these models into the equivalent 
Maude specification, we have to apply the three 
previously defined graph grammars. First, by executing 
Gen_FeatFunctMod graph grammar on the FD model, we 
obtain the functional module Feature_FunctMod (Fig.20) 
and a decorated FD model for which each feature is 
enriched with the set of its descendants (Fig.21). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For example, Fig.21 shows that the attribute 
Set_DescFeats of the feature b contains the features s and 
t which are exactly the descendants of the feature b. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Then, to generate the functional module FTS_FunctMod  
(Fig.22) and to extend the FTS model we have to execute 
the Gen_FTSFunctMod graph grammar. Each transition 
is equipped by a set containing all the required features in 
its concurrent transitions (Fig.23). 
 
 
 

 
 
 
 
 
 
 

For example, Fig.22 shows that the attribute 
Set_ReqFeatCTs of the transition soda contains the 
features c and t which are exactly the features required in 
the concurrent transition cancel and tea. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, to generate automatically the system module  
FTS_SysMod (Fig.24), we have to execute the               
Gen_SystemMod graph grammar. It uses, as input, the 
enriched FTS and FD models obtained by applying the 
first two graph grammars. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After obtaining the generated SPL Maude specification 

by applying these graph grammars, we can now move to 
simulation and analysis. 

Figure 20.  The functional module Feature_FunctMod

 fmod Feature_FunctMod is 
 sort Feature FeatSet  . 
 subsort Feature < FeatSet . 
 
 ops  v  b  s  c  t  f  : -> Feature [ctor] . 
 op empty : -> FeatSet [ctor] . 
 op __          : FeatSet FeatSet -> FeatSet [ctor assoc id: empty] . 
 op isEmpty : FeatSet -> Bool . 
 op size        : FeatSet -> Nat . 
 op Isin : Feature  FeatSet -> Bool . 
 vars E E' : Feature  . 
 vars S S' : FeatSet . 
 eq isEmpty(empty) = true . 
 eq isEmpty(E S) = false .   
 eq size(empty) = 0 . 
 eq size(E S) = 1 + size(S) . 
 eq Isin(E, empty) = false . 
 eq Isin(E, E' S) =  E == E' or Isin(E,S) . 
 
 endfm 

Figure 22. The functional module FTS_FunctMod     

in Feature_FunctMod.txt 
fmod FTS_FunctMod is 
protecting Feature_FunctMod . 
 
sorts TsState FtsState  . 
ops     State1  State2  State3   State4   

                State5    State6   State7  State8  :  ->   TsState [ctor]. 
op < _ ; _ ; _ > : TsState FeatSet Bool -> FtsState . 
 
endfm 

in FTS_FunctMod.txt 
mod FTS_SysMod    is 
including FTS_FunctMod  . 
 
var  ListSelectFeats :  FeatSet . 
crl [pay]  : < State1; ListSelectFeats ;false > => < State2 ; ListSelectFeats;false >  
   if  Isin( v , ListSelectFeats)  and  ( not  Isin( f , ListSelectFeats )  
                                 or  ( Isin( f , ListSelectFeats ) and   not Isin( f , c f s t b ) ) ) . 
crl [change]:< State2; ListSelectFeats ;false > => < State3; ListSelectFeats;false > 
   if  Isin( v , ListSelectFeats )  .     
crl [free] : < State1; ListSelectFeats ; false > => < State3; ListSelectFeats ; false>  
   if  Isin( f , ListSelectFeats )  and  ( not  Isin( v , ListSelectFeats )   
                                  or  ( Isin( v , ListSelectFeats ) and   not Isin( v , empty ) ) ) . 
crl [return]:< State4; ListSelectFeats ; false > => <State1; ListSelectFeats ; true >  
  if  Isin( c , ListSelectFeats )  .  
crl [cancel]:< State3; ListSelectFeats; false > => <State4 ; ListSelectFeats;false >  
   if  Isin( c , ListSelectFeats)  and  ( not  Isin( s , ListSelectFeats )   
                                    or  ( Isin( s , ListSelectFeats ) and   not Isin(s , empty) ) ) 
                                         and    ( not  Isin( t , ListSelectFeats)   
                                    or  ( Isin( t , ListSelectFeats) and   not Isin( t , empty) ) ) . 
crl [soda]:< State3; ListSelectFeats ; false > => <State5 ; ListSelectFeats;false >    
  if  Isin( s , ListSelectFeats ) and  ( not  Isin( t , ListSelectFeats )   
                                    or  ( Isin( t , ListSelectFeats ) and   not Isin(t , empty ) ) ) 
                                         and    ( not  Isin( c , ListSelectFeats)   
                                    or  ( Isin( c , ListSelectFeats) and   not Isin( c , empty) ) ).   
crl [tea] : < State3; ListSelectFeats ; false > =>  < State6; ListSelectFeats ;false >   
  if  Isin( t , ListSelectFeats )  and  ( not  Isin( c , ListSelectFeats )   
                                    or  ( Isin( c , ListSelectFeats ) and   not Isin(c , empty) ) ) 
                                         and    ( not  Isin( s , ListSelectFeats)   
                                    or  ( Isin( s , ListSelectFeats) and   not Isin( s , empty) ) ) . 
crl [serveSoda]:<State5;ListSelectFeats ;false> => <State7;ListSelectFeats;false>  
  if  Isin( s , ListSelectFeats )  .   
crl [serveTea]:<State6; ListSelectFeats ;false > => < State7;ListSelectFeats;false> 
  if  Isin( t , ListSelectFeats )  .  
crl[open]:< State7; ListSelectFeats ; false > =>  < State8 ; ListSelectFeats;false >  
  if  Isin( v , ListSelectFeats )  and  ( not  Isin( f , ListSelectFeats )   
                                 or  ( Isin( f , ListSelectFeats ) and   not Isin( f ,  c f s t b ) ) ) .  
crl [skip]:< State7; ListSelectFeats ; false >  =>  < State1 ;ListSelectFeats ; true>   
  if  Isin( f , ListSelectFeats )  and  ( not  Isin( v , ListSelectFeats )   
                                 or  ( Isin( v , ListSelectFeats ) and   not Isin( v , empty ) ) ). 
crl [close]: < state8; ListSelectFeats; false>  =>  < state1 ; ListSelectFeats; true >  
   if  Isin( v , ListSelectFeats )  .    
  
endm  

Figure 24. The system module FTS_SysMod    

Figure 21.  Decorated FD model  

Figure 23.  Decorated FTS model  

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2529

© 2012 ACADEMY PUBLISHER



 

 

A.   Simulation 
As an initial state of the FTS, we use:      

<  State1 ;  v  b  s  f  ;  false  > 
In Fig.25, we show the simulation of the resulting Maude 
specification.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
According to the simulation results, we see that the 

priority relation between transitions is preserved. 

B.   Verification and Analysis 

For the verification and analysis purpose, we have to 
define manually properties to verify. This section 
illustrates the use of Maude's LTL model checker. 
Consider the vending machine SPL example. A temporal 
property, that each valid product must satisfy, is the fact 
that, from the initial state, the system always finishes in a 
final state. Properties are expressed using predicates. First, 
using the Boolean flag of the FTS state, we define two 
predicates Initial and Final in a new module called 
FTS_PredicatesMod as follows: 

 

 

 

 

 

 

 

 

 

 

 
 
The latter property is expressed in LTL as: 

[ ] (Initial (State1)   |->   Final (State1)) 
 
Now, consider two variants of the vending machine SPL:  

P1 { v ,  b , s } and P2 { v ,  b  ,  f  }. 

The following module verifies the propriety on P1 and P2: 
 
 
 
 
 
 
 
 
 
 
 
 

Maude's LTL model checker results are: 
 
 
 
 
 
 
 
 
 
 

 
 
The results show that the property is successfully verified 
for the product P1 {v, b, s}. For the product P2 {v, b, f}, 
the property does not hold and a counterexample path is 
displayed.  
Using the specification proposed in this work, other 
temporal properties can be verified. 

C.   Discussion 
The proposed approach has many advantages. The 

most important are:  
• Our framework is fully automated. 
• Our approach considers that the SPL can evolve. 

In case of updating the source models, the 
correction of the Maude specification will be 
automatically made. 

• According to Classen et al. [1], if the modelled 
SPL consists of several processes running in 
parallel, each process can be modelled as a 
separate FTS, all sharing the same FD. The FTS of 
the system is obtained by composing these 
processes. As Maude offers great possibilities for 
parallel programming, our approach allows 
composition. 

VIII.  CONCLUSION 

Research in the field of SPL is becoming increasingly 
important, particularly through its ability to increase 
software reuse. Over the past few years, several 
modelling and analysis techniques have been published.  

In this paper we proposed and implemented a graph 
transformations and rewriting logic based framework for 
SPLs specification and analysis. The basic idea is to 
automatically translate FTS and FD models into their 
equivalent Maude specification by applying three 

in FTS_PredicatesMod.txt 
mod FTS_Check is   
protecting FTS_PredicatesMod .  
including MODEL-CHECKER .   
including LTL-SIMPLIFIER .  
  
ops FTS_Init1   FTS_Init2  : ->  FtsState  .  
eq   FTS_Init1    =   < State1 ;  v  b  s  ;   false >  . 
eq   FTS_Init2    =   < State1 ;  v  b  f   ;  false >  . 
endm  

 
red modelCheck ( FTS_Init1 , [ ] ( Initial (State1) |-> Final (State1)) ) . 
red modelCheck ( FTS_Init2 , [ ] ( Initial (State1) |-> Final (State1)) ) . 

Figure 27. LTL property to check  

Figure 26.  FTS-PredicatesMod module 

in model-checker 
in FTS_SysMod.txt 
mod FTS_PredicatesMod is   
 
protecting FTS_SysMod   .   
including SATISFACTION .   
 
subsort FtsState <  State . 
op Initial     : TsState -> Prop . 
op Final      : TsState -> Prop .   
 
var State  : TsState . 
var ListSelectFeats    : FeatSet . 
var flag : Bool . 
 
ceq  < State ; ListSelectFeats ; flag >  |= Initial (State) = true  
                                                            if ( flag == false and State == State1) . 
ceq  < State ; ListSelectFeats ; flag >  |= Final  (State) = true  
                                                            if ( flag == true  and State == State1) . 
endm      

Figure 28. Property verification results  

Figure 25.  Results of simulation 
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proposed graph grammars. Transitions that express the 
dynamic of an FTS are directly translated into rewriting 
rules. The priority between alternative transitions is 
expressed in the conditions of rewriting rules by using FD 
model. The power of this specification resides in the fact 
that the transformation preserves FTS and FD semantics. 
The result procures a formal description that offers a solid 
basis for the verification process. The rewriting logic 
language Maude is used. Its LTL model checker has 
allowed verifying temporal properties. Thus, verification 
of the individual behavior of each product is guaranteed 
and therefore we can identify the products that violate the 
required properties.  

As Maude offers great possibilities for parallel 
programming, our approach allows composition of FTSs. 
We consider this work as a new way of investigation in 
SPLE domain. It combines the advantages of both, graph 
transformations and rewriting logic into an automatic 
framework.  

In Software Product Line engineering, a Feature 
Diagram defines features and their relationships. Each 
product is defined as a combination of features. For a 
given valid product, dependencies that have each feature 
with the others must be respected. As example, 
mandatory feature must be selected whenever its parent is 
selected. Note that in this paper, the proposed method 
allows to check the behavior of a given product without 
worrying about these dependencies. In a future work, we 
plan to extend our framework to be able to check 
automatically the validity of products according to this 
perspective.  
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