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AbstractAbstract

T he research work presented in this thesis focuses on the state estimation of nonlinear
systems described by the Takagi-Sugeno multi-model with unmeasurable premise

variables. The primary contribution of this work lies in mitigating conservatism in the
stability conditions of the state estimation error dynamics. To alleviate this conser-
vatism, the poly-quadratic Lyapunov function was employed, specifically to reduce the
conservatism associated with the quadratic approach. Various methodologies have been
presented based on this function, encompassing the Lipschitz method, L2-gain synthesis,
and the differential mean value theorem. We derived linear and bilinear stability condi-
tions for the convergence of the estimation error dynamics, and we have introduced an
efficient algorithm for solving the bilinear one, which was then compared to other ex-
isting solvers. In the second part of this work, the challenges of unknown inputs have
been addressed. We presented different observer designs, including proportional integral,
proportional multi-integral, and decoupled unknown input observers. Furthermore, we
tackled the challenge of the real-time applicability of the observer by optimizing the ob-
server’s Lyapunov matrix. This methodology was implemented and tested for unknown
input observers in real-time examples, and a comprehensive discussion comparing the
performance of the various unknown input observers was provided. Overall, this research
contributes to advancing the understanding and practical implementation of state and
unknown input estimation techniques in complex nonlinear systems.

Key words: Nonlinear system, Takagi-Sugeno multi-model, state estimation, Unknown
input estimation, Linear matrix inequalities, Bilinear matrix inequalities, poly-quadratic
Lyapunov function.



RésuméRésumé

L e travail de recherche présenté dans cette thèse se concentre sur l’estimation de
l’état des systèmes non linéaires décrits par le multi-modèle de Takagi-Sugeno avec

des variables de prémisse non mesurables. La principale contribution de ce travail réside
dans l’atténuation du conservatisme dans les conditions de stabilité de la dynamique de
l’erreur d’estimation d’état. Pour atténuer ce conservatisme, la fonction de Lyapunov
poly-quadratique a été employée, spécifiquement pour réduire le conservatisme associé à
l’approche quadratique. Diverses méthodologies ont été présentées sur la base de cette
fonction, notamment la méthode de Lipschitz, la synthèse du gain L2 et le théorème de
la valeur moyenne différentielle. Nous avons dérivé des conditions de stabilité linéaires et
bilinéaires pour la convergence de la dynamique de l’erreur d’estimation, et nous avons
introduit un algorithme efficace pour résoudre le cas bilinéaire, qui a ensuite été com-
paré à d’autres solveurs existants. Dans la deuxième partie de ce travail, les défis posés
par les entrées inconnues ont été abordés. Nous avons présenté différentes conceptions
d’observateurs, notamment des observateurs proportionnel integral, proportionnel multi-
integral et des observateurs à entrées inconnues découplés. En outre, nous avons relevé le
défi de l’applicabilité en temps réel de l’observateur en optimisant la matrice de Lyapunov
de l’observateur. Cette méthodologie a été mise en oeuvre et testée pour les observateurs
à entrée inconnue dans des exemples en temps réel, et une discussion complète com-
parant les performances des différents observateurs à entrée inconnue a été fournie. Dans
l’ensemble, cette recherche contribue à faire progresser la compréhension et la mise en
oeuvre pratique des techniques d’estimation de l’état et des entrées inconnues dans les
systèmes non linéaires complexes.

Mots-Clés: Système non linéaire, multi-modèle de Takagi-Sugeno, estimation d’état,
estimation d’entrée inconnue, inégalités matricielles linéaires, inégalités matricielles bil-
inéaires, fonction de Lyapunov poly-quadratique.
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-ركز العمل البحثي المقدم في هذه الأطروحة على تقدير الحالة للأنظمة غير الخطية الموصوفة بنموذج تاكاجيي

تكمن المساهمة الأساسية لهذا العمل في التخفيف من التحفظ في  للقياس.    ةقرار غير قابلسوجينو المتعدد مع متغيرات  

دالة   استخدام  تم  التحفظ،  هذا  من  وللتخفيف  الحالة.  تقدير  خطأ  ديناميكيات  استقرار  متعددة    Lyapunovشروط 

منهجيات مختلفة استناداً إلى هذه الدالة، بما في   تقديمالتربيعات، وتحديداً لتقليل التحفظ المرتبط بالنهج التربيعي. تم  

لقد اشتققنا شروط الاستقرار  ، ونظرية القيمة المتوسطة التفاضلية.  gain synthesis-2L، وLipschitz  ذلك طريقة  

تقارب ديناميكيات خطأ التقدير، وقدمنا خوارزمية فعالة لحل ثنائية الخط، والتي من اجل  الخطية والثنائية الخطية  

في الجزء الثاني من هذا العمل، تمت معالجة الأخرى الموجودة.    الامثلةأدوات    غيرها منتمت مقارنتها بعد ذلك مع  

، والتناسبي متعدد تناسبي تكاملي  مراقببما في ذلك  تحديات المدخلات المجهولة. قدمنا تصاميم مختلفة للمراقب،  

مع التحدي المتمثل في قابلية تطبيق المراقب   ناعلاوة على ذلك، تعامل. ومراقب فصل المداخل المجهولة،  تالتكاملا

مصفوفة   تحسين  خلال  من  الحقيقي  الوقت  لمراقبي    Lyapunovفي  واختبارها  المنهجية  هذه  تنفيذ  تم  للمراقب. 

المدخلات  مراقبي  مختلف  أداء  تقارن  شاملة  مناقشة  تقديم  وتم  الحقيقي،  الوقت  في  أمثلة  في  المجهولة  المدخلات 

هذا البحث في تطوير الفهم والتنفيذ العملي لتقنيات تقدير الحالة والمدخلات المجهولة   المجهولة. وبشكل عام، يساهم

 في الأنظمة غير الخطية المعقدة.

المتعدد، تقدير الحالة، تقدير المدخلات غير المعروفة،    سوجينو-تاكاجيالنظام غير الخطي، نموذج    كلمات مفتاحية:

 متعددة التربيعات. Lyapunovمتباينات المصفوفة الخطية، متباينات المصفوفة الخطية الثنائية، دالة 
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General Introduction

Introduction

E ngineering plays a pivotal role in the development and control of systems, striving
to attain optimal performance and efficiency. Historically, linear systems and their

associated control mechanisms have been the cornerstone of this domain, primarily due
to their simplicity and the straightforward nature of their mathematical models. Linear
control systems, with their predictable and uniform behavior, have allowed engineers to
design and implement effective control strategies with relative ease. However, the inherent
complexity of the real world often defies this simplicity. Most physical systems exhibit
nonlinear characteristics, making them significantly more complex and challenging to
model and control. The nonlinear nature of these systems introduces a wide array of
difficulties in system design and control, necessitating advanced strategies to accurately
predict and manage their behaviors.

A fundamental aspect of controlling any system is the accurate knowledge of its
states. State estimation is typically achieved through the use of an auxiliary system
known as an observer. The seminal works in observer design, attributed to Luenberger
in [Luenberger, 1971] and Kalman in [Kalman, 1960], laid the foundation for state esti-
mation. However, these initial frameworks were confined only to linear systems. This
limitation led to the development of extended observers, extended Luenberger observer
and extended Kalman filter, which employ linearization techniques to make nonlinear
systems amenable to the existing linear observer designs.

Linearization, despite offering benefits such as the simplification of complex systems,
entails the significant drawback of overlooking the intricacies inherent in exact nonlinear
models, which results in degraded estimation performance. This trade-off highlights a
critical challenge in observer design: the difficulty of developing observers that can directly
utilize nonlinear models without resorting to simplifications. Therefore, the design of
observers is intrinsically linked to the mathematical model of the system, as the process
of modeling plays a crucial role in understanding the dynamics of a system and deriving its
states. An accurate model is essential for comprehending the system’s behavior, enhancing
its performance, and achieving effective control.
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While the analysis of linear systems has reached a significant level of maturity, the
study of nonlinear systems presents more complexity, and research in this area continues
to evolve. Analysis of nonlinear systems often necessitates customized approaches for
specific types of systems, such as Lipschitz, Hammerstein-Wiener and bilinear systems.
In response to these challenges, the multi-model approach has emerged as a promising
strategy for representing nonlinear systems. This approach decomposes a nonlinear system
into a collection of linear models, each corresponding to specific operating conditions of the
system. This provides a more manageable framework for analysis and control, facilitating
the extension of linear control techniques to nonlinear systems.

Among the various multi-model frameworks, this work leverages the capabilities of
the Takagi-Sugeno (T-S) fuzzy multi-model. This approach is renowned for its ability
to accurately capture nonlinear system dynamics using the sector nonlinearity approach,
while maintaining precision and avoiding information loss due to linearization. It employs
fuzzy-set theory to depict nonlinear systems as a combination of time-invariant local linear
models. These models are integrated using weights determined by fuzzy-set membership
functions. Such an approach offers significant advantages in the design of observers for
nonlinear systems. It enables precise system modeling and facilitates the derivation of
simple stability conditions, similar to those established for linear systems.

In this context, two categories of systems are distinguished based on the variables in
the weight functions: Measurable Premise Variables (MPV) and Unmeasurable Premise
Variables (UPV). Systems with UPV represent a broader class and have thus garnered
substantial research interest. However, designing observers for UPV systems poses greater
challenges than for those with MPV.

To examine the stability of state estimation errors, the application of the second Lya-
punov theorem with a quadratic candidate function provides simple stability conditions in
the form of Linear Matrix Inequalities (LMIs). Nonetheless, this approach encounters dif-
ficulties with larger systems as identifying a common matrix satisfying all LMIs becomes
increasingly challenging [Elias et al., 2021]. Consequently, recent research has shifted to-
wards less conservative Lyapunov functions, such as the poly-quadratic Lyapunov function
[Tanaka et al., 2003]. While this approach reduces conservatism compared to its quadratic
counterpart, and facilitates solution finding, it nevertheless introduces greater complexity,
specially with the emergence of Bilinear Matrix Inequalities (BMIs).

To implement an observer effectively, it is essential to have knowledge of all its inputs.
However, in practical scenarios, systems often encounter unknown inputs that can signif-
icantly influence their behavior. This reality necessitates the design of robust observers
capable of handling such unknown inputs. The estimation of these unknown inputs is



crucial, as it enables a more comprehensive understanding and control of the system’s be-
havior. This, in turn, leads to enhanced efficiency and prolongs the system’s operational
life. Robust observers play a pivotal role in maintaining system integrity and performance,
even in the face of unforeseen or unpredictable external influences.

Contributions

The main goal of this thesis is to contribute in improving the state estimation process
of nonlinear systems described by T-S multi-model with UPV, specifically by reducing
the conservatism inherent in existing methodologies. The principal contributions of this
thesis are summarized as follows:

❖ The principal contribution of our work is the development of a novel observer for T-S
fuzzy systems with UPV. This observer addresses the conservatism that results from
the mismatching terms and the employment of the quadratic candidate Lyapunov
function. Our method overcomes these challenges by adopting the differential mean
value theorem coupled with the poly-quadratic Lyapunov function.

❖ The second contribution is the formulation of an iterative LMI algorithm to solve
the bilinear constraints that emerge from combining the mean value theorem with
the poly-quadratic Lyapunov function. This algorithm facilitates solving these con-
straints through linear optimization solvers, offering enhanced outcomes compared
to existing BMI optimization solvers.

❖ Our third contribution addresses the conservatism arising from the high Lipschitz
gain in existing Lipschitz-assumption-based observers for T-S systems with UPV.
The proposed observer outperforms its predecessor primarily due to the effective em-
ployment of the completion of square property. The obtained results demonstrate an
expanded feasibility domain for stability conditions, particularly concerning higher
Lipschitz gain, compared to the previous approach.

❖ The fourth contribution in our work is the reduction of conservatism in simultaneous
state and unknown input observers. This is achieved by addressing the mismatching
terms of the premise variables using the mean value theorem, a significant improve-
ment over the Lipschitz-based observers used in earlier studies. Additionally, the use
of the poly-quadratic Lyapunov function further diminishes conservatism compared
to the traditional quadratic approach.



Organization

This thesis is structured into four main chapters, organized as follows:

❖ Chapter 1: This chapter introduces the fundamental concepts of multi-model rep-
resentation using the T-S approach. It begins with an exploration of the mathemat-
ical model structure based on fuzzy theory and progresses to its construction using
various methods, evaluating their limitations and determining the most suitable ap-
proach. Additionally, this chapter delves into the principal aspects of convexity in
T-S representation and the LMI optimization problems. Various relaxation methods
designed to lessen conservatism in stability conditions are also discussed.

❖ Chapter 2: The focus of this chapter is on the principal aspects of observability and
detectability in T-S multi-models. It presents stability conditions for systems with
MPV, along with strategies to enhance state estimation performance by adapting the
pole placement method, traditionally used in linear systems, for nonlinear systems
characterized by T-S fuzzy representation.

❖ Chapter 3: This chapter outlines the primary contributions of this thesis. It
addresses the class of T-S systems with UPV, which poses significant challenges in
stability analysis due to the presence of the mismatching terms. Various methods
to mitigate the effects of these terms are explored, highlighting the limitations of
each and proposing improvements to reduce associated conservatism. The iterative
method for solving the resulting BMIs is presented in this chapter.

❖ Chapter 4: This chapter focuses on improving the observers discussed in the pre-
vious chapter to address the issue of unknown inputs affecting the system, such as
faults, noise, uncertainties, etc. It presents different types of proposed observers and
provides a thorough comparative analysis between theme. The chapter culminates
with real-time application scenarios, discussing the practical implementation and
benefits of the developed observers in real-world settings. A method to make the
observer gains applicable in real world scenarios is proposed.
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CHAPTER 1. GENERALITIES OF MULTI-MODEL REPRESENTATION

1.1 Introduction

The art and science of representing systems have always been centered around under-
standing and describing the dynamical characteristics of those systems. In the pursuit
of comprehending any system, a primary objective is to accurately represent its behavior
through mathematical models. These models serve as the foundation in numerous appli-
cations, spanning from engineering and biology to economics and beyond. They not only
capture the essence of how a system behaves but also provide a platform for prediction,
control, and optimization. However, finding the optimal model is a delicate balancing act.
Three main pillars guide this process:

❖ Validity: Every model functions within a specific boundary of applicability. This
boundary is often delineated by the system’s inherent physical properties or the
assumptions made during the modeling phase. The constraints, whether driven
by tangible realities or hypothetical conditions, determine the model’s scope and
relevance.

❖ Precision: At its core, precision in modeling emphasizes detailed and faithful repre-
sentation of a system’s dynamics and interactions among its different characteristic
quantities. A precise model adeptly captures these interactions as well as the input-
output behaviors, delivering predictions that closely match observed real-world data.
However, this depth might increase computational demands.

❖ Simplicity: Often, the goal in modeling is to capture the essence of a system with-
out unnecessary complexities. A simpler model, if valid, can be more interpretable
and easier to work with. Yet, oversimplification risks missing crucial dynamics of
the system.

The principles of validity, precision, and simplicity not only guide the modeling process
but also deeply influence the choices we make regarding the model’s structure. This
balance is paramount when aiming to accurately depict a system’s dynamic behavior.
In light of these guiding principles, we can categorize mathematical models into two
prominent structural types: linear and nonlinear models.

1.1.1 Linear models

Due to their simplicity and ease of handling, linear models offer numerous benefits.
They often form the foundation of theory across various fields, thanks to their analytical
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solvability and the abundance of specialized tools and methodologies designed for them.
Fundamentally, linear models are distinguished by two primary properties: additivity and
homogeneity. If a system adheres to both of these principles, then it is said to obey the
principle of superposition.

Definition 1.1. (Additivity) Let y1(t) and y2(t) be the outputs of a system corresponding
to the inputs u1(t) and u2(t), respectively. A system is said to exhibit additivity if, when
subjected to combined inputs given by

u(t) = u1(t) + u2(t), (1.1)

the resulting response is
y(t) = y1(t) + y2(t), (1.2)

which is the summation of its individual responses to each separate input.

Definition 1.2. (Homogeneity) Let y(t) be the output of a system corresponding to the
input u(t). A system is said to exhibit homogeneity if, when subjected to input given by

αu(t), α ∈ R, (1.3)

the resulting response is
αy(t), (1.4)

which scales proportionally with the input.

u1(t) System y1(t)

+

αu2(t) System αy2(t)

y1(t) + αy2(t)

+ u1(t) + αu2(t) System y1(t) + αy2(t)

Fig 1.1: Linear system

Linear systems are typically represented using the following state-space form: ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1.5)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the input vector and y(t) ∈ Rny

represents the output vector. A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu are
known matrices.
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1.1.2 Nonlinear models

While linear models offer numerous advantages in terms of simplicity and analytical
solvability, it’s imperative to recognize that most physical systems encountered in nature
are inherently nonlinear. The presence of nonlinearity introduces a level of dynamical
richness that isn’t found in linear systems.

The standard form for representing nonlinear systems is as follows: ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

(1.6)

where: f is the state function. It describes how the state vector x(t) of the system evolves
over time given a certain input u(t). This function represents the dynamics of the system.
h is the output function. It relates the state vector x(t) and the input u(t) to the output
y(t). This function determines how the states are measured.

However, the richness introduced by nonlinearity introduces significant challenges in
terms of analysis, control, and prediction. The lack of linear properties, like superposi-
tion, amplifies this complexity. As a result, there’s a pressing need for specialized tools
and techniques tailored to navigate and comprehend these intricate nonlinear dynamics.
Among of which two are particularly noteworthy:

Linearization: A widely-adopted method, linearization aims to approximate the non-
linear dynamics around a specific operating point. While this technique greatly simplifies
the modeling process, especially for systems operating near a steady state, its accuracy
diminishes as the system’s behavior deviates from this chosen point. This limitation is
particularly pronounced in systems with stark nonlinear characteristics.

Multi-model representation: As an alternative to linearization, the multi-model
representation decomposes a complex nonlinear system into a series of local linear models,
each tailored to a different operating point. The succeeding section will delve deeper into
the intricacies of the multi-model approach, providing a comprehensive exploration.

1.2 Multi-model representation

In the pursuit of comprehending nonlinear systems, the multi-model representation
emerges as a powerful tool. By segmenting the overall behavior of a system into smaller,
more manageable sub-models, multi-model approaches simplify complexities, enabling
easier analysis and control. It’s like assembling a complex puzzle game, where each in-
dividual piece reveals a portion of the broader picture . This chapter aims to provide a
comprehensive exploration of the multi-model approach, shedding light on its principles,
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methodologies, and applications. As we dive deeper, we will unveil how multi-model rep-
resentation bridges the gap between the desire for simplicity and the inherent complexity
of nonlinear systems.

Before delving into the intricacies of multi-model representation, it’s essential to in-
troduce and define foundational terms. These key definitions will guide the subsequent
discussions, ensuring clarity and depth of understanding.

1.2.1 Sub-Model

A system can be described using a series of local models: M1, M2, ..., Mr, each describes
the behavior of the global system in a specific domain of validity.

1.2.2 Domains of validity

Each sub model is associated with its unique domain of validity (operational zone):
D1, D2, ..., Dr. Every domain is centered around a specific operating point. These do-
mains might either be disjoint, implying no overlap, or they might overlap [Ksouri, 1999].
In situations where domains overlap, they share common regions, creating overlapping
validity domains, as illustrated in Figure 1.2. The union of these domains constitutes the
system’s operating space D = D1 ∪ D2 ∪ . . .Dr.

D1
1

D2

2

D3

3

5 4

6

7

Fig 1.2: Overlapping domains of validity illustration

1.2.3 Multi-model

Multi-model refers to the integration of various sub-models using a meticulous inter-
polation mechanism (weighting functions), to capture the overall dynamic behavior of the
entire system. While each sub-model focuses on specific facets or regions of operation,
the multi-model seamlessly merges them, presenting a holistic depiction of the system’s
dynamics.
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1.2.4 Weighting functions

Weighting functions µi(t) play a pivotal role in determining the contribution of each
individual sub-model Mi. Essentially, these functions assign a weight or “importance
factor” to each sub-model based on the current operating point or condition. By design,
these functions are bounded within the range [0, 1].

Considering the example in Figure 1.2:

❖ In regions 1, 2, and 3, a singular model is deemed valid, bearing a weight coefficient
of 1, while the remaining models carry a coefficient of zero.

❖ For regions 4, 5, and 6, two models concurrently possess partial validity, exhibiting
non-zero weights whose cumulative value is 1.

❖ Region 7 showcases a scenario where three or more models have overlapping validity.

These weighting functions are also referred to as “Activation functions” [Chadli and Borne, 2012]
due to their role in ascertaining the activation level of their linked local sub-model. Sub-
sequent sections will provide an in-depth exploration of the methods to determine these
functions.

1.3 Different multi-model structures

Multi-model systems primarily fall into two categories, distinguished by the design and
interaction of their sub-models. Each structure offers unique approaches to encapsulate
and represent system dynamics, accompanied by their inherent strengths and challenges
[Orjuela, 2008].

In the following illustration, we present a detailed scheme that represents the con-
struction of the Takagi-Sugeno multi-model. Among the various methods available, we’ve
chosen to emphasize sector nonlinearity specifically for its potential to reduce the error
between the actual model and its representation to the greatest extent possible.

❖ Coupled Multi-model Structure (Homogeneous Structure): Often referred
to as the “Takagi-Sugeno multi-model”, this structure is characterized by its
shared and unified state vector x(t). All the sub-models in this structure possess
the same form, ensuring homogeneity across the multi-model system. The strength
of this method lies in its uniformity, which can often simplify analysis and control
design. However, this strict structure might not always provide the flexibility needed
for more complex systems.
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❖ Decoupled Multi-model Structure (Heterogeneous Structure): Contrary
to the homogeneous structure, the decoupled multi-model structure allows for a
diverse and flexible representation. Here, each sub-model is unique, possessing its
distinct state vector xi(t) and structural form. This approach provides a broader
framework, accommodating a vast array of system behaviors and characteristics.
It is especially useful for representing systems where different regions of operation
have inherently different dynamics. Nonetheless, this flexibility might come at the
cost of increased complexity in analysis and control.

Physical System

Mathematical model
(Generally nonlinear) ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

+ Error of modelization

Multi-model representation Linearization around operational point

+ Error of linearization

Coupled multi-model structure
(Takagi-Sugeno multi-model) ẋ(t) = ∑r

i=1 µi(ξ(t)) (Aix(t) + Biu(t))
y(t) = ∑r

i=1 µi(ξ(t)) (Cix(t) + Diu(t))

Decoupled multi-model structure
(Decoupled states) ẋi(t) = Aixi(t) + Biu(t)

y(t) = ∑r
i=1 µi(ξ(t)) (Cixi(t) + Diu(t))

Construction of T-S fuzzy Model

LinearizationIdentification Sector nonlinearity
✓ Exact

representation
X Error of

identification

X Error of
linearization

Fig 1.3: Multi-model construction scheme

1.3.1 Takagi-Sugeno multi-model (Coupled structure)

The Takagi-Sugeno (T-S) fuzzy multi-model has its roots in the late 20th century,
emerging as a prominent approach in the domain of fuzzy systems and control. Introduced
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by Takagi and Sugeno in 1985 in [Takagi and Sugeno, 1985], this model was designed
as a systematic method to handle the complexities and nonlinearities found in various
systems. Over the years, the T-S model has gained traction due to its capacity to provide
an intuitive representation of nonlinear systems using linear subsystems guided by fuzzy
logic principles.

In its foundational form, the T-S model operates on the principles of fuzzy logic. At
its core lies the inference of a set of r fuzzy rules. These rules adopt the “IF (premise)
THEN (consequence)” structure:

❖ Premise (Antecedent): This is the “IF” part of the rule. It contains conditions
that are checked. These conditions are based on the premise variables and their
corresponding fuzzy sets.

❖ Premise variables: Also known as “decision variables” [Chadli and Borne, 2012],
refer to the variables that appear in the “IF” part (the Premise) of the fuzzy rules.
They are called “premise” variables because they set the conditions or premises for
each rule.

❖ Fuzzy Sets: In the context of the T-S model, fuzzy sets represent categories or
classes that the premise variables can belong to, albeit to varying degrees. The
degree to which a premise variable belongs to a fuzzy set is determined by the
membership function associated with that set.

❖ Membership Functions: These functions define how a premise variable is mapped
to a membership value between 0 and 1. Essentially, they quantify the degree to
which a specific premise variable belongs to a particular fuzzy set. The shapes and
forms of these functions will be further detailed later in this work, using the sector
nonlinearity approach.

❖ Consequent: This is the “THEN” part of the rule. In Takagi-Sugeno systems,
the consequents describe linear dynamic models that are valid under the conditions
specified by the antecedents.

These rules collectively characterize the nonlinear behavior and its segmented linear
approximations. A typical representation is given by the ith fuzzy rule, for i = 1, . . . , r:

If ξ1(t) is Mi1 and . . . and ξk(t) is Mik,

Then

 ẋ(t) = Aix(t) + Biu(t),
y(t) = Cix(t) + Diu(t),

(1.7)
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here, ξj represents the premise variable, with k denoting their total number. Mij signifies
the fuzzy set of the ith fuzzy rule associated with the jth premise variable. Furthermore,
r stands for the number of fuzzy rules, which corresponds to the number of sub-models.

Upon employing “Weighted average method”, this allows the expression of a T-S model
in the compact form:  ẋ(t) = ∑r

i=1 µi(ξ(t)) (Aix(t) + Biu(t))
y(t) = ∑r

i=1 µi(ξ(t)) (Cix(t) + Diu(t))
(1.8)

In this representation, x(t) ∈ Rnx stands as the state vector, u(t) ∈ Rnu represents the
input vector, and y(t) ∈ Rny is the output vector. The matrices Ai, Bi, Ci, and Di detail
the local dynamics. The functions µi(ξ(t)) ≥ 0 are normalized membership functions, also
known as weighting functions as described in Section 1.2.4, abiding by the convex sum
properties (later, in Section 1.5, we will provide a detailed definition of what “convex”
means): 

∑r
i=1 µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1, ∀i = 1, ..r
(1.9)

These weighting functions are obtained based on the “weighted average method” and
given as follows: 

wi(ξ(t)) =
k∏

j=1
Mij (ξj(t))

µi(ξ(t)) = wi(ξ(t))∑r
i=1 wi(ξ(t))

(1.10)

where the term Mij (ξj(t)) is the membership function of the premise variable ξ(t) in the
fuzzy set Mij. This membership function verifies as well the convex sum property given
in (1.9).

u(t)

A1x(t) + B1u(t) ∏

A2x(t) + B2u(t) ∏

Arx(t) + Bru(t) ∏

∑ ∫

C1x(t) + D1u(t) ∏

C2x(t) + D2u(t) ∏

Crx(t) + Dru(t) ∏

∑
y(t)

Weighting functions
generation

ξ1 ξ2 . . . ξr

µ1(ξ)

µ2(ξ)

µr(ξ)

µ1(ξ)

µ2(ξ)

µr(ξ)

ẋ(t)

Fig 1.4: Takagi-Sugeno multi-model structure
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1.3.2 Decoupled Multi-model Structure

The decoupled structure presents a different take on multi-model representations. Pro-
posed by Filev [Filev, 1991], this type is characterized by each sub-model having its unique
state vector xi(t) ∈ Rnxi and structural formation. These individual sub-models are tai-
lored to symbolize the system’s behavior in the vicinity of specific operational points.
Consequently, the comprehensive behavior of the overarching system is articulated by
interpolating the outputs of these sub-models. It’s important to note that the local state
vectors xi(t) do not necessarily have a physical meaning in structure [Akhenak, 2004].

A notable aspect of this structure is the distinct local state for each sub-model, empha-
sizing the system’s behavior in a defined operational domain. The sub-model’s dynamics
can be represented as:  ẋi(t) = Aixi(t) + Biu(t)

yi(t) = Cixi(t) + Diu(t)
(1.11)

Integrating these sub-models, the global representation of the multi-model is given by:

 ẋi(t) = Aixi(t) + Biu(t), i = 1, . . . , r

y(t) = ∑r
i=1 µi(ξ(t)) (Cixi(t) + Diu(t))

(1.12)

u(t)

A1x1(t) + B1u(t)
∫

A2x2(t) + B2u(t)
∫

Arxr(t) + Bru(t)
∫

C1x1(t) + D1u(t)

C2x2(t) + D2u(t)

Crxr(t) + Dru(t)

∏

∏

∏

∑
y(t)

Weighting functions
generation

ξ1 ξ2 . . . ξr

µ1(ξ)

µ2(ξ)

µr(ξ)

ẋ1(t)

ẋ2(t)

ẋr(t)

y1(t)

y2(t)

yr(t)

Fig 1.5: Decoupled multi-model structure
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1.4 Construction of Takagi-Sugeno fuzzy Model

The process of constructing a Takagi-Sugeno multi-model is a sensitive step, partic-
ularly in the realm of observer design. By meticulously tailoring the multi-model, it’s
aligned to reflect the intrinsic behaviors of the original nonlinear model with heightened
precision, a fundamental requirement for the successful design of observers. This process
encompasses specifying the premise variables involved, determining the number of sub-
models and determining the matrices Ai, Bi, Ci, and Di that best describe the system’s
behavior. The subsections that follow will explore the mainly methodologies documented
in literature for this construction which are: identification, linearization, and the sector
nonlinearity approach which will be adopted in this work.

1.4.1 Identification

The identification process in the context of multi-models is a systematic approach to
derive appropriate sub-models from experimental or observational data. It involves seg-
menting this data based on varying operating conditions or regimes. Each distinct regime
or segment is then encapsulated by its unique sub-model. Then the identification of the
unknown parameters is based on the minimization of a criterion (global, local or com-
bined [Orjuela, 2008]) of the difference between the estimated output of the multi-model
and the measured output of the system . The identification method for fuzzy modeling
is appropriate for systems that are challenging to represent through analytical and/or
physical models, often referred to as "black box" systems [Tanaka and Wang, 2004].

Actuator Physical system to identify Output y(t)

Measuring device

I/O card board

Fig 1.6: System identification setup

The development of a multi-model through identification raises three major issues
[Orjuela, 2008]:
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• The choice of the characteristic variable (i.e., the premise variable “ξ” of the system
used to index the weighting functions).

• Decomposing the system’s operating space into a finite number of operating zones.
This step may be accompanied by an optimization of the weight functions associated
with each zone.

• Identification of each sub-model structure and parameters.

Remark 1.1

The identification approach in constructing the Takagi-Sugeno multi-model has its
limitations:

❖ Relying on identification with “non-persistent input signals” can lead to a
multi-model that fits the training data exceptionally well but fails to gener-
alize to unseen data or different operating conditions. This over-reliance on
observed data can obscure underlying system dynamics, making the model
less robust in real-world applications.

❖ Identification process can be computationally intensive, especially for complex
systems with a vast amount of data.

❖ The choice of the appropriate identification method and its parameters can
be non-trivial, often requiring expert knowledge and trial-and-error.

❖ Models derived purely from identification might lack the intuitive or physical
interpretability that analytical models provide.

1.4.2 Linearization

Linearization is a mathematical tool used to simplify nonlinear systems by approxi-
mating them with linear equations around an operational point. In essence, it corresponds
on approximating a nonlinear function using its tangent in this operational point as il-
lustrated in Figure 1.7, thereby simplifying complex behaviors into more tractable forms.
In the context of constructing a Takagi-Sugeno multi-model through the linearization ap-
proach, each sub-model can be seen as a representation of the system’s behavior linearized
around a specific operational point [Johansen et al., 2000].
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Y Nonlinear function

Linearization

Operating point

Region of good approximation

y=x²

(x,y)=(1,1)
y=2x-1

Fig 1.7: Linearization of nonlinear function illustration

One of the most common techniques employed for linearization is to use the first term
of the Taylor series expansion [Johansen and Foss, 1993], [Gasso, 2000]. Lets define the
linearization Li of the nonlinear system f(x(t), u(t)) given in (1.6) around operational
points (xi, ui) as follows:

Li(x(t), u(t)) = f(xi, ui)+ ∂f(x, u)
∂x

∣∣∣∣∣
(x,u)=(xi,ui)

(x(t)− xi)+ ∂f(x, u)
∂u

∣∣∣∣∣
(x,u)=(xi,ui)

(u(t)− ui)

(1.13)
This expression can be written as :

Li(x(t), u(t)) = Aix(t) + Biu(t) + f(xi, ui)− Aixi −Biui (1.14)

where:
Ai = ∂f(x, u)

∂x
|(x,u)=(xi,ui) , Bi = ∂f(x, u)

∂u
|(x,u)=(xi,ui) (1.15)

The non linear system (1.6) will then be represented by the multi-model (1.16) com-
posed of several local linear or affine models obtained by linearizing the nonlinear system
around an arbitrary operating point (xi, ui) ∈ Rnx × Rnu :


ẋ(t) =

r∑
i=1

µi(ξ(t))(Aix(t) + Biu(t) + Di)

y(t) =
r∑

i=1
µi(ξ(t))(Cix(t) + Eiu(t) + Ni)

(1.16)

where:

Ai = ∂f(x, u)
∂x

|(x,u)=(xi,ui) , Bi = ∂f(x, u)
∂u

|(x,u)=(xi,ui), Di = f(xi, ui)− Aixi −Biui

Ci = ∂h(x, u)
∂x

|(x,u)=(xi,ui) , Ei = ∂h(x, u)
∂u

|(x,u)=(xi,ui), Ni = h(xi, ui)− Cixi − Eiui
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Remark 1.2

The linearization approach, when employed in the construction of the Takagi-
Sugeno multi-model, brings with it certain limitations:

❖ Linearization inherently involves approximation, and while it simplifies the
representation of nonlinear systems, it may not capture the full dynamics
accurately, especially when the system exhibits strong non-linearities.

❖ The reliance on the first term of the Taylor series expansion might miss higher-
order dynamics crucial to certain applications.

❖ Choosing an appropriate linearization point or determining the number of
linearization points needed can be challenging. The number of local models is
not only dictated by the modeling accuracy desired but also by the system’s
complexity and the choice of activation function.

1.4.3 Sector nonlinearity approach

Sector nonlinearity is an approach based on the knowledge of the mathematical model
of the system. It constrains the system’s nonlinearities within specific bounds or sectors.
This leads to a set of linear models that provide an exact representation, which aligns
optimally with the real system. This contrasts with the other two methods, Identification
and Linearization, which offer only approximations. This approach either determines the
global sector covering the entire nonlinearity, as illustrated in Figure 1.8, or considers
local sector nonlinearity when it’s challenging to identify global sectors, as shown in
Figure 1.9. It’s important to to clarify that contrary to what’s depicted in Figures 1.8
and 1.9, nonlinear equations don’t necessarily intersect the origin, as will be further
demonstrated in the proof of Lemma 1.1.

-4 -3 -2 -1 1 2 3 4

-10

-5

5

10

Fig 1.8: Global sector nonlinearity

-4 -3 -2 -1 1 2 3 4

-10

-5

5

10

Fig 1.9: Local sector nonlinearity
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Lemma 1.1. (Sector nonlinearity) [Tanaka and Wang, 2004] Let us consider a bounded
function ξ(x) ∈ [ξmin ξmax], there always exist two functions M1(ξ(x)) and M2(ξ(x))
such that:

ξ(x) = M1(ξ(x))ξmax + M2(ξ(x))ξmin (1.17)

where:

0 ≤M1(ξ(x)) ≤ 1, 0 ≤M2(ξ(x)) ≤ 1, M1(ξ(x)) + M2(ξ(x)) = 1

and
M1(ξ(x)) = ξ(x)− ξmin

ξmax − ξmin
, M2(ξ(x)) = ξmax − ξ(x)

ξmax − ξmin
.

Proof. Under the assumption that the function ξ(x) is bounded, it is then possible to
write:

ξ(x) = ξ(x)
(

ξmax − ξmin

ξmax − ξmin

)
+
(

ξmaxξmin

ξmax − ξmin
− ξmaxξmin

ξmax − ξmin

)
(1.18)

After factorization, Equation (1.18) becomes:

ξ(x) = ξ(x)− ξmin

ξmax − ξmin︸ ︷︷ ︸
M1(ξ(x))

ξmax + ξmax − ξ(x)
ξmax − ξmin︸ ︷︷ ︸

M2(ξ(x))

ξmin (1.19)

This property can be written in summation formula as follows:

ξ(x) =
2∑

i=1
Mi(ξ(t))ξi, (1.20)

where: ξ1 = ξmax and ξ2 = ξmin.
To construct the multi-model using this approach, we first reformulate the nonlinear

system (1.6) using a basic factorization. The formulation is: ẋ(t) = A(ξ(t))x(t) + B(ξ(t))u(t)
y(t) = C(ξ(t))x(t) + D(ξ(t))u(t)

(1.21)

where A(ξ(t)), B(ξ(t)), C(ξ(t)) and D(ξ(t)) are matrices that depend on the premise vari-
able ξ(t). In the simple case where there is only one premise variable, these functions can
be expressed using the sector nonlinearity approach to define the membership functions
as follows:

A(ξ(t)) = ∑2
i=1 Mi(ξ(t))Ai, B(ξ(t)) = M2

i=1Mi(ξ(t))Bi

C(ξ(t)) = ∑2
i=1 Mi(ξ(t))Ci, D(ξ(t)) = ∑2

i=1 Mi(ξ(t))Di

(1.22)
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Thus, the system (1.21) becomes: ẋ(t) = ∑2
i=1 Mi(ξ(t)) (Aix(t) + Biu(t))

y(t) = ∑2
i=1 Mi(ξ(t)) (Cix(t) + Diu(t))

(1.23)

In the general case where there are k premise variables, the number of rules is defined
by r = 2k. The corresponding nonlinear functions are given by:

A(ξ(t)) = ∑r
i=1 µi(ξ(t))Ai, B(ξ(t)) = ∑r

i=1 µi(ξ(t))Bi

C(ξ(t)) = ∑r
i=1 µi(ξ(t))Ci, D(ξ(t)) = ∑r

i=1 µi(ξ(t))Di

(1.24)

where µi represents the activation function of the ith fuzzy rule. This function is the
product of the membership functions from distinct premise variables ξj(t):

µi(ξ(t)) = ∏k
j=1 M j

σij
(ξj(t)) (1.25)

here, M j
σij

refers to the membership function for the jth premise variable. The index σij

can be either 1 or 2, indicating which partition (either M j
1 for max or M j

2 for min) defines
the activation function µi. The indexing is detailed in the table below:

H
HHH

HHHH
µi

M j
σij M1

σij
M2

σij
. . . Mk−1

σij
Mk

σij

µ1 σij = 1 σij = 1 . . . σij = 1 σij = 1

µ2 σij = 1 σij = 1 . . . σij = 1 σij = 2

... ... ... . . . ... ...

µr−1 σij = 2 σij = 2 . . . σij = 2 σij = 1

µr σij = 2 σij = 2 . . . σij = 2 σij = 2

Table 1.1: Definition of the membership functions corresponding to the fuzzy rules

Given this, the system (1.21) can be expressed as: ẋ(t) = ∑r
i=1 µi(ξ(t)) (Aix(t) + Biu(t))

y(t) = ∑r
i=1 µi(ξ(t)) (Cix(t) + Diu(t))

(1.26)
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Example 1: Multi-model construction of induction motor using sector non-
linearity
The dynamical model of the induction motor is typically described in the rotational d-q
reference frame. Below are the specific equations that described this nonlinear system:



disd

dt
= −γisd + ωsisq + Ks

Tr

Ψrd + KsωΨrq + 1
σLs

usd

disq

dt
= −ωsisd − γisq −KsωΨrd + Ks

Tr

Ψrq + 1
σLs

usq

dΨrd

dt
= Lm

Tr

isd −
1
Tr

Ψrd + (ωs − ω) Ψrq

dΨrq

dt
= Lm

Tr

isq − (ωs − ω) Ψrd −
1
Tr

Ψrq

dω

dt
= αisqΨrd − αisdΨrq −

f

Jm

ω − p

Jm

TL

(1.27)

where:

α = 3
2p

Lm

Lr

p

Jm

; Ks = 1
σLs

Lm

Lr

; γ = 1
σLs

(
Rs + 1

Tr

Lm
2

Lr

)
; Tr = Lr

Rr

; σ = 1− Lm
2

LsLr

here, usd and usq are the direct and the quadrature stator voltages respectively. isd and
isq are the direct and the quadrature stator currents. ω is the rotor electrical angular
speed. TL(t) is the resistant torque. The rest of the parameters are defined in Table 1.2:

Parameters Values
Stator resistance Rs = 1.4 [Ω]
Rotor resistance Rr = 1.7 [Ω]
Stator inductance Ls = 0.2419 [H]
Rotor inductance Lr = 0.2554 [H]
Mutual inductance Lm = 0.24 [H]
Moment of inertia Jm = 0.0096 [kg. m2]
Number of pole pairs p = 2
Friction coefficient f = 0.0017[Nm]

Table 1.2: Induction motor parameters

By defining x (t) =
[
isd isq Ψrd Ψrq ω

]T
, u (t) =

[
usd usq

]T
and y (t) = [ω(t)]

the nonlinear model of the induction machine in the d− q axes is presented as follows: ẋ(t) = A(x)x(t) + Bu(t) + ETL(t)
y = Cx(t)

(1.28)
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where:

A (x) =



−γ ωs
Ks

Tr
Ksω 0

−ωs −γ −Ksω
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ω 0

0 Lm

Tr
−(ωs − ω) − 1

Tr
0

0 0 αisq −αisd − f
Jm


, B =



1
σLs

0
0 1

σLs

0 0
0 0
0 0


, E =



0
0
0
0
− p

Jm


,

C =
[
0 0 0 0 1

]
As shown, the nonlinearities of this model are presented in the matrix A(x) where

there are three premise variables defined as : ξ1 = isd, ξ2 = isq and ξ3 = ω. In order to
apply the sector nonlinearity to these premise variables, two steps can be followed:

1 - First step:
It consists of separating the nonlinearities individually and then applying the sector

nonlinearity to each part. Let’s write A(x) as follows:

A(ξ) = Acst + A1(ξ1) + A2(ξ2) + A3(ξ3), (1.29)

where:

Acst =



−γ ωs
Ks

Tr
0 0

−ωs −γ 0 Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs 0

0 Lm

Tr
−ωs − 1

Tr
0

0 0 0 0 − f
Jm


, A1(ξ1) =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −αisd 0


,

A2(ξ2) =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 αisq 0 0


, A3(ξ3) =



0 0 0 Ksω 0
0 0 −Ksω 0 0
0 0 0 −ω 0
0 0 ω 0 0
0 0 0 0 0


Next, the sector nonlinearity approach is applied to each separated nonlinear term

using Lemma 1.1 as follows: 
A1(ξ1) = ∑2

i=1 M1i(ξ1)A1i,

A2(ξ2) = ∑2
i=1 M2i(ξ2)A2i,

A3(ξ3) = ∑2
i=1 M3i(ξ3)A3i,

(1.30)
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where the sub-matrices are given by:

A11 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −αisdmax 0


, A12 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −αisdmin 0



A21 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 αisqmax 0 0


, A22 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 αisqmin 0 0



A31 =



0 0 0 Ksωmax 0
0 0 −Ksωmax 0 0
0 0 0 −ωmax 0
0 0 ωmax 0 0
0 0 0 0 0


, A32 =



0 0 0 Ksωmin 0
0 0 −Ksωmin 0 0
0 0 0 −ωmin 0
0 0 ωmin 0 0
0 0 0 0 0


and the membership functions are defined by:

M11(ξ1) = isd−isdmin
isdmax −isdmin

M12(ξ1) = isdmax −isd

isdmax −isdmin

,


M21(ξ2) = isq−isqmin

isqmax −isqmin

M22(ξ2) = isqmax −isq

isqmax −isqmin

,

 M31(ξ3) = ω−ωmin
ωmax−ωmin

M32(ξ3) = ωmax−ω
ωmax−ωmin

2 - Second Step:
This step consists of combining the separated parts to obtain a compact form. By

substituting (1.30) in equation (1.29), the matrix A(ξ) can be written as follows:

A(ξ) = Acst +
2∑

i=1
M1i(ξ1)A1i +

2∑
i=1

M2i(ξ2)A2i +
2∑

i=1
M3i(ξ3)A3i (1.31)

By benefiting from the convex sum property giving in (1.9), the equation (1.31) can
be written as follows:

A(ξ) =
2∑

i=1

2∑
j=1

2∑
k=1

M1i(ξ1)M2j(ξ2)M3k(ξ3)(Acst + A1i + A2j + A3k) =
r=23∑
i=1

µi(ξ)Ai, (1.32)

where the sub-matrices are given by:

A1 =



−γ ωs
Ks

Tr
Ksωmax 0

−ωs −γ −Ksωmax
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ωmax 0

0 Lm

Tr
−(ωs − ωmax) − 1

Tr
0

0 0 αisqmax −αisdmax − f
Jm


, A2 =



−γ ωs
Ks

Tr
Ksωmin 0

−ωs −γ −Ksωmin
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ωmin 0

0 Lm

Tr
−(ωs − ωmin) − 1

Tr
0

0 0 αisqmax −αisdmax − f
Jm



30



CHAPTER 1. GENERALITIES OF MULTI-MODEL REPRESENTATION

A3 =



−γ ωs
Ks

Tr
Ksωmax 0

−ωs −γ −Ksωmax
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ωmax 0

0 Lm

Tr
−(ωs − ωmax) − 1

Tr
0

0 0 αisqmin −αisdmax − f
Jm


, A4 =



−γ ωs
Ks

Tr
Ksωmin 0

−ωs −γ −Ksωmin
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ωmin 0

0 Lm

Tr
−(ωs − ωmin) − 1

Tr
0

0 0 αisqmin −αisdmax − f
Jm



A5 =



−γ ωs
Ks

Tr
Ksωmax 0

−ωs −γ −Ksωmax
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ωmax 0

0 Lm

Tr
−(ωs − ωmax) − 1

Tr
0

0 0 αisqmax −αisdmin − f
Jm


, A6 =



−γ ωs
Ks

Tr
Ksωmin 0

−ωs −γ −Ksωmin
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ωmin 0

0 Lm

Tr
−(ωs − ωmin) − 1

Tr
0

0 0 αisqmax −αisdmin − f
Jm



A7 =



−γ ωs
Ks

Tr
Ksωmax 0

−ωs −γ −Ksωmax
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ωmax 0

0 Lm

Tr
−(ωs − ωmax) − 1

Tr
0

0 0 αisqmin −αisdmin − f
Jm


, A8 =



−γ ωs
Ks

Tr
Ksωmin 0

−ωs −γ −Ksωmin
Ks

Tr
0

Lm

Tr
0 − 1

Tr
ωs − ωmin 0

0 Lm

Tr
−(ωs − ωmin) − 1

Tr
0

0 0 αisqmin −αisdmin − f
Jm


and the activation functions are defined by:

µ1(ξ) = M11(ξ1)M21(ξ2)M31(ξ3), µ2(ξ) = M11(ξ1)M21(ξ2)M32(ξ3),

µ3(ξ) = M11(ξ1)M22(ξ2)M31(ξ3), µ4(ξ) = M11(ξ1)M22(ξ2)M32(ξ3),

µ5(ξ) = M12(ξ1)M21(ξ2)M31(ξ3), µ6(ξ) = M12(ξ1)M21(ξ2)M32(ξ3),

µ7(ξ) = M12(ξ1)M22(ξ2)M31(ξ3), µ8(ξ) = M12(ξ1)M22(ξ2)M32(ξ3)

The rest of the sub-matrices are defined as follows:

Bi =



1
σLs

0
0 1

σLs

0 0
0 0
0 0


, Ei =



0
0
0
0
− p

Jm


, Ci =

[
0 0 0 0 1

]
∀i = 1, ..r.

Hence, the T-S multi-model of the induction motor is given by: ẋ(t) = ∑r
i=1 µi(ξ(t)) (Aix(t) + Biu(t) + EiTL(t))

y(t) = ∑r
i=1 µi(ξ(t)) (Cix(t))

(1.33)

The subsequent figures present the results derived from the nonlinear model of the
induction motor given in (1.28) in comparison to those from the T-S multi-model pro-
vided in (1.33):
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Fig 1.10: Direct axis stator current.
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Fig 1.11: Quadrature axis stator current.
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Fig 1.12: Direct axis rotor flux.
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Fig 1.13: Quadrature axis rotor flux.
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Fig 1.14: Rotor electrical angular speed.

Based on these results, it’s evident that the T-S multi-model offers an accurate rep-
resentation of the nonlinear model using the sector nonlinearity approach, without any
errors or loss of information, in contrast to the identification or linearization meth-
ods. Consequently, this approach will be adopted in this work when constructing T-S
multi-models.
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1.5 Preliminaries on Convex analysis

1.5.1 Convex sets

A set C is said to be convex if the line segment between any two points in C is entirely
contained within C. If this is not the case, the set is termed non-convex. The distinction
between convex and non-convex sets can be visualized as shown in the figures below:

x1

x2

Fig 1.15: Convex set illustration.

x1 x2

Fig 1.16: Non-convex set illustration.

In Figure 1.15, the line segment connecting points x1 and x2 is entirely contained
within the set, which is depicted in blue. Given that this is true for any possible pair of
points in the set, it is deemed convex.

In contrast, Figure 1.16 displays a line segment between points x1 and x2 that extends
beyond the set boundaries, indicating that the set is non-convex.

Thus, the formal definition of a convex set is:

Definition 1.3. [Boyd and Vandenberghe, 2004] A set C is convex if:

∀ (x1, x2) ∈ C2, λ ∈ [0, 1] =⇒ λx1 + (1− λ)x2 ∈ C. (1.34)

1.5.2 Convex functions

A function is deemed to be convex if, and only if, its epigraph, the set of points lying
on or above the graph of the function, is a convex set. An illustration of a convex function
is depicted in the following figure:

convex function

epigraph

Fig 1.17: Illustration of a convex function
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A more formal definition of a convex function is provided as:

Definition 1.4. [Boyd and Vandenberghe, 2004] Given a convex set C, a function f is
convex if the following condition is satisfied:

∀(x1, x2) ∈ C2, λ ∈ [0, 1] =⇒ f ((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2) (1.35)

1.5.3 Convex combination

A convex combination of a set of points xi refers to their linear combination where
each coefficient λi is non-negative and their sum equals 1.

The formal definition of a convex combination is as follows:

Definition 1.5. [Boyd and Vandenberghe, 2004] Given a set of points xi, for i = 1, . . . , r,
a convex combination of these points is a point y defined as:

y =
r∑

i=1
λixi, (1.36)

such that λi ≥ 0 and ∑r
i=1 λi = 1.

Hence, another definition pertaining to convex sets is provided:

Definition 1.6. [Boyd and Vandenberghe, 2004] A set C is convex if and only if it con-
tains every convex combination of its points.

The figures below provide an illustration of a convex combination in relation to both
convex and non-convex sets:

x1

x2

x3
P

Fig 1.18: Convex combination and convex set.

x1

x2

x3
P

Fig 1.19: Convex combination and non-convex set.

In both Figures 1.18 and 1.19, the point P represents a convex combination of the
three points x1, x2, and x3. The set (depicted in blue) in Figure 1.18 is convex as it
contains all the convex combinations of its points. Conversely, in Figure 1.19, the set is
non-convex because point P , despite being a convex combination of points from the set,
lies outside of it.
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1.5.4 Convex hull

The convex hull of a set C, which doesn’t necessarily have to be convex, represents
the smallest convex set that encompasses or contains C. For a tangible understanding,
consider a finite set of points P , as demonstrated in Figure 1.20. One can envisage the
convex hull as the shape produced when a tight rubber band is stretched around the
given points of P . This form ensures that any line segment drawn between any pair
of points within the convex hull remains entirely contained within the hull. Thus, the
convex hull of a finite set of points becomes the unique convex polytope (referred to as a
polygon in 2D) that not only has its vertices among the points of P but also encapsulates
every point from P [De Berg, 2000]. The vertices of this minimal convex polytope are
termed as the extreme points. The quest to pinpoint the minimal convex polytope for
a finite set of points essentially becomes an endeavor to identify these extreme points
[Anstett et al., 2009].

(a) Set of points (b) Its convex hull

Fig 1.20: Convex hull illustration

Formally, the definition of convex hull is given by:

Definition 1.7. [Boyd and Vandenberghe, 2004] The convex hull of a set C, symbolized
by conv C, is the set of all convex combinations of points in C:

conv C = {λ1x1 + · · ·+ λrxr | xi ∈ C, λi ≥ 0, i = 1, . . . , r, λ1 + · · ·+ λr = 1} (1.37)

1.5.5 Takagi-Sugeno system and convex combination

The T-S fuzzy representation of a system leverages local time-invariant systems com-
bined using weighting functions, denoted as µi. As previously discussed in Section 1.3.1,
these weighting functions satisfy the convex sum property:

r∑
i=1

µi(ξ(t)) = 1, 0 ≤ µi(ξ(t)) ≤ 1, ∀i = 1, . . . , r. (1.38)
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Therefore, the T-S representation of a system can be conceptualized as a convex combi-
nation of sub-systems. Each sub-system delineates a vertex of a convex polytope, and the
real-time value of the system navigates within this polytope.

Given the outlined structure of the T-S system, its polytope representation can be
framed using the concept of a convex hull. At any given time t, the system can be
represented by M(t), which is a convex combination of the vertices Mi. Mathematically,
this relationship is given by:

M(t) ∈ conv {M1, . . . , Mr} =
{

r∑
i=1

µi(ξ(t))Mi |
r∑

i=1
µi(ξ(t)) = 1, 0 ≤ µi(ξ(t)) ≤ 1

}
,

(1.39)
where each Mi is represented by the matrix:

Mi =
 Ai Bi

Ci Di

 . (1.40)

To visually represent the discussed concepts, the polytopic structure of the T-S system
is illustrated below:

M1

M2
M3

M4

M(t)
u y

Fig 1.21: Polytopic structure of the T-S system

1.6 Preliminaries on Matrix Inequality

Matrix comparisons can be understood in different ways based on context. One can
compare matrices element-wise, where each element of one matrix is compared with the
corresponding element of another. Specifically, for a symmetric matrix P ∈ Rnx×nx , the
notation P > 0nx×nx (where 0nx×nx is the zero matrix) indicates that all the elements of
P are strictly greater than 0.

However, comparing a matrix with a scalar directly, as in P > 0 where 0 is a scalar,
doesn’t have a straightforward element-wise meaning. Instead, the notation P > 0 typi-
cally means that the matrix P is positive definite. This is a more intricate concept and
is not merely a comparison of individual matrix elements with a scalar.

36



CHAPTER 1. GENERALITIES OF MULTI-MODEL REPRESENTATION

Definition 1.8. (Positive definite matrix) A symmetric matrix P ∈ Rnx×nx is said to be
positive definite if xT Px > 0 for all non-zero column vector x ∈ Rnx:

P > 0 ⇐⇒ xTPx > 0 ∀x ̸= 0 (1.41)

Among the properties of the positive definite matrix:

❖ All eigenvalues are positive.

❖ All sub-determinants are positive.

❖ All the diagonal components are positive.

For a positive semi-definite matrix P , the sign > is replaced with ≥:

Definition 1.9. (Positive semi-definite matrix) A symmetric matrix P ∈ Rnx×nx is said
to be positive semi-definite if xT Px ≥ 0 for all non-zero column vector x ∈ Rnx:

P ≥ 0 ⇐⇒ xTPx ≥ 0 ∀x ̸= 0 (1.42)

Similarly, the definition of negative definite and negative semi-definite matrices can
be deduced:

Definition 1.10. (Negative definite matrix) A symmetric matrix P ∈ Rnx×nx is said to
be negative definite if xT Px < 0 for all non-zero column vector x ∈ Rnx:

P < 0 ⇐⇒ xTPx < 0 ∀x ̸= 0 (1.43)

Definition 1.11. (Negative semi-definite matrix) A symmetric matrix P ∈ Rnx×nx is
said to be negative semi-definite if xT Px ≤ 0 for all non-zero column vector x ∈ Rnx:

P ≤ 0 ⇐⇒ xTPx ≤ 0 ∀x ̸= 0 (1.44)

It is worth noting that for scalars, based on the “Law of Trichotomy”, if a ≱ b means
a < b and a ≮ b means a ≥ b. However, for matrices this is not true:

Definition 1.12. For a symmetric matrix P ∈ Rnx×nx, if P ⩽̸ 0 then it is not imperative
that P > 0:

P ⩽̸ 0 ⇏ P > 0 (1.45)

Remark 1.3

In certain literature, the notation ≻ is adopted to indicate a matrix being positive
definite, rather than using >. Similarly, ⪰ is used to denote a matrix as positive
semi-definite in place of ≥.

37



CHAPTER 1. GENERALITIES OF MULTI-MODEL REPRESENTATION

1.7 Preliminaries on Linear Matrix Inequality

1.7.1 Definition of Linear Matrix Inequality

A Linear Matrix Inequality (LMI) represents an inequality that involves matrices and
is linear in its unknowns. Given a set of constant symmetric matrices F0, F1, . . . , Fm and
a vector of decision variables (in any optimization problem, the unknown variables that
need to be determined are referred to as “decision variables”) x = [x1, x2, . . . , xm]T ∈ Rm,
an LMI can be formulated as:

F (x) = F0 + x1F1 + x2F2 + · · ·+ xmFm ≥ 0 (1.46)

Here, the symbol "≥ 0" indicates that the resulting matrix F (x) is positive semi-
definite, implying that all its eigenvalues are non-negative. The matrices Fi are provided
and are symmetric, which ensures Fi = F T

i . As any matrix variable can be decomposed
into a base of symmetric matrices, the definition (1.46) involving scalars is easily extended
to matrices [Lendek et al., 2011].

Historical records trace the origins of LMIs to the 1890s, credited to Lyapunov. He
introduced a seminal concept concerning the stability of dynamical systems. Specifically,
he asserted that the ordinary differential equation

d

dt
x(t) = Ax(t), (1.47)

is asymptotically stable if there exists a solution to the matrix inequalities

PA + AT P < 0 and P = P T > 0, (1.48)

with the matrix P being the sought-after decision variable, readers interested in the history
of LMI are encouraged to refer to [Boyd et al., 1994].

The LMI formulation has gained considerable attention among control engineers in
recent years. This can be attributed to the LMI’s capability to seamlessly integrate
various design constraints or objectives in a numerically efficient manner.

The set of solutions for the LMI (1.46) is called the “feasibility set” and is denoted
by S = {x | x ∈ Rm, F (x) ≥ 0} which constitutes a convex subset of Rm. Finding a
solution to the LMI (1.46) is a convex optimization problem avoiding local minima and
guaranteeing finite feasibility tests. If a solution to this problem exists, it is said to
be “feasible”; otherwise, it is classified as “infeasible” [Lendek et al., 2011]. Later, in
Section 1.7.4, we will provide a detailed definition of the convex optimization problem,
along with an exploration of some of its various types.
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1.7.2 Properties used in Linear Matrix Inequalities

LMI constraints do not “naturally” arise in control problems. However, due to the
availability of optimization solutions, one objective when addressing control problems is
to reformulate them in terms of LMI expressions. This is achieved by leveraging the
properties of LMIs, some of which are listed below.

Lemma 1.2. (Completion of squares) [Lendek et al., 2011]
For two appropriately sized matrices X and Y , and given Q = QT > 0, the subsequent

inequality is valid:
XT Y + Y T X ≤ XT QX + Y T Q−1Y (1.49)

Lemma 1.3. (Schur complement) [Lendek et al., 2011]

Consider a matrix M = MT =
M11 M12

MT
12 M22

 with M11 and M22 being square matrices.

Then:

M < 0⇔
 M22 < 0

M11 −M12M
−1
22 MT

12 < 0
(1.50)

1.7.3 Relaxation Methods for Parameterized LMI

Many stability conditions in control and observation problems can be formulated as an
LMI that depends on parameters µ(ξ). Consequently, they are referred to as Parameter-
ized Linear Matrix Inequalities (PLMI). Recently proposed stability approaches are often
represented with double parameters, also known as double summation. This is depicted
by: ∑r

i=1
∑r

j=1 µi (ξ) µj (ξ)Kij (x) < 0, (1.51)

where Kij(x) are symmetric matrices affinely dependent on unknown decision variables
x ∈ Rm. Here, x signifies the decision variables of the optimization problem, not the state
variable of a system’s state-space representation. The functions µi(ξ) are nonlinear and
satisfy the convex sum property ∑r

i=1 µi(ξ) = 1 and 0 ≤ µi(ξ) ≤ 1.

A trivial solution to the LMI problem (1.51) is given by:

Kij(x) < 0, ∀i, j = 1, . . . , r (1.52)

Proof. Consider the expansion of inequality (1.51):

µ1 (ξ) µ1 (ξ)︸ ︷︷ ︸
+

K11 (x) + µ1 (ξ) µ2 (ξ)︸ ︷︷ ︸
+

K12 (x) + · · ·+ µr (ξ) µr (ξ)︸ ︷︷ ︸
+

Krr (x) < 0 (1.53)
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Given that the activation functions yield positive values, the negativity of inequality
(1.53) can be verified if each term Kij is negative as given in condition (1.52).

However, these conditions can sometimes be conservative. In the context of this dis-
cussion, the definition of conservatism is provided as:

Definition 1.13. “Conservatism” denotes the tendency to stipulate stability conditions
or margins that are more restrictive than the true stability limits of the system. While a
conservative analysis ensures stability if its conditions are met, the system may remain
stable even if those conditions are slightly exceeded. This is because the analysis might not
accurately define the entire stability boundary, focusing instead on a narrower range for
simplicity or guaranteed safety. Such an approach, while possibly making analysis easier
or ensuring safety, might overlook feasible and potentially more efficient solutions by not
capturing the system’s full stability limits.

The objective, therefore, is to identify the least conservative (or more relaxed) condi-
tions onKij that still ensure the negativity of the double sum in equation (1.51), leveraging
only the convex sum property of the functions µi(ξ). Subsequent Lemmas offer stability
conditions for the LMI given in (1.51) that are less conservative than those in (1.52):

Lemma 1.4. [Wang et al., 1996] The PLMI given in (1.51) is satisfied if the following
conditions are met:  Kii < 0, i = 1, . . . , r

Kij +Kji < 0, i, j = 1, . . . , r and i < j
(1.54)

Proof. Considering the symmetry of the parameters, i.e., µiµj = µjµi, from expression
(1.51), we derive the following LMI:

r∑
i=1

r∑
j=1

µi(ξ)µj(ξ)Kij(x) =
r∑

i=1
µ2

i (ξ)Kii(x) +
r∑

i=1

r∑
j>i

µi(ξ)µj(ξ) (Kij(x) +Kji(x)) . (1.55)

In the above expression, we distinguish between the coupled terms in both i and j

(represented by Kij) and the non-coupled terms that depend solely on i (represented by
Kii). The conditions given in (1.54) ensure the negativity of (1.55).

In comparison to the trivial conditions outlined in (1.52), the relaxation is achieved
through benefiting from the symmetric property of the coupled terms. This obviates the
need for Kij(x) < 0 and Kji(x) < 0 for every i, j. Instead, we are only required to satisfy
the more lenient condition Kij(x) +Kji(x) < 0 for all i < j.
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Lemma 1.5. [Tuan et al., 2001] The PLMI given in (1.51) is satisfied if the following
conditions are met: Kii < 0, i = 1, . . . , r

1
r−1Kii + 1

2 (Kij +Kji) < 0, 1 ≤ i ̸= j ≤ r
(1.56)

It is evident that the coupled terms in Lemma 1.5 offer more relaxed conditions than
those in Lemma 1.4. Rather than strictly requiring Kij(x) + Kji(x) to be negative, they
only need to be less than the positive value −2

r−1Kii.
Xiaodong and Qingling proposed another relaxation method in [Xiaodong and Qingling, 2003].

While this method offers less conservative conditions compared to previous ones, it comes
at a substantial increase in computational cost due to the greater number of decision vari-
ables. In contrast, Tuan’s lemma establishes a favorable balance between conservatism
and computational cost, achieving satisfactory levels of conservatism without introduc-
ing new decision variables [DUONG, 2013]. In [Sala and Ariño, 2007], another relaxation
method was introduced, leveraging Polya’s theorem. Central to this method is the prop-
erty (∑r

i=1 µi(ξ))p = 1, where p is a positive integer. This allows for the multiplication
of the LMI given in (1.51) by this term. When grouping all terms on the left-hand side
of the inequality with identical coefficients, the result is less conservative LMI conditions
than those presented in (1.52). Furthermore, it has been demonstrated that as the value
of p increases, even less restrictive conditions can be achieved. However, an increase in
p also amplifies the computational complexity of the optimization problem due to the
increase in the number of LMIs. This complexity can be particularly challenging when
dealing with higher-order systems.

1.7.4 Convex optimization problem

LMIs inherently represent convex constraints. Consider x1 and x2 as two feasible so-
lutions for the LMI (1.46). Given that F (x1) ≥ 0 and F (x2) ≥ 0, any convex combination
of those solutions x = (1− λ)x1 + λx2, where λ ∈ [0, 1], will also be a feasible solution to
the LMI:

F (x) = F ((1− λ)x1 + λx2) = (1− λ)F (x1) + λF (x2) ≥ 0 (1.57)

Given this convex nature, many optimization problems with convex objective func-
tions and LMI constraints can be efficiently addressed using available software. Some
of the most adept algorithms for tackling LMI challenges employ interior point meth-
ods. These methods operate iteratively, with each iteration encompassing a least squares
minimization problem [Zhang et al., 2016, Vandenberghe and Balakrishnan, 1997].
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The standard form of an optimization problem is defined as follows:
minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . , l.

hj(x) = 0, j = 1, . . . , p.

(1.58)

where the vector x represents the optimization variable of the problem (decision vari-
able). The function f is the objective function. The functions gi, for i = 1, . . . , l, are
the inequality constraint functions. The functions hj, for j = 1, . . . , p, are the equality
constraint functions.

A vector x⋆ is deemed optimal or a solution to the problem (1.58) if it yields the
minimum value for the objective function among all vectors that meet the constraints.
Formally, for any vector z such that gi(z) ≤ 0 and hj(z) = 0, it must be true that
f(z) ≥ f(x⋆).

Optimization problems are typically grouped into families or classes based on the char-
acteristics of their objective and constraint functions. These classes help in categorizing
problems for the purpose of applying specialized solution techniques. In this context, we
are particularly interested in the class of convex optimization problems.

Definition 1.14. A convex optimization problem is one in which the objective and con-
straint functions are convex.

Among the types of convex optimization problems discussed in [Boyd and Vandenberghe, 2004,
Bockmayr et al., 2001], some prominent ones are:

1. Linear Program (LP): The optimization problem (1.58) is Linear Program if the
objective and all constraint functions are linear:

minimize c1x1 + c2x2 + · · ·+ cmxm

subject to ai1x1 + ai2x2 + · · ·+ aimxm ≤ bi for i = 1, 2, . . . , l

0 ≤ xj for j = 1, 2, . . . , m

(1.59)

Using matrix notation, we can rewrite this LP as:
minimize cT x

subject to Ax ≤ b

x ≥ 0
(1.60)

where c = [c1 . . . cm]T and b = [b1 . . . bl]T are given vectors, x = [x1 . . . xm]T is a
vector of decision variables and A is a matrix. The inequalities Ax ≤ b and x ≥ 0
are to be interpreted componentwise (comparison of element by element from both
sides of the inequality).
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2. Quadratic Program (QP): The optimization problem (1.58) is quadratic program
if the objective is a quadratic function, and constraints are linear:

minimize 1
2xT Qx + cT x

subject to Ax ≤ b

x ≥ 0
(1.61)

The convexity of the objective function depends on the matrix Q:

❖ If Q is positive semidefinite, the function is convex.

❖ If Q is negative semidefinite, the function is concave.

❖ If Q has both positive and negative eigenvalues, the function is neither strictly
convex nor concave.
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Fig 1.22: Positive definite quadratic function (convex).

-30

5

-20

-10

5

0

V
(x

1
,x

2
)

10

x2

0

20

x1

30

0

-5 -5

Fig 1.23: Indefinite quadratic function (non-convex).

For a quadratic program to be a convex optimization problem ,the quadratic ob-
jective function must be convex (i.e., Q should be positive semidefinite) and the
constraints must also define a convex feasible set (linear constraints always define
convex sets).

So, while quadratic program is nonlinear due to its quadratic objective function, it
can still be convex if the conditions mentioned above are met.

3. Semi-Definite Program (SDP): Semidefinite program is an extension of lin-
ear program where the componentwise inequalities between vectors are replaced
by matrix inequalities [Bockmayr et al., 2001]. The optimization problem (1.58) is
semi-definite program if it has the form:

minimize cT x

subject to F0 + x1F1 + x2F2 + · · ·+ xmFm ≤ 0
x ≥ 0

(1.62)
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Unlike in linear programming, in this context, the notations F (x) ≤ 0 and x ≥ 0
denote that the matrix F (x) is negative semi-definite and the matrix x is positive
semi-definite, respectively.

Various solvers are capable of addressing these optimization problems, including Mosek,
LMILAB, SeDuMi, and SDPT3. To utilize these solvers, the YALMIP 1 toolbox is em-
ployed (refer to Appendix A for additional details about this toolbox).

1.8 Stability of Takagi-Sugeno fuzzy systems

In control theory, ensuring the stability of a system is of paramount importance.
Stability denotes that, a system return to a steady state or equilibrium after experiencing
disturbances, ensuring that it does not display erratic or unbounded behavior regardless
of its initial conditions. One prominent method for assessing stability is the Lyapunov
theorem. It employs specific functions, known as Lyapunov functions, to evaluate whether
a system will remain stable or converge to an equilibrium over time. For T-S fuzzy systems,
the Lyapunov method is especially beneficial because it can establish stability conditions
as LMIs. Due to their standard convex structure, LMIs can be more easily handled
and solved using advanced convex optimization methods. This not only simplifies the
stability analysis process but also offers computational efficiency, a significant advantage
when analyzing complex non-linear systems.

However, like many techniques in control theory, the LMI-based stability conditions
for T-S systems come with their own set of challenges. One significant challenge is their
conservative nature. This conservatism can sometimes restrict the design space or provide
an excessively cautious representation of the system’s actual capabilities. This has the
potential to stifle innovation or lead to sub-optimal designs.

Yet, the research community remains proactive and adaptive. In order to bypass
the constraints introduced by conservatism, numerous techniques have been investigated.
Broadly, these approaches can be categorized into three groups:

1. Relaxation methods for parameterized linear matrix inequalities: This cat-
egory have been discussed before in Section 1.7.3. This methodology employs several
mathematical relaxation techniques such as Tuan, Xiaodong and Polya’s theorems
which yielded significant results. Given its relative simplicity and efficiency, Tuan’s
theorem is typically preferred over Xiaodong’s and Polya’s theorems. These latter

1The list of available solvers integrated with YALMIP is available at the following link.
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tend to complicate the optimization process by increasing the number of LMI, which
could be particularly challenging when dealing with higher-order systems.

2. Membership function-dependent (MFD) stability: It modifies the stability
conditions depending on the specific membership function employed. The MFD
stability is often not the preferred choice due to its dependence on the form of each
system’s membership function. This not only complicates the stability analysis but
it also limits its universal applicability across various systems.

3. Non-quadratic Lyapunov functions: It including approaches such as Piecewise
Lyapunov Functions and Poly-quadratic Lyapunov Functions (PQLF). The Piece-
wise method is utilized to decrease conservatism by subdividing the system’s state
space. However, this method is not suitable for systems represented by the sector
nonlinearity technique. Alternatively, PQLF assign different decision variables, de-
noted as Pi, to each subsystem rather than seeking a single unique variable for all,
which contributes to a reduction in conservatism.

In the following sections, the stability conditions based on both quadratic and non-
quadratic Lyapunov functions are presented.

1.8.1 Stability using quadratic Lyapunov function

Consider the following autonomous unforced system:

ẋ(t) = ∑r
i=1 µi(ξ(t)) (Aix(t)) (1.63)

Theorem 1.1

The system described by (1.63) is asymptotically stable if there exists a symmetric
positive definite matrix P = P T > 0 ∈ Rnx×nx and the following LMI holds :

AT
i P + PAi < 0 i = 1, . . . , r (1.64)

Proof. Let’s define the quadratic Lyapunov function as follows:

V (t) = x (t)T Px (t) (1.65)

The time derivative of V (t) is given by:

V̇ (t) = ẋ (t)T Px (t) + x (t)T Pẋ (t) (1.66)

By substituting (1.63) in (1.66), the following equation is obtained:

V̇ (t) = ∑r
i=1 µi(ξ(t))x(t)T

(
AT

i P + PAi

)
x(t) (1.67)
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Given that the weighting functions µi(ξ(t)) are positive, if the matrices (AT
i P + PAi)

are negative definite, then V̇ (t) will also be negative. Thus, the condition in (1.64) ensures
this property.

Remark 1.4

As stipulated by the condition in (1.64), merely interpolating stable sub-systems
does not guarantee their stability. It’s imperative to identify and verify a common
positive definite matrix P that satisfies the derived stability condition.

Remark 1.5

Employing a quadratic Lyapunov function allows for deriving simple stability con-
ditions expressed as LMIs. Nonetheless, this approach tends to be conservative,
especially for larger systems. The difficulty arises when attempting to find a com-
mon matrix P that simultaneously satisfies all the r inequalities as presented in
(1.64) [Tanaka et al., 1998].

In recent years, to address the issue of conservatism, research has shifted towards more
flexible approaches, such as the poly-quadratic Lyapunov function [Tanaka et al., 2003].

1.8.2 Stability using poly-quadratic Lyapunov function

The fuzzy Lyapunov function, also known as poly-quadratic Lyapunov function, is used
to reduce the conservatism caused by the quadratic Lyapunov function. It associates a
different matrix Pi to each sub-system, which contributes to reducing the conservatism,
instead of finding a unique matrix P for all sub-systems as the possibility to find only one
decreases when the number of sub-systems is important.

Poly-quadratic stability

Variable P1

Variable P2

.
Variable Pr

Sub-model 1
Sub-model 2

.
Sub-model r

Decision
variables

Corresponding
Sub-models

Fig 1.24: Conservatism reduction principal of poly-quadratic Lyapunov function based on non-coupled terms
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By adopting the approach proposed by Mozelli et al. in [Mozelli et al., 2009], the time
derivative of the membership functions µk (ξ (t)) are upper bounds:

|µ̇k (ξ)| ≤ ∅k (1.68)

and by defining in prior the value of ∅k, then the following theorem provides sufficient
conditions described as LMI to ensure the stability of the system (1.63):

Theorem 1.2

The system described by (1.63) is asymptotically stable if there exists symmetric
positive definite matrices Pj ∈ Rnx×nx and a symmetric matrix P0 ∈ Rnx×nx , such
that:

Pi ≥ P0, i = 1, . . . , r (1.69)

Kii < 0, i = 1, . . . , r (1.70)
1

r − 1Kii + 1
2 (Kij +Kji) < 0, 1 ≤ i ̸= j ≤ r (1.71)

where:
Kij = AT

i Pj + PjAi +
r∑

k=1
∅k (Pk − P0) (1.72)

Proof. Let us define the poly-quadratic candidate Lyapunov function as follows:

V (t) = x (t)T Pµx (t) , (1.73)

where:
Pµ =

r∑
j=1

µj (ξ (t))Pj (1.74)

The time derivative of V (t) is given by:

V̇ (t) = ẋ (t)T Pµx (t) + x (t)T Pµẋ (t) + x (t)T Ṗµx (t) (1.75)

Upon substituting (1.63) and (1.74) into (1.75), the subsequent expression is derived:

V̇ (t) =
r∑

i=1

r∑
j=1

µi(ξ(t))µj(ξ(t))x(t)T
(
Ai

T Pj + PjAi + Ṗµ

)
x(t) (1.76)

From this expression, the value of employing the poly-quadratic Lyapunov function
becomes evident. The presence of symmetric parameters in equation (1.76) suggests that
it offers an avenue to relax the stability conditions, particularly by leveraging one of the
relaxation techniques delineated in Section 1.7.3.
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However, before opting for any of the double summation relaxation techniques, we
will first implement another method aimed at reducing conservatism. The negativity of
(1.76) can be assured if the subsequent matrix inequalities hold true:

Ai
T Pj + PjAi + Ṗµ < 0 (1.77)

To mitigate the conservatism associated with the time derivatives of the member-
ship functions, Mozelli et al. introduced a novel relaxation technique, as discussed in
[Mozelli et al., 2009]. This method represents an improvement of the one initially pro-
posed by Tanaka et al. in [Tanaka et al., 2001]. This technique is centered around the
introduction of a symmetric matrix P0 ∈ Rnx×nx , employing the convex sum property
(1.9) as follows: ∑r

k=1 µ̇k (ξ) = 0⇒ ∑r
k=1 µ̇k (ξ) = ∑r

k=1 µ̇k (ξ) P0 (1.78)

Hence, we obtain:

∑r
k=1 µ̇k (ξ) xT Pkx = ∑r

k=1 µ̇k (ξ) xT (Pk − P0) x, (1.79)

where the terms (Pk − P0) have to be minimized.
The derivatives with respect to time for the membership functions are assumed bounded:

r∑
k=1

µ̇k(ξ) (Pk − P0) ≤
r∑

k=1
|µ̇k(ξ)| (Pk − P0) =

r∑
k=1
∅k (Pk − P0) (1.80)

such that the matrix P0 has to verify Pk − P0 ≥ 0.
Then, the inequality (1.77) becomes:

Kij = AT
i Pj + PjAi +

r∑
k=1
∅k (Pk − P0) < 0 (1.81)

Now, to harness the advantages of the poly-quadratic Lyapunov function, we can
employ one of the relaxation methods detailed in Section 1.7.3. As previously mentioned,
we will adopt Lemma 1.5. This leads us to the stability conditions outlined in Theorem 1.2.

The idea of associating a different matrix Pi to each LMI becomes evident in the
stability condition (1.70). This equation corresponds to the non-coupled terms, where
each matrix Pi is associated to different LMI. Consequently, the conservatism is reduced
in comparison to the case where identifying a single matrix P satisfying all LMIs proves
unattainable. The stability condition (1.71) addresses the coupled terms, and a discussion
on these terms is provided in Section 1.7.3.
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1.9 Conclusion

In this chapter, we explored the principles underlying multi-model representation,
underscoring the vital role that these mathematical models play in capturing system
dynamics, all the way leveraging their inherent simplicity. The Takagi-Sugeno fuzzy
systems, in particular, took center stage in our discussion. As we delved deeper, various
construction methods for designing these systems were introduced. Notably, the sector
nonlinearity approach stood out as the preferred choice due to its ability to offer an
accurate representation of the original nonlinear system. As we moved forward, through
an in-depth exploration of convex analysis and matrix inequalities, we established the
foundational comncepts essential for grasping the design and stability intricacies of these
systems. The chapter concluded with a focus on the stability analysis of T-S systems,
spotlighting the importance of quadratic and poly-quadratic Lyapunov functions.
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CHAPTER 2. INTRODUCTION TO THE STATE ESTIMATION OF TAKAGI-SUGENO FUZZY SYSTEMS

2.1 Introduction

In the realm of control systems and diagnostics, knowledge of a system’s state variables
is paramount. These variables embody all the necessary information needed to navigate
and predict the system’s trajectory. With an accurate read on the system’s states, en-
gineers and technicians can expertly navigate its functionality, optimizing its operation,
and preemptively addressing issues before they escalate into serious malfunctions. It’s a
proactive approach, analogous to charting a course with a detailed map; without such
guidance, the path to maintaining efficiency and reliability is obscured.

However, the real-world application of state measurement is fraught with practical
challenges. In many instances, it is difficult or outright impossible to measure all the
system’s states directly due to limitations in sensor technology or the system’s complex-
ity. Furthermore, even when technically possible, economic factors weigh heavily in this
arena; the high cost of state sensor equipment can render comprehensive direct state
measurement inefficient and cost-prohibitive. Consequently, this leaves system operators
searching for alternative methods to glean the necessary information. It is here where we
encounter the necessity for innovation in system state estimation.

It is within this context of constraint and necessity that the concept of the observer
comes to the fore. The observer fulfills a critical function by enabling state estimation
where direct measurement is unfeasible. The observer is an auxiliary dynamical system
conceived to deduce the internal states of a system by integrating the system’s inputs and
the available measurements in the output with a dynamic model of the system, utilizing
computational techniques to estimate those states that are not directly measurable. This
methodological approach not only enhances the feasibility of state monitoring in complex
systems but also optimizes resource allocation by reducing the dependence on extensive
sensor networks. Observers, thus, provide a practical and efficient means to achieve
comprehensive system state awareness, ensuring control and diagnostic processes remain
robust and reliable.

The historical development of observers has been a journey of continuous innovation
that goes back to the groundbreaking works of Kalman and Luenberger in their seminal pa-
pers [Kalman, 1960] and [Luenberger, 1971]. Rudolf Kalman published his famous paper
where he presented a filter, particularly effective for systems with stochastic disturbances
or noise. It provided a recursive solution to the discrete-data linear filtering problem,
allowing for real-time state estimation in noisy environments, which was a significant ad-
vancement for both control and diagnostic applications. Following the development of
the Kalman filter, the Luenberger observer emerged as another significant development
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in the field of state estimation. The central concept of the Luenberger observer is its
ability to estimate system states based on accurately modeling the system’s dynamics.
In this observer, the choice of observer gain is critical, as it is fine-tuned to match the
specific dynamics of the system, ensuring that the state estimates converge effectively
and reliably. This approach employs a deterministic framework for its gain calculation,
contrasting with the Kalman filter.

These seminal works were designed for linear systems; however, real-world systems
often exhibit nonlinear behaviors, which poses a substantial challenge to the linear as-
sumption. To address this issue, extended observers such as the extended Luenberger
observer and the extended Kalman filter have emerged. These were developed based on
the linearization method around an operational point, allowing them to handle mild non-
linearities. This approach enables the principles of the Kalman filter and the Luenberger
observer to be applied to a broader class of systems. Despite their widespread use, these
methods can struggle with highly nonlinear dynamics or systems that are not well-suited
for linearization. In response to these limitations, several alternative methods have been
developed. The high-gain observer has emerged as an effective solution for state estima-
tion in nonlinear systems that adhere to global Lipschitz condition [Orjuela, 2008]. It
guarantees exponential convergence thanks to the tuning of a single parameter, which
must be sufficiently large [Zemouche, 2017]. This gain increases in accordance to the
increase in the Lipschitz constant. However, it is well-known in observer theory that a
trade-off exists between the speed of state reconstruction and immunity to measurement
noise. Consequently, the high-gain observer is sensitive to output measurement noises
[Ahrens and Khalil, 2009, Khalil and Praly, 2014]. The sliding mode observer represents
another innovative approach, distinguished by its ability to estimate states in systems
characterized by pronounced nonlinearities and uncertainties. Unlike sliding mode con-
trol, this observer utilizes a similar principle of sliding mode but specifically for state
estimation. It involves constructing a sliding surface in the state space and employing a
discontinuous algorithm to drive the estimation errors to reach and remain on this surface.
Once the errors are confined to the sliding surface, they converge to zero, enabling accu-
rate state estimation. This robust mechanism renders the sliding mode observer highly
effective in dynamic environments laden with significant uncertainties and external distur-
bances. It provides reliable state estimation even in scenarios where conventional linear
observers prove inadequate [Yan and Utkin, 2002, Wu et al., 2008]. However, it’s impor-
tant to note that while sliding mode observers are robust, they can also induce chattering
effects due to their discontinuous control action. This chattering can sometimes be un-
desirable in practical applications. Therefore, while sliding mode observers are highly
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effective for systems with pronounced nonlinearities and uncertainties, their implementa-
tion should be carefully considered in the context of the specific system and application
requirements.

Subsequently, the field has expanded to incorporate more sophisticated observers like
the T-S fuzzy observers, which offer robustness and adaptability by handling nonlinear
systems. These modern observers leverage fuzzy logic to extend the Luenberger observer
for nonlinear systems without losing informations unlike those who are based on lineariza-
tion. For instance, Yang et at [Yang et al., 2019] designed a Lipschitz-observer to estimate
the states of a four-wheeled omni-directional mobile robot in the presence of disturbances
affecting the system. The challenge of uncertain systems has also been addressed, with
authors in [Nacer et al., 2021] developing a robust observer design for induction motors.
Observers dealing with unknown inputs have been extensively studied, as demonstrated in
[Boukhlouf et al., 2023], where a proportional integral observer is applied for the observa-
tion of synchronous reluctance motor states. The domain of fault detection has also seen
the practical application of observers. For example, their usage in a three-tank hydraulic
system is detailed in [Yan et al., 2021]. In the field of detection and mitigation of cyber-
attacks, the unknown input observers have provided significant results [Pan et al., 2023].
The T-S fuzzy observers can accommodate as well with other techniques as the slid-
ing mode approach (see, e.g., [Akhenak, 2004, Amel, 2020]). These diverse applications
highlight the crucial role T-S observers play in enhancing state estimation of nonlinear
systems. They offer precise results and straightforward stability conditions, which are
described as LMIs and solvable using convex optimization solvers.

In the realm of T-S observers, systems can be broadly classified into two categories
based on the variables involved in their weighting functions: Measurable Premise Vari-
ables (MPV) and Unmeasurable Premise Variables (UPV). The latter category represents
a larger class of systems, and hence, has led to increased scientific research interest. How-
ever, designing observers for systems featuring UPV proves more challenging than for
systems with measurable variables. Hence, this chapter aims to provide an introduction
to observer design for T-S systems. It begins by discussing criterion for observability in
T-S systems and then delves into the distinctions between MPV and UPV systems. The
primary focus of this chapter is on the MPV case, detailing how to design an observer for
these systems using quadratic Lyapunov functions and enhancing observer performance
through pole placement methods. The subsequent chapter will explore observer design
for UPV systems.
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2.2 Notations on observers and observability

2.2.1 Definitions

In the realm of control theory and systems engineering, a fundamental question is
whether it’s possible to accurately reconstruct the internal states of the system or not.
This capability is encapsulated in the concept of a system’s “observability”. The formal
definitions of observability is given as follows:

Definition 2.1. (Observability) [Yves and Granjon, 2001] A system is said to be observ-
able at time t0, if knowledge of the input signal u(t) and the output signal y(t) over a time
interval [t0, t1] makes it possible to calculate the state of the system at time t0 (x(t0) ). If
a system is observable at any time t0, it is said to be completely observable.

The reconstruction of a system’s states can be achieved through the use of an observer.
The formal definition of an observer is as follows:

Definition 2.2. (Observer) [Fossard and Normand-Cyrot, 1993] we call an observer of
a dynamic system:

S :
 ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))
(2.1)

an auxiliary dynamic system O whose inputs are constituted of the input vectors and the
output of the system to be observed and whose output vector x̂(t) is the estimated state:

O :
 ż(t) = f̂(z(t), u(t), y(t))

x̂(t) = ĥ(z(t), u(t), y(t))
(2.2)

such that the error between the state vector x(t) and x̂(t) asymptotically tends towards
zero.

∥e(t)∥ = ∥x(t)− x̂(t)∥ → 0 when t→∞. (2.3)

The diagram of such an observer is given in Figure 2.1:

u(t) System undergoing Measuring device y(t)

Observer x̂(t)

Fig 2.1: Observer structure.
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However, observability can be a restrictive condition for designing an observer. In cases
where the system is not fully observable, meaning there are unobservable states, a less
restrictive and more practical condition for designing an observer, known as detectability,
can be introduced. Detectability allows for the design of observers in systems where not
all states are observable, offering a feasible solution when full observability is not possible
[Zhou et al., 2022, Tanwani and Trenn, 2019, Schaum, 2018, Długosz and Baranowski, 2020].
The concept of detectability can be defined as follows:

Definition 2.3. (Detectability) [Naidu, 2002] A system is said to be detectable if its
unobservable states are stable. Its observable states may be stable or unstable.

Given that the unobservable states of a detectable system are stable, they will naturally
converge to the equilibrium point. This characteristic allows for the construction of an
auxiliary system (observer) whose unobservable states are designed to converge to the
same equilibrium point as those of the original system. Consequently, the estimation
error in the observer system will asymptotically converge towards zero. This highlights
the practicality of detectability as a criterion in observer design, especially in complex
systems where full observability is not attainable.

In the following sections, we will discuss both the observer structure and the observ-
ability criterion for Takagi-Sugeno fuzzy systems.

2.2.2 Observer structure for Takagi-Sugeno fuzzy systems

Let us consider the T-S multi-model given as follows: ẋ(t) = ∑r
i=1 µi(ξ(t)) (Aix(t) + Biu(t))

y(t) = ∑r
i=1 µi(ξ(t)) (Cix(t) + Diu(t))

(2.4)

Here, x(t) ∈ Rnx represent the state vector, u(t) ∈ Rnu represent the input vector
and y(t) ∈ Rny represent the output vector. The known matrices are represented by
Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Di ∈ Rny×nu and Ci ∈ Rny×nx . Lastly, ξ(t) represent the
premise variables and µi (ξ (t)) are the weighting functions that verify the convex sum
property:

r∑
i=1

µi(ξ(t)) = 1, 0 ≤ µi(ξ(t)) ≤ 1, ∀i = 1, . . . r. (2.5)

The observer structure used for the fuzzy system (2.4) in literature is given by: ˙̂x(t) = ∑r
i=1 µi(ξ̂(t)) (Aix̂(t) + Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) = ∑r
i=1 µi(ξ̂(t)) (Cix̂(t) + Diu(t))

(2.6)

where the hat .̂ corresponds to the estimated variable, and Li are the observer gains.
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The diagram of this observer is given in the following figure:

u(t) System undergoing Measuring device y(t)

A1x̂(t) + B1u(t)+L1 (y(t)− ŷ(t)) ∏
µ1(ξ̂)

A2x̂(t) + B2u(t)+L2 (y(t)− ŷ(t)) ∏
µ2(ξ̂)

Arx̂(t) + Bru(t)+Lr (y(t)− ŷ(t)) ∏
µr(ξ̂)

∑ ˙̂x(t) ∫

C1x̂(t) + D1u(t) ∏
µ1(ξ̂)

Crx̂(t) + Dru(t) ∏
µr(ξ̂)

∑ ŷ(t)

−

Fig 2.2: Takagi-Sugeno observer structure

It is important to highlight that this observer operates as a T-S fuzzy system. Es-
sentially, it represents an extension of the traditional Luenberger observer, adapted for
application in fuzzy systems. This adaptation involves each sub-model of the fuzzy system
being associated with a distinct observer gain, denoted as Li.

Prior to deriving the observer gains, it’s essential to verify the system’s observability,
adhering to the definition of observability discussed earlier. Therefore, the subsequent
section will detail the specific criterion used for testing the observability of Takagi-Sugeno
fuzzy systems.

2.2.3 Criterion for Observability in Takagi-Sugeno Fuzzy Sys-

tems

Considering the nonlinear nature of T-S systems, one might initially consider applying
nonlinear observability criteria directly. However, the specific design of their observers,
as indicated in (2.6) and characterized by each rule having a local gain, shifts the focus
to ensuring the observability or detectability of the individual local models rather than
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the whole nonlinear system. It is important to emphasize that this criteria is neither
sufficient nor necessary for the overall system’s observability or detectability. However, in
the context of T-S systems, considering their specific observer structure, this requirement
become sufficient and necessary. For the design, it is implicitly assumed that the local
models are observable [Lendek et al., 2011].

Theorem 2.1

The T-S system defined in (2.4) is observable if and only if each pair (Ai, Ci) is
observable ∀i = 1, . . . r. This condition holds true if and only if the observability
matrix for each pair (Ai, Ci) has full rank:

rank (Obs) = rank



Ci

CiAi

...
CiA

n−1
i

 = n, ∀i = 1, . . . , r (2.7)

Proof. [Amel, 2020] By utilizing the convex sum property (2.5) to x(t), the following
result is obtained :

r∑
i=1

µi(ξ(t))x(t) = x(t) (2.8)

By defining µi(ξ(t))x(t) = xi(t), the equation in (2.8) can be reformulated as follows:

r∑
i=1

xi(t) = x(t) (2.9)

Each individual sub-model within the rules of the T-S multi-model is given as follows: ẋ(t) = Aix(t) + Biu(t),
y(t) = Cix(t) + Diu(t),

(2.10)

By executing a series of successive derivations, starting with y and utilizing the state
equation, the following system is derived:

Cix(t) = y(t)−Diu(t) = ȳ0(t)
CiAix(t) = ȳ1(t) = ˙̄y0(t)− CiBiu(t)
CiA

2
i x(t) = ȳ2(t) = ˙̄y1(t)− CiAiBiu(t)

...
CiA

n−1
i x(t) = ȳn−1(t) = ˙̄yn−2(t)− CiA

n−2
i Biu(t)

(2.11)
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The system described in (2.11) can be represented in matrix form as follows:

Ci

CiAi

CiA
2
i

...
CiA

n−1
i


x(t) =



ȳ0(t)
˙̄y0(t)− CiBiu(t)

˙̄y1(t)− CiAiBiu(t)
...

˙̄yn−2(t)− CiA
n−2
i Biu(t)


(2.12)

By multiplying both sides of the system (2.12) by µi(ξ(t)), this system can be refor-
mulated as follows:

Ci

CiAi

CiA
2
i

...
CiA

n−1
i


xi(t) = µi(ξ(t))



y(t)−Diu(t)
ẏ(t)−Diu̇(t)− CiBiu(t)

˙̄y1(t)− CiAiBiu(t)
...

˙̄yn−2(t)− CiA
n−2
i Biu(t)


(2.13)

Assuming µi(ξ(t)) ̸= 0, the system (2.13) becomes:

1
µi(ξ(t))



Ci

CiAi

CiA
2
i

...
CiA

n−1
i


xi(t) =



y(t)−Diu(t)
ẏ(t)−Diu̇(t)− CiBiu(t)

˙̄y1(t)− CiAiBiu(t)
...

˙̄yn−2(t)− CiA
n−2
i Biu(t)


(2.14)

where a weight µi(ξ(t)) = 0 corresponds to a null contribution from the ith local model
in the state of the global model.

Let us define:

P = 1
µi(ξ)



Ci

CiAi

...
CiA

n−1
i


︸ ︷︷ ︸

Obs

(2.15)

Using the following rank invariance property: Multiplying a row by a non-zero scalar
preserves the rank of the matrix, we get rank (Obs) = rank(P ). Thus, if the observability
matrix has a full rank, i.e. rank (Obs) = n , the system (2.14) admits a unique solution
xi(t), with the variables y(t) and u(t) known. Thus, the observability of the pair (Ai, Ci) is
necessary and sufficient to ensure the observability of the corresponding sub-model (2.10).

So, if the pairs (Ai, Ci) , i = 1, . . . , r, are observable, the sub-models (2.10) i = 1, . . . , r,
are observable and, consequently, the states xi(t), i = 1, . . . , r, can be reconstructed as
well as the state x(t) of the global system according to (2.9).

58



CHAPTER 2. INTRODUCTION TO THE STATE ESTIMATION OF TAKAGI-SUGENO FUZZY SYSTEMS

After elucidating the observability criterion of T-S systems, it becomes pertinent to
elucidate its interplay with the concept of detectability.

Remark 2.1

In light of the definitions of observability and detectability, along with the inherently
linear nature of each sub-model within T-S systems, the following can be concluded:

❖ If Ai is stable =⇒ (Ai, Ci) is detectable.

❖ If (Ai, Ci) is observable =⇒ (Ai, Ci) is detectable as well.

❖ If (Ai, Ci) is not observable =⇒ (Ai, Ci) could still be detectable.

With these insights, the criterion for designing an observer for T-S systems can be
formally stated:

Theorem 2.2

An observer for a T-S system exists if all pairs (Ai, Ci) within the system are
detectable.

2.3 Observer design for Takagi-Sugeno fuzzy systems

Following the design of the T-S system and the verification of observability for all
pairs (Ai, Ci) (or at least its detectability), the subsequent step involves determining the
observer gains Li in order to implement the observer and estimating the system’s states.

Consider the observer (2.6) designed for the T-S system (2.4). In order to determine
the values of the observer gains, the second Lyapunov theorem is applied to the state
estimation error, which is presented as follows:

e(t) = x (t)− x̂ (t) (2.16)

At first let us rewrite the dynamic state of the system (2.4) as a perturbated system
with the following representation: ẋ(t) = ∑r

i=1 µi(ξ̂(t)) (Aix(t) + Biu(t) + ω1(t))
y(t) = ∑r

i=1 µi(ξ̂(t)) (Cix(t) + Diu(t) + ω2(t))
(2.17)

here, the perturbation term ωi (t) is referred to as the “mismatching term” due to its
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composition of two mismatched functions. ω1 (t) = ∑r
i=1

(
µi (ξ (t))− µi

(
ξ̂ (t)

))
(Aix (t) + Biu (t))

ω2 (t) = ∑r
i=1

(
µi (ξ (t))− µi

(
ξ̂ (t)

))
(Cix (t) + Diu (t))

(2.18)

The purpose of formulating the dynamic state of the system (2.4) as a perturbated
system (2.17) is to obtain the same weighting functions as those of the observer (2.6) in
order to simplify the expression of the error dynamic.

The representation of the estimation error dynamics is now given by:

ė(t) = ẋ(t)− ˙̂x(t) =
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t)) [(Ai − LiCj)e(t) + ω1(t)− Liω2(t)] (2.19)

Based on the premise variables of the weighting functions, two cases can be distin-
guished:

❖ Measurable premise variables.

❖ Unmeasurable premise variables.

2.3.1 Measurable premise variables

The MPV corresponds to the case where the premise variable are measured (known).
Consequently, the weighting functions utilized in the observer implementation are derived
from the measurements obtained from the system:

µi

(
ξ̂ (t)

)
= µi (ξ (t)) (2.20)

In this scenario, the mismatching terms are null, leading to:

ω1 (t) = ω2 (t) = 0 (2.21)

Therefore, the dynamics of the estimation error can be simplified as follows:

ė(t) = ẋ(t)− ˙̂x(t) =
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t)) [(Ai − LiCj)e(t)] (2.22)

2.3.1.1 Observer design using quadratic Lyapunov function

In the case of MPV, the stability analysis of the estimation error dynamics is conducted
straightforwardly by employing the quadratic Lyapunov function. The stability conditions
are expressed as LMI in the following theorem [Tanaka and Wang, 2004]:
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Theorem 2.3

The estimation error converges asymptotically towards zero if there exist matrices
P = P T ∈ Rnx×nx > 0 and Mi ∈ Rnx×ny such that the following LMIs hold
∀i, j = 1, ..., r:

(PAi −MiCi)T + (PAi −MiCi) < 0, i = 1, . . . , r (2.23)

(PAi −MiCj + Aj −MjCi)T + (PAi −MiCj + PAj −MjCi) < 0, i < j (2.24)

where the observer gains are given by Li = P −1Mi.

Proof. Let us define the quadratic Lyapunov function as follows:

V (t) = e (t)T Pe (t) (2.25)

The time derivative of V (t) is:

V̇ (t) = ė (t)T Pe (t) + e (t)T P ė (t) (2.26)

By substituting (2.22) in (2.26), the following equation is obtained:

V̇ (t) =
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))e(t)T
[
(PAi − PLiCj)T + (PAi − PLiCj)

]
e(t) (2.27)

Since the equation (2.27) involves two symmetric parameters, µi and µj, its negativity
can be determined by applying the relaxation method described in Lemma 1.4 as follows:

(PAi − PLiCi)T + (PAi − PLiCi) < 0, i = 1, . . . , r (2.28)

(PAi − PLiCj + PAj − PLjCi)T + (PAi − PLiCj + PAj − PLjCi) < 0, i < j (2.29)

These inequalities involve the product of two decision variables, P and Li. Conse-
quently, they are not considered as LMI; instead, they fall under the category of Bilinear
Matrix Inequalities (BMIs). In optimization problems, BMIs present challenges due to
their lack of convexity, making them unsuitable for straightforward resolution using tra-
ditional convex optimization solvers discussed in Chapter 1. To address this, a method
is employed to convert these bilinear inequalities into linear ones. The selected approach
for this transformation is the “change of variable method”.

Let us define the following change of variables:

Mi = PLi (2.30)

By substituting the change of variable from (2.30) into (2.28) and (2.29), we arrive at
Theorem 2.3.
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Example 2: Observer design of three phase interleaved boost converter in
the case of MPV using quadratic Lyapunov function

1 - Modeling of the interleaved boost converter
Figure 2.3 presents the design of a three-phase interleaved boost converter (3P-

IBC) setup. This assembly comprises three conventional boost converters, all linked in
parallel to a shared DC-bus. Here, Vin signifies the input voltage of the converter, and
Vout denotes the output voltage. Main switches are represented as S1, S2, and S3. The
diodes are referred as D1, D2 and D3 whereas L1, L2, and L3 stand for the inductors.
The capacitor in this configuration is denoted as Cap and R symbolizes the DC-load.

Fig 2.3: Three-phase interleaved boost converter

The mathematical model of this converter is giving as follows, where the load cur-
rent ILoad(t) is considered as a known input affecting the state dynamics (later in Sec-
tion 4.3.1.2 we will use this example where the load current will be considered as un-
known input):

L1
dIL1 (t)

dt
= Vin − (1− S1)D1Vout − rL1IL1

L2
dIL2 (t)

dt
= Vin − (1− S2)D2Vout − rL2IL2

L3
dIL3 (t)

dt
= Vin − (1− S3)D3Vout − rL3IL3

Cap
dVout(t)

dt
= (1− S1)D1IL1 + (1− S2)D2IL2 + (1− S3)D3IL3 − ILoad

(2.31)

where Di represent the behavior of the diode, allowing the flow of positive current while
preventing the negative one:

Di =
 1 if Ii ≥ 0

0 if Ii < 0
(2.32)
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By defining x(t) =
[

I1 I2 I3 Vout

]T
, u(t) =

[
S1 S2 S3 Vin

]T
the state space

representation of the 3P-IBC is presented as follows: ẋ (t) = A (u) x (t) + Bu (t) + EILoad(t)
y(t) = Cx (t)

(2.33)

where:

A(u) =



− rL1
L1

0 0 − (1−S1)
L1

0 − rL2
L2

0 − (1−S2)
L2

0 0 − rL3
L3
− (1−S3)

L3
1−S1
Cap

1−S2
Cap

1−S3
Cap

0

 , B =



0 0 0 1
L1

0 0 0 1
L2

0 0 0 1
L3

0 0 0 0

 , E =



0
0
0
− 1

Cap

 ,

C =
[
0 0 0 1

]
The parameters of this system are : Li = 0.0011 [H], rLi = 0.0071 [Ω] and Cap =

484 [µF ].
2 - Takagi-Sugeno fuzzy representation of the system
The T-S multi-model is given as follows: ẋ (t) = ∑r

i=1 µi (ξ (t)) (Aix (t) + Biu (t) + EiILoad (t))
y (t) = ∑r

i=1 µi (ξ (t)) (Cix (t))
(2.34)

By defining the premise variables as ξ1 = (1 − S1)D1 , ξ2 = (1 − S2)D2 and ξ3 =
(1−S3)D3 as the nonlinear terms in the dynamical model of the 3P-IBC in (2.33), which
are measurable, the weighting functions can be described as follows:

µi (ξ (t)) =
3∏

j=1
Mij(ξj), (2.35)

where the membership functions of the fuzzy rules are:

Rule1: M11 = W1 (ξ1) , M12 = W1 (ξ2) , M13 = W1 (ξ3)
Rule2: M21 = W1 (ξ1) , M22 = W1 (ξ2) , M23 = W2 (ξ3)
Rule3: M31 = W1 (ξ1) , M32 = W2 (ξ2) , M33 = W1 (ξ3)
Rule4: M41 = W1 (ξ1) , M42 = W2 (ξ2) , M43 = W2 (ξ3)
Rule5: M51 = W2 (ξ1) , M52 = W1 (ξ2) , M53 = W1 (ξ3)
Rule6: M61 = W2 (ξ1) , M62 = W1 (ξ2) , M63 = W2 (ξ3)
Rule7: M71 = W2 (ξ1) , M72 = W2 (ξ2) , M73 = W1 (ξ3)
Rule8: M81 = W2 (ξ1) , M82 = W2 (ξ2) , M83 = W2 (ξ3)

And using the sector nonlinearity approach the following functions are obtained:

W1 (ξi) = ξi − ξimin

ξimax − ξimin

, W2(ξi) = ξimax − ξi

ξimax − ξimin
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By defining the limits of the premise variables as follows: ξ1 ∈
[
0 1

]
, ξ2 ∈

[
0 1

]
and ξ3 ∈

[
0 1

]
. Hence, the sub-matrices Ai, Bi, Ci and Ei of the multi-model (2.34)

can be given as follows:

A1 =



− rL1
L1

0 0 − ξ1max

L1

0 − rL2
L2

0 − ξ2max

L2

0 0 − rL3
L3
− ξ3max

L3
ξ1max

Cap

ξ2max

Cap

ξ3max

Cap
0

 , A2 =



− rL1
L1

0 0 − ξ1max

L1

0 − rL2
L2

0 − ξ2max

L2

0 0 − rL3
L3
− ξ3min

L3
ξ1max

Cap

ξ2max

Cap

ξ3min

Cap
0



A3 =



− rL1
L1

0 0 − ξ1max

L1

0 − rL2
L2

0 − ξ2min

L2

0 0 − rL3
L3
− ξ3max

L3
ξ1max

Cap

ξ2min

Cap

ξ3max

Cap
0

 , A4 =



− rL1
L1

0 0 − ξ1max

L1

0 − rL2
L2

0 − ξ2min

L2

0 0 − rL3
L3
− ξ3min

L3
ξ1max

Cap

ξ2min

Cap

ξ3min

Cap
0



A5 =



− rL1
L1

0 0 − ξ1min

L1

0 − rL2
L2

0 − ξ2max

L2

0 0 − rL3
L3
− ξ3max

L3
ξ1min

Cap

ξ2max

Cap

ξ3max

Cap
0

 , A6 =



− rL1
L1

0 0 − ξ1min

L1

0 − rL2
L2

0 − ξ2max

L2

0 0 − rL3
L3
− ξ3min

L3
ξ1min

Cap

ξ2max

Cap

ξ3min

Cap
0



A7 =



− rL1
L1

0 0 − ξ1min

L1

0 − rL2
L2

0 − ξ2min

L2

0 0 − rL3
L3
− ξ3max

L3
ξ1min

Cap

ξ2min

Cap

ξ3max

Cap
0

 , A8 =



− rL1
L1

0 0 − ξ1min

L1

0 − rL2
L2

0 − ξ2min

L2

0 0 − rL3
L3
− ξ3min

L3
ξ1min

Cap

ξ2min

Cap

ξ3min

Cap
0



Ci =
[
0 0 0 1

]
, Bi =



0 0 0 1
L1

0 0 0 1
L2

0 0 0 1
L3

0 0 0 0

 , Ei =



0
0
0
− 1

Cap

 , ∀i = 1, . . . , r.

3 - Observer design for three-phase interleaved boost converter
By considering the output as the output voltage Vout, Theorem 2.3 is applied to

derive the following observer gains:

L1 =



−926.2329
−926.2329
−926.2329
9390.6915

 , L2 =



−926.2014
−926.2014
−1.1935

9329.2412

 , L3 =



−926.2014
−1.1935
−926.2014
9329.2412

 , L4 =



−926.1702
−1.1781
−1.1781

9270.9647

 ,

L5 =



−1.1935
−926.2014
−926.2014
9329.2412

 , L6 =



−1.1781
−926.1702
−1.1781

9270.9647

 , L7 =



−1.1781
−1.1781
−926.1702
9270.9647

 , L8 =



−1.1562
−1.1562
−1.1562

9214.7198

 .
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P =



2.6506 0.0710 0.0710 0.0004
0.0710 2.6506 0.0710 0.0004
0.0710 0.0710 2.6506 0.0004
0.0004 0.0004 0.0004 0.0018


4 - Simulation results
Figure 2.4 depicts a schematic of the Dual-loop control dedicated to the three-phase

interleaved boost converter. In this topology, two imbricated loops are used: an outer
voltage loop and an inner current loop. The four involved controllers are of type “PI”,
used in a conventional manner to synthesize the duty cycle control signals S1, S2 and
S3 where the parameters of the regulators are given as follows: KpV = 0.1834, KiV =
16.6301, KpI = 0.4242 and KiI = 41.9135, and the frequency of the PWM is fc =
20(Khz).

Fig 2.4: Dual-loop control scheme of three-phase interleaved boost converter

In order to demonstrate the stability of the error dynamic, the system’s initial
conditions were set as x0 (t) =

[
0.5 1.5 −1 7.5

]T
while those of the observer are

x̂0 (t) =
[
0 0 0 0

]T
. The load resistance commences with R = 20(Ω) , undergoes

a decrease to R = 15(Ω) at t = 0.4(s), and then returns to the initial R = 20(Ω) at
t = 0.8(s). The estimated states are shown in Figure 2.5 through Figure 2.8, while the
estimation error is represented in Figure 2.9.

The obtained results display the successful tracking of the estimated states to the
actual ones, regardless of the different initial conditions set for the system and the
observer. This consistency, as evidenced in Figure 2.9, shows the estimation error curves
converging asymptotically towards zero, thereby affirming the efficacy of the proposed
observer.
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Fig 2.5: Interleaved boost converter phase current I1.
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Fig 2.6: Interleaved boost converter phase current I2.
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Fig 2.7: Interleaved boost converter phase current I3.
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Fig 2.8: Interleaved boost converter output voltage Vout.
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Fig 2.9: State estimation error.

Remark 2.2

In the case where the achieved results are not satisfactory, the pole placement
method can be applied on the LMIs specified in the theorem. This approach is
designed to optimize the results by identifying new observer gains. A detailed
explanation of this method will be provided later in Section 2.4.
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Remark 2.3

It is important to note that when the premise variables depend on the input signal,
ξ = f(u(t)), as in the previous example, the parallel distributed compensation
(PDC) control, defined as u(t) = −(∑r

i=1 µi (ξ (t))Ki)x(t), cannot be applied. This
limitation arises because it introduces an algebraic loop: the control signal at the
current time step is calculated using its own value at the same time step, u(t) =
−(∑r

i=1 µi(u(t))Ki)x(t). Consequently, a causality problem arises, rendering the
controller implementation infeasible.

2.3.1.2 Summarize of the observer design process

The diagram below serves as a comprehensive guide to the systematic approach em-
ployed in designing an observer for T-S systems. It distinguishes between the initial
offline phase, which is dedicated to developing the observer gains, and the subsequent
online phase, where these gains are applied in real-time to estimate the system’s states.

Initialize system
parameters

Derive Takagi-Sugeno
fuzzy models

Observable ?Detectable ?
NoDesigning an observer

is not possible

No

Resolve linear matrix inequalities
of the corresponding theorem

Yes

Yes

Feasible ?
Theorem not

applicable

No

Get the value of
the observer gain L

Yes

T-S ObserverController

Actuator

System undergoing

Measuring device

Fig 2.10: Overall schematic diagram of observer design and implementation.
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2.3.2 Unmeasurable premise variables

The UPV corresponds to the case where part of the premise variables or all of them
are unmeasured. Consequently, the weighting functions utilized in the observer imple-
mentation can’t be derived from the measurements obtained from the system:

µi

(
ξ̂ (t)

)
̸= µi (ξ (t)) (2.36)

In this scenario, the mismatching terms are not equal until the estimation error tends
towards zero:

WHEN x̂ (t) → x (t), THEN ωi (t) → 0 (2.37)

Therefore, the dynamics of the estimation error is still given by (2.19).
To analyze the stability of state estimation error in the case of UPV, various method-

ologies have been developed by the research community over the years. These approaches
will be discussed comprehensively in the forthcoming chapter.

2.4 Enhancing the Performance of Observer Dynam-

ics using pole placement method

In this section, we delve into advanced strategies for enhancing observer gains, with
the primary aim of improving the dynamic performance of state estimation errors. This
involves a meticulous focus on critical dynamics aspects such as augmenting damping
levels, curtailing overshoot, and accelerating convergence speed or decay rate. These
improvements are vital for the optimized functioning of the observer system.

Central to these performance enhancements is the understanding of the system’s poles
λi (the eigenvalues of the state matrix) and their positions in the complex plane. Ac-
cording to control theory, a linear system achieves stability when all its poles are situ-
ated in the left half of the complex plane, a condition indicating that the state matrix
is Hurwitz (all eigenvalues have negative real parts). However, achieving mere stabil-
ity is not sufficient for enhanced performance. Additional criteria regarding the place-
ment of these poles within the complex plane must be considered, as the locations of
these poles are intrinsically linked to the system’s dynamic behaviors and capabilities
[Yves and Granjon, 2001, Hendricks et al., 2008].

Hence, a key strategy for achieving desired performance levels is through the “pole
placement” method, which involves strategically placing the poles of estimation error
dynamics in specific regions of the complex plane. Therefore, the concept of “regional pole
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placement” is introduce in this section, which contrasts with “pointwise pole placement”
by not assigning poles to exact locations but within specified regions in the complex plane.
Such regions could be disks, conic sectors, vertical strips, etc. Constraining the poles of the
system in specific regions allows us to impose specific bounds on performance measures,
ensuring a satisfactory transient response [Chilali and Gahinet, 1996, Chilali et al., 1999].

Generally, the concept of poles and zeros is not applicable in nonlinear systems
[Byrnes et al., 1999]. However, the application of the T-S multi-model approach to these
systems enables the use of pole placement techniques. This becomes feasible as it allows
nonlinear systems to be represented as a combination of local linear models. Each of these
models is characterized by its own distinct set of poles, bridging the gap between linear
and nonlinear system analysis.

The stability region defined by the classical Lyapunov function applied to autonomous
unforced linear system ẋ = Ax(t), characterized by the condition

AT P + PA < 0, (2.38)

corresponds to the situation where the poles of the matrix A reside in the left half-plane.
Therefore, in this section, we will explore how to modify the stability conditions derived
from the Lyapunov method to cater to specific regions.

2.4.1 Definitions

2.4.1.1 Kronecker product

The Kronecker product, represented by the symbol ⊗, is a mathematical operation
applied to two matrices Amn and Bpq. This operation results in a larger block matrix. Each
element aij of matrix A is multiplied by the entire matrix B to form the corresponding
block in the resultant matrix:

A⊗B =


a11B · · · a1nB

... . . . ...
am1B · · · amnB

 (2.39)

2.4.1.2 LMI regions

The LMI region is a region of the complex plain that is characterized by an LMI in
function of the complex number z.
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Definition 2.4. (LMI region) [Chilali and Gahinet, 1996] An LMI region is any subset
D ∈ C of the complex plane that can be defined as:

D = {z = x + jy ∈ C : fD(z) = γ + zβ + z∗β < 0} (2.40)

where, γ = γT ∈ Rm×m and β ∈ Rm×m. Here, z∗ denotes the complex conjugate of z. The
matrix valued function fD(z) is called the characteristic function of D and < 0 stands for
negative definite.

2.4.1.3 D-Stability

D-Stability is a concept used to describe the relationship between the LMI region and
the eigenvalues of a matrix. It is formally defined as follows:

Definition 2.5. (D-Stability) [Chilali et al., 1999] A real matrix A is said to be D-stable
if all of its eigenvalues are located within the LMI region denoted as D.

2.4.2 LMI region examples

Below are a few interesting examples of LMI regions, each illustrating a unique aspect
of these regions in complex analysis:

Re(z)

Im(z)

−α

D1

Fig 2.11: Half-plane.

Re(z)

Im(z)

R

q

D2

Fig 2.12: Disk.

θ

Re(z)

Im(z)

D3

Fig 2.13: Conical sector.

1 - Biased left half-plane: The region D1 represents a left half-plane that is biased
by a value α. To define this region, we consider the real part x of the complex number z

and shift it to the left by α. The region is then described by the condition:

x < −α⇐⇒ z∗ + z

2 < −α⇐⇒ z∗ + z < −2α (2.41)

The characteristic function fD(z) for this region is obtained by setting γ = 2α and
β = 1, resulting in:

fD(z) = 2α + z + z∗ < 0 (2.42)
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2 - Disk centered at (q,0) with radius R: The region D2 is a disk in the complex
plane centered at the point (q, 0) with radius R. The condition defining this disk, using
complex numbers, is given by:

(z − q)(z∗ − q) < R2 (2.43)

This equation represents all complex numbers z whose distance from the point q is
less than R.

Applying the Schur complement, as stated in Lemma 1.3, the inequality (2.43) is
equivalent to:

 −R (z − q)
(z∗ − q) −R

 < 0 (2.44)

Consequently, the characteristic function fD(z) for this region can be derived by setting

γ =
−R −q

−q −R

 and β =
0 1
0 0

. Thus, we obtain:

fD(z) =
−R −q

−q −R

+ z

0 1
0 0

+ z∗

0 0
1 0

 =
 −R (z − q)
(z∗ − q) −R

 (2.45)

3 - Conic sector: The region D3 is a conic sector centered around the negative direc-
tion of the real axis, with the apex at the origin and an inner angle of 2θ, where 0 < θ < π

2 .
This region is defined by the condition:

|y| < −xtan(θ)⇐⇒ y2 < x2tan(θ)2 (2.46)

Utilizing the properties
x = z + z∗

2 , y = z − z∗

2j
,

the inequality given in (2.46) can be reformulated as:

sin(θ)(z + z∗) + cos(θ)(z − z∗)(sin(θ)(z + z∗))−1cos(θ)(z − z∗) < 0 (2.47)

Applying the Schur complement, the inequality in (2.47) is equivalent to: sin(θ)(z + z∗) cos(θ)(z − z∗)
−cos(θ)(z − z∗) sin(θ)(z + z∗)

 < 0 (2.48)

Consequently, the characteristic function fD(z) for this region can be obtained by

setting γ =
0 0
0 0

 and β =
 sin(θ) cos(θ)
−cos(θ) sin(θ)

, resulting in:

fD(z) = z

 sin(θ) cos(θ)
−cos(θ) sin(θ)

+z∗

sin(θ) −cos(θ)
cos(θ) sin(θ)

 =
 sin(θ)(z + z∗) cos(θ)(z − z∗)
−cos(θ)(z − z∗) sin(θ)(z + z∗)


(2.49)
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4 - Intersection of LMI regions: The intersections of r LMI sub-regions Di forms an-
other LMI region, denoted as D. The characteristic function for this intersected region
is a diagonal matrix constructed from the characteristic functions of each individual sub-
region. Mathematically, it is represented as:

fD(z) = diag(fD1(z), . . . , fDr(z)) (2.50)

For illustration, consider the LMI region D4 , which represents the intersection of the
LMI sub-regions D1, D2 and D3:

Re(z)

Im(z)
R

q

θ

−α

D4

Fig 2.14: Intersection of LMI regions

Therefore, for a complex number z to belong to the intersection region D4 , it must
simultaneously satisfy the conditions of all sub-regions Di.

For further exploration and a more comprehensive list of LMI regions, interested read-
ers are referred to the work presented in [Chadli and Borne, 2012].

2.4.3 Pole clustering in LMI regions

This section focuses on the analysis of pole clustering within specific LMI regions, em-
phasizing the concept of quadratic D-stability for a matrix A. The theoretical foundation
for this approach is rooted in the research of Chilali in [Chilali and Gahinet, 1996], which
provides stability conditions to ensure that the poles of the state matrix A are confined
within the LMI region D. When the region D encompasses the entire left-half plane,
D-stability is equivalent to asymptotic stability, aligning with employing the quadratic
Lyapunov function as detailed in (2.38). Moreover, if D corresponds to a biased left-half
plane, as illustrated in Figure 2.11, the matrix A is then termed α-stable. The following
theorem announced this concept:
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Theorem 2.4

A matrix A is D-stable if and only if there exists a symmetric positive definite
matrix P such that:

MD(A, P ) = γ ⊗ P + β ⊗ AP + βT ⊗ PAT < 0, P > 0 (2.51)

Proof. Let λ be any eigenvalue of A, and let v ∈ Cn be a nonzero vector such that
vHA = λvH . Using the identity:(

Im ⊗ vH
)

MD(A, P ) (Im ⊗ v) =
(
vHPv

)
fD(λ) (2.52)

it follows that if MD(A, P ) < 0 and P > 0, then fD(λ) < 0. This implies that λ is located
within the region D. Therefore, the condition in (2.51) guarantees the D-stability of the
matrix A.

By applying the definition of the Kronecker product as described in equation (2.39),
the inequality presented in (2.51) can be reformulated as follows:

γ11P + β11AP + β11(AP )T · · · γ1nP + β1nAP + β1n(AP )T

... . . . ...
γn1P + βn1AP + βn1(AP )T · · · γnnP + βnnAP + βnn(AP )T

 < 0 (2.53)

The fundamental principles of D-stability outlined in Theorem 2.4 have been fur-
ther expanded beyond quadratic Lyapunov functions. This broader scope, as detailed in
[Nguang and Shi, 2006], allows for the inclusion of various types of Lyapunov functions,
including but not limited to the fuzzy Lyapunov function, as demonstrated in the studies
by Cherifi in [Cherifi et al., 2017, Cherifi et al., 2019]. This generalization is encapsulated
in the following theorem:

Theorem 2.5

For a given LMI region defined by (2.40), a nonlinear system characterized by ẋ =
f(x)x is considered D-stable if there exist a Lyapunov function V (x(t)) satisfying
1
2

V̇ (x(t))
V (x(t)) ∈ D, i.e:

γ ⊗ V (x(t)) + β ⊗ 1
2 V̇ (x(t)) + βT ⊗ 1

2 V̇ (x(t)) < 0 (2.54)

2.4.4 Examples of pole clustering in LMI regions

This section presents examples of pole placement within the LMI regions described in
Section 2.4.2.
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It is essential to understand the relationship between the characteristic function of
the LMI region fD(z) in (2.40) and the D-stability condition MD(A, P ) in (2.51). This
relationship is established by the substitution:

(P, AP, PAT )←→ (1, z, z∗) (2.55)

Using this substitution, the poles of the state matrix A can be clustered within the
designated LMI region.

1 - Clustering the poles in the left half-plane:

Theorem 2.6

Consider an LMI region D that includes the entire left half of the complex plane.
A matrix A is said to be D-stable if it satisfies the stability condition obtained by
setting γ = 0 and β = 1 in (2.51). This stability condition is expressed as follows:

AP + PAT < 0, P > 0 (2.56)

It is known from control theory that placing the eigenvalues of a system in the left
half-plane corresponds to the asymptotic stability, which can be achieved by employing a
quadratic Lyapunov function as represented in (2.38).

The inequality expressed in (2.38) utilizes the matrix product order (PA), while the
inequality in (2.56) uses the order (AP ). To demonstrate that these two inequalities
are equivalent, it suffices to multiply (2.56) from both the left and right sides by P −1.
Following this, the substitution Q = P −1 leads to the reformulated expression:

QA + AT Q < 0, Q > 0 (2.57)

2 - Clustering the poles in the Biased left half-plane:

Theorem 2.7

Consider the LMI region D as illustrated in Figure 2.11 and characterized by the
characteristic function (2.42). A matrix A is said to be D-stable if it satisfies the
stability condition derived either by setting γ = 2α and β = 1 in (2.51), or by
directly substituting (2.55) into the characteristic function (2.42). This results in
the following stability condition:

2αP + AP + PAT < 0 (2.58)

This form of stability is referred to as “Exponential convergence” characterized by a
decay rate denoted by α, and is also known as “α-stability”. This concept is described
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using the Lyapunov function as follows:

2αV (t) + V̇ (t) ≤ 0 (2.59)

The inequality (2.59) emerges from the general stability condition presented in (2.54)
by setting the parameters γ = 2α and β = 1.

3 - Clustering the poles in a disk centered at (q,0) with radius R:

Theorem 2.8

Consider the LMI region D as illustrated in Figure 2.12 and characterized by the
characteristic function (2.45). A matrix A is said to be D-stable if it satisfies the

stability condition derived either by setting γ =
−R −q

−q −R

 and β =
0 1
0 0

 in

(2.51), or by directly substituting (2.55) into the characteristic function (2.45).
This results in the following stability condition:

 −RP (AP − qP )
(PAT − qP ) −RP

 < 0 (2.60)

4 - Clustering the poles in a conic sector:

Theorem 2.9

Consider the LMI region D as illustrated in Figure 2.13 and characterized by the
characteristic function (2.49). A matrix A is said to be D-stable if it satisfies the

stability condition derived either by setting γ =
0 0
0 0

 and β =
 sin(θ) cos(θ)
−cos(θ) sin(θ)


in (2.51), or by directly substituting (2.55) into the characteristic function (2.49).
This results in the following stability condition:

 sin(θ)(AP + PAT ) cos(θ)(AP − PAT )
−cos(θ)(AP − PAT ) sin(θ)(AP + PAT )

 < 0 (2.61)

For further exploration and a more comprehensive list of examples of pole clustering in
LMI regions, interested readers are referred to the work presented in [Chadli and Borne, 2012].

Now, to improve the observer’s performance, the eigenvalues of the state estimation
error, giving in the equation (2.22), can be assigned to any of the previously discussed
LMI regions. This is accomplished by substituting the matrix A with (Ai − LiCj) in the
general stability condition described in (2.51), leading to the following modified stability
condition:
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MD((Ai−LiCj), P ) = γ⊗P +β⊗(Ai−LiCj)P +βT⊗P (Ai−LiCj)T < 0, P > 0 (2.62)

By appropriately setting the values of γ and β, the poles of the system can be clustered
within the desired LMI region.

Clustering the eigenvalues of the state matrix in the left half-plane ensures the asymp-
totic stability and leading to the convergence of the estimation error dynamics towards
zero. However, this stability condition alone does not guarantee optimal dynamic perfor-
mance. For this reason, it is advisable to employ the α-stability condition. The α-stability
condition enforces a specific decay rate of the Lyapunov function, thereby controlling the
convergence speed of the estimation error.

Despite these measures, oscillatory behavior in the estimation error dynamics can still
occur due to the imaginary parts of the eigenvalues. To mitigate this, it is recommended
to impose bounds on the imaginary parts of the eigenvalues. This can be accomplished
by using disk or conic sector LMI regions, which help in ensuring not only stability but
also adequate damping in the estimation error dynamics.

For instance, consider the case of the conical sector described in Theorem 2.9. By
substituting the matrix A with (Ai − LiCj), the following result is obtained: sin(θ)((Ai − LiCj)P + P (Ai − LiCj)T ) cos(θ)((Ai − LiCj)P − P (Ai − LiCj)T )
−cos(θ)((Ai − LiCj)P − P (Ai − LiCj)T ) sin(θ)((Ai − LiCj)P + P (Ai − LiCj)T )

 < 0

(2.63)
This inequality represents a BMI in terms of the product of two decision variables, P

and Li. To transform it into an LMI, it must first be multiplied from the left and the
right by Q = P −1. Subsequently, employing the change of variables given by

Mi = QLi, (2.64)

leads to the following LMI: sin(θ)(QAi −MiCj + AT
i Q− CT

j MT
i ) cos(θ)(QAi −MiCj − AT

i Q− CT
j MT

i )
−cos(θ)(QAi −MiCj − AT

i Q− CT
j MT

i ) sin(θ)(QAi −MiCj + AT
i Q− CT

j MT
i )

 < 0

(2.65)
It is important to highlight that the D-stability condition expressed in this inequality has
been employed in the example of the 3P-IBC in Section 2.3.1.1 where the set angle is
θ = 20.
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2.5 Conclusion

In this chapter, we delved deeply into the intricacies of observer design for Takagi-
Sugeno fuzzy systems, starting with a fundamental analysis of observability and de-
tectability. These initial steps were crucial for assessing the feasibility of constructing
an observer for the corresponding system. As we moved forward, we have addressed
the two pivotal categories faced in observer design: the measurable and unmeasurable
premise variables, with the chapter primarily concentrating on the MPV aspect and the
derivation of the corresponding observer gains. An example was presented to demonstrate
the observer’s design and its implementation in the system’s control process. Notably,
the observer’s performance was enhanced through pole placement in LMI regions. We
discussed various LMI regions and elaborated on how clustering the eigenvalues of the
state estimation error within these regions can further refine the observer’s performance.
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3.1 Introduction

As discussed in the previous chapter, two categories of T-S systems can be identified:
those with measurable premise variables and those with unmeasurable premise variables.
The MPV category pertains to systems where premise variables can be directly measured.
However, this scenario is not always the case. In contrast, systems falling under the UPV
category are more prevalent, as they encompass a broader range of real-world situations.
This prevalence of UPV systems has led recent research towards enhancing their control
and observer design methodologies. However, designing observers for systems featuring
unmeasurable premise variables proves more challenging than for systems with measurable
ones, especially in the context of state estimation problems, where the presence of the
mismatching terms in the error dynamics poses significant challenges.

To analyze the stability of these dynamics, a variety of methods have been proposed.
Notably, the Lipschitz-based method stands out. This method involves applying the Lip-
schitz condition to the mismatching terms, which allows for the factorization of stability
conditions in terms of the estimation error. Initial research efforts, such as those cited in
[Ichalal et al., 2009b, Bergsten et al., 2002] laid the foundation for designing observers for
T-S systems with UPV using Lipschitz condition. Subsequent studies, including those by
[Louzimi et al., 2017, Ouzaz et al., 2021], have further expanded the use of this method.
They applied it to estimate both the system’s states and unknown inputs, especially in
the context of fault detection. The author in [Ouhib, 2020] further contributed to this
field by designing an unknown input observer where relaxed stability conditions, through
the injection of output error into the premise variable, have been obtained, demonstrating
the versatility and effectiveness of this approach.

Despite the success of the Lipschitz-based method, challenges arise when the Lipschitz
constant exceeds an acceptable threshold, leading to pronounced conservatism in the
LMI constraints, thus rendering the method infeasible [Ichalal et al., 2018]. Efforts to
reduce this conservatism, notably through the introduction of a poly-quadratic Lyapunov
function, are documented in [Ichalal et al., 2012]. This led to the development of two
distinct approaches: the first aimed at ensuring asymptotic convergence of the estimation
error, which unfortunately did not meet the desired target; and a second approach that
focused on input to state stability to eliminate the need for the Lipschitz constant in the
stability condition. This latter approach successfully achieved the desired objective, thus
reducing the conservatism, however, it did not verify asymptotic convergence.

Alternative approaches have been developed to address the limitations of the Lipschitz-
based method, including the L2-attenuation approach, as detailed in [Pérez-Estrada et al., 2018,
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Ouhib and Kara, 2023]. This method does not rely on the Lipschitz assumption, elim-
inates the need for the Lipschitz constant calculations of the mismatching terms, min-
imizes their effect, and additionally, isn’t dependent on the knowledge of the system’s
input bounds, an assumption required in the Lipschitz approach, thereby reducing the
conservatism of the Lipschitz-based method. The efficacy of this approach in addressing
the challenges of the Lipschitz assumption was addressed in various studies. Notably, in
[Ichalal et al., 2008], it was proposed as a solution to these challenges, yielding promising
results. This approach was further applied by the same authors to manage the unknown
inputs affecting the system in [Ichalal et al., 2009a]. Furthermore, its utility in dimin-
ishing the impact of disturbances on measurements has been demonstrated in several
studies, in which several studies have employed this principle [Boukhlouf et al., 2023,
Guzman et al., 2021, Youssef et al., 2017, Chaves Jr et al., 2021].

While typically simpler and less conservative than the Lipschitz method, the L2-
attenuation approach sometimes fails to achieve a sufficiently low attenuation level, even
with successful simulations. This limitation has led to the adoption of the Mean Value
Theorem (MVT) method, as seen in [Pan et al., 2022, Pan et al., 2023], allowing the fac-
torization of the estimation error dynamics, which leads to making it proportional com-
pletely to the estimation error. Hence, the mismatching terms disappeared from the
estimation error dynamics. Due to its advantageous properties over the previous meth-
ods, the MVT has been applied in a variety of applications. For instance, Mimoune et al.
[Mimoune et al., 2023] demonstrated a real-time implementation of a controller that uses
an MVT-based observer on an induction motor, yielding significant results. Similarly,
the study in [Allag et al., 2019] introduced a robust H∞ Field Oriented Control using
MVT for an induction motor. In [Hamidani et al., 2019], a sensorless non-linear control
was proposed for a Permanent Magnet Synchronous Motor. Additionally, the authors in
[Pan et al., 2022] presented an empirical study focusing on fault detection in steering and
torque actuators of autonomous ground vehicles. In the field of detection and mitigation of
cyber-attacks, the mean value theorem was helpful in handling the mismatching terms for
the unknown inputs estimation [Pan et al., 2023]. All of these studies employ the second
Lyapunov theorem with quadratic candidate function to analyze the stability of the state
estimation error, resulting in a sufficient stability condition described as LMI. However,
this candidate function is known for its conservative nature, which requires determining
a common decision variable for the entire set of LMI, hence making it unsuitable for sev-
eral systems. To overcome this problem, research in recent years has focused on lesser
restrictive approaches such as the poly-quadratic Lyapunov function.

This chapter delves into the methods previously outlined for designing observers in T-S
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systems with UPV. Initially, the problem statement is presented in Section 3.2. Subse-
quently, Section 3.3 explores the Lipschitz-based method using a poly-quadratic Lyapunov
function, offering an enhanced solution compared to that detailed in [Ichalal et al., 2012].
Section 3.4 presents the L2-attenuation approach, used for reducing the conservatism
inherent in the Lipschitz-based method and enhancing robustness against measurement
noises. Finally, Section 3.5 discusses the application of the Mean Value Theorem to both
quadratic and poly-quadratic Lyapunov functions, focusing on the non-quadratic approach
to diminish the conservatism observed in previous works reliant on the quadratic method,
such as in [Mimoune et al., 2023, Allag et al., 2019], and the others.

3.2 Problem statement

Consider a nonlinear system that is modeled using the T-S multi-model approach,
which is described as follows: ẋ(t) = ∑r

i=1 µi(ξ(t)) (Aix(t) + Biu(t))
y(t) = ∑r

i=1 µi(ξ(t)) (Cix(t) + Diu(t))
(3.1)

here, x(t) ∈ Rnx represent the state vector, u(t) ∈ Rnu represent the input vector
and y(t) ∈ Rny represent the output vector. The known matrices are represented by
Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Di ∈ Rny×nu and Ci ∈ Rny×nx . Lastly, ξ(t) represent the
premise variables and µi (ξ (t)) are the weighting functions that verify the convex sum
property: 

∑r
i=1 µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1, ∀i = 1, ..r
(3.2)

This system can be described as a perturbed system, represented by the following
equations:  ẋ(t) = ∑r

i=1 µi(ξ̂(t)) (Aix(t) + Biu(t) + ω1(t))
y(t) = ∑r

i=1 µi(ξ̂(t)) (Cix(t) + Diu(t) + ω2(t))
(3.3)

In this model, µi

(
ξ̂ (t)

)
denotes the weighting function of the observer, and ωi (t)

represents the perturbation term, which accounts for the mismatching term: ω1 (t) = ∑r
i=1

(
µi (ξ (t))− µi

(
ξ̂ (t)

))
(Aix (t) + Biu (t))

ω2 (t) = ∑r
i=1

(
µi (ξ (t))− µi

(
ξ̂ (t)

))
(Cix (t) + Diu (t))

(3.4)

Designing an observer for the T-S system described in (3.3) depends on which Lya-
punov function will be used, whether it be the quadratic or the poly-quadratic one. Gen-
erally, the observer’s structure is defined as follows:
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 ˙̂x(t) = ∑r
i=1 µi(ξ̂(t)) (Aix̂(t) + Biu(t) + Li(t)(y(t)− ŷ(t)))

ŷ(t) = ∑r
i=1 µi(ξ̂(t)) (Cix̂(t) + Diu(t))

(3.5)

where, Li(t) represents the observer gains in the general case.
In order to determine the values of the observer gains, the second Lyapunov theorem

is applied to the state estimation error, which is presented as follows:

e(t) = x (t)− x̂ (t) (3.6)

By substituting the expressions from (3.3) and (3.5) into (3.6), the dynamics of the
estimation error can be derived as follows:

ė(t) =
r∑

i=1
µi(ξ̂(t)) [Aie(t) + ω1(t)]−

r∑
i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t)) [Li(t) (Cje(t) + ω2(t))]

=
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t)) [Aie(t) + ω1(t)− Lj(t) (Cie(t) + ω2(t))]

=
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t)) [(Ai − Lj(t)Ci)e(t) + ω1(t)− Lj(t)ω2(t)]

(3.7)

In the case where the output equation is linear, corresponding to C1 = · · · = Cr = C

and D1 = · · · = Dr = D, the mismatching term ω2(t) becomes zero. Consequently, the
estimation error dynamics depicted in (3.7) can be expressed as follows:

ė(t) =
r∑

i=1
µi(ξ̂(t)) [(Ai − Li(t)C)e(t) + ω1(t)] (3.8)

3.2.1 Observer structure in the case of using the quadratic Lya-

punov function:

In the case of designing an observer for a T-S system using the quadratic Lyapunov
function, the observer gains Li(t) are selected as constant. These gains are defined as
follows:

Li(t) = Li, ∀i = 1, . . . , r, (3.9)

where, Li represent the local observer gains for each sub-model individually.
By substituting the expression of the observer gain from (3.9) into (3.5), the following

observer structure is obtained: ˙̂x(t) = ∑r
i=1 µi(ξ̂(t)) (Aix̂(t) + Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) = ∑r
i=1 µi(ξ̂(t)) (Cix̂(t) + Diu(t))

(3.10)

and the estimation error dynamics, as outlined in (3.7), are now given by:

ė(t) =
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t)) [(Ai − LjCi)e(t) + ω1(t)− Ljω2(t)] (3.11)
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while in the case of a linear output equation, the estimation error dynamics, as outlined
in (3.8), are given by:

ė(t) =
r∑

i=1
µi(ξ̂(t)) [(Ai − LiC)e(t) + ω1(t)] (3.12)

This employment of the quadratic Lyapunov function corresponds to the structure
described in Section 2.2.2.

3.2.2 Observer structure in the case of using the poly-quadratic

Lyapunov function:

In the case of using the Poly-quadratic Lyapunov function, which provides less conser-
vatism compared to the quadratic one, the observer structure given in (3.10) cannot be
used because it does not provide LMI stability conditions. The implications of this limita-
tion and the associated discussion will be addressed later in Section 3.5.3. To derive LMI
stability conditions, a specific observer structure is necessary. This particular structure
has been utilized in several literature, such as [Ichalal et al., 2012], [Wang et al., 2016],
and [Guzman et al., 2021]. This observer is obtained by defining the observer gains Li(t)
as follows:

Li(t) = Pµ(t)−1Li, ∀i = 1, . . . , r, (3.13)

where, Li represent the local observer gains for each sub-model individually, and Pµ(t) is
given by:

Pµ(t) =
r∑

j=1
µj

(
ξ̂ (t)

)
Pj (3.14)

here, Pj represents the matrices of the Poly-quadratic Lyapunov function to be deter-
mined.

By substituting the expression of the observer gain from (3.13) into (3.5), the following
observer structure is obtained: ˙̂x(t) = ∑r

i=1 µi(ξ̂(t)) (Aix̂(t) + Biu(t) + Pµ(t)−1 Li(y(t)− ŷ(t)))
ŷ(t) = ∑r

i=1 µi(ξ̂(t)) (Cix̂(t) + Diu(t))
(3.15)

and the estimation error dynamics, as outlined in (3.7), are now given by:

ė(t) =
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))
[
(Ai − Pµ(t)−1 LjCi)e(t) + ω1(t)− Pµ(t)−1 Ljω2(t)

]
(3.16)

while in the case of a linear output equation, the estimation error dynamics, as outlined
in (3.8), are given by:

ė(t) =
r∑

i=1
µi(ξ̂(t))

[
(Ai − Pµ(t)−1 LiC)e(t) + ω1(t)

]
(3.17)

83



CHAPTER 3. STATE ESTIMATION OF TAKAGI-SUGENO FUZZY SYSTEMS WITH UPV

The diagram of this observer is presented in Figure 3.1 below:

u(t) ∑r
i=1 µi(ξ(t))Bi +

∫ ∑r
i=1 µi(ξ(t))Ci + y(t)

∑r
i=1 µi(ξ(t))Di

∑r
i=1 µi(ξ(t))Ai

Takagi-Sugeno Fuzzy System

x(t)

∑r
i=1 µi(ξ̂(t))Bi +

∫ ∑r
i=1 µi(ξ̂(t))Ci + ŷ(t)

∑r
i=1 µi(ξ̂(t))Di

∑r
i=1 µi(ξ̂(t))Ai

−
[∑r

j=1 µj

(
ξ̂ (t)

)
Pj

]−1 [∑r
i=1 µi

(
ξ̂ (t)

)
Li

]

Takagi-Sugeno Fuzzy Observer

x̂(t)

Fig 3.1: Takagi-Sugeno observer structure in the case of using a poly-quadratic Lyapunov function

In the subsequent sections, methods for analyzing the stability of estimation error
dynamics in T-S systems with UPV are presented. These methods are applicable in cases
using either the quadratic Lyapunov function or the poly-quadratic Lyapunov function.

3.3 Lipschitz based observer

This section introduces an enhancement aimed at reducing the conservatism of the
observer based on the Lipschitz method detailed in [Ichalal et al., 2012]. The proposed
methodology is built upon the judicious use of the completion of squares property, which
is a critical Lemma in observer design based on the Lipschitz assumption (see Lemma 1.2).
The proposed observer in this section is based on the poly-quadratic Lyapunov function,
hence, the observer structure used is the one presented in (3.15)

3.3.1 Definitions

A Lipschitz function is a real-valued function defined on a metric space where there
exists a positive constant δ such that for all pairs of points x, y in the domain, the absolute
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difference in the function’s values at those points is no greater than δ times the distance
between the points.

Definition 3.1. (Lipschitz Function) [Sohrab, 2003] Let I be an interval in the set of
real numbers, f : I → R, and δ ∈ R+. We say that f is Lipschitz function with Lipschitz
constant δ if for all x, y ∈ I:

|f(x)− f(y)| ≤ δ|x− y| (3.18)

Consequently, a function that is differentiable on the interval I is Lipschitz on that
interval if and only if its derivative remains bounded there.

The evaluation of the Lipschitz constant δ is detailed in Appendix B.
Before proceeding with the observer design, it is imperative to define the Lipschitz

constant for the mismatching term. Therefore, the following assumptions are posited:

Assumption 3.1. The weighting functions µi(ξ(t)) are Lipschitz:

|µi (ξ (t))− µi

(
ξ̂ (t)

)
| ≤ δi|x(t)− x̂(t)| (3.19)

Assumption 3.2. The system’s state x(t) is bounded:

|x(t)| ≤ αx, (3.20)

Assumption 3.3. The system’s input u(t) is bounded:

|u(t)| ≤ αu, (3.21)

Based on the stated assumptions, the mismatching term ω1(t) is bounded as follows:∣∣∣∣∣
r∑

i=1

(
µi (ξ (t))− µi

(
ξ̂ (t)

))
(Aix (t) + Biu (t))

∣∣∣∣∣ ≤ β|x(t)− ˆx(t)| (3.22)

here, the value of β is determined by:

β =
r∑

i=1
δiρi, (3.23)

with the terms ρi adhering to the constraints:

| (Aix (t) + Biu (t)) | ≤ ρi (3.24)

The specifications for ρi are given by:

ρi = (σmax(Ai)αx + σmax(Bi)αu) (3.25)

where, σmax(M) represents the largest singular value of the matrix M .
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3.3.2 Observer design based on the poly-quadratic Lyapunov

function

Consider the case of the state estimation error described (3.17). In order to study
the stability of this system, the Lipschitz-based method is employed, with reliance on the
following assumptions:

Assumption 3.4. The mismatching term is Lipschitz:

|ω1 (t)| ≤ β |e (t)| ⇐⇒ ω1 (t)T ω1 (t) ≤ β2e (t)T e (t) , (3.26)

where β , positive scalar, is the Lipschitz constant.

Assumption 3.5. The derivatives with respect to time for the weighting functions are
constrained by positive constants, represented as ∅i, described below:∣∣∣µ̇i

(
ξ̂
)∣∣∣ ≤ ∅i (3.27)

Assumption 3.6. The pairs (Ai, C) are observable (or at least detectable).

The subsequent theorem offers adequate conditions for the stability of the estimation
error dynamics, described as LMI:

Theorem 3.1

The estimation error converges asymptotically towards zero if there exist matrices
Pj = Pj

T ∈ Rnx×nx > 0, P0 = P0
T ∈ Rnx×nx , Q = QT ∈ Rnx×nx > 0 and

Li ∈ Rnx×ny such that Pj ≥ P0 and the following LMIs hold ∀i, j = 1, ..., r:

Kii < 0, i = 1, . . . , r (3.28)

1
r−1Kii + 1

2 (Kij +Kji) < 0, 1 ≤ i ̸= j ≤ r (3.29)

where:

Kij =
Mij Pj

Pj −Q

 (3.30)

Mij = (PjAi − LiC)T + (PjAi − LiC) + β2Q +
r∑

k=1
∅k (Pk − P0) (3.31)

Proof. Let us define the poly-quadratic candidate Lyapunov function as follows:

V (t) = e (t)T Pµ(t)e (t) , (3.32)

where Pµ(t) is defined in (3.14).
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The time derivative of V (t) is given by:

V̇ (t) = ė (t)T Pµe (t) + e (t)T Pµė (t) + e (t)T Ṗµe (t) (3.33)

Upon substituting (3.17) and (3.14) into (3.33), the subsequent expression is derived:

V̇ (t) =
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))
[
e(t)T

(
Ai

T Pj − CT LT
i + PjAi − LiC + Ṗµ

)
e(t)

+ω1(t)T Pje(t) + e(t)T Pjω1(t)
] (3.34)

By defining X = ω1(t) and Y = Pje(t), Lemma 1.2 is employed as follows:

ω1(t)T Pje(t) + e(t)T Pjω1(t) ≤ ω1(t)T Qω1(t) + eT PjQ
−1Pje(t) (3.35)

Consequently, the derivative of the Lyapunov function V̇ (t) is constrained as follows:

V̇ (t) ≤
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))
[
e(t)T

(
AT

i Pj − CT LT
i + PjAi − LiC + Ṗµ

)
e(t)

+ω1(t)T Qω1(t) + e(t)T PjQ−1Pje(t)
] (3.36)

In contradiction to the method proposed in [Ichalal et al., 2012], here the matrix Q

is used as a symmetric definite positive matrix, as described in Lemma 1.2, instead of as
an identity matrix multiplied by a scalar. This choice offers more flexibility in defining
appropriate values for the stability conditions, thereby reducing conservatism compared
to the restriction of using a diagonal matrix with identical elements.

By using the Lipschitz condition specified in Assumption 3.4 on inequality (3.36), the
negative value of V̇ (t) is given by:

r∑
i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))
[
eT
(
Ai

T Pj − CT Li
T + PjAi − LiC + Ṗµ + PjQ

−1Pj + β2Q
)

e
]

< 0

(3.37)
The conservatism associated with the time derivatives of the membership functions is

mitigated by introducing a slack variable P0 and employing Assumption 3.5, similarly to
the proof of Theorem 1.2, as follows:

∑r
k=1 µ̇k

(
ξ̂
)

eT Pke = ∑r
k=1 µ̇k

(
ξ̂
)

eT (Pk − P0) e, (3.38)

the objective here is to identify the matrix P0 such that the terms (Pk−P0) are minimized.
The time derivatives of the membership functions, being variable over time, will be

systematically constrained as follows:
r∑

k=1
µ̇k(ξ̂) (Pk − P0) ≤

r∑
k=1

∣∣∣µ̇k(ξ̂)
∣∣∣ (Pk − P0) =

r∑
k=1
∅k (Pk − P0) , (3.39)

such that the matrix P0 has to verify Pk − P0 ≥ 0.
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Then, the inequality (3.37) becomes:
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))
[
eT
(
AT

i Pj − CT LT
i + PjAi − LiC

+
r∑

k=1
∅k (Pk − P0) + PjQ

−1Pj + β2Q

)
e

]
< 0

(3.40)

Due to the non-linear nature of the product between decision variables PjQ
−1Pj, this

inequality does not present a linear form. To address this, the Schur complement, as
outlined in Lemma 1.3, is employed, yielding the subsequent result:

r∑
i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t)) [Kij] < 0, (3.41)

where Kij is given in (3.30).
The advantage of employing the poly-quadratic Lyapunov function is evident here.

The stability condition presented in (3.41) utilizes two symmetric parameters, µj and µj.
As a result, the relaxation technique outlined in Lemma 1.5 can be applied, leading to
the formulation presented in Theorem 3.1.

Example 3: Lipschitz-based observer design for the Lorenz’s chaotic system

In order to study the feasibility of the proposed observer, let us consider the same
example used in [Ichalal et al., 2012] given as follows:

ẋ1 = σ(x2 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3

(3.42)

By defining x (t) =
[
x1 x2 x3

]T
, the state space representation of the Lorenz’s

chaotic system is presented as follows: ẋ (t)= A (x) x (t)
y(t) = Cx (t)

(3.43)

where:

A (x) =


−σ σ 0
ρ −1 −x1

0 x1 −β

 , C =
0 1 0
0 0 1


The parameters of Lorenz’s chaotic system are: σ = 10, ρ = 28 and β = 8/3.
By defining the premise variable as ξ = x1 and using the sector nonlinearity method,

the following results are obtained:
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A1 =


−σ σ 0
ρ −1 −x1max

0 x1max −β

 , A2 =


−σ σ 0
ρ −1 −x1min

0 x1min −β

 ,

B1 = B2 =


0
0
0

 , C =
0 1 0
0 0 1

 , µ1(ξ) = x1(t)− x1min

x1max − x1min

, µ2(ξ) = 1− µ1(ξ)

where x1(t) is bounded as −20 ≤ x1(t) ≤ 20 and the derivatives with respect to time
for the membership functions are bounded by ∅k = 30 , k ∈ {1, 2}.

Theorem 1 given in [Ichalal et al., 2012] is not applicable for the computed Lipschitz
constant β = 173.35, where it is only applicable for values smaller than 29.73. On the
other hand, Theorem 3.1 proposed in our work is applicable for β = 173.35 or even
bigger values. Applying this theorem to the example yields the following matrices:

P1 =


0.0022 −0.0748 0.0007
−0.0748 3.3876 −0.0330
0.0007 −0.0330 1.9444

 , P2 =


0.0052 −0.1042 −0.0006
−0.1042 3.0826 0.0236
−0.0006 0.0236 1.9434



P0 =


−0.0091 −0.0883 0.0002
−0.0883 0.0697 −0.0053
0.0002 −0.0053 −2.5386

 , Q =


0.0001 −0.0004 0
−0.0004 0.0287 0

0 0 0.0270



L1 =


74.9403 0.7897
911.4833 −15.8440
−15.8440 874.5624

 , L2 =


61.4690 −1.3963
908.8857 12.9959
12.9959 874.5045


To illustrate the convergence of the estimation error, the initial conditions of the

system were set to x0 =
[
10 −3 10

]T
, while the observer’s initial conditions were

defined as x̂0 =
[
0 10 40

]T
. The following results were obtained:
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Fig 3.2: Membership functions µ1(ξ(t)) and µ2(ξ(t)).
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Fig 3.3: Time derivatives of the membership functions.
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Fig 3.4: Real states and their estimations.
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Fig 3.5: State estimation error.

Figure Figure 3.2 presents the membership function curves. The results indicate
that these functions satisfy the convex sum property described in equation (3.2), as
they are positive and their sum equals one. Additionally, Figure 3.3 illustrates the time
derivatives of these membership functions. The results confirm that their upper absolute
values are consistent with those defined earlier in the design process of the observer.

As illustrated in Figure 3.4, the estimated states tracked the real ones despite the
different initial conditions of both of them, which proves the convergence of the state
estimation error to zero and at the same time proves the feasibility of the relaxation
proposed in this paper compared to Theorem 1 given in [Ichalal et al., 2012].
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3.4 L2-attenuation approach based observer

Despite efforts to enhance the performance of the Lipschitz-based observer, it con-
tinues to demonstrate significant limitations, particularly when the Lipschitz constant
surpasses acceptable threshold [Ichalal et al., 2007, Ichalal et al., 2008]. To address these
challenges, the L2-attenuation approach has been introduced as an alternative. Unlike
its predecessor, this method does not depend on the Lipschitz condition, thereby offering
increased flexibility and reduced conservatism. The subsequent section will elaborate on
how this method effectively mitigates the challenges associated with mismatching terms
and addresses the impact of noise on measurements.

3.4.1 Definitions

The L2-gain synthesis is a robust method that focuses on optimizing the worst-case
performance of a system against disturbances. Fundamentally, the L2-gain of a system is
a measure of the maximum energy amplification a system can exhibit in response to an
external disturbance, with the aim to minimize (attenuate) this gain to improve system
robustness. By reducing this amplification factor, the system becomes better equipped
to maintain its performance and stability, even when faced with unpredictable external
inputs or disturbances. The concept of L2-gain synthesis is an extension of H∞ norm
of linear systems. Hence, L2-gain synthesis problem is usually called the nonlinear H∞

control problem.
In observer design, employing the L2-attenuation involves creating an observer capable

of estimating system states through the determination of observer gains Li(t), which are
optimized to minimize sensitivity to disturbances d(t) (mismatching terms, noise, etc.).
Therefore, the stability of the estimation error dynamics can be studied by minimizing
the L2-gain , denoted γ, which reflects the effect of the disturbance d(t) on the estimation
error e(t) = x (t) − x̂(t).

State estimation
error dynamics

∑r
i=1 µi(ξ̂(t))Li(t)

Fuzzy observer gains

d(t) e(t)

y(t)− ŷ(t)

Fig 3.6: Robust Observation problem.
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In order to design an observer based on the L2-attenuation approach, the following
definitions are necessary:

Definition 3.2. (L2-norm). The L2-norm of signal d(t), denoted ∥d(t)∥2 is defined by:

∥d(t)∥2 =
(∫ +∞

−∞
d(t)T d(t)dt

)1/2
(3.44)

Definition 3.3. (L2-gain). The L2-gain of the system with input d(t) and output e(t) is:

γ = sup ∥e(t)∥2

∥d(t)∥2
(3.45)

Lemma 3.1. The amplification from d(t) to e(t) is bounded by γ as ∥e(t)∥2
∥d(t)∥2

≤ γ if there
exists a Lyapunov function V (t), such that:

V̇ (t) + e (t)T e (t)− γ2d (t)T d (t) < 0 (3.46)

3.4.2 Observer design by attenuating the mismatching terms

Consider the case of the state estimation error described in (3.12), which corresponds to
the use of the quadratic Lyapunov function in the case of a linear output equation. In order
to study its stability, the L2-attenuation method is employed by defining the disturbance
d(t) as the mismatching term ω1(t), and with reliance on the following assumptions:

Assumption 3.7. The nonlinear system is stable which leads to bounded state.

Assumption 3.8. The system’s input u(t) is bounded.

Assumption 3.9. The pairs (Ai, C) are observable (or at least detectable).

The subsequent theorem offers adequate conditions for the stability of the estimation
error dynamics, described as LMI:

Theorem 3.2

The estimation error is asymptotically stable and the L2 performance is guaranteed
with an attenuation level γ, if there exist matrices P = P T ∈ Rnx×nx > 0, Mi ∈
Rnx×ny and positive scalar γ̄ such that the following minimization problem holds
∀i = 1, ..., r :

min γ̄ (3.47)Ai
T P + PAi −MiC − CT Mi

T + I P

P −γ̄I

 < 0 (3.48)

where the observer gains are given by Li = P −1Mi.
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Proof. The stability of the estimation error dynamics is studied using the quadratic Lya-
punov function V (t) = e (t)T Pe (t), where its derivative is given by:

V̇ (t) = ė (t)T Pe (t) + e (t)T P ė (t) (3.49)

Upon substituting (3.12) into (3.49), the subsequent expression is derived:

V̇ (t) =
r∑

i=1
µi

(
ξ̂(t)

)
e(t)T ((Ai − LiC)T P + P (Ai − LiC))e(t)+ω1(t)T Pe(t)+e(t)T Pω1(t)

(3.50)
Substituting (3.50) in (3.46), where d(t) = ω1(t), we obtain the following inequality:

r∑
i=1

µi

(
ξ̂ (t)

) e

d

T Ai
T P + PAi − PLiC − CT Li

T P + I P

P −γ2I

e

d

 < 0 (3.51)

By using the change of variables Mi = PLi and γ̄ = γ2, Theorem 3.2 is obtained.

Example 4: L2-attenuation based observer design for separately excited DC
motor

1 - Modeling of the Separately Excited Dc Motor
Figure 3.7 showcases the Separately Excited DC Motor (SE-DCM), which comprises

two core components: the stator, a stationary part, and the armature, a rotating ele-
ment. The stator establishes a magnetic field utilizing an external DC source, repre-
sented as Vf , with if denoting the current flowing through it. On the other hand, the
armature yields mechanical output, powered by a separate DC source, symbolized as
Va. The current flowing through the armature is indicated as ia. Within this context, ω

signifies the electrical angular speed, and TL designates the load torque applied to the
rotating part. The definitions for the remaining parameters can be found in Table 3.1.

Fig 3.7: Separately Excited DC Motor Structure.
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Based on the equivalent circuit expressed in Figure 3.7, the mathematical model of
the motor is giving as follows:

Vf = Rf if + Lf
dif

dt

Va = Raia + La
dia

dt
+ ωMaf if

Jm

p
dω
dt

= Maf if ia − f
p
ω − TL

(3.52)

By defining x (t) =
[
if ia ω

]T
, u (t) =

[
Vf Va

]T
, the state space representation of

the SE-DCM is presented as follows: ẋ (t)= A (x) x (t) + Bu (t) + ETL(t)
y(t) = Cx (t)

(3.53)

where:

A (x) =


−Rf

Lf
0 0

0 −Ra

La
−Maf

La
if

0 p
Jm

Maf if − f
Jm

 , B =


1

Lf
0

0 1
La

0 0

 , E =


0
0
− p

Jm

 , C =
1 0 0
0 1 0



The parameters of the motor are giving in the following table:

Parameters Values
Armature resistance Ra = 6.67 [Ω]
Field resistance Rf = 880 [Ω]
Armature inductance La = 0.198 [H]
Field inductance Lf = 55.366 [H]
Armature-field mutual inductance Maf = 5.213 [H]
Moment of inertia Jm = 0.0398 [kg. m2]
Number of pole pairs p = 2
Viscous friction coefficient f = 0.001 [Nm]

Table 3.1: Separately Excited DC Motor parameters

2 - Takagi-Sugeno fuzzy representation of the system
The T-S multi-model is given as follows: ẋ (t)= ∑r

i=1 µi (x (t)) (Aix (t) + Biu (t) + EiTL (t))
y (t)= Cx (t)

(3.54)

By defining the premise variable as ξ = if as the nonlinear terms in the dynamical
model of the SE-DCM in (3.53), the weighting functions can be described as follows:

µ1 (x (t)) = W1 (ξ) and µ2 (x (t)) = W2 (ξ)
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where using the sector nonlinearity approach, the following functions are obtained:

W1 (ξ) = ξ − ξmin

ξmax − ξmin

, W2(ξi) = ξmax − ξ

ξmax − ξmin

The sub-matrices Ai, Bi and Ei of the multi-model (3.54) are giving using the sector
nonlinearity approach as follows:

A1 =


−Rf

Lf
0 0

0 −Ra

La
−Maf

La
if max

0 p
Jm

Maf if max − f
Jm

 , A2 =


−Rf

Lf
0 0

0 −Ra

La
−Maf

La
if min

0 p
Jm

Maf if min − f
Jm



Bi =


1

Lf
0

0 1
La

0 0

 , Ei =


0
0
− p

Jm

 ∀i = 1 . . . 2.

3 - Observer design for the separately excited DC motor
By considering the output as field and armature currents y(t) =

[
if ia

]T
, Theo-

rem 3.2 is applied to derive the following gains:

L1 =


617.4613 0

0 607.0818
0 −2.4956× 106

 , L2 =


617.4613 0

0 607.0818
0 2.4956× 106

 ,

P =


3.8394 0 0

0 3.7766 0
0 0 0.0004

 × 105, γ = 39.8002

4 - Simulation results
To demonstrate the stability of the error dynamics, the initial conditions of the

system were set to x0 (t) =
[
0 0 0

]T
, while the initial conditions of the observer were

defined as x̂0 (t) =
[
0.2 5 10

]T
. The results obtained from this test are depicted

in Figure 3.8 through Figure 3.10. Figure 3.8 and Figure 3.9, individually illustrate
the actual currents and their respective estimations, while Figure 3.10 displays the
estimation of the electrical speed.

As observed, despite the differing initial conditions between the system and the
observer, the observer still managed to accurately estimate the real states of the system.
The estimation error asymptotically converged to zero, affirming the efficacy of the
theorem.

On the other hand, the results demonstrate that the derived observer gains have
successfully ensured that the amplification from the mismatching term ω1(t) to the
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estimation error e(t) is minimized and bounded by γ, Consequently, this proves the
feasibility of using the L2-gain synthesis to design an observer for the SE-DCM. No-
tably, employing the Lipschitz-based method for designing the observer was found to be
inapplicable.
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Fig 3.8: Field current estimation.
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Fig 3.9: Armature current estimation.
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Fig 3.10: Electrical angular speed estimation.

3.4.3 Observer design in the presence of measurement noise

In this section, the case of measurements affected by noise, denoted as φ(t) ∈ Rnφ , will
be studied. The focus is on the scenario where the output equation of the T-S multi-model
is linear (Ci = C and Di = D): ẋ (t) =∑r

i=1 µi

(
ξ̂ (t)

)
(Aix (t) + Biu (t) + ω1(t))

y (t) =Cx (t) + Du (t) + Wyφ(t)
(3.55)

where, Wy ∈ Rny×nφ is the influence matrix of the noise φ(t) on the measurements.
The observer considered for this system is given by: ˙̂x (t) =∑r

i=1 µi

(
ξ̂ (t)

)
(Aix̂ (t) + Biu (t) + Li (y(t)− ŷ(t)))

ŷ (t) =Cx̂ (t) + Du (t)
(3.56)
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which is the same observer given in (3.10) but in the case of linear output equation.
The subsequent theorem offers adequate conditions for the stability of the estimation

error dynamics, described as LMI:

Theorem 3.3

The estimation error is asymptotically stable and the L2 performance is guaranteed
with an attenuation level γ, if there exist matrices P = P T ∈ Rnx×nx > 0, Mi ∈
Rnx×ny and positive scalar γ̄ such that the following minimization problem holds
∀i = 1, ..., r :

min γ̄ (3.57)
Ai

T P + PAi −MiC − CT Mi
T + I P −MiWy

P −γ̄I 0
−W y

T Mi
T 0 −γ̄I

 < 0 (3.58)

where the observer gains are given by Li = P −1Mi.

Proof. The dynamics of the estimation error e(t) = x (t)− x̂(t) are given as follows:

ė (t) =
r∑

i=1
µi

(
ξ̂ (t)

) (
(Ai − LiC) e (t) +

(
W̃x − LiW̃y

)
d(t)

)
, (3.59)

where:

W̃x =
[
I 0

]
, W̃y =

[
0 Wy

]
, d (t) =

ω1(t)
φ(t)


To study the stability of the error dynamics, the quadratic Lyapunov function is used:

V (t) = e (t)T Pe (t) (3.60)

The derivative of V (t) with respect to t is:

V̇ (t)= ∑r
i=1 µi

(
ξ̂(t)

)
e(t)T ((Ai − LiC)T P + P (Ai − LiC))e(t)

+d(t)T
(
W̃x − LiW̃y

)T
Pe(t) + e(t)T P

(
W̃x − LiW̃y

)
d(t)

(3.61)

To achieve the L2 performance, we substitute (3.61) into (3.46) to obtain the following
inequality:

r∑
i=1

µi

(
ξ̂ (t)

) e

d

T
Ai

T P + PAi − PLiC − CT Li
T P + I P

(
W̃x − LiW̃y

)
(
W̃x − LiW̃y

)T
P −γ2I


e

d

 < 0

(3.62)
Using the change of variables Mi = PLi and γ̄ = γ2, and replacing W̃x and W̃y by

their values, Theorem 3.3 is obtained.
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Example 5: Robust observer design for separately excited DC motor
The same system from the previous example will be employed here, maintaining the

same initial conditions for both the system and the observer.
1 - Observer design for the separately excited DC motor
By considering the output as field and armature currents y(t) =

[
if ia

]T
, and

defining the influence matrix Wy as:

Wy =
1
1

 ,

the method outlined in Theorem 3.3 is applied to derive the following results:

L1 =


66.7819 −66.7294
−107.5522 107.6149

3.8664× 105 −3.8664× 105

 , L2 =


66.7819 −66.7294
−107.5522 107.6149
−3.8664× 105 3.8664× 105

 ,

P =


8.8287 −5.8449 0
−5.8449 5.8845 0

0 0 0.0040

 × 104

2 - Simulation results
In studying the observer’s reliability against sensor noise, a random noise amplitude

of 2(A) was introduced to the system’s output vector. The results obtained from this
are depicted in Figure 3.11 through Figure 3.14. Figure 3.11 presents the noise-distorted
measured currents alongside the real currents and their estimations. Figure 3.12 and
Figure 3.13, individually illustrate the actual currents and their respective estimations,
while Figure 3.14 displays the estimation of the electrical speed.

As observed, despite the presence of noise in the measurements and the differing
initial conditions between the system and the observer, the observer still managed to
accurately estimate the real states of the system. The estimation error asymptotically
converged to zero, affirming the efficacy of the proposed theorem.

The T-S representation of the SE-DCM, as depicted in (3.54), utilizes if as its premise
variable, which is measurable in this example. This naturally allows observer design to
be based on MPV approach discussed in Chapter 2. However, these measurements are
distorted by noise interference, rendering them unsuitable for use. As a solution, the
proposed observer design navigates around this issue by dealing with an unmeasurable
premise variable. This approach circumvents the use of noisy measured current and
concurrently ensures the observer’s robustness, guaranteeing accurate acquisition of the
system’s states.
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Fig 3.11: Measured, real and estimated currents.
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Fig 3.12: Field current estimation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (S)

-5

0

5

10

15

20

25

30

35

40

45

A
rm

a
tu

re
 c

u
rr

e
n

t 
(A

)

0 0.01 0.02
0

5

10

15

20

Fig 3.13: Armature current estimation.
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Fig 3.14: Electrical angular speed estimation.

3.4.4 Observer design for fuzzy output equation based on the

poly-quadratic Lyapunov function

In this section, the study focuses on the case of fuzzy output equations. Consideration
is given to the T-S system (3.3) and its corresponding observer (3.15). This scenario
pertains to the state estimation error outlined in (3.16). To analyze the system’s stability,
the L2-attenuation method is employed, based on the following assumptions:

Assumption 3.10. The nonlinear system is stable and the input u(t) is bounded.

Assumption 3.11. The derivatives with respect to time for the weighting functions are
constrained by positive constants, represented as ∅i, described below:∣∣∣µ̇i

(
ξ̂
)∣∣∣ ≤ ∅i (3.63)

Assumption 3.12. The pairs (Ai, Ci) are observable (or at least detectable).

The subsequent theorem offers adequate conditions for the stability of the estimation
error dynamics, described as LMI:
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Theorem 3.4

The estimation error is asymptotically stable and the L2 performance is guaranteed
with an attenuation level γ, if there exist matrices Pj = Pj

T ∈ Rnx×nx > 0, P0 =
P0

T ∈ Rnx×nx , Lj ∈ Rnx×ny and positive scalar γ̄ such that Pj ≥ P0 and the
following minimization problem holds ∀i, j = 1, ..., r:

min γ̄ (3.64)

Kii < 0, i = 1, . . . , r (3.65)

1
r−1Kii + 1

2 (Kij +Kji) < 0, 1 ≤ i ̸= j ≤ r (3.66)

where:

Kij =


Ai

T Pj + PjAi − LjCi − CT
i Lj

T + I Pj −Lj

Pj −γ̄I 0
−Lj

T 0 −γ̄I

 (3.67)

Proof. Let us define the poly-quadratic candidate Lyapunov function as follows:

V (t) = e (t)T Pµ(t)e (t) , (3.68)

where Pµ(t) is defined in (3.14).
The time derivative of V (t) is given by:

V̇ (t) = ė (t)T Pµe (t) + e (t)T Pµė (t) + e (t)T Ṗµe (t) (3.69)

Upon substituting (3.16) and (3.14) into (3.69), the subsequent expression is derived:

V̇ (t) =
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))
[
e(t)T

(
Ai

T Pj − CT
i LT

j + PjAi − LjCi + Ṗµ

)
e(t)

+ω1(t)T Pje(t) + e(t)T Pjω1(t) + ω2(t)T (−Lj)T e(t) + e(t)T (−Lj)ω2(t)
] (3.70)

This equation can be formulated as follows:

V̇ (t) =
r∑

i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))
[
e(t)T

(
AT

i Pj − CT
i LT

j + PjAi − LjCi + Ṗµ

)
e(t)

+d(t)T
(
PjW̃x − LjW̃y

)T
e(t) + e(t)T

(
PjW̃x − LjW̃y

)
d(t)

] (3.71)

where:

W̃x =
[
I 0

]
, W̃y =

[
0 I

]
, d (t) =

ω1(t)
ω2(t)


To achieve the L2 performance, we substitute (3.71) into (3.46) to obtain the following

inequality:
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r∑
i=1

r∑
j=1

µi(ξ̂(t))µj(ξ̂(t))
e

d

T

AT
i Pj − CT

i LT
j + PjAi − LjCi + I + Ṗµ

(
PjW̃x − LjW̃y

)
(
PjW̃x − LjW̃y

)T
−γ2I


e

d

 < 0

(3.72)

Using the change of variables γ̄ = γ2, substituting W̃x and W̃y with their values, and
introducing the slack variable P0 similarly to the proof of Theorem 3.1, Theorem 3.4 is
derived.

Example 6:
To examine the feasibility of the observer, consider the following system:

A1 =
−10 −1
−20 −20

 , A2 =
−10 15
−10 6

 , C1 =
0 1
0 −6

 , C2 =
 2 0
−2 −5

 ,

B1 = B2 =
−0.2

0.03

 , µ1(ξ) = sin(0.2x1(t))
2 , µ2(ξ) = 1− µ1(ξ)

where the time derivatives of the membership functions are bounded by ∅k = 40.
Applying Theorem 3.4 to this example yields the following results:

P1 =
 1× 107 6.288× 106

6.288× 106 1.9966× 107

 , P2 =
9.9997× 106 6.2277× 106

6.2277× 106 1.1898× 107



L1 =
3.2796× 107 1.4204× 106

3.0603× 107 −1.9690× 108

 , L2 =
 3.0283× 107 −1.2946× 107

−1.7123× 107 −2.2219× 108


To illustrate the convergence of the estimation error, the initial conditions of the

system were set to x0 =
[
0.2 5

]T
, while the observer’s initial conditions were defined

as x̂0 =
[
0 0

]T
. The following results were obtained:
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Fig 3.15: State x1(t) and its estimation.
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Fig 3.16: State x2(t) and its estimation.
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3.5 Mean Value Theorem based observer

While the L2-gain synthesis is typically less conservative than the Lipschitz method,
there are cases where it fails to provide an adequately low attenuation level, rendering it
unsatisfactory even in successful simulations. Moreover, since the disturbance explicitly
depends on the system state and control input, its effects on the error dynamics strongly
depend on the behaviors of the nonlinear system [Nguyen et al., 2021]. Consequently, this
section introduces an alternative formulation of the Lipschitz method: the Differential
Mean Value Theorem. As explained in the introduction, this approach allows for the
factorization of the estimation error dynamics, making it proportional completely to the
estimation error. Therefore, effectively eliminating the mismatching terms from the error
dynamics.

3.5.1 Definitions

The mean value theorem states that for a given curve f(x) connecting two points a

and b, there exists at least one point z on the curve at which the tangent is parallel to
the secant line drawn between these two points. This theorem is a consequence of Rolle’s
Theorem.

2 4 6 8

1

2

3

a bz

Tangent

Secant

x

f(x)

Fig 3.17: Graph of mean value theorem

The following Lemmas provide the mathematical description of MVT:

Lemma 3.2. (MVT for one dimension) [Zemouche et al., 2005] Let f : [a, b] −→ R be
continuous on [a, b] and differentiable on (a, b). Then, there is some z with a < z < b

such that
f(a)− f(b) = f ′(z)(a− b) (3.73)
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For higher-dimension, the following definition and Lemma are stated:

Definition 3.4. Let x, y be two elements in Rn. We define by conv(x, y) the convex hull
of the set {x, y}, i.e.

conv(x, y) = {λx + (1− λ)y, λ ∈ [0, 1]} (3.74)

Lemma 3.3. (MVT for higher-dimension) [Zemouche et al., 2005] Let f : Rn → R. Let
a, b be two elements in Rn. We assume that f is differentiable on conv(a, b). Then, there
is a constant z ∈ conv(a, b), z ̸= a, z ̸= b such that :

f(a)− f(b) = f ′(z)(a− b) (3.75)

where
f ′ =

[
∂f

∂x1
. . .

∂f

∂xn

]
(3.76)

For higher-dimensional vector-valued functions, the mean value theorem is stated by
the following Lemmas:

Lemma 3.4. (Canonical basis) [Zemouche et al., 2005] Let f(x) : Rn → Rn be a vector
function, fi(x) : Rn → R the ith component of f , and En is the canonical basis of the
vectorial space Rn for all n ≥ 1:

En = {en (i)| en (i) = (0, ..., 0, 1︸︷︷︸
i

, 0, ..., 0)T , i = 1, ..., n} (3.77)

Therefore, f (x) can be written as:

f (x) = ∑n
i=1 en (i) fi(x) (3.78)

Lemma 3.5. (MVT for higher-dimension vector-valued functions) [Zemouche et al., 2005]
Let a, b ∈ Rn and assume that f is differentiable on conv(a, b). It follows that there exist
constant vectors z1, ..., zn ∈ conv(a, b) with zi ̸= a, and zi ̸= b for each i = 1, ..., n

such that:
f (a)− f (b) = ∑n

i=1
∑n

j=1 en (i) en (j)T ∂fi(zi)
∂xj

(a− b) (3.79)

Applying Lemma 1.1 allows us to rewrite the equation (3.79) in terms of T-S repre-
sentation

f (a)− f (b) = ∑q≤2n2

i=1 hi (z (t))Hi. (a− b) (3.80)

where Hi represents the sub-model of the nonlinear term ∑n
i=1

∑n
j=1 en(i)en(j)T ∂fi(zi)

∂xj
, and

hi (z (t)) are its weighting functions, while q represents the number of sub-models.
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3.5.2 Observer design using the quadratic Lyapunov function

When using the MVT, the system is maintained in its original form as indicated in
(3.1), rather than in a perturbed form as shown in (3.3). Let’s consider the following
observer:  ˙̂x(t) = ∑r

i=1 µi(ξ̂(t)) (Aix̂(t) + Biu(t)) + L(t)(y(t)− ŷ(t))
ŷ(t) = ∑r

i=1 µi(ξ̂(t)) (Cix̂(t) + Diu(t))
(3.81)

The dynamics of the estimation error e(t) = x (t)− x̂(t) are given as follows:

ė(t) =
r∑

i=1
µi(ξ(t)) (Aix(t) + Biu(t))︸ ︷︷ ︸

Φ1(x(t))

−
r∑

i=1
µi(ξ̂(t)) (Aix̂(t) + Biu(t))︸ ︷︷ ︸

Φ1(x̂(t))

− L[
r∑

i=1
µi(ξ(t)) (Cix(t) + Diu(t))︸ ︷︷ ︸

Φ2(x(t))

−
r∑

i=1
µi(ξ̂(t)) (Cix̂(t) + Diu(t))︸ ︷︷ ︸

Φ2(x̂(t))

]
(3.82)

By defining a = x(t) and b = x̂(t), the mean value theorem is applied to the terms Φ1

and Φ2, utilizing Lemma 3.5, to derive the subsequent result:

ė (t) = ∑q
i=1 hi (z (t)) (Ai − LCi) e (t) (3.83)

where Ai corresponds to Φ1, and Ci corresponds to Φ2.
According to this new expression of the state estimation error dynamics, it is evi-

dent that the mismatching terms have been eliminated, resulting in dynamics that are
completely proportional to the estimation error. This proportional relationship simplifies
subsequent stability analysis using the second Lyapunov theorem. However, it is impor-
tant to note that the weighting functions in this expression, denoted as hi(t), differ from
those in the original system and observer µi(t). Nevertheless, this difference does not pose
an issue as the weighting functions still satisfy the convex sum property, ensuring that
they do not involve in the stability conditions, consistent with approaches taken in the
previous theorems.

The following theorem provides sufficient stability conditions of the error dynamics:

Theorem 3.5

The estimation error converges asymptotically toward zero with decay rate α if
there exist matrices P = P T ∈ Rnx×nx > 0 and M ∈ Rnx×ny such that the
following LMI holds ∀i = 1, ..., q:

Ai
T P + PAi −MCi − Ci

T MT + 2αP < 0 (3.84)

where the observer gain is given by L = P −1M .
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Proof. To study the stability of the error dynamics, the quadratic Lyapunov function is
used:

V (t) = e (t)T Pe (t) (3.85)

The derivative of V (t) with respect to t is given as follows:

V̇ (t) =
q∑

i=1
hi(z(t))eT

(
(Ai − LCi)T P + P (Ai − LCi)

)
e (3.86)

To improve the performance of the estimation, the following decay rate is used:

V̇ (t) ≤ −2αV (t) (3.87)

By substituting (3.85) and (3.86) in (3.87), the following inequality is obtained:
q∑

i=1
hi(z(t))eT

(
AT

i P − CT
i LT P + PAi − PLCi + 2αP

)
e < 0 (3.88)

The inequality (3.88) is not linear due to the product of the variables P and L.
However, applying the change of variable M = PL provides a solution for achieving the
linear stability conditions outlined in Theorem 3.5.

Remark 3.1

The implementation of a unique gain L in the design of the observer stems from
our utilization of the MVT. With the use of MVT, employing ∑r

i=1 µi(ξ̂(t))Li for
observer gains is not productive. This is because while the observer’s weighting
functions are µi(ξ), those of the estimation error dynamics are hi(z), and this dis-
tinction between the two membership functions prevents the application of relax-
ation theorems, like Tuan’s method outlined in Lemma 1.5. Consequently, all the
observer gains Li need to satisfy every inequality, rather than each Li meeting only
its corresponding inequality i. This specific aspect makes it clear that employing
the PDC form wouldn’t lead to a reduction in conservatism. Instead, it might
inadvertently deteriorate the computational complexity due to an increase in the
number of inequalities involved, hence, the decision to employ a common gain L

was a deliberate choice to manage these challenges.

Example 7: MVT based observer design for three-tank hydraulic system

1 - Dynamic model of the system
The three-tank hydraulic system illustrated in Figure 3.18, based on Guzman’s de-

sign [Guzman et al., 2021], features three tanks with equal cross-sectional areas S, con-
nected by pipes with areas Sp1,2,3. Water from a reservoir fills the first and second tanks
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via pumps P1 and P2, with flow rates u1 and u2. Valves in each tank manage water
release, and the system ensures water levels in the order x1 > x3 > x2.

Fig 3.18: Three-tank hydraulic system.

Let us define x (t) =
[
x1 x2 x3

]T
, u (t) =

[
u1 u2

]T
and the premise variables

ξ (x) =
[
ξ1(x) ξ2(x) ξ3(x)

]T
. Using these definitions, the system can be represented

in the following state-space form:

ẋ(t) = 1
S


−C1ξ1(x) 0 0

0 −C2ξ2(x) C3ξ3(x)
C1ξ1(x) 0 −C3ξ3(x)

x(t) + 1
S


1 0
0 1
0 0

u(t) (3.89)

where

ξ1 (x) =

√
|x1 − x3|

x1
, ξ2 (x) =

√
x2

x2
, ξ3 (x) =

√
|x3 − x2|

x3

C1 = η13.Sp1.sign (x1 − x3) .
√

2g, C2 = η20.Sp2.
√

2g, C3 = η32.Sp3.sign (x3 − x2) .
√

2g

The parameters of the motor are giving in the following table:

Parameters Values
The gravitational acceleration g = 9.8 [m/s2]

The coefficient of discharge
η13 = η32 = 0.456
η20 = 0.652

The cross-section of the connection tubes
Sp1 = Sp3 = 0.5× 10−4 [m2]
Sp2 = 0.8× 10−4 [m2]

The cross-section of the tanks S = 154 × 10−4[m2]

Table 3.2: Three-tank hydraulic system parameters

Given the constraint x1 > x3 > x2 and these parameters, we derive C1 = 1.0094 ×
10−4, C2 = 2.3092× 10−4, and C3 = 1.0094× 10−4.
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2 - Observer design for the three-tank hydraulic system
In order to apply Theorem 3.5, the matrices Ai and Ci have to be determined.

According to the mean value theorem, Φ1 (x(t)) and its Jacobian ∂Φ1
∂x

can be defined as
follows:

Φ1 (x(t)) = 1
S


−C1ξ1x1 + u1(t)

−C2ξ2x2 + C3ξ3x3 + u2(t)
C1ξ1x1 − C3ξ3x3



∂Φ1

∂x
= 1

S


−C1

2 ε1(x) 0 C1
2 ε1(x)

0 −C2
2 ε2(x)− C3

2 ε3(x) C3
2 ε3(x)

C1
2 ε1(x) C3

2 ε3(x) −C3
2 ε3(x)− C1

2 ε1(x)


where the new premise variables εi (x) are given by:

ε1 (x) = 1√
x1 − x3

, ε2 (x) = 1
√

x2
and ε3(x) = 1√

x3 − x2
,

and their limits are:

2 ≤ ε1 (x) ≤ 12, 2 ≤ ε2 (x) ≤ 4 and 2 ≤ ε3 (x) ≤ 14.

Through the use of the T-S representation on ∂Φ1
∂x

,The matrices Ai can be obtained
as follows:

A1 = 1
S
×

−C1
2 ε1max 0 C1

2 ε1max

0 −C2
2 ε2max − C3

2 ε3max
C3
2 ε3max

C1
2 ε1max

C3
2 ε3max −C3

2 ε3max − C1
2 ε1max


,

A2 = 1
S
×

−C1
2 ε1max 0 C1

2 ε1max

0 −C2
2 ε2max − C3

2 ε3min
C3
2 ε3min

C1
2 ε1max

C3
2 ε3min −C3

2 ε3min − C1
2 ε1max



A3 = 1
S
×

−C1
2 ε1max 0 C1

2 ε1max

0 −C2
2 ε2 min − C3

2 ε3max
C3
2 ε3max

C1
2 ε1max

C3
2 ε3max −C3

2 ε3max − C1
2 ε1max


,

A4 = 1
S
×

−C1
2 ε1max 0 C1

2 ε1max

0 −C2
2 ε2min − C3

2 ε3min
C3
2 ε3min

C1
2 ε1max

C3
2 ε3min −C3

2 ε3min − C1
2 ε1max


A5 = 1

S
×

−C1
2 ε1min 0 C1

2 ε1min

0 −C2
2 ε2max − C3

2 ε3max
C3
2 ε3max

C1
2 ε1min

C3
2 ε3max −C3

2 ε3max − C1
2 ε1min


,

A6 = 1
S
×

−C1
2 ε1min 0 C1

2 ε1min

0 −C2
2 ε2max − C3

2 ε3min
C3
2 ε3min

C1
2 ε1min

C3
2 ε3min −C3

2 ε3min − C1
2 ε1min


A7 = 1

S
×

−C1
2 ε1min 0 C1

2 ε1min

0 −C2
2 ε2min − C3

2 ε3max
C3
2 ε3max

C1
2 ε1min

C3
2 ε3max −C3

2 ε3max − C1
2 ε1min


,

A8 = 1
S
×

−C1
2 ε1min 0 C1

2 ε1min

0 −C2
2 ε2min − C3

2 ε3min
C3
2 ε3min

C1
2 ε1min

C3
2 ε3min −C3

2 ε3min − C1
2 ε1min



107



CHAPTER 3. STATE ESTIMATION OF TAKAGI-SUGENO FUZZY SYSTEMS WITH UPV

According to the output equation, which is linear, Φ2(x(t)) = Cx(t); hence:

∂Φ2

∂x
= C =

1 0 0
0 1 0


Therefore:

Ci = C

By solving the LMI in Theorem 3.5, the following observer matrices are obtained:

L =


0.4840 0.9309
−0.9247 0.4900
0.0010 0.1682

 , P =


1.1432 −0.0016 −0.1489
−0.0016 1.1300 −0.1619
−0.1489 −0.1619 1.8552


3 - Simulation validation

The simulation has been validated by considering the initial condition as x0 =[
0.08 0.06 0.07

]T
and x̂0 =

[
0.181 0.1610 0.171

]T
. The system inputs are shown

in Figure 3.19. The tanks levels and their estimation are shown in Figure 3.20.
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Fig 3.19: The flow rates of pumps.
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Fig 3.20: Tank levels and their estimations.

3.5.3 Observer design using the poly-quadratic Lyapunov func-

tion

In this section, an observer design utilizing the MVT and the poly-quadratic Lyapunov
function is introduced to mitigate the conservatism inherent in the quadratic approach. As
outlined in Section 3.2.2, designing an observer with the poly-quadratic Lyapunov function
requires employing a specific observer structure to derive LMI stability conditions. When
incorporating the MVT, this structure is defined as follows:
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 ˙̂x = ∑r
i=1 µi(ξ̂(t)) (Aix̂(t) + Biu(t)) +

(∑q
j=1 hj(z(t))Pj

)−1
L(y(t)− ŷ(t))

ŷ(t) = ∑r
i=1 µi(ξ̂(t)) (Cix̂(t) + Diu(t))

(3.90)

However, a significant challenge in using this structure with the MVT is the presence
of z(t), the state between x(t) and x̂ (t), which is unknown according to Lemma 3.5.
This necessitates approximating z(t) with x̂ (t), introducing a certain degree of error.
To circumvent this issue, one might resort to the conventional observer structure (3.81),
where stability conditions will be obtained as BMI. However, BMIs are typically more
complex to solve than LMIs. To address this complexity, a method for solving BMIs
using the same convex solvers employed for LMIs is proposed.

To analyze the estimation error dynamics stability using the poly-quadratic Lyapunov
function, the following assumption is required:

Assumption 3.13. The derivatives with respect to time for the weighting functions are
constrained by positive constants, represented as ∅i, described below:

∣∣∣ḣi (z(t))
∣∣∣ ≤ ∅i (3.91)

By defining in prior the value of ∅i, then the following theorem provides sufficient
conditions described as BMI to ensure the asymptotic convergence of the error dynamics:

Theorem 3.6

The estimation error converges asymptotically toward zero if there exist matrices
Pj nx×nx = Pj

T > 0, L ∈ Rnx×ny a symmetric matrix P0 ∈ Rnx×nx such that
Pk ≥ P0, and the following inequalities hold ∀i, j = 1, ..., q:

Kii < 0, i = 1, . . . , q (3.92)

1
q − 1Kii + 1

2 (Kij +Kji) < 0, 1 ≤ i ̸= j ≤ q (3.93)

where:

Kij = AT
i Pj + PjAi − CT

i LT Pj − PjLCi +∑q
k=1 ∅k (Pk − P0) (3.94)

Proof. In order to use a relaxation method from those detailed in Section 1.7.3, it is
imperative that both membership functions of the inequality are symmetric and evaluated
at the same state variable. Given that the membership functions of the error dynamics are
immutable, as outlined in (3.83), the Lyapunov function must be chosen with identical
membership functions as those of the error dynamics and evaluated at the same state
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variable. Therefore, the poly-quadratic Lyapunov function is described as follows:

V (t) = e (t)T

 q∑
j=1

hj (z (t))Pj

 e (t) , Pj = P T
j > 0 (3.95)

Note that in contrast to the previously employed function (3.14) which incorporate
µj (x̂ (t)), this one utilizes hj (z (t)).

The time derivative of V (t) is:

V̇ (t) =
q∑

i=1

q∑
j=1

hi (z) hj (z) eT (AT
i Pj + PjAi − CT

i LT Pj − PjLCi)e +
q∑

k=1
ḣk (z) eT Pke

(3.96)
The conservatism associated with the time derivatives of the membership functions is

mitigated by introducing a slack variable P0 and employing the Assumption 3.13, similarly
to the proof of Theorem 3.1. Consequently, equation (3.96) becomes:

V̇ (t) =
q∑

i=1

q∑
j=1

hi(z)hj(z)eT [Kij]e (3.97)

where Kij is given in (3.94).
The negativity of V̇ is achieved by applying the relaxation technique outlined in

Lemma 1.5, which results in the formulation of Theorem 3.6.

The presence of BMI in stability conditions is a big limitation due to the fact that
non-LMI solvers such as the general nonlinear programming “BMIBNB”1 or “PENBMI”
are not efficient especially for high order systems where the number of the inequalities is
too large. The methodology commonly followed in this case is to express these non-LMI
problems as LMI using suitable analytical methods such as multiplying the observer gain
by the inverse of the Lyapunov function, as outlined in (3.90), which, unfortunately, is
not applicable in our case as discussed before. Another method that is usually used in
the literature to change the BMI that appears in (3.94) to LMI is the “change of variable
method”. Using this latter gives the following variables:

Mj = PjL (3.98)

After solving the optimization problem, the observer gain L is obtained as follows:

L = Pj
−1Mj (3.99)

The problem encountered here is that the solver yields varying solutions for L, rather
than identical ones:

Lj = Pj
−1Mj (3.100)

1A built-in solver in YALMIP for non-convex problems. It implements a standard branch-and-bound
algorithm. More details about this solver can be found at the following link.
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where it is not possible to add a linear constraint to the optimization problem to guarantee
the derivation of a unique gain.

In the following section, an approach for addressing BMI as an LMI problem is pro-
posed.

3.5.3.1 Iterative Linear Matrix Inequalities

The appropriate method to solve the optimization problem given in Theorem 3.6
is to solve the BMI by steps, as the two-step procedure in [Lo and Lin, 2004], or an
iterative method as that proposed in [Kim and Kim, 2001] [Rhee and Won, 2006]. The
proposed algorithm shown in Figure 3.21 illustrates an iterative method which uses convex
optimization to solve the inequalities by formulating the BMI problem as an LMI problem
using an iterative LMI method. The methodology is described in the following:

Initialize system
parameters

Resolve linear matrix inequalities (3.92)-(3.93)
using change of variables (3.98)

Feasible ?

Theorem not applicable

No

Resolve LMI (3.92)-(3.93) again by using Pi as
known matrices and optimize L

Yes

Feasible ?

Get the value of L

Yes

Resolve LMI (3.92)-(3.93) again by using L as
known to optimize new values of Pi

No

Fig 3.21: Algorithm for solving the Bilinear Matrix Inequalities.

❖ The first step: Involves applying the change variable (3.98) to the BMI (3.92)-
(3.93), which results in the formulation of an LMI problem that can be solved using
linear solvers.
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❖ The second step: The obtained matrices Pi are now used as known, while consid-
ering the observer gain L as the only unknown variable. This leads to the formu-
lation of an LMI stability conditions. Upon successful feasibility of this problem,
the optimized gain L can be implemented in the observer. If not, the procedure
progresses to the subsequent step.

❖ The third step: Different matrices Pi have to be chosen since the previous ones
were incorrect. Also, since the solver optimized L to be as close as possible to a
correct result, it can therefore be used as known, and new values of Pi can be found
that are this time much closer to the correct results than the first ones; if not, other
values can be used. After defining new matrices, the second step must then be
repeated.

The computational complexity of solving an LMI problem is primarily determined by
the size of the matrices involved as well as the nature of the specific algorithm employed
to solve them. Renowned solvers, such as “SDPT3” and “MOSEK”, are designed for con-
vex optimization problems and employ deterministic algorithms. When addressing BMIs
using iterative LMI methods, each LMI encountered in every iteration exhibits a com-
putational complexity similar to the ones previously mentioned. Therefore, if numerous
iterations are needed, the process can become computationally intensive. It is also im-
portant to highlight that convergence is not straightforward when solving BMI iteratively
with LMIs. This challenge arises from the linearization of these non-convex constraints
at each iteration by fixing one decision variable at a time, which in turn restricts the full
potential of convex solvers. Furthermore, the proposed algorithm is heuristic in nature.
To alleviate these limitations, the judicious selection of convex solvers in each iteration
can improve the convergence of the solution.

3.5.3.2 Examples

Two examples are presented in this section. The first one is meant to illustrate the
improvement obtained using the proposed observer compared to the conventional one.
This is achieved by comparing the feasibility areas of these two theorems applied to a
numerical example. The second example illustrates a real-time application of the pro-
posed method on an induction motor to prove its feasibility in real-time and to show the
efficiency of the algorithm in solving BMI in very high order systems (in this example
1024 inequalities).
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Example 8: Feasibility area
The purpose of this example is to show the improvement obtained from the use of

Theorem 3.6 compared to Theorem 3.5. The best way to prove such a feature is to
compare the feasibility domain between these two theorems. This domain is visualized
through a map, generated by applying each theorem to a system, which is evaluated
based on two variables, a and b. By applying the theorem to every couple (a , b) and
checking the feasibility of the theorem in all of them, a point is added when the problem
is feasible. The feasibility test is conducted by analyzing the eigenvalues of the LMIs.
In this example, the solver “LMILAB” is used. The following constraint is used to add
restrictions to the inequalities:

V̇ (t) ≤ −2αV (t) (3.101)

1 - Observer design for the system
Let us consider the following nonlinear system: ẋ(t) = A (x(t)) x(t) + Bu(t)

y(t) = Cx(t)
(3.102)

where:

A (x(t)) =


−5 −2 + sinc(x2) a

−5 −10 1.5 + 5.5sinc(x3)
b a− b −20

 , B =


0.5
10
3.7

 , C =
[
0 1 0

]

In order to apply Theorem 3.6, the matrices Ai and Ci have to be determined.
According to the mean value theorem, Φ1 (x(t)) and its Jacobian ∂Φ1

∂x
can be defined as

follows:
Φ1 (x (t)) = A (x(t)) x(t) + Bu(t)

∂Φ1

∂x
=



−5 −2 + cos (x2)︸ ︷︷ ︸
ε1

a

−5 −10 1.5 + 5.5 cos (x3)︸ ︷︷ ︸
ε2

b a− b −20


where the premise variables εi (x) are limited as follows:

−3 ≤ ε1 ≤ −1, −4 ≤ ε2 ≤ 7

Through the use of the T-S representation on ∂Φ1
∂x

,The matrices Ai can be obtained
as follows:

A1 =


−5 −1 a

−5 −10 7
b a− b −20

 , A2 =


−5 −1 a

−5 −10 −4
b a− b −20


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A3 =


−5 −3 a

−5 −10 7
b a− b −20

 , A4 =


−5 −3 a

−5 −10 −4
b a− b −20


According to the output equation, which is linear, Φ2(x(t)) = Cx(t); hence:

∂Φ2

∂x
= C =

[
0 1 0

]
Therefore:

Ci = C

The weighting functions of the estimation error dynamics are defined by: h1 (z (t)) = M1
ε1M1

ε2 , h2 (z (t)) = M1
ε1M2

ε2

h3 (z (t)) = M2
ε1M1

ε2 , h4 (z (t)) = M2
ε1M2

ε2

where the membership functions are given by:

M1
ε1 = ε1 − ε1min

ε1max − ε1min

; M2
ε1 = ε1max − ε1

ε1max − ε1min

; M1
ε2 = ε2 − ε2min

ε2max − ε2min

; M2
ε2 = ε2max − ε2

ε2max − ε2min

2 - Feasibility domain mapping
By defining the following ranges a ∈ [800, 1500] and b ∈ [−1800, −400], and selecting

α = 25, the feasibility domains obtained from Theorem 3.5 and Theorem 3.6 are:

800 900 1000 1100 1200 1300 1400 1500

a

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

b

Fig 3.22: Comparative analysis of feasibility regions: ‘o’ represents Theorem 3.6, while ‘*’ denotes Theorem 3.5.

Method
Feasible Number of Number of
points decision variables matrix inequalities

Theorem 3.5 54 2 5
Theorem 3.6 120 6 24

Table 3.3: Comparative analysis of the complexity levels of the theorems
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Based on the feasibility domain depicted in Figure 3.22, it is evident that the pro-
posed method offers a wider range of applicability than the traditional approach. The
proposed theorem encompasses the region covered by Theorem 3.5 and extends beyond
it. Notably, Theorem 3.6 yielded 120 feasible points, whereas Theorem 3.5 resulted in
54 feasible points only. This result confirms the superiority of the proposed method
in reducing conservatism. Nevertheless, upon inspection of Table 3.3, it is clear that
Theorem 3.6 exhibits higher computational complexity compared to Theorem 3.5. This
increase in complexity is attributed to the augmented number of decision variables and
matrix inequalities involved in Theorem 3.6.

3 - Simulation validation
To demonstrate the feasibility of the proposed approach, a simulation was conducted

with the parameters set at (a = 1200, b = −1500) where Theorem 3.5 is inapplicable
and the proposed approach proves effective. By setting the initial conditions of the
system at [1 3− 2] with a sinewave as input signal, the resulting matrices are:

P1 =


24.9842 6.5231 0.1202
6.5231 20.1134 −1.4884
0.1202 −1.4884 20.0222

 , P2 =


25.0291 6.5868 0.1136
6.5868 20.1402 −1.5559
0.1136 −1.5559 20.0097



P3 =


24.9955 6.5100 0.1209
6.5100 20.1085 −1.5007
0.1209 −1.5007 20.0359

 , P4 =


25.1798 6.6089 0.1143
6.6089 20.1434 −1.5754
0.1143 −1.5754 20.1300



P0 =


24.9701 6.5469 0.1196
6.5469 −162.6363 −1.5941
0.1196 −1.5941 20.0002

 , L =


0.5718
2.5091
3.2915

× 103

The simulation results are depicted in Figure 3.23. The blue line represents the
real states of the system, while the red dashed line represents the estimated states. As
illustrated, the observer provides accurate state estimations, with the error gradually
approaching zero within a reasonable period of time despite the oscillatory behavior of
the system. This effectively demonstrates the observer’s feasibility and its advantage in
reducing conservatism, as opposed to the conventional quadratic method.
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Fig 3.23: State estimation.

Example 9: Application to the induction motor
This example is a real-time application of the proposed observer dedicated to the

induction motor. In this example, the output is assumed to be y (t) = ω(t). The
aim of this example is to prove the feasibility of the proposed theorem in a real-time
application, and additionally to demonstrate the efficiency of the proposed algorithm in
solving BMI for very large systems in a short period of time. The error dynamics of the
induction motor have 5 Premise Variables, which leads to 1024 inequalities according to
Theorem 3.6 and 32 matrices Pi, thus results in a very large number of computations.
The mathematical model of the induction motor is described in (1.27).

1 - Observer design for the induction motor
In order to apply Theorem 3.6, the matrices Ai and Ci have to be determined.

According to the mean value theorem, Φ1 (x(t)) and its Jacobian ∂Φ1
∂x

are given by:

Φ1 (x (t)) = A (x(t)) x(t) + Bu(t)

∂Φ1

∂x
=



−γ ωs
Ks

Tr
Ksε5 Ksε4

−ωs −γ −Ksε5
Ks

Tr
−Ksε3

Lm

Tr
0 − 1

Tr
ωs − ε5 −ε4

0 Lm

Tr
−(ωs − ε5) − 1

Tr
ε3

−αε4 αε3 αε2 −αε1 − f
Jm


As shown, there exist 5 premise variables ordered as ε =

[
isd isq Ψrd Ψrq ω

]T
,

and they are limited as follows:

isdmin ≤ ε1 ≤ isdmax , isqmin ≤ ε2 ≤ isqmax , Ψrdmin ≤ ε3 ≤ Ψrdmax

Ψrqmin ≤ ε4 ≤ Ψrqmax , ωmin ≤ ε5 ≤ ωmax
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Through the use of the T-S representation on ∂Φ1
∂x

,The matrices Ai are given by:

Ai =



−γ ωs
Ks

Tr
Ksε5(r) Ksε4(d)

−ωs −γ −Ksε5(r) Ks

Tr
−Ksε3(o)

Lm

Tr
0 − 1

Tr
ωs − ε5(r) −ε4(d)

0 Lm

Tr
ε5(r)− ωs − 1

Tr
ε3(o)

−αε4(d) αε3(o) αε2(k) −αε1(j) − f
Jm


where:

ε1(j) =
[

isdmax isdmin

]
, ε2(k) =

[
isqmax isqmin

]
, ε3(o) =

[
Ψrdmax Ψrdmin

]
ε4(d) =

[
Ψrqmax Ψrqmin

]
, ε5(r) =

[
ωmax ωmin

]
By substituting each premise variable with its corresponding limits, the combination

between them gives q = 32.
According to the output equation, which is linear, Φ2(x(t)) = Cx(t); hence:

∂Φ2

∂x
= C =

[
0 0 0 0 1

]
Therefore:

Ci = C

By solving the LMI in Theorem 3.6, the following observer gain is obtained:

L =



−0.4111
−2.5898
0.0041
0.024

2.4791× 103


where the matrices Pi are omitted since their number is very big (32 matrices).

Using “tic-toc” command in MATLAB, the time spent to find the solution using the
proposed iterative LMI algorithm described in Figure 3.21 is 32.63 seconds which is very
appropriate to optimize the 1024 inequalities of Theorem 3.6. This proves the efficiency
of the proposed algorithm compared to other solvers such as “BMIBNB solver” which
was not able to solve this large number of BMI.

2 - Experimental results
The experiment is built in LMSE Laboratory. As shown in Figure 3.24, using only

the speed sensor, the observer is designed to estimate all the other states of the system
where the rotor position is measured using an incremental encoder with 1024 point
resolution. To test the obtained results against the real values, the current is measured
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using an i30s current clamp, and since the flux sensor is missing in this experiment, an
approximation using the dynamic equations of the system is used. The dSPACE 1104
board card is used for data acquisition. In this experiment a 3 KW SIEMENS squirrel
cage motor is used.

Fig 3.24: Overall schematic diagram of the observer.

The results are shown in Figure 3.25 through Figure 3.29, and clearly demonstrate
the feasibility of the obtained observer gain and its effectiveness in yielding good state
estimations for the induction motor. Unlike other works reported in the introduction, we
also demonstrated the possibility of using only one sensor to estimate all the other four
states. Furthermore, Table 3.4 showcases the performance evaluation indicators of the
proposed observer which results in minimal estimation error within acceptable bounds.
This highlights the robustness and reliability of the observer even under challenging
real-time application conditions.
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Fig 3.25: Rotor electrical angular speed.
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Fig 3.26: Direct axis stator current.
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Fig 3.27: Quadrature axis stator current.
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2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Time (S)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

F
lu

x
 r

q
 (

W
b

)

Approximated real state

Estimated state

2.1 2.15 2.2

-0.1

0

0.1

0.2

Approximated real state

Estimated state

Fig 3.29: Quadrature axis rotor flux.

Observer Integral Mean
performance Absolute Error Square Error
isd(A) 0.2743 0.1477
isq(A) 0.3144 0.1772
Ψsd( Wb) 0.0024 0.00002
Ψsq( Wb) 0.0018 0.00001
ω(rad/s) 0.1152 0.0248

Table 3.4: Performance evaluation indicators

3.6 Discussion

In Theorem 3.1, we utilized the Lipschitz method to design an observer for UPV,
offering reduced conservatism compared to Theorem 1 in [Ichalal et al., 2012]. Despite
its benefits, the Lipschitz condition introduces significant conservatism, prompting a shift
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to the method outlined in Theorem 3.2. This alternative approach further reduces con-
servatism by not relying on the Lipschitz condition. Subsequently, Theorem 3.4 presents
enhancements through a poly-quadratic Lyapunov function, aiming to decrease conser-
vatism inherent in the quadratic approach. It differentiates by associating different matrix
Pi to each sub-model rather than a unique matrix P to all of them. The stability con-
ditions derived are formulated as LMI. In Theorem 3.5 the MVT approach is adopted,
entirely eliminating mismatching terms rather than merely reducing their impact as in
Theorem 3.4. However, this comes at the cost of increased complexity in defining matrices
Ai and Ci. Building upon this, Theorem 3.6 proposes enhancements through the poly-
quadratic Lyapunov function, indicating reduced conservatism relative to Theorem 3.5
which is evidenced in the feasibility area depicted in Figure 3.22. However, the stability
conditions are now expressed as BMI, presenting a challenging optimization problem. We
proposed an algorithm to address this optimization challenge, depicted in Figure 3.21,
which proves to be more effective compared to other non-convex optimization solvers as
“BMIBNB”.

3.7 Conclusion

In this chapter, we delved into the complex world of state estimation in T-S fuzzy
systems, with a special emphasis on systems characterized by UPV. Our comprehensive
discussion highlighted the multifaceted challenges and the diversity of methodologies in-
herent to the estimation process. We particularly focused on mitigating mismatching
terms, where each method contributes in different way towards stabilizing estimation er-
ror dynamics. Additionally, we conducted an extensive exploration of observer design,
examining both quadratic and poly-quadratic Lyapunov functions. For each category,
we dissected the observer structure, elucidating how the different approaches enhance ac-
curacy and robustness while minimizing conservatism. Moreover, this chapter provided
several applications, illustrating the effectiveness and adaptability of the discussed meth-
ods.
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4.1 Introduction

The quality of state estimation is fundamentally tied to the precision of the system’s
mathematical model and the accuracy of measurements of its inputs and outputs. How-
ever, real-world systems are complex and often subject to various types of disturbances,
denoted d(t), which significantly impact the estimation process.

Disturbances, or unwanted signals affecting the system, come in two main forms:
internal and external. Internal disturbances include uncertainties in model parameters,
variations in system dynamics, and other inherent system irregularities, often referred
to as model uncertainties. External disturbances, on the other hand, originate from
outside the system and include environmental noise, external faults, and various forms
of interference. Both types of disturbances are considered as unknown inputs (UIs) that
detrimentally influence the accuracy of state estimation if they are not taken into account
in the design process.

The approaches to designing observers presented in Chapter 3 often overlooks these
unknown inputs, leading to degraded performance in state estimation. Recognizing this
limitation, this chapter emphasizes the necessity of incorporating the effect of these dis-
turbances into the observer design process. By accounting for these unknown inputs, we
can significantly enhance the performance and robustness of the observer, ensuring more
accurate and reliable state estimation. This chapter presents the foundational concepts
and methodologies for achieving effective state and unknown input estimation, setting the
stage for the development of robust observers tailored for complex real-world systems, as
depicted in Figure 4.1.

u(t) System

d(t)

y(t)

Observer
x̂(t)

d̂(t)

Fig 4.1: Principle of the unknown input observer.

State and unknown input estimation serves a critical role in fault detection, diagno-
sis and also in control systems. Accurate estimation enables control techniques such as
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feedforward, robust, and predictive control to function optimally. Simultaneously, it is
crucial for fault detection and diagnosis, enhancing system reliability and safety by aiding
in the identification and correction of technical problems. Its application is versatile, as
shown by Jing Na et al. in [Na et al., 2017], where it is used in vehicle engine torque esti-
mation. In [Lu et al., 2016], the authors innovatively apply an unknown input decoupled
filter design in linear time-varying systems, especially where common assumptions aren’t
met. The application of unknown input estimation is further extended to road rough-
ness estimation in [Kang et al., 2019]. Moreover, a sophisticated application is presented
by Qianyue Luo et al. in [Luo et al., 2021] where model predictive control based on an
unknown input observer is utilized to address the control problem of heterogeneous vehi-
cle platoons. Additionally, in [Zhonghai et al., 2018] ,an unknown input observer is used
specifically for fault diagnosis of an intelligent hydraulic pump. Each of these references
emphasizes the variety of applications and the importance of accurate unknown inputs
estimation in maintaining efficient system operation.

In fault diagnosis, faults are typically treated as unknown inputs that disrupt the sys-
tem operation. Figure 4.2 illustrates a diagram of an observer-based controller tailored to a
system experiencing various types of faults. These faults necessitate identification or com-
pensation to ensure continued acceptable operation of the observer. The definitions and
characteristics of these fault types are described as follows [Baillieul and Samad, 2021]:

Controller

Reference

Actuator

fa(t)

Plant

fp(t)

u(t) + δu(t)u(t)
Sensor

y(t) + δy(t)

fs(t)

Observer

x̂(t)d̂(t)

Observer-Based Controller System affected by disturbances

Fig 4.2: Diagram of an observer-based controller of a system affected by disturbances.

❖ Actuator Fault fa(t): corresponds to variations of the control input u(t) applied
to the controlled system either completely or partially. The complete failure of an
actuator means that it produces no actuation regardless of the input applied to
it. For partial actuator faults, the actuator becomes less effective and provides the
plant with only a part of the normal actuation signal.
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❖ Sensor Fault fs(t): implies that incorrect measurements are taken from the real
system. This fault can also be subdivided into either a complete or partial sensor
fault. When a sensor fails, the measurements no longer correspond to the required
physical parameters. For a partial sensor fault the measurements give an inaccurate
indication of required physical parameters.

❖ Process Fault fp(t): directly affects the physical system parameters and in turn the
input/output properties of the system. Process faults are often termed component
faults, arising as variations from the structure or parameters used during system
modeling, and as such cover a wide class of possible faults.

There are two main categories of unknown input observers in the existing litera-
ture. The first category encompasses Simultaneous State and Unknown Input Observer
(SSUIO), such as Proportional Integral Observers (PIO) and its extended version Pro-
portional Multi Integral Observers (PMIO). These observers estimate both the states
and the unknown inputs of the system simultaneously. Historically PIO was proposed
firstly for linear systems by Wojciechowsky in [Wojciechowski, 1978], where the first
derivative of the unknown inputs is supposed to be null which makes it possible using
the state representation to estimate the unknown inputs and its derivative. This ob-
server have found broad application in various domains. For instance, Abdelmalek et al.
[Abdelmalek et al., 2018] proposed the application of PIO for fault-tolerant control in dou-
bly fed induction generator-based wind turbines. Boukhlouf et al. [Boukhlouf et al., 2023]
used the PIO for estimating states and UI in SynRM. Despite its widespread use, PIO
has a significant limitation: it considers the unknown input to be either constant or with
slow variation, according to the assumption that the first derivative of the UI equals zero.
Consequently, when the UI variation is rapid, PIO can only deliver moderate results.
After Designing the PIO, Jiang et al [Jiang et al., 2000] designed the PMIO which is an
extended version of the PIO that uses multi integrals rather than just one. This observer
is suitable for polynomial UI form by considering the sth derivative of the UI to be zero;
this characteristic contributes to enhancing the estimation precision of UIs and allows
for the estimation of a wider variety of unknown inputs. PMIO observer has been uti-
lized in various applications, such as fault detection in wind turbines [FADILI et al., 2019,
Kühne et al., 2018] and robotics [Djeddi et al., 2020, Sun et al., 2021]. Although PMIO
covers a broader class of UIs compared to PIO, it faces challenges when the order of the
polynomial UI exceeds the design limit of the observer or when the form of the UI is
non-polynomial. The second category of unknown input observer is the Decoupled Un-
known Input Observer (DUIO). DUIO separates the UI from the state estimation error
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and estimates them independently. Unlike other observers, DUIO does not require prior
determination of the UI order, hence allowing for the estimation of a larger class of un-
known signals. Comparative studies presented by the authors in [Hadi et al., 2019] have
demonstrated DUIO’s superiority over PMIO. In [Vu et al., 2017], the authors introduced
a DUIO for discrete-time uncertain systems. They applied this to a DC motor control-
ling an inverted pendulum using a non-quadratic Lyapunov function, which offers less
conservatism compared to the quadratic function.

This chapter focuses on the design of robust observer for T-S systems capable of
providing state and unknown input estimation based on the two categories previously
mentioned. In Section 4.2, the concept of the simultaneous state and unknown input
estimation for both PIO and PMIO is presented. A comparative tests between them is
evaluated on Synchronous Reluctance Motor using simulation and Hardware-in-the-loop
tests (HIL). In section Section 4.3, the concept of decoupled unknown input observer is
presented and compared with the SSUIO using HIL experimental test conducted on the
SynRM.

4.2 Simultaneous state and unknown input observer

In this section, we will discuss the two types of SSUIO: PIO and PMIO. The method-
ologies outlined in Chapter 3 can be generalized for T-S systems with UPV in the presence
of UI. Consequently, this chapter utilizes the MVT, outlined in Section 3.5, to design the
observers since it provides an effective solution to the problem of the mismatching terms.

4.2.1 Proportional integral observer design

Let us consider the following T-S system where the unknown inputs are assumed to
affect both state dynamics and measurements: ẋ(t) = ∑r

i=1 µi(ξ(t)) (Aix(t) + Biu(t) + Eid(t))
y(t) = ∑r

i=1 µi(ξ(t))(Cix(t) + Diu(t) + Gid(t))
(4.1)

where d(t) ∈ Rnd represents the unknown input. Gi ∈ Rny×nd and Ei ∈ Rnx×nd are
matrices representing the influence of the unknown inputs on the measurements and on
the sate dynamics respectively.

To design a PIO, it is necessary to adhere to the following assumption:

Assumption 4.1. The unknown input d(t) is assumed to be constant, implying that its
first time derivative is equal to zero:

ḋ (t) = 0 (4.2)
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Employing this assumption is crucial as it characterizes the dynamics of the UI, en-
abling its incorporation into the state-space representation of the entire system:

ẋ(t) = ∑r
i=1 µi(ξ(t)) (Aix(t) + Biu(t) + Eid(t))

y(t) = ∑r
i=1 µi(ξ(t))(Cix(t) + Diu(t) + Gid(t))

ḋ(t) = 0
(4.3)

It is possible to approximate UI with slow variation using Assumption 4.1, as its
derivative is nearly zero.

The augmented form of the system (4.3), which is used to consolidate both the state
vector x(t) and the derivative of the unknown input d(t) into a single extended state
vector xa(t), is described as follows: ẋa(t) = ∑r

i=1 µi(ξ(t))
(
Ãixa(t) + B̃iu(t)

)
y(t) = ∑r

i=1 µi(ξ(t))(C̃ixa(t) + Diu(t))
(4.4)

where xa(t) represents the augmented state vector, which includes both the original system
state x(t) and the unknown input d(t). The augmented state matrix for the ith linear
model of the T-S system, denoted as Ãi, is constructed from the original state matrix
Ai and the disturbance matrix Ei. Similarly (B̃i, C̃i) represent the augmented input and
output matrices for the ith linear model respectively.

xa (t) =
x (t)

d (t)

 , Ãi =
Ai Ei

0 0

 , B̃i =
Bi

0

 , C̃i =
[
Ci Gi

]
The implementation of the augmented form is useful for analysis and observer design

as it allows for working in a single unified state space representation.

Remark 4.1

If the UI is not a constant but a bounded nonlinear UI, it is advisable to always
set ḋ(t) = 0 and increase the bandwidth of the observer. This compensates the ap-
proximation error model of the UI. Increasing the bandwidth is achieved by setting
higher negative eigenvalues [Koenig and Mammar, 2002].

Remark 4.2

In control theory, it is known that increasing the bandwidth allows signals with
higher frequency, such as noise, to infiltrate the system. Therefore, in observer
design, this results in a more noisy state estimation error. Consequently, there
needs to be a compromise between robustness to disturbances and sensitivity to
noise.
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Let us consider the following PIO for the system (4.3):
˙̂x = ∑r

i=1 µi(ξ̂(t))
(
Aix̂(t) + Biu(t) + Eid̂(t)

)
+ LP (y(t)− ŷ(t))

ŷ(t) = ∑r
i=1 µi(ξ̂(t))(Cix̂(t) + Diu(t) + Gid̂(t))

˙̂
d(t) = LI(y(t)− ŷ(t))

(4.5)

where, d̂(t) represents the estimation of the unknown input. The matrices LP ∈ Rnx×ny

and LI ∈ Rnd×ny are the proportional and integral gains respectively.
The augmented form of this observer is described as follows: ˙̂xa(t) = ∑r

i=1 µi(ξ̂(t))
(
Ãix̂a(t) + B̃iu(t)

)
+ L̃(y(t)− ŷ(t))

ŷ(t) = ∑r
i=1 µi(ξ̂(t))(C̃ix̂a(t) + Diu(t))

(4.6)

where L̃ =
LP

LI

.

The diagram of this observer is presented in Figure 4.3 below:

u(t) ∑r
i=1 µi(ξ̂(t))Bi +

∫ ∑r
i=1 µi(ξ̂(t))Ci +

∑r
i=1 µi(ξ̂(t))Di

∑r
i=1 µi(ξ̂(t))Ai

−LP

∑r
i=1 µi(ξ̂(t))Ei

∑r
i=1 µi(ξ̂(t))Gi

State estimation

x̂(t)

LI

∫
Unknown input estimation

y(t)

d̂(t)

ŷ(t)

Fig 4.3: Proportional integral observer structure.

The dynamics of the estimation error ea(t) = xa (t)− x̂a(t) are given as follows:

ėa(t) =
r∑

i=1
µi(ξ(t))

(
Ãixa(t) + B̃iu(t)

)
︸ ︷︷ ︸

Φ̃1(xa(t))

−
r∑

i=1
µi(ξ̂(t))

(
Ãix̂a(t) + B̃iu(t)

)
︸ ︷︷ ︸

Φ̃1(x̂a(t))

− L̃[
r∑

i=1
µi(ξ(t))

(
C̃ixa(t) + Diu(t)

)
︸ ︷︷ ︸

Φ̃2(xa(t))

−
r∑

i=1
µi(ξ̂(t))

(
C̃ix̂a(t) + Diu(t)

)
︸ ︷︷ ︸

Φ̃2(x̂a(t))

]
(4.7)
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By defining a = xa(t) and b = x̂a(t), the mean value theorem is applied to the terms
Φ̃1 and Φ̃2, utilizing Lemma 3.5, to derive the subsequent result:

ėa (t) = ∑q
i=1 hi (z (t))

(
Ãi − L̃C̃i

)
e (t) (4.8)

where Ãi corresponds to Φ̃1, and C̃i corresponds to Φ̃2.
The following theorem provides sufficient conditions described as LMI to ensure the

asymptotic convergence of the error dynamics:

Theorem 4.1

The estimation error converges asymptotically toward zero with decay rate α if
there exist matrices P = P T ∈ Rnxa ×nxa > 0 and M ∈ Rnxa ×ny such that the
following LMI holds ∀i = 1, ..., q:

ÃT
i P + P Ãi −M C̃i − C̃T

i MT + 2αP < 0 (4.9)

where the observer gain is given by:

L̃ = P −1M (4.10)

Proof. To study the stability of the error dynamics, the quadratic Lyapunov function is
used:

V (t) = ea (t)T Pea (t) (4.11)

The derivative of V (t) with respect to t is:

V̇ (t) = ∑q
i=1 hi (z(t)) ea

T

((
Ãi − L̃C̃i

)T
P + P

(
Ãi − L̃C̃i

))
ea (4.12)

To improve the performance of the estimation, the following decay rate is used:

V̇ (t) ≤ −2αV (t) (4.13)

By substituting (4.11) and (4.12) in (4.13) the following inequality is obtained:

∑q
i=1 hi (z (t)) ea

T (
(
Ãi − L̃C̃i

)T
P + P

(
Ãi − L̃C̃i

)
+ 2αP )ea < 0 (4.14)

The inequality (4.14) is not linear due to the product of the variables P and L̃.
However, applying the change of variable M = PL̃ provides a solution for achieving the
linear stability conditions outlined in Theorem 4.1.
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Remark 4.3

Setting higher negative eigenvalues, which leads to increasing the observer gain,
can be achieved using the the α-stability described in Theorem 2.7. Therefore,
increasing the bandwidth of the observer contributes in improving the estimation
of non-constant UI by increasing the decay rate of the estimation error .

Example 10: Proportional integral observer design for synchronous reluc-
tance motor

1 - Non-linear dynamical model of synchronous reluctance motor
The dynamical model of the synchronous reluctance motor (SynRM) is typically

described in the rotational d-q reference frame. Below are the specific equations that
described this nonlinear system:

Vsd = Rsisd + Ld
disd

dt
− ωLqisq

Vsq = Rsisq + Lq
disq

dt
+ ωLdisd

dω
dt

= 3
2

p2

Jm
(Ld − Lq) isdisq − f

Jm
ω − p

Jm
TL(t)

(4.15)

here, Vsd and Vsq are the direct and the quadrature stator voltages respectively. isd and
isq are the direct and the quadrature stator currents. ω is the rotor electrical angular
speed. TL(t) is the resistant torque which is the unknown input affecting the state
dynamics.

The parameters of the motor are giving in the following table [Yahia et al., 2014]:

Parameters Values
Rated power Pr = 2.2[KW ]
Rated voltage Vr = 220/380[V ]
Rated speed Ωr = 1500[rpm]
Stator resistance Rs = 1.71 [Ω]
Inductance of direct axis Ld = 0.15 [H]
Inductance of quadratic axis Lq = 0.04 [H]
Moment of inertia Jm = 0.0137 [Kg.m2]
Number of pair of poles p = 2
Friction coefficient f = 0.00036 [Nm/rad/s]

Table 4.1: Synchronous reluctance motor parameters

By defining x (t) =
[
isd isq ω

]T
, u (t) =

[
usd usq

]T
and d(t) = TL(t) the state

space representation of the SynRM is presented as follows:

129



CHAPTER 4. STATE AND UNKNOWN INPUT ESTIMATION OF TAKAGI-SUGENO FUZZY SYSTEMS

 ẋ(t) = A(x)x(t) + Bu(t) + Ed(t)
y(t) = Cx(t) + Gd(t)

(4.16)

where:

A(x) =



−Rs

Ld

Lq

Ld

ω 0

−Ld

Lq

ω
−Rs

Lq

0

αisq 0 − f

Jm

 , B =



1
Ld

0

0 1
Lq

0 0

 , E =


0
0
− p

Jm

 ,

C =
[
0 0 1

]
, α = 3p2

2Jm
(Ld − Lq), G = 0.

2 - Takagi-Sugeno fuzzy representation of the system
The T-S multi-model is given as follows:

ẋ(t) =
r∑

i=1
µi(ξ(t))(Aix(t) + Biu(t) + Eid(t))

y(t) = ∑r
i=1 µi(ξ(t))(Cix(t) + Gid(t))

(4.17)

By defining the premise variables ξ1 = isq and ξ2 = ω as the nonlinear terms in the
dynamical model of the SynRM in (4.16), the weighting functions can be described as
follows:

µi(ξ(t)) =
2∏

j=1
Mij(ξj) (4.18)

where the membership functions of the fuzzy rules are:

Rule1: M11 = W1(ξ1), M12 = W1(ξ2)
Rule2: M21 = W1(ξ1), M22 = W2(ξ2)
Rule3: M31 = W2(ξ1), M32 = W1(ξ2)
Rule4: M41 = W2(ξ1), M42 = W2(ξ2)

And using the sector nonlinearity approach the following functions are obtained:

W1(ξ1) = ξ1 − ξ1min

ξ1max − ξ1min

, W2(ξ1) = ξ1max − ξ1

ξ1max − ξ1min

W1(ξ2) = ξ2 − ξ2min

ξ2max − ξ2min

, W2(ξ2) = ξ2max − ξ2

ξ2max − ξ2min

The sub-matrices Ai, Bi, Ci, Ei and Gi of the multi-model (4.17) are given using the
sector nonlinearity approach as follows:

A1 =



−Rs

Ld

Lq

Ld

ωmax 0

−Lq

Ld

ωmax
−Rs

Lq

0

αisqmax 0 − f

Jm

 , A2 =



−Rs

Ld

Lq

Ld

ωmin 0

−Lq

Ld

ωmin
−Rs

Lq

0

αisqmax 0 − f

Jm


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A3 =



−Rs

Ld

Lq

Ld

ωmax 0

−Lq

Ld

ωmax
−Rs

Lq

0

αisqmin
0 − f

Jm

 , A4 =



−Rs

Ld

Lq

Ld

ωmin 0

−Lq

Ld

ωmin
−Rs

Lq

0

αisqmin
0 − f

Jm



Bi =



1
Ld

0

0 1
Lq

0 0

 , Ci =
[
0 0 1

]
, Ei =


0
0
− p

Jm

 , Gi = 0 ∀i = 1 . . . 4

3 - Observer design for synchronous reluctance motor
The following figure illustrates the overall schematic diagram of the implementation

of the observer with the SynRM.

Fig 4.4: Overall schematic diagram of the observer.

In order to apply Theorem 4.1, the matrices Ãi and C̃i have to be determined.
According to the mean value theorem, Φ̃1 (xa(t)) is defined as follows:

Φ̃1(xa) = Ã (xa) xa + B̃iu(t)

where:

Ã (xa) =
 A (x) E

0 0


While its Jacobian ∂Φ̃1

∂xa
is given by:

∂Φ̃1

∂xa

=
 ∂A(x)x

∂x
E

0 0


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where:

∂A(x)x
∂x

=


−Rs

Ld

Lq

Ld

ω
Lq

Ld

isq

−Ld

Lq

ω −Rs

Lq

−Ld

Lq

isd

αisq αisd − f

Jm


Through the use of the T-S representation on ∂ϕ̃1

∂xa
,The matrices Ãi can be obtained

as follows:

Ãi =
 Ai E

0 0


where:

A1 =


−Rs

Ld

Lq

Ld

ωmax
Lq

Ld

isqmax

−Ld

Lq

ωmax −Rs

Lq

−Ld

Lq

isdmax

αisqmax αisdmax − f

Jm

 ,A2 =


−Rs

Ld

Lq

Ld

ωmin
Lq

Ld

isqmax

−Ld

Lq

ωmin −Rs

Lq

−Ld

Lq

isdmax

αisqmax αisdmax − f

Jm



A3 =


−Rs

Ld

Lq

Ld

ωmax
Lq

Ld

isqmin

−Ld

Lq

ωmax −Rs

Lq

−Ld

Lq

isdmax

αisqmin
αisdmax − f

Jm

 ,A4 =


−Rs

Ld

Lq

Ld

ωmin
Lq

Ld

isqmin

−Ld

Lq

ωmin −Rs

Lq

−Ld

Lq

isdmax

αisqmin
αisdmax − f

Jm



A5 =


−Rs

Ld

Lq

Ld

ωmax
Lq

Ld

isqmax

−Ld

Lq

ωmax −Rs

Lq

−Ld

Lq

isdmin

αisqmax αisdmin
− f

Jm

 ,A6 =


−Rs

Ld

Lq

Ld

ωmin
Lq

Ld

isqmax

−Ld

Lq

ωmin −Rs

Lq

−Ld

Lq

isdmin

αisqmax αisdmin
− f

Jm



A7 =


−Rs

Ld

Lq

Ld

ωmax
Lq

Ld

isqmin

−Ld

Lq

ωmax −Rs

Lq

−Ld

Lq

isdmin

αisqmin
αisdmin

− f

Jm

 ,A8 =


−Rs

Ld

Lq

Ld

ωmin
Lq

Ld

isqmin

−Ld

Lq

ωmin −Rs

Lq

−Ld

Lq

isdmin

αisqmin
αisdmin

− f

Jm


According to the output equation, which is linear, Φ̃2(xa(t)) = C̃xa(t); hence:

∂Φ̃2

∂xa

= C̃ =
[
C G

]
Therefore:

C̃i = C̃

By considering the output as the rotor’s electrical angular speed, denoted as y(t) =
ω(t), and a decay rate of α = 6.5, Theorem 4.1 is applied to derive the following matrices
for the PIO:
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LP =


8.2961× 10−12

−3.0162× 10−12

1.2254× 10+4

 , LI =
[
−1.4678× 10+3

]

P =



2.763610+07 5.007510−11 −2.501410−08 −1.661210−10

5.007510−11 1.965210+06 6.385410−10 −1.059610−11

−2.501410−08 6.385410−10 8.173410+04 1.628510+03

−1.661210−10 −1.059610−11 1.628510+03 1.831210+04


4 - Simulation results

In this analysis, the Indirect Field-Oriented Control strategy is incorporated along-
side the unknown input observer, which serves to regulate the SynRM. Figure 4.5 illus-
trates the control scheme structure utilized in the experiment. Since the primary focus
of this example is on enhancing the state estimation performance, the control gains
for the current and speed regulator were determined using the classical pole placement
method. The employed speed regulator is of the “IP” type with KP Ω = 5.7070 and
KIΩ = 156.9792 and the current regulation is of the “PI” type with KP i = 86.8056 and
KIi = 989.5833.

Fig 4.5: Schematic diagram of indirect field-oriented control with simultaneous state and unknown input observer.

The experiment was structured around the speed profile depicted in Figure 4.6,
maintaining a constant magnetic flux reference at 0.8(Wb). To rigorously assess the
observer’s resilience and the stability of the estimation error dynamics, specific initial
conditions were chosen, represented by x0 (t) =

[
−1 2 50

]T
and x̂0 (t) =

[
0 0 0

]T
.

A comprehensive analysis of the state estimation outcomes can be discerned from Fig-
ure 4.6 to Figure 4.9. Figure 4.10 and Figure 4.11 specifically delineate the estimation
processes of the unknown input.
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Fig 4.6: Rotor angular speed curve.
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Fig 4.7: Direct axis stator current.

0 0.5 1 1.5 2 2.5 3

Time (s)

-8

-6

-4

-2

0

2

4

6

8

10

12

Q
u

a
d

ra
tu

re
 a

x
is

 s
ta

to
r 

c
u

rr
e

n
t 

(A
)

Real state

Estimated state

0.05 0.1 0.15 0.2

0

5

10

Fig 4.8: Quadrature axis stator current.
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Fig 4.9: State estimation error.
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Fig 4.10: Unknown input of PIO.
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Fig 4.11: Unknown input error comparison.

An examination of the results in Figures 4.6 to 4.8, which depict speed, direct cur-
rent, and quadratic current respectively, reveals that the observer efficiently estimates
the state, despite the initial conditions of the observer and the motor being different.
Figure 4.9, which shows the state estimation error, further corroborates this observation.
The error converges to zero, indicating the observer’s effectiveness in providing accurate
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state estimation, regardless of initial disparities and unknown inputs.
Regarding the unknown input, Figure 4.10 presents the actual unknown input along-

side its estimation. The unknown input, characterized as a stair-step function that
remains constant within specific time intervals, is accurately estimated by the PIO
within these intervals. However, during the transitions between these intervals, where
the derivative is not null, the estimation is not identical since the PIO is designed for
constant unknown inputs. Nevertheless, by choosing a decay rate of α = 6.5, the ob-
server gain and consequently the bandwidth are increased. This enhancement leads to a
faster convergence of the estimation error, yielding acceptable results even during these
transitional phases.

4.2.2 Proportional multi-integral observer design

The PIO’s limitation, requiring the UI to be constant, is a conservative constraint that
narrows the range of signals it can process. To improve the estimation performance of the
UI, a more refined modeling approach is necessary. Consequently, this section introduces
the PMIO, founded on the following assumption:

Assumption 4.2. The unknown input d(t) is assumed to follow a polynomial form. This
assumption is characterized by the condition that its sth time derivative is equal to zero:

d(s) (t) = 0 (4.19)

This assumption enables an enhanced and more accurate modeling of the unknown
input. Consequently, by adopting this assumption, it is no longer necessary for the UI
to be constant. Instead, it can vary in any polynomial form. Consequently, the range of
UI that the observer can handle is significantly expanded, resulting in less conservatism
compared to the PIO.

The successive derivatives of d(t) will be defined in the following state form:

ḋ (t)
ḋ1(t)

...
ḋs−1(t)

 =



d1(t)
d2(t)

...
ds(t)

 (4.20)

Employing this assumption enables the incorporation of the UI into the state-space
representation of the system (4.1) as follows:
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

ẋ(t) = ∑r
i=1 µi(ξ(t)) (Aix(t) + Biu(t) + Eid(t))

y(t) = ∑r
i=1 µi(ξ(t))(Cix(t) + Diu(t) + Gid(t))

ḋ(t) = d1(t)
...
ḋs−1(t) = ds(t)

(4.21)

The augmented form of this system is described as follows: ẋa(t) = ∑r
i=1 µi(ξ(t))

(
Ãixa(t) + B̃iu(t)

)
y(t) = ∑r

i=1 µi(ξ(t))(C̃ixa(t) + Diu(t))
(4.22)

where:

xa(t) =



x(t)
d(t)
d1(t)
d2(t)

...
ds−1(t)


, Ãi =



Ai Ei 0 . . . 0 0
0 0 Ind

. . . 0 0
0 0 0 . . . 0 0
... ... ... ... ... ...
0 0 0 0 0 Ind

0 0 0 0 0 0


, B̃i =



Bi

0
...
0

 , C̃i =
[

Ci Gi 0 . . . 0
]

The structure of the PMIO observer of the system (4.21) is given as follows:

˙̂x = ∑r
i=1 µi(ξ̂(t))

(
Aix̂(t) + Biu(t) + Eid̂(t)

)
+ Lp(y(t)− ŷ(t))

ŷ(t) = ∑r
i=1 µi(ξ̂(t))(Cix̂(t) + Gid̂(t) + Diu(t))

˙̂
d(t) = LI0(y(t)− ŷ(t)) + d̂1(t)
˙̂

d1(t) = LI1(y(t)− ŷ(t)) + d̂2(t)
...
˙̂

ds−2(t) = LIs−2(y(t)− ŷ(t)) + d̂s−1(t)
˙̂

ds−1(t) = LIs−1(y(t)− ŷ(t))

(4.23)

where d̂i ∀i = 1...s− 1 represent the estimation of the successive derivatives of the UI.
The augmented form of this observer is described as follows: ˙̂xa(t) = ∑r

i=1 µi(ξ̂(t))
(
Ãix̂a(t) + B̃iu(t)

)
+ L̃(y(t)− ŷ(t))

ŷ(t) = ∑r
i=1 µi(ξ̂(t))(C̃ix̂a(t) + Diu(t))

(4.24)

where:

L̃ =
LP

LI

 , LI =



LI0

LI1
...

LIs−1


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The diagram of this observer is presented in Figure 4.12 below:

u(t) ∑r
i=1 µi(ξ̂(t))Bi +

∫ ∑r
i=1 µi(ξ̂(t))Ci +

∑r
i=1 µi(ξ̂(t))Di

∑r
i=1 µi(ξ̂(t))Ai

−LP

∑r
i=1 µi(ξ̂(t))Ei

∑r
i=1 µi(ξ̂(t))Gi

State estimation

x̂(t)

LIs−1
∫

y(t)

d̂s−1(t) d̂s(t)

ŷ(t)

LIs−2+
∫d̂s−2(t)

LI0+

d̂1(t)

∫d̂(t)

Unknown input estimation

Fig 4.12: Proportional Multi-Integral Observer structure.

This diagram clearly illustrates the meaning of multi-integrals in the PMIO, which
corresponds to employing multiple integral operations to estimate the UI. This process
begins with the integral of the sth derivative and progresses to derive the UI itself. In
contrast, the PIO utilizes only a single integral operation.

To enhance the performance of UI estimation, it is required to increase the number
of integrals. However, this increase necessitates significant modifications in the observer’s
structure, specifically by incorporating additional integral and summation operations.
Consequently, a more adaptable structure is required. Let us rewrite the matrix Ãi as
follows:

Ãi =
 Ai Ei 0

0 0 T


where T is defined as:
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T =



Ind
. . . 0 0

0 . . . 0 0
... ... ... ...
0 0 0 Ind

0 0 0 0


Given this definition, the following matrix T̃ is defined:

T̃ =
[
0 T

]
=



0 Ind
. . . 0 0

0 0 . . . 0 0
... ... ... ... ...
0 0 0 0 Ind

0 0 0 0 0


With this definition, we can now define the following PMIO structure:

u(t) ∑r
i=1 µi(ξ̂(t))Bi +

∫ ∑r
i=1 µi(ξ̂(t))Ci +

∑r
i=1 µi(ξ̂(t))Di

∑r
i=1 µi(ξ̂(t))Ai

−LP

∑r
i=1 µi(ξ̂(t))Ei

∑r
i=1 µi(ξ̂(t))Gi

State estimation

x̂(t)

LI+
∫

y(t)

ŷ(t)

T̃



d̂ (t)
d̂1(t)

...
d̂s−1(t)


d̂(t)

Unknown input estimation

Fig 4.13: Compact proportional multi-integral observer structure.

This revised structure enhances adaptability for modifications compared to the previ-
ous one. It simplifies alterations by only requiring an update to the matrix T̃ according
to the degree of the polynomial UI under consideration.
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The same theorem, Theorem 4.1, is employed for analyzing the stability of the estima-
tion error dynamics in both the PIO and the PMIO scenarios. However, the distinction
in these two cases arises from the differences in the matrices Ãi and C̃i.

Example 11: Proportional multi-integral observer design for synchronous
reluctance motor

In this analysis, a comparison is drawn between the PMIO and PIO methods. The
objective is to highlight the effectiveness of the PMIO compared to the PIO. The same
SynRM used in the previous example is employed here.

1 - Observer design for synchronous reluctance motor
The expression of Φ̃1 (xa(t)) is defined identically to its counterpart in the previous

example, as follows:
Φ̃1(xa) = Ã (xa) xa + B̃iu(t)

where, in the case of employing the PMIO, the matrix Ã (xa) is defined as follows:

Ã(xa) =
 A(x) E 0

0 0 T


The Jacobian of Ã (xa), denoted by ∂Φ̃1

∂xa
, is given by:

∂Φ̃1

∂xa

=
 ∂A(x)x

∂x
E 0

0 0 T


Through the use of the T-S representation on ∂Φ̃1

∂xa
, as demonstrated in the previous

example, the matrices Ãi can be derived as follows:

Ãi =
Ai E 0

0 0 T


where the matrices Ai here are the same as in the previous example.

According to the output equation, which is linear, Φ̃2(xa(t)) = C̃xa(t); hence:

∂Φ̃2

∂xa

= C̃ =
[

C G 0 . . . 0
]

Therefore:
C̃i = C̃

By considering the same output and a decay rate as in the previous example, Theo-
rem 4.1 is applied to derive the following gains for the PMIO with s = 3 (P3IO):

Lp =


8.5621× 10−12

−5.8990× 10−12

1.3533× 104

 , LI =


−4.7362× 103

−6.1513× 104

−2.6645× 105


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2 - Hardware-in-the-loop validation
To assess the performance of the observer for SynRM, a comprehensive experimental

approach was undertaken leveraging the HIL methodology. This method ensures the
observer is assessed under conditions simulating real-world scenarios. The following
Figure showcases the overall HIL architecture employed in the experiment:

Fig 4.14: Structure of hardware-in-the-loop validation.

This configuration employed two Dspace 1104 cards, operating with a sampling time
of Ts = 0.0001(s). The initial card was tasked with the emulation of both the observer
and the control circuit, guaranteeing that the observer’s response and adjustments are
analyzed in real-time. Concurrently, the secondary card was exclusively dedicated to
the emulation of the SynRM. Its responsibility was to replicate the behavior and char-
acteristics of the SynRM under various conditions. The entire setup for this experiment
was carefully assembled at the LMSE Laboratory as showcased in the following figure:

Fig 4.15: Test bench for hardware-in-the-Loop validation.
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3 - Comparative results
3 - 1 - Case 1 (Slow unknown input variation)
A comparative analysis was performed under conditions where the variation in the

unknown input was slow. Figure 4.16 illustrates the actual unknown input and its cor-
responding estimations. Under this circumstance, the disparity between both observers
was found to be minimal, and both of them displayed competent performance, suggest-
ing that they are both capable of handling unknown input with slower dynamics. The
PIO, even though primarily tailored for estimating unknown inputs with null deriva-
tives, seems to demonstrate flexibility in accommodating those with slow variations,
essentially considering them almost like inputs with negligible derivatives.

Table 4.2 illustrates different performance criterion of the estimation error. The
differences in errors, although slight, are still observable. The Integral Square Error
(ISE), Integral Absolute Error (IAE), and Mean Squared Error (MSE) provide different
perspectives on the performance. The PIO’s slightly higher error values, compared to
P3IO, imply that although it can handle slow variations, it is not as precise as the latter.
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Fig 4.16: Unknown input estimation (case 1).

Observer Integral Integral Mean
performance Square Error Absolute Error squared error

PIO 0.0431 0.4116 0.0054
P3IO 0.0186 0.2553 0.0023

Table 4.2: Unknown input estimation performance (case 1)
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4.2.2.1 Case 2 (Fast unknown input variation)

This case is specifically designed for scenarios where the unknown input variation
is rapid. Figure 4.17 comprehensively displays both the actual unknown input and its
corresponding estimates. The PIO’s difficulty in accurately estimating rapidly changing
unknown inputs becomes evident from the results. Its performance degradation is at-
tributed to its inherent design limitations, which do not accommodate high variations.
In contrast, the PMIO, with its design inherently built to handle such variations, showed
a significant advantage in terms of adaptability and performance. Under these condi-
tions, the performance disparity between the two observers became considerably more
noticeable.

The results presented in Table 4.3 further highlight this distinction. A detailed anal-
ysis of the PIO’s estimation error performances under these conditions indicates that
fast-varying unknown inputs amplify the estimation error, leading to pronounced devi-
ations from the anticipated outcomes. In contrast, the PMIO demonstrates a notable
resilience against such changes, consistently maintaining low errors.
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Fig 4.17: Unknown input estimation (case 2).

Observer Integral Integral Mean
performance Square Error Absolute Error squared error

PIO 1.0349 2.3026 0.1078
P3IO 0.0873 0.6382 0.0095

Table 4.3: Unknown input estimation performance (case 2)
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4.2.3 Reducing excessive observer gains

One of the prevalent challenges in academic research is the constraints imposed by
hardware capabilities. A widely utilized interface in this context is the dSPACE 1104
card. This card is generally restricted to a sampling time of up to 10−4(s) using fixed step
size numerical methods such as “Euler method”. However, employing these specifications
with very high observer gains can present difficulties. Beyond certain gain threshold,
these solvers lose effectiveness, leading to the divergence of the numerical problem.

This limitation necessitates reducing the observer gains to enable the successful res-
olution of the differential equations integral to the model. Additionally, enhancing the
performance of the observer, particularly for unknown input estimation, often involves
pole assignment in the LMI region as α-stability used in Theorem 4.1. While effective,
this technique tends to increase observer gains as discussed in Remark 4.3, thereby re-
quiring a strategic balance to mitigate the associated challenges.

Although α-stability enhances the observer gain, achieving practical gains and precise
estimation of states and unknown inputs in real-time applications necessitates incorpo-
rating a constraint that aids in reducing the observer gain. This approach is essential for
achieving a balance between these two conflicting requirements. Based on equation (4.10)
the observer gain could be calculated as follows:

L̃ = Cof (P )T M

det(P ) (4.25)

where Cof (P ) is the cofactor matrix of P and det(P ) is its determinant. According to
this equation it is clear that maximizing det(P ) is a condition for reducing the observer
gain L̃, therefore the following constraint is provided:

max det(P ) (4.26)

It is apparent that this constraint, is non-convex problem which requires the use of
monotonical transformation to convert it to a convex problem. In Yalmip, the geometric
mean of the eigenvalues is the proposed solution because it is equal to det(P )1/n (where n
is the order of P ) which is a monotonic function of the determinant. The command “ge-
omean” is applicable on Hermitian matrices provided by Yalmip to solve the determinant
minimization problem.

It is important to highlight that the maximization constraint (4.26) have been used to
derive the observer gains for both previous examples for the PIO and PMIO. Let’s take
for example the observer gains obtained without using this method in the case of P3IO
by setting α = 6.5 used for the SynRM:

det(P ) = 2.0956× 10−6
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Lp =


5.9986× 10−13

1.0767× 10−11

2.3580× 104

 , LI =


−7.2357× 104

−1.3747× 106

−6.3888× 106


However, the results in the case of using the maximization constraint are:

det(P ) = 5.7705× 1024

Lp =


8.5621× 10−12

−5.8990× 10−12

1.3533× 104

 , LI =


−4.7362× 103

−6.1513× 104

−2.6645× 105


It is apparent that the use of the maximization constraint significantly increases the

determinant, in contrast to results obtained without such constraint. This difference is ev-
ident when comparing observer gains, the maximization method effectively reduces them.
The gains derived from determinant maximization are suitable for real-time application
using dSPACE 1104. Conversely, gains computed without the constraint are impractical
for real-time use. Their excessively high values, reaching up to 106, combined with the
limitations of the fixed numerical solver and the used sampling time, preclude real-time
resolution.

4.2.4 Proportional multi-integral observer design using poly-

quadratic Lyapunov function

In this section, an observer design utilizing the MVT and the poly-quadratic Lyapunov
function is introduced to mitigate the conservatism inherent in the quadratic approach.
This approach is a generalization of the method presented in Section 3.5.3 to accommodate
unknown inputs. To analyze the estimation error dynamics stability using the poly-
quadratic Lyapunov function, the following assumption is required:

Assumption 4.3. The derivatives with respect to time for the weighting functions are
constrained by positive constants, represented as ∅i, described below:

∣∣∣ḣi (z(t))
∣∣∣ ≤ ∅i (4.27)

By defining in prior the value of ∅k, then the following theorem provides sufficient
conditions described as BMI to ensure the asymptotic convergence of the error dynamics:
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Theorem 4.2

The estimation error converges asymptotically toward zero if there exist symmetric
positive definite matrices Pj ∈ Rnxa ×nxa , a matrix L̃ ∈ Rnxa ×ny and a symmetric
matrix P0 ∈ Rnxa ×nxa , such that the following inequalities holds ∀i, j = 1, ..., q:

Pi ≥ P0, i = 1, . . . , q (4.28)

Kii < 0, i = 1, . . . , q (4.29)
1

q − 1Kii + 1
2 (Kij +Kji) < 0, 1 ≤ i ̸= j ≤ q (4.30)

where:
Kij = ÃT

i Pj + PjÃi − C̃T
i L̃T Pj − PjL̃C̃i +

q∑
k=1
∅k (Pk − P0) (4.31)

The proof of this theorem is similar to that of Theorem 3.6.
The BMI optimization problem is solved using iterative LMI as previously discussed

in Section 3.5.3.1, where the algorithm is described as follows:

❖ Step1: By fixing the observer gains LP and LI by an initial condition, the BMI
in equations (4.29)-(4.30) becomes an LMI problem. Upon solving this problem,
suitable initial matrices Pi can be obtained.

❖ Step2: The obtained matrices Pi are now used as known quantities, and only the
observer gains LP and LI as unknown, which also leads to an LMI problem. If the
problem is feasible, the obtained gains can be used by the observer; otherwise, the
next step is added.

❖ Step3: Different matrices Pi have to be chosen because the earlier ones were in-
accurate. Given that the solver tailored LP and LI to be nearly accurate in step
2, it can now be considered as a reference. Hence, as in Step 1, updated values
of Pi can be derived that are more accurate than the initial ones. If these are not
suitable enough, alternative values can be explored, and the second step must then
be repeated.

4.2.4.1 Examples:

In this section, two examples are presented. In the first one, the feasibility area of
the proposed theorem is compared with that of the quadratic approach to demonstrate
the improvement achieved. The second example is a simulation that illustrates actuator
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and sensor fault detection in a three-tank hydraulic system using unmeasurable premise
variables as opposed to the use of measurable variables reported in previous works.

Example 12: Feasibility area
The feasibility domain is obtained by applying the quadratic and poly-quadratic

approach to a system evaluated in terms of two parameters a and b. For every pair
(a , b) the feasibility is verified by checking the eigenvalues of the LMIs. In this example,
both “SDPT3” and “MOSEK” solvers are used to solve the LMI of Theorem 4.2 and to
design a proportional two-integrals observer P2IO.

1 - Observer design for the system
Let us consider the following nonlinear system: ẋ = A (x) x + Ed

y = Cx + Gd
(4.32)

where:

A (x) =


−7 −20 + 10 tanh(x2)

x2
a

−4 −13.58 −1.17 + 2.87 tanh(x3)
x3

b a− b −3.1

 , E =


6
−10
−3

 , C =
[
0 1 0

]
, G = 1

In order to apply Theorem 4.2, the matrices Ãi and C̃i have to be determined.
According to the mean value theorem, Φ̃1(xa(t)) is defined as follows:

Φ̃1(xa) = Ã (xa) xa + B̃iu(t)

where:

Ã (xa) =
A (x) E 0

0 0 T


While its Jacobian ∂Φ̃1

∂xa
is given by:

∂Φ̃1

∂xa

=
∂A(x)x

∂x
E 0

0 0 T


where:

∂A(x)x
∂x

=



−7 −20 + 10 tanh (x2)︸ ︷︷ ︸
ε1

a

−4 −13.58 −1.17 + 2.87 tanh (x3)︸ ︷︷ ︸
ε2

b a− b −3.1


and the premise variables εi(x) are limited as follows:

−30 ≤ ε1 ≤ −10, −4.04 ≤ ε2 ≤ 1.7
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Through the use of the T-S representation on ∂Φ̃1
∂xa

, the matrices Ãi can be obtained
as follows:

Ãi =
Ai E 0

0 0 T


where the sub matrices Ai are given by:

A1 =


−7 −10 a

−4 −13.58 1.7
b a− b −3.1

 , A2 =


−7 −10 a

−4 −13.58 −4.04
b a− b −3.1



A3 =


−7 −30 a

−4 −13.58 1.7
b a− b −3.1

 , A4 =


−7 −30 a

−4 −13.58 −4.04
b a− b −3.1


Similarly to the previous examples of the MVT, the matrices C̃i are given by:

C̃i = C̃ =
[

C G 0 . . . 0
]

The weighting functions of the estimation error dynamics are defined by: h1 (z (t)) = M1
ε1 ×M1

ε2 , h2 (z (t)) = M1
ε1 ×M2

ε2

h3 (z (t)) = M2
ε1 ×M1

ε2 , h4 (z (t)) = M2
ε1 ×M2

ε2

where the membership functions are given by:

M1
ε1 = ε1 − ε1min

ε1max − ε1min

, M2
ε1 = ε1max − ε1

ε1max − ε1min

, M1
ε2 = ε2 − ε2min

ε2max − ε2min

, M2
ε2 = ε2max − ε2

ε2max − ε2min

2 - Feasibility domain mapping
By setting the following intervals a ∈ [50, 400] and b ∈ [−4500, −500], the feasibility

domains obtained from the quadratic and non-quadratic approaches are illustrated in
Figure 4.18:

50 100 150 200 250 300 350 400

a

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

b

Fig 4.18: Feasibility area comparison: ‘o’ represents Theorem 4.2, while ‘*’ denotes Theorem 4.1.
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Method
Feasible Number of Number of
points decision variables matrix inequalities

Theorem 4.1 33 2 5
Theorem 4.2 72 9 24

Table 4.4: Comparison of theorems’ complexity

From Figure 4.18, it becomes apparent that the proposed technique offers a broader
application scope than the traditional method. The novel theorem, which is based on
the non-quadratic function, not only covers the area addressed by the quadratic model
but it extends beyond it as well. Notably, from Table 4.4, the proposed method yields
72 feasible points, in contrast to the traditional method’s 33 points. This underscores
the superior efficiency of the new technique in reducing conservatism. However, it is
clear that the non-quadratic function introduces more computational challenges than
its quadratic counterpart. This increased complexity is due to the increased number of
decision variables and matrix inequalities inherent to the new method, as well as the
presence of BMI stability conditions.

3 - Simulation validation
To prove the feasibility of the proposed method, simulation is carried out at (a =

100, b = −2500) where the proposed method is applicable while the quadratic ap-
proach is not. By setting the initial conditions at x0 =

[
3 3.3 4.5

]T
and x̂0 =[

2.7 2.97 4.05
]T

the obtained matrices Pi are given as follows:

P1 =

0.2227 −0.1660 0 0.0686 −0.0003
−0.1660 0.2368 0.0013 −0.1213 0.0161

0 0.0013 0.0088 0.0033 0
0.0686 −0.1213 0.0033 0.1154 −0.0313
−0.0003 0.0161 0 −0.0313 0.0116


,

P2 =

0.2150 −0.1543 0 0.0625 0.0006
−0.1543 0.2199 0.0014 −0.1127 0.0150

0 0.0014 0.0088 0.0033 0
0.0625 −0.1127 0.0033 0.1111 −0.0308
−0.0006 0.0150 0 −0.0308 0.0116



P3 =

0.2297 −0.1714 0 0.0708 −0.0003
−0.1714 0.2474 0 −0.1256 0.0161

0 0 0.0091 0.0038 0
0.0708 −0.1256 0.0038 0.1171 −0.0313
−0.0003 0.0161 0 −0.0313 0.0116


,

P4 =

0.2201 −0.1577 0 0.0639 0.0006
−0.1577 0.2283 0.0001 −0.1165 0.0152

0 0.0001 0.0091 0.0037 0
0.0639 −0.1165 0.0037 0.1128 −0.0309
−0.0006 0.0152 0 −0.0309 0.0116


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P0 =



0.2126 −0.1537 0 0.0617 0.0004
−0.1537 −0.7887 0.0013 −1.1197 0.0150

0 0.0013 0.0087 0.0033 0
0.0617 −1.1197 0.0033 −0.8987 −0.0308
0.0004 0.0150 0 −0.0308 0.0115


while the resulting observer gains are given by:

LP =


−0.8318
3.4695
−4.5987

× 104, LI =
1.1198
2.5399

× 105

The results of the simulation are given in Figure 4.19 through Figure 4.21. The
state estimation error is demonstrated in Figure 4.19 indicating that good results are
obtained. In Figure 4.20, the blue line represents the real unknown input, while the
yellow dashed line is the estimated unknown input. As shown, the observer gives a good
estimation of the states with an error that converges toward zero, which proves, on one
hand, the feasibility of the observer, and on the other, the reduction of the conservatism
compared to the quadratic approach.
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Example 13: Actuator and sensor fault detection: application to three-tank
hydraulic system

This example is given to prove the improvement of the observer to estimate unknown
inputs in the case of unmeasured premise variables, as opposed to the work reported by
Guzman [Guzman et al., 2021] who designed a PI observer using poly-quadratic Lya-
punov function for only measured premise variables. For this purpose, we revisit the
same three-tank hydraulic system model used in Guzman’s work.

1 - Takagi-Sugeno fuzzy representation of the system:
Three-tank hydraulic mathematical model have been presented before in Section 3.5.2.

Unlike in the previous example, this system is now assumed to be subject to faults in
both the actuator and the sensor. To accurately represent these faults in the model,
we introduce them respectively as d (t) =

[
da(t)T ds(t)T

]T
. With this modifications,

the dynamical model of the system is accordingly updated to incorporate the effects of
these faults:  ẋ(t) = ∑r

i=1 µi(ξ(t)) (Aix(t) + Biu(t) + Eid(t))
y(t) = ∑r

i=1 µi(ξ(t)) (Cix(t) + Gid(t))
where:

Ei = 1
S


−0.3 0

0 0
0 0

 , Gi =
0 0
0 −0.3

 (i = 1, . . . , r)

2 - Observer design for the system:
Deriving the matrices Ãi for the three-tank hydraulic system is similar to the previous

MVT examples, these matrices are given by:

Ãi =
Ai E 0

0 0 T

 ,

where the matrices Ai have been derived previously in Section 3.5.2.
Similarly, the matrices C̃i are given by:

C̃i = C̃ =
[

C G 0 . . . 0
]

In order to design a P3IO, the following matrices are obtained by solving the BMI
in Theorem 4.2:

Lp =


9.8319 1.6483
−0.0032 0.0252
0.0075 −0.0624

× 104, LI =



−0.4672 −0.0817
1.2089 −9.9546
−1.4165 −0.2659
0.4905 −4.0268
−0.3476 −0.0630
0.1374 −1.1330


× 104
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3 - Simulation results:
System simulation was carried using the initial condition x0 =

[
0.09 0.07 0.08

]T
and x̂0 =

[
0.092 0.072 0.081

]T
. The system inputs are shown in Figure 4.22. The

actuator and sensor faults are shown in Figure 4.23 and Figure 4.24 with their respective
estimations. The tanks levels and their estimation are shown in Figure 4.25.
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Fig 4.22: Flow rates of pumps.
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Fig 4.23: Actuator fault and its estimation.
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Fig 4.24: Sensor fault and its estimation.
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Fig 4.25: Tanks levels and their estimations.

The simulation results demonstrate the efficacy of the derived observer gains in esti-
mating both the hydraulic system states and the actuator and sensor faults. Achieving
this was made possible using an unmeasured premise variable based on a non-quadratic
Lyapunov function. The use of the mean value theorem ensures that the estimation
error dynamics become fully factorized and proportional to the estimation error, hence
eliminating the effect of mismatching terms. This contrasts with Guzman’s observer,
designed solely for measurable premise variables, which failed to mitigate the effect of
these mismatches. Consequently, our approach allows the observer to be applicable to
a broader class of systems with either measurable or unmeasurable premise variables or
even in the way the approach handles the mismatching terms.
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4.3 Decoupled unknown input observer

Although PMIO covers a broader class of UIs compared to PIO, it faces challenges
when the order of the polynomial UI exceeds the design limit of the observer or when the
form of the UI is non-polynomial. Therefore, in this section, we will discuss the second
class of unknown input observers which is the DUIO. As discussed in the introduction
before, this class of observers is based on separating the UI from the state estimation
error and estimates them independently. Unlike other observers, DUIO does not require
prior determination of the UI order, hence allowing for the estimation of a larger class of
unknown signals.

Consider the following T-S system, where the unknown inputs are assumed to influence
both the state dynamics and the measurements: ẋ (t) = ∑r

i=1 µi (ξ (t)) (Aix (t) + Biu (t) + Eid (t))
y (t) = Cx (t) + Gd(t)

(4.33)

In the subsequent sections, the design of the observer will be discussed for both MPV
and UPV cases. A comparative analysis between the SSUIO and the DUIO will be
discussed in the UPV section.

4.3.1 Observer design for MPV

The structure of the DUIO for the T-S system (4.33) is defined as: ż (t) = ∑r
i=1 µi(ξ̂ (t)) (Niz (t) + Giu (t) + Liy (t))

x̂ (t) = z (t)−Hy(t)
(4.34)

The state estimation error between the system (4.33) and the observer (4.34) is given
by:

e (t)= x (t)− x̂ (t) = x (t)− z (t) + Hy (t) = x (t)− z (t) + HCx (t) + HGd (t)
= Rx (t)− z (t) + HGd(t)

(4.35)

where:
R = I + HC (4.36)

The estimation error dynamics are given by:

ė (t) = Rẋ (t)− ż (t) + HGḋ(t) (4.37)

After substituting (4.33), (4.34), y(t) and z(t) in (4.37), and taking into account the
equality given in (2.20) for MPV case, the following expression is obtained:
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ė(t) =
r∑

i=1
µi(ξ̂(t)) [(RAi −Ni −KiC) x(t) + (RBi −Gi) u(t)

+ (REi −KiG) d(t) + Nie(t)] + HGḋ(t)
(4.38)

where:
Ki = NiH + Li (4.39)

Given that the following conditions are satisfied, as outlined in (4.40) to (4.43),

HG = 0 (4.40)

Ni = RAi −KiC (4.41)

RBi = Gi (4.42)

REi = KiG (4.43)

then, the error dynamics can be described as follows:

ė (t) =
r∑

i=1
µi

(
ξ̂ (t)

)
Nie(t) (4.44)

Based on the work presented in [Akhenak et al., 2003], the following theorem is formu-
lated, offering sufficient conditions for the asymptotic convergence of the error dynamics:

Theorem 4.3

The estimation error will tend towards zero asymptotically if there exist matrices
P = P T ∈ Rnx×nx > 0, Mi ∈ Rnx×ny and S ∈ Rnx×ny such that the following
conditions hold ∀i = 1, ..., r:

(PAi + SCAi −MiC)T + (PAi + SCAi −MiC) < 0 (4.45)

SG = 0 (4.46)

(P + SC) Ei = MiG (4.47)

The observer matrices are given by:

H = P −1S (4.48)

Ki = P −1Mi (4.49)

Ni = (I + HC)Ai −KiC (4.50)

Li = Ki −NiH (4.51)

Gi = (I + HC)Bi (4.52)
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Proof. Let’s define the quadratic Lyapunov function as follows:

V (t) = e (t)T Pe (t) (4.53)

The time derivative of V (t) is:

V̇ (t) = ė (t)T Pe (t) + e (t)T P ė (t) (4.54)

By substituting (4.44), (4.41) and (4.36) in (4.54), the following equation is obtained:

V̇ (t) = ∑r
i=1 µi(ξ̂(t))e(t)T

[
(P Ai + PHC Ai − PKiC)T

+ (P Ai + PHC Ai − PKiC)] e(t)
(4.55)

Let us define the following change of variables:

S = PH (4.56)

Mi = PKi (4.57)

By integrating (4.56) with (4.40), condition (4.46) is obtained. Similarly, combining
(4.56) and (4.57) with (4.43), condition (4.47) is achieved. When these changes of variables
are applied to the negativity of (4.55), result in condition (4.45) emerges.

4.3.1.1 Unknown input estimation

Once the state estimation is achieved and the impact of the unknown input on the
estimation error is effectively isolated, the unknown input can be inferred using the es-
timated state vector. In the context of system (4.33), the unknown input is presented
alongside its respective influence matrix.

W (t) =
∑r

i=1 µi

(
ξ̂ (t)

)
Ei

G

 (4.58)

The unknown input can be inferred using the following equation:

d̂(t) = W − (t)
 ˙̂x (t)−∑r

i=1 µi

(
ξ̂ (t)

)
(Aix̂ (t) + Biu (t))

y (t)− Cx̂(t)

 (4.59)

where W − (t) is left pseudo-inverse of W (t), that exist if the following condition is verified
at every instant t:

rank (W (t)) = nd (4.60)

where nd is the dimension of the unknown input vector, and W − (t) is given in the following
equation:

W − (t) =
(
W T (t) W (t)

)−1
W T (t) (4.61)
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4.3.1.2 Example of application

Example 14: DUIO design of fuel cell 3P-IBC
In this example the same 3P-IBC used in Section 2.3.1.1 is used here. However, in

this example, the power source of the IBC is a Fuel Cell Electric Vehicles (FCEVs).
The FCEVs are generally comprised of two core components: the power-train and the
drive-train as visualized in Figure 4.26. The power-train can be further segmented into
various subsystems, such as the fuel cell stack, the hydrogen storage system, power
electronics and the auxiliary source. Conversely, the drive-train encompasses the el-
ements that transfer power to the wheels, typically including the transmission, axles,
and differentials. This example, however, focuses solely on two specific parts within the
power-train: the fuel cell and the interleaved boost converter.

Fig 4.26: Fuel Cell Electric Vehicles Structure.

1 - Takagi-Sugeno fuzzy representation of the system
The T-S representation of the 3P-IBC was detailed earlier in Section 2.3.1.1. In this

specific example, we redefine the current load ILoad (t) as the unknown input d(t): ẋ (t) = ∑r
i=1 µi (ξ (t)) (Aix (t) + Biu (t) + EiILoad (t))

y (t) = ∑r
i=1 µi (ξ (t)) (Cix (t))

(4.62)

2 - Modeling of the fuel cell
Various Proton Exchange Membrane Fuel Cell (PEMFC) models have been docu-

mented in the literature. These can essentially be categorized into two types based on
the primary characteristic of the fuel cell that the model targets: those are steady-state
(or static) models and dynamic models [Hasanien et al., 2022]. Figure 4.27 shows a
graphical representation of the relationship between the cell voltage and the current
density of a 1.2[kW ] NexaTM PEMFC, typically obtained by conducting a series of
steady-state measurements at different applied loads [Hammoudi et al., 2020].
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Fig 4.27: Static polarization curve of fuel cell.

The model utilized in this paper was derived through the interpolation of the col-
lected data.

3 - DUIO Design for 3P-IBC
By considering the output as the output voltage Vout, Theorem 4.3 is applied to

derive the following observer gains:

Ni =



−6.5741 0 0 0
0 −6.5741 0 0
0 0 −6.5741 0
0 0 0 −3.50

 ∀i = 1 . . . 8 ,

L1 =



−925.9259
−925.9259
−925.9259

0

 , L2 =



−925.9259
−925.9259

0
0

 , L3 =



−925.9259
0

−925.9259
0

 , L4 =



−925.9259
0
0
0

 ,

L5 =



0
−925.9259
−925.9259

0

 , L6 =



0
−925.9259

0
0

 , L7 =



0
0

−925.9259
0

 , L8 =



0
0
0
0



H =



0
0
0
−1

 , R =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
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4 - Simulation results
Figure 4.28 illustrates the schematic of the control loop. In contrast to the topol-

ogy presented in Section 2.3.1.1, this configuration employs only a single sensor, which
measures the output voltage Vout(t). Unlike the previous setup, the input ILoad is not
necessary in this case, as its influence has been decoupled from the observer. Addition-
ally, the input voltage Vin(t) = Vfc(t) is derived from the mathematical model of the fuel
cell, based on the consumed current. The simulation utilizes the same initial conditions
for both the system and the observer as in the previous example, as well as the voltage
and current regulators.

Fig 4.28: Dual-loop control scheme of three-phase interleaved boost converter.

The observer’s effectiveness in tracking the unknown input and its variations is as-
sessed through the same load resistance scenario used in the previous example. The
scenario commences with R = 20(Ω) , undergoes a decrease to R = 15(Ω) at t = 0.4(s),
and then returns to the initial R = 20(Ω) at t = 0.8(s). The estimated states are shown
in Figure 4.29 though Figure 4.31, and the unknown input is shown in Figure 4.32.
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Fig 4.29: Interleaved boost converter phase current I1.
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Fig 4.30: Interleaved boost converter phase current I2.
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Fig 4.31: Interleaved boost converter phase current I3.
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0 0.2 0.4 0.6 0.8 1 1.2

Time (S)

-1

-0.5

0

0.5

1

1.5

Fig 4.33: State estimation error.

The observations presented in Figures 4.29, 4.30, and 4.31 demonstrate that the es-
timated states align closely with the actual states, despite the fact that the observer is
not utilizing all the same input that the system uses. Typically, an observer necessitates
all inputs that the system uses in order to replicate its states. However, through the
implementation of a decoupling approach, the impact of the unknown input has been
successfully eliminated. As a result, the observer operates effectively without requir-
ing this input. This precise alignment is further evidenced in Figure 4.33, where the
estimation error curves are observed to asymptotically converge towards zero, thereby
validating the effectiveness of the observer’s design.

Additionally, Figure 4.32 distinctly shows the unknown input and its identical esti-
mation despite the variation in the load value, further substantiating the effectiveness of
the implemented method outlined in Section 4.3.1.1. Importantly, it’s worth noting that
all these accomplishments were achieved using only one sensor among the five quantities.
This efficient use of resources significantly reduces the cost of the process, making it an
even more viable solution.
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Collectively, these results provide robust proof of the method’s ability to accurately
estimate the three-phase currents of the converter as well as the load current under fluc-
tuating charges. Hence, the proposed system not only ensures precision and reliability
but also offers cost-effectiveness, further enhancing its applicability and potential for
wider implementations.

4.3.2 Observer design for UPV

The structure of the DUIO for the T-S system (4.33) is defined as:

 ż(t) = ∑r
i=1 µi(ξ̂(t)) (Niz(t) + RAix̂(t) + RBiu(t) + Liy(t))

x̂(t) = z(t)−Hy(t)
(4.63)

The state estimation error between the system (4.33) and the observer (4.63) is given
by:

e (t)= x (t)− x̂ (t) = x (t)− z (t) + Hy (t) = x (t)− z (t) + HCx (t) + HGd (t)
= Rx (t)− z (t) + HGd(t)

(4.64)

where:
R = I + HC (4.65)

Therefore, the estimation error dynamics are given by:

ė (t) = Rẋ (t)− ż (t) + HGḋ(t) (4.66)

After substituting (4.33), (4.63) y(t) and z(t) in (4.66) the following expression is
obtained:

ė(t) =
r∑

i=1
µi(ξ̂(t)) [(−NiR− LiC) x(t) + (REi − (Li + NiH) G) d(t) + Nie(t)]

+ HGḋ(t) + R(Φ(x)− Φ(x̂))
(4.67)

where:
Φ(x) =

r∑
i=1

µi (ξ (t)) [Aix (t) + Biu (t) + Eid (t)] (4.68)

By using the change of variable Ki = NiH + Li and verifying the conditions (4.69) to
(4.71)

HG = 0 (4.69)

Ni = −KiC (4.70)

REi = KiG (4.71)
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the error dynamics are then given by:

ė (t) =
r∑

i=1
µi

(
ξ̂ (t)

)
Nie(t) + R (Φ(x)− Φ(x̂)) (4.72)

By defining a = x(t) and b = x̂(t), the mean value theorem is applied to the term Φ,
utilizing Lemma 3.5, to derive the subsequent result:

ė (t) =
r∑

i=1

q∑
j=1

µi

(
ξ̂ (t)

)
hj (z (t)) (Ni + RAj)e(t) (4.73)

Based on the work presented in [Ichalal, 2009], the following theorem provides suffi-
cient conditions to guarantee the asymptotic convergence of the error dynamics (4.73):

Theorem 4.4

The estimation error converges asymptotically towards zero with decay rate α if
there exist matrices P = P T ∈ Rnx×nx > 0, Mi ∈ Rnx×ny and S ∈ Rnx×ny such
that the following conditions holds ∀ i = 1, ..., r and j = 1, ..., q:

(PAj + SCAj −MiC)T + (PAj + SCAj −MiC) < −2αP (4.74)

SG = 0 (4.75)

(P + SC) Ei = MiG (4.76)

The observer matrices are given by:

H = P −1S (4.77)

Ki = P −1Mi (4.78)

Ni = −KiC (4.79)

Li = Ki −NiH (4.80)

Proof. Let’s define the quadratic Lyapunov function as follows:

V (t) = e (t)T Pe (t) (4.81)

The time derivative of V (t) is:

V̇ (t) = ė (t)T Pe (t) + e (t)T P ė (t) (4.82)

By substituting (4.73) and (4.65) in (4.82), equation (4.83) is obtained:

V̇ (t) =
r∑

i=1

q∑
j=1

µi (ξ (t))hj (z (t))
[
(PAj + PHCAj − PKiC)T + (PAj + PHCAj − PKiC)

]
(4.83)
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Employing the following change of variables:

S = PH (4.84)

Mi = PKi (4.85)

coupled with the decay rate expressed as:

V̇ (t) < −2αP (4.86)

the inequalities outlined in (4.74) of Theorem 4.4 are obtained. By integrating (4.84)
with (4.69), equation (4.75) is obtained. Further, combining (4.84) and (4.85) with (4.71)
results in equation (4.76).

Example 15: DUIO design for synchronous reluctance motor
In this example, the same SynRM used in the previous examples is used here. This

example is dedicated to validate the performance of the DUIO compared to both PIO
and PMIO through a HIL test.

The scheme below demonstrates a comprehensive diagram of the proposed observer
in conjunction with the SynRM:

Fig 4.34: Comprehensive diagram of the proposed observer in conjunction with the SynRM

1 - Observer design for SynRM
In order to validate Theorem 4.4, it is necessary to first identify the Ai terms.
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The expression of Φ(x) in (4.68) is defined as follows:

Φ(x) = A (x) x + Bu(t) + Ed(t) (4.87)

While its Jacobian ∂Φ
∂x

is given by:

∂A(x)x
∂x

=



−Rs

Ld

Lq

Ld

ω
Lq

Ld

isq

−Ld

Lq

ω −Rs

Lq

−Ld

Lq

isd

αisq αisd − f

Jm


It is important to highlight that the derivation here is performed with respect to x(t),

given that the estimation error is defined as e(t) = x(t) − x̂(t). This differs from the
approach used in SSUIO, where the estimation error is expressed as e(t) = xa(t)− x̂a(t),
leading to the derivation being performed with respect to xa(t).

The Jacobian ∂Φ
∂x

in this case is identical to that obtained in the earlier examples
of the SynRM. Consequently, employing the T-S representation alongside the sector
non-linearity approach to this Jacobian, leads to the derivation of the same terms Ai as
those identified in the previous examples.

Taking into consideration the output as the electrical angular speed of the rotor,
indicated as y (t) = ω(t), and using a decay rate of α = 6.5, Theorem 4.4 is employed
to deduce the observer gains for the DUIO of the SynRM:

Ni =



0 0 0.0020

0 0 0.0592

0 0 −8.4650

 , Li =



9.5410× 10−18

2.9143× 10−16

−4.0856× 10−14

 ∀i = 1 . . . 8

H =



0
0
0
−1

 , R =


1 0 0
0 1 0
0 0 0

 , P =


0.2304 0 0

0 0.0164 0
0 0 6.8698

× 103

2 - Hardware-in-the-loop validation
This section presents an experimental test conducted to validate the effectiveness of

the proposed DUIO. The evaluation is split into two subsections. The first subsection
focuses on assessing the effectiveness of state and unknown input estimation of the pro-
posed observer. The second subsection offers a comparative analysis in the context of
unknown input estimation of the DUIO against the PIO and the PMIO presented before.
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The unknown input observer is integrated within the same Indirect Field-Oriented Con-
trol strategy used in the previous SynRM examples. The same HIL structure presented
in Figure 4.14 is implemented here.

2 - 1 - Decoupled Unknown Input Observer Performance’s Evaluation
The experiment proceeded by utilizing the speed profile depicted in Figure 4.35, in

conjunction with a flux reference set to 0.8(Wb). The unknown input profile is visually
depicted in Figure 4.39. For the purpose of substantiating the stability of the error
dynamics, the system’s initial conditions were configured as x0 (t) =

[
−1 2 50

]T
.

Figures 4.35 through 4.38 present the outcome of the state estimate. Furthermore,
Figure 4.39 illustrates the estimation of the unknown input, while its estimation error
is clearly represented by Figure 4.40.
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Fig 4.35: Rotor angular speed curve.
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Fig 4.36: Direct axis stator current.
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Fig 4.37: Quadrature axis stator current.
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Fig 4.38: State estimation error.
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Fig 4.39: Unknown input estimation.
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Fig 4.40: Unknown input estimation error.

Observer Integral Integral Mean
performance Square Error Absolute Error squared error

eisd
(A) 0.0074 0.0588 0.0019

eisq(A) 0.2339 0.4289 0.0585
ed(Nm) 0.4360 0.3779 0.1089

Table 4.5: State estimation performance

The results depicted in Figures 4.35 through 4.40, along with those from Table 4.5,
demonstrate the observer’s successful estimation of SynRM states despite disturbances
in information transmission between the two platforms (dSPACE1 and dSPACE2) and
the differences in the initial conditions between the system and the observer. This
effective state estimation, even under varying initial conditions, highlights the robustness
and adaptability of the observer under challenging real-time application conditions. A
further significant observation, illustrated by Figure 4.39, is the observer’s ability to
adeptly handle the varying nature of the unknown input. Even with these variations,
the observer’s estimation of this unknown input tracked perfectly, with only minor
errors that remained within acceptable limits. This strong performance in the presence
of unknown input changes significantly emphasizes the overall reliability of the DUIO.

2 - 2 - Comparative results
In this section, a comparative assessment is conducted to evaluate the performances

of the DUIO observer against PIO and PMIO observers. The examination is centered
around these observers’ capability to estimate unknown input under various conditions:
slow, fast and random unknown input variations. The ensuing results will highlights
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their adaptability and effectiveness, thereby offering a more comprehensive understand-
ing of their potential utility in real-world applications. The observer gains of both PIO
and PMIO are the same obtained in the previous examples.

2 - 2 - 1 - Case 1 (Slow unknown input variation)
A thorough comparative analysis involving the DUIO, PMIO, and PIO was con-

ducted under slow variation conditions of the unknown input. Figure 4.41 represents
the actual unknown input and its corresponding estimations. Table 4.6 demonstrates
the diverse performance criteria for the estimation error. In these circumstances, it
was found that the differences among the three observers were minimal. Despite being
primarily designed for estimating unknown inputs with null derivatives, the PIO re-
markably managed to effectively accommodate inputs with slow variations, essentially
considering their derivatives as null. PMIO markedly demonstrated a good fit with this
type of unknown input. Given its original design to handle variable unknown inputs, it
is entirely expected that the PMIO performs well with simpler, slow variations. More-
over, the DUIO, despite not considering the form of the unknown input during its design
process, demonstrated its robustness and adaptability by providing a commendable es-
timation, thus highlighting the strength of its design.
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Fig 4.41: Unknown input estimation (case 1).

Observer Integral Integral Mean
performance Square Error Absolute Error squared error

PIO 1.6015 0.7519 0.2669
P3IO 1.5907 0.5422 0.2651
DUIO 0.4841 0.4198 0.0807

Table 4.6: Unknown input estimation performance (case 1)
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2 - 2 - 2 - Case 2 (Fast unknown input variation)
This experiment, precisely configured for situations where the variation in the UI

is fast, gives insight into the distinctive performances of PIO, PMIO, and DUIO. Fig-
ure 4.42 offers a detailed illustration of both the actual unknown input and its respective
estimates, while Table 4.7 outlines a range of performance criteria related to the estima-
tion error of the unknown input. The PIO, as shown, struggled with the fast changes in
the unknown input, hence exposing its limitations in these situations. In contrast, the
PMIO, whose design is fundamentally conceived to handle such variations, demonstrated
significant adaptability and performance. However, there was a noticeable, albeit slight,
drop in PMIO’s performance during the phase when the unknown input transitioned
from a horizontal to a diagonal form. The increased derivative at this moment exceeds
what the observer was originally designed for. Even so, the PMIO recovered swiftly,
managing to reduce the estimation error promptly. Under these conditions, the per-
formance disparity between these observers became considerably more pronounced, a
contrast further elaborated in Table 4.7. Meanwhile, the DUIO consistently performed
at a high level, much as in the first experiment. The resulting estimations aligned closely
with the original unknown input, despite its fast variation, illustrating once again the
DUIO’s effectiveness in providing accurate estimations across diverse scenarios.
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Fig 4.42: Unknown input estimation (case 2).

Observer Integral Integral Mean
performance Square Error Absolute Error squared error
PIO 0.4610 0.8667 0.1537
P3IO 0.0535 0.2930 0.0178
DUIO 0.0120 0.1452 0.0040

Table 4.7: Unknown input estimation performance (case 2)
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2 - 2 - 3 - Case 3 (Random unknown input variation)
In the third examination performance test, visualized in Figure 4.43 and quanti-

fied in Table 4.8, the unknown input displayed an unpredictable and random pattern,
thereby posing a rigorous challenge for the three observers. Both PIO and PMIO ex-
perienced diminished performance, as the unexpected variability in the unknown input
outpaced what these observers were initially designed to manage. However, even within
this complex environment, PMIO maintained a level of performance that surpassed PIO,
showcasing its resilience amidst unpredictable variations. Concurrently, the DUIO pre-
served its consistent high performance and remarkable accuracy, deftly managing the
random form of the unknown input. This experiment reaffirmed the effectiveness of
DUIO’s robust design, demonstrating its ability to flexibly accommodate various forms
and fluctuations of unknown inputs. In comparison, the constrained performances of
PIO and PMIO were highlighted, emphasizing their limitations when faced with scenar-
ios their specific designs did not account for.
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Fig 4.43: Unknown input estimation (case 3).

Observer Integral Integral Mean
performance Square Error Absolute Error squared error

PIO 6.0136 2.3199 3.5114
P3IO 4.1586 1.3628 2.4282
DUIO 0.0889 0.2012 0.0519

Table 4.8: Unknown input estimation performance (case 3)
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4.4 Conclusion

In this chapter, we have explored two primary methodologies for state and unknown
input estimation in T-S fuzzy systems. We began by presenting the design of the PIO,
discussing how adjusting its bandwidth impacts the performance of unknown input esti-
mation. Following this, the PMIO was introduced as an enhancement of the PIO, aimed
at improving the accuracy of unknown input estimation and expanding the range of un-
known input forms that the observer can accommodate. A comparative analysis of these
two observers was then conducted through a HIL test applied to a SynRM.

Subsequently, we presented an approach to reduce conservatism in these observers.
This improvement was achieved by employing a poly-quadratic Lyapunov function, as
opposed to a traditional quadratic one. The use of this advanced function resulted in a
more refined and expanded feasibility area, demonstrating its effectiveness in enhancing
estimation accuracy.

Finally, we shifted our focus to the second category of unknown input observers, which
is based on the decoupling approach. Stability conditions for both the MPV and UPV
cases were derived, followed by a comprehensive comparative analysis among the PIO,
PMIO, and the DUIO, again validated through a HIL test. This analysis encompassed
various scenarios, ranging from slow to random unknown input variations, providing a
thorough evaluation of each observer’s performance in these different conditions.
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General Conclusion
The importance of observers in control theory is paramount, as they are integral to

almost all control strategies. This holds particularly true in complex environments where
direct measurement of all system states is impractical or impossible. By providing accurate
estimates of these unmeasured states, observers enable more effective and efficient control
strategies, thus enhancing system performance and reliability. Our work presented in
this thesis contributes significantly to this field by expanding the capabilities of state
estimation in nonlinear systems through advanced observer design methodologies. This
thesis focuses on the analysis and design of observers for nonlinear systems, specifically
utilizing the Takagi-Sugeno multi-model approach. Our objective was to enhance existing
methodologies by reducing their conservatism, thereby enabling the feasibility of observer
design for a broader range of systems and expanding the applicability of these crucial
tools in control theory.

In Chapter 1, we introduced the T-S multi-model construction for nonlinear systems,
employing the sector nonlinearity approach. This method provides an exact representa-
tion of original nonlinear dynamics, exemplified through an application on an induction
motor. We also explored the stability conditions of T-S systems under quadratic and poly-
quadratic approaches using the second Lyapunov theorem. In Chapter 2, we delved into
the observer design for T-S systems, starting by focusing on observability and detectabil-
ity aspects. These fundamentals are crucial for determining the feasibility of designing an
observer. An example of designing an observer for T-S systems with MPV is illustrated
through an application to a 3P-IBC.

The core contributions of our thesis were presented in Chapters 3 and 4, targeting
the reduction of conservatism in observer design for UPV systems. In Chapter 3, we
improved the design of the Lipschitz-based observer, achieving less conservative stability
conditions. This was demonstrated through a comparative example, proving the feasibil-
ity of our approach over a previous method. We then transitioned to an L2-gain synthesis
approach, effectively reducing conservatism over the Lipschitz-based method. This was
exemplified through applications to a DC motor, highlighting the method’s ability to
mitigate mismatching terms and sensor noise impacts on state estimation error. Further,
we explored the mean value theorem-based observer design, fully eliminating the effect of
mismatching terms. We contributed in improving this method through the employment
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of the poly-quadratic Lyapunov function. The feasibility domain has been plotted to
demonstrate the superiority of our approach compared to the quadratic approach used in
existing works. An innovative algorithm for solving the resulting BMI stability conditions
has been presented and compared to other existing BMI solvers. Chapter 4 focuses on
the design of unknown input observers. We began with the design of PIO and PMIO
observers, presenting a comprehensive comparative analysis between them. In this con-
text, the practical applicability of the observer was enhanced by optimizing the observer
gains for real-time scenarios, demonstrated through hardware-in-the-loop validation on a
synchronous reluctance motor. We then developed a PMIO observer based on the mean
value theorem, significantly reducing conservatism by employing the poly-quadratic Lya-
punov approach. The unknown input observer design based on the decoupling approach
has been presented and compared to both previous observers through the same test. In
this comparative analysis, we demonstrated the superiority of the DUIO over the PIO
and PMIO.

Despite these advancements, several limitations remain. The observers developed lack
robustness against parametric variations in nonlinear systems, highlighting a need for
more adaptive solutions, especially for real-world applications where parametric varia-
tions are common. The algorithm for solving the BMI remains sub-optimal, limiting
the full potential of the convex solvers used in the optimization process, which suggests a
need for better optimization techniques. Lastly, high-frequency inputs present a challenge
in applying the observer in real-world scenarios. The limitations of the microcontrollers
result in reduced accuracy in transmitting the input signal to the observer. Therefore,
the system’s input will not be exactly as the observer’s, consequently affecting the es-
timation accuracy. In this context, the development of more robust observers against
high-frequency transmission is required.
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YALMIP Toolbox: a short tutorial
In order to solve the LMI constraints defined in the proposed theorems, the Yalmip

toolbox is employed. Yalmip, Yet Another LMI Parser , is a renowned modeling lan-
guage in MATLAB, specially tailored for optimization problems. It provides an intuitive
framework for formulating and solving optimization problems, ranging from linear and
polynomial to semidefinite programming tasks. Its integration with several solvers allows
for a broad spectrum of optimization problems to be tackled efficiently. In the context
of our work, utilizing Yalmip facilitates the accurate definition and solution of the con-
straints, particularly beneficial for complex systems where manual computation might be
prone to errors. Here, some basic commands of YALMIP are defined.

A.1 Defining decision variables

In any optimization problem, the unknown variables that need to be determined are
referred to as “decision variables”. In YALMIP, “sdpvar” is used to define the symbolic
decision variables.

For example, a rectangular matrix A with n rows and m columns is represented by
the command:

1 A = sdpvar(n,m)

A symmetric matrix P ∈ Rn×n is represented by:

1 P = sdpvar(n,n,'symmetric ','real ')

or by default as follows:

1 P = sdpvar(n,n)

For a non-symmetric matrix, the following command is used:

1 P = sdpvar(n,n,'full ')

Almost all MATLAB operators can be applied on sdpvar objects. Hence, we create
diagonal matrix of P with:

1 D = diag(P)
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The sdpvar objects are manipulated in MATLAB as any other variable and most
functions are overloaded. Hence, the following command is valid:

1 P = sdpvar(3,3) + diag(sdpvar(3,1))

When employing a poly-quadratic Lyapunov function, there exist r positive definite
matrices, each denoted as Pi. These matrices are defined as follows:

1 for i = 1:r
2 P{i} = sdpvar(n,n);
3 end

A.2 Defining constraints

For example, the declaration of a symmetric matrix along with the imposition of a
positive definiteness constraint can be achieved through the following code:

1 n=3
2 P = sdpvar(n,n)
3 C = [P>=0]

Declaring a symmetric matrix whose elements are all positive can be defined as follows:

1 P = sdpvar(n,n);
2 C = [P(:)>=0];

An example of defining the stability of a linear system using a Lyapunov LMI approach
is given as follows:

1 C = [A'*P+P*A<=0];

Note that we have defined non-strict inequalities, although our theoretical problem
involves strict inequalities. YALMIP will warn or submit and error if you use strict
inequalities. If you want to satisfy a strict inequality, you have to define a non-strict
inequality with a margin.

1 Tolerance =0.001;% just an example

2 C = [A'*P+P*A<=- Tolerance ];

To define a collection of constraints, we simply create and concatenate them as follows:

1 C = [A1'*P+P*A1 <= -Tolerance , A2'*P+P*A2<=-Tolerance ,
.., Ar '*P+P*Ar<=- Tolerance ];



or simply, by using the cell array method:

1 A={A1,A2 ,..,Ar}
2 C=[];
3 for i = 1:r
4 C = [C, A{i}'*P+P*A{i}<=- Tolerance ];
5 end

A.3 Setting options for YALMIP and solver

To configure options in YALMIP and its associated solvers, the command sdpsettings
is utilized. For instance, to specify the use of the “MOSEK” solver, the following code
snippet can be employed:

1 options = sdpsettings ('solver ','MOSEK ');

A.4 Solving the optimization problem

After defining all variables and constraints, the optimization problem can be solved
using the “optimize” command. The syntax for this command is as follows:

1 optimize (Constraints ,Objective , options );

By default, the objective in an optimization problem is set for minimization. To convert
it into a maximization problem, the objective function is multiplied by −1.

For instance, consider the following optimization problem:

max det(P) subject to AP+PA < 0

This problem can be solved using the following code:

1 P = sdpvar(n,n);
2 C = [A*P+P*A<=- Tolerance ];
3 Obj = -logdet(P); %In the context of convex optimization , the

logarithm of the determinant , expressed as logdet(P), is

commonly used instead of the determinant det(P) to ensure

convexity. Additionally , in YALMIP , the function geomean(P

) can also be utilized as an alternative approach.

4 opt = sdpsettings ('solver ','MOSEK ');
5 diagnostics = optimize (C,Obj ,opt);



A.5 Analyze the obtained results

After solving the optimization problem, the command “value” is used to extract the
numerical value of a decision variable:

1 P=value(P)

After executing the optimize command, a diagnostic structure is returned. This struc-
ture can be used to determine whether the solver successfully solved the problem or
encountered any issues. The code to achieve this is as follows:

1 if diagnostics . problem == 0
2 disp('Solver thinks it is feasible ')
3 P=value(P)
4 else
5 disp('Hmm , something went wrong!')
6 diagnostics .info
7 yalmiperror ( diagnostics . problem )
8 end

While the “optimize” command provides results, it is not guaranteed that these results
are always correct. Therefore, it is crucial to verify the feasibility of the optimization
problem, particularly whether the constraints have been satisfied. This verification can
be accomplished using the “check” command, as demonstrated in the following code
example:

1 check(C);
2 [primalfeas , dualfeas ] = check(C);
3 if any( primalfeas <0)
4 disp (['The problem is infeasible ']);
5 else
6 disp (['The problem is feasible ']);
7 end

In the context of LMI-based optimization, the feasibility of the problem is determined
by the eigenvalues of the LMI. If all eigenvalues of the LMI are negative, the problem
is considered feasible. Conversely, if at least one eigenvalue is positive, the LMI is not
negative definite, rendering the problem infeasible.

For the matrix P , positive definiteness is sought, implying the need for all positive
eigenvalues to ensure feasibility.



The “check” command, returns the smallest eigenvalue of the LMI in the variable
“primalfeas”. It’s important to note that all definite constraints are reformulated as
positive definite constraints. This means that an LMI originally negative definite is made
positive definite by multiplying with −1. However, the matrix P remains unchanged in
its positive definite form.

Therefore, regardless of whether we are evaluating the matrix P or the LMI, a negative
value returned by “primalfeas” indicates an infeasible solution. Conversely, a positive
value indicates a feasible solution.

A.6 Example of application

In this section, we present the code used for designing the observer of the 3P-IBC, as
discussed in Section Section 2.3.1.1:

1 clear;clc;
2 c=4.84e-4;L1=1.08e-3;L2=L1;L3=L2;
3 RL=7.1e-3;r1=RL;r2=RL;r3=RL;
4 E = [0;0;0;-(1/c)];
5 B = [0 0 0 1/L1;
6 0 0 0 1/L2;
7 0 0 0 1/L3;
8 0 0 0 0];
9 A0 = [-r1/L1 0 0 0;

10 0 -r2/L2 0 0;
11 0 0 -r3/L3 0;
12 0 0 0 0];
13 A1 = [0 0 0 -1/L1;
14 0 0 0 0;
15 0 0 0 0;
16 1/c 0 0 0];
17 A2 = [0 0 0 0;
18 0 0 0 -1/L2;
19 0 0 0 0;
20 0 1/c 0 0];
21 A3 = [0 0 0 0;
22 0 0 0 0;
23 0 0 0 -1/L3;



24 0 0 1/c 0];
25 C=[0 0 0 1];
26 n_y=size(C,1);
27 n_x=size(C,2);
28 Z1_lim=[1 0];Z2_lim=[1 0];Z3_lim=[1 0];
29 r=1;
30 for j=1:2
31 for k=1:2
32 for o=1:2
33 A_TS{r}=A0+A1*Z1_lim(j)+A2*Z2_lim(k)+A3*Z3_lim(o);
34 r=r+1;
35 end
36 end
37 end
38 r=r-1;
39 yalmip('clear ');
40 Tolerance = 1e-5000000;
41 P = sdpvar(n_x ,n_x);
42 for i=1:r
43 M{i} = sdpvar(n_x ,n_y);
44 end
45 F=[P >= + Tolerance ];
46 teta=20;
47 for i=1:r
48 F=[F , P*A_TS{i}+A_TS{i}'*P-C'*M{i}'-M{i}*C<= - Tolerance ];
49 %pole placement

50 F=[F, [sin(teta)*(P*A_TS{i}+A_TS{i}'*P-C'*M{i}'-M{i}*C) cos(
teta)*(P*A_TS{i}-A_TS{i}'*P+C'*M{i}'-M{i}*C);

51 cos(teta)*(-P*A_TS{i}+A_TS{i}'*P-C'*M{i}'+M{i}*C) sin(teta)*(
P*A_TS{i}+A_TS{i}'*P-C'*M{i}'-M{i}*C)] <= - Tolerance ];

52 end
53 options = sdpsettings ('solver ','lmilab ');
54 sol = optimize (F,[], options )
55 if sol. problem == 0
56 P=value(P);
57 for i=1:r



58 M{i}=value(M{i});
59 L{i}=inv(P)*M{i};
60 end
61 [primalfeas , dualfeas ] = check(F);
62 if any( primalfeas <0)
63 disp (['The problem is infeasible ']);
64 else
65 disp (['The problem is feasible ']);
66 end
67 else
68 display ('Hmm , something went wrong!');
69 sol.info
70 yalmiperror (sol. problem )
71 end
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Evaluation of the Lipschitz constant
In this appendix, the steps to evaluate the Lipschitz constant introduced in Section 3.3

are presented [Ichalal et al., 2010].
Let f(x) : Rn → Rn be a vector function, fi(x) : Rn → R the ith component of f ,

x ∈ Rn be the state vector and x̂ ∈ Rn be its estimation.
The Taylor formula at order zero with an integral remainder term of f(x) around x̂

is:
fi(x)− fi(x̂) =

∫ x1

x̂1

∂fi

∂x1
(t)dt + . . . +

∫ xn

x̂n

∂fi

∂xn

(t)dt, i ∀1, . . . , n (B.1)

Each function variation can be bounded as follows:

|fi(x)− fi(x̂)| ≤
∫ x1

x̂1

∣∣∣∣∣∂f1

∂x1
(t)
∣∣∣∣∣ dt + . . . +

∫ xn

x̂n

∣∣∣∣∣ ∂f1

∂xn

(t)
∣∣∣∣∣ dt (B.2)

Let’s define:
aij = max

t∈[xj x̂j ]

∣∣∣∣∣ ∂fi

∂xj

(t)
∣∣∣∣∣ , ∀i, j ∈ {1, .., n} (B.3)

Since the interval
[

xj x̂j

]
is unknown, aij will be calculated for all t ∈ R:

aij = max
t∈R

∣∣∣∣∣ ∂fi

∂xj

(t)
∣∣∣∣∣ (B.4)

Consequently, B.2 will be defined as follows:

|fi(x)− fi(x̂)| ≤ ai1 |x1 − x̂1|+ . . . + ain |xn − x̂n| (B.5)

By expressing the inequalities B.5 in matrix form, we obtain the following result:

|f(x)− f(x̂)| ≤ J |x− x̂| (B.6)

where:

J =


a11 · · · a1n

... . . . ...
an1 · · · ann

 (B.7)

The Lipschitz constant of f(x) is given by the largest singular value of J .
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