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Abstract 

 
This thesis presents a groundbreaking Visual Object Tracking (VOT) approach designed to 

tackle a prevalent challenge in existing methods: the considerable alteration in object 

appearance, primarily stemming from extensive occlusion and varying illumination 

conditions. 

The proposed method integrates several key components, including Deep Convolutional 

Neural Networks (DCNN), Discrete Cosine Transform (DCT), Histograms of Oriented 

Gradients (HOG) features, and an HSV-based energy condition. Initially, an HSV-based 

energy condition enriches the learning process by merging both RGB and HSV color bases, 

enhancing the model's adaptability. Rather than relying on the image template, this technique 

utilizes the coefficients derived from the image's DCT to handle high saturation images in the 

Convolutional Neural Networks (CNN's) input. Extracting CNN features involves utilizing 

the Inverse Discrete Cosine Transform (IDCT). 

Subsequently, the approach harnesses multichannel correlation maps generated by CNNs to 

precisely determine the target's position. This is achieved through the amalgamation of 

convolutional features. Newton's method plays a pivotal role in this process, bolstering the 

system's long-term memory regarding the target's appearance and aiding in recovery from 

tracking failures. 

Further, the updating parameter for the correlation filters is determined by selecting the 

highest value among the output maps derived from correlation filters using convolutional 

features extracted from the HOG features of the image template. The conclusive results 

unequivocally establish the superiority of the proposed method, surpassing the performance of 

most recent tracking techniques. 

Keywords: Convolutional neural network, Discrete Cosine Transform (DCT), Correlation 

filter, Visual tracking, Newton’s method. 

  

 

 

 

 



 

 

 

Résumé  

Cette thèse introduit une approche novatrice de suivi visuel d'objets (VOT) conçue pour 

résoudre un défi majeur rencontré dans les méthodes existantes : l'altération considérable de 

l'apparence des objets, principalement causée par une occlusion étendue et des conditions 

d'éclairage changeantes. 

La méthode proposée intègre plusieurs éléments clés, incluant les Réseaux de Neurones 

Convolutifs Profonds (DCNN), la Transformation en Cosinus Discret (DCT), les 

Histogrammes de Gradients Orientés (HOG), ainsi qu'une condition énergétique basée sur 

l'espace colorimétrique HSV. Initialement, une condition énergétique basée sur le HSV 

enrichit le processus d'apprentissage en fusionnant les bases de couleurs RVB et HSV, 

améliorant ainsi l'adaptabilité du modèle. Plutôt que de se baser sur un modèle d'image, cette 

technique utilise les coefficients issus de la DCT de l'image pour gérer les images à forte 

saturation dans l'entrée des Réseaux de Neurones Convolutifs (CNN). L'extraction des 

caractéristiques CNN implique l'utilisation de la Transformation Inverse en Cosinus Discret 

(IDCT). 

Ensuite, l'approche exploite les cartes de corrélation multi-canaux générées par les CNN pour 

déterminer précisément la position de la cible. Ceci est accompli en fusionnant les 

caractéristiques convolutives. La méthode de Newton joue un rôle central dans ce processus, 

améliorant la rétention à long terme des caractéristiques de la cible par le système. 

De plus, le paramètre de mise à jour des filtres de corrélation est déterminé en sélectionnant la 

valeur la plus élevée parmi les cartes de sortie dérivées des filtres de corrélation, en utilisant 

les caractéristiques convolutives extraites des caractéristiques HOG du modèle d'image. Les 

résultats concluants établissent sans équivoque la supériorité de la méthode proposée, 

dépassant les performances des techniques de suivi les plus récentes. 

 

Mots clés : Réseaux de neurones à convolution profonde, Transformation Cosinus Discrète 

(DCT), Filtre de Corrélation, Suivi Visuel, Méthode de Newton. 

  

 

 



 

 

  ملخص

مصممًا لمواجهة التحدي السائد في الأساليب الحالية:  (VOT) لتتبع الكائنات المرئيةقدم هذه الأطروحة نهجًا مبتكرًا ت

 .التغيير الكبير في مظهر الكائن، والذي ينبع في المقام الأول من الانسداد الواسع النطاق وظروف الإضاءة المتغيرة

، وتحويل (DCNN) العصبية التلافيفية العميقة تدمج الطريقة المقترحة العديد من المكونات الرئيسية، بما في ذلك الشبكات

 .HSV ، وحالة الطاقة المستندة إلى(HOG) ، وميزات الرسوم البيانية للتدرجات الموجهة(DCT) جيب التمام المنفصل

، مما HSVو RGB على إثراء عملية التعلم من خلال دمج قواعد الألوان HSV في البداية، تعمل حالة الطاقة المستندة إلى

 DCT يعزز قدرة النموذج على التكيف. بدلاً من الاعتماد على قالب الصورة، تستخدم هذه التقنية المعاملات المشتقة من

 يتضمن استخراج ميزات (CNN) للصورة للتعامل مع الصور عالية التشبع في مدخلات الشبكات العصبية التلافيفية

CNN استخدام تحويل جيب التمام المنفصل العكسي (IDCT). 

لتحديد موقع الهدف  CNN بعد ذلك، يستخدم هذا النهج خرائط الارتباط متعددة القنوات التي تم إنشاؤها بواسطة شبكات

بدقة. يتم تحقيق ذلك من خلال دمج الميزات التلافيفية. تلعب طريقة نيوتن دورًا محوريًا في هذه العملية، حيث تعمل على 

 .دى فيما يتعلق بمظهر الهدف والمساعدة في التعافي من فشل التتبعتعزيز ذاكرة النظام طويلة الم

علاوة على ذلك، يتم تحديد معلمة التحديث لمرشحات الارتباط عن طريق تحديد أعلى قيمة بين خرائط الإخراج المستمدة 

بت النتائج الحاسمة لقالب الصورة. وتث HOG من مرشحات الارتباط باستخدام الميزات التلافيفية المستخرجة من ميزات

 .بشكل لا لبس فيه تفوق الطريقة المقترحة، متجاوزة أداء أحدث تقنيات التتبع

 

)، مرشح الارتباط، التتبع البصري، DCTالشبكة العصبية التلافيفية، تحويل جيب التمام المنفصل (:الكلمات المفتاحية

  طريقة نيوتن.
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Introduction

 
 

 
 

 
I.1. Context 

Visual tracking poses as one of the most complex problems in computer vision, finding 

applications in diverse fields like human-computer interaction, video surveillance, and 

unmanned driving. The main objective in generic visual tracking algorithm is to anticipate the 

path of a target through a series of images, starting from its initial position. Nonetheless, 

creating a fast and dependable tracker is a formidable undertaking due to numerous hurdles, 

such as occlusion, swift motion, and distortion. Moreover, the scarcity of training samples 

further complicates the development of an efficient and robust tracking system. To address 

these challenges, various pioneering trackers have been proposed, leading to significant 

advancements in tracking performance and robustness. Notably, discriminative-filter-based 

trackers [1] have garnered considerable attention owing to their competitive performance. 

Typically, visual tracking methods can be divided into two main types: generative approaches 

and discriminative methods [2]. Discriminative approaches have witnessed significant 

progress based on correlation filters, and Examples of successful tasks include object 

identification, image segmentation, and image classification, which have been effectively 

achieved [3]. In recent times, DCNN have gained significant popularity as a prominent 

method in visual tracking [4]. The utilization of CNN for human tracking was introduced in 

[5]. The VGG-Net-19 model was utilized to train three adaptive correlation filters in [6]. The 

effectiveness of this approach was evaluated using contemporary methods. However, despite 

its advantages, the sustainability of long-term tracking was found to be limited[7]. 

Huang et al [8] employed reinforcement learning to train an early decision policy, resulting 

in improved speed for object tracking using CNN. Similarly, Wang et al [9] introduced an 

approach that involves utilizing an automatic denoising encoder stack to learn generic features 

for visual tracking. Furthermore, He et al. [10] developed a two-part Siamese network 

consisting of a semantic branch and an appearance branch, aiming to enhance the 
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discrimination capabilities of SiameFC in tracking. Nevertheless, despite the advantages 

offered by these techniques, the challenge of sustaining long-term tracking effectiveness 

persists. In an attempt to overcome this challenge, several researchers have endeavored to 

improve tracking performance by integrating feature representations from various CNN layers 

with correlation filters [11, 12]. In [13], the authors have presented an effective hybrid image 

fusion method that combines the Integer Lifting Wavelet Transforms (ILWT) and the DCT. 

This method is capable of generating fused images with superior visual quality, making it a 

potential solution to mitigate certain visual tracking issues. 

The utilization of the DCT in visual tracking has received limited attention in the existing 

literature [14], despite its effectiveness in diverse visual applications like image retrieval [15], 

face recognition [16], and video object segmentation [17]. In [18], authors introduced a 

particle filter framework that integrated a sparse appearance model based on structural local 

DCT, which included occlusion detection for visual tracking. 

In recent times, HOG features have emerged as a valuable tool for addressing various 

challenges in detection and classification. Notably, the successful identification of faces [19] 

has been accomplished by leveraging the magnitudes and orientations of image derivatives. 

Y. Wei et al. [20] have introduced a Haar-HOG-based technique, which has shown promise 

by delivering remarkable speed and efficiency compared to algorithms relying solely on Haar-

like features or isolated HOG descriptors. Additionally, this proposed method demonstrated a 

lower false positive rate and a higher detection rate when compared to techniques that solely 

rely on the HOG descriptor. 

I.2. Contributions 

The key contributions outlined in this thesis are as follows: 

 By applying the HSV energy condition, we tackle the issue of light variation in 

individual color frames. Our approach allows to opt for either RGB or HSV color bases. 

Additionally, the DCT has the capability to capture pertinent spatial frequency 

information. Notably, in the top left corner of the corresponding 2-D DCT matrix, a 

concentrated cluster of low-frequency coefficients is observed. 

 Given the significance of integrating feature representations from multiple CNN layers, 

as exemplified in [21], a HCF model has been devised. 
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 HOG features derives from the 2D-DCT coefficients, utilizing them as a basis instead of 

the original image. This introduction of 2D-DCT coefficients aims to enhance the 

performance of HOG features. Moreover, a technique has been formulated to counteract 

model drift, aiding in the identification of alterations in appearance and demonstrated 

superior empirical results for both object detection and real-time tracking [22]. This 

involves the utilization of Newton's method to compute the maximum value within the 

maps generated through correlation filters. Unlike [23], we compute the convolutional 

feature products derived from the HOG features extracted from an existing image 

template. Subsequently, this computed value is employed as a parameter for updating 

the correlation filters. 

 The proposed approach evaluates using a comprehensive benchmark dataset known as 

OTB50, which consists of 50 challenging image sequences. 

I.3.Thesis Organization 

This thesis work constitutes of five chapters. 

Chapter II : State-Of-The-Art 

In this chapter we present the state-of-the-art of visual tracking. We give a detailed 

introduction to visual tracking, and we also give the challenges they encounter and two 

different types of tracking algorithms. 

Chapter III : Methods and tools  for object tracking 

We give in this chapter a detailed of image colors spaces, and imports methods of Image 

Features extraction, Convolutional neural networks and Histograms of Oriented Gradients . 

Chapter IV : Proposed methods for visual object tracking 

This chapter presents in detail the main steps of our methods. 

Chapter V : Experminent results 

In this chapter, first, we present Benchmark Datasets, followed by an assessment of visual 

object tracking performance. Second, a comprehensive examination of results and discussions 

pertaining to each database is provided. 
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State-Of-The-Art 

 
 
 

 

 
II.1. Introduction 

Object tracking is the process of spatially and temporally pinpointing a moving entity 

within a video sequence. In every method employed for tracking moving objects, an object 

detection system is a necessity, either in each frame or at the moment when the object initially 

emerges in the video. 

The task of tracking objects across a sequence of video frames involves the extraction and 

analysis of data from intricate images. This challenge becomes even more formidable when 

real-time constraints are imposed. Within the literature, a wide array of tracking methods is 

documented. Most of the standard methods  cannot effectively address demanding scenarios, 

such as substantial occlusion, deformation, rapid motion, changes in scale, and variations in 

illumination, all of which have a direct impact on tracking performance. 

    In this section, we will delve into the core principles and real-world uses of tracking 

algorithms, as well as the challenges they encounter. Furthermore, we will scrutinize the two 

different types of tracking algorithms. Lastly, we will introduce state-of-the-art approaches 

for object tracking, classified into several categories such as Tracking by detection, Tracking 

by correspondence, Tracking by correlation filter, and more, as well as the advancement in 

Visual Object Tracking Technology. 

II.2. Object Tacking Applications 

Over the past decade, there has been a noticeable upsurge in interest regarding object 

tracking within video sequences, largely owing to its extensive array of potential applications. 

Here are several significant domains where this technology finds application: 

 Video surveillance involves the detection, tracking, and recognition of people's 

activities. 

 Human-Computer Interactions, such as gesture recognition and augmented. 
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 reality, frequently leverage object tracking to enhance interactions between humans and 

computers. 

 Robotics employs this technology to assist autonomous robots in navigating complex 

environments by maneuvering through obstacles during avoidance phases. 

 Vehicle monitoring, traffic management, and analytic systems benefit from 

theutilization of object tracking. 

 Military applications utilize it to guide missiles and track targets, enhancing accuracy 

and precision in combat operations. 

 In healthcare, medical imaging utilizes object tracking to monitor and assess movement 

or changes, aiding in diagnosis and treatment planning. 

II.3. The Challenges in Object Tracking 
 

Visual object tracking plays a pivotal role in the realm of Computer Vision by providing 

critical trajectory data for behavior analysis through the prediction of an object's status in a 

video. Despite the extensive research and notable progress made in recent years 

[21][22][23][24], object tracking remains a highly intricate challenge [25]. There isn't a 

universally applicable tracking solution capable of efficiently handling all scenarios. Multiple 

factors influencing the effectiveness of object tracking algorithms encompass [25][26]: 

▪Deformation :This scenario occurs when all elements of the tracked object move and 

rotate in conjunction with one another, leading the tracker to perceive them as a unified and 

rigid entity. 
 

 

Fig. II.1. Example of Deformations 

 

▪ Occlusion : This can be a challenging scenario, as it can arise in consecutive frames 

when the target, or parts of it, become obscured by either the background or other objects. In 

such instances, updating the appearance model becomes crucial as it directly impacts the 

accuracy of the target's position estimation in subsequent input frames. 
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Fig. II.2.Example of Occlusions 

 

▪ Background clutters : This situation may arise when the object's features closely 

resemble those of its background, making it so that even a slight alteration in the object's 

appearance could lead the tracker to perceive the background as more akin to the target than 

the actual target itself. 
 

 
 

Fig. II.3.Example of Background Clutter 

 

▪ Scale variation : This situation frequently arises as a result of the camera's proximity or 

distance from the target. To mitigate this issue, resizing the input frame is a fundamental 

technique employed in visual tracking. 

 

 
Fig. II.4.Example of Scale Variations 

 

▪ Fast Motion : This represents another crucial scenario in visual object tracking, 

involving rapid or substantial movements of the object and/or the camera between two 

successive input images. Such motion can result in tracker drift. 
 

 

Fig. II.5.Example of Fast Motion
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▪ Blur Motion : It is when the rapid motion of an object results in a disruption or distortion 

in its appearance. 

 

Fig. II.6.Example of Motion Blur 

 

▪ Illumination variation : The tracked object can experience direct or indirect influences 

from changes in the lighting conditions, whether caused by environmental factors or material 

properties. This issue arises particularly when there are light fluctuations or movingprojectors, 

which can indeed impact the effectiveness of feature extraction from images. Various 

approaches tackle this challenge by utilizing invariant features to account for variations in 

lighting conditions [27,28].  
 

 
 

Fig. II.7.Example of Illumination Variations 

 

▪ In-Plane Rotation : Videos have the capability to visually convey rotations that occur 

within a two-dimensional image plane. One familiar illustration of this phenomenon is 

observing the image of a motorcycle rider who has turned backward, revealing the side view. 
 

 
 

Fig. II.8.Example of In-plane Rotations 

 

▪ Out-of-Plane Rotation : This type of rotation is distinct from rotations that may occur 

out of the image plane, as it has the potential to result in the vanishing or concealment of 

specific sections of the target. 
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Fig. II.9.Example of Out-of-Plane Rotations 

 

▪ Out of view:Numerous tracking techniques struggle to reacquire the target when it 

traverses the image's periphery. In such situations, the target may vanish from view or exhibit 

movement within the video. 
 

 

Fig. II.10. Example of Out-of-View 

 

▪ Low resolution:Another significant factor is low resolution, which can be described as a 

decrease in the amount of information available from the target's patch. This reduction in 

information diminishes the accuracy of location estimation. Typically, this arises from using a 

low-resolution camera or the substantial physical distance between the camera and the object. 

 

 
 

Fig. II.11. Example of Low Resolution 

 

II.4.Types of Object Tracking Algorithms 

The categorization of object tracking tasks can be determined by the number of objectstracked 

within a sequence, as outlined in [29]. 

II.4.1.SingleObjectTracking (SOT) 

SOT algorithm is designed to monitor the movement of a solitary object within a video 

sequence. Its success lies in its ability to track a single object, even 
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when the surrounding environment contains multiple objects. The SOT process involves the 

initial selection of a region of interest in the first frame of the video and subsequently tracking 

the object's position (i.e., its coordinates) in the subsequent frames of the video. In this study, 

we will explore a selection of algorithms utilized for tracking single objects. 

 

  

 

 

 

 

Fig. II.12.SingleObjectTrackingExample 

II.4.2.Multiple Object Tracking (MOT) 

MOT involves the challenge of monitoring the movement of more than one object within a 

video. In this scenario, the algorithm attributes a distinct variable to each of the objects 

detected in the video frame. It then proceeds to recognize and track all these multiple objects 

across successive frames of the video. 

Given that a video may contain a substantial number of objects, or the video quality might 

be suboptimal, leading to ambiguity in the direction of an object's motion, MOT becomes a 

demanding task, often relying on single-frame object detection. The process of MOT is 

illustrated in figure II.13.  

 

Fig. II.13.MultipleObjectTrackingProcess
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II.5.Object tracking methods 

Numerous object tracking methodologies have been put forth, and the distinctions between 

these approaches primarily arise from the selection of object representation, shape, image 

features, and the nature of motion estimation. This choice is contingent on the specific 

application and the characteristics of the processed video. Various categorizations of tracking 

algorithms exist in the literature. Yilmaz et al. [21] have proposed one classification based on 

the object representation employed, distinguishing between point tracking, kernel tracking, 

and silhouette tracking. More recently, another categorization has emerged, based on the 

appearance model utilized. In [30] and [31], the authors categorize tracking methods into two 

groups: generative and discriminative approaches. Generative methods are centered on 

modeling the object's appearance, which may vary between frames. Discriminative methods, 

on the other hand, separate the object from the background, transforming the tracking 

problem into a binary classification task [32]. Li et al. [31] offer a comprehensive overview of 

the existing appearance models in tracking, delving into their visual representation and 

statistical modeling of appearance. In this section, we will utilize a classification of track 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.14.Taxonomyofobjecttracking methods. 

II.5.1.Tracking by detection 

Over the recent years, tracking by detection has emerged as a highly successful approach in 

the field of visual object tracking, reaching the pinnacle of performance. The tracking-by-
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detection paradigm primarily comprises two crucial elements: visual representation and 

statistical modeling. Within this section, our attention will be directed towards the most 

noteworthy publications pertaining to statistical modeling, which can be classified into two 

distinct categories: generative and discriminative models [33]. 
 

II.5.1.1. Generative Method 
 

Generative modeling-based tracking primarily revolves around the concept of acquiring a 

model that accurately represents the target object and subsequently employs this model to 

identify the most analogous region in subsequent frames [33]. As a rule, methods falling into 

this category do not necessitate an extensive training dataset [34]. 
 

 Tracker L1: Mei and Ling [25] introduced a resilient tracking technique that 

perceives object tracking as an approximation challenge through rigorous handling of 

noiseand occlusion. In the course of tracking, potential targets are portrayed as a sparse linear 

combination of model sets, which encompass both target models derived from previous 

frames and simple models. The L1 tracker demands substantial computational resources 

because of the numerous L1 minimization computations involved. 

 Tracker IVT: Ross and colleagues [26] introduced a tracking algorithm that employs 

an incremental subspace model for characterizing the target object, allowing it to 

accommodate changes in appearance. This algorithm facilitates the gradual learning of an 

object representation subspace, specifically using Principal Component Analysis (PCA), and 

adjusts the model by incorporating the updated appearance of the object while considering a 

forgetting factor for past appearances. However, this approach exhibits limited robustness, 

particularly in cases where the object's location is imprecise. 

 II.5.1.2. Discriminative Method 

While generative modeling has achieved some success, it often encounters challenges when 

trying to depict the target object while disregarding background information. This is 

especially evident when the appearance of the target object undergoes significant changes or 

when the background is cluttered. In contrast, discriminative modeling 

approachesdiscriminative modeling approaches the problem of object tracking as a 

classification task, aiming to differentiate the target object from the background. 

Consequently, it tends to exhibit greater robustness in complex scenarios by explicitly 

modeling the background as negative 
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training samples. Tracking methods based on discriminative modeling have advanced swiftly 

and have taken the lead in most datasets in recent years [33]. 
 

 Boosting Tracker: 

Grabner et al. [35] employed a comparable online boosting framework for real-time object 

tracking in [33]. This approach is grounded in the online iteration of the AdaBoost algorithm, 

where the algorithm elevates the weights of inaccurately classified objects, enabling a weak 

classifier to concentrate on their identification. As the classifier is trained in an "online" 

manner, the user designates the frame containing the tracked object. Initially, this object is 

treated as a positive detection result, with objects in its proximity considered as background. 

Upon receiving a new image frame, the classifier assigns scores to the surrounding detection 

pixels from the previous frame, and the new position of the object is determined in the area 

where the score attains the highest value [35]. 
 

 MIL Tracker: 

Babenko et al. [36] suggested the adoption of Multiple Instance Learning (MIL) in the 

context of visual object tracking. This approach empowers the classifier to choose from a 

variety of potential positive samples based on its current state. In the MIL tracking scheme, 

training samples are viewed as "bags." A bag is designated as positive if it comprises at least 

one positive instance; otherwise, it is categorized as negative [33]. 
 

 TLD: 

Kalal et al. [37] introduced a resilient visual tracking algorithm. This algorithm breaks 

down the long-term tracking task into three sub-tasks: tracking, learning, and detection. The 

corresponding elements of these sub-tasks are integrated to create a comprehensive tracker 

known as TLD. The tracking component is responsible for estimating object motion and 

maintaining continuous object tracking to generate smooth trajectories. However, it also 

accumulates errors over time and may lose track if the target becomes invisible. The detection 

component is tasked with localizing the object in all its previously observed appearances and 

reinitializing the tracker when it encounters failure. The learning process assesses the quality 

of the results and updates them with only the most reliable outcomes [33]. 

 MEDIANFLOW Tracker: 

This algorithm utilizes the Lucas-Kanade method as its foundation. It employs a 

bidirectional time-based approach to monitor object movement and calculates the error in
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 these trajectories. This capability enables the tracker to make real-time predictions about the 

future position of the object. 

II.5.2.Tracking by correspondence 

Utilizing the correspondence between a target object's representation in two successive frames 

is an intuitive method for inferring its motion and maintaining tracking continuity. This 

approach was prevalent in the early stages of tracking due to its reasonably effective 

performance, uncomplicated structure, and minimal computational demands [33]. 

KLT: As a more efficient template-matching technique, Lucas and Kanade [38] introduced 

theKanade-Lucas-Tomasi (KLT) tracker. The KLT tracker identifies affine correspondences 

that have undergone transformation between two consecutive frames by utilizing spatio-

temporal derivatives. The tracker determines the new position of the target by matching its 

location in the previous frame to its position in the current frame through the estimated affine 

transformation. 

Mean shift: Several strategies have emerged to address the challenge of tracking non-rigid 

objects effectively, leveraging the mean shift algorithm introduced by Fukunaga et al. in 

1975. Originally designed for data clustering, Comaniciu et al. [39] adapted mean-shift 

trackers to perform matching with color histograms, which remains consistent even when 

target shapes change. In each new frame, the mean shift algorithm is employed to pinpoint the 

target's location by maximizing a similarity metric. Nevertheless, this tracker can face 

difficulties in regions with similar color distributions, primarily due to the absence of spatial 

information. 

II.5.3. Tracking by Correlation Filter 

In recent times, there has been a substantial surge of interest in correlation filter-based 

tracking methods, primarily because of their straightforward design, outstanding performance, 

and computational efficiency. Correlation filters, a fundamental tool in digital image 

processing, are employed to identify regions within an image that resemble a predefined 

template. Ideally, a correlation filter yields high responses when matched with a predefined 

template, while yielding low responses for background elements [33]. 

 MOSSE Tracker: Bolme et al. [40] introduced the Minimum Output Sum of Squared 

Error (MOSSE) filter for grayscale image-based visual tracking. This method relies on 

adaptive correlation calculations in Fourier space. The filter minimizes the sum of squared 
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errors between the actual correlation output and the predicted correlation output. MOSSE 

filter-based tracking is known for its computational efficiency, achieving speeds of several 

hundred frames per second, and its robustness in handling variations in illumination, scale, 

pose, and non-rigid deformations. 

 KCF Tracker: Henriques et al. [41] introduced the Kernelized Correlation Filters 

(KCF) tracker. This tracking method extends the concepts from the previous two trackers, 

BOOSTING and MIL. KCF leverages the observation that the multiple positive samples 

employed in the MIL tracker exhibit significant overlap. This overlap within the data gives 

rise to certain advantageous mathematical properties that the KCF tracker harnesses to 

enhance both tracking speed and accuracy simultaneously [ 42 ]. 

 CSRT Tracker: CSRT stands for the Channel and Spatial Reliability of 

Discriminative Correlation Filter (CSR-DCF) implementation. This algorithm employs spatial 

reliability maps to adapt the filter support to a specific region selected from the frame for 

tracking. This capability allows for an expanded search area and the tracking of non-

rectangular objects. The reliability indices provide insights into the filter quality 

acrossdifferent channels and are utilized as weighting factors for localization. Consequently, 

by utilizing feature sets such as HoGs and Colornames, this algorithm demonstrates 

commendable performance [42] [43]. 

II.5.4.Tracking by Deep Learning  

In recent years, Deep Learning approaches, particularly those employing CNNs, have 

exhibited significant empirical achievements and have emerged as dominant solutions for 

numerous computer vision challenges. However, the application of deep learning to the realm 

of visual object tracking presents unique challenges, primarily stemming from the scarcity of 

appropriate training data and the dynamic nature of target objects throughout video sequences 

[33]. 

GOTURN Tracker: TheGOTURN tracker, an acronym for "Generic Object Tracking 

Using Regression Networks," is an advanced tracking algorithm rooted in Deep Learning, 

specifically relying on CNN [44]. 

According to informationfrom the OpenCV documentation, it demonstrates robustness in 

the face of alterations in viewpoint, lighting conditions, and object deformations. However, it 

may not perform as effectively in scenarios involving object occlusions [45].from the 
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OpenCV documentation, it demonstrates robustness in the face of alterations in viewpoint, 

lighting conditions, and object deformations. However, it may not perform as effectively in 

scenarios involving object occlusions [45]. 

II.6.Evolution of Visual Object Tracking Technology 

The evolution of visual object tracking algorithms exhibits a progression from traditional 

tracking approaches [46],[47],[48] to those rooted in deep learning [49],[50], and from 

generative methods [51],[52],[53] to discriminative techniques [54],[55],[56].  

Between 2005 and 2010, the focal point of visual object tracking centered on the Bayesian 

framework, Particle filter, and Kalman filter, all falling under the generative methods 

category. During this time frame, object tracking predominantly involved the challenge of 

template matching. Manual design features were employed to create an appearance model for 

comparison, and a Gaussian distribution was utilized as the motion model to generate 

potential object candidates. The ultimate object state was determined by identifying the 

candidate with the highest similarity. Abdel-Hadi et al. [57] and Han et al. [58] introduced 

visual object tracking techniques based on the Kalman filter and particle filter, respectively, 

while Yang et al. [59] employed superpixel features in constructing the appearance model. 

From 2010 to 2014, researchers extensively explored correlation filtering-based trackers using 

kernel methods, which are part of the discriminative methods category [60],[61],[62]. 

These trackers aimed to train a correlation filter to position the object center at the peak 

value in the response map after correlation filtering. Bolme et al. [61] applied correlation 

filters to locate eyes and developed the ASEF filter. Subsequently, Bolme et al. [63] improved 

the ASEF filter and applied it to visual object tracking, introducing the MOSSE tracker, the 

pioneer among correlation filter-based trackers. Henriques et al. [64] proposed the CSK 

tracker, which addressed the correlation filter using a linear classifier. In 2014, Henriques et 

al. [60] treated tracking as a ridge regression problem and employed a circulant matrix to 

collect positive and negative samples around the object for training the correlation filter. To 

tackle scale variation in the KCF tracker, Danelljan et al. [62] introduced two correlation 

filters: one for translation and one for scale estimation. 

Between 2015 and 2017, the potent representation capabilities of deep features were 

incorporated into correlation filtering-based trackers [65],[66],[67]. These trackers leveraged 

well-pre-trained networks as feature extractors. Ma et al. [65] used a pretrained deep network 

to extract object deep features and amalgamated multi-features from different layers of the 



Chapter II                                                                                                          State-Of-The-Art 

 
18 

deep network to create the HCF tracker. Moreover, the characteristics of feature maps from 

different deep network layers were explored [67]. Hong et al. [66] introduced a learnable 

saliency map based on CNN and fused it with an SVM-based classifier to establish the 

appearance model. Danelljan et al. [67] introduced continuous convolution operators to 

amalgamate multiple resolution feature maps and achieve precise sub-pixel location. 

From 2018 to 2020, deep learning-based tracking methods, particularly the Siamese 

network, made substantial progress in visual object tracking [68],[69],[70]. Bertinetto et al. 

[69] merged the Siamese network with the correlation filter to propose the SiameseFC tracker. 

Li et al. [68] incorporated the region proposal network into the Siamese network to provide 

object candidates, which effectively served as a motion model in visual object tracking. Wang 

et al. [70] unified visual object tracking with instance segmentation, enhancing tracking 

accuracy and instance segmentation speed. 

Lately, to address online updates and few-shot learning challenges in deep learning-based 

trackers, Siamese network-based trackers have integrated online update strategies and meta-

learning techniques to enhance tracking robustness [71],[70]. Zhang et al. [71] treated the 

update model as a function of ground truth from the first frame, the template from the last 

frame, and the current frame's appearance model. This function was expressed as a deep 

network and introduced the UpdateNet for model updates. Huang et al. [73] and Wang et al. 

[72] introduced meta-learning into the Siamese network-based tracking method to improve 

tracking performance robustness through network initialization. 

II.7. Conclusion  

A significant domain within the realm of computer vision pertains to real-time object 

tracking, a technology that enjoys widespread usage today. Within this chapter, we provided a 

comprehensive overview of object tracking and its associated methodologies. Initially, we 

delved into the foundational principles of object tracking, exploring its practical applications 

and addressing the challenges that can impact the performance of tracking algorithms. 

Moreover, we examined the two primary categories of tracking algorithms. In conclusion, we 

presented the cutting-edge methods for object tracking, which can be categorized into several 

groups, including Tracking by detection, Tracking by correspondence, Tracking by 

correlation filter, and more, as well as delving into the evolution of Visual Object Tracking 

Technology.
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III.1. Introduction 

Color, a fundamental image attribute, serves as a cornerstone within diverse domains of 

computer vision, particularly in object tracking, owing to its effectiveness and efficiency. 

Within this domain, a multitude of feature choices are widely embraced, ranging from color 

labels to Histogram of Oriented Gradients (HOG), alongside features derived from deep 

CNN. The feature selection adopted for this thesis encompasses an array of elements 

extracted from both RGB and HSV color spaces, complemented by features derived from 

CNN and HOG methodologies. 

III.2 Image Color Spaces  

III.2.1RGB Color Space 

The RGB color space is fundamental in computer technology, extensively used in image and 

video processing. This model relies on the additive combination of three primary colors—R 

(red), G (green), and B (blue)—due to its strong resemblance to human visual perception. 

Represented as a Maxwel cube following the Cartesian coordinate system, it was initially 

introduced by the Commission Internationale de l’Eclairage(CIE) in 1931 and continues as a 

primary standard, despite its limitations. One limitation involves the significant correlation 

among its channels, which merges luminance and chrominance data into each channel [186]. 

This intrinsic correlation presents a challenge for the RGB color space, affecting its efficacy 

in color analysis and recognition algorithms relying on color-based identification. Colors are 

expressed as (R, G, B) triples, for instance, (255, 0, 0) represents red, while (255, 255, 255) 

signifies white. By adjusting contributions from each primary color, any desired color can be 

generated. Conversely, specific colors can be deconstructed into their red, blue, and green 

constituents using equations III.1 to III.3 [74]. 
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Another significant concern relates to the spectral composition, where a negative section 

within the spectra obstructs the reproduction of certain colors through the mere combination 

of three spectra. This limitation obstructs the precise replication of particular colors within the 

RGB color space, posing a hindrance to its comprehensive use for color representation and 

analysis. 

 

Fig III.1. Space Color Cube RGB. 
 

III.2.2. Hue Saturation Value (HSV) Color 

The HSV color space, an acronym for hue, saturation, value, emerges as a color model 

inspired by the human visual system. Its inception aimed to provide a more intuitive 

methodology for manipulating colors, closely mirroring color perception and interpretation. 

Widely employed within the realm of computer graphics, HSV embodies a nonlinear 

transformation that shifts from a cartesian coordinate representation (RGB) to a cylindrical 

coordinate framework (as illustrated in figure III.2). Tailored for a more instinctive color 

portrayal, HSV significantly streamlines the quantification of perceived colors. In this color 

space, color representation is encapsulated in a triplet: hue (H), saturation (S), and brightness 

(V). The transformations inherent in HSV delineate the following aspects: 
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Hue H traverses from 0 to 1.0, exhibiting colors ranging from red, transitioning through 

yellow, green, cyan, blue, magenta, back to red. Saturation S spans from 0 to 1.0, depicting 

colors varying from unsaturated (comprising shades of gray) to fully saturated hues (devoid of 

any white component). Value V or brightness progresses from 0 to 1.0, leading to an 

escalating brightness within the corresponding colors. The hue component within HSV spans 

from 0° to 360° in angular measurement. 

 

 

Fig III.2. Space Color Cube HSV Color 
 

III.2.3.YCbCr Color Space 

Originally conceptualized to ensure compatibility between color and monochrome televisions, 

this system aimed to separate luminance and chrominance components. The YCrCb color 

space, introduced by the International Radio Consultative Committee(IRCC), sought to 

optimize storage and transmission efficiency by harnessing perceptually relevantinformation 
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[190]. Tailored for digitally encoding television images, it conforms to the ITU.BT-601 

standard and holds significant prominence within the JPEG2000 compression standard. 

Within this color space, RGB undergoes a linear transformation into luminance (Y) and 

chrominance (Cb, Cr) components (as demonstrated in figure 3.8). The specifics of this 

transformation differ contingent on television standards like National Television System 

Committee(NTSC), PAL (phase alternating line), or Sequential color memory(SECAM). 

 

Fig III.3. Space Color Cube YCrCb. 

 

As mentioned earlier, diverse YCrCb-type systems exist. Among them, YIQ and YUV 

serve as standard color spaces utilized in analog television transmission. The YIQ system, 

aligning with the NTSC standard, strategically capitalizes on human eye color response 

characteristics to optimize fixed transmission bandwidth [190]. In contrast, the YUV system 

corresponds to the PAL standard. These color spaces, resembling YCrCb, stem from the RGB 

space, where Y denotes the luminance component, while U, V, I, and Q represent the 

chrominance components. 

In this arrangement, luminance information is singularly stored as a component (Y), while 

chrominance information is preserved as two color-difference components (Cb and Cr). Cb 

denotes the variance between theblue component and a reference value, whereas Cr signifies 

the difference between the red component and another reference value. 

The principal transformations from the RGB space into the YCrCb spaces are expressed 

through the following equations.  

0.299 0.287 0.11Y R G B    (III.7) 

Cr R Y   (III.8) 
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Cb B Y   (III.9) 

III.3. Image Features extraction 

III.3.1. Convolutional neural networks  
 
In the fast-changing field of computer vision and image processing, a consistent challenge 

prevails: the effective recognition and classification of images. Over recent years, CNNs have 

demonstrated impressive outcomes across various computer vision research domains. These 

networks have highlighted the significance of CNN features in capturing both semantic and 

intricate details of target objects, surpassing the utility of alternative features in a broad 

spectrum of visual recognition tasks. Essentially, a CNN comprises a sequence of pre-defined 

operations, where the operation types are predetermined, and their parameters are learned 

from extensive datasets. The configuration of these operation types is commonly referred to 

as the network architecture, organized into layers, each specifically dedicated to a particular 

type of operation. 

III.3.2.Architecture 

CNNs, represent a specialized type of neural network architecture tailored for processing data 

with a grid-like topology. This design makes them particularly adept at handling spatial and 

temporal data, such as images and videos, where there is a notable correlation between 

adjacent elements. While CNNs share similarities with other neural networks, they introduce 

an added layer of complexity by incorporating convolutional layers. 

A typical CNN comprises an input layer, multiple hidden layers, and an output layer. The 

hidden layers typically include convolutional layers, ReLU layers, pooling layers, and fully-

connected layers. In contrast to traditional neural networks, where each hidden layer consists 

of neurons fully connected to the previous layer, CNNs take advantage of the three-

dimensional arrangement of layers—height, width, and depth. 

Neural networks process input through hidden layers, each composed of neurons that are 

fully connected within the layer but operate independently. The last fully-connected layer 

serves as the "output layer," particularly crucial in classification scenarios as it produces class 

scores. 
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The key distinction between CNNs and standard neural network architecture lies in the 

three-dimensional organization of layers in CNNs—height, width, and depth. Here, "depth" 

refers to the third dimension of each layer rather than the overall architecture depth.  

Figure III.4. illustrates that a CNN structures its neurons in three-dimensional layers, 

transforming a 3D input volume into a 3D output volume of neurons. 

 

Fig III.4.Left: a network of neurons with 3 layers. Right: A convolutional neural 

network organizes its neurons in three dimensions (width, height, depth), 

visualized for each layer. The red input layer presents the input image. The 

width and height correspond to the dimensions of the image and the three-

channel red, green and blue [82]. 

The primary layers in CNNs, widely recognized, include convolutional layers, ReLU 

layers, pooling layers, and fully-connected layers [82]. 

 

Fig III.5.A Standard CNN Structure 

III.3.2.1.Convolutional Layer 

The convolutional layer serves as the fundamental building block of a CNN, comprising a 

collection of filters. These layers function by sliding a set of 'filters' or 'kernels' across the 

input data. Each filter is designed to identify specific features or patterns, such as edges, 
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corners, or more intricate shapes in deeper layers. As these filters traverse the image, they 

generate a map indicating the locations where these features were detected. 

Conceptually, a filter can be viewed as a smaller window that convolves (slides) across the 

input image, computing dot products between the filter values and the pixel values of the 

input image. The result is a 2-dimensional activation map, illustrating the responses of the 

filter at each position. Within each convolutional layer, a set of filters is applied, and each 

filter produces an independent 2-dimensional map. These individual activation maps are then 

stacked to form the output of the convolutional layer. 

a) RELU layer: 

Following the convolutional layers, Rectified Linear Unit (ReLU) layers are commonly 

applied, employing the activation function 

   max 0,f x x  (III.10) 

On the input x. This introduces increased non-linearity to the network while eliminating 

negative values from the activation maps. Traditionally, alternative functions like

   tanhf x x or the sigmoid function     111f x e
   were utilized, but the ReLU 

function has demonstrated faster performance and is generally preferred [83],[84]. 

b) Pooling Layer: 

Following the convolutional layers, pooling layers are employed to decrease the spatial 

dimension of the input, facilitating easier processing and demanding less memory. In the 

context of images, "spatial dimensions" pertain to the width and height of the image. An 

image can be envisioned as a grid composed of pixels, akin to rows and columns of tiny 

squares. By diminishing the spatial dimensions, pooling layers contribute to the reduction of 

parameters or weights in the network. This is instrumental in mitigating overfitting and 

expediting the model training process. Max pooling contributes to the reduction of 

computational complexity by decreasing the size of the feature map, rendering the model 

invariant to minor transitions. Without max pooling, the network would lack the capability to 

discern features irrespective of slight shifts or rotations, potentially compromising accuracy. 

There are two primary types of pooling: max pooling and average pooling. Max pooling 

selects the maximum value from each feature map within a specified window, such as 2×2. It 
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effectively captures the most prominent feature or characteristic in that region. On the other 

hand, average pooling computes the average of all values within the pooling window, offering 

a smoother, averaged feature representation. 

 

Fig III.6.Pooling layer 

c) Fully-connected layers 

Fully-connected layers constitute a fundamental element in the architecture of a (CNN). As 

the name implies, every neuron within a fully-connected layer establishes connections with all 

other neurons in the preceding layer. Typically positioned towards the conclusion of a CNN, 

fully-connected layers play a crucial role in leveraging the features acquired by convolutional 

and max pooling layers for predictive tasks, such as classifying input into specific labels. In 

the context of image classification, the final fully-connected layer might utilize the learned 

features to categorize an image as containing a dog, cat, bird, etc. 

These fully connected layers take the high-dimensional output from preceding 

convolutional and pooling layers and flatten it into a one-dimensional vector. This flattening 

process enables the network to integrate all extracted features across the entire image, 

transcending localized considerations and grasping the global context of the image. The 

responsibility of fully connected layers extends to mapping the integrated features to the 

desired output, such as class labels in classification tasks. Serving as the final decision-

making component of the network, these layers ascertain the significance of the extracted 

features within the context of the specific problem, such as recognizing a cat or a dog. 

The amalgamation of a convolutional layer followed by a max-pooling layer and similar 

subsequent sets establishes a hierarchy of features in a CNN. The initial layer detects 

rudimentary patterns, and subsequent layers progressively build upon these to discern more 

intricate patterns. 
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CNNs find extensive application in image recognition and classification tasks. They excel 

in identifying objects within images, classifying images (e.g., distinguishing between a cat 

and a dog), and undertaking more complex endeavors such as generating image descriptions 

or pinpointing points of interest. While CNNs are predominantly associated with image data, 

they can also be adapted for time-series data like audio or text. However, for the latter 

scenarios, other network architectures such as Recurrent Neural Networks (RNNs) or 

transformers are often favored. CNNs stand as a potent tool in the realm of deep learning, 

consistently achieving state-of-the-art results across diverse applications. 

III.3.2.2 Various CNN Architectures  

Within the realm of Convolutional Networks, numerous architectures bear distinct names. 

The most prevalent include: 

LeNet. stands as the pioneering CNN architecture, developed in 1998 by Yann LeCun, 

Corinna Cortes, and Christopher Burges specifically for addressing handwritten digit 

recognition challenges. Regarded as one of the initial triumphs in the field of CNNs, LeNet is 

often considered the "Hello World" equivalent in the realm of deep learning. It represents one 

of the earliest and extensively employed CNN architectures, showcasing notable success in 

tasks such as handwritten digit recognition. 

The LeNet architecture comprises multiple convolutional and pooling layers, culminating 

in a fully-connected layer. With a structure encompassing five convolution layers and two 

fully connected layers, LeNet marked the advent of CNNs in tackling computer vision 

problems. Despite its pioneering role, LeNet faced challenges related to the vanishing 

gradients problem, impeding its training efficacy. To address this issue, a max-pooling 

shortcut connection layer was introduced between convolutional layers, reducing the spatial 

size of images. This implementation aids in preventing overfitting, facilitating more effective 

training for CNNs. The diagram below illustrates the LeNet-5 architecture. 

The LeNet CNN, despite its simplicity, remains a potent model that has found applications 

in diverse tasks, including handwritten digit recognition, traffic sign recognition, and face 

detection. Even though LeNet was conceived over two decades ago, its architecture retains 

relevance in contemporary contexts and remains actively utilized. 
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Fig III.7.LeNet Architecture . 

AlexNet: AlexNet, a pivotal deep learning architecture that propelled CNN into popularity, 

was developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. While sharing a 

resemblance to the LeNet architecture, AlexNet distinguished itself by its increased depth, 

size, and the stacking of Convolutional Layers. This network marked a breakthrough as the 

first large-scale CNN and secured victory in the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) in 2012. Tailored for deployment with expansive image datasets, the 

AlexNet architecture yielded state-of-the-art results upon its introduction. Comprising 5 

convolutional layers interspersed with max-pooling layers, 3 fully connected layers, and 2 

dropout layers, AlexNet incorporates the ReLU activation function across all layers, with 

Softmax serving as the activation function in the output layer. 

 

Fig III.8.AlexNet Architecture . 

ZFNet : is a CNN architecture that integrates both fully-connected layers and CNNs, devised 

by Matthew Zeiler and Rob Fergus. Emerging as the ILSVRC 2013 champion, ZFNet boasts 

relatively fewer parameters compared to AlexNet while surpassing it in the ILSVRC 

2012classification task, achieving top accuracy with only 1000 images per class. This 

architecture represents an enhancement over AlexNet, achieved through fine-tuning the 

hyperparameters, particularly by augmenting the size of the middle convolutional layers and 
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reducing the stride and filter size in the first layer. Based on the Zeiler and Fergus model 

trained on the ImageNet dataset, the ZFNet CNN architecture encompasses seven layers: a 

Convolutional layer, a max-pooling layer for downscaling, a concatenation layer, a 

convolutional layer with a linear activation function and stride one, and dropout for 

regularization applied prior to the fully connected output. ZFNet enhances computational 

efficiency relative to AlexNet by introducing an approximate inference stage through 

deconvolutional layers in the middle of CNNs. 

 
Fig III.9.ZF Net Architecture 

GoogLeNet : the CNN architecture employed by Google to secure victory in the ILSVRC 

2014 classification task, was developed by Jeff Dean, Christian Szegedy, Alexandro Szegedy, 

and others. Its key innovation lies in the introduction of an Inception Module, significantly 

reducing the network's parameter count (4M, compared to AlexNet's 60M). This architecture 

achieves greater depth through various techniques, including 1×1 convolution and global 

average pooling. Although computationally demanding, GoogLeNet utilizes heavy unpooling 

layers atop CNNs to mitigate spatial redundancy during training and incorporates shortcut 

connections between the first two convolutional layers before introducing new filters in 

subsequent CNN layers. Real-world applications of the GoogLeNet CNN architecture include 

tasks such as Street View House Number (SVHN) digit recognition, often utilized as a proxy 

for roadside object detection. 

 

Fig III.10.GoogLeNet’s inception module 
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VGGNet : crafted by Karen Simonyan, Andrew Zisserman, and others at Oxford University, 

stands as a 16-layer CNN boasting up to 95 million parameters, trained on a dataset 

comprising over one billion images categorized into 1000 classes. Designed to accommodate 

large input images sized at 224 x 224 pixels, VGGNet yields 4096 convolutional features. 

However, CNNs with such extensive filters incur high training costs and demand abundant 

data. This characteristic explains why CNN architectures like GoogLeNet (AlexNet 

architecture) often outperform VGGNet in image classification tasks involving input images 

ranging from 100 x 100 pixels to 350 x 350 pixels. 

Real-world applications of the VGGNet CNN architecture encompass the ILSVRC 2014 

classification task, coinciding with the victory of the GoogLeNet CNN 

architecture.Acknowledged for its computational efficiency, VGGNet serves as a robust 

baseline for various computer vision applications, particularly in tasks like object detection. 

Its deep feature representations find application across multiple neural network architectures 

such as YOLO, SSD, and others.  

VGG16: In the paper "Very Deep Convolutional Networks for Large-Scale Image 

Recognition" by K. Simonyan and A. Zisserman (referenced in[69]), the VGG16 network 

achieved an impressive 92.7% accuracy on the ImageNet test. Its training spanned weeks, 

employing a dataset of 16 million images, and utilized the computational prowess of an 

NVIDIA Titan Black graphics card. Notably, this network comprises 16 hidden layers and 

demonstrates the capability to accurately classify images into 1000 distinct classes. 

The diagram below illustrates the standard VGG16 network architecture. 

 

Fig III.11.VGG16 network architecture
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VGG19:In accordance with [69], this network mirrors the architecture of VGG16 but 

incorporates an additional three convolution layers, resulting in a total of 16 convolution 

layers alongside 3 fully connected layers, summing up to 19 layers in total (illustrated in 

figure II.22). 

 

Fig III.12.VGG16 network architecture 

ResNet:devised by Kaiming He and his colleagues, emerged as the CNN architecture that 

secured victory in the ILSVRC 2015 classification task, achieving a top-five error rate of 

merely 15.43%. This network, characterized by its 152 layers and over one million 

parameters, qualifies as deep even among CNNs. The training process for ResNet on the 

ILSVRC 2015 dataset would have exceeded 40 days when conducted on 32 GPUs. While 

CNNs are typically associated with image classification tasks featuring 1000 classes, ResNet 

demonstrates the versatility of CNNs by successfully addressing natural language processing 

challenges, such as sentence completion and machine comprehension. Notably, it was 

employed by the Microsoft Research Asia team in 2016 and 2017 for these purposes. 

Real-world applications of the ResNet CNN architecture extend to Microsoft's machine 

comprehension system, where CNNs are utilized to generate answers for over 100,000 

questions across more than 20 categories. ResNet is recognized for its computational 

efficiency and scalability, enabling adjustment to match the computational power of GPUs, 

whether scaling up or down. 

MobileNets: represent CNNs designed to operate on mobile devices, facilitating image 

classification or object detection with minimal latency.Developed by Andrew G. Trillion and 

colleagues, MobileNets typically feature compact CNN architectures, rendering them suitable 

for real-time execution on embedded devices like smartphones and drones. Despite their 
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reduced size, the architecture remains flexible and has been tested with CNNs comprising 

100-300 layers, consistently outperforming other architectures such as VGGNet. 

In practical terms, MobileNets find application in CNNs integrated into Android phones, 

powering Google's Mobile Vision API. This API enables the automatic identification of labels 

for popular objects in images, exemplifying the real-world utility of MobileNets in mobile 

device scenarios. 

III.3.3. Histograms of Oriented Gradients 

In the realm of computer vision, numerous algorithms aim to extract spatial features for object 

identification by leveraging information related to image gradients. One such algorithm is 

HOG, short for Histogram of Oriented Gradients. A histogram serves as an approximate 

representation of the distribution of numerical data, resembling a bar graph where each bar 

corresponds to a data group within a specific value range, known as bins. The term 

"orientation" refers to the direction of an image gradient. HOG generates a histogram 

depicting the directions of gradients present in an image. 

To capture shape features, we applied the HOGtechnique proposed byN. Dalal and B. 

Triggs, “Histograms of oriented gradients for human detection,”. This technique stores 

information about the shapes within the image, represented by histograms of object edge 

slopes. Each bin in the histogram signifies the count of edges with orientations falling within 

a particular angular range. The concatenation of computed histograms from all four sub-bands 

produces the HOG descriptor, housing both shape and texture information. This descriptor 

proves valuable for content-based image retrieval. Byemploying DBC and Haar wavelet 

transforms to enhance edges and other high-frequency local features, the use of HOG yields 

more comprehensive shape information compared to an unprocessed image. 

Below is a summary of the process for extracting HOG features: 
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Fig III.13.An overview of HOG feature extraction 

 Gradient calculation : This stage involves the application of a 1-D discrete derivative 

mask in both the horizontal and vertical directions to each centered point. The mask is 

defined as follows:
1 0 1

1 0 1

 
  

 

The magnitude and orientation at each pixel ( )I x, y  are computed using the following 

formulas: 

   2 2
( , ) ( , )

atan2 ( , ), ( , )
2

Magnitude Gx x y Gx x y

Orientation Gx x y Gx x y


 

   
 

 (III.11) 

Here,Gx(x,y) and Gy(x,y) represent the gradient values in the horizontal and vertical 

directions at each pixel. In the case of color images, the channel with the highest magnitude is 

chosen to determine the dominant magnitude and orientation of the pixel. It's important tonote 

that the addition of π/2 is necessary because the arctan operator yields a range between −π/2 

and π/2. However, for an unsigned orientation scheme that enhances performance, the range is 

adjusted to be between 0 and π. 

 Orientation Binning: In the second step of creating cell histograms, each pixel 
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contributes a weighted vote to an orientation-based histogram channel, determined by 

the values obtained in the gradient computation. The cells, which are rectangular in 

shape, distribute the histogram channels evenly over a range of 0 to 180 degrees or 0 

to 360 degrees, depending on whether the gradient is unsigned or signed. In their 

experiments, N. Dalal and B. Triggs discovered that unsigned gradients paired with 9 

histogram channels yielded optimal performance. 

 Bloc normalization:There are three distinct methods for normalizing blocks. Let v 

represent the non-standard feature vector that compiles all the cell histograms within a 

given block. The k-norm of 
k

v  is used, where 1, 2k  , and   is a constant. The 

normalization schemes take the following forms: 

2 2

2

ˆ
v

v
v 




 (III.12) 

1

ˆ
v

v
v 




 (III.13) 

1

ˆ
v

v
v 




 (III.14) 

Additionally, an L2-norm is applied, followed by clipping (constraining maximum values 

of v to 0.2), and then normalization through Laplacian normalization [85]. All these 

normalization approaches demonstrate superior performance compared to non-standard cases. 

The ultimate HOG feature descriptor comprises a vector containing the elements of 

normalized cell histograms from all block regions. 

III.4. Conclusion  

In this chapter, the primary focus on visual tracking centers around the image as its main 

component. We provided a comprehensive discussion on critical aspects related to images, 

encompassing color, feature extraction, and delving into the significant role in processing the 

images that will be utilized in the subsequent section. 
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IV.1. Introduction 

This chapter presents our method for tracking visual objects, our method is presented, 

focusing on effectively handling diverse challenging appearance changes of the target, such as 

substantial occlusion, illumination variations, and scale variations. Figure IV.1  showcases the 

different stages of the tracking algorithm. The fundamental algorithm can be succinctly 

described in three essential steps. 

Initially, following a similar methodology as presented in [21], we utilize CNN features to 

train four two-dimensional correlation filters to estimate the target's location. 

Next, we introduce a novel approach that involves integrating RGB and HSV color 

transformations with DCT decomposition. This innovative technique allows us to enhance the 

tracking process further. 

Lastly, we calculate the maximum value from the resultant maps utilizing the correlation 

filters, Newton's method, and the convolutional features extracted from the HOG feature-

based image template. This computed value plays a crucial role as a parameter in the 

correlation filters' update process. 
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Fig. IV. 1. Key Phases in the Proposed Algorithm Implementation. 

IV.2. Conditionbasedon HSV-Energy  

 In this section, we present an innovative strategy to tackle the issue of managing fluctuations 

in illumination, which proves to be a formidable obstacle for numerous benchmark trackers. 

The technique revolves around harnessing the energy constituents within the HSV color 

space. The notion of energy finds broad utility across various domains, encompassing 

wireless sensor networks [28], image reconstruction [29], and beyond. 

For every input RGB frame, we utilize the energy utilization of individual components 

within the HSV color space to categorize the frame into two groups: low light and high light. 

The initial category encompasses frames with low energy consumption and minor alterations 

in lighting, while the subsequent category encompasses frames with elevated energy 

consumption and notable fluctuations in lighting.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure IV.2 the depiction showcases how the HSV color space establishes the fundamental 

framework for computing the energy consumption of every input frame. 

  

Fig. IV.2. Condition based on HSV-Energy. 

The energy associated with the thk  component is represented by 
kE . The proportion of 

energy consumption attributed to each individual HSV component is defined in the 

subsequent manner: 

 2
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 
 (IV.1) 
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      (IV.2) 

If 
kE  is greater than 23 100% , it indicates that the illumination is very weak. In such 

situations, the coefficients of the image's DCT are utilized as input for the CNN. Conversely, 

in the opposite scenario, the input image is decomposed into its RGB components. This step 

follows the approach proposed in this section. 

IV.3. Discrite cosine transform 

The DCT is a mathematical technique that converts a signal from its spatial representation to 

the frequency domain. By utilizing the DCT, important spatial frequency information in a 2-D 

signal can be efficiently captured using a small set of low-frequency coefficients, which 

typically group together in the upper left corner of the corresponding 2-D DCT matrix. This 

exceptional energy compaction characteristic has led to widespread adoption of the DCT in 

various applications, including data compression and image quality evaluation. The 2-D DCT 

of an M N  image matrix f can be defined as follows: 
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where the 2-D IDCT transform is defined as follows: 
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In this transformation, the indices uand  are constrained within the range of 0 to  1M

and 0 to  1N  , respectively. The pixel intensity at coordinates  ,i j in the original signal is 

denoted by  ,f i j , while the corresponding transform coefficient located at row u and 

column in the DCT matrix is represented by  ,F u  . To ensure appropriate normalization 

during the DCT calculation, vital scalar values 
u  and 

  are defined as normalization 

coefficients. These coefficients play a crucial role in the normalization process of the DCT 

transformation. 
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The DCT coefficient  0,0F located at the top left corner of the matrix is referred to as the 

DC term. As for the other DCT coefficients, they represent AC terms and correspond to high 

spatial frequency coefficients arranged in increasing order. 

 

 

Fig. IV.3.Displays image patches on the left and the DCT coefficient 
matrix on the right. The yellow color highlights the dc term, while the 
remaining terms represent the selected ac terms.   

The suggested methodology introduces a robust method to address illumination variation, 

leveraging a novel conceptual framework. Central to this innovative concept is the utilization 

of DCT coefficients in instances where the image's saturation reaches high levels. This 

strategic approach bypasses the direct utilization of the image components RGB within the
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network, offering an alternative and potentially more effective means of managing extreme 

saturation scenarios. 

The amalgamation of the DCT and CNN techniques has exhibited considerable resilience, 

thereby enabling effective mitigation of illumination variation issues. This integrated method 

showcases robustness, showcasing its capacity to effectively address and alleviate challenges 

stemming from fluctuations in illumination within images. 

FigureIV.4 portrays the precise positioning of the target across six selected frames within 

the Singer2 sequence. The blue frame denotes the initial position of the tracked object, while 

the red frame represents the tracking achieved using the suggested approach, a fusion of DCT 

coefficient and CNN methodologies. Evidently, the proposed technique enables robust 

tracking of moving objects amidst illumination fluctuations while maintaining a sustained 

memory of the target's appearance. This ensures a notably high accuracy in locating the target 

across the majority of frames in the Singer2 sequence. 

Moreover, to validate the proposed approach, focusing on the saturation condition, two 

tests were conducted to calculate tracking errors. These tests involved comparing scenarios 

where the saturation condition was considered (depicted in red) versus situations where the 

saturation condition was disregarded (depicted in blue). Notably, figure IV.4 (center) 

highlights a substantial reduction in tracking error when employing the proposed approach, 

emphasizing its effectiveness in minimizing errors compared to the standard case that neglects 

variations in saturation conditions. 

 

 

 

 

 

 

 

Fig. IV.4.A frame-by-frame display of the results of the Singer2 
sequence tracking, with and without the saturation condition (in pixel).
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IV.4. Correlation Filters 

Within this segment of the thesis, the primary objective centers on enhancing the learning 

phase embedded within correlation filter models. The intention is to delve into the 

fundamentals of the correlation filter tracking approach and trace the evolutionary path of its 

algorithms across time. This exploration will encompass a comprehensive overview of the 

development journey, highlighting the key advancements and refinements. Subsequently, the 

focal point will narrow down to our specific algorithm within the domain of correlation filter 

tracking. 

IV.5. Evolution of Correlation Filters 

Within the domain of digital image processing, the correlation filter stands as a fundamental 

tool employed to identify specific locations within an image that closely align with a 

predefined template. The ideal functionality of a correlation filter involves producing 

heightened responses when encountering the predetermined template, while concurrently 

eliciting minimal responses when confronted with background elements [21]. 

The advent of the MOSSE [31] filter marked a significant leap, integrating correlation 

filters into tracking using grayscale images. Despite its swift object tracking capabilities, this 

filter lacked the reliability to accurately track objects when their appearances underwent 

changes. Subsequently, Henriques et al. introduced circulant structure tracking with kernels 

Kernels correlation filter (KCF), in 2012, propelling advancements in tracking methodologies 

[43]. Further progressions surfaced in 2014 with Danwelljan et al., presenting the KCF, which 

fine-tuned channel characteristics to accommodate multi-channel features and introduced CN 

features to enhance tracking capabilities [32]. Despite these advancements, challenges 

persisted in augmenting the filter's adaptability to handle rotation, objects moving out of view, 

and rapid motion. 

The innovation continuum persisted as Danelljan et al. proposed the Discriminative Scale 

Space Tracker (DSST) in 2014, employing feature pyramids to address issues arising from 

scale variations [44]. Additionally, the improved fDSST algorithm emerged as a subsequent 

iteration. With the meteoric rise of deep learning, the C-COT algorithm emerged in 2016, 

effectively amalgamating spatial position information through shallow CNN features, 

bridging correlation filtering and CNN methodologies. This pioneering algorithm clinched 

victory in the VOT2016 competition. Similarly, the CSR-DCF algorithm harnessed CNN
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 features, fortifying algorithmic resilience and robustness through their integration with 

correlation filtering techniques [35]. 

IV.5.1. KCF algorithm 

KCF, short for Kernelized Correlation Filter, amalgamates techniques from two tracking 

algorithms, BOOSTING and MIL tracker. Its core function involves translating the object's 

position using a circular offset within the bounding box. In essence, the KCF tracker's primary 

focus lies in discerning changes within an image, whether in movement, extension, or 

orientation, thereby striving to probabilistically ascertain the object's position being tracked 

[47]. 

The KCF [32] is a stalwart among traditional discriminant methods, known for its ability to 

learn filters derived from a series of training samples. The KCF sample generation method 

employs the cyclic shift technique. Considering one-dimensional data represented as 𝒙 =

[𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏], the cyclic shift of x is denoted as 𝑷𝒙 = [𝒙𝒏, 𝒙𝟏, … , 𝒙𝒏ି𝟏]. The entirety of 

cyclic shift samples formulates a cyclic matrix. 

 
1 2

1 1

n

n n

x x x

X C x

x x x

 
    
  


   


 (IV.6) 

 

Fig. IV.5.Circulant matrix. 

In other words, it employs an (M × N)image block x to train a filter 𝒇(𝒙) =  ⟨𝝎, ∅𝒙⟩,, 

creating a training sample through a cyclic shift operation on x. These training samples 

encompass all possible cyclic shifts Pi, where i ∈ {0, ..., M − 1} × {0, ..., N − 1}. Each Pi 

yields a respective score yi (yi∈[0, 1]), generated by a Gaussian function contingent on the 

offset distance. Through the minimization of the regression error, the classifier undergoes 

training as follows: 

 2 2
arg min , ( ) i

w i

w w x y w     (IV.7)
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Among these elements,  x  represents the mapping within Fourier space. The parameter 

0   serves as the regularization parameter, indicating the model's level of simplicity. The 

periodic assumption facilitates efficient training and detection through the utilization of a fast 

Fourier transform. Leveraging the translation invariance of the kernel function, a can be 

efficiently obtained as  ˆˆ ˆ / xxa y k   given the special nature of the circulant matrix. During 

the filtering conversion process, the assessment of a candidate image block of size m n  

within the search space z  is determined by the following formula: 

 1 ˆ ˆ( ) F xxf z k a   (IV.8) 

The filter response ( )f z  spans across all cyclic matrices z , with the highest response 

pinpointing the object within the current frame. 

Through exploitation of cyclic matrix properties within the candidate window, the KCF 

algorithm generates a sequence of potential samples, drastically enhancing tracking speed 

when contrasted with traditional window sampling methods. This problem subsequently 

undergoes swift conversion into a frequency domain operation via Fourier transform, shifting 

the ridge regression issue from the time domain to a frequency domain cross-correlation 

problem. 

Distinct from a single-channel grayscale feature, the KCF algorithm incorporates a 

multichannel HOG feature. Nevertheless, due to the use of cyclic shifts, the KCF encounters 

challenges associated with boundary effects. Furthermore, the KCF maintains a fixed search 

area, potentially leading to surpassing the search range during swift motion. 

IV.5.2. CSRT algorithm 

CSRT, the OpenCV implementation of the CSR-DCF represents a sophisticated algorithm 

capable of adapting to alterations such as object enlargement and non-rectangular shapes. 

Fundamentally, it employs HoG features in conjunction with Spatial Reliability Maps 

(SRM)to facilitate object localization and tracking .The spatial reliability map adjusts the 

filter's support to focus on the part of the object most suitable for tracking. This adaptation 

tackles two issues: it overcomes the limitations of circular shift, allowing for a flexible search 

range, and it surpasses constraints tied to assuming a rectangular shape for the object. Another 

innovation in CSR-DCF lies in channel reliability. This reliability is determined based on the 
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propertiesof theconstrained least-squares solution. These reliability scores for each channel 

are employed to weigh the filter responses individually during localization (refer to figure 

IV.6) [35]. 

 

Fig. IV.6.The CSR-DCF approach 

 

IV.5.3. MOSSE algorithm 

The integration of correlation filter technology into the realm of visual tracking was catalyzed 

by the MOSSE algorithm [31]. This algorithm possesses the capability to adjust to challenges 

associated with occlusion and rotation, attaining an impressive tracking speed of 669 frames 

per second. Primarily trained on the initial image, the MOSSE filter showcases robust 

performance, effectively handling variations in lighting, scale, and posture. In instances of 

target occlusion, the algorithm adeptly assesses the object's tracking status, refining filter 

parameters based on the PSR value. Upon the object's reappearance, seamless tracking is 

resumed [9]. 

During the process of visual tracking, the selected area of interest, which can be a specified 

object, a point of interest, or the entire image, is referred to as a sample. The set N , denoted 

as 
ix  where  1 2, , ,i Nx x x x   represents training samples, each denoting a rectangular 

region with a width of 
1M  and a height of 

2M . 
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Typically, each sample 
ix  functions as    1 20, , 0, ,ix M M     . The objective of 

the MOSSE tracker revolves around identifying a filter that maintains the relationship 

i ix h y  , presented as a cost function in equation (IV.9). 

2

1

argmin
N

opt i i
h i

h h x y


    (IV.9) 

The  i iy N  denotes the anticipated response, illustrating the intensities within the region 

of interest. Ordinarily, 
iy  embodies a definition derived from a sampled Gaussian function, 

characterized by a narrow peak strategically centered on the targeted object, as visually 

depicted in figure IV.2.6. The symbol   signifies the correlation operation, an outcome 

achieved through cyclically shifting the features of the original patch 
ix  and the previously 

acquired model h. The resultant opth  represents the freshly acquired filter model. It's essential 

to emphasize that the correlation and convolution, delineated by equations (IV.10)and 

(IV.11), are invoked to resolve this linear regression quandary, particularly in the frequency 

domain. These operations are instrumental in addressing this specific linear regression 

challenge, employing a frequency domain-based approach. 

       1Fc n a m b n m A B     (IV.10) 

       1 *Fc n a m b n m A B     (IV.11) 

In the context of discrete signals, the expressions  .a and  .b represent unidimensional 

signals, wherein  a n m signifies the circular form of  a n experiencing a delay of m  units 

to the right. The symbol * denotes the complex conjugate, while the F  symbol signifies an 

elementwise multiplication. The transformation denoted by F  refers to the Discrete Fourier 

transform (DFT), distinguishing all uppercase letters as signals in the frequency domain and 

lowercase letters as signals in the spatial domain. 

Expanding the theorem to encompass the two-dimensional scenario is straightforward 

owing to the separable nature of the DFT operation in the two-dimensional realm. It's 

presupposed that any derivation applied to the one-dimensional signal can be seamlessly 

extended to encompass two-dimensional signals, provided that the operations can be 
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segregated into two dimensions [38].Utilizing these principles, the correlation problem 

articulated in equation (IV.9) can be expressed as follows: 

2

1

arg min
N

opt i i
H i

H H X Y


    (IV.12) 

To streamline the optimization process for each individual element of optH , we can 

express: 

* * * * * *

1

L
N

i i i i i i i i
i

H H X X Y Y H X Y H X Y


             (IV.13) 

Suming independence between H  and *H , upon deriving this function with respect to 

each element of *H , we acquire: 

* *
*

1

L N

i i i i
i

H X X X Y
H 


 

      (IV.14) 

When 
*

L
H




equals zero, the derivative of equation (IV.13)concerning *H  results in: 

*

1

*

1

N

i i
i
N

i i
i

X Y
H

X X













 (IV.15) 

The acquired model H  effectively upholds the minimization of the cost function within 

the frequency domain. the Fourier transform serves as the optimal tool for executing 

convolution (elementwise multiplication) due to the computational efficiency offered by the 

Fast Fourier Transform (FFT) at a complexity of  log( )M M , necessitating a signal 

complexity of  2 log( )M M . Furthermore, this method streamlines operations involving 

the 2 2M M  matrix (inversion and multiplication), providing a practical solution for the linear 

least-squares method. 

Throughout the tracking process, estimating the object's position occurs in each input 

frame, facilitating the localization of the object in the subsequent frame. At the instance 1t  , 

the correlation response map 
1tf 
materializes by element-wise multiplication of the acquired 
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filter model 
tH at instant t  with the sample Z  extracted from the object patch at the instance 

1t  , as follows: 

 1 *
1 1Ft t tf H Z
    (IV.16) 

The significance of this response map lies in its role in pinpointing the new location of the 

object, reliant on the coordinates of the pixel with the highest value. Essentially, these 

coordinates serve as the indication of the shift in the center between consecutive frames at 

instances t  and 1t  . 

 

Fig. IV.7.The MOSSE filter 

As the tracked object's position is determined in each frame, preserving the efficiency of 

the filter model derived from equation (IV.16)necessitates updating it. This pivotal process is 

executed employing a learning rate denoted as γ. The significance of this parameter resides in 

facilitating the learning process for the numerator and denominator of the model H at instant 

1t  , while conserving a portion of the previous filter model 
tH , thus involving the following: 

   
1

*
1 11

tt t tA A X Y 
      (IV.17) 

So, we can write 

1
1

1

t
t

t

A
H

B





  (IV.18) 

where
1tA 
and 

1tB 
 represent the numerator and de-numerator of 

1tH 
, while 

1tX 
 and 

1tY 

correspond to the samples and the desired response map, respectively. 



Chapter IV                                                            Proposed methods for visual object tracking 
 

  
49 

IV.5.4. Correlation Filters 

The correlation filters showcase a proficient encoding of the visual attributes of the target 

object [24]. The procedure of acquiring the correlation filter models W  entails addressing the 

subsequent minimization challenge: 

 
2 2*

,
,

arg min . ,m n
W m n

W W x y m n W    (IV.19) 

The learned correlation filter model is denoted as W . 

The feature vector x is characterized by its dimensions, which are ,M N and D , with M  

representing width, N  representing height, and D  representing the number of channels. 

The regularization parameter   assumes values that are non-negative.  

where 

, , , , ,
1

. .
D

T
m n m n d m n d

d

W x W x


  (IV.20) 

with ,
T

m nW  and d  the transposed weight for each channel d at position  ,m n . The 

correlation filter model's dimensions are M N [25]. Each shifted sample of 

   , , 0,1,..., 1 0,1,..., 1m nx m n M N    is associated with a Gaussian function label 

 ,y m n through the regression process: 

 
   22

2 2
22,

NMm n

y m n e 

  



 

(IV.21) 

where   is the standard deviation. 

The optimization problem outlined in equation (IV.19) can be separately addressed for 

each feature channel by utilizing FFT, akin to the vector correlationfilter training method 

described in [26]. In the frequency domain, the learned filter for the thd  channel (where d  

takes values from 1 to D  ) is defined according to equation (IV.22). 
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1
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X X 
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


 

(IV.22) 

where y is the Fourier transformation form of        , | , 0,1,..., 1 0,1,..., 1y y m n m n M N      

and the bar refer to the complex conjugation. The operator  is the Hadamard product. 

To compute the thd correlation response map 
lf , the Inverse Fast Fourier Transform 

(IFFT) is employed, as expressed by the equation: 

1

1

, where 1, 2,...,3
D dd

l
d

f W Z l



   
 
 F

 

(IV.23) 

During the tracking process, a multi-channel vector Z  is employed to compute the value 

of 
lf . The uppercase letters indicate the Fourier transform signals associated with it, the IFFT 

operation is represented by 1F , and the complex conjugation is indicated by the bar symbol. 

 

 

Fig. IV.8.Object patch extraction. 

IV.6. Convolution Features 

CNN have exhibited remarkable success across a range of computer vision tasks. In this 

investigation, we introduce a novel approach involving translation estimation by leveraging a 

CNN model to extract features and establish a translation model. Specifically, we harness four 

layers from the VGGNet-19 model to extract convolutional features.  

In the context of visual object tracking, the precise determination of the target object's 

position takes precedence over its semantic category. As a result, we employ bilinear 

interpolation [11] to resize each input frame to dimensions of 224 × 224. Subsequently, we 
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collect the outputs from pool 1, pool 2, pool 3, and pool 4 layers to create a multichannel 

feature map.  

As the depth of the CNN increases, the spatial resolution of the target object gradually 

diminishes due to the pooling operations. To mitigate this challenge, we address each feature 

map's size using bilinear interpolation, as outlined in equation (IV.24), ensuring that they are 

resized to a consistent spatial resolution of / 4 / 4M N . Here, Mand N denote 

thedimensions of the feature vector x. This approach guarantees uniform spatial resolution 

across the pooling layers. 

.i ik k
k

x h
 

(IV.24) 

In this context, 
ix  stands for the upsampled feature vector at the  thi location, and 

kh  

represents the feature map corresponding to the thk  feature. Meanwhile, 
ik is a weight 

interpolation factor that relies on the specific positions of the thi and thk  vectors within the 

adjacent features. 

IV.7. Estimation of Coarse-to-Fine Translation 

To determine the target translation within the correlation response maps of each layer, 

denoted as 
lf , a search is performed to locate the maximum value in the previous layer 

 1
th

l  . The corresponding location in the current layer thl  is taken as a reference point for 

regularization. The most suitable position of the target in the  1
th

l   layer is subsequently 

identified by maximizing the weighted summation of responses from the  1
th

l  and thl  

layers, while adhering to certain constraints. 

1arg m in (m , n) (m , n),l lf f m m n n r        (IV.25) 

Within a region of size r r  centered around  m n 
, the search is confined to neighboring 

areas, ensuring limitations on the search range. Progressing from the outermost to the 

innermost layers, each response value is subject to multiplication by a regularization factor   

and subsequently propagated back to the response map of preceding layers [11]. 

Ultimately, through the maximization of equation (IV.25) on the layer boasting the highest 

spatial resolution, the estimation of the target location is achieved. 
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Furthermore, by employing equations(IV.19), (IV.22), (IV.25), and Newton's method, the 

utmost response of the correlation filter derived from HOG can be calculated for 1l  , and 

1  . 

Newton's method, a technique in the field of optimization, is employed to discover global 

extrema. By calculating both the gradient and the hessian [27], this method seeks the highest 

score during each iteration. The process achieves convergence with only a limited number of 

iterations. 

IV.8. Model Update 

During the tracking process, a significant change in the object's appearance between two 

consecutive images is evident, leading to potential tracker drifts [26]. To address this issue, it 

becomes crucial to update the correlation filter model obtained through equation (IV.19) by 

incorporating a learning rate denoted as , as demonstrated in equation(IV.26). 

 
 

1

1

1

1

t t t

t t t

x x x

W W W

 

 





   


  


  (IV.26) 

The adaptive updating of correlation filters derived from both CNN and HOG features is 

executed with a conservative approach. This conservative learning strategy endows the filters 

with resilience against noisy updates, thereby enhancing their ability to accurately estimate 

the confidence level associated with each tracked outcome. 

To discern instances of potential tracking failures, a threshold value, denoted as 0T , is 

established. If the maximum response of the correlation filter derived from the HOG features 

surpasses the 0T threshold, indicating a notably high level of confidence in the tracked result 

z , we proceed with updating the correlation filters. Conversely, when the confidence score 

falls below the 0T threshold, refraining from updating the filters is warranted, ensuring a 

cautious approach to filter modifications. 
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IV.9. Conclusion  

Within this chapter, we introduce a novel approach for visual object tracking that 

encompasses a series of methodological steps, commencing with image preprocessing and 

progressing through feature extraction to fulfill the dual objectives of translation and scale 

estimations. The initial stage of preprocessing is adept at efficiently extracting patches from 

the target object, facilitating the retention of critical information pertaining to both foreground 

and background aspects. 

Moving forward to the feature extraction phase, our methodology integrates the utilization 

of DCT, CNN and HOG features. This amalgamation is instrumental in capturing and 

encoding significant visual attributes essential for tracking tasks. In the pursuit of maintaining 

robust object tracking, correlation filters play a pivotal role in both the translation and scale 

estimation tasks, forming a crucial component of our proposed methodology. 

 



 

  
54 

Chapter V 
 

Experminent results 
 
 

Sommary 
 

V.1. Introduction ............................................................................................................................................... 55 
V.2. Databases...................................................................................................................................................... 55 
 V. 2.1. Object Tracking Benchmark.................................................................................................. 56 
 V. 2.2. Temple Color 128....................................................................................................................... 57 
 V. 2.3. Unmanned Aerial Vehicles 123........................................................................................... 57 
V.3. Assessment Approach.......................................................................................................................... 58 
 V. 3.1. Robustness evaluation............................................................................................................. 58 
 V. 3.2. Precision plot................................................................................................................................ 59 
 V. 3.3. Success plot................................................................................................................................... 59 
V.4. Experiments............................................................................................................................................... 60 
V.5. Conclusion ................................................................................................................................................. 68 

 
 



Chapitre V  Experminent results 

 
55 

 
Experminent results 

 
 
 

 
V.1. Introduction 

The realm of visual tracking encompasses a vast array of applications, each with its unique set 

of prerequisites and demands. These requirements may encompass constraints related to real-

time processing speed or specialized performance expectations tailored for specific video 

classifications. In practical terms, the selection of an optimal tracker is inherently application-

specific and typically involves a trade-off among various factors. 

In order to facilitate a thorough and equitable assessment, the community has developed 

standardized datasets and evaluation metrics for testing and comparing generic visual object 

trackers. Within the academic field, any published work is generally expected to subject its 

proposed methodology to evaluation using these collective datasets. 

Within the scope of this thesis, the proposed method undergoes meticulous evaluation across 

three such datasets, notably the OTB-2015 dataset, which comprises 50 videos. Renowned for 

their diversity and complexity, these datasets encompass a wide spectrum of scenes and target 

scenarios, presenting significant challenges for tracking algorithms. Several experiments 

detailed in this thesis are conducted utilizing either the OTB-2015 dataset, serving as robust 

testing grounds to gauge the effectiveness and adaptability of the proposed methodology. 

V.2. Databases 

In recent years, a plethora of applications in visual tracking has surfaced, leading to 

assessments conducted via subjective evaluations or intricately devised metrics aimed at 

scrutinizing tracker performance. Acknowledging the inherent biases in subjective 

assessments, several studies have aimed to mitigate this concern by introducing sophisticated 

databases like the OTB dataset, TC128, and UAV20 datasets. These repositories stand as 

comprehensive collections, encompassing attributes and scenarios pivotal for the meticulous 

evaluation of tracking methodologies. 
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V.2.1. Object Tracking Benchmark 

The Object Tracking Benchmark dataset (OTB) comprises three primary datasets: OTB-2013 

[96], OTB100 (OTB-2015) [97] , and OTB50. Initially introduced by Y. Wu et al.[96]  at 

CVPR in 2013 as OTB-013, OTB-2013 encompasses 51 video sequences with over 2900 

frames annotated with artificially labeled target boxes. Notably, the Skating video sequence is 

divided into two separate sequences due to distinct labeling of objects. Furthermore, OTB-

2013 categorizes visual object tracking into 11 challenge types, such as scale change, 

illumination variation, and occlusion. Each video sequence in the dataset is annotated with 

these tracking challenges, facilitating method analysis concerning diverse challenges. A 

subset of the OTB dataset's video sequences is depicted in figureV.1. 

 
Fig.V.1.Examples of Sequences within the OTB Benchmark 

It's important to note that a single video sequence may correspond to multiple tracking 

challenges. Subsequently, OTB-2015, an extension of OTB-2013 by Y. Wu et al.[97], 

expands the dataset to 100 video sequences, hence its alternate name, OTB100. Due to the 

widespread use and success of OTB-2013 and OTB-2015 datasets, numerous tracking 

methods have demonstrated commendable performance on these two datasets. To intensify 

the dataset's difficulty level, an additional 50 complex video sequences were extracted from 

OTB-2015, forming a distinct dataset termed OTB50. 

Moreover, the OTB dataset introduces an evaluation tool that boasts compatibility not only 

within its own datasets but also with others like TC128, UAV123, among others. 

Consequently, the OTB dataset stands as the most extensively utilized dataset in the domain 

of visual object tracking. 
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V.2.2.Temple Color 128 

The Temple Color 128 dataset (TC128), introduced by Liang et al. [98] from Temple 

University in the United States, was presented in the IEEE Transactions on Image Processing 

journal in 2015. Comprising 128 video sequences accompanied by manual annotations, the 

dataset draws from two primary sources. Firstly, it includes 50 video sequences commonly 

utilized in other video datasets, while the remaining 78 sequences were manually labeled. 

Designed to investigate the impact of color information on video target tracking algorithms, 

the video dataset exclusively consists of color images. A segment of the video sequences from 

the TC128 dataset is illustrated in figure V.2. 

 
Fig.V.2.Examples of Sequences within the TC128 Benchmark 

V.2.3.Unmanned Aerial Vehicles123 

During the 2016 ECCV conference, Mueller et al. [99] from King Abdullah University of 

Science and Technology introduced the UAV123 dataset (Unmanned Aerial Vehicles, UAV). 

This dataset exclusively comprises video sequences captured from aerial viewpoints, 

predominantly sourced from unmanned aerial vehicles, while a subset of sequences is 

computer-generated. The UAV123 dataset caters to specific tasks and application scenarios, 

encompassing 123 video sequences meticulously annotated with manual labels. 

Moreover, the dataset features an additional 20 ultra-long video sequences, denoted as 

UAV20L, intended specifically to evaluate the tracking efficacy of visual object tracking 

methods over extended durations. These extended sequences serve as a platform for assessing
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 tracking capabilities within prolonged videos. A segment of the video sequences housed 

within the UAV123 dataset is showcased in figure V.3. 

 
Fig.V.3.Examples of Sequences within the UAV123 Benchmark 

V.3. Assessment Approach 

The evaluation of the proposed tracking method encompasses its performance analysis across 

multiple datasets, specifically the OTB, TC-128, and UAV20L datasets. This evaluation 

employs the one-pass evaluation (OPE) protocol, integrating measures such as distance 

precision or overlap success rates. Through the utilization of these standardized evaluation 

metrics, the method's tracking capabilities are rigorously assessed across diverse datasets, 

offering insights into its robustness and effectiveness in varying scenarios. 

V.3.1.Robustness evaluation 

The assessment of tracker robustness conventionally involves executing trackers across a 

designated test sequence, initiating them from the ground truth position in the initial frame, 

and subsequently calculating metrics such as average precision or success rate. This 

evaluation approach, termed one-pass evaluation (OPE), serves as the standard benchmarking 

method for assessing tracker performance. By commencing tracking from the ground truth 

position in the first frame and observing its behavior across the entire sequence, OPE provides 

a comprehensive overview of a tracker's performance in terms of precision or success rates on 

average.
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V.3.2.Precision plot 

The assessment of tracking precision commonly involves employing the center location error 

as a key metric, calculated as the mean Euclidean distance between the center locations of 

tracked targets and manually labeled ground truths across frames within a sequence. 

However, inherent limitations arise when trackers lose the target, resulting in potentially 

random output locations that may skew the average error value and inaccurately reflect 

tracking performance [6]. In response to this challenge, the precision plot [6,95] has emerged 

as a more nuanced measure of overall tracking efficacy. 

The precision plot provides insights by illustrating the percentage of frames where the 

estimated location falls within a predefined threshold distance of the ground truth. This plot 

effectively captures the tracker's performance in maintaining proximity to the actual target 

location throughout the sequence. A widely accepted representation of the precision score for 

each tracker utilizes a threshold distance of 20 pixels [6], offering a standardized measure for 

comparison among different tracking methodologies. 

V.3.3.Success plot 

An additional evaluation metric employed in assessing tracking performance involves 

bounding box overlap, which compares the tracked bounding box 
tr with the ground truth 

bounding box 
ar . This metric is quantified by the overlap score, denoted as ,t a

t a

r r
S

r r





 

where   and   signify the intersection and union of two regions, respectively, while .

represents the pixel count within the region. Evaluating performance across a sequence of 

frames entails counting the successful frames, defined by an overlap score S exceeding a 

predefined threshold 
0t . 

The success plot portrays the ratios of successful frames across a spectrum of threshold 

values, varying from 0 to 1. Singularly relying on a specific success rate value at a given 

threshold (e.g. 
0 0.5t  ) for tracker evaluation might not offer a comprehensive or equitable 

assessment. To address this limitation, the Area Under the Curve (AUC) of each success plot 

is employed as a more comprehensive metric, allowing for the ranking of tracking algorithms 

based on their overall performance across various threshold values. 
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V.4. Experiments 

The presented algorithm underwent validation and assessment using the OTB50 benchmark 

dataset, which comprises 50 videos. The tracking algorithm was coded in MATLAB and 

operated on an Intel I5-12400F 2.50 GHz CPU equipped with 16 GB RAM, with additional 

assistance from the MatConvNet toolbox. Feature extraction involved carrying out CNN 

forward propagation on a GeForce GTX1060 GPU. 

CNN introduced by the Visual Geometry Group in 2012, VGG-Net-19, has been Exploited 

in this study. This network was made of 19 layers, featuring 16 convolutional layers, 3 fully 

connected layers, 5 MaxPool layers, and 1 SoftMax layer [100]. To extract features, the 

network underwent training on the comprehensive hierarchical image repository, ImageNet 

[101]. 

During the process of feature extraction, only the outputs from pool 1, pool 3, pool 4, and 

pool 5 were employed. The search window size was remained constant at 1.8 times the target 

size. A regularization parameter  of 10-4 has been chosen, and the kernel width for 

generating Gaussian function labels has been set at 0.1. Furthermore, the learning rate  in 

equation (IV.26) was established as 0.01, also, the control updating parameter was fixed to 

0.3. Additionally, the value of was varied across different layers: 1 for conv5-4, 0.5 for 

conv4-4, 0.25 for conv3-4, and 0.15 for conv1-4 layers. 

Method evaluation employs Distance Precision (DP) and Overlap Success (OS) metrics. A 

comparison is conducted against other reference methods [11], [102], [103]. The outcomes for 

the two performance metrics are presented via two curves within One-Pass Evaluation (OPE). 

The first curve depicts the distance precision rate based on the location error threshold, 

indicating the portion of frames where tracking results lie within a specific number of pixels 

from the ground truth. The second curve portrays the success rate relative to the overlap 

threshold, signifying the percentage of frames where tracking was successful. The location 

error threshold spans from 0 to 50, while the overlap threshold is adjusted across the range of 

0 to 1. 
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Fig.V.4.Comparison with nine reference trackers using distance precision and overlap success on 

the OTB-50 database 

Examining the comparative results presented in figure V.4, one observes the 

performance metrics on the OTB-50 dataset. Notably, the HCFTs tracker emerges 

as a standout performer, securing the second-highest levels of efficacy. This is 

evidenced by its commendable distance precision and overlap success rate. 

Importantly, the innovative approach introduced in this study shines through as 

particularly effective, demonstrating notable improvements. Specifically, the 

proposed method achieves significant enhancements, boasting a noteworthy 

increase in distance precision and a substantial rise in overlap success. These 

compelling results underscore the efficacy of the newly suggested approach, 

positioning it as a promising advancement in the realm of tracking methodologies. 
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Fig.V.5.The charts depict how well tracking performs in 11 different challenging scenarios, 
measured in terms of both overlap success and distance precision. 

Figure V.5 exhibits the plotted graphs showcasing the overlap success rate and distance 

precision attained through the rigorous evaluation using the OTB50 dataset. This 

comprehensive assessment specifically centers on 11 intricate scenarios, each presenting 

unique challenges encompassing scale variation, fast motion, in-plane rotation, deformation, 

motion blur, occlusion, illumination variation, out-of-plane rotation, background clutter, out-

of-view, and low resolution. A meticulous scrutiny of all the sub-figures within figure V.5 

illuminates a compelling observation: the newly proposed tracker excels remarkably when 

compared to existing state-of-the-art counterparts across various aspects. However, it's 

noteworthy to mention that in the case of deformation, the proposed tracker doesn't 

outperform its counterparts, standing as an exception amidst its otherwise superior 

performance across the spectrum of challenging scenarios. 

We utilized OTB2015 for further assessment of the proposed tracker. Tables V.1 and V.2 

present the DP and OS rate results across 11 diverse attributes for the proposed tracker and 10 

other trackers. Notably, our tracker excels in 9 out of 11 attributes in terms of DP, 

encompassing scale variation, fast motion, deformation, motion blur, occlusion, illumination 

variation, out-of-plane rotation, background clutter, and out-of-view scenarios. 

Additionally, it demonstrates superior performance in nine attributes regarding the overlap 

success rate. However, the proposed tracker exhibits limitations in low-resolution scenes due 

to the challenge of capturing adequate features in such settings. Despite this, the proposed 

tracker surpasses its state-of-the-art counterparts overall. 
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Tab.V.1The distance precision results achieved by the proposed tracker and other 10 trackers on 11 different 
attributes on the OTB-2015 benchmark. The best, second best, and third best values are highlighted in red, green, 
and blue, respectively 

 

  Proposed MemDTC DeepSRDCF SRDCFdecon MemTrack DRVT BACF SRDCF HCFTs CF2 siamfc3s 

ALL 0.901 0.845 0.851 0.825 0.820 0.834 0.824 0.789 0.870 0.837 0.771 
IV 0.900 0.805 0.791 0.835 0.793 0.822 0.831 0.792 0.888 0.817 0.736 
SV 0.871 0.818 0.819 0.805 0.799 0.820 0.774 0.745 0.827 0.799 0.735 

OCC 0.864 0.797 0.825 0.768 0.762 0.781 0.745 0.735 0.814 0.767 0.722 
DEF 0.875 0.783 0.783 0.753 0.718 0.792 0.778 0.734 0.826 0.791 0.690 
MB 0.864 0.790 0.823 0.814 0.767 0.742 0.766 0.767 0.822 0.804 0.705 
FM 0.849 0.814 0.814 0.775 0.797 0.776 0.808 0.769 0.823 0.815 0.743 
IPR 0.893 0.829 0.818 0.776 0.818 0.792 0.795 0.745 0.895 0.854 0.742 
OPR 0.891 0.844 0.835 0.797 0.817 0.811 0.787 0.742 0.849 0.807 0.756 
OV 0.825 0.804 0.781 0.641 0.720 0.751 0.765 0.597 0.746 0.677 0.669 
BC 0.930 0.802 0.841 0.850 0.794 0.789 0.830 0.775 0.887 0.843 0.775 
LR 0.950 0.995 0.847 0.747 0.998 1.000 0.795 0.765 0.860 0.847 0.900 

 

Tab.V.2. The overlap success rate results achieved by the proposed tracker and other 10 trackers on 11 different 
attributes on the OTB-2015 benchmark. The best, second best, and third best values are highlighted in red, green, 
and blue, respectively 

 

 

 

 

 

  Proposed MemDTC DeepSRDCF SRDCFdecon MemTrack DRVT BACF SRDCF HCFTs CF2 siamfc3s 

ALL 0.645 0.637 0.635 0.627 0.626 0.625 0.621 0.598 0.598 0.562 0.582 
IV 0.656 0.624 0.621 0.646 0.614 0.631 0.634 0.613 0.603 0.540 0.568 
SV 0.604 0.608 0.605 0.607 0.602 0.611 0.576 0.561 0.525 0.485 0.552 

OCC 0.629 0.604 0.601 0.589 0.581 0.592 0.576 0.559 0.558 0.525 0.543 
DEF 0.616 0.568 0.566 0.553 0.539 0.569 0.583 0.544 0.560 0.530 0.506 
MB 0.662 0.625 0.642 0.639 0.611 0.603 0.586 0.594 0.606 0.585 0.550 
FM 0.638 0.626 0.628 0.606 0.623 0.611 0.606 0.597 0.581 0.570 0.568 
IPR 0.619 0.613 0.589 0.573 0.606 0.588 0.584 0.544 0.603 0.559 0.557 
OPR 0.627 0.619 0.607 0.591 0.605 0.601 0.584 0.550 0.573 0.534 0.557 
OV 0.608 0.590 0.553 0.510 0.549 0.574 0.552 0.460 0.519 0.474 0.506 
BC 0.665 0.610 0.627 0.641 0.599 0.595 0.625 0.583 0.620 0.585 0.523 
LR 0.505 0.665 0.561 0.517 0.684 0.635 0.514 0.514 0.435 0.388 0.618 
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These findings affirm the superiority of the proposed tracker, achieving notable values of 

91.3% for the DP score and 83.7% for the AUC score compared to other trackers. 

 

 

 

 

 

 

Fig.V.6.Showcases the qualitative results of our proposed method, along with HCFT 
[11],[103], HCFTs [102], and Struck [103], on four challenging sequences. 

 Struck ProposeHCFTs HCFT 
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In figure V.6, a compilation of tracking results stemming from a selected subset of the 

OTB-50 benchmark sequences is showcased. The primary objective here revolves around a 

qualitative assessment of the trackers' performance, featuring a comparison between HCFTs 

[11],[102],[103], Struck[103], and the recently proposed tracker. This evaluation is 

specifically carried out on four intricate sequences, distinguished by blue, magenta, green, and 

red markers, denoting the sequences Biker, Human3, Girl2, and Lemming, respectively, 

arranged in a top-to-bottom sequence. Each of these sequences presents a unique set of 

challenges spanning scale variation, occlusion, motion blur, rapid motion, out-of-plane 

rotation, low resolution, deformation, background clutter, and out-of-view scenarios. 

The experimental findings distinctly outline Struck's adeptness in skillfully navigating a 

range of challenges, encompassing scale variation, occlusion, motion blur, and background 

clutter. This particular strength is prominently showcased in sequences such as Biker and 

Lemming. However, when faced with deformation, Struck's effectiveness diminishes, notably 

revealing a limitation in sequences like Human3 and Girl2. 

Contrastingly, HCFTs exhibit remarkable proficiency in scenarios involving scale 

variation, occlusion, motion blur, and background clutter, notably excelling in sequences like 

Lemming. However, its effectiveness falters when handling deformation challenges, evident 

in sequences Biker, Human3, and Girl2. 

Across all mentioned sequences (Biker, Human3, Girl2, and Lemming), HCFT displays 

reduced effectiveness. In contrast, our proposed method consistently demonstrates precise 

target tracking, surpassing HCFTs, HCFT, and Struck. Particularly noteworthy is its 

excellence in tracking small targets due to its heightened robustness. 

 

V.5. Conclusion  

The suggested algorithm undergoes thorough validation utilizing the OTB50 datasets. The 

evaluation of the proposed trackers' performance hinges on two key metrics: AUC and the 

DP. Additionally, to validate the performance of the proposed tracker, a comprehensive 

comparison is conducted against various trackers. The simulation results unequivocally 

showcase the superior performance of the proposed tracker over numerous contemporary 

counterparts, particularly excelling in demanding scenarios characterized by background 

clutter, motion blur, partial occlusions, and diverse appearance alterations. 
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Conclusion 

 
The work presented in this Doctoral thesis makes contributions to tracking a singular object 

visually problem, focusing keenly on estimating the precise position of a target object within 

every frame constituting a video sequence. 

In this work, we are particularly interested to employ correlation filter-based tracking 

methodologies.  

The selection of these methods was underpinned by their remarkable performance, notable 

computational efficiency, and their effectiveness in updating models seamlessly. The standout 

attributes of these correlation filter-based tracking techniques, including their superior 

performance metrics and computational efficacy, made them an ideal choice for addressing 

the complexities associated with real-time object tracking scenarios. Their efficiency in 

accurately estimating object positions across video frames aligned strategically with the core 

objectives of this thesis, emphasizing the significance of their adoption within this research 

endeavor. 

Within this thesis, a novel approach aimed at enhancing visual object tracking algorithms 

was introduced, capitalizing on an effective fusion of CNN layers' features, Hog features, and 

coefficients derived from the image's DCT. This method leveraged hierarchical CNNs, trained 

extensively on a large-scale database, to derive a multifaceted strategy. Specifically, the 

output layers of the CNNs were harnessed to retain the semantic essence of target objects, 

rendering them robust against substantial appearance variations. In contrast, the input layers 

of the CNNs were exploited to encode finer spatial details crucial for precise localization. 

Combining these features with intricate details simultaneously enriched the visual object 

tracking process. 

To deduce the target's location, a linear correlation filter was trained on each CNN layer, 

facilitating a coarse-to-fine estimation through hierarchical correlation maps. Simultaneously, 

to enhance the tracker's accuracy and combat drifting issues during the correlation filter's 

update, this thesis proposed a real-time approach based on training the correlation filter on 
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HOG features. This method served as a means to update the filters derived from CNN and 

HOG features. Moreover, the integration of DCT served dual purposes: it replaced RGB in 

computing HOG features and supplemented CNN features for images with high saturation, 

bolstering their performance. 

Additionally, the employment of Newton's method enhanced long-term memory regarding 

the target's appearance and aided in recovery from tracking failures. Extensive simulations 

conducted within this study demonstrated the superiority of the proposed tracker over 

numerous contemporary counterparts. However, despite its proven effectiveness, further 

robustness enhancements were essential for this proposed tracker to become a versatile 

solution applicable across diverse scenarios, aiming to minimize deficiencies compared to 

existing counterparts. 

In the following, we give a summary of the results obtained and perspectives on work. 

In Chapter II, we presented the state-of-the-art of visual tracking. We then gave a detailed 

introduction to visual tracking, along with the challenges encountered and two different types 

of tracking algorithms. 

In Chapter III, we gave a detailed overview of image color spaces and imported methods of 

Image Features extraction, Convolutional Neural Networks, and Histograms of Oriented 

Gradients. 

In Chapter IV, we presented in detail the main steps of the proposed methods. 

In Chapter V, first, we presented Benchmark Datasets, followed by an assessment of visual 

object tracking performance. Second, a comprehensive examination of results and discussions 

pertaining to each database was provided. 

Finally, this work was concluded with a general conclusion in which the main results 

obtained were presented, and the perspectives to be considered as a follow-up to this work 

were discussed. 

Perspectives  

The work done throughout this thesisopens up various perspectives. Among the issues not 

detailed here, which could be the subject of future research, one main avenue is the possible 

improvement of the methods used in this work by employing alternative approaches that 

mimic the use of deep artificial intelligence. 
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