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Abstract

In this thesis, we are concerned with stochastic optimal control problems of systems gov-
erned by different types of forward-backward doubly stochastic differential equations.

In the first part, we prove existence of strong optimal control (that is adapted to the
initial o-algebra) for linear forward-backward doubly stochastic differential equations, with
random coefficients and non linear functional cost. The control domain and the cost
function were assumed convex. The proof is based on strong convergence techniques
for the associated linear FBDSDEs and Mazur’s theorem. We derive also necessary and
sufficient conditions for optimality for this strict control problem. This result is based on
the convex optimization principle.

In the second part of this thesis, we generelize the results of the first part to systems
governed by linear forward-backward doubly stochastic differential equations of mean field
type, in which the coefficients depend on the state process, and also on the distribution
of the state process, via the expectation of some function of the state. In particularly,
we establish the existence of strong optimal solutions of a control problem for dynamics
driven by a linear forward-backward doubly stochastic differential equations of mean- field
type (MF-LFBDSDESs), with random coefficients and non linear functional cost which is
also of mean-field type. Moreover, we establish necessary as well as sufficient optimality
conditions for this kind of control problem.

In the last part, we establish necessary as well as sufficient optimality conditions for exis-
tence of both optimal relaxed control and optimal strict control for dynamics of nonlinear

forward-backward doubly SDEs of mean-field type.
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Résumé

Dans cette thése, nous nous intéressons aux problémes de controle optimal stochastique de
systémes gouvernés par différents types d’équations différentielles doublement stochastique
progressives-rétrogrades.

Dans la premiére partie, nous prouvons I’existence d’un controle optimal pour les équations
différentielles doublement stochastique progressives-rétrogrades linéaires, avec des coeffi-
cients aléatoires et une fonction de cotit non linéaire. Le domaine de controle et la fonction
de cotit sont supposés convexes. La preuve est basée sur des techniques de convergence
forte pour les EDDSPRs linéaires et le théoréeme de Mazur. Nous établissons également
les conditions nécessaires et suffisantes d’optimalité pour ce probléme de controle strict.
Ce résultat est basé sur le principe d’optimisation convexe.

Dans la deuxieme partie de cette thése, on généralise les résultats du premiere partie
pour des systémes gouvernés par des équations différentielles doublement stochastique
progressives-rétrogrades linéaires de type champ moyen, dans lequel les coefficients dépen-
dent du processus d’état, ainsi que de la distribution du processus d’état, via ’espérance
d’une fonction de I’état. En particulier, nous établissons ’existence d’une solution optimale
forte du probléme de controle pour des équations différentielles doublement stochastique
progressives-rétrogrades linéaires de type champ moyen, a coefficients aléatoires et une
fonction de cotlit non linéaire qu’est aussi de type champ moyen. De plus, nous établissons
des conditions nécessaires ainsi que des conditions suffisantes d’optimalité pour ce genre
de probléeme de controle.

Dans la derniére partie, nous établissons les conditions nécessaires et suffisantes d’optimalité
pour les deux problémes de controle relaxé et strict pour les équations différentielles dou-

blement stochastique progressives-rétrogrades non linéaires de type champ moyen.
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Symbols and Acronyms

The different symbols and acronyms used in this thesis.

: Brownian motion.

: Expectation at x.

: Conditional expectation.

: Filtration.

: o—fields generated by FV U Ff.

: The Hamiltonian.

: The cost function.

: The collection of class of P—null sets of F.
: Optimal relaxed control.

: The set of admissible relaxed controls.

: Real numbers.

: n—dimensional real Euclidean space.

: The set of all (n x d) real matrixes.

: The set of values taken by the strict control u..
: The set of admissible strict controls.
: Admissible control.

: Probability space.

: A filtered probability space.



SDEs

BSDEFEs

FBSDEs
FBDSDEFEs

MF — FBDSDFEs
a.e.

a.s.

r.v

: Stochastic differential equations.

: Backward stochastic differential equations.

: Forward-backward stochastic differential equations.

: Forward-backward doubly stochastic differential equations.
: Forward-backward doubly SDEs of mean field type.

: almost everywhere.

: Almost surely.

: random variable.
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Introduction

Introduction

The mathematical theory of stochastic differential equations was developed in the 1940s
through the groundbreaking work of Japanese mathematician Kiyosi It6, who introduced
the concept of stochastic integral and initiated the study of nonlinear stochastic differen-
tial equations (SDEs). The linear backward stochastic differential equations (LBSDEs in
short) related to the stochastic version of Pontryagin’s maximum principle, has been stud-
ied by Bismut [I0]. After that, the non linear BSDEs have been introduced by Pardoux
and Peng [33]. Forward-backward stochastic differential equations (FBSDEs in short)
were first studied by Antonelli (see [5]), where the system of such equations is driven
by Brownian motion on a small time interval. The proof there relies on the fixed point
theorem. There are also many other methods to study forward-backward stochastic differ-
ential equations on an arbitrarily given time interval. For example, the four-step scheme
approach of Ma et al. [27], in which the authors proved the result of existence and unique-
ness of solutions for fully coupled FBSDEs on an arbitrarily given time interval, where the
diffusion coefficients were assumed to be nondegenerate and deterministic. Their work is
based on continuation method.

A new class of stochastic differential equations with terminal condition, called backward
doubly stochastic differential equation (BDSDE) have been introduced by Pardoux and
Peng in [34]. The authors show existence and uniqueness for this kind of stochastic differ-
ential equation and produce a probabilistic representation of certain quasi-linear stochas-
tic partial differential equations (SPDE) extending the Feynman-Kac formula for linear
SPDEs. Recently, Al-Hussein and Gherbal, [3], established the existence and uniqueness
of the solutions of multidimensional forward-backward doubly SDEs with random jumps.
The problem of existence of optimal controls for various control systems is a fundamen-
tal problem in stochastic optimal control theory. The existence of optimal controls for
stochastic differential equations (SDEs), is guaranteed by the presence of the Roxin-type

convexity condition (see [15, 22, 24]). Without this condition, a strict optimal control
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may fail to exist. In [6] Bahlali et al proved an existence result of strong optimal strict
control for linear backward stochastic differential equations (BSDEs). They showed the
existence in the strong formulation of the control problem, where the optimal control is
adapted to the original filtration. In this subject, Gherbal in [19] proved for the first time
the existence of optimal strict control for systems of linear backward doubly SDEs and
establish necessary as well as sufficient optimality conditions in the form of a stochastic
maximum principle for this kind of systems. Also, Al-Hussein and Gherbal established in
[2] sufficient conditions for optimal control of fully coupled multi-dimensional FBDSDEs
with Poisson jumps.

The first of our main aims in this work is to prove existence of optimal strict control
and establish necessary as well as sufficient optimality conditions for a control problem

governed by the following linear forward-backward doubly SDEs
(

dXt = (O[tXt + Btut)dt + (atXt + Btut)th

dY;g = _(’tht + :)/\tY; + 6tZt + Stut)dt
— (X +1,Y; + 0.2, + /étut)gét + Z dWr,

X():{L‘,Yng,
\

where a., a., 5, B,, Y, 7. 5.,3., n.,1.,0. and f. are matrix-valued functions of suitable sizes,

x is a square integrable and JFy—measurable process and ¢ is a square integrable and
Fr—measurable process, the solution (X, Y., Z.) takes values in R" xR™xR"™ . (W}~ , (By),50
are two mutually independent standard Brownian motions, defined on a probability space
(2, F,P), taking their values respectively in R? and in R* | and u, represents a strict
control. The integral with respect to B is a backward It6 integral, while the integral with
respect to W is a standard forward It6 integral.

We shall consider a functional cost to be minimized, over the set U of a admissible strict
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controls, as the following
T
J) =B | (X + 0 () + [ L(XE Y 2w de| )
0

where ¢, 1) and L are appropriate functions.

Stochastic optimal control of mean-field type recently are extensively studied, due to
their applications in economics and mathematical finance. In 2009, Buckdahn et al. [11]
established the theory of mean-field backward stochastic differential equations which were
derived as a limit of some highly dimensional system of FBSDEs, corresponding to a large
number of particles. Since that, many authors treated the system of this kind of Mckean-
Vlasov type (see [1] and [25]). As it is well-knew that the adjoint equation of a controlled
SDEs of mean-field type is a backward-SDEs of mean-field type, the maximum principle for
optimal control systems of mean-field type (MF-SDEs, MF-BSDEs and MF-FBSDESs) has
becomes popular topic. In this regard, Carmona and Dularue proved in [I3] the existence of
solution for mean-field FBSDEs systems. A maximum principle for fully coupled FBSDEs
of mean-field type has been established by Li and Liu [26], where the control domain is
not assumed to be convex. A maximum principle for mean-field FBSDEs with jumps
with uncontrolled diffusion, where the domain of control is not assumed to be convex, has
been investigated by Hafayed [20], Hafayed et al. [21I] established a maximum principle
for MF-FBSDEJs with controlled diffusion, where the domain of control is assumed to
be convex. One can refer to [[4], [12], [26] and [28]] for more result on the maximum
principles for different types of mean-field systems. The existence of optimal control for
systems of mean-field forward backward stochastic differential equations has been proved
by Benbrahim and Gherbal [§], where the diffusion is controlled.

The second main result is to prove existence of strong optimal control and to establish nec-

essary as well as sufficient optimality conditions for a control problem of systems governed
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by the following linear FBDSDESs of mean- field type:

;

dyt = (ayf 4+ @B [y!] + byug)dt + (cyf + GE [y] —|—/b\tut)th

Y = —(dw + dB [y] + e + @B Y] + fiZ8 + [B 2] + gu)dt )
— (Pt + BBy + kY + BBy,

—
+thtu + T?LtE [Zéu] -+ /g\tut) dBt + Ztuth,

L yg:x7YT:€7

and a cost functional:

T

J(u) :=E o (yr. Elyr]) + 8 (7", B [Yy']) +/0 CCt oy By, Y B, 20 BZYE] u) dt
(4)

where a.,a., b.,g., c.,c.,d., c/i\., e,e.,f., f, J., 7., h.,/fz., k.ﬁ., m. and m. are matrix-valued func-

tions of suitable sizes. The solution (y.,Y., Z.) takes values in R" x R™ x R™*¢ and u. is

the control variable values in subset U of R*. «a, 3, ¢ are a given functions.

An admissible control u. is a square integrable, F;—measurable process with values in

some subset U C RF.

Note that we have an additional constraint that a control must be square-integrable just

to ensure the existence of solutions of under u.. We say that an admissible control

u* € U is an optimal control if

J(u') = infJ(v.). (5)

v.eU

In this part the considered system and the cost functional, depend not only on the state
of the system, but also on the distribution of the state process, via the expectation of the

state. The mean-field FBDSDEs called also McKean-Vlasov systems are obtained as
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the mean square limit of an interacting particle system of the form

’ n
dyi ™" = (g + G Yy " + bt
j=1

+ (cryt + @%ny’j’n + byuy)dW}

J=1

dyy = — (dtyg‘ +d 2> Ty e Ly YT

=1 j=1

HhZE+ RSz + gtut> dt

j=1

(RS i R
Jj=1 j=1
~ 1 - u,j,mn ~ . .
+m 2 + mtﬁZZt I G | dBE A ZEdWY,
7=1

yg:‘annga

\

n
u,3,m

where (W) , (B") are a collections of independent Brownian motions and %Zyt denotes
the empirical distribution of the individual players’ state at time ¢t € [O,J;]l Our system
MF-FBDSDEs occur naturally in the probabilistic analysis of financial optimization
and control problems of the McKean-Vlasov type.

The subject of relaxed controls is a relatively popular method of compactification of sto-
chastic control problems to establish existence of solutions, which comes in several different
flavors. Fleming [16] derived the first existence result of an optimal relaxed control for
SDEs with uncontrolled diffusion coefficient by using compactification techniques. For
such systems of SDEs, a maximum principle has been established in Mezerdi and Bahlali
[29]. The case of an SDE where the diffusion coefficient depends explicitly on the control
variable has been solved by El-Karoui et al. [I5], where the optimal relaxed control is

shown to be Markovian.

Our third main goal in this thesis is to establish necessary as well as sufficient optimality
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conditions for both relaxed and strict control problems for systems driven by nonlinear
mean-field forward-backward doubly stochastic differential equations.

Our contribution in this thesis touch on a very important aspect of optimal stochastic
control which is the existence of optimal controls as well as the necessary and sufficient
optimality conditions. We will present in what follows a brief description of the main
results we have achieved in this thesis.

This thesis is organized as follows

Chapter 1:

This introductory chapter, we give some mathematical preliminaries, we provide the most
important definitions and some specific tools to introduce the stochastic integral. In fact
the main reason for including this material here is to introduce some specific tools which
will be used systematically in later chapters.

Chapter 2: (The results of this chapter were a part of a paper [30] published in Random
Operators & Stochastic Equations, 2020).

In this chapter, we deal with the problem of existence of optimal strict control of systems
governed by linear forward-backward doubly stochastic differential equations, with ran-
dom coefficients and non linear functional cost. The control domain and the cost function
were assumed convex. The proof is based on strong convergence techniques for the as-
sociated linear FBDSDEs and Mazur’s theorem. We derive also necessary and sufficient
conditions for optimality for this strict control problem. This result is based on the convex
optimization principle.

Chapter 3: (The results of this chapter were a part of a paper [9] published in Boletim
da Sociedade Paranaense de Matemaética 2020).

In this chapter, we prove the existence of a optimal strict control for a control problem
governed by linear forward-backward doubly stochastic differential equations of mean-field
type. The coefficients of the system depend on the states of the solution processes as well

as their distribution via the expectation of the states. Moreover, the cost functional is
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also of mean-field type. We prove in particular, the existence of optimal strong control
by using the strong convergence techniques for the associated linear MF-FBDSDEs and
Mazur’s theorem. We derive also necessary and sufficients conditions for optimality for
this control problem of linear MF-FBDSDEs.

Chapter 4: (The results of this chapter were a part of a paper [9] published in Boletim
da Sociedade Paranaense de Matematica 2020).

In this chapter, we establish necessary as well as sufficient optimality conditions for both
relaxed and strict control problems governed by systems of nonlinear FBDSDEs of mean

field type.



Chapter 1

Some Mathematical Preliminaries

Our aim in this chapter is to provide the most important definitions concerning stochastic
calculus.

The organization of this chapeter is the following: in the first section, some introductory
probability will be briefly reviewed, in the second section, we introduce the notion of
filtration, stochastic process and Brownian motion, finally, the last section deals with the

stochastic integral.

1.1 Probability

1.1.1 Probability spaces

Let €2 be a nonempty set and F be a collection of subsets of 2.
Definition 1.1.1 The sample space 2 of an experiment is the set of all possible outcomes.
Definition 1.1.2 We say that F is c—algebra or o— field if

1. Qe F,

2. (Ae F)=(A°e F),
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3. ((Ay),en C F) = ( U A, € ]—") .

neN

If 7 and G are two o-algebras on €2 and G C F, then G is called a sub o- algebra of F.

The pair (€2, F) is called a measurable space.
Exemple 1.1.1 The following sets are always o-fields
1. Fo ={0¢,9Q} ( trivial o-field),
2. P(Q) = {all subsets of Q} ,( complete o-field).

Let {F,} be a family of o-fields on Q. We have
VF,=0 (Ufn> is the smallest o-field containing all F,,.

NF, =0 <ﬂ.7-"n> .is the largest o-field contained in all F,,.

Definition 1.1.3 Let 2 be a topological space, then the smallest o-field containing all
open sets of ) is called the Borel o-algebra of 2, denoted by B (2) .

For example, if the collection of all open subsets of a topological space R™, then B (R™)
is called the Borel o-field on 2 and the elements A € B (R™) are called Borel sets. B (R™)
contains all open sets, all closed sets, all countable unions of closed sets, all countable

intersections of such countable unions etc.

Definition 1.1.4 Let (2, F) be a measurable space. A measure i on F is a function
pi F = [050],

with the following properties:

2. if the family (Ay,), oy C F is disjoint ( A;NA; = ¢ if i # j), then

1 (U An) = n(A4).

neN n>0
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We say that p is a probability measure, if 1 (€2) = 1, in this case we write P instead of p,
the triple (2, F,P) is called a probability space. The subsets A of 2 which belong to F
are called F-measurable sets. In a probability context these sets are called events and we

use the interpretation
P (A) = "the probability that the event A occurs”.

In particular, if P(A) = 1 we say that "A occurs with probability 1", or "almost surely

(a.s.)".

Theorem 1.1.1 (Product Measure) Let (E,E, ) and (E',E', 1) be two o-finite mea-

sure spaces. There exists a unique measure ji1 = p @ ' on & such that
(A X A) = p(A)p'(A),

forallAc & A €&

Theorem 1.1.2 (Fubini’s Theorem) Let (E,&, 1) and (E',E', 1) be two o-finite mea-

sure spaces. Let f be €-measurable and non-negative. Then

flz,2)d(pep) = fa,2')du' | du
/ /(]

ExXE' E

_ / /f(a:,x’)du .

EI

If f is integrable, then
1. 2’ — f(x,2") is W' —integrable for p—almost all x,

2. v — [ f(z,2")dy is p-integrable and the above equality holds.
El

10
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Definition 1.1.5 A family of events {A;, i € I} is independent if

P(() A) = [ P(4),

icJ icJ
for all finite subsets J of I.

Definition 1.1.6 Let (2, F,P) be a probability space

1. An event A is independent of a o-field F if A is independent of any B € F.

2. Two o-algebras F; and F» are independent if any event A € Fy is independent of

Fo.
Definition 1.1.7 An event A is said a P-null event if P(A) = 0.

A probability space (2, F,P) is said to be complete if for any P-null set A € F, one has
B € F whenever B C A (thus, it is necessary that B is also a P-null set).

For any given probability space (£2, F,P), we define
N={BcQ/3JAeF, P(A)=0and B C A},

and F := FV N. Then for any A € F, there exist A, B € F such that P (B) = 0 and
A\A C B. In such a case, we define P(A) = P(A). This extends P to F. Clearly, (€, F,P)
is a complete probability space. Any probability space can be made complete by the

augmentation procedure.

1.1.2 Random variable

Definition 1.1.8 Let (2, F,P) be a probability space, then a function X : Q — R™ is

called F-measurable if

X 1A ={weQ X(w)eAleF,

11
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for all open sets A C R™.

Definition 1.1.9 Let (2, F,P) be a probability space, a random variable X : @ — R™,
s an F-measurable function.

More general, if (Q,F) and (', F') are two measurable spaces and X : Q — Q' is an
(F /F')-measurable map. We call X an (F /F')-random variable.

If (Q,F) and (€, F’) are two measurable spaces and X : 2 — @ is a random variable,
then X! (F’) is a sub o-algebra of F, which is called the o-algebra generated by X and
denoted by o (X). This is the smallest o-field in € under which X is measurable. Also, if
{X,, n € E} is a family of random variables from € to (', then we denote by

o(X,, neg)= V_Xn’1 (F),

ne=

the smallest sub o-field of F under which all X,, (7 € Z) are measurable.

Let X, Y : Q — € be two random variables and G is a o-field on Q2. Then X is said to be
independent of G if o (X) is independent of G, and the r.v X is said to be independent of
the r.v Y if the o-fields o (X) and o (Y') are independent.

Next, let (2, F,P) be a probability space, (£, F') a measurable space and X : Q@ — Q' a

random variable. Then X induces a probability measure M x, defined by

My (B) =PoX1(B) =P (X" (B)),
—P{weQ/ X(w)eB}=P{XeB}, VB eF.

My is called the distribution of X. In the case where ' = R™, Mx can be uniquely

determined by the following function

F(r1,..,zm) =P{we Q) X;(w) <z, 1 <i<m}.

12
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We call F(x) the distribution cumulative function of X, it is nonnegative, nondecreasing

in each variable x; € R and

lim F(z)=0, lim F(z)=1.
e o0

If [|X (w)]dP(w) < oo, then the number

E[X] = /X(w)dIP (),

Q

is called the expectation of X.

If g : R™ — R is Borel measurable function and if [, |g (X (w))| dP (w) < oo, then we have

Blo (X)) i= [ 9(X(w))dP ()

Q

Let L (Q,R™) := L? (Q, F,P,R™) be the set of all random variables X : @ — R™ with

| X|" € L% (Q,R™). This is a Banach space with the norm

@) = | [1xX@rdew)
Q
In particular, if p = 2, then L% (Q,R™) is a Hilbert space with the inner product

(XY )iz = [ (XY () P @)
Q

If two random variables X, Y : {2 — R are independent then
EXY]=E[X] xE[Y],
provided that E[|X|] < co and E[|Y]] < occ.

13
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1.1.3 Modes of Convergence

Definition 1.1.10 Let X, X1, X5, ... be random variables on (0, F,P). Then

1. X,, — X almost surely, if

A={weQ: X, (w) = X (w) asn — oo} € F withP(A) = 1.

2. X, — X in probability, if

P(|X, —X|>¢)—0asn— oo foralle > 0.

3. X, — X in IL(QR™), if X,,, X € L% (Q,R™) and

lim E[|X, — X[!] = 0.

n—oo

4. X, — X wn distribution, if

P(X,<z)—>P(X <z) asn — o,

for all x at which F(z) = P(X < z) is continuous.

Theorem 1.1.3 Almost sure convergence = convergence in probability =—> convergence

m distribution.

Convergence of probabilities

Let (U, d) be a separable metric space and B (U) the Borel o-field. The set of all probability

measures on the measurable space (U, B (U)) is denoted by P (U).

14
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Definition 1.1.11 A sequence {q,} C P (U) is said to be weakly convergent to q € P (U)
if for any f € G, (U),

iy [ (@) da, (o /f ) dq (z

n—oo

Definition 1.1.12 Let X,, : (2, Fn,Pn) — (U,d), n = 1,2,..., and X : (Q, F,P) —
(U,d) be a random variables. We say that X,, converges to X in law if Mx, —Myx weakly

as n — oo.
Definition 1.1.13 A set K C P (U) is said to be

i relatively compact if any sequence {q,} C K contains a weakly convergent subsequence,
ii compact if K is relatively compact and closed.

Corollary 1.1.1 If (U,d) is compact, then any K C P(U) is relatively compact. In

particular, P (U) is compact.

1.1.4 Conditional expectation

In this subsection, we present the notion of conditional expectation and its main properties.

Let (2, F,P) be a probability space, G is a sub-c-algebra of F and X € L% (Q,R™).

Definition 1.1.14 We say that Y is the conditional expectation of X with respect to G,

and denote it by B [X | G, if the following two conditions hold:

1. Y is G-measurable,

2. [\ XdP= [, YdP for all A €g.

It is worth noting that the expectation of X, denoted by E[X] is a number, while the

conditional expectation E[X | G] is a random variable.

15
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Remark 1.1.1 1. Existence: There is always a random variable Y satisfying the
above properties (provided that E[X] < o0), i.e., conditional expectations always

exist.

2. Uniqueness: There can be more than one random variable Y satisfying the above

properties, but if Y' is another one, then' Y =Y’ almost surely, i.e.,

PlweQ/Y (W)=Y ()}) =1

Main properties
Let us collect some basic properties of the conditional expectation.

Proposition 1.1.1 Let X andY be two random variables on (2, F,P) taking their values
wmn R.

1. If X is G-measurable, then
E[X |G| =X a.s.

2. If X and G are independent, then

E[X | G =E[X] a.s.

3. If Y is G-measurable and E [XY] < oo, then

E[XY |G| = YE[X |G as.

4. If H is a sub-o-algebra of G, then

E[X |H|=E[E[X |G]|H] a.s.

16
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5. If X,V € LL (Q,R) and X <Y, then

E[X |G <E[Y |G as.

6. We have
EE[X |G =E[X].

7. Linearity:

ElaX + Y |G =aB[X |G] +BEB[Y | G], Ya, B€R.

8. Conditional Lebesque Dominated Convergence theorem: if X = lim X,, a.s. and

n—oo

| X| <Y for some integrable random variable Y, then

BIX|g]= limE[X,]|d].

Proposition 1.1.2 (Jensen’s Inequality) Let X € L (Q,R™) and ¢ : R™ — R be a

convez function such that p (X) € Ly (Q,R™). Then
p(BX[G]) <Blp(X)]d], as.
In particular, for any p > 1, provided that E[|X|"] exists, we have
ELX |G <E[X|"|4], as.,

for any o-algebra G on 2 contained in F.

17
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1.2 Stochastic Processes

In this section, we present some general notions that will be of constant use later.

Definition 1.2.1 A filtration on (Q,F,P) is a collection (Ft),5o of sub o -fields of F

which 1s increasing, such that
Fs C Fy C F for every s < t.

We also say that (Q, F, (Ft),»q,P) is a filtered probability space.

F; is interpreted as the information known at time ¢, and increases as time elapses.
The canonical filtration of X is the smallest o—field under which X, is measurable for all
0 < s <t such that

FX=0(X,0<s<t), Vtel0,T].

F;X is called the history of the process X until time ¢ > 0.

Let (F3),5, be a filtration on (2, F,P). We set, for every t € [0,T')

Fer =) Fe

s>t

We say that the filtration (73),., is right-continuous if
Fi = Fi+, foranyte0,7).

Definition 1.2.2 We say that (0, F, (1), P) satisfies the usual condition if (2, F,P)

is complete, Fy contains all the P—null sets in F, and {F }tzo 18 Tight continuous.

Let us turn to random processes, we define stochastic processes in general and give some

results.

18
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Definition 1.2.3 Let (2, F,P) be a probability space. A family (X;),c;, I C R of func-
tions from € x I into R™ 1is called a stochastic process. Note that for each t € I fixed we
have a random variable, w — X; (w), w € Q. On the other hand, fixing w € Q we can

consider the function t — X (w), t € I, which is called a path of X.

We shall interchangeably use {X;, t € I'}, (X:),.;, X, or even X to denote a stochastic

tel?

process.

For two stochastic processes X and Y, there exist different concepts of equality.
Definition 1.2.4 Let X and Y be stochastic processes. Then X andY are

1. equivalent if they have the same finite dimensional distributions,

2. modifications if P[X, = Y] = 1, for every t > 0,

3. indistinguishable if P[X; =Y, for every t > 0] = 1.

Definition 1.2.5 Let (Q,F,{F:},5,) be a filtered measurable space and X; a process tak-

ing values in a metric space (U, d) .

i The process X, is said to be measurable if the map (t,w) — X; (w) is (B[0,T] x F) /B (U)-

measurable.

ii The process X; is said to be {F;},5, —adapted if for allt € [0,T], the map w — X (t,w)
is Fi/ B (U)-measurable.

iii The process X; 1is {]—“t}tzo —progressively measurable if for all t € [0,T], the map
(s,w) — X, (w) is B[0,t] x F /B (U)-measurable.

Note that a process progressively measurable is both adapted and measurable.

Definition 1.2.6 Let X be a stochastic process.
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1. The process X is said to be (a.s.) continuous if (almost) all its trajectories are

continuous.
2. The process X is said to be (a.s.) cadlag if (almost) all its trajectories are cadlag.

3. The process X is said to be stochastically continuous (or continuous in probability)
if
lin%IP’ [|X: — Xs| >¢] =0, foreveryt>0 ande > 0.

Remark 1.2.1 We remark that the word cadlag is the abbreviation of French “continue a
droite, limité a gauche”. This means that the paths of the process X are right-continuous

and admit finite left-limit in every point, that is
limX, = X;, limX; ewxists and is finite for every t > 0.
s\t s/t

Definition 1.2.7 We call infinitesimal variation of order p of an associated process X of

a subdivision A, = (17 < ... <tI') of [0,T]
VZI“) (Xt) = Z ‘th - thﬂ p7
k=1

if VE(X:) admits a limit when ||A,]] — 0 as n — oo and the limit does not depend on
a subdivided proportion, we call of order variation (p) on [0,T].
If p =1 the limit is called total variation of X.

If p =2 the limit is called quadratic variation and we denote by (X, X), .
We shall define next an important type of stochastic process.

Definition 1.2.8 A process X is called a martingale with respect to the filtration {F;, t > 0}
if
1. X; is integrable for each t > 0,
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2. (Xi),»0 18 adapted to the filtration (Fi), ,
3. X, =E[X, | F)], Vs <.

Remark 1.2.2 The first condition states that the unconditional forecast is finite E [| X¢|] <
o0o. Condition 2 says that the value X; is known, given the information set F;. This can
be also stated by saying that X, is Fi-predictable. The third relation asserts that the best

forecast of unobserved future values is the last observation on X;.
Remark 1.2.3 If the third condition is replaced by
3 X, <E[X,|F, Vs <t,
then X; 1s called a submartingale, and if it s replaced by
3" X, >E[X; | F, Vs <t,
then X; s called a supermartingale.
It is worth noting that X, is a submartingale if and only if (—X,) is a supermartingale.

Proposition 1.2.1 Let {F;},., and {G;}, be two families of sub o -fields of F with G; C
Fi, ¥Vt > 0. If X; is an {Fi}, —martingale (respectively submartingale, supermartingale),
then Y; := B[X; | Gi| is a {Gi},5 —martingale (respectively submartingale, supermartin-
gale). In particular, if X; is {Gi},5, —adapted, then X, itself is a {Gi},., —martingale

(respectively submartingale, supermartingale).

1.2.1 The Brownian Motion

The observation made first by the botanist Robert Brown in 1827, that small pollen grains
suspended in water have a very irregular and unpredictable state of motion, led to the

definition of the Brownian motion, which is formalized in the following.

Definition 1.2.9 A Brownian motion process is a stochastic process B, which satisfies
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1. The process starts at the origin, By = 0,
2. By has stationary, independent increments,
3. the process B; is continuous in t,

4. the increments By — B, are normally distributed with mean zero and variance t — s,

B, — By~ N (0, —5).

It is worth noting that even if B, is continuous, it is nowhere differentiable. From condition

4 we get that By is normally distributed with mean E[B;] = 0 and Var[B;] =t,
Bt ~ N (0, t) .
The process X; = x + B; has all the properties of a Brownian motion that starts at x.

Main properties

Proposition 1.2.2 Let (B,),, be a Brownian motion with respect to (F3),5

1. Translation Invariance: for fived ty > 0 the stochastic process (Byyy, — Byy);>q 18

a Brownian motion.

2. Scaling Invariance: for 3 > 0. Then the process (X;),5, where X; := %Bﬁzt, t>0

18 also a standard Brownian motion.

Remark 1.2.4 The scaling invariance property (with f = —1) implies that standard
Brownian motion is symmetric about 0. In other words, if (Bi),s, is a standard Brownian

motion and t > 0, then B; has the same distribution as —By.

Proposition 1.2.3 Let B be a Brownian motion and Fs = o {B, /| 0<r <s}, s > 0.

Then
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1. for allt > s, By — By is independent of Fj,

2. B[BsB;] = min (s,t).

Proof. 1. Since B has independent increments, then B, — B, is independent of B, — By =
B,. Also B; — By is independent of B, — B, for all 0 < r < s. Therefore B; — B, is
independent of o(B;) and o(Bs; — B,.) and so of o (Bs) V o(Bs — B,.) for all r < s.

On the other hand, note that B, = —(Bs; — B,) + Bs. Thus B, is o(B;s) V o(Bs —
B,)—measurable for all 0 < r < s. Consequently from above, we deduce that B, — B
is independent of o(B,) for all 0 < r < s, which means that B, — By is independent of
Fs=0{B,/0<r<s}forall 0<s<t.

2. Ift > s

E[BsBy] = E[(Bs — Bo) (Bt — Bo) + B] = BB, — Bo| E[B; — By] + E [B] = s,

by using the independence of B; — Bs; and B,. On the other hand, by symmetry we deduce

that E[B;B;] =t if s > t. The proof is completed m
Proposition 1.2.4 If f : R — R is measurable, then

1 —u?
\/%/Rf(u)e 2t du.

Exemple 1.2.1 In this example let us compute B[|B;|] by applying Proposition with
f(u) = |ul. We get

E[f (Bt)] =

2

E(|B/] = 5= Jp lule? du
2

;rt [fooo ueru}

fooo e Vdv

I
%ﬂl‘ﬁ T

Y

u?

using the variable change v = ;.
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Proposition 1.2.5 i) The quadratic variation of a Brownian motion on [t,T] converges
as a quadratic mean to T —t, Vt € R and if (A,),,5, is a sequence of subdivisions of [t,T],
where [|A,]| — 0 as n — oo.

11) If the subdivision A, on [0,T] ver: ALl < oo then
) If ) Y 2.n>0

Proposition 1.2.6 Let (2, F,P) be a probability space and (By),, be a Brownian motion.
Then

I) (Bt)ys s a martingale.
II) X, = B? — ¢Vt >0, is a martingale.

Proof. I) Let 7, = 0 (Bs / 0 < s <t). It is obvious that B, is o(B;)-measurable ¢t > 0,

and so B; is F;-measurable Vi > 0. Secondly, from Holder’s inequality we get

E(|B|*] < \/B[B2 = Vi < ,

for all t > 0, showing that B; is integrable.
Let s <t and write B; = Bs; + (B; — Bs). Then

E[B; | Fs] =E[Bs+ (B, — By) | ]
=E[B, | F;] + E[(B; — B;) | F]
= B, + E[B; — B,]
= B, +0,

for any s <t and this shows that B is a martingale.
IT) 1. Since X; = B? — t is a function of B, hence it is F;-measurable V¢ > 0, implying
that X; is {7}, -adapted.
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2. Since |X;| = |B? — t| < B} +t we can therefore write
E[|X,|| =E[|B} —t|| <E[B} +1t] =2t < 00, V¢t > 0.
3. (B; — By) is independent of F; for s < t, we have

E[(B} -t)| 7] =E[(Bi—B.+B)*| F] —t
=E (B, — B.)* | F.] + 2B (B, (B, — B.) | FJ + B[B? | FJ] - 1
=t—s+0+B2—t
= B? —s.

The proposition is proved. m

1.3 Stochastic Integral

The It6 integral is defined in a way that is similar to the Riemann integral. The It6 integral
is taken with respect to infinitesimal increments of a Brownian motion, dB;, which are
random variables, while the Riemann integral considers integration with respect to the
predictable infinitesimal changes dt. It is worth noting that the It6 integral is a random
variable, while the Riemann integral is just a real number.

In this section we will briefly review the definition and some properties of the stochastic

integral.

1.3.1 Construction of Itd’s Integral

Let (2, F, (Fi);50,P) be a fixed filtered probability space satisfying the usual condition.
Let T > 0 and recall that L2 (0,7, R) the space of all stochastic processes F; (w), 0 < ¢ <

T, w € €, satisfying the following conditions
1. F; is adapted to the filtration {.7-}},20,
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2. [[B[F]”dt < oc.
LZ (0,T,R) is a Hilbert space with norm
) T
IF| = (F.F)} = B U thdt] |
0
We want to define the stochastic integral

T
/ -F;‘,dBw
0

for elements F of L% (0,T,R).
We start with a definition for a simple class of functions F.
Definition of the Itd’s Integral for Step Functions (stepl)

Divide the interval [0, 7] into n subintervals using the partition points
O=t<ti<..<th1<t,=T,
suppose F' is a step stochastic process given by
n
F= ka—ll[tk_l,tk,}a
k=1
where fi_; is Fi_i-measurble and E [f;,_1]*> < co. We define the following linear operator
n
‘[(F) = ka—l (Btk - Btk_l) .
k=1

Lemma 1.3.1 Let I (F) be a linear random variable with mean E[I (F)] = 0, and vari-

ance

B (1) = [ (e
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Proof. For each 1 < k < n, we have

E [fi1 (By, — Bi,)] =

Hence E[I (F)] = 0. Moreover, we have

IR =" fisirfior (By — Byy,) (Bu — By, -

k=1

If k£ # [, where k < [

E [fs1fia (By = Bi,) (Bu = By )]

= B[ [fi-1fir (By, = Bioy) (By = Biy) | Fui]]
E [fi1fia (By = By ) B[(By = B ) | Fi ]
E [fs1fir (By = Bi ) B[(By = By )]

= 0.

On the other hand, for £ = [ we have from the independence of B, — B;, , of F;, |,

B|f2y (B~ By.)’| =B[B|f (Bu-B,.)" | 7|
=E[f2E (B, - B )’ | 7]
=B | (B - )
=B [fi_1 (tr — tr1)]

— (tk: - tk_l) E [fl?—l] :
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So, we get
n

E[|1(F)]] (te — tr) B[ f2,]

k=1

The proof is completed. =

An approximation lemma (step2)

Lemma 1.3.2 Suppose that F € L% (0,T,R). Then there exists a sequence {F,, n > 1}

of step processes in L% (0, T,R) such that

T
lim [ E[|F - F,’]dt=0. (1.1)

n—oo 0

Now we define the stochastic integral by using what we proved in (Stepl) and (Step2)

T
/ EdBtJ
0

for F € L% (0,T,R). Apply first Lemma to get a sequence {F,, n > 1} of adapted
step stochastic processes such that (1.1)) holds.

For each n, I (F,) is defined by (Stepl). By Lemma we have
T
E[|I(F,) —1(F.)] = / E[|F, — Ful’] dt — 0, as n,m — oo.
0

It follows that {I (F},)} is a Cauchy sequence in L% (0,7, R). Thus {I (F},,)} has a unique

limit in L% (0,7, R), denoted by I (F), it is called the It6 integral, so

T

The integral is independent of the choice of the sequence {F,, n > 1}.
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Properties of Itd’s Integral

1. Linearity: let a, 3 € R and F,G € L% (0,T,R). Then oF + 3G € L% (0,T,R) and

T T T
/ (OéFt -+ ﬁGt) dBt = Oé/ FtdBt -+ 5/ thBt'
0 0 0
2. Partition property

T c T
/ FtdBt = / thBt + / FtdBt, Voi<e<T.
0 0 c

3. Zero mean

E {/OT FtdBt] =0.
([ )

4. Isometry

E

_ /0 B[R]t

5. Product Property

E [(/OTFtdBt) (/OTthBf)} =FE [/OTFthdt} .

Theorem 1.3.1 (Martingale Property) Suppose F' € L% (0,T,R). Then the stochastic
process

t
Xt:/Fsst, 0<t<T,
0

is a martingale with respect to the filtration {F},-, -

Examples of Itd integrals

Exemple 1.3.1 The case F, = ¢, constant.
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In this case the partial sums can be computed explicitly

ZZ:l fkfl (Btk - Btkﬂ)
= Zzzl ¢ (Btk - Btk—l)
= C (BT — B()) s

and since the answer does not depend on n, we have

T
/ CdBt =C (BT — Bg) .
0

In particular, taking ¢ = 1, we have the following formula

T
/ dBt - BT.
0

Exemple 1.3.2 The case F; = B;.

We shall integrate the process By between 0 and T'. Considering an equidistant partition,

we take t, = (ZL__?)T, k=1,...,n. The partial sums are given by

I (F) = ZZ:l Btk—l (Btk - Btkq) .

Since

vy == [(x +y)* — 2* — 7],

N | —

letting v = By, , andy = By, — By, | yields

1 1
By, (By, — By,_,) = = (By,)" — 3 (Btk_l)Q —3 (B, — Btk—1>2'

N | —

Then after pair cancelations the sum becomes
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SO
n

(B, — By,_,)".

=1

1 1
I(F)==B;, — =
k
Usingt, =T and the proposition|1.2.5, we get the following explicit formula of a stochastic

integral

T

1 1
B,dB, = -B% — -T.
/td’f 27T 9
0

Next, we briefly discuss the higher-dimensional case. Let B; = (B}, ..., B™) be m—dimensional
Brownian motion and F' = (F*', ..., F™) € L% (0,T,R™). Then, for i = 1,...m, fot F!dB! is
well-defined. We define

t m t
/ F,dB, = Z/ FidB:, t >0,
0 =1 Y0

1.3.2 Introduction to backward integrals

Let B be a Brownian motion in R™, and F/. := ¢ {B, — By/ t <r < T} VN, where N/
is the P—null sets in , then {F./ 0 < ¢ < T} is a backward filtration in the sense that
Flr 2 Flpifs <t. If{Z;/ 0 <t < T} is a stochastic process over (2, F, P) satisfying Z,
is Fr—measurable V0 < t < T, we say that Z is {F%/ t < T'} —adapted.

the backward It6 integral of Z with respect to B is defined by

where m = {t = t,ts, ..., tn41 = T} is a partition of [t, T satisfying
7| := sup (tge1 —tx) — 0 as n — oc.

1<k<n

On the other hand, letting B, := Br_, — Br, 0 < s < T, shows that B is a Brownian
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motion as well, and for all 0 < s < T, we have

fzjg—t,T =o0{B,—Br/ T—t<r<T}
:O_{BT—S_BT/OSSSt}, (T:T—s)’
=o{B./0<s<t}=7FF

If Z, is .ﬁ?T—measurable for all 0 < s < T, then Z, := Zp_, is ]:f —measurable for all
0<s<T.
So, the backward It6 integral of Z, with respect to B, may be understood as the forward

integral of Z.= Zp_, with respect to B,

[T 2B, = lm S0 5 (Bu, — Ba)

= lim (2, (Bs, — Bsy) + o + %5, (Bsyis — Bs,)]

= lim (20 (Br—t, — Bo) + .. + 27—, (Br—t, — Br—s,)]
= nli_{& [2r (Bt, — Br) + ... + 21, (B — By,)]

= —lim (2, (Biy — Biy) + oo+ 200,y (Binyy — Bi)]

— — (" 2.4B,,

where S = {s; =0,...,s, =T — t} is a partition of [0,T — t], where s, = T — t, 12 for

all 1 <k<n+1.

1.3.3 It6’s Formula

In general the basic definition of It6 integral is not very useful when we try to evaluate a
given integral. In this context, however, we have no differentiation theory, only integration
theory. Nevertheless it turns out that it is possible to establish an It6 integral version of
the chain rule, called the It6’s Formula.

The It6’s Formula is central to the theory of stochastic calculus.

Definition 1.3.1 (It6’s process) Let B be m-dimensional Brownian motion on a filtered
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probability space (Q, F, (ft>t20 ,IP’). X is called a Ito process, if X admits the representa-
tion
t t
Xt:Xo—i-/bSds—i—/asdBS, 0<t<T,
0 0

where Xq 1s Fo-measurable, b and o are progressively measurable processes valued respec-

tively in R™ and R™™™ such that
/|bs| ds + / o,|*ds < 00, a.s.,0<t<T.
0 0

Theorem 1.3.2 (It6’s Formula) Let (Q,]:, (Ft) =0 ,IP’) be a filtered probability space
satisfying the usual condition, B; be m-dimensional Brownian motion, and let X; be an
Ité process. Let f: [0, T] x R" — R be a C' (R) function with respect to t, and class C* (R)

with respect to X. Then

oty

2
. (s, Xs)o5ds,

S

F(6X) = £(0,X0) /8—f ds+/a—f dX+
0

0

vVt e [0,77].

Proposition 1.3.1 (Integration by parts formula) Let X and Y be It6 processes in
R. Then

t
XY= XoYo+ [ XYoot [YidX,+ (X,),.

0
We shall need the following extension of the It6 formula.

Let L% (0,T,R™) : the set of all F;—adapted and R"—valued processes X, such that

T
E U | X, | dt
0

L% (©;C (0, T,R™)) : the set of all F;—adapted and R"—valued continuous processes X,

< 00,
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such that

E { sup |Xt\2dt] < 00.

0<t<T

Proposition 1.3.2 Let a € L% (Q;C (0,T,R")), b € L% (0,T,R"), ¢ € L% (0,T,R"*?)
and d € L% (0, T,R"™*™) . Assume that

t t - t
a; = ay +/ byds —|—/ csd B —|—/ dsdWs, t € [0,T],
0 0 0

and

Then, for each t € [0,T],

la? = ao)® + 2f0t (ag,bs) ds + Zf(f {as, cs) dES
+2 [0 (ag, dg) AW, — [ |leol* ds + [ ||ds||” ds,

t t t
E|at|2:E|a0|2+2E/ (as,b5>d5—E/ ||Cs||2ds+E/ d||* ds.
0 0 0

Proof. See Pardoux and Peng [34]. =
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Chapter 2

Optimal control problem for a linear

FBDSDEs

In this chapter, we study a control problem of linear forward-backward doubly SDEs with
non linear cost functional. We prove in first, the existence of a strong optimal controls
which is adapted to the initial o-algebra, under the convexity of the cost function and
the domain of control U. The proof is based on strong convergence techniques for the
associated linear FBDSDEs and Mazur’s theorem. Secondly, we establish necessary as
well as sufficient optimality conditions for this kind of control problem by using the convex

optimization principle.

2.1 Formulation of the problem and assumptions

Let (Q2,F,P) be a probability space, (W;),5, and (B:),5, be two mutually independent
standard Brownian motions, with values respectively in R and R*. Let A/ denote the class
of P—null sets of F. For each t € [0;T], we define F; := F, vV F}", where for any process
T, Fly =0 (m — s, s <1 <) VN, FT = F§,.

Note that the collection (F), <t<7 18 neither increasing nor decreasing, and it does not

constitute a filtration.
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Given z a square integrable and JFjy-measurable process and £ is a square integrable and
Fr-measurable process, and for any admissible control u, we consider an optimal control

problem driven by the following controlled linear FBDSDE

;

AXP = (X} + Baw) dt + (@ XP + By ) AW,

(2.1)
~ —
- (ntXt“ FRY 0,20+ Qtut> dB, + Z'dW,,
L X(? =, ij =&,
and a functional cost to be minimized over the set admissible control U, given by:
J(u) =B o (X) + 0 (Y0) + fy L(6XEYE 2 ue) dt] (2:2)

where a., a., 5, B,, Y, 7., 5.,3., n.,1.,0. and 0. are matrix-valued functions of suitable sizes.
The solution (X.,Y., Z.) takes values in R" x R™ x R™*?. v, is the control variable values

in subset U of R¥. ¢, 1), L are a given functions define by

L:[0,T] x R" x R™ x R™“ x U — R,
v :R" - R",
Y R™ — R™.

Definition 2.1.1 An admissible control u. is a square integrable, F;-measurable process

with values in some subset U C R*. We denote by U the set of all admissible controls.

We assumed here that the control variable must be square-integrable just to ensure the

existence of solutions of (2.1]) under u.. We say that an admissible control u* € U is an
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optimal control if

J(u*) = infJ(v.). (2.3)

v.eU

We shall consider, the following assumptions

(H1) :  the set U C R* is convex and compact and the cost functions L, ¢ and 9

are continuous, bounded and convex,

(H2) : at,&t,ﬁt,Et,%ﬁt,ét,gﬁ,nt,ﬁt and 0, are bounded by p > 0 and 6; is bounded by
o € (0,1). That is:

p = sup ¢y ()| and o := sup 10 ()],

where ¢t (Cd) - atyaty/BtMBt?fYtuata5t75t7nt7/ﬁt76t'

2.2 Existence of optimal strict controls for linear FBDS-
DEs:
The first main result in this chapter is given by the following theorem:

Theorem 2.2.1 Under assumptions (H1) — (H2), the strict control problem defined by

((2-1), (29), (2-9)) has a strong optimal solution.

Proof. Assume that (H1)—(H2) hold. Let (u™) be a minimizing sequence, which satisfies

lim J (u”) = inf J (v.).

n—o00 v. €U
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With corresponding trajectories (X", Y™, Z™) solution of the following linear FBDSDE:

( ~
AXP = (0 Xp + B dt + (@XT + B ) W

AYy = = (9P ALY+ 8,27 + )

~ <
- (ntxg FRY 0,20 + etug) B, + ZrdW,,

. X(? =T, YZEL = ¢,

Since U is a compact set, the sequence (u?)nzo is relatively compact. So, there exists a
subsequence (which is still labeled by (u'),-,) such that

u — ., weakly in M? ([0,7],R").

Applying Mazur’s theorem (see Yosida [36], Theorem 2 page 120), there is a sequence of

convex combinations defined by

W= S (with 5 20, and Y = 1)

J20 27>0

such that

u" — 4. strongly in M? ([0,7],R¥). (2.4)

Since the set of control (action space) U C R* is convex and compact, it follows easily

that u. € U.

Let (X, Y",Z") and (X, Y, Z%) be the solutions of the linear FBDSDE (£2.1)), associ-

ated with " and wu. respectively i.e.,
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(

AX] = (X + Bap) di+ (X + By ) dw,

Ay, = — <7t7: +73,Y, + 6.2, + gﬂ?) dt

(2.5)
<N o~ N =n  >_\ 55 —=n
~ (X7 + 077 + 0.7, + B) dBy + 7, W,
L Yg = I’?; = ¢,
and )
AXF = (X[ + Bi) dt + (@ XF + By)
dY — — (%Xf' FAYTE 45,28 + Stat) dt 20
— (ntXE' + 3,V + 0,75 + @a’t) B, + ZdW,,
| Xo =Y =&
Firstly, let us prove that:
(Xt,Yt,/ Z dWy) converges strongly to (Xt“',Yt“',/ ZLdWwy), (2.7)
0 0

in 82 ([0, T],R™™) x M? ([0, T],R™*?) .
We have

X=X 2 | [ (= XD 4 B2~ ) ds
0

+

Y

[ (@020 x5+ B — ) aw,
0
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hence

t
(sup X0 = XE0 < [ (1o (X = XEP) 15, — ) s
0<s<t 0 0<r<s

2

+ sup
0<s<t

’

[ (@0 - X0+ Bz ) aw,
0

using the Burkholder-Davis-Gundy inequality to the martingale part we get

t ¢

E | sup | X, — Xf|)2} < K/ E {sup X — Xf‘|2] ds + K'E {/ ms —’175|2ds] :
0<s<T 0 0<r<s 0

By Gronwall’s lemma and the fact that u" converges strongly to u. in M?2([0, T, R¥) (from

(2.4)) we have
lim E [ sup [ X, — X§|2] = 0. (2.8)

n—oo | 0<s<T
|2

On the other hand, applying It6’s formula to ‘7: — Yf‘ , we obtain

T T
W—Yﬂm/ ||7?§—Zs-||2ds=2/ T Y (X~ XT) 7,77 — V)
t
t—n ~ -~ T —nNn ~ —n ~
+55(Zs - Z:) +5S(ﬂg _a5)>d3+2/ <Ys _Ytsu.7775(Xs _X:)
t
—~ =N ~ —n ~ -~ ~ A —
+773(Ys - Ysu) +93(Zs - Z;‘) +95(u? _u5)>st
T
_2/ VY2~ Z0aw,
t

S S

T
+ / (X = X3) + 0V, = YJ) +0,(Z; = Z7) + 0,(a) — )| ds.
t
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Take expectation we get

T
B | sup [V~ ¥PP| 48| [ 120 - 28 Pas] <
0<t<T 0
T =) ~ == 2 -1 27
0
F0(Z] — ZF) + B.(3 — ) ds|
T < N 2 N ~
0
0,(Z" — Z%) + 0,7 — azs)y%zs] .
Under the assumption (H2) and by using the Young’s formula (2ab < iaz + &1b%), we

obtain

—n 1 r —n T 1 r n 1
B sup [V 7P| +B| [ 12~ 22 as| < 2w | [ 170 - v pay
0<t<T 0 €1 0
T <N I N 7
reB | [ (X XTP VDY
0
HIZ = ZE P+ - ) ds)
T
+9B [ [ (0= XE P4 7 -V o - ) ]
0
T ——n ” T <N 70 AN s
v | [ 170~ 22 Pas| + 2008 | [ (XD - XE)+ (70— ¥E)
0 0

+ (@~ ), (Z, — Z))ds] .
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Hence

T
B | sup [V 7P| 48 | [ 17~ 27 Pas]
0<t<T 0

T

]. n 7 r ~~n 7 N 7
<—E [/ Y, — Ys“'|2ds} + 4¢1p°E [/ (X, = XFP+ Y, -V
€1 0 0

T
HIZ" = 25|12 + [@" — @f?) ds] + 30°E [ |-z
0

T
HYS = VPP = ) ds] o | [ 2 - 2E P
0
3
L 3o

T
[ [T XEP 47T - ) ds]
9 0

T
ool | [ 12 - 2 Pas],
0

and therefore

T
B sup [V Y7 | + 5| [ 170 - 22 |Pas)
0

0<t<T

1 3 19 T —n ~
<(—+ 451p2 + 3p2 + ope VE {/ Y, — Y;"\?ds}
€1 €2 0

T
+ (4e1p® + 0 + £2p0)E [/ \Z, — 7% H%ls}
0
3 T—n &
+ (de1p® + 307 + g)E [/ X" - X§'|2ds]
2 0
3 T _
+ (de1p* + 3p* + pa)E [/ [uy — us|2ds] ,
0

€9

Choosing

l1—0 1—0
>0 and g9 =
8p2 and go 3p0‘

g1 =
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the previous inequality becomes

T
E { sup [V — V7" 12} kE { I H?ds] (2.9)
0<t<T 0
T

< ko U Y, — Yf'|2ds}
0

T T
+ k3B [/ X7 — X§'|2ds] + k3B [/ ar — 175|2ds] :
0 0

where

1—0
ky = 5 0,
_ 8 —9 2, 9(po)
ko=t 3T >0,
9 2
ks = —— +3p + pa)”
2 1l—0o
We derive from ([2.9)) two inequalities:
N re T =1 27
B [ sup [V — Yt“‘F] < kB [/ v Y;,“'|2ds] (2.10)
0<t<T 0

T T
+ ks U X, — X7 |2ds} + k3B U iy — aslgds] ,
0 0

and

T T
kE [/ \Z) — 2% ||2ds] < ko [/ Y, — Y;7'|2ds} (2.11)
0 0

T T
+ ksl U X, — Xf‘\zds] + ksl U [T — ﬁs\2ds} :
0 0

Applying Gronwall’s lemma to (2.10) and passing to the limit as n — oo, and using the
convergence (2.4) and (2.8)), we obtain

lim | { sup Y] — Y- |2} = 0. (2.12)

n—00 0<t<T
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Then, one can shows directly from (2.4)),(2.8) and (2.12]) that
T -
E [/ \Z, — Z;“H2ds] — 0, as n — o0,
0
which implies by applying the isometry of It6 that:
T T
/ Z AW converges strongly to / Z¢dWy,
0 0

in M2([0,T],Rm™*4).
Finally, let us prove that w. is an optimal control.
According to the minimizing sequence, (X™, Y™ Z" u") satisfies

lim J (u") = lim B | (X2) + v (V) + fy L (8, X0V, 27, u) dt

= inf J (v.).

v.el

Using the continuity of functions ¢, and L, we get

J(@)=E [gp (XE) + o (V) + [T L (6, XV, 28 ) dt}

= 1B [ (X7) + ¢ (V) + fy L (XY 20 ) at].

n—oo

By the convexity of p, 1 and L, it follows that

J(a) < lim > m B o (X57) + 0 (Y7

720

T
0

= lim » m,,J (™),

720

< lim MazJ (W) ) m, = 1an
m
n—»ool<]<1n

1>1
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2.3 Necessary and sufficient conditions

We establish in this section, necessary as well as sufficient optimality conditions for a
stochastic control problem governed by a linear forward-backward doubly SDE by using
the convex optimization principle. In this end, and according to the convexity of the
domain of control U, we use the convex perturbation method.

Let (w., X", Y", Z") be the optimal solution of the control problem — obtained

in above section, which satisfies:

(

XP =+ [y (0 XT + B,) ds + fy (8,XT + B,ii,) aw,

) . ) ) o (2.13)
V=g [ (1 XE A 48,25 4+ 8,0,) ds

+ 1 (0 XEARYE 40,28 +8,3,) dB, — [, ZEaW,,

Let us define the perturbed control as follow: for each admissible control v.
Uizﬂt‘i‘é‘(vt—ﬁt),

where, ¢ > 0 is sufficiently small.
The perturbed control u¢ is admissible control with associated trajectory (X[,YS, Z5),

solution of the following FBDSDE:

;

Xe=x+ fot (s XE+ Bous)ds + f; <aSX§ + Bsu§> AW,

ve=é+f) (%Xi +7,YE 40,75 +35u§> ds
) (X5 + 7.7 + 0.2 + 95 ) dB. — [ Z2dW..

According to the optimality of w. and by using the following inequality, one can establish
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the necessary optimality conditions,

0 < lim> (J (uf) — J (i)

e—0¢g

~lim (J (e (v, — 1)) — J (@)

e—0¢g

= (J'(u.),v.— ).

Let us consider the following assumptions

(H5) (Regularity conditions)

.
(7) the function L is continuously differentiable with respect to
(X,Y, Z v), and the mappings ¢ and 1) are continuously

differentiable with respect to X and Y, respectively,

(1) the derivatives of L, p, 9 with respect to their arguments (given above)

are bounded.
The second main result in this chapter, is the following

Theorem 2.3.1 (Necessary and sufficient conditions for optimality). Let u. be an admis-
sible control (candidate to be optimal) with associated trajectories (X% Y™ Z%). Then
the control . is optimal for the control problem (2.1)-(2.3), if and only if, there exists a
unique solution (QTL‘, K%, p%. Fa) of the following adjoint equations of the linear forward-

backward doubly SDE (2.1),

( 2 e -~ ~
—dQi" = Hx (t, ¢, u, 1) dt — K{'dW,

dP}" = Hy (t. ¢, H?) dt + Hy (t, ¢, H?) dWw, — I‘f&ét, (2.14)

L Qg = ¥x (Xg')apoa' =Yy (Yoa');

46



Optimal control problem for a linear FBDSDEs

such that
(Hy(t, ¢ T, TIE), v, — 1) > 0, Yoy € U, ace, as, (2.15)

where Hy(t, (", IIT) is the gradient
VoH (b X5 Y5 28, QF, K- P TE) N = XY, Z,
and the Hamiltonian function is given by

H(,X,Y,Z,0,Q, K, PT) = (Q,aX + fv) + <K, ax +Bv>

+<P,7X+§Y+6Z+3v>+<F,nX+ﬁY+QZ+§u>+ (t,X,Y,Z,v).

Proof. To establish a necessary and sufficient optimality conditions, we use The convex
optimization principle (see Ekeland-Temam ([I4], prop 2.1, page 35):
Since the domain of control U is convex, the functional J is convex in u., continuous and

Gateaux-differentiable with continuous derivative J', we have
(@. minimize J) < (J' (@) ,v. —u.) > 0; Yo. € U. (2.16)

Let us calculate the Gateaux derivative of J at a point u. and in the direction (v. — .),

we obtain
I (@), v —u) =E [{px(X§E), X5 — XE)] + B [y (YH), Yy — V5] (2.17)
+E [/T@X(t,gf,m),){:- } +E /T Ly (t, ¢, ), Y Y;7->dt]

T T
+E |:/(; <LZ(t7 Cfaﬁt)az? 1 |:/(; t Ct 7ut Ut ﬁt>dt:| .
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The system of adjoint equations (2.14)) can be rewritten as follows

. _ _
dQy = — (ngt + Koy + Py + Uiy + Lix (8, G, ut)) dt + Ki'dw,

AP} = (P, + T, + Ly (t, ¢}, 4)) dt
+ (Pta(st + Fget + LZ(ta Ct~> ﬂt)) AW — F;fﬁCTBt

Qr =ex (X7) Py =y (15").

\

From ([2.14]), the equality (2.17) becomes
T (@), — ) = B[(QF, X} — X§)] +E [(PEYY — Y] (2.15)
T T
vB| [ ot a0 X - XPat] 48 | [ (e v - vl
0 0

T _ ~ T _
+ E |:/ <Lz(t, Cf,ﬂt),Zf — Zf>dt1 + E |:/ (Lv(t,cqj‘,ﬂt),vt — ﬁt>dt:| .
0 0

Applying integration by parts to (P, Y;" — Y;*) and (QF, X" — X}, passing to integral

on [0,7] and take the expectations we obtain

~ ~ T ~ ~
E[(QF, X5 — XE)] — [ [ @i = XE) + 8w a’t>>dt] (2.19)
0
T
~-E [ / (QF oy + Kj'Qy + Py, + Tin, + Lx (¢, ¢} uy), X} — X?)dt]
0

T —~ ~ A~
+E [ R @ = XE) B - at>>dt] |
0
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and

T
B Y5~ YY) = B | [ (PR T+ Loy P e
. 0
v B | [P X~ XP) Y -V + 02 - 2
#Bio - a4+ 8 | [ F - XE) R0 - ¥
(28— Z0) + Oy(v — ﬂt»dt}

T
—-E {/ (P + 00, + Ly (t, (Y u), Z) — Z)dt | .
0

Replacing (2.19)), (2.20) in (2.18) we get

T ~ ~ A~ ~ A~
J (D), 0. — ) = E [ IRCERS e i

‘I—Ftab\t + Lv(t, C;‘,ﬁt), V¢ — ﬂt»dt .

On the other hand, we calculate the Gateaux derivative of H at a point u. and in the

direction (v. —1.), we have

B |fo CHt, G B T ) o — | =B | [)4QF B, + KT B, + PG,
F0F 0 + Lo(t, G, i), vy — ﬂt)>dt] (2.21)
— (@), 0. — @)

From ({2.21)) and (2.16)), we have
T ~ ~
(¢ minimize J) & E {/ (H,(t, ¢ g, 1), vy — ﬁgdt} >0, Yo elU.
0
Which implies that

B [(H,(t, ¢, 1)), v — Ty) | > 0, di-ace.
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Now, let II be an arbitrary element of the o-algebra F;, and set
Ty = Utln + atlg_n.

It is not difficult to see that the control 7 is an element of U.

Applying the above inequality with , we obtain
E [(1nH,(t, ¢t II), v — )] > 0,VIL € F,.

Which implies that

E [<Hv(t7 C?;ﬂt,H?)yvt - a15> | ft] Z 0

The quantity inside the conditional expectation is JF;—measurable, and thus the result

follows. m
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Chapter 3

Optimal control problem for a linear

MF-FBDSDEs

In this chapter, we prove the existence of a strong optimal strict control which is adapted
to the initial o-algebra, under the convexity of the cost function and the action space
U. Here, the systems governed by linear forward-backward doubly stochastic differential
equations of mean field type, in which the coefficients depend on the state process, and
also on the distribution of the state process, via the expectation of the state. Moreover,
we establish necessary as well as sufficient optimality conditions for this kind of control

problem.

3.1 Formulation of the problem and assumptions

Let (2, F,P) be a complete probability space. Let (W;)icpo,r) and (By)iepo,r) be two mutu-
ally independent standard Brownian motions, with values respectively in R? and R'.

Let N denote the class of P-null sets of F. For each t € [0,T], we define F; := F}V v F[%,
where for any process {6,}, we set F2, = 0 (0, — 05;s <r < t) VN, F} = F,.

Note that the collection {F;,t € [0,T]} is neither increasing nor decreasing, then it does

not constitute a classical filtration.
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Given ¢ a square integrable and Fpr-measurable process, x a square integrable and Fg-
measurable process and for any admissible control w.
We consider a control problem governed by the following controlled linear FBDSDE of

mean-field type:

(
dyy = b(t, yi', Bly, u)dt + o (8, vt Blyp), ue)dW,

ay = —f(t,y¢, Blyy], Y*, BIY,], Z2, B(Z), u,)dt (3.1)
«—
_g(tv y?? E[’y#], Y;fua E[Y;SUL ZZJa E[ZZJL ut)dBt + ZZJth’

l Yo = =, Yr = h(yp, Elyp)),

with
b<t7 yfa E[y?], ut) = aty;fu + ZL\tIE’ [yg] + btut7

O'(t, y;flv E[y;fu]a ut) = Ct-?/? + /C\tE [y;fu] + btut7

f(ta y?a E[y?]a Y;fu> E[Y;fuL Zi“» E[ZZJ], ut) = dty;t + th [y;tu] + etY;fu + /e\tE [Y;fu]

+AZ8 + FB[ZY + gous,

g(ta y?a E[yy]a Y;U7E[Y;u]a Ztu> E[Ztu]? ut) = htytu + htE [ygt] + kty;fu + ktE [Y;fu]

+thtu + ﬁltE [ZZL] + §tut,

h(yt, Blyt]) = &,

and a cost functional:

J(uw.) =E a(y%,E[y%])Jrﬁ(%“,E%“])+/O Oty By, Y BIY, 20 BIZY  u) dt |
(3.2)
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where a.,a., b,,g., c.,c.,d., c?., e,e,f, ﬁ 9., 7., h.,ﬁ., k_,E., m. and m. are matrix-valued func-
tions of suitable sizes. The solution (y.,Y., Z.) takes values in R" x R™ x R™*? and u. is

the control variable values in subset U of R*. o, 3, ¢ are a given functions define by

0:]0,7] x R" x R" x R™ x R™ x R™? x R™? x U — R,
a:R"xR" - R,

B:R™xR™ - R.

Definition 3.1.1 An admissible control u. is a square integrable, F;-measurable process

with values in some subset U C R¥. We denote by U the set of all admissible controls.

Note that we have an additional constraint that a control must be square-integrable just
to ensure the existence of solutions of (3.1)) under u.. We say that an admissible control

u* € U is an optimal control if

Jw) = infJ(v.). (3.3)

v.eU

The following notations are needed

MZ (0, T;R™) : the set of process 7., Fi-adapted with values in R™ such that

T
E {/ |7rt|2dt} < 00,
0

8% (0, T;R™) : the set of process 7., Fi-adapted and R™-valued continuous processes such

that

B [ sup mﬂ < 0,

0<t<T
U:={v.€ M%(0,T;R*) /v, € U,a.et € [0,T],P—a.s.}.

We shall consider the following assumptions

(H1) : the set U C R is convex and compact and the functions ¢, o and 3

are continuous, bounded and convex,
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(Hz) : at7at7bt73tvct7a7dtagi\taetaé\thftaﬁ;gt;gt;hhﬁt?kt and 7{7\15 are bounded by A >0 and

myg, m; are bounded by v € }0, %[ That is:
Ni=supl, (@) and 7 = supo ()]

where 2 (W) = Qt, Q¢, by, by, ¢4, G, dy,y dy, €4, €4, fry fes Gry Gty Py Ty Kty By and op = my, My

Proposition 3.1.1 Under assumptions (H1) — (H2) the system of linear FBDSDE of

mean-field type , has a unique strong solution.

Proof. The proof of this proposition is established in Zhu and Shi [37], by using a method
of continuation, and the fact that our system (3.1)) is a special case of the one given in the

paper [37]. =

Remark 3.1.1 A special case is that in which both o, 5 and | are convex quadratic func-
tions. The control problem {(3.1), (3.9), (3.3)} is then reduced to a stochastic linear

quadratic optimal control problem.

3.2 Existence of a strong optimal control

The following theorem confirms the existence of a strong optimal solutions for the control

problem {(3.1), (3.2), (3.3)}

Theorem 3.2.1 Under either (H1)—(H2), if the strict control problem {(3.1)), (3.2)), (3.3) }

is finite, then it admits an optimal strong solution.

Proof. Assume that (H1)-(H2) holds. Let (u) be a minimizing sequence, i.e.,

lim J (u”) = inf J (v.).

n— 00 v.eU
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With associated trajectories (y.u?,Y.u'n, Z" 'n> satisfies the linear FBDSDE of mean-field
type (3.1). From the fact that U is a compact set, there exists a subsequence (which is

still labeled by (u'),,-,) such that
u — ., weakly in M% (0, T;R").
Applying Mazur’s theorem, there is a sequence of convex combinations

0" = 0, (with 0,, >0, and Y 0, = 1),

720 7>0

such that

U™ — w. strongly in M% (0, T, Rk) . (3.4)

Since the set U C R* is convex and compact, it follows that . € U. Let (yU . , vy , Z.U'n)

and (y*,Y™ Z%) be the solutions of the linear MF-FBDSDE 1} associated with U™

and u. respectively i.e.,

;

n n

dy" = (wy," +@aBly |+ bU0)dt + (e + 0By |+ b 0Up)dW,

Y = —(dy” + dBly," )+ eV BN+ £27 + FEZT] + 007t

—(hy" + By + kY + BB 4+ m 2zl + B2

P — ﬁn
—i—gth)dBt + Z; dW4,
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and

;

dyi = (g + QBIY{) + bi)di + (cw +EBly;'] +b)dV,

v = —(dwy" + CZE[ T4+ e + B+ fi 2" + fiE [Zi] + geuy)di (3.6)
— (htytﬂ‘ + ﬁtE[yta] + kY + ktE[Yf'] +my Z;" + mB[Z]"]
~—\5F5 T
+gu)dBy + Zi AW,
| W o= Yr =¢
Then let us prove
rrn rrn T rr 0 . r U,
(T ,/ ZY"dW,) converges strongly to (y};",Yt“',/ Z3dWs), (3.7)
0 0
in 8% (0, T; R™™) x M% (0, T; R™*) .
Firstly, we have
~ B t ~ _ ~ B
(sup [y —yd*) < / (lasl?( sup [y =y, %) + [asPE[ sup [y =y, 7]
0<s<t 0 0<r<s 0<r<s
+|bs|2|ﬁ§ — ,|*)ds + sup ‘ / cs(y¥" —y™)
0<s<t
using the Burkholder-Davis-Gundy inequality to the martingale part, we can show
N B t N B t
E[ sup |y —ys[P] < K/ E[ sup |y —yff‘V]derK'E[/ UL — | *ds].
0<s<T 0 0<r<s 0
Applying Gronwall’s lemma and using (3.4)), we get
lim E| sup |y§ﬂ —yr ] =0. (3.8)

n—oo  O<s<T
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2

Secondly, applying 1t6’s formula to th L Y ™| and taking expectation, we get

~ T _
B sup Y Y7 ]+ B [ 20" - ZF|Pas] <
0

0<t<T
o] [ (7 VE G ) DB ] e )
t
BT — YI| + f(Z20 — Z7) + LE[ZT — ZF) + g,(UF — u,))ds]
+E[ / UG - ) BB — ] 4 k(- Y

R B =Y+ my(20" = Z7) + m B2 - Z7] + 5,07 —u,)[ds].
According to the assumption (H2) and by using the Young’s formula, we obtain

- T _
B[ sup [V — Y;P] + B / 120" — 77|2ds]
0

0<t<T

1 T ~’VL sl T ~TL a7 ~7L 27
< ;E[ / YU — Y 2ds] + 14p, NE| / (Jyd" =yl P+ [V =y
1 0 0

rn = 1~ T [

25 = 2517 + SIUT — ) ds] +10A2E[/ (ls" =i’
0

rrn = 1 ~ r [ T

Y =Y 4 S IUT %) ds] +472E[/ 12" — ZT|Pds]
0
5A’y T rrn i n U Un u.

+2IB] [ (0" = o+ B = o+ Y - YR

2 0
BV = Y 4 (02 — ) ds]

T - — ~n —
20\ E / (120" = Z5 |2 + B(|20" — Z5|?])ds].
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and therefore

~ T _
B[ sup v/~ Y] + B[ [ 120" - 27 |Pas]
0

0<t<T

1 10\ -
< (— 4 14p, N2+ 100 + 7)1[-«:,[/ YU — Y Pds]
P1 P2 0

T 7 _
HUpy ¥+ 407+ dp B[ [ 120~ 27 |as]
0

10X T =
B[ [ 1"~ s

2

+(14p, A% 4+ 100> +

5\ T~
+(Tp A% + 507 + —V)E[/ U — u,|?ds].
P2 0
Choosing
1— 472 1- 472 1
Pl_W>OaHdp2: 2 >Obecause()<’y<§,

the previous inequality becomes

~ T _ T ~
B sup [v/7" ~ Y] + B[ [ 120" - 27 Pds) < Bl [ v - v as)
0 0

0<t<T
T B T
wuBl [ 0"~y Pas) + B[ [ 107 s, (3.9
0 0
where
1 — 442
= 0
lu’l 6 )
2802 1 — 442 s 120 (\y)?
= 1002+ —2"_ >0
Pe= et PO T 20
1— 442 , 120 (\y)?
= 10X+ —"2_ >0
IU’3 + + 1— 4/}/2 9
L—d4y* 5 60(\y)°
= 5\ >0
Ha TR g >
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We derive two inequalities from (3.9)),

- T _
E[ sup V7" — Vj*[?] < B / YO Y ds]
0

0<t<T

T _ B T "
+M3E[/O " =y |ds] +M4E[/O U —[%ds]

and

T

T U ~
“1E{/ ”ZSUTL—Z;‘WIst]sMQE[/ YO Y ]
0 0

T B T
el [ W =y Pas) + Bl [ 107 - fas)

(3.10)

(3.11)

Using Burkholder-Davis-Gundy’s inequality, applying Gronwall’s lemma to (3.10) and

passing to the limit as n — oo, and using the convergence (3.4) and (3.17]), we obtain

lim B[ sup [V — Y] = 0.

n—oo  O<s<T

Then, one can shows directly from (3.4)),(3.8]) and (3.11)) that

T ~
E[/ 120" — ZF|*ds] — 0, as n — oo,
0

(3.12)

which gives the result by applying the isometry of It6. Finally, let us prove that @. is an

optimal control. Using the continuity of functions «, 5 and ¢, we get

J(@) =Bla(yr. B lyr]) + 6 (0" B[Y5])
+Jo Lty By ] Y B[V 25 B (2] ) di]
= limE[oz (yT' B [yT' D + 06 <Yo(7'n,E [Ybﬁn])

+Jy e B[y TR Y] 27 B 27 O]
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By the convexity of «, 8 and ¢, it follows that

J(@) < m > 0,Bla (v B[ ]) + 8 (% B [%])
320

T
+/ E(t y:]Jr ,E |:ng+ ] 7}/;u?+ 7E |:}/;’LLJ+ i| 7Ztu?+ ,]E |:ZZL]+ :| ]+Tl)dt:|

= lim ZQJ” J(w*") < lim MazJ (u*") ZQJ": 1an (v.).

n—ool<<iy
k>0 7>1

This completes the proof. m

3.3 Necessary and sufficient conditions for optimality

In this section, we establish necessary as well as sufficient optimality conditions for a
strict control problem driven by a linear MF-FBDSDE. In this end, we use the convex
perturbation method because the domain of control U is convex.

Let (u.,y;, Y™, Z") be the optimal solution of the control problem { , , }
obtained in section . Let us define the perturbed control as follow: for each admissible
control v.

ufzm—}—(ﬁ:(vt—ﬂt),

where, ¢ > 0 is sufficiently small.

It’s clear that u® is admissible control and let (yf 'S,Ytu's, z, 'E> be the solution of
corresponding to u°.

The necessary conditions for optimality will be derived by using the optimality of u. and

the following inequality,

<im0 ) 1)
—liir[lé(q]](u +e(v.—w))=J(u))
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Considering in this section the following assumptions

(H3) (Regularity conditions)

(
(7) the function ¢ is continuously differentiable with respect to

(y, v, Y,Y'. Z Z' v), and the mappings o and /3 are continuously

differentiable with respect to (y,y’) and (Y,Y”), respectively,

\ (1) the derivatives of £, v, § with respect to their arguments are bounded.
The main result in this section, is the following

Theorem 3.3.1 (Necessary and sufficient conditions for optimality). Let w. be an ad-

missible control (candidate to be optimal) with associated trajectories (y™, Y™ Z™). Then

u. is an optimal control for the strict control problem {(3.1)), (3.2)), (3.3)}, if and only if,

there exists a unique solution (O™ W% Y% TI%) of the following adjoint equations of the

MF-FBDSDE (3.1),

_dq)tﬂ = ((Hy (ta CtﬁﬁEhXtE) + E[(Hy’ (tv Ctﬂlaﬂtv Xtﬂ)])dt - EtﬂdWh

d\Ijtﬂ = ((HY (tvgtﬂ?ﬂtJXtﬂ) +E[<HY' (tvgtﬂ7ﬂt7Xtﬁ)])dt
_ — — — _—
+((HZ (t,@,ﬂtaX}tL) +E[(HZ’ (t,C?,ﬂtaX}tL)])th - HtudBta

o7 = oy (vr, Blyr]) + Eloy (vi Blyg])],
Uy = By (Yo", B[Yy"]) + E[By: (Yo", B[Yy"])],

(3.13)
such that

<(Hv(t7 Ctﬂ'vﬂta Xtﬂ-)’vt - ﬂt) 2 07 Vu. € u7 a.e, as, (314)
where (Hw(t, CE T, Xy ) with w =,y ,Y,Y', Z, 7', is the gradient
Vo (H(t7 y?'vE[ytﬂ'L Y?GE[Y;E]? Zf'aE[Ztﬂ‘]th q)tﬂ} \Iltﬂ" Z?? Htﬂ')v
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and the Hamiltonian function is given by

(H (ty,y/ Y., 2,2/,0,0,9,5,10) = (W,dy + dy +eY + 8"+ [2+ [Z' + gv)
(D, ay + ay + bv) + <H,hy+ﬁy’+ kY+EY’+mZ+mZ’+§v>

+(Siey+ @ +b) + Lt y,y V.Y, 2,7 0).

Proof. Our control problem is governed by a linear system, so to establish a necessary and
sufficient optimality conditions, we use the following principle: The convex optimization
principle (see Ekeland-Temam ([14], prop 2.1, p 35). Since the domain of control U
is convex, the functional J is convex in u., continuous and Géateaux-differentiable with

continuous derivative J', thus, we have
(w. minimize J) < (J' (w.),v. —u.) > 0;Vv. € U. (3.15)

Firstly, let us calculate the Gateaux derivative of J at a point . and in the direction

(v. —@.), we obtain

gl

(I (@), v. —u) = B[y (v, Elyr]) + Bloy (vr Blyr )], vr — 7))
+E[(By (Yo", E[Yg"]) + E[By (Ys", E[Y5"])], Yo" — Yg")] (3.16)

T — — —
+E[/(; <€y(t7 CEL ) Et) + Ewy' <t7 C; ) ﬂl‘)]v y;) - y?>dt]

T
+B[ [ (O (G ) + By (4, ¢ w)] Y - V) di]

T

SB[ (02t GF ) + Bl (,GF 0], 20— 27 )]
0
/ <€U(t7Ctﬂ-7at>;Ut _ﬂt>dt:|

0

+E[
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The adjoint equations (3.13]) can be rewritten as follows

;

—d(I)tE = (\Ijtﬂdt -+ q)tﬂat + Htﬂht -+ E?Ct + gy(t, Ctﬁ, ﬂt)
VE[UTd, + OFa; + Phy + 76 + Ly (8, ¢ @) ) dt — 7AW,

dWY = (Vle, + Ik, + by (t,CF, @) + BI(0FE; + Tk, + by (L, CF, )] dt
+(\Iltﬂft + Htﬂmt + éZ(ta Ctﬂa Ht) + E[(\I’tﬂﬁ + Htﬂmt + KZ’ (tv C?? Et)])thv
=
—II%dB,

O = ay (y1, Blyf]) + Elay (y7, Blyp))],
| V6 = By (0" BIYS) + B[Sy (V6" BIYy]))-

From (3.13)), the equality (3.16)) becomes

J' (@), v. —u) =B{PF, yr —yr)] +B(¥G, Yy —Y5")]
+E| /O (€y(t, G ) + Bl (t, ¢ T,y — i) dt] (3.17)
+E| /0 (by (t, G ) + Blly (¢, G )], Y = Y )dt]
+E[/O <€Z(tv Ctﬂ ) ﬂt) + E[EZ’ (tv Ctﬂ'aﬂt)L ZZ} - Ztﬂ>dt]

+E[/O (0 (t, ¢ ), vy — Up)dt].

Applying integration by part to (U¥ V" —Y;*) and (®¥,y;" — y;"), passing to integral on
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[0, 7] and taking the expectations to deduce

T
ER@%Jy;}“ - yé&ﬂ = - [/ (Ul dy + @ ar + 1L by + X3 + €,(8, ¢ )
0
+E[¥} d; + ®) a; + Htﬂ'ﬁt + 376+ Cy(t, G,y — ytﬂ>dﬂ

T
+E[/ (@, ar(yy — yi) + @By, — yi] + be(ve — 1) )dt]
0

T
+E[/ S alyy —yt) +aBlyy — yi] + bu(vy — w))dt], (3.18)
0
and

E[(Y7,Yy —Y5")] = ~E] / e+ Tk + (1, G
FRIWT 8 + T Fy o+ Oy (8, G )], Y = Y ) dt]
+E[/OT<‘1’?'7 de(yy” — yi) + dBlyy — yi] + e (Y — V)
+EBY = Y+ filZ) — Z8) + FBIZ) — 27+ (v — ) di]
+E[/OT<H7£LGht(yf‘ ) +ﬁtE[yf' — ]+ k(Y = Y)
FRBY = Y5+ m (20 — Z8) + B2 — Z8) + Gi(v — @) )di]
—E[/j(\lfﬁft + I my + L (¢, ¢ )

FBUE f, + Ty + L (8, CF @), 20 — Z0)d]. (3.19)

Combining (3.17)), (3.18)) and (3.19)), we obtain
T — —_ — — —
<J/(ﬂ), V. — ﬂ> = E[/ <(I);th + Z?bt + \IJ;‘gt + HtU/g\t + gv(t, C?A,Et% Vi — ﬂt)>dt] .
0

On the other hand, we calculate the Gateaux derivative of (H at a point u. in the direction
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(v. —.), we have

T T
E[/ <<Hv(t7 CY 3T, X3 ) v — ﬂﬁdt} = E[/ (O by + X7 by + U gy + I} Gy
0 0
"‘gv(t, Ctﬁ s ﬂt>, Vi — ﬂt)>dt]

= J'(@),v. —@). (3.20)

Combines (3.15]) and (3.20]), we get
T —_— —
(w minimize J) < E[/ ((H,(t, ¢, Xi), v — Wg)dt] > 0,Yv. € UL
0

By a standard argument we get the result. m
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Chapter 4

Necessary and sufficient optimality
conditions for both relaxed and strict

control problems for nonlinear

MF-FBDSDEs

Stochastic control problems have gained a particular interest due to their broad applica-
tions in economics, finance, engineering, etc. Mean-field models are useful to character-
ize the asymptotic behavior when the size of the system is getting very large, in 2009,
Buckdahn et al. [11] established the theory of mean-field backward stochastic differential
equations which were derived as a limit of some highly dimensional system of FBSDEs,
corresponding to a large number of particles. Since that, many authors treated the system
of this kind of Mckean-Vlasov type (see [25] and [I]).

In the other hand, the existence of optimal relaxed controls and optimal strict controls for
systems of mean-field forward backward stochastic differential equations has been proved
by Benbrahim and Gherbal [§], where the diffusion is controlled. The existence of relaxed

solutions to mean field games with singular controls has been proved by Fu and Horst in
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[18].
In this chapter, we establish necessary as well as sufficient optimality conditions for both
relaxed and strict control problems driven by systems of nonlinear MF-FBDSDEs, where

the action space U is not necessary convex.

4.1 Statement of the problems

Let (92, F,P) be a complete probability space. Let {W;,t € [0,T]} and {B;,t € [0,T]} be
two mutually independent standard Brownian motions, with values respectively in R¢ and
R

Let AV denote the class of P-null sets of . For each 0 <t < T', we define F; := F}" vV F/,,
where for any process {6,}, we set F2, = 0 (0, — 05;s <r < t) VN, F} = F,.

Note that the collection {F;,t € [0,T]} is neither increasing nor decreasing, then it does

not constitute a classical filtration.

4.1.1 Strict control problem

Definition 4.1.1 An admissible control u. is a square integrable, F;-measurable process

with values in some subset U C R*. We denote by U the set of all admissible controls.

For any v € U,we consider the following MF-FBDSDE

(

y;] =x + f(f b(S,y;},E[ys] st dS + fo S ys7E[y:])dW3

(4.1)
Y = h(y. Elyi)) +LTf<s,y:,E[yz],w E[Y}], 20, B(Z:], v.)ds

\ +ft (s,y?, Bly?], Y, B[YY], ZY, B[ZY)) dBt ft ZldWs,
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and the functional cost to be minimize over the set of strict controls U/ is given by

J(v.) == Ela (3, Blyz]) + 8 (¥, B[Yg])

(4.2)
T v v v v v v
_'_f[) E(t7yt7E[yt] 7Y; 7]E[Y;‘/ ] 7Zt7E[Zt} 7Ut)dt]-
where
0:]0,T] x R" x R" x R™ x R™ x R™? x R™? x U — R,
a:R"xR" - R,
G :R™ xR™ — R.
We say that a strict control . is an optimal control if
J(u.) = inf J(v.). (4.3)

v. el

4.1.2 Relaxed control problem

Without the convexity condition an optimal control does not necessarily exist in U, we
need to use a bigger new class its role is to compensate strict control set. The idea is
then to replace the U—valued process u; with P (U) —valued process (¢;), where P (U) is
the space of probability measures on U equipped with the topology of stable convergence.
These measure valued control are called relaxed control. It turns out that this class of
controls enjoys good topological properties. Moreover, if ¢(du) = d,,(du) is a Dirac
measure charging v; for each ¢, then we get a strict control problem as a special case of the
relaxed one case. Thus the set of strict controls may be identified as a subset of relaxed
controls.

Let V the set of Radon measures ¢ on the set [0, 7] x U, whose projections on [0, 7] coincide

with the Lebesgue measure dt, and whose projection on U coincide with some probability
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measure ¢;(da) € P(U) ie. ¢(da,dt) = q;(da)dt. V is a compact metrizable space, see
[23]. The topology of stable convergence of measures is the coarsest topology which makes

the mapping

qH/OT/Uwua)qt(dt,da)

continuous, for all bounded measurable functions 1) (¢,a) such that for fixed ¢, ¢ (¢,a) is
continuous.

The definition of admissible relaxed control is given by

Definition 4.1.2 A stochastic relaxed control (or simply a relazed control) u is a mea-

surable P (U) —valued process,i.e.,

0, 7] x Q@ — P (U)
(t,CU) }—)Mt(w7')7
is measurable. We say that a relaxed control p is admissible if u, is F;—progressively

measurable, in the sense that, for any bounded measurable function ® : [0,T)xU — P (U),

the process fot Ji; @ (s,a) p, (da) ds is Fy—measurable for all t € [0,T], and if, moreover,

E

te[0,7

sup /|a|2,ut (da)] < 00.
U

Let us denote by R to the set of all such admissible relaxed controls.

For any 1 € R we consider a relaxed control problem governed by the following MF-
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FBDSDE:

)
dyt' = [y bt i Blyt], w)p(du)dt + o (&, y)' Bly; 1)dW,

= - fU t yt 7E yt] }/tuv E[Y;M]u Z£LL7E[Z#]7 u)“t(d'u’)dt

(4.4)
«—
—g(t,yt', Blyy 1. Y BIYS), 27 BIZ])d B, + Z{dW,
L yg :;C,Y“ h(yTaE[yT]) te [OaTL
and the functional cost is given by
3w) = Bfo (o, Bluf)) + 8 (4 B V) s
+Jo Ju t(t oy Bl Y BIYY] 2 B1ZE) )y (du)dt].
We say that a relaxed control ¢. is an optimal control if
J(q.) = inf J(u.). (4.6)

nER

4.2 Necessary and sufficient optimality conditions for
relaxed control problems

In this section, we study the problem {,,} and we establish necessary con-
dition of optimality for relaxed controls.

According to the fact that the set of relaxed controls is convex, then to establish necessary
optimality condition we use the convex perturbation method. Let ¢. be an optimal relaxed
control with associated trajectories (y{, Y)?, Z{) solution of the MF-FBDSDEs ([4.4). Then,

we can define a perturbed relaxed control by

4G = q +e(y — @),
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where € > 0 is sufficiently small and p. is an arbitrary element of R. Denote by (y;, Y, Z7)
the solution of the system (4.4) corresponding to ¢°.

We shall consider in this section the following assumptions.

e (H4) (Lipschitz condition)

1C > OaO <7< % such that vV ylay17y27yéayiv}q/>}/é7}/;a Zla Z{v Z27 Zév“?

2 2
|b(t7ylay/17u) - b(t,yg,yé,U,N S C (|yl - y2|2 + |y/1 - y,2| )7

2
o (t,y1, 91) — oty )P < C (lyr — ol + 1yh — w31,

|f<t7y17y17Y17Yv1/7 Zh Zi,U) - f(tay%yéayéayga Z27 Z§7U)|2

< C (=l +1yh — ol + Vi = Vo + V] = V3
|21 = Zo|l* + 121 — Zo),
|‘€(t7y17y;7}/17}/1,7 Zl7 ZLU) - e(tay%yéa}/%)/;? ZQa Zé,U)|2
< Oy =l +lu — b + Vi = Yo + Y] = V3
|21 = Zo|l” + 121 — Z3?),
|g(tay17yivY1>}/1/7 Zl? Z{) - g(tvy%yéa}/%y;’ ZQ? Zé)|2
< C Iy — el + 1yt — b + V1 = Yo + Y = ¥3]%)

(121 = Za|* + 121 = Z3]1*).
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e (H5) (Regularity conditions)

.
() the mappings b, h, o, « are bounded and continuously differentiable with

respect to (y,y’), and the functions f,¢g and § are bounded and continuously
differentiable with respect to (y,v',Y,Y’, Z, Z") and (y,y’), respectively,
(77) the derivatives of b, h, g, o, f with respect to the above arguments are
continuous and bounded,
(i17) the derivatives of £ are bounded by C(1+ |y| + |¢/| + |Y| + |Y'| + | Z]| + |Z']),

(iv) the derivatives of a and 3 are bounded by C (1 + |y| + |¢/|) and

C (14 Y]+ [Y']) respectively,
for some positive constant C.

Remark 4.2.1 Under the above hypothesis, for every u. € R, equation has a unique

strong solution and the functional cost J is well defined from R into R.

4.2.1 The variational inequality

Using the optimality of ¢., the variational inequality will be derived from the following
inequality

0<J(¢") — I(a).
For this end, we need some results.

Proposition 4.2.1 Under assumptions (H4) — (H5), we have

limE | sup |y; — yf\z] =0, (4.7)
e=0  |o<t<T
limE | sup |Y7 — Y;q|2] =0, (4.8)
e=0  |o<t<T

T
limE / 128 —Zf||2dt1 0. (4.9)
E— LJo
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Proof. We calculate E [y — y{|?] and using the definition of ¢ to get

t
E [lyf — 47[?] < CE[ /
0

/ b (s, 45 B [42] ) gs(du)
U

ds}

—/Ub(Sayg’E [yg] ’u) q5<du)

+02B] [ | [ (st Bl () = [ 5502 B ) ) ()| ]

L CE[ / o (5,15, B [of]) — o (s, 47, B [y]) > ds].

Since b and ¢ are uniformly Lipschitz and b is bounded, we can show
t
B [lyf - o] < CB[ [ I - yifas] + €<%
0

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality, we get (4.7)).
On the other hand, applying It6’s formula to (Y — Y,?)?, taking expectation and applying

Young’s inequality, to obtain

T
By~ )+ 8 | [ 12 - Z0Pds)| < B (11065 Bl - n BlDP
t

1 T T
+3E [/ ve - qu|2ds} +9E[/
t
2

/f s ys7Eys s E[Kq],ZE,E[Zg],u)qs(du) ds]

[ (s,y5, Byl Y BIYTT, 25, BZT u) g5 (du)

T
E] / 9 (5,95, B ), Y2, B YY), 22, B (2Z2))
t

—g (s, 90, B[y, YO E[YT], 24, E[Z9) ds].
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Using the definition of ¢;, we obtain

E[|v - v +E[ / ||Z§—Zz||2ds} < B [|h(s5 Blys)) — (st B[

1 T
E { |- Yf!?ds}

1 C9E] / f (s Bl Yo BIYE), 28 B (2] ) ua(du)
2
/ f (5,95, Bye) Yo BY?], 25, B Z]] ) qu(du)| ds]
—|—C’9E /f s,y Byl Y, BYS], Z5 B Z2]  u) gs(du)
2
/ £ (5,0 B, YO BV, 20, B (29, u) u(dw)| ds]

T
E] / 19 (5,95, By, Y2, BIYE], 25, B [22)
t
g (s, E[yf), YO, B[YY], 20, B [29)) ds].

Since f and h are uniformly Lipschitz with respect to their arguments, we have

T 1 T
B(v; - v + 8| [ 12: - 22iPas| < G+ 2002008 | [ v - vias
t t

T

(200 + 29)E [ / \Z: - Zgy|2ds] s (4.10)

t
where
T
¢; = 2CE [ly7 — y3?] + (200 + QC)E[/ e — y!|*ds] + Ceb?.
t

From (4.7) we can show that

limg; = 0. (4.11)
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Choose 0 = % > 0, thus 200 + 2v = % + 2y = % < 1, so the inequality 1)

becomes

€ q|2 1_27 r € 2 g € 2 5
By -] + 2B | [ 125 - zaieas] < cm| [ v - vapas| +
t t

we derive from this inequality, two inequalities
T
B (17 - v <CB | [ v - vipas] +.. (4.12)
t
and
T T
B[ [ 12— zipas| < e[ [ e - voras] + o (4.13)
t t

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality in (4.12)) and using
(4.7) and (4.11)) to get (4.8]). Finally (4.9) derived from (4.8)), (4.11) and (4.13). m

Proposition 4.2.2 Let (@\t, }A/t, Z) , be the solution of the following variational equations
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problems for nonlinear MF-FBDSDESs

of MF-FBDSDE

)
dy, = fUt

+(Jrb(

[ %0=0,Yr =

where (t, 7§, u) :=

+ (Uy (t,

(t ytaE[yt] Yiq,E[Y;q],Zg,E[Zg],

i, B Y], u) gi(du)grdt
+E [y by (91, B (], w) qr(du)B[G]] dt
v, Blyi]) e + Bloy (¢, vl B [y]) Ely]]) dW,

oyl Elyf], u) g(du) — [, 0t vl B yd] , u) py(du)) dt

dYy = ([, f,(t, 78 ) qi(dw) i + B [ [, fp(t, 7l w)qe(du)E[G:]]

+ Jy Fy bt w)a(du) Vo + B [ f fro (b7, w)a,(du) BT
+ Jyp Foltnt W dn) Zo+ B | [ oot 7 w)gi (du) BIZ)
+<fo<t77Tt7 (du fU Nt(du)))dt

tﬂ-h

~(gy(t, TG + Blgy (t, BRI + gy (£, 7T + B | gy (¢, 7LV

+92(t.7) 70 + B | g (t, 7)BIZ) | JABy + ZdW,,

hy (y7, Blyz]) yr + B [hy (y7, Blyz]) Elyr]],

1 2

ImE | sup |=(y; — v{) — U ] =0,
e—0 0<t<T £

i 2
ImE | sup |—=(Y7 =Y =Y | =0,
e—0 0<t<T £

[T 1 2
hH(l)E / —(Z; —ZH — Z,|| dt| =0.
E— 0

Proof. For simplicity, denote by

.1
T =

—(yi —ui)

e 1oL o1, .
G ¥i = O =) - D Zf = (2 - 20) - B
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i) Let us prove (4.15)). From (4.4), (4.14)) and notations (4.18)), we have

V= [ [ bisn Bl it - [ bt B 0] b
%/Ot UUb(s,ygyE[yE],U)QE(dU)—/Ub(s,yE,E[y?],U)qs(dU)} ds

W1 / o (5,95, By]) — o (5,92, B [y)] dW,

/ / (s, 9¢, B lyi], u) 4s(du)ysds
N /OtE [/U by (s, 45, B lyg] u) qs(du)E[gs]} ds

—/O (o (5,95, By Ys + Bloy (s, yf, B lyS]) Bly,]]) W

B / (/Ub“’yg’E Wil ) gu(du) = / b(s,y2. B [yl] ) Ms(dU)> ds.

Using the definition of ¢; and taking expectation, we obtain

E [|T:]?] < CE {///w (5, A%, u T€|2qs(du)d)\ds}
+CE / / [ 1B (6045, BIXEY Pasau)anas
+CE /0/0 |ay(s,A§)T§|2d>\ds}

t 1
+CE / / |E [0y (s,AS) E[YY]] |2d)\ds] + CE [|T5 ],
LJo Jo

7
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where (s, A%, u) = (s, y? + Ae(Y5 + ), Bly? + Ae(T% +3,)],w) , and

by (s, A% u) (42 — ) 1, (du)dAds

!

I
S~
S—
—

~+
[y

+

B [by (s, A5, u) BlyS — yi]] s (du)dAds

~+
[ay

by (5, A5, u) (y5 — y?) qs(du)dAds

~

E [by (s, AS, w) Bly; — yI]] gs(du)dAds

~

S— — S— S—

+

S— S— S— S—

(by (s, A5, u) Ys + B by (s, AS, w) Blys]]) gs(du)dAds

—_

(0 (5, A9) Ui + B loy (s, A7) B[Ys]]) dAdW

+
— S

by (Sa yga E[yg]v u) @\qu(du)ds

|
c\“
=

B [by’ (‘97 yga E[yg]v u) E[@\SH QS(du)dS

|
S~
S

(o (5,44, BlyZ)) Ys + Bloy (s, y2, Blyd]) Blys]]) AW,

|
S~

since by, b,/, 0, 0,y are continuous and bounded we have
t
E[|T;]’] < CE U \Ti\zds] + CE [Ty, (4.19)
0
and
lim & [[T5]7] = 0. (4.20)

By using (4.20), Granwall’s lemma and Burkholder-Davis-Gundy inequality in (4.19)), one
can show (4.15).
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ii) Let us prove ) and (4.17)). We put

(5,85, u) = (5,97 + (Y5 + Ga), Bly? + Ae (Y5 + §a)], VI + Ne (Y5 + V)

E[YT + \e(Y2 + Y2)), Z9 + Ae(ZE + Z.), B[27 + Ae(Z5 + Z.)],u).

From - and (4.18) we have

)
dY: = —(FSY: + B [FLB[YE]) + F3Z: + B [F5BZ)] + ©F)dt
—(gy (t, A9) Y5 + E gy (t, A7) BIYS]] + g7 (¢, A) ZF
—
+E (g2 (t, AF) B[Z5)] 4 Z5)dB, + Z;dW, w21)
Ye = 1 (h(y5, Blyz]) — h (v, EBlyt]))
— (hy (Y, Blyt) gr + E [hy (v, Blyt]) E[gr]]),

where

1
Bt = / / fo (t, A7 u) qe(du)dA, for w =y,y YY", Z, 7,
0 U
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OF = F; Y] + E [F'B[Y}]] + F;% + E [F,"E[y;]]
—/ Ty (t,ﬂg,u)qt(du)ﬂt —E {/ Ty (t,w?,u)qt(du)E[@}]} -+ Fé’q?t
+E [F;,EYt /fy t S TE U )qt(du Yt {/ fY’ 75 T, U )C]t(du) Y, ]]
VFSZ, 4B [ngqE[Zt] _ /U F2(t. 78 u) g, (du) Z,

~E {/ fo (t,wg,u)qt(du)E[Z]}
HE (Y5 — o) + B [F By - of]] + B (Y - V)

+E[FyFBlYS = Y7 + F2 (27 — ZY) + B F,E[Z7 — Z{]]
— (5 (i —vi) + B [FEly; — o] + /7 (Y7 = YY)

+E [FPBYS = Y + F (27 — Z]) + B[F3'E(Z; — Z{])),
and

S / (9 (t: 85)5 + B g (+. A B[R] — g, (¢ 70 — B [, (¢, 70) B[] ) dAdB,
- / (97 (£, 89) ¥ + B | gy (1, M) BIT]| = gy (1. 71)Y: — B |gv- (&, 71) BIV:]| ) ardB,

+ /0 1 (92(t.85) 20 + B |92 (1, A))BIZL)| = 92(t,78) 20 — B |92 (1, 7§)BIZ)) | ) d\dB.

Using the fact that the derivatives f,, f,/, fv, fy’, fz, fz are continuous and bounded and

from , , and we show

T T
limE [/ |@§|2ds} =0, and lir%E {/ |E§|2ds} = 0. (4.22)
t & t

e—0
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Applying It6’s formula to |Y¢|* we obtain

T T
E[|Y§|2]+EU ||Z§||2ds} =B [|Y7]*] + 2B [/ (Y§,+FSYY§+]E[FSY'E[Y§]}
t t
T
+F225+ B [FYBIZ])| + 03)ds] + B { / gy (£, A9) ¢
t

+ gy (8, AD E[Y(]] + gz (£, A]) Z5 + E g2 (¢, A7) B[Z]]] + Z{[*ds] .

Applying Young’s inequality and the boundedness of the derivatives F', FY', FZ, FZ  gv, 9y, 9z, 9z,

s

we obtain

B (v +8] [ ||Z€||2ds}<E[|Y g8 | vl

+5091E { (1Y +B[|Y3)*] + HZZH2 +E[1Z)*] + |65]) ds]
+3CE V (1Y) + B [|YS)] + 12257 ds}

T
v | [ (1P + B 1231 ds

T
+2C~E U (Y + B[Y] + =, Za+E[Za])d}

Applying Young’s inequality again

B (viP) + [ [ ziras| <B v + 18] [ vias

T
L5C0,F V (Y5 + B [[Y5] + 12301 + B [1Z5)1°] + 163]%) dS]
t
T T
13CE [ [P B vP) + =) ds} 2R [ | izzpe + Bz ds}
t t
6C T —
+ 50 [ (v + B3P + =) ]

t
T
+207 0.8 [ [ (12207 + B (1Z31) 05
t
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Hence

T
B(vir] + 5| [ ||Z§||2ds}
t

T
E [|YZ]*] + ( +100 6, +6C + 12907)15 [/ ]Yﬁ]st}
2 t

+10C 0y +472 50y 08 | [ 20
t

T T
+5C 0,E { / |®§|2ds} (3C + 6%) { / |E§|2ds} . (4.23)
t t

We choose
1 — 442 1 —4~2
0, = > = >0
YT 200 DY To R
thus
— 42 1—472 54442
10C 0, + 472 +8C 0y = T4 g2 37 +67 <1

Then the inequality (4.22)) becomes

T T
B(viP] + Kb | [ ZlPas] <B{IviP] + K | [ vsias
t t

T
+K3E[ [sH st] + KB [ / yzg\st], (4.24)
t

with K, = 2% > 0, K, > 0, K3 > 0, Ky > 0.

We derive from (4.24]) two inequality

E [|Y;?] <E[|[Y5]?] + KoE UtngFds]

T T
+IGE [ / |@§]2ds]+K4E [ / yzg\%zs], (4.25)
t t
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and

1 T
U Z2 || ds} < —E[|Y5 |]+—E [/ |Y§|2ds}
t K t
+—F O%ds| + —F =5 %ds| . 4.26
i) et % Bl E (4.26)

On the other hand we have

B (%3] = B |2 (1 05 Bl - 4 (4. BD)

— (hy (y1, Blyz)) Yr + B [y (47, Bly7)) E@T]])|2]

2
- W]

1
/0 hy (AT) dX — hy (v, Elyf))

1
< 4F / hy (A7) dX = hy (y7, E[y7])
0

2

+HE |E

E[@Tm]
w8 [ (1 A9 1T5 B Iy (A5)F] B [1T5]) ]

Since hy, h;, are continuous and bounded, using (4.15]) to get

Yy

hmE [Y5%] = (4.27)

Now, applying Gronwall’s lemma in (4.25) and using and - to obtain (

and from (L.16), (£22) and (E27) we get (E17). m

Proposition 4.2.3 [Variational inequality] Let (H4) — (H5), hold. Let q. be an optimal

relazed control with associated trajectories (yi,Y,", Z{). Then, for any element ju. of R,
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we have

0 < Elay(y7, Blyr])yr + B oy (y7, B [y7) Elyr]]]

5 [ By (V5 BV Yo + B [ 8y (v, BB

T
B[ [ [ (0t + Bl .t wEG]
0 U
oy (t, 7 w)Y + B [ey, (t, 7%, u)E[?t]]

gt 7l )7, + B [ez, (t, 7, u)E[Z]] ) gu(dur)dt]
B[ [ ([ et B, e B 2 B2, o)

- / Ut yf Blyl), YV B, ZE, BIZY), w)ag(du))dt]. (4.28)
U
Proof. From the optimality of q. we have

0 < Bla(yi Bl]) — alyh Bly))] + BBV BYS) — AV E[Y])
+E| / ( /U 0t y5, Blys ], Y BIYS, Z5  BIZ;], u) g (du)
- / (t, o, Blyf), Y, BY), 70 B2, u) (du) ) di]
+8[ [ ([ et Bl v BN, 22 B2, 0 )

- / (¢, By, Y, BV, 20 B2, u)au(du)) de].
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Let us divide this inequality by ¢ and using the definition of ¢; and from the notation

(4.18]), we have

058 [ [ (00033 + Blay (158G )
+8 ] [ (5,00 + 345 + T, B + (45 + T
B | By (Vg + Ae(Yg + Vo), BIYS + Ae(Y; + VDEIY:)]| ) dA|
v [ [ [ st 4Bl @508
iy (t, A5 0)Y, + B [Ey/(t, A:, U)E[?;]}
(A W)Y+ B VZ’ (t, A, U)E[?;]] ) s (du)dAdt]
v [ ([ et B v B, 2 B2 )
— [ ot B, Y2 B 2 BLZE, wa ()] + V7,

(4.29)
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where V7 is given by

V=B [ 0,005 + Bloy (BT ]
+ ] [ (500 + 200 + T B -+ 2e(¥ + T ¥
B | By (Y5 + Ae(Yg + To), B[V + Ae(Y5 + V) E[Y]| ) di|
o[ [ [ (500 -0+ Bl 5 w8 - )
(8 AL ) (VF — V) + B [l (t, A5, w)B[Y; — Y]
0ot A8 u)(ZE — Z0) + Bl (t, A5, w)BIZE — Z8)) ) pa(du)ddt]
/ / | (608500 =) + Bley (¢, A7 0Bl — o)
(0 AL W) (VF — V) + B[, 5, w)B[YS — Y]
+07(t, A u)(Z; — Z1) + B Ly (t, AT, w)E[Z; — Z{]]) q:(du)dXdt]
/ // G (AL W)Y + Bl (t, A, w)E[T]]]
(b, A5, W)Y + B 6y (0, A7, w)B[Y;]

g (t, NS u)ZE + T [ (t, A, u)BIZE]) ) gy (du)dAdt]

Since the derivatives o, ay, By, By, by, by, Uy, by, L7, {7 are continuous and bounded,

then by using (4.7)), (4.8),(4.9), (4.15)), (4.16),(4.17) and the Cauchy-Schwartz inequality

we show that

lim V5[] = 0.

Then let € go to 0 in (4.29)), we get the variational inequality. m

4.2.2 Necessary optimality conditions for relaxed control

Let us introduce the adjoint equations of the MF-FBDSDE (4.4]) and then gives the max-

imum principle.
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Define the Hamiltonian H from
[0, 7] x R" x R" x R™ x R™ x R™ % x R™ % x I x R™ x R" x R™*! x R4,
to R by

H(t,y,y, Y. Y .Z . Z' u,®, 0,3, 1I) := ¢/ b(t, y, ', u)p(du) + Lo (t,y,y')
U

+ ‘If/ [y, y YY" Z, Z' w)p(du) + Ug(t,y,y',Y,Y', Z,Z")
U

—i—/ Uty Y)Y Z, Z' u)p(du). (4.30)
U

Theorem 4.2.1 (Necessary optimality conditions for relaxed control) Assume that (H4)—

(H5), hold. Let q. € R be an optimal relazed control. Let (y?,Y?, Z%) be the associated

solution of MF-FBDSDFE . Then there exists a unique solution (97, W1 X7 117) of the

following adjoint equations of MF-FBDSDE ([4.4):

4] = —(Hy (¢, aus xE) + B[y (t,¢F qu, x)] ) dt + SdW,
d¥{ = (Hy(t,¢{, a0 x7) + B[ Hy (. ¢ g, xJ)] ) dt

—
+(HZ(t) Cg7 qt, Xg) +E [HZ' (t7 (37 qt, X;,Z)] )th - HgdBt7

Vi = By (Yo, B[YS]) + BBy (Ys, BIY{))],
®% = o (y1, Blyt)) + Blay (v, Blyf])]
\ +hy(y7, Blyf]) V% + Blhy (v7, Bly7]))E[PE]],
such that
H(tv yga E[yg]v Ytqv E[Y;tq]a ng E[Zg]a qt, CI)?7 \11:517 Zg? Hg)
< H(t,y!,Bly{], Y, BY], Z} B[ Z]], p,, @, ¥], £, 1I])
, a.e.t,P—a.s., Vu e P(U), (4.32)
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where (¢}, q, xi) = (6 v, Bly/], Y B, ZE BIZY], i, @, Wi, 5111,

Proof. From (4.31)), the variational inequality (4.28) becomes

0 < E[(®%,7r)] — B [hy (y7. Blyp) ¥V + By (7, Bly7])) E[V7]]]
+B (94, Y0)| + B[ /0 ' /U (4, (t, 7, )G + B 6y (¢, 78, w)B[F]
(b7, )V + B | (1,7, )BT
Ut ) 2y + B | (4, w)BIZ] | Yai(du)at]
v [ ([ et Bl v B, 20 B2 W)

- [ ot Bl Y B, 28 BZ, wad)de). (433)

Now applying It6’s formula to compute (@7, 7;) and (U7, ?t) and taking the expectations

we derive

E[(®%.5r)] = — B| / (W / (f, (7%, u) + B, (78, 0)] )l

+107 (g, (¢, 7)) + Egy (¢, 7])]) + /U (0, (t, 7}, u) + B[, (t, 7, u)]) g (du), g;)dt]

Bl [ o( [ bt Bl atdn) — [ b Bl up )]

U
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and

E[(¥§, Yo)] = B[(, Y7)]
vl [ (o [ (i + B, 0B oyl
+B[ 401, (00,00 + Bl 1 7B ]
B[ (6ot + B 580, T
_E| /O N /U (€4t 70 ) + B[ (¢, 77, )] e (du), Zo)ed]
+E[/OT\II§(/Uf(t,7rZ,u)qt(du)—/Uf(t,wf,u)ut(du))dt]

Substitute the above equalities in inequality (4.33)) to get, for every pu € R,

T
0< B[ [ (H(t.of. Biy), Y2, BIY?), 20, B2, 0, 0 W, ST
0

_H(ta yz?7 E[yg]a Y;tqa E[Y;q]v Zg? E[Zl?]v K CI)?7 \Ij?) ng Hg))dﬂ .
Therefore inequality (4.32)) follows by a standard arguments. m

4.2.3 Sufficient optimality conditions for relaxed control

In this subsection we study when the necessary conditions for optimality in Theorem [4.2.1]

become sufficient as well.

Theorem 4.2.2 (Sufficient optimality conditions for relaxed control) Assume that (H4)
holds. Given q. € R, let (y?, Y9, Z%) and (D}, U] 3] TI7) be the corresponding solutions
of the MF-FBDSDFEs and respectively. Suppose that o, 3,0 and the function
H(t, - q, @0 XTI are conver.

Then (y1,Y1 Z1 q.) is an optimal solution of the control problem f@ if it satisfies

@.
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Proof. Let ¢ € R be arbitrary (candidate to be optimal), and let (y?, Y4, Z?) denote
the trajectory associated to ¢.. For any p. € R with associated trajectory (y*,Y*, ZH), we

have

3(u) - I(g) = Bla(, E2) — ayh Blyt])] + BB BY{]) — BV EY)]
L / ( / (t, vt Bl Y E[Y"), Z4 (2}, u)py(du)

- / (¢, Bl Y2 BV, 20 BIZ0, u)ar(du)) di].

Since o and 3 are convex, we get

a(yr, Blyrl) — oy, Blyz]) > (o (7, BlyT)), v — v7)
+E [{ay (v5, Blyt), Blyf — vi])],
BYY YY) — B(YSLE[YY]) > (By (YL BIY]), Yo' — Yi)

+E [<BY’ (Yz)q7 E[%q])v E[%M - qu]ﬂ :
Thus

J() — I(q.) > {ay (i Blyt)), v — vi) + B {oy (v5, Bly]), Blyr — yi])]

T (By (VL BYE)), Y — Y3 + B[y (V2 BIYJ)), BYE — Y]
+ B / ( / ot vt Elyl), Y EVP], 20 B2, )y (du)

- / (t, yt Bl Y B, 20, 20, u)qu(du)) df].
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problems for nonlinear MF-FBDSDESs

Therefore after recalling also (4.31)) one gets

J(p) = I(q) = B[(®%, v — vi)]
—E[(hy (v, Bly)) VT + Blhy (v, Blyf) BT, v — yi)]
+B[(Wg, Yy — Y]

L / ( / 0ty Elyt), Yy Y], 20 E(ZF), u)py(du)

/ (t, 8, Elyf], Y, B[V, 22, B[Z2), w)qr(du))d].

Applying It6’s formula to (®f, yt' — yi) and (U], Y — Y,"), we obtain

E[<(I)qTayT / (I)f,/ (t, yt 7]E‘ yt u) iy (du)
- / b,y Elyf], u)gs (du))d]

T

+E[ | (S oty Bly]) — ot yi Blyf])) di]

[
_E[/O
and

B[ (W5, Yy =Y | = B[ (¥, Yy —Y7) |

T
_E| / (6, C o x2) + B[ Hyo(, 1 o X)), Y — i) de]
0

T
E[/ (‘1/21,/f(t,yf,E[yé‘],Y}“,Eth“],Zt“JE[ZfLU)Mt(dU)
0 U

- / £ty Bl Y BV, 28, B(ZE), w)go(du) ]

T
- E[/ <HZ(t7 Cg7 dt, Xg) + E[HZ/ (t7 ng dt, Xlt])]a Z# - th>dﬂ
0

T
LB / (U9, g, gt Blyt], Y, E[Y}), 20 E[Z1)
0

—g(t.y! Bly{], Y, B[Y], Z{, BIZ{]))dt].
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From the convexity of h we have

E[(9F,Y7 —YE) | = B[ (%, Ay, Elyr]) — h(y7, Elyz))) ]

> B[ (h, (y7 Blyf)) ¥T + E[hy (v7, BlyF)) BV, vf — 1) ]. (4.37)
Replacing (4.35)) and (4.36)) in inequality (4.34]) and using (4.37)), we get

T
Je) =30 2 B | (HCE )~ H(t Gl D)
0
T
—E [/ <Hy(t> C(t]7 qt, Xg) + E[Hy’ (tv 527 qt, X:ﬁl)]a yf - yg>dﬂ
0
T
- E [/ <Hy(t, C?a qt, X?) + E[HY’ (ta C?a qt, X?)L Y;fu - Y;tq>dt]
0
T
0
On the other hand, by the convexity of H(t,y,v',Y,Y', Z, Z' q,®, ¥, % 1) in (y, v, Y, Y, Z, Z")

and its linearity in ¢, then by using the clarke generalized gradient of H evaluated at

<y7 y/> Y7 Yl, Z, Z/), we obtain

H(t> Cg7 He; X?) - H(t> 6:517 dt, Xlt]) > Hy(tv Cga qt, X?) (y# - yg)
+ E[Hy'(ta Cga qt, X?)E[yf - ng + Hy(t, tha qt, X?) (Y;M - Y;‘q)
+E [HY/ (ta <g7 dt, Xg)E[}/;u - Y;qu + HZ(ta Cga qt, X?) (Z# - th)

Therefore, applying this inequality in (4.38]) gives
J(p) —J(g) > 0,Vu e R.

The theorem is proved. m
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4.3 Necessary and Sufficient optimality conditions for

strict control

In this section, we study the strict control problem {(4.1), (4.2), (4.3)} and from the

results of section (4.2)), we derive the optimality conditions for strict controls. For this

end, consider the following subset of R
RO ={u. € R/ u=2s,:vecU},

the set of all relaxed controls in the form of Dirac measure charging a strict control. Denote

by P(U°) the action set of all relaxed control R?.

4.3.1 Necessary optimality conditions for strict control

Define the Hamiltonian H in the strict control problem from
[0,7] x R™ x R" x R™ x R™ x R™*? x R™*? x [/ x R™ x R" x R™* x R™*%,

to R by

H(t’ y) y/7 Y? Y’7 Z’ Z’? /U7 ¢7 qj? Z? H) :: _’_@b(t? y’ y/’ /U) + E0-(t7 y’ y/)
+Uf(t,yy Y)Y, Z,Z' v)+Ug(t,y,y.Y,Y' Z Z' v)

+£(t7y7y/7yv Y,7Za Z/>U)~ (439)

Theorem 4.3.1 (Necessary optimality conditions for strict control.) Let u. € U be an
optimal strict control. Let (y*, Y™, Z") be the associated solution of MF-FBDSDE .

Then there exists a unique solution (®*, U* X T1") of the following adjoint equations of
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MF-FBDSDE (f.1):

[ a0y = — (M, (8, Gl ue, 1) + B[Hy (8, Gl ey )] )t + Sy,
AV = (Hy (¢, ¢ w, X3 + B[ Hy (8, ¢ ue, X3 ] ) dt
+(H (b, G XE) + B[ (8w, X)) )W, — A,
(4.40)
Wy = By (Vs BYg)) + BBy (Y5, BIYsD)],
O = oy (y4, Blyt]) + Bloy (v, Blyk)]

+hy (v, Blyr]) U4 + E[hy (vF, Elyi) B[P,

such that

H(t7 y?’ E[yg]7 }/tu7 E[}/;u]’ Ztu7 E[Ztu]’ ’U/t, ©?’ \D?) 2?7 H?)
< H(t, vt Blyy], Y, B, Z0 BIZY, o, OF, Oy, B ITY), ace.t,P-a.s., Yo €U,

(4.41)

where (tv C?,Ut,X?) = (tay%E[y?]anqu[Ytu]a Zt“,E[Z;L],uMQJ?, qj?? E?,Hg).

Proof. Note that the strict u. embedded into the space V in the sense that wu. is
corresponding with the Dirac measure \, (dt,da) = 0, (du) with the propriety: For any

bounded and uniformly continuous function A(t,y,vy',Y,Y’, Z, Z' u) we have

Wty Y,Y' 2, 7 ug) = / Bty Y, Y 2, 7)., (du)
U

=Nt y,y Y, Y Z, 7' \). (4.42)
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From the necessary optimality condition for relaxed controls (Theorem [4.2.1]), there exist
a unique solution (®f, ¥{ 37 TI7) of (4.31)) such that

H(t7 ytqa E[yg]a Y;qa E[Y;q]a Zgu E[th]a qt, q)gv \Ij:‘,]? 2?7 H?)

S H(t7 ngE[yg]J Y;,qJE[S/;q]7 th7E[Zg]7 /’Lt7 @;,17 \IJ;,]? 2;,17 H?)7 a.c. t7 ]:P)_a“s'7 v/’l’ e R7

and since R® C R we have

H(t, i, Blyy], Y, BIYY, 28, BIZE), qi, @, W, 53, 11E)
< H<t7 yga E[yl?L Y;Eq7 ED/tq]v Zga E[Zg]v Hots (I)ga ‘1/;1, Egv Hg)v a.e.t, ]P)-G.S., V:u S R(S'

(4.43)

Using the fact that if u € R?, then there exist v, € U° C U such that u = §,, and if the
optimal relaxed control ¢,(du) = 0,,(du) with u, an optimal strict control, then we can

show that

(i, Y, 28 = (v, i 20, (' Y5 Z0) = (v, Yy, Z)),
(@g, \Ij?a Z?a Hg) = (@g, \Ijga Eg? H?)? (@f’ qua E?a H?) = (be, \Ij% E?? H?)a
H(t, i, Blyf, Yy, BYY], Z, B[Z], ¢, ©F, V{, Ef, 11})

= H(t v, Bly/, Y, BIY,"], 20 BIZy ], we, OF, O, 5 1TY),
H(tv y#? E[y;‘,u]? Sft‘uv E[Sft‘u]a Ztﬂ7 ]E[Z#L :U/t7 qyga \Ilga 2?7 H?)

= H(t i, Bly 1, Y, B 27, BIZET v, @F, O, 50 0). (4.44)

Using (4.42) and (4.43) we get (4.41]). The proof is completed. m
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4.3.2 Sufficient optimality conditions for strict control

We shall try to shows if the necessary optimality conditions (4.41)) for strict control problem

{(4.1), (4.2), (4.3) } becomes sufficient.

Theorem 4.3.2 (Sufficient optimality conditions for strict control.) Assume that the
functions a, B, 0 and H(t,-, -, -, -, uy, O}, Ui X2 1Y) are convex. Then (y*, Y™, Z" u.) is an

optimal solution of the strict control problem {(4.1)), (4.2)), (4.3)} if it satisfies )

Proof. Let u, be an arbitrary element of U° such that the necessary optimality conditions

for strict control (4.41)) hold, i.e.

H(ta y?a E[ytu]a Y;fu> E[}/tu]’ Z?a E[Z?]a Ut, (I)ga \IJ;" 2?7 H?)

< H(t,y" Bly"], Y, BIY,"], Z*, B[Z"], vy, &%, U¥, $¥ 1Y), a.e.t,P-a.s., Vv € U°,

and by applying the embedding mentioned in (4.42)), one can show that

H{(t,y} Blyf], Y, BIY?], Z{, B[Z]], q, @, ¥, &, 11})

< H(tygaE[ytq]vnqu[Y;q]: th7E[Zg]aut7 (I)ga \II?) Eg,Hg), CL.G.t,P—CL.S., vu < R6'

Thus by sufficient optimality conditions for relaxed control (Theorem [4.2.2]) we have

J(g) = inf J(p.),

1. ERS

and from the fact that the optimal relaxed control is a Dirac measure charging in optimal

strict control (g;(du) = d0,,(du)) and by using (4.44]), we can show that

J(u.) = inf J(v.).

v. €U

The prove is completed. m
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Conclusion

In this thesis, we have investigated some results on the existence of the optimal control as
well as the necessary and sufficient conditions for optimality.

We have studied in first optimal control problems for systems governed by a linear forward-
backward doubly stochastic differential equations (FBDSDESs), we have proved the exis-
tence of a strong optimal control (that is adapted to a fixed sigma algebra), by using
the convexity of the cost functional and the domain of control and the Mazur’s theorem.
We have derived also necessary and sufficient conditions for optimality for this control
problem. This result is based on the convex optimization principle.

In the second part, we have established the existence of strong optimal solutions of a
control problem for dynamics driven by a linear forward-backward doubly stochastic dif-
ferential equations of mean-field type (MF-FBDSDEs) in which the coefficients of the
system depend on the states of the solution processes as well as their distribution via the
expectation of the states. Moreover, the cost functional is also of mean-field type. More-
over, we have established necessary as well as sufficient optimality conditions satisfied by
an optimal strict control of control problem of MF-FBDSDEs.

In the third part, we have established necessary as well as sufficient optimality conditions
for both relaxed and strict control problems driven by systems of nonlinear MF-FBDSDESs.
In the same context, we can reformulate the control problem for systems governed by a
linear or nonlinear forward-backward doubly stochastic differential equations of McKean—

Vlasov type (MV-FBDSDESs). The coefficients of the McKean—Vlasov systems depend on
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Conclusion

the state of the solution process as well as of its probability law. And we can prove the
existence of the optimal control and establish the necessary as well as sufficient conditions
for optimality for this kind of systems.

A special case is that in which both «, $ and [ are convex quadratic functions. The control
problem {, , } is then reduced to a stochastic linear quadratic optimal control

problem.
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Appendix

Mazur’s theorem:

Let (x,) — x weakly as n — oo in a normed linear space X'. Then there exists, for any
e > 0, a convex combination » 7 | a;z; (ozj >0, Y o= 1) of z;’s

such that

<e.

n
Xr — E CinEj
=1

We need some inequalities in this thesis.

A quadratic inequality:

For any real numbers a and b, we have

(a + b)* < 2a2 + 207

Young inequality:

For a, b > 0 and € > 0, we have

We introduce Gronwall’s inequality

Gronwall’s inequality:

103



Appendix

Let v : [0,7] — [0,00) be a nonnegative continuous function such that
t
U(t)SC—i-A/v(s)ds VO<t<T.
0
for some nonnegative constants C' and A. Then

v (t) < Cexp (At) Vo<t<T.

Burkholder-Davis-Gundy inequality:
Let X be a square integrable continuous, F;—martingale, with X, = 0 Then, for p € (0, 00)

there exist positive constants c, and C,, such that

B {sup ]XS|2p} <E[X)"] < CE {sup ’Xs|2p:| )

0<s<t 0<s<t
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