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Résumé

L’objectif de cette thèse est d’étudier l’estimation non paramétrique de la fonction de

la copule en présence de données bivariées doublement censurées. En supposant

que la copule fonctionne des variables de censure de droite et de gauche sont connues, nous

proposons un estimateur de la fonction de distribution conjointe des variables d’intérêt,

puis nous dérivons un estimateur de leur fonction de copule. En utilisant une représenta-

tion de l’estimateur proposé de la fonction de distribution conjointe comme une somme

de variables indépendantes et distribuées de manière identique, nous établissons la faible

convergence de la copule empirique et de la simulation. Après cela, nous avons étudié

l’estimation du noyau de la fonction copule de deux variables aléatoires censurées deux

fois. Nous introduisons donc deux estimateurs de noyau de la fonction de distribution

conjointe des deux variables d’intérêt. Ensuite, nous utilisons ces estimateurs pour pro-

poser deux estimateurs lissés de la fonction de la copule. Nous prouvons également la

faible convergence des estimateurs proposés vers un processus gaussien étroitement centré

.

Mots-clés : Copules, processus empirique de la copule, données censurées deux fois,

limite de produit estimateur, estimateurs lissés, convergence faible.
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Abstract

The aim of this thesis is to study the nonparametric estimation of the copula funct

ion in the presence of bivariate twice censored data. Assuming that the copula

functions of the right and the left censoring variables are known, we propose an estimator

of the joint distribution function of the variables of interest, then we derive an estimator

of their copula function. Using a representation of the proposed estimator of the joint

distribution function as a sum of independent and identically distributed variables, we

establish the weak convergence of the empirical copula and simulation. After that, we

studied the kernel estimation of the copula function of two twice censored random vari-

ables. So, we introduce two kernel estimators of the joint distribution function of the two

variables of interest. Then, we use these estimators to propose two smoothed estimators

of the copula function. We also prove the weak convergence of the proposed estimators

to some tight centered Gaussian processes. Finally, we illustrate the performances of our

estimators through a simulation study.

Key words. Copulas, empirical copula process, twice censored data, product-limit

estimator, Smoothed estimators, weak convergence.
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Introduction

Copulas represent a very useful tool to describe the dependence structure between

two random variables. They allow to study this structure without requiring any

knowledge

about the marginal distributions. The estimation of the copula function have aroused

the interest of statisticians from many decades. [12] was the first to introduce the em-

pirical copula as a nonparametric estimator of the copula function. The properties of

this estimator have been considered by many authors such as [13], [14], [15], [10] and

[17]. The copula C of a couple of real random variables (r.r.v.) X = (X1, X2), with a

joint distribution function F and continuous margins FX1 and FX2 , is defined on [0, 1]2

by C(u, v) = F
(
F−1

X1 (u), F−1
X2 (v)

)
, where φ−1(u) = inf {x ∈ R : φ(x) ≥ u} is the general-

ized inverse of a non decreasing function φ. Sklar’s theorem (see [49]) shows that for all

(x1, x2) ∈ R2, F (x1, x2) = C (FX1(x1), FX2(x2)). We cite for instance the works of [13],

[14], [15] and [10]. Moreover, [17] established the weak convergence of this estimator.

However, the empirical copula is based on a sample comprising true realizations of the

variable of interest, i.e., complete data; but in the practice, one or more censoring phe-

nomena may prevent the observation of the variable of interest and provide only a partial

information about it. For example, in the case of right censoring, when a data is censored,

the statistician only knows that the variable of interest is greater than the observed value.

Bivariate right censored data have been extensively studied in the literature, given their

usefullness in the practice; we quote for instance the works of [40], [34], [2] and [24]. The

empirical copula for bivariate right censored data has been introduced by [23] for some

11



Introduction 12

particular models. Its weak convergence is also established in the same paper. Other

copula models for bivariate right censored data have been studied in [47], [45], [8], [28],

[27] and [26].

Althoug the right censoring is the most popular type of censored data, more complicated

situations can also be encountered in the practice involving right and left censoring at

the same time. [43] considered one of these situations where the variable of interest is

right censored by another variable, the minimum of the two variables is itself left censored

and the three latent variables are independent. This is the so called twice censored data

model. [39] dealt with a practical situation that corresponds to this model. Moreover,

[43] proposed and established the asymptotic properties of a product-limit estimator of

the survival function under this model. Then, after the pioneer paper of [43], many au-

thors study the model of twice censored data in the univariate case such as [32], [6] and

[7] as well as in the conditional case such as [38] and [3]. So, we are interested in the

nonparametric estimation of the joint distribution function and the copula function of

a couple of r.r.v. X = (X1, X2), where X1 and X2 are both twice censored. For that,

we draw on the work of [23] , we consider a situation that corresponds to one of the

three models studied in this paper, by assuming that the copula functions of the right

and the left censoring variables are known. This assumption holds for example when the

right (resp. left) censoring variables are independent. Under this assumption, we propose

a nonparametric estimator Fn of the joint distribution function of X. Then, we derive

from this letter the empirical copula Cn that we propose as an estimator of the copula

function. In the case of bivariate right censored data, [23] proved the weak convergence

of the empirical copula using a representation of the corresponding estimator of the joint

distribution function as a sum of independent and identically distributed (i.i.d.) centered

random variables. Such a representation was established by [35]. This

thesis is organized as follows:

chapter 1: The first chapter is essentially a reminder some basic notions, we start with

foundations definitions like the distribution function, the empirical distribution function,

the survival function... etc

chapter 2: The second chapter is mainly devoted to the design of copulas and their

Mohamed Khider University of Biskra.



Introduction 13

properties. We introduce the notion of the bivariate copula, and also we devote a section

for different types of copulas, namely the usual copulas...

chapter 3:In this chapter, we difine type of censorship and we intoducde nonparametic

estimation for type censoring model.

chapter 4:In this chapter, we have introduced a new copula estimator for censored

bivariate data based on the classical estimation method of moments, presented in a non-

parametric estimation framework. This chapter is divided into two parts the first focuses

on the estimation of this new estimator when the data are twice -censoring, i.e. the two

variables are twice-censored at the same time. In the second part, we have presented the

weak convergence...and simulation.

chapter 4: The previous chapter also allowed us to conclude smoothed copula esti-

mators for bivariate twice censored data; This chapter is divided into two parts the first

focuses on the kernel copula estimators and weak convergence of the proposed estimators

and second part, simulation study...

Mohamed Khider University of Biskra.



Scientific Contributions

Publications based on this thesis
• S. Toumi, M. Boukeloua, N. Idiou and F. Benatia (2022). Nonparametric Estimation

of the Copula Function with Bivariate Twice Censored Data. Boletim da Sociedad

Paranaenses da. Matematica (3s.) v. 2024 (42) : 1–22.

Conference papers
• TOUMI S., BOUKELOUA M., IDIOU N., BENATIA F. (26-27 Octobre 2022 )

“Weak convergence of the empirical Copula with bivariate twise censoring” 6 th

International Workshop on applied Mathematics and Modeling WIMAM ’2022’

Guelma university. Guelma, Algerie.

• TOUMI S. (19-21 decembre 2022) “I.I.D.Representation of the product-limit Esti-

mator under twise censoring” International Conference on Operator Theory. ICOT-

22, LPMA. Sousse, Tunisie.

• TOUMI S., BOUKELOUA M., IDIOU N., BENATIA F. (11-12 October 2023)

“Weak Convergence of kernel copula estimators under twice censoring” International

Conference on the evolution of Contemporary Mathematics and their Impact in

Science and Technology, Constantine.

• TOUMI S., BENATIA F. (26-27 November 2023) “Simulation study of kernel copula

estimation under censoring” International Conference on Contemporary Mathemat-

ics and its Applications, ICCMA-, Mila.

• Toumi S. (13 May, 2023). « Nonparametric Estimation of the Copula Function. ».Sec-

14



Introduction 15

ond national Conference Of Apllied Mathematics and Didactics 2NCAMD2023, ENS

Assia Djebar Constantine , Algerie.

• Toumi S., Benatia.F, (14-15 Mai, 2023). “ Empirical Copula for Twice Censored

Data ”. first national Applied Mathematics Seminar, 1st-NAM’23, M. Khider Uni-

versity Biskra, Algerie.

Mohamed Khider University of Biskra.



Chapter 1

Preliminaries

We describe some of the basic concepts here so that you may utilize them in the next

chapter.

Definition 1.1 (The distribution function )

The distribution function FX , describes the probability that a variate X takes on a

value less than or equal to a number x in [0, 1] .

The distribution function is therefore related to a continuous probability density func-

tion f (x) by

∀x ∈ R, FX (x) := P (X ≤ x) =
x∫

−∞

f (t) dt,

so f (x) (when it exists) is simply the derivative of the distribution function

f(t) = F
′

X (t) .

Similarly, the distribution function is related to a discrete probability FX by

FX (x) := P (X ≤ x) =
∑

X≤x

P (x)

Definition 1.2 (The empirical distribution function)

Let X1, X2, ..., Xn be a sample of size n (n ≥ 1), the empirical distribution function

Fn is defined by

Fn (x) = 1
n

n∑
i=1

IXi≤x, ∀x ∈ R

16



17

Theorem 1.1
There exists a constant C such that for all v > 0, we have

P

(
√
n sup

x∈ℜ
|Fn (x) − F (x)| > v

)
≤ C exp

(
−2v2

)
.

[37] showed that this Theorem is true for C = 2 and that this constant is the best

that can be obtained. Indeed, [33] showed that if F is continuous, we have

and when v increases the right side is equivalent to 2 exp
(
−2v2

)
.

Theorem 1.2
The empirical process

√
n(Fn − F ) converges weakly to a centered Gaussian process

with covariance function given by

Γ (s, t) := F (s) (1 − F (t)) for s ≤ t.

Proof : See [44] page 97.

Definition 1.3 ( The survival function)
Let the lifetime X be a continuous random variable with distribution function F (x)

and probability density function f (x) on the interval [0; ∞[ , its survival function or

reliability function is:

S (x) = F̄ (x)

= P (X > x) =
∞∫

x

f (t) dt

= 1 − F (x) , x ≥ 0

Every survival function S (t) is monotonically decreasing, i.e. S (u) ≤ S (v) for all

u > v.

The survival function can be related to the probability density function f (x) and the

hazard function λ (t)

Mohamed Khider University of Biskra.



18

. f (t) = −S ′ (t)

. λ (t) = − d

dt
logS (t) .

Definition 1.4 (The empirical survival function)

Let X1, X2, ..., Xn be a sample of size n (n ≥ 1), the empirical distribution function

noted by Sn is given by :

Sn (x) = 1 − Fn (x)

= 1
n

n∑
i=1

IXi>x, ∀x ∈ R

Corollary 1.1
By analogy to the cases of complete and right-censored data, Ren (1997) proposed to

estimate the density f of X by

fn (x) = 1
nhn

n∑
i=1

K
(
x− xi

hn

)

Definition 1.5

where hn is called the smoothing parameter and the function K is called the kernel.

This estimate is the density, i.e.

1. fn (x) ≥ 0, ∀t

2.
∫
R

fn (x) dx = 1 =⇒
∫
R

1
nhn

n∑
i=1

K
(
x− xi

hn

)
dx = 1

n

n∑
i=1

∫
R

K (w) dw = 1.

Here are some examples of common kernels:

K (v) = 1
2I{|v|≤1} : rectangular kernel.

K (v) = (1 − |v|) I{|v|≤1} : triangular kernel.

K (v) = 15
16
(
1 − v2

)
: quadratic kernel.

K (v) = 1√
2π

exp
(
−v2/2

)
: Gaussian kernel.

K (v) = 3
4
(
1 − v2

)
I{|v|≤1} :Epanchenikov or parabolic kernel.

Mohamed Khider University of Biskra.



Chapter 2

Copula Conseption

In this chapter we define some of the basic conceptions, in order to take advantage of

them in the next.

2.1 Bivariate Copula

The construction of the copulas is based on the properties of the distribution functions

(fds). We recall below some important properties of bivariate fds. Let (X1, X2) be a

couple of positive r.r.v. with support X = X1 × X2 and joint distribution function F

defined like this

∀ (x1, x2) ∈ R2 : F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2) .

We call marginal laws the laws of X1 and X2 taken separately. We can express the

fds of these marginal laws as a function of F . For example, for X1 we obtain

F1 (x) := P (X1 ≤ x) = lim
x2→∞

F (x1, x2)

and identicall to X2

F2 (x) := P (X2 ≤ x) = lim
x1→∞

F (x1, x2)

Recall that the X and Y vas are independent if and only if

∀ (x1, x2) ∈ R2 : F (x1, x2) = F1 (x1)F2 (x2) .

Theorem 2.1 ( Sklar’s theorem)
This theory is essential to the theory of copulas. It was established by Sklar in 1959,

whereby it precisely determines the relationship between the two variables, F1 and

19



2.1. BIVARIATE COPULA 20

F2’s marginal univariate distribution and the whole bivariate distribution F , based on

the joint distribution F .

Theorem 2.2
If F is the fd of (X1;X2), then there is a two-dimensional copule C such that

∀ (x1, x2) ∈ R2 : F (x1, x2) = C (F1 (x1) , F2 (x2))

Theorem 2.3
F is the bivariate function of the F1 and F2 marginals. The copule C associated with

F is given by

∀ (u, v) ∈ R2 : C (u, v) = F
(
F−1 (u) , F−1 (v)

)

2.1.1 Density of the copula

The copulas accept probabilistic densities. If the density c associated with the copule C

is present, it is defined as follows:

c (u, v) = ∂2C (u, v)
∂u∂v

,

where c : I2 → R If the fd joint F is absolutely continuous, using Sklar’s theory, one

The density of an arbitrary pair (X;Y ) may be expressed as the product of its copule’s

density and its marginal f and g by

h (x, y) := c (F (x) , G (y)) f (x) g (y) .

2.1.2 Copula properties

First of all, one observes that the copules exhibit certain characteristics.

a. The margins are uniform, i.e.

Mohamed Khider University of Biskra.



2.2. BIVARIATE COPULA FAMILIES 21

C (u, v) = 0 if u ≤ 0 or v ≤ 0

C (u, 0) = 1 if u ≥ 1 and v ≥ 1

C (u, v) = u if v ≥ 1 et C (u, v) = v if u ≥ 1.

b. The continuity : It should be noted that copulas are continuing functions.

∀u1, u2, v1, v2 ∈ I, we have

|C (u2, v2) − C (u1, v1)| ≤ |u2 − u1| + |v2 − v1|

c. The symmetry : That C is symmetric is said to

∀u, v ∈ I :C (u, v) = C (v, u)

d. The ordre:

∀u, v ∈ I :C1 (u, v) ≤ C2 (u, v)

e. for every u1, u2, v1,v2 in I such that u1 ≤ u2 and v1 ≤ v2

C (u2, v2) − C (u1, v2) − C (u2, v1) + C (u1, v1) ≥ 0

f. Invariance by strictly increasing transformation: One of the fundamental theories in

the theory of copules is the invariance via strictly increasing transformations. Let

X and Y be a continuous have the marginals F and G and the CXY copule. Given

that and are two strictly increasing functions, then

Cα(X)β(Y ) (x, y) : CX,Y .

2.2 Bivariate copula families

Many families of copulas have been proposed in the literature. The most commonly used

ones are introduced in this section. A more comprehensive list can be found in Nelsen.

Mohamed Khider University of Biskra.



2.2.1 Usual Copulas

The family of copulas is bounded by what is referred to as the Fréchet-Hoeffding bounds.

We have

∀ (u, v) ∈ I2 : M (u, v) = max (u+ v − 1, 0) ≤ C (u, v) ≤ min (u, v) = m (u, v)

m is the distribution function of the couple (U ;U); it is called the minimum copula

or comonotonic copula.

M is the distribution function of the couple (U ; 1 − U) It is called the maximum

copula or anticomonotonic copula.

Note that m is a copula; however, M is a copula only in the case where d = 2. Another

special case is that of independent variables: the associated copula is the copula denoted

by

∀ (u, v) ∈ I2 : π (u, v) = uv,

called the independent copula or product copula.

2.2.2 Elliptique copula

Elliptical copulas are copulas associated with elliptical distributions. Any copula that is

written in the following form is called an elliptical copula.

Cl (u, v) := 1√
1 − l2

ϕ−1
g,1(u)∫

−∞

ϕ−1
g,2(v)∫

−∞

g

(
x2 − 2lxy + y2

√
1 − l2

)
dxdy = Hl

(
ϕ−1

g,1 (u) , ϕ−1
g,2 (v)

)
.

H is the joint distribution of the random variables X and Y ϕ−1
g,1 (u) , ϕ−1

g,2 (v) their re-

spective quantile functions and their correlation coefficients are l. In this family, among

others, are the Gaussian copula and the Student’s copula.

2.2.3 Gaussian copula

This copula does not allow for measuring dependence between the tails of marginal distri-

butions. This is a limiting property when assessing dependence between rare events. One

of the most commonly used types of copulas in modeling is the bivariate normal copula.



It is the most frequently used copula, and it is defined by

Cl (u, v) := 1
2π

√
1 − l2

ϕ−1(u)∫
−∞

ϕ−1(v)∫
−∞

exp
(

−x2 − 2lxy + y2

2 (1 − l2)

)
dxdy,

where ϕ−1 is the quantile function of the standard normal distribution N(0; 1): We find

the following particular cases as limit cases: C−1 = M , C0 = π and C1 = m.

Figure 2.1: Density Cl of three Gaussian copulas according to ł

2.2.4 Student copula

Compared to the Gaussian copula, the Student’s copula allows, thanks to its degree of

freedom, to better account for thick tails of the distribution. Furthermore, as the degree

of freedom tends towards infinity, the Student’s copula is equal to the Gaussian copula.

The Student’s copula is defined as follows:

Cl,v (u, v) := 1
2π

√
1 − l2

T −1
v (u)∫

−∞

T −1
v (v)∫

−∞

(
1 + x2 − 2lxy + y2

v (1 − l2)

)−( v
2 +1)

dxdy,

Archimedean copula

The class of Archimedean copulas, defined by [19], plays a very important role. On one

hand, they allow for the construction of a wide variety of copula families, thus representing



a broad range of dependency structures. On the other hand, the copulas generated in

this way have closed analytical forms and are easy to simulate. Indeed, unlike Gaussian

copulas and Student copulas, Archimedean copulas have the great advantage of describing

very diverse dependency structures, including so-called asymmetric dependencies, where

the lower and upper tail coefficients differ. For further details on this family of copulas,

the reader may refer to the excellent book by Nelsen .

Several reasons justify the use of this type of copulas, among others:

The wide variety of parametric families.

The particular and interesting properties that this class possesses.

The broad variety of different dependency structures.

The ease with which they can be constructed and simulated.

Archimedean copulas were introduced and developed by Professor [19] from Laval

University in Quebec. A significant number of families belonging to him and possessing

interesting properties will be mentioned in Table 2.4.

Definition 2.1
We call an Archimedean copula with generator the copula given by

C (u, v) = ϕ−1 (ϕ (u) + ϕ (v))

where ϕ : I → [0; ∞[ a continuous and strictly decreasing function satisfying ϕ (1) = 0

We define the inverse of ϕ by ϕ[−1] as

ϕ[−1] (t) =

 ϕ−1 (t) if 0 ≤ t ≤ ϕ (0) ,

0 if ϕ (0) ≤ t ≤ ∞.

if ϕ (0) = ∞, so ϕ[−1] = ϕ−1

ϕ is at least twice continuously differentiable such that ϕ′ (u) < 0 and ϕ′′ (u) > 0 for

all u ∈ I.

Remark 2.4
Another characterization of Archimedean copulas can be done using the Kendall’s tau

function



K (s) = P (C (U, V ) ≤ s) = 1 − ϕ (s)
ϕ′ (s) ; s ∈ I.

The table 2.4 presents some classic Archimedean families.

Copula ϕθ (t) Cθ (u, v)

Clayton
(
t−θ − 1

)
/θ

(
u−θ + v−θ − 1

)−1/θ
; θ ∈ [−1; 0[ ∪ ]0,∞[

Gumbel (− ln t)θ exp
{

−
[
(− ln u)θ + (− ln v)θ

]1/θ
}

; θ ≥ 1

Frank − ln
(

exp (−θt) − 1
exp (−θ) − 1

)
−1
θ

ln
(

1 + (exp ((−θu) − 1)) (exp ((−θv) − 1))
exp (−θ) − 1

)
; θ ∈ R

Joe − ln
(
1 − (1 − t)θ

)
1 −

[
(1 − u)θ + (1 − v)θ − (1 − u)θ (1 − v)θ

]1/θ
; θ ≥ 1

AMH ln
(

1 − θ (1 − t)
t

)
uv/ (1 − θ (1 − u) (1 − v))

The obtained results for the estimator Ĉ1
n under weak dependence.

2.2.5 Emprical Copula

La notion of empirical copula was introduced by [13] based on the empirical versions of the

distribution functions. One can construct the empirical copula Ĉn based on the empirical

marginals Fn, Gn, and Hn as follows:

Ĉn (u, v) = Hn

(
F−1

n (u) , G−1
n (v)

)
,

where Fn (x) = 1
n

n∑
i=1

I{Xi≤x}and Gn (y) = 1
n

n∑
i=1

I{Yi≤y}.

In the case of a bivariate distribution by a noted sample {(xi, yi)}1≤i≤n for 1 ≤ i ≤ n,

it is written as follows:

Hn (x, y) = 1
n

n∑
i=1

I{Xi≤x,Yi≤y}

The bivariate empirical copula denoted by Ĉn is defined on the set L =
{(

j

n
,
k

n

)
; j, k = 1, 2, ..., n

}
The emprical copula Ĉn is



Ĉn

(
j

n
,
k

n

)
= 1
n

n∑
i=1

I{Xi≤x(j),Yi≤y(k)}

where x(j) and y(k) represent the rank statistics of the sample (X1, X2, ..., Xn) and

(Y1, Y2, ..., Yn) respectively.

The empirical copula can also be written as follows:

Ĉn (u, v) =


Ĉn

(
j − 1
n

,
k − 1
n

)
if j − 1

n
≤ u <

j

n
and k − 1

n
≤ v <

k

n

1 if u = 1and v = 1

The empirical density function of the copula Ĉn sometimes called the empirical fre-

quency copula and denoted by ĉn is given by

ĉn

(
j

n
,
k

n

)
=


1
n

if
(
x(j), y(k)

)
∈ {(xi, yi)}1≤i≤n ,

0 ifelse

There exists a relationship between Ĉn and ĉn given by Ĉn

(
j

n
,
k

n

)
=

j∑
p=1

k∑
q=1

ĉn

(
p

n
,
q

n

)

and ĉn

(
j

n
,
k

n

)
= Ĉn

(
j

n
,
k

n

)
− Ĉn

(
j − 1
n

,
k

n

)
− Ĉn

(
j

n
,
k − 1
n

)
+ Ĉn

(
j − 1
n

,
k − 1
n

)
.



Chapter 3

Censoring Notion

In actuality, it’s not always possible to obtain a sample with all the data.In statistics,

censorship is one of the most common events that leads to incomplete data. A data is

said to be "censored" if the exact value is unknown, but only an estimate, lower or higher,

in other words, approximate details of the type T ≥ C or T ≤ C. Such information

is very poor, poorer than saying "T is between a and b ", since only one of the two

bounds is known. In the analysis of survival times, censoring occurs when the survival

T is only known for some of the individuals "the data for which survival is unknown are

said censored". The variable of interest T is not observed and it is limited superially or

inferiorly by a variable (of censoring, generally noted C) which has been observed.Given

that in biostatistics and epidemiology, the main focus of the studies is the explanation

for the occurrence of an event of interest (death, rejection of a transplant, end of study,

withdrawal from study, loss of follow-up, etc), all available information must be analyzed.

However, due to the fact that the phenomenon of censoring is in itself a special case in

completeness of the data, observational studies only very rarely present complete data

when within a framework of survival analysis. Thus, it is necessary, for the clinician be

quick to use statistical methods that take into account the censored data.

In addition, censoring can be informative or non-informative: in the event of censoring

informative, there is a dependence between the survival time and the censoring time. We

take the example of a patient lost to follow-up: his voluntary withdrawal may, for example,

result from the fact that the patient is near death or decides to stop treatment to die in

a certain time dignity, its censoring is then dependent on the time of death.

For an individual i, we consider:

• its survival time Ti

• its censoring time Ci

• the time actually observed Xi

27



3.0.1 Type of censorship

Right censoring

Right censoring is discussed when observing censoring C (and not the lifetime T ) and we

know that T > C. This model is most common in practice, for example, it is adapted

to the case where the event of interest is the survival time of a disease and where the

end date of the study is predetermined; patients alive at the end of the study provide

right-censored data.

Left censoring

Left censoring corresponds to the case where the individual has already experienced the

event before being observed. We only know that the event of interest occurred before

a certain known date, T < C. An example of such a situation is when an electronic

component is mounted in parallel with one or more other components. Failure of this

component does not necessarily stop the system: the system may continue to operate

until this failure is detected (for example, during inspection or in the event of system

shutdown). The observed duration for this component is then left-censored.

Double censoring

In the same sample, one can find data that are right-censored and others that are left-

censored. For example, in a study focusing on the age at which children learn to perform

certain tasks, at the beginning of the study, some children already knew how to perform

the tasks under investigation. We only know then that the age at which they learned is

younger than their age at the start of the study. At the end of the study, some children

still could not perform these tasks, and we only know then that the age at which they will

eventually learn is older than their age at the end of the study. The age at the beginning

of the study (left-censoring variable L) is obviously younger than the age at the end of

the study (right-censoring variable C). The age of interest is observed if it falls within the

study period.



Interval censoring

A date is interval-censored if instead of observing the exact time of the event, the only

available information is that it occurred between two known dates C1 ≤ T ≤ C2. This

occurs, for example, when a patient visits the hospital regularly: if they miss an ap-

pointment, the only information available is that their death occurred within the interval

between the last visit and the appointment.

Mixed censoring

It is said that there is mixed censoring when two censorship phenomena (one on the left

and the other on the right) can prevent the observation of the phenomenon of interest

without necessarily being able to determine an interval to which it belongs. Instead of

observing a sample of the variable of interest Y , we observe a sample of the pair (Z;A)

with

Z = max(min(T ;C);L)

and

A =


0 if L < T ≤ C,

1 if L < C < T,

2 if min (T,C) ≤ L.

where L and C are censoring variables and A is the censorship indicator.

3.0.2 Non-parametric estimation for right-censoring model

In the case of right-censoring, the empirical survival function of the vari able T is no

longer valid because since it involves unobserved quantities.

In particular, estimating the distribution of a duration censored by the empirical

distribution function was impossible. In order to estimate the T distribution, it was

necessary to construct a survival function estimator in the presence of censored data.

The non-parametric estimation problem of a right-censored random variable distribution



function, was originally considered by Kaplan and Meier (1958) . They provide a good

estima tor of the survival function ST (t) = 1 − FT (t), having the following

Ŝn (t) =
∏

j/Z′
j≤t

1 −
M
(
Z ′

j

)
N
(
Z ′

j

)


(
Z ′

j

)
1≤j≤M

(M ≤ n) are the distinct values of Zi = min (Ti, Ci) ar-ranged in ascending

order.

M
(
Z ′

j

)
=

n∑
i=1

δiI{Zi=Z′
j} is the exact number of deaths at the moment Z ′

j.

N
(
Z ′

j

)
=

n∑
i=1

I{Zi≥Z′
j} is the number of individuals at risk just before the moment Z ′

j.

This estimator coincides with the empirical distribution function when there are no

censored data. Therefore, it is natural for statisticians to have been interested in extending

the known results for the empirical distribution function to the case of the Kaplan-Meier

estimator. The almost sure uniform convergence and the law of the iterated logarithm

were respectively shown by Winter et al. (1978) and Földes and Rejtő (1981a).

Then, Stute and Wang (1993) showed the strong law of large numbers in the case of

right censoring, which leads, among other things, to the almost sure convergence of FR
n .

As for almost complete convergence, it was shown by Földes et al. (1980), with a

convergence rate of the order of p log n/
√
n. Then, by imposing the continuity of F

and FR, Földes and Rejtő (1981b) improved the convergence rate to the order of p log

n/n. Furthermore, Kitouni et al. (2015) showed that it is possible to dispense with this

continuity assumption by using the following exponential bound.

Theorem 3.1
There exists an absolute constant D such that, for any positive real number u,

P

(
√
n sup

x∈R
SR (x) |Fn (x) − F (x)| > u

)
≤ 2.5 exp

(
−2u2 +Du

)

Proof :

See Bitouzé et al. (1999).

Regarding weak convergence, Breslow and Crowley (1974) provided the following re-

sult.



3.0.3 Non-parametric estimation for mixed censoring model

A new class of estimators is to be presented when the observations Ti are subjected to a

censoring mechanism, this model is carried on the non parametric estimate and discussed

by Patilea and Rolin (2006) .

The Patilea and Rolin Estimator

Assuming that we have observed a sample (Zi; δi)1≤i≤n of the pair (Z, δ) where Z =

(T ∧ C) ∨ L = max (X,L) , for X = (T ∧ C) and T,C, L are positive and independent

random variables representing respectively the variable of interest, the left-censored vari-

able, and the right-censored variable.

Let H be the distribution function of Z and H(0) its sub-distribution for uncensored

observations having the following expressions:

H(t) = P (Z ≤ t) = FL(t)FX(t)FC(t)(1 − ST (t)SC(t)),

and

H(0) (t) = P (Z ≤ t, δ = 0) =
t∫

0

FL (x)SC (x) dFT (x)

As well as their empirical versions are given respectively by:

Hn (t) = 1
n

n∑
i=1

I{Zi≤t},

and

H(0) (t) = 1
n

n∑
i=1

I{Zi≤t,δi=0} = 1
n

n∑
i=1

I{Zi≤t,Ti−Ci≤0,Li−Ti≤0}

We noted Z
′

j (1 ≤ j ≤ M) the distinct values of Zi arranged in increasing order and

for k ∈ {0, 1, 2} :

Dkj =
n∑

i=1
I
{
Zi = Z

′

j, δi = k
}

The non-parametric estimator, denoted by S̃n, of ST , is the bounded product estimator

given by Patilea and Rolin (2006) by the form:



S̃n (t) = 1 − F̃n (t)

=
∏

j/Z
′
j≤t

1 − D0j

Ḟn

(
Z

′
j−1

)
− nHn

(
Z

′
j−1

)


where Ḟn is the Kaplan-Meier estimator of the distribution function FL, defined by

inverting time as:

Ḟn (t) =
∏

j/Z
′
j≤t

1 − D2j

nHn

(
Z

′
j

)
 .

3.0.4 Smooth estimators of the copula and its density

Let k :R → R be a kernel function (that is a smooth function with integral over R equal to

one) and K (x) =
∫
k (u) du its cumulative integral. Introducing a smoothing parame ter

h > 0, a classical kernel estimator of the bivariate distribution function of multiplicative

form is defined through a convolution of the empirical measure with the measure of density

h−2k (u/h) k (v/h).

For the right censored data, we replace the empirical measure by the measure defined

by the estimator

Fn (t1, t2) = 1
n

n∑
i=1

WinIY1i<t1,Y2i<t2 .

This leads us to the following distribution function estimator

F̂ 1
n (t1, t2) = 1

n

n∑
i=1

WinKh (t1 − Y1i)Kh (t2 − Y2i) ,

where Kh (x) := K (x/h). Let us introduce now a first smooth copula estimator given

by

Ĉ1
n (u, v) = F̂ 1

n

((
F̂ 1

1n

)−1
(u) ,

(
F̂ 1

2n

)−1
(v)
)

(3.1)

In the complete data, this estimator was introduced and studied by Fermanian et al.

(2004). An important drawback of estimator 3.1 is that its performance depends on

marginal distribution functions of the variables T1 an T2 ( this issue was extensively



discussed in Omelka et al. (2009)). To get rid of this inconvenient, Omelka et al. (2009)

proposed to use a

transformation of the initial variables by some d.f. Φ, designed to avoid corner bias

problems.Their method can be extended to our framework, leading to a second smooth

estimator C2
n of the copula function. Indeed, for some d.f. Φ, consider a couple of variables

.
(
T̃1, T̃2

)
=
(
Φ−1 [F1 (T1)] ,Φ−1 [F2 (T2)]

)
and pseudo-observations .

(
Φ−1 [F1n (Y1i)] ,Φ−1 [F2n (Y2i)]

)
1≤i≤n

.Clearly,

the variables
(
T̃1, T̃2

)
are coupled by the same copula as .(T1, T2). Next, define an esti-

mator of the joint d.f.of
(
T̃1, T̃2

)
by

F̂ 2
n (t1, t2) = 1

n

n∑
i=1

WinKh

(
t1 − Φ−1 [F1n (Y1i)]

)
Kh

(
t2 − Φ−1 [F2n (Y2i)]

)
,

where F1n (resp. F2n) are marginal distributions of estimator 3.1 Then, define

Ĉ2
n (u, v) = F̂ 2

n

(
Φ−1 (u) ,Φ−1 (v)

)
The smoothness of these estimators allows to deduce estimators of the copula density

c (u, v), let

ĉi (t1, t2) = ∂2

∂t1∂t2
Ĉi (t1, t2) , for i = 1, 2.

3.0.5 Semi-parametric estimation for Copula models

Maximum Likelihood Estimation (MLE)

Assuming a multivariate parametric copula Cθ, where θ = (θ1, ..., θd) ∈ ⊖ be the vector

of copula parameters and 3b2 be the vector of marginal param eters. Given the relatively

simple functional form the self-selection like lihood function under an Archimedean copula,

MLE can be employed to jointly estimate all parameters of the unknown parameters vector

(β1, ..., βd, θ) at the same time. Assume that we observe d-independent realizations (Xi1,

. . . , Xid), i = 1, . . . , d, specified by p-margins with cumu lative distribution function

(CDF ) Fi. However, the density of F is given by:

f(x1, ..., xd) = cθ [(F1,β (x1) , ..., Fd,β (xd)) ; θ]
d∏

i=1
fi,βi

(xi) (3.2)



That is associated with a sample (Xi1, . . . , Xid), i = 1, . . . , d, where cθ is a den

sity of a parametric copula Cθ and fi,βi

is a density of Fi,βi. A parametric and a semi-parametric approaches both presented

seek to maximize a like lihood approximation based on 3.2. Consequently, the parameter

vector to be estimated in the parametric approach is 3b1 = (3b2, 3b8) and by maximiz ing

the log-likelihood function L(3b21, ..., 3b2d; 3b8) defined by:

L(3b21, ..., 3b2d; 3b8) =
n∑

i=1
log f(x1, ..., xd; θ)

L(3b21, ..., 3b2d; 3b8) = log cθ [(F1,β (x1) , ..., Fd,β (xd)) ; θ]
d∏

j=1
fj,βj

(xj)

=
n∑

i=1
log cθ [(F1,β (x1) , ..., Fd,β (xd)) ; θ] +

n∑
i=1

d∑
j=1

log
d∏

j=1
fj,βj

(xj) ,

then the estimator of θ, noted θ̂MV
n is

θ̂MLE = arg maxL(3b21, ..., 3b2d; 3b8)

See Lehmann and Casella [56], for more details. This estimator is con sistent and

satisfies the asymptotic normality property:

√
n
(
θ̂MLE − θ

)
→ N (0, 1)

such that I (θ) is the Fisher information matrix. This matrix is estimated by the

inverse of the Hessian matrix of the likelihood function.



Chapter 4

Simulation of the Copula Function with Bivariate Twice Censored Data

4.1 Empirical copula for twice censored data

Let X = (X1, X2) be a couple of positive r.r.v. with support X = X1 × X2 and joint

distribution function F , and let R = (R1, R2) (resp. L = (L1, L2)) be a couple of positive

right (resp. left) censoring variables. We assume that the variables X, L and R are

independent. In the twice censoring framework, instead of observing X, we observe

the independent copies (Z1i, Z2i, A1i, A2i)1≤i≤n of the vector (Z1, Z2, A1, A2), where for

k ∈ {1, 2}, Zk = max(min(Xk, Rk), Lk) and Ak is the indicator of censoring given by

Ak =


0 if Lk < Xk ≤ Rk,

1 if Lk < Rk < Xk,

2 if min (Xk, Rk) ≤ Lk.

In all the sequel, for any r.r.v. V , FV , SV , IV and TV denote, respectively, the distribution

function, the survival function, the lower and the upper endpoint of the support of V .

Moreover, for any right continuous function φ : R −→ R, we set φ(t−) = lim
ε

>→0
φ(t − ε)

the left-hand limit of φ at t when it exists. Furthermore, for any differentiable function

ψ : R2 −→ R, we denote by ∂1ψ (resp. ∂2ψ) the partial derivative of ψ with respect to its

first (resp. second) variable.

We assume that the copula function C of X is twice continuously differentiable on [0, 1]2.

Furthermore, following [35], we assume that the copula function CL of L and the survival

copula function 1 C̃R of R are known and twice continuously differentiable on [0, 1]2. We

also assume that the functions FXk
, FRk

and FLk
(k ∈ {1, 2}) are continuous.

To define the empirical copula Cn(u, v) for (u, v) ∈ [0, 1]2, we need to introduce the

following notations. For k ∈ {1, 2} and j ∈ {0, 1, 2}, denote by H(j)
k (t) = P (Zk ≤ t, Ak =

1The survival copula C̃R of R is defined by C̃R(u, v) = u + v − 1 + CR(1 − u, 1 − v), where CR is the

copula function of R.
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j) the sub-distribution function of Zk for Ak = j, I
H

(j)
k

= inf{t ∈ R/H(j)
k (t) > 0} the

lower endpoint of the support of H(j)
k and

H
(j)
nk (t) = 1

n

n∑
i=1

I{Zki≤t,Aki=j} and F̂Zk
(t) = 1

n

n∑
i=1

I{Zki≤t}

(I{.} being the indicator function) the empirical versions of H(j)
k and FZk

, respectively.

Furthermore, denote by
(
Z ′

kj

)
1≤j≤m

(m ≤ n) the distinct values of (Zki)1≤i≤n. The

product-limit estimator F̂Lk
of FLk

is defined by

F̂Lk
(t) =

∏
j/Z′

kj
>t

1 −

n∑
i=1

I{Zki=Z
′
kj

,Aki=2}
nF̂Zk

(
Z ′

kj

)
 ,

this estimator can be derived from the Kaplan-Meier one by reversing time.

In addition, the product-limit estimator of SRk
is given by [43] as follows.

ŜRk
(t) =

∏
i/Zki≤t

1 −
I{Aki

=1}
n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))
 .

Since X is not observed, the empirical distribution function

F̃n(x1, x2) = 1
n

n∑
i=1

I{X1i≤x1,X2i≤x2}

can not be used to estimate F (x1, x2). So, following [35] and remarking that

E
[
g (Z1, Z2) I{A1=0}I{A2=0}I{Z1≤x1,Z2≤x2}

]
= E

[
I{X1≤x1,X2≤x2}

]
= F (x1, x2),

where g (z1, z2) = CL (FL1 (z1) , FL2 (z2))−1 C̃R (SR1 (z1) , SR2 (z2))−1, we propose to replace

I{X1i≤x1,X2i≤x2} by the observed quantity

ĝ(Z1i, Z2i)I{A1i=0}I{A2i=0}I{Z1i≤x1,Z2i≤x2},

where ĝ(z1, z2) = CL

(
F̂L1 (z1) , F̂L2 (z2)

)−1
C̃R

(
ŜR1 (z1) , ŜR2 (z2)

)−1
.

This gives the following estimator of F (x1, x2)

Fn(x1, x2) = 1
n

n∑
i=1

I{A1i=0}I{A2i=0}

CL

(
F̂L1 (Z1i) , F̂L2 (Z2i)

)
C̃R

(
ŜR1 (Z1i) , ŜR2 (Z2i)

)I{Z1i≤x1,Z2i≤x2}.

Using this estimator, we propose to estimate C(u, v) as in [23] (relation (3.3)) by

Cn (u, v) = 1
n

n∑
i=1

I{A1i=0}I{A2i=0}

CL

(
F̂L1 (Z1i) , F̂L2 (Z2i)

)
C̃R

(
ŜR1 (Z1i) , ŜR2 (Z2i)

)I{Fn1(Z1i)≤u, Fn2(Z2i)≤v},

where Fn1(x1) = lim
x2→∞

Fn(x1, x2) and Fn2(x2) = lim
x1→∞

Fn(x1, x2).



4.2 Main results

In this section, we establish the weak convergence of the processes
√
n (Fn(x1, x2) − F (x1, x2)),

(x1, x2) ∈ X and
√
n (Cn(u, v) − C(u, v)), (u, v) ∈ [0, 1]2. Our approach will be based, as

in [23], on a representation of Fn − F as a sum of i.i.d. random variables. So, we will

first establish this representation. For that, we need to represent ĝ − g as a sum of i.i.d.

random variables. In order to prove such a representation, we begin by introducing some

assumptions and notations. For k ∈ {1, 2}, denote by Sk = {z ∈ R : I
H

(1)
k

< z < τk},

where τk is such that I
H

(1)
k

< τk < TZk
and let S = S1 × S2. We assume that

H1 ILk
< IRk

and TLk
< TRk

≤ TXk
.

H2 There exist θk1 > IRk
and θk2 < TRk

such that

∀n ∈ N∗, ∀1 ≤ i ≤ n : Aki = 1 ⇒ θk1 ≤ Zki ≤ θk2 almost surely (a.s.).

H3
+∞∫

I
H

(1)
k

dH
(2)
k (z)

(FZk
(z))2 < +∞.

Assumptions H1 and H2 are standard in the twice censoring setting (see e.g. [43], [38]

and [30]). Assumption H3 is needed to obtain the weak convergence of
√
n
(
F̂Lk

− FLk

)
and

√
n
(
ŜRk

− SRk

)
on Sk (see [[43], Lemma 7.2 and Theorem 7.3]). This weak con-

vergence ensures that sup
z∈Sk

∣∣∣F̂Lk
(z) − FLk

(z)
∣∣∣ = OP

(
n−1/2

)
and sup

z∈Sk

∣∣∣ŜRk
(z) − SRk

(z)
∣∣∣ =

OP

(
n−1/2

)
2. So, as in [35], we can use a Taylor expansion to get

ĝ (z1, z2) − g (z1, z2) = −
∑

k=1,2

(
CL (FL1 (z1) , FL2 (z2))

∂kC̃R (SR1 (z1) , SR2 (z2))
C̃R (SR1 (z1) , SR2 (z2))2

(
ŜRk

(zk) − SRk
(zk)

)

+C̃R (SR1 (z1) , SR2 (z2))
∂kCL (FL1 (z1) , FL2 (z2))
CL (FL1 (z1) , FL2 (z2))2

(
F̂Lk

(zk) − FLk
(zk)

))

+ rn(z1, z2), (4.1)

where sup
(z1,z2)∈S

|rn (z1, z2)| = oP

(
n−1/2

)
.

It remains to represent F̂Lk
−FLk

and ŜRk
−SRk

as a sum of i.i.d. random variables. The

representation of F̂Lk
− FLk

can be deduced from [[36], Theorem 1] by reversing time. In
2For a sequence of r.r.v. (ζn) and a sequence of non-zero real numbers (un), ζn = Op(un) means that

ζn

un
is bounded in probability and ζn = op(un) means that ζn

un
converges in probability to zero.



fact, we get for δ ∈ ]0, 1[, I ∈ R such that FLk
(I) > δ and u > IZk

F̂Lk
(u) − FLk

(u) = FLk
(u) (ALk

(n, u) +BLk
(n, u)) +RLk

(n, u) , where

ALk
(n, u) = −H

(2)
nk (u) −H

(2)
k (u)

FZk
(u) −

+∞∫
u

H
(2)
nk (y) −H

(2)
k (y)

(FZk
(y))2 dFZk

(y) ,

BLk
(n, u) =

+∞∫
u

F̂Zk
(y) − FZk

(y)
(FZk

(y))2 dH
(2)
k (y)

and RLk
(n, u) satisfies

sup
u≥I

|RLk
(n, u)| = Op

( 1
n

)
. (4.2)

So,

F̂Lk
(u) − FLk

(u) = 1
n

n∑
i=1

[
−FLk

(u)
FZk

(u)
(
I{Zki≤u,Aki=2} −H

(2)
k (u)

)

−FLk
(u)

+∞∫
u

I{Zki≤y,Aki=2} −H
(2)
k (y)

(FZk
(y))2 dFZk

(y)

+FLk
(u)

+∞∫
u

I{Zki≤y} − FZk
(y)

(FZk
(y))2 dH

(2)
k (y)

+RLk
(n, u) (4.3)

which is a representation of F̂Lk
− FLk

as a sum of i.i.d. centered random variables.

Regarding ŜRk
− SRk

, we give its representation in the following lemma.

Lemma 4.1
Assume that assumptions H1-H3 hold and let δ ∈ ]0, 1[ , I, T ∈ R such that FLk

(I)

SXk
(T )SRk

(T ) > δ. We have

ŜRk
(u) − SRk

(u) = SRk
(u) (A

k
(n, u) +B

k
(n, u)) +Rk (n, u) ,

where

A
k

(n, u) = −H
(1)
nk (u) −H

(1)
k (u)

FLk
(u) − FZk

(u) +
u∫

0

H
(1)
nk (y) −H

(1)
k (y)

(FLk
(y) − FZk

(y))2d (FLk
(u) − FZk

(u)) ,

B
k

(n, u) = 1
n

n∑
i=1

u∫
0

FLk
(y)

FZk
(y)

(
I{Zki<y ,Aki=2} −H

(2)
k (y)

)
+ FLk

(y)
+∞∫
y

I{Zki≤t,Aki=2} −H
(2)
k (t)

(FZk
(t))2 dFZk

(t)

−FLk
(y)

+∞∫
y

I{Zki≤t} − FZk
(t)

(FZk
(t))2 dH

(2)
k (t)

 dH
(1)
k (y)

(FLk
(y) − FZk

(y))2 +
u∫

0

F̂Zk
(y−) − FZk

(y)
(FLk

(y) − FZk
(y))2dH

(1)
k (y) ,



and Rk (n, u) satisfies sup
I≤u≤T

|Rk (n, u)| = OP

( 1
n

)
.

From this lemma, we deduce that

ŜRk
(u) − SRk

(u) = SRk
(u)
n

n∑
i=1

[
1

FLk
(u) − FZk

(u)

(
H

(1)
k (u) − I{Zki≤u,Aki

=1}
)

+
u∫

0

I{Zki≤y,Aki=1} −H
(1)
k (y)

(FLk
(y) − FZk

(y))2 d (FLk
(y) − FZk

(y))

+
u∫

0

{
FLk

(y)
FZk

(y)
(
I{Zki<y,Aki=2} −H

(2)
k (y)

)

+FLk
(y)

+∞∫
y

I{Zki≤t,Aki=2} −H
(2)
k (t)

(FZk
(t))2 dFZk

(t)

−FLk
(y)

+∞∫
y

I{Zki≤t} − FZk
(t)

(FZk
(t))2 dH

(2)
k (t)

 dH
(1)
k (y)

(FLk
(y) − FZk

(y))2

+
u∫

0

I{Zki<y} − FZk
(y)

(FLk
(y) − FZk

(y))2dH
(1)
k (y)

+Rk (n, u) (4.4)

which is a representation of ŜRk
− SRk

as a sum of i.i.d. centered random variables.

Relations (4.1), (4.3) and (4.4) permit to write

ĝ(z1, z2) − g(z1, z2) = 1
n

n∑
i=1

ρ(Z1i, Z2i, A1i, A2i; z1, z2) + r̃n(z1, z2), (4.5)

where

ρ(Z1i, Z2i, A1i, A2i; z1, z2) = −
∑

k=1,2

[(
SRk

(u)CL (FL1 (z1) , FL2 (z2))
∂kC̃R (SR1 (z1) , SR2 (z2))
C̃R (SR1 (z1) , SR2 (z2))2

)

×

 1
FLk

(u) − FZk
(u)

(
H

(1)
k (u) − I{Zki≤u,Aki

=1}
)

+
u∫

0

I{Zki≤y,Aki=1} −H
(1)
k (y)

(FLk
(y) − FZk

(y))2 d (FLk
(y) − FZk

(y))

+
u∫

0

FLk
(y)

FZk
(y)

(
I{Zki<y,Aki=2} −H

(2)
k (y)

)
+ FLk

(y)
+∞∫
y

I{Zki≤t,Aki=2} −H
(2)
k (t)

(FZk
(t))2 dFZk

(t)

−FLk
(y)

+∞∫
y

I{Zki≤t} − FZk
(t)

(FZk
(t))2 dH

(2)
k (t)

 dH
(1)
k (y)

(FLk
(y) − FZk

(y))2 +
u∫

0

I{Zki<y} − FZk
(y)

(FLk
(y) − FZk

(y))2dH
(1)
k (y)


+ C̃R (SR1 (z1) , SR2 (z2))

∂kCL (FL1 (z1) , FL2 (z2))
CL (FL1 (z1) , FL2 (z2))2 ×

(
−FLk

(u)
FZk

(u)
(
I{Zki≤u,Aki=2} −H

(2)
k (u)

)

−FLk
(u)

+∞∫
u

I{Zki≤y,Aki=2} −H
(2)
k (y)

(FZk
(y))2 dFZk

(y) + FLk
(u)

+∞∫
u

I{Zki≤y} − FZk
(y)

(FZk
(y))2 dH

(2)
k (y)





and sup
(z1,z2)∈S

|r̃n(z1, z2)| = oP (n−1/2).

Note that ρ satisfies assumption 2 of [35]. In fact, it is not difficult to check that ρ is

centered and that is uniformly bounded on S under H1. Moreover, one can proceed as in

Lemma 7.3. of [35] to show that there exists a Donsker class of functions G such that the

function 1
n

n∑
i=1

ρ(Z1i, Z2i, A1i, A2i; z1, z2) belongs to G.

Using relation (4.5), we will represent Fn −F as a sum of i.i.d. centered random variables.

For that, we need to introduce more notations and assumptions. For any nonempty set

A, we denote by l∞(A) the space of all bounded real-valued functions defined on A.

Moreover, For k ∈ {1, 2}, denote by

Λ̂Rk
(t) =

t∫
0

dH
(1)
nk (u)

F̂Lk
(u−) − F̂Zk

(u−)

the estimator of the cumulative hazard function ΛRk
of Rk. Thanks to [[43], Theorem

7.3], the process
√
n
(
Λ̂Rk

(t) − ΛRk
(t)
)
, t ∈ Sk, converges weakly, under H1 and H3 to a

centered Gaussian process GRk
. For s, t ∈ Sk such that s ≤ t, we denote by

KRk
(s) = cov (GRk

(s) , GRk
(t))

and by

KLk
(s) =

+∞∫
s

dFLk
(u)

F 2
Lk

(u)FXk∧Rk
(u)

the covariance function of the limiting process of the Nelson-Aalan estimator of the cu-

mulative hazard function of Lk (see [[11], Theorem 4] in reversing time). To prove our

claimed result, we need the following assumptions which correspond to assumptions 3-5

of [35] adapted to the twice censored data model.

H4 The first and the second partial derivatives of CL and C̃R are bounded on [0, 1]2.

Moreover, CL(x1, x2) ̸= 0 and C̃R(x1, x2) ̸= 0 for x1 ̸= 0 and x2 ̸= 0.

H5 For k ∈ {1, 2}, there exist 0 ⩽ ζk ⩽ 1 and 0 ⩽k⩽ 1 such that2

CL (x1, x2) ⩾ xα1
1 xα2

2 and C̃R (x1, x2) ⩾ xβ1
1 x

β2
2 .

H6 ∫ dF (z1, z2)
CL (FL1 (z1) , FL2 (z2)) C̃R (SR1 (z1) , SR2 (z2))

< ∞



and for some ε > 0 arbitrary small

∫  F 1−α1
L1 (z1) K1/2+ε

L1 (z1)
Fα2

L2 (z2)Sβ1
R1 (z1)Sβ2

R2 (z2)
+

F 1−α2
L2 (z2) K1/2+ε

L2 (z2)
Fα1

L1 (z1)Sβ1
R1 (z1)Sβ2

R2 (z2)
+

S1−β1
R1 (z1) K1/2+ε

R1 (z1)
Fα1

L1 (z1)Fα2
L2 (z2)2 S

β2
R2 (z2)

+
S1−β2

R2 (z2) K1/2+ε
R2 (z2)

Fα1
L1 (z1)Fα2

L2 (z2)Sβ1
R1 (z1)

 dF (z1, z2) < ∞.

Theorem 4.2
Under assumptions H1-H6, we have

i) For all (x1, x2) ∈ X

Fn (x1, x2) − F (x1, x2) = 1
n

n∑
i=1

x1∫
0

x2∫
0

[ρ (Z1i, Z2i, A1i, A2i; t1, t2)CL (FL1 (t1) , FL2 (t2))

× C̃R (SR1 (t1) , SR2 (t2))]dF (t1, t2) +Rn(x1, x2),

where sup
(x1,x2)∈X

|Rn(x1, x2)| = oP

(
n−1/2

)
.

ii) The process
√
n (Fn − F ) converges weakly in l∞(X ) to a tight centered Gaussian

process GF .

Note that ii) follows directly from i) and allows to prove the next theorem which gives

the weak convergence of the process
√
n (Cn − C).

Theorem 4.3

Under assumptions H1-H6, the process
√
n (Cn − C) converges weakly in l∞

(
[0, 1]2

)
to the tight Gaussian process

G (u, v) = G∗ (u, v) − ∂1C (u, v)G∗ (u, 1) − ∂2C (u, v)G∗ (1, v) ,

where G∗ (u, v) = GF

(
F−1

X1 (u) , F−1
X2 (v)

)
.

This result is an extension of [[23], Theorem 2] to our case of bivariate twice censored

data.



4.3 Simulation study

We carry out a simulation study to illustrate the performance of our estimator. As a

starting point, we create a bivariate survival distribution of the Gumbel copula model

where the margins are assumed to be Pareto model.That is

F1(t1) = 1 − t−λ1
1 and F2(t2) = 1 − t−λ2

2 t1, t2 ≥ 0.

Such that λ1, λ2 > 0. We assume that the corresponding percentage of the observed

data is given by p1 = λ2

λ1 + λ2
for the first sample. So that we can select the values 0.3 for

λ1 and 0.95, 0.90, 0.85, 0.80, 0.75 for p1, the equation p1 = λ2

λ1 + λ2
is then resolved to get

the pertaining λ2-values. This step, we permit a certain amount of censoring of T to be

5%, 10%, 15%, 20% and 25%. We generate 1000 independent replicates for each common

size n varying from n = 30, 50, 100, 500, 1000 for the two samples, to apply the results

obtained throughout all replicates as empirical proof for our final show.

We ought to select the survival copula parameter values (α, β), using the link be-

tween Kendall’s τ and the transformed of the underlying survival copula formulated by

τα,β = 4E(C̃α,β(u, v)) − 1, since τ considred as a function of the dependency parameter

in Archimedean copula models. Then, we can select the values 0.1 for the first parameter

α and low dependence that corresponding to 0.05 Kendall’s tau values, next we applying

the transformed of the underlying survival copula to obtain β-values. In a similar way, we

determine the values of the additional parameters (α, β) for the corresponding Kendall’s

tau values 0.5 (moderate dependence) and 0.7 (strong dependence)[25], summarized in

the following Tables (Tables1;2;3) below.



τ = 0.05 , α = 0.1 → β = 1.6

Sample size n = 30 n = 50 n = 100 n = 500 n = 1000

% of censoring Mise

5% 1.20862 1.12774 0.82887 0.59617 0.55740

10% 0.99576 1.3269 0.87537 0.61283 0.55754

15% 1.09038 1.0898 0.93174 0.62488 0.56949

20% 1.56908 1.06111 0.79922 0.6305 0.5765

25% 0.945 1.0518 0.85303 0.63527 0.58982

Table 4.1: The estimator performance based on Gumbel survival copula in the case of

weak dependence (τ=0.05). Mise of the estimators are determined for various censoring

values.

τ = 0.5 , α = 0.2 → β = 1.82

Sample size n = 30 n = 50 n = 100 n = 500 n = 1000

% of censoring Mise

5% 0.90043 1.27155 0.81397 0.60066 0.54418

10% 0.90043 0.98767 0.7141 0.59024 0.56295

15% 1.48457 1.02722 0.83566 0.61167 0.56714

20% 1.25187 0.77571 0.66976 0.62747 0.57606

25% 0.91859 0.90437 0.82308 0.61196 0.54947

Table 4.2: The estimator performance based on Gumbel survival copula in the case of

moderate dependence (τ=0.5). Mise of the estimators are determined for various censoring

values..



τ = 0.7 , α = 0.4 → β = 2.99

Sample size n = 30 n = 50 n = 100 n = 500 n = 1000

% of censoring Mise

5% 0.86032 0.77042 0.7026 0.55432 0.52912

10% 0.9174 0.79666 0.69767 0.56181 0.53337

15% 0.89035 0.79593 0.63963 0.57308 0.54344

20% 0.92682 0.78261 0.72459 0.57451 0.54861

25% 1.18433 0.73591 0.63566 0.57448 0.56208

Table 4.3: The estimator performance based on Gumbel survival copula in the case of

strong dependence (τ=0.7). Mise of the estimators are determined for various censoring

values.



Chapter 5

Kernel estimation of the copula function under twice censoring

5.1 Kernel copula estimators

We begin by introducing some general notations and definitions. Let T = (T1, T2) be a

couple of positive real random variables (r.r.v.) with support T1 × T 2, joint distribution

function H and continuous margins H1, H2 and let C be the copula function of T defined

on [0, 1]2 by C(u, v) = H(H−1
1 (u), H−1

2 (v)), where f−1 denotes the generalized inverse

of a non decreasing function f . Furthermore, let R = (R1, R2) be a couple of positive

right censoring variables and L = (L1, L2) be a couple of positive left censoring ones. We

assume that the variables R, L and T are independent. In the twice censoring setting,

instead of observing T , we observe a sample (Z1i, Z2i,∆1i,∆2i)1≤i≤n of i.i.d. copies of the

vector (Z1, Z2,∆1,∆2), where for k ∈ {1, 2} , Zk = max (min (Tk, Rk) , Lk) and ∆k is the

indicator of censoring given by

∆k = I{Lk<Rk<Tk} + 2I{min(Tk,Rk)≤Lk}.

(I{.} being the indicator function).

For any r.r.v. V , FV , SV , IV and TV denote, respectively, the distribution function, the

survival function, the lower and the upper endpoint of the support of V. Furthermore,

denote by
(
Z ′

kj

)
1≤j≤m

(m ≤ n) the distinct values of (Zki)1≤i≤n. The product-limit

estimator of FLk
is defined by

F̂Lk
(t) =

∏
j/Z′

kj
>t

1 −

n∑
i=1

I{Zki=Z
′
kj

,∆ki=2}
nF̂Zk

(
Z ′

kj

)
 ,
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where F̂Zk
(t) = 1

n

n∑
i=1

I{Zki≤t}.

In addition, the product-limit estimator of SRk
is given by [43] as follows

ŜRk
(t) =

∏
i/Zki≤t

1 −
I{∆ki=1}

n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))
 .

Furthermore, [50] proposed the following estimator of H

Hn (t1, t2) = 1
n

n∑
j=1

WjnI{Z1j≤t1,Z2j≤t2}, (5.1)

where Wjn = I{∆1j=0}I{∆2j=0}ĝ (Z1j, Z2j)

and ĝ(z1, z2) = CL

(
F̂L1 (z1) , F̂L2 (z2)

)−1
C̃R

(
ŜR1 (z1) , ŜR2 (z2)

)−1
(CLand C̃R being the

copula of L and the survival copula of R respectively).

We denote by C the copula function of T and we assume that C and H are twice continu-

ously differentiable. We also assume that the second order derivatives of H are uniformly

bounded. Let k : R → R be a symmetric kernel with
∫
k (t) dt = 1 and let hn be a

sequence of positive bandwidths. We set K (x) =
∫ x

−∞
k (t) dt.

Inspired by [23], we define the following smoothed estimators of the distribution function

and the copula function of T

Ĥ1
n (t1, t2) = 1

n

n∑
j=1

WjnK
(
t1 − Z1j

hn

)
K
(
t2 − Z2j

hn

)
(5.2)

and

Ĉ1
n (u, v) = Ĥ1

n

((
Ĥ1

1n

)−1
(u) ,

(
Ĥ1

2n

)−1
(v)
)
. (5.3)

where Ĥ1
1n (t1) = lim

t2→∞
Ĥ1

n (t1, t2) and Ĥ1
2n (t2) = lim

t1→∞
Ĥ1

n (t1, t2).

As mentioned in [23], this estimator has the disadvantage that its performance depends

on the margins H1 and H2. So, we use as in [23] and [42], a transformation(
T̃1, T̃2

)
=
(
Φ−1 (H1 (T1)) ,Φ−1 (H2 (T2))

)
for some increasing distribution function Φ,

such that Φ′ and Φ′2
/Φ are bounded. Note that the variables

(
T̃1, T̃2

)
and (T1, T2) have

the same copula. This leads to new estimators of the joint distribution function and the

copula function of (T1, T2) given by

Ĥ2
n (t1, t2) = 1

n

n∑
j=1

WjnK

(
t1 − Φ−1 (H1n (Z1j))

hn

)
K

(
t2 − Φ−1 (H2n (Z2j))

hn

)
,



where H1n (t1) = lim
t2→∞

Hn (t1, t2), H2n (t2) = lim
t1→∞

Hn (t1, t2) and

Ĉ2
n (u, v) = Ĥ2

n

(
Φ−1 (u) ,Φ−1 (v)

)
.

5.2 Weak convergence of the proposed estimators

To establish the weak convergence of the processes
√
n
(
Ĥj

n(t1, t2) −H(t1, t2)
)

and
√
n
(
Ĉj

n(u, v) − C(u, v)
)
, (u, v) ∈ [0, 1]2 for j ∈ {1, 2}, we will follow a similar approach

as that of [23]. For that we need the following assumptions and notations. For k ∈ {1, 2}

and l ∈ {0, 1, 2}, denote by Sk = {z ∈ R : I
H

(1)
k

< z < τk}, where τk is such that

I
H

(1)
k

< τk < Tk and denote by H(l)
k (t) = P (Zk ≤ t,∆k = l) the sub-distribution function

of Zk for ∆k = l and I
H

(l)
k

= inf{t ∈ R/H(l)
k (t) > 0} the lower endpoint of the support of

H
(l)
k . We assume that

H1: ILk
< IRk

and TLk
< TRk

≤ TTk
.

H2: There exist θk1 > IRk
and θk2 < TRk

such that

∀n ∈ N∗, ∀1 ≤ i ≤ n : ∆ki = 1 ⇒ θk1 ≤ Zki ≤ θk2 almost surely (a.s.).

H3:
+∞∫

I
H

(1)
k

dH
(2)
k (z)

(FZk
(z))2 < ∞.

H4: The first and the second partial derivatives of CL and C̃R are bounded on [0, 1]2.

Moreover, CL(t1, t2) ̸= 0 and C̃R(t1, t2) ̸= 0 for t1 ̸= 0 and t2 ̸= 0.

H5: There exist 0 ⩽ αk ⩽ 1 and 0 ⩽ βk ⩽ 1 such that

CL (t1, t2) ⩾ tα1
1 tα2

2 and C̃R (t1, t2) ⩾ tβ1
1 t

β2
2 .

H6: ∫ dF (z1, z2)
CL (FL1 (z1) , FL2 (z2)) C̃R (SR1 (z1) , SR2 (z2))

< ∞

and for some ε > 0 arbitrary small∫  F 1−α1
L1 (z1) K1/2+ε

L1 (z1)
Fα2

L2 (z2)Sβ1
R1 (z1)Sβ2

R2 (z2)
+

F 1−α2
L2 (z2) K1/2+ε

L2 (z2)
Fα1

L1 (z1)Sβ1
R1 (z1)Sβ2

R2 (z2)
+

S1−β1
R1 (z1) K1/2+ε

R1 (z1)
Fα1

L1 (z1)Fα2
L2 (z2)2 S

β2
R2 (z2)

+
S1−β2

R2 (z2) K1/2+ε
R2 (z2)

Fα1
L1 (z1)Fα2

L2 (z2)Sβ1
R1 (z1)

 dF (z1, z2) < ∞,



where

KRk
(s) = V ar (GRk

(s)) ,

GRk
being the limiting the process of

√
n
(
Λ̂Rk

(t) − ΛRk
(t)
)
, t ∈ Sk; where

Λ̂Rk
(t) =

t∫
0

dH
(1)
nk (u)

F ∗
Lk

(u−) − F̂Zk
(u−)

is the estimator of the cumulative hazard function

ΛRk
of Rk and

KLk
(s) =

+∞∫
s

dFLk
(u)

F 2
Lk

(u)FTk∧Rk
(u) .

H7: The kernel function k has a compact support and µ2 =
∫
u2k (u) du < ∞.

H8: h2
n

√
n → 0, as n → ∞.

Assumptions H1-H6 have been used in [50] and the assumptions H7 and H8 on the

kernel and the bandwidth have been used in [23].

Theorem 5.1
Under Assumptions H1-H8, we have

√
n sup

(t1,t2)∈T1 ×T 2

∣∣∣Ĥ1
n (t1, t2) −Hn (t1, t2)

∣∣∣ →P 0, as n → ∞.

Proof : Using Lemma 3.1 and relations (A.13) and (A.15) of [50], this Theorem can be

proved in the same way as Theorem 3 of [23].

From this Theorem and Theorem 3.2 − ii) of [50], we can deduce the weak convergence of

the process
√
n
(
Ĥ1

n −H
)

to the tight centered Gaussian limit process GH (t1, t2) defined

in [50]. This is stated in the following Corollary.

Under Assumptions H1 − H8, the process
√
n
(
Ĥ1

n −H
)

converges weakly, in l∞(T1 ×

T 2)1 to the tight entered Gaussian limit process GH defined in [50].

Now, we will prove the weak convergence of the processes
√
n
(
Ĉ1

n (u, v) − C (u, v)
)

and
√
n
(
Ĉ2

n (u, v) − C (u, v)
)
. For that, we need the following additional hypotheses which

have been introduced in [23].
1For any non empty set A, l∞(A) denotes the space of all bounded real-valued functions defined on

A.



H9:
∂2C

∂u2 = O

(
1

u (1 − u)

)
,
∂2C

∂v2 = O

(
1

v (1 − v)

)
and ∂2C

∂u∂v
= O

 1√
uv (1 − u) (1 − v)

 .
H10: Consider the sample of transformed observations(

N1j, N2j, I{∆1j=0}, I{∆2j=0}
)

1≤j≤n
:=
(
Φ−1 (H1 (Z1j)) ,Φ−1 (H2 (Z2j)) , I{∆1j=0}, I{∆2j=0}

)
1≤j≤n

and the corresponding weights WΦ
jn := I{∆1j=0}I{∆2j=0}ĝ

Φ (Z1j, Z2j) , where ĝΦ is

computed by the same method as ĝ, but based on the sample of transformed obser-

vations. Assume that WΦ
jn = Wjn.

Theorem 5.2

i) Under H1 −H8, the process
√
n
(
Ĉ1

n − C
)

converges weakly in l∞
(
[0, 1]2

)
to the

Gaussian process

ZC (u, v) = G∗ (u, v) − ∂C

∂u
(u, v)G∗ (u, 1) − ∂C

∂v
(u, v)G∗ (1, v) ,

where G∗ (u, v) = GH

(
H−1

1 (u) , H−1
2 (v)

)
.

ii) Under H1 −H10, the process
√
n
(
Ĉ2

n − C
)

converges weakly in l∞
(
[0, 1]2

)
to the

process ZC .

Proof : Using relations (A.13) and (A.15) of [50] , this Theorem can be proved in the same

way as Theorem 4 of [23].

5.3 Simulation study

We carry out a simulation study to illustrate the performances of our proposed estimators.

As a starting point, we create a bivariate survival distribution of the Gumbel copula model

where the margins are assumed to have a Pareto distribution. In other words, the copula



function of the couple T = (T1, T2) is given for all (u, v) ∈ [0, 1]2 by

Cα,β (u, v) =

((u−α − 1
)β

+
(
v−α − 1

)β
) 1
β + 1


−

1
α

,

with the parameters α > 0 and β ≥ 1, and the margins of T are given for all t1, t2 ≥ 0 by

H1(t1) = 1 − t−λ1
1 and H2(t2) = 1 − t−λ2

2 ,

where λ1 and λ2 are positive parameter.

Under this model, the proportion of the observed data in the first sample is given by

p1 = λ2

λ1 + λ2
. So, we select the value 0.3 for λ1 and the values 0.95, 0.90, 0.85, 0.80 and

0.75 for p1 and we resolve the equation p1 = λ2

λ1 + λ2
to get the pertaining λ2-values. This

gives respectively the following censoring rates: 5%, 10%, 15%, 20% and 25%. Moreover,

we select the copula parameters α and β using the link between the Kendall’s τ and the

copula function formulated by

τα,β = 4
∫

[0,1]2
Cα,β(u, v)dCα,β(u, v) − 1. (5.4)

Then, we select the value 0.1 for the first parameter α and the value 0.05 for the Kendall’s

tau (low dependence) we apply relation (5.4) to obtain the value of β. In a similar way,

we determine the values of the parameters α and β for the corresponding Kendall’s tau

values of 0.5 (moderate dependence) and 0.7 (high dependence).

In order to show the performances of our estimators Ĉ1
n and Ĉ2

n, we compute the mean in-

tegrated squared error (MISE) for the two estimators. For that, we generate 1000 samples

of size n for each latent variable. We take different values of the sample size n which will

be specified later. Then, we compute the integrated squared error of Ĉ1
n and Ĉ2

n for each

sample. Finally, we calculate the mean of the obtained values which is an approximation

of the MISE of the two estimators. Our obtained results are presented in Tables 5.1–5.6

below. Note that we use the Gaussian kernel and a fixed bandwidth hn = 0.2 to compute

the estimators Ĉ1
n and Ĉ2

n. Moreover, the transformation Φ that we use to compute the

estimator Ĉ2
n is the distribution function of the exponential distribution with parameter

1.



τ = 0.05 , α = 0.1 → β = 1.6

Sample size n = 30 n = 50 n = 100 n = 500

% of censoring MISE

5% 0.49083 0.4915 0.49767 0.50078

10% 0.48611 0.49793 0.49892 0.50767

15% 0.49806 0.50814 0.50567 0.51082

20% 0.50083 0.51852 0.52474 0.52109

25% 0.51 0.52185 0.52947 0.52949

Table 5.1: The obtained results for the estimator Ĉ1
n under weak dependence.

τ = 0.5 , α = 0.2 → β = 1.82

Sample size n = 30 n = 50 n = 100 n = 500

% of censoring MISE

5% 0.485 0.4904 0.4984 0.50081

10% 0.488 0.50331 0.49902 0.50801

15% 0.49708 0.51725 0.51224 0.51415

20% 0.53611 0.51154 0.5066 0.52097

25% 0.48333 0.54088 0.5357 0.53317

Table 5.2: The obtained results for the estimator Ĉ1
n under moderate dependence.

From these results, we remark that the estimators Ĉ1
n and Ĉ2

n have good performances.

Not surprisingly, the quality of estimation decreases when the rate of censoring increases.

However, we remark that the variation of the sample size and the strength of the depen-

dence does not affect the quality of estimation.



τ = 0.7 , α = 0.4 → β = 2.99

Sample size n = 30 n = 50 n = 100 n = 500

% of censoring MISE

5% 0.48444 0.49400 0.49683 0.50132

10% 0.49556 0.49678 0.50419 0.50353

15% 0.49444 0.50002 0.51193 0.51327

20% 0.51797 0.52661 0.51745 0.52639

25% 0.57417 0.51481 0.51541 0.53169

Table 5.3: The obtained results for the estimator Ĉ1
n under strong dependence.

τ = 0.05 , α = 0.1 → β = 1.6

Sample size n = 30 n = 50 n = 100 n = 500

% of censoring MISE

5% 0.48667 0.492 0.49654 0.50099

10% 0.49444 0.50942 0.49671 0.5083

15% 0.49074 0.50907 0.51111 0.5127

20% 0.49665 0.50756 0.52235 0.52594

25% 0.52796 0.50537 0.52947 0.53352

Table 5.4: The obtained results for the estimator Ĉ2
n under weak dependence.

τ = 0.5 , α = 0.2 → β = 1.82

Sample size n = 30 n = 50 n = 100 n = 500

% of censoring MISE

5% 0.48667 0.49495 0.49691 0.50680

10% 0.48778 0.49737 0.51045 0.50661

15% 0.49616 0.50226 0.51452 0.52062

20% 0.51845 0.51419 0.52454 0.52187

25% 0.50605 0.53524 0.52407 0.528

Table 5.5: The obtained results for the estimator Ĉ2
n under moderate dependence.



τ = 0.7 , α = 0.4 → β = 2.99

Sample size n = 30 n = 50 n = 100 n = 500

% of censoring MISE

5% 0.4875 0.4928 0.49639 0.50186

10% 0.4875 0.49695 0.50026 0.50606

15% 0.50105 0.50731 0.51531 0.50731

20% 0.51690 0.50809 0.51553 0.50836

25% 0.50361 0.49866 0.51561 0.50929

Table 5.6: The obtained results for the estimator Ĉ2
n under strong dependence.



Conclusion

In this thesis, we introduce the empirical copula function in the case of bivariate twice

censored data and we establish its weak convergence with simulation. Our approach

is based on a representation of the corresponding joint distribution function estimator as

a sum of i.i.d. centered random variables. The results we obtain extend those given in

[28] and [19] in the setting of bivariate right censored data. We prove our results only

in the case where the copula functions of the left and the right censoring variables are

known. It would be interesting to consider a general bivariate twice censoring model and

to look also at other types of censored data, such as doubly or interval censored data.

Our obtained results allows to propose and study smoothed copula estimators for bivari-

ate twice censored data.



Appendix

5.4 Proofs

Proof Lemma 4.1 : We follow the same steps of the proof of [[36], Theorem 1]. Let

K, C, λ and δ be some positive universal constants. For k ∈ {1, 2}, we set

Tk (u) = log (SRk
(u)), T̂k (u) = log

(
ŜRk

(u)
)

=
n∑

i=1
I{Zki≤u,Aki=1} log

1 − 1
n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))


and T̃k (u) = −
n∑

i=1

I{Zki≤u,Aki=1}
n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)) .

Proceeding as in [36], we can show that for I ≤ u ≤ T

ŜRk
(u) − SRk

(u) = SRk
(u)

(
A

k
(n, u) + B̃

k
(n, u)

)
+ R̃k (n, u) , (5.5)

where

A
k

(n, u) = −
H

(1)
nk (u) − H

(1)
k (u)

FLk
(u) − FZk

(u) +
u∫

0

H
(1)
nk (y) − H

(1)
k (y)

(FLk
(y) − FZk

(y))2 d (FLk
(u) − FZk

(u)) ,

B̃
k

(n, u) = −
u∫

0

F̂Lk
(y−) − F̂Zk

(y−) − FLk
(y) + FZk

(y)
(FLk

(y) − FZk
(y))2 dH

(1)
k (y)

and

R̃
k

(n, u) = SRk
(u) (Rk2 (u) + Rk3 (u) + Rk4 (u)) + Rk1 (u) ,

with

Rk1 (u) = ŜRk
(u) − SRk

(u) − SRk
(u)

(
T̂k (u) − Tk (u)

)
,

Rk2 (u) = T̂k (u) − T̃k (u) ,

Rk3 (u) = T̃k (u) +
n∑

i=1

I{Zki≤u,Aki=1}
n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))
×

1 −
n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)
− FLk

(Zki) + FZk
(Zki)

)
n (FLk

(Zki) − FZk
(Zki))


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and

Rk4 (u) = 1
n

+∞∫
0

+∞∫
0

I{y≤u}I{x<y}

(FLk
(y) − FZk

(y))2 d
[√

n
(
H

(1)
nk (y) − H

(1)
k (y)

)]
d
[√

n
(
F̂Lk

(
x−)− F̂Zk

(
x−)− FLk

(x) + FZk
(x)
)]

.

As in [36], we will prove the following lemmas.

Lemma 5.3

sup
I≤u≤T

|Rk2 (u)| = Oa.s.

( 1
n

)
.

Lemma 5.4

P

(
sup

I≤u≤T
|nRk3 (u)| > x

)
≤ K exp

{
−λδ2x

}
if 0 ≤ x <

2n

δ
.

Lemma 5.5

P

(
sup

I≤u≤T
|nRk4 (u)| > x

)
≤ K exp

{
−λδ2x

}
for x > 0.

From these lemmas, we deduce that

sup
I≤u≤T

∣∣∣R̃k (n, u)
∣∣∣ = OP

( 1
n

)
. (5.6)

Moreover, relation (4.3) permits to write

B̃k (n, u) = −
u∫

0

(
F̂Lk

(y−) − FLk
(y)
)

(FLk
(y) − FZk

(y))2 dH
(1)
k (y) +

u∫
0

F̂Zk
(y−) − FZk

(y)
(FLk

(y) − FZk
(y))2 dH

(1)
k (y)

= Bk (n, u) −
u∫

0

RLk
(n, y−)

(FLk
(y) − FZk

(y))2 dH
(1)
k (y) .

Combining this with (5.5), we obtain

ŜRk
(u) − SRk

(u) = SRk
(u) (A

k
(n, u) + B

k
(n, u)) + R

k
(n, u) ,

where

R
k

(n, u) = −SRk
(u)

u∫
0

RLk
(n, y−)

(FLk
(y) − FZk

(y))2 dH
(1)
k (y) + R̃

k
(n, u)

=: ˜̃R
k

(n, u) + R̃
k

(n, u) . (5.7)



Since FLk
(y) − FZk

(y) = FLk
(y) SXk

(y) SRk
(y), we get

sup
I≤u≤T

∣∣∣∣ ˜̃Rk
(n, u)

∣∣∣∣ ≤ sup
I≤u≤T

|RLk
(n, u)|

u∫
0

dH
(1)
k (y)

(FLk
(y) SXk

(y) SRk
(y))2

≤ 1
(FLk

(IRk
) SXk

(T ) SRk
(T ))2 sup

IRk
≤u≤T

|RLk
(n, u)| .

This together with (4.2), (5.6) and (5.7) permits to write

sup
I≤u≤T

|Rk (n, u)| = OP

( 1
n

)
,

which gives the claimed result.

It remains to prove lemmas 2 − 4.

Proof of Lemma 5.3 : We have

|Rk2 (u)| =
∣∣∣T̂k (u) − T̃k (u)

∣∣∣
≤

n∑
i=1

∣∣∣∣∣∣I{Zki
≤u,Aki=1} log

1 − 1
n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))
+

I{Zki
≤u,Aki=1}

n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))
∣∣∣∣∣∣

≤
n∑

i=1

∣∣∣∣∣∣log

1 − 1
n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))
+ 1

n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))
∣∣∣∣∣∣ I{Zki

≤T}.

Since |log (1 − z) + z| ≤ z2 for 0 ≤ z ≤ 1/2 and

inf
IRk

≤t≤T
n
{

F̂Lk

(
t−)− F̂Zk

(
t−)} ≥ n

2 (FLk
(IRk

) SXk
(T ) SRk

(T )) ≥ 2 for n large enough,

we deduce that for I ≤ u ≤ T

|Rk2 (u)| ≤ 1
n2

n∑
i=1

I{Zki≤T }(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))2

≤ 1
n

1

inf
IRk

≤t≤T

(
F̂Lk

(t−) − F̂Zk
(t−)

)2

≤ 1
n

4
(FLk

(IRk
) SXk

(T ) SRk
(T ))2 a.s. for n large enough.

Thus sup
I≤u≤T

|Rk2 (u)| = Oa.s.

( 1
n

)
.

Proof of Lemma 5.4 : To prove this lemma, we need to apply some exponential inequal-

ities for F̂Zk
, H

(1)
nk and F̂Lk

. Regarding F̂Zk
, [16] proved that there exists a positive



constant D such that for all x > 0

P

(
√

n sup
t∈R

∣∣∣F̂Zk
(t) − FZk

(t)
∣∣∣ > x

)
≤ D exp

(
−2x2

)
. (5.8)

Moreover, writing

H
(1)
nk (t) = 1

n

n∑
i=1

I{Rki≤t, Lki−Rki<0, Rki−Xki<0}

allows to apply [[31], Theorem 1-m] to get for all x > 0 and ε > 0

P

(
√

n sup
t∈R

∣∣∣H(1)
nk (t) − H

(1)
k (t)

∣∣∣ > x

)
≤ D exp

(
−(2 − ε)x2

)
, (5.9)

where D is a positive constant.

Furthermore, adapting [[5], Theorem 1], we get for all x > 0 and θ > min(IXk
, IRk

)

P

(
√

n sup
t≥θ

∣∣∣F̂Lk
(t) − FLk

(t)
∣∣∣ >

x

FXk∧Rx(θ)

)
≤ 2.5 exp

(
−2x2 + Dx

)
, (5.10)

where D is a positive constant.

Set

Γkn =
{

inf
θk1≤t≤θk2

{
F̂Lk

(
t−)− F̂Zk

(
t−)} ≥ 2

n

}
and

∆kn (u) =
{∣∣∣F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)
− FLk

(Zki) + FZk
(Zki)

∣∣∣ <
1
2 (FLk

(Zki) − FZk
(Zki)) or

Zki ≤ u for all 1 ≤ i ≤ n such that Aki = 1} .

Remarking that

T̃k (u) = −
n∑

i=1

I{Zki≤u,Aki=1}

n
(
FLk

(
Z−

ki

)
− FZk

(
Z−

ki

)) 1

1 + n
(

F̂Lk(Z−
ki)−F̂Zk(Z−

ki)−FLk
(Zki)+FZk

(Zki)
)

n(FLk
(Zki)−FZk

(Zki))

and that
∣∣∣∣ 1
1 + z

− 1 + z

∣∣∣∣ < 2z2 for |z| < 1/2, we deduce that on Γkn, we have

|Rk3 (u)| ≤ 2
n∑

i=1

I{Zki≤u,Aki=1}
n (FLk

(Zki) − FZk
(Zki))

n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)
− FLk

(Zki) + FZk
(Zki)

)
n (FLk

(Zki) − FZk
(Zki))

2

.

Therefore

P

(
sup

I≤u≤T
|nRk3 (u)| > x

)
≤ P (Γc

kn) + P ((∆kn (I))c)

+ P

[
sup

I≤u≤T

{
2

n∑
i=1

I{Zki≤u,Aki=1}
FLk

(Zki) − FZk
(Zki)

×

n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)
− FLk

(Zki) + FZk
(Zki)

)
n (FLk

(Zki) − FZk
(Zki))

2 > x

 .

(5.11)



Moreover, we have for n large enough

inf
θk1≤t≤θk2

{
F̂Lk

(
t−)− F̂Zk

(
t−)} <

2
n

⇒ ∃t0 ∈ [θk1, θk2] such that F̂Lk

(
t−
0

)
− F̂Zk

(
t−
0

)
<

2
n

⇒ sup
θk1≤t≤θk2

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)− FLk

(t) + FZk
(t)
∣∣∣ ≥ FLk

(t0) − FZk
(t0) −

(
F̂Lk

(
t−
0

)
− F̂Zk

(
t−
0

))
≥ FLk

(θk1) SXk
(θk2) SRk

(θk2) − 2
n

>
FLk

(θk1) SXk
(θk2) SRk

(θk2)
2 =: a

2 .

So

P

(
inf

θk1≤t≤θk2

(
F̂Lk

(
t−)− F̂Zk

(
t−)) <

2
n

)
≤ P

(
√

n sup
θk1≤t≤θk2

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)

−FLk
(t) + FZk

(t)| >
a
√

n

2

)

≤ K exp {−Cn} (thanks to relations (5.8) and (5.10))

≤ K exp
{

−λδ2x
}

for n large enough.

(5.12)

Furthermore, we have

P ((∆kn (I))c) = P

 n⋃
i=1


∣∣∣F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)
− FLk

(Zki) + FZk
(Zki)

∣∣∣
FLk

(Zki) − FZk
(Zki)

> 2


∩ {Zki > I, Aki = 1}))

≤ nP


∣∣∣F̂Lk

(
Z−

k

)
− F̂Zk

(
Z−

k

)
− FLk

(Zk) + FZk
(Zk)

∣∣∣
FLk

(Zk) − FZk
(Zk) > 2, Zk > I, Ak = 1


and for t > I, we have

P


∣∣∣F̂Lk

(
Z−

k

)
− F̂Zk

(
Z−

k

)
− FLk

(Zk) + FZk
(Zk)

∣∣∣
FLk

(Zk) − FZk
(Zk) > 2, Zk > I, Ak = 1

∣∣∣∣∣∣Zk = t


= P


∣∣∣F̂Lk

(t−) − F̂Zk
(t−) − FLk

(t) + FZk
(t)
∣∣∣

FLk
(t) − FZk

(t) > 2, Zk > I, Ak = 1

∣∣∣∣∣∣Zk = t


≤ P

(∣∣∣F̂Lk

(
t−)− FLk

(t)
∣∣∣ > FLk

(t) − FZk
(t) , Zk > I, Ak = 1 | Zk = t

)
+ P

(∣∣∣F̂Zk

(
t−)− FZk

(t)
∣∣∣ > FLk

(t) − FZk
(t) , Zk > I, Ak = 1 | Zk = t

)
.



On the one hand, the Bernstein inequality (see [[18], Corollary A.9]) allows to write

P
(∣∣∣F̂Zk

(
t−)− FZk

(t)
∣∣∣ > FLk

(t) − FZk
(t) , Zk > I, Ak = 1 | Zk = t

)
= P

∣∣∣∣∣∣
n∑

j=1

(
I{Zkj<t} − FZk

(t)
)∣∣∣∣∣∣ > n (FLk

(t) − FZk
(t)) , Zk > I, Ak = 1 | Zk = t



≤ 2 exp


−2 (FZk

(t))2 n

FZk
(t) SZk

(t)
(

1 + 4FZk
(t)

FZk
(t)SZk

(t)

)


≤ 2 exp {−CnFZk
(t)}

and the probability equals to zero if t ≤ I.

On the other hand, proceeding as in [[46], proof of Theorem 2], we get

sup
u≥I

∣∣∣F̂Lk

(
u−)− FLk

(u)
∣∣∣ ≤ C

[
sup
u≥I

∣∣∣F̂Zk

(
u−)− FZk

(u)
∣∣∣+ sup

u≥I

∣∣∣H(2)
kn

(
u−)− H

(2)
k (u)

∣∣∣] .

So, for t > I

P
(∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)∣∣∣ > FLk

(t) − FZk
(t) , Zk > I, Ak = 1

∣∣∣Zk = t
)

≤ P

(
sup
u≥I

∣∣∣∣∣ F̂Zk
(u−) − FZk

(u)
FZk

(u)

∣∣∣∣∣ >
b

2C
, Zk > I, Ak = 1

∣∣∣∣∣Zk = t

)

+ P

(
sup
u≥I

∣∣∣∣∣H
(2)
kn (u−) − H

(2)
k (u)

H
(2)
k (u)

∣∣∣∣∣ >
b

2C
, Zk > I, Ak = 1

∣∣∣∣∣Zk = t

)
(where b = FLk

(I)SXk
(θk2)SRk

(θk2))

≤ K1 exp {−C1n} + K2 exp {−C2n}

(thanks to lemma 3 of [52]; K1, K2, C1 and C2 being some positive constants)

≤ K exp {−CnFZk
(t)}

and the probability equals to zero if t ≥ I. Thus

P ((∆kn (I))c) ≤ Kn

+∞∫
I

exp {−CnFZk
(t)} dFZk

(t)

≤ K exp
{

−Cδn

2

}
. (5.13)



It remains to deal with the following probability

P

 sup
I≤u≤T

2
n∑

i=1

I{Zki≤u,Aki=1}
FLk

(Zki) − FZk
(Zki)

n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)
− FLk

(Zki) + FZk
(Zki)

)
n (FLk

(Zki) − FZk
(Zki))

2

> x




≤ P

2
n∑

i=1

I{Zki≤T,Aki=1}
n (FLk

(Zki) − FZk
(Zki))

n
(
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)
− FLk

(Zki) + FZk
(Zki)

)
√

n (FLk
(Zki) − FZk

(Zki))

2

> x


≤ P

(
2
a3 sup

θk1≤u≤θk2

n
((

F̂Lk

(
u−)− FLk

(u)
)

−
(
F̂Zk

(
u−)− FZk

(u)
))2

> x

)

≤ P

 2
Cδ

sup
θk1≤u≤θk2

(
√

n
F̂Lk

(u−) − FLk
(u)

FLk
(u)

)2

>
x

2


+ P

 2
Cδ

sup
θk1≤u≤θk2

(
√

n
F̂Zk

(u−) − FZk
(u)

FZk
(u)

)2

>
x

2


≤ P

2C1
Cδ

sup
θk1≤u≤θk2

(
√

n
F̂Zk

(u−) − FZk
(u)

FZk
(u)

)2

>
x

4


+ P

2C2
Cδ

sup
θk1≤u≤θk2

(
√

n
H(2)

kn
(u−) − H(2)

k
(u)

H
(2)
k (u)

)2

>
x

4


+ P

 2
Cδ

sup
θk1≤u≤θk2

(
√

n
F̂Zk

(u−) − FZk
(u)

FZk
(u)

)2

>
x

2

 (C1 and C2 are positive constants)

≤ K exp
{

−λδ2x
}

(thanks to [[52], Lemma 3]).

Combining this with (5.11),(5.12) and (5.13) gives the claimed result.

Proof of Lemma 5.5 : We have nR
k4 (u) = Jk1 (u) + Jk2 (u) , where

Jk1 (u) =
+∞∫
0

+∞∫
0

I{y≤u}I{x<y}

(FLk
(y) − FZk

(y))2 d
[√

n
(
H

(1)
nk (y) − H

(1)
k (y)

)]
d
[√

n
(
F̂Zk

(
x−)− FZk

(x)
)]

and

Jk2 (u) =
+∞∫
0

+∞∫
0

I{y≤u}I{x<y}

(FLk
(y) − FZk

(y))2 d
[√

n
(
H

(1)
nk (y) − H

(1)
k (y)

)]
d
[√

n
(
F̂Lk

(
x−)− FLk

(x)
)]

.

So

P

(
sup

I≤u≤T
|nRk4 (u)| > x

)
≤ P

(
sup

I≤u≤T
|Jk1 (u)| >

x

2

)
+ P

(
sup

I≤u≤T
|Jk2 (u)| >

x

2

)
.

(5.14)

On the one hand, we can prove as in [[36], Lemma 3] that

P

(
sup

I≤u≤T
n |Jk1 (u)| >

x

2

)
≤ K exp

{
−λδ2x

}
. (5.15)



On the other hand, we have for I ≤ u ≤ T

Jk2 (u) =
+∞∫
0

F̂Lk
(y−) − FLk

(y)
(FLk

(y) − FZk
(y))2 I{y≤u}d

(
H

(1)
nk (y) − H

(1)
k (y)

)
.

Therefore

|Jk2 (u)| ≤ 1
a2 sup

θk1≤u≤θk2

∣∣∣F̂Lk

(
u−)− FLk

(u)
∣∣∣ ∣∣∣H(1)

nk (u) − H
(1)
k (u)

∣∣∣
≤ 1

a2 sup
θk1≤u≤θk2

∣∣∣F̂Lk

(
u−)− FLk

(u)
∣∣∣ sup

I≤u≤T

∣∣∣H(1)
nk (u) − H

(1)
k (u)

∣∣∣
which implies that

P

(
sup

I≤u≤T
n |Jk2 (u)| >

x

2

)
≤ P

(
√

n sup
θk1≤u≤θk2

∣∣∣F̂Lk

(
u−)− FLk

(u)
∣∣∣ >

√
ax

2

)

+ P

(
√

n sup
I≤u≤T

∣∣∣H(1)
nk (u) − H

(1)
k (u)

∣∣∣ >

√
ax

2

)

≤ K exp {−Cx} (thanks to relations (5.9) and (5.10))

≤ K exp
{

−λδ2x
}

.

This together with (5.14) and (5.15) gives the claimed result.

Proof of Theorem4.2-i) : Using the following lemma, theorem 4.2-i) can be proved in

the same way as in [[35], Theorem 3], for the class of functions

F =
{

(t1, t2) 7→ I[0,x1]×[0,x2](t1, t2), x1 ∈ X1, x2 ∈ X2
}

.

Lemma 5.6
Under assumptions H1-H6, we have for all ε > 0

max
1≤i≤n

∣∣∣∣∣∣ I{A1i=1}I{A2i=1}

CL

(
F̂L1 (Z1i) , F̂L2 (Z2i)

)
C̃R

(
ŜR1 (Z1i) , ŜR2 (Z2i)

) −
I{A1i=1}I{A2i=1}

CL (FL1 (Z1i) , FL2 (Z2i)) C̃R (SR1 (Z1i) , SR2 (Z2i))

∣∣∣∣∣∣
≤ Mn

 I{A1i=1}I{A2i=1}F 1−α1
L1

(Z1i) K1/2+ε
L1

(Z1i)
F α2

L2
(Z2i) Sβ1

R1
(Z1i) Sβ2

R2
(Z2i) CL (FL1 (Z1i) , FL2 (Z2i)) C̃R (SR1 (Z1i) , SR2 (Z2i))

+
I{A1i=1}I{A2i=1}F 1−α2

L2
(Z2i) K1/2+ε

L2
(Z2i)

F α1
L1

(Z1i) Sβ1
R1

(Z1i) Sβ2
R2

(Z2i) CL (FL1 (Z1i) , FL2 (Z2i)) C̃R (SR1 (Z1i) , SR2 (Z2i))

+
I{A1i=1}I{A2i=1}S1−β1

R1
(Z1i) K1/2+ε

R1
(Z1i)

F α1
L1

(Z1i) F α2
L2

(Z2i) Sβ2
R2

(Z2i) CL (FL1 (Z1i) , FL2 (Z2i)) C̃R (SR1 (Z1i) , SR2 (Z2i))

+
I{A1i=1}I{A2i=1}S1−β2

R2
(Z2i) K1/2+ε

R2
(Z2i)

F α1
L1

(Z1i) F α2
L2

(Z2i) Sβ1
R1

(Z1i) CL (FL1 (Z1i) , FL2 (Z2i)) C̃R (SR1 (Z1i) , SR2 (Z2i))

 ,



with Mn = OP

(
n−1/2

)
.

This lemma is the equivalent of [[35], Lemma 7.2] in the case of twice censoring.

Proof of Lemma 5.6 : Let Z(kn) = max
k≤i≤n

Zki. Proceeding as in [[35], Lemma 7.2],

we obtain∣∣∣∣∣ I{A1i=1} I{A2i=1}

CL

(
F̂L1 (Z1i) , F̂L2 (Z2i)

)
C̃R

(
ŜR1 (Z1i) , ŜR2 (Z2i)

) −
I{A1i=1} I{A2i=1}

CL (FL1 (Z1i) , FL2 (Z2i)) C̃R (SR1 (Z1i) , SR2 (Z2i))

∣∣∣∣∣
≤

M I{A1i=1} I{A2i=1}

CL (FL1 (Z1i) , FL2 (Z2i)) C̃R (SR1 (Z1i) , SR2 (Z2i))
×


∣∣∣F̂L1 (Z1i) − FL1 (Z1i)

∣∣∣
F̂ α1

L1
(Z1i) F̂ α2

L2
(Z2i) Ŝβ1

R1
(Z1i) Ŝβ2

R2
(Z2i)

+

∣∣∣F̂L2 (Z2i) − FL2 (Z2i)
∣∣∣

F̂ α1
L1

(Z1i) F̂ α2
L2

(Z2i) Ŝβ1
R1

(Z1i) Ŝβ2
R2

(Z2i)
+

∣∣∣ŜR1 (Z1i) − SR1 (Z1i)
∣∣∣

F̂ α1
L1

(Z1i) F̂ α2
L2

(Z2i) Ŝβ1
R1

(Z1i) Ŝβ2
R2

(Z2i)

+

∣∣∣ŜR2 (Z2i) − SR2 (Z2i)
∣∣∣

F̂ α1
L1

(Z1i) F̂ α2
L2

(Z2i) Ŝβ1
R1

(Z1i) Ŝβ2
R2

(Z2i)

 ,

where M is a positive constant. So, to prove the lemma, we have to show as in

[35] that for k ∈ {1, 2}

sup
t≥θk1

FLk
(t)

F̂Lk
(t)

= OP (1) , (5.16)

sup
t≥θk1

∣∣∣F̂Lk
(t) − FLk

(t)
∣∣∣

K1/2+ε
Lk

(t)FLk
(t)

= OP

( 1√
n

)
, (5.17)

sup
t≤θk2

SRk
(t)

ŜRk
(t)

= OP (1) (5.18)

and

sup
t≤Z(kn)

∣∣∣ŜRk
(t) − SRk

(t)
∣∣∣

K1/2+ε
Rk

(t)SRk
(t)

= OP

( 1√
n

)
. (5.19)

Relation (5.16) follows from the fact that for t ≥ θk1

FLk
(t)

F̂Lk
(t)

≤ 1
F̂Lk

(θk1)
≤ 2

FLk
(θk1) a.s. for n large enough.

Relation (5.17) can be proved in the same way as in [[22], Theorem 2.1].

Relation (5.18) follows from the fact that for t ≤ θk2

SRk
(t)

ŜRk
(t)

≤ 1
ŜRk

(θk2)
≤ 2

SRk
(θk2) a.s. for n large enough.

It remains to deal with relation (5.19). Set

ξnk (t) =
√

n

(
ŜRk

(t) − SRk
(t)

SRk
(t)

)



and

h (t) = 1
K1/2+ε

Rk
(t)

.

It view of [[43], Theorem 7.3], the process ξnk (t) converges weakly to a centered

Gaussian process in l∞ ([0, τ ]), for any τ such that θk2 < τ < TZk
. So, relation

(5.19) can be proved as in [[22], Theorem 2.1]. In fact, it suffices to prove that

for all ε > 0

lim
τ↑TZk

lim sup
n→∞

P

 sup
τ≤t≤Z(kn)

∣∣∣∣∣∣
t∫

τ

h (s) dξnk (s)

∣∣∣∣∣∣ > ε

 = 0. (5.20)

For that, we set

F ∗
Lk

(t) = 1
n

n∑
i=1

I{Lki≤t}

and

S∗
Rk

(t) =
∏

i/Zki≤t

1 −
I{Aki

=1}
n
(
F ∗

Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

))
 .

We have ξnk (t) = ξ∗
nk (t) + R∗

nk (t) , where

ξ∗
nk (t) =

√
n

(
S∗

Rk
(t) − SRk

(t)
SRk

(t)

)

and

R∗
nk (t) =

√
n

(
ŜRk

(t) − S∗
Rk

(t)
SRk

(t)

)
.

Therefore

P

 sup
τ≤t≤Z(kn)

∣∣∣∣∣∣
t∫

τ

h (s) dξnk (s)

∣∣∣∣∣∣ > ε

 ≤ P

 sup
τ≤t≤Z(kn)

∣∣∣∣∣∣
t∫

τ

h (s) dξ∗
nk (s)

∣∣∣∣∣∣ > ε/2


+ P

 sup
τ≤t≤Z(kn)

∣∣∣∣∣∣
t∫

τ

h (s) dR∗
nk (s)

∣∣∣∣∣∣ > ε/2


=: P1 + P2 (5.21)

We start by dealing with P1. For that, we need the following lemma. Note Fkt

the filtration defined by

Fkt = N ∨ σ
({

I{Xki≤s}, I{Lki≤s}, I{Rki≤s}, I{Xki≤s,Aki=1}, I{Lki≤s,Aki=1}, I{Rki≤s,Aki=1},

0 < s ≤ t, 1 ≤ i ≤ n}) ,

where N is the family of negligible sets.



Lemma 5.7
We have

i) ξ∗
nk (t) is an Fkt− martingale.

ii) ∀β ∈ ]0, 1[ , P

(
sup

t≤Z(kn)

S∗
Rk

(t)
SRk

(t) ≤ 1
β

)
≥ 1 − β.

iii) sup
IRk

≤t≤Z(kn)

∣∣∣∣∣ FLk
(t) − FZk

(t)
F ∗

Lk
(t−) − F̂Zk

(t−)

∣∣∣∣∣ = OP (1) .

Proof of Lemma 5.7 : i) Set

Λ∗
Rk

(t) =
t∫

0

dH
(1)
nk (u)

F ∗
Lk

(u−) − F̂Zk
(u−)

.

In view of [[21], Proposition A.4.1], we have

S∗
Rk

(t)
SRk

(t) = 1 −
t∫

0

S∗
Rk

(u−)
SRk

(u) d
(
Λ∗

Rk
(u) − ΛRk

(u)
)

. (5.22)

Moreover, consider the Fkt−martingale

Mk (t) = 1√
n

n∑
i=1

I{Zki≤t,Aki=1} −
t∫

0

I{Lki
≤u,Zki≥u}dΛRk

(u)

 .

Since d
(
Λ∗

Rk
(u) − ΛRk

(u)
)

=
√

ndMk (u)
n
(
F ∗

Lk
(u−) − F̂Zk

(u−)
) , relation (5.22)

implies that

S∗
Rk

(t)
SRk

(t) = 1 −
√

n

t∫
0

S∗
Rk

(u−)

nSRk
(u)

(
F ∗

Lk
(u−) − F̂Zk

(u−)
)dMk (u) (5.23)

which implies that

ξ∗
nk (t) = −

t∫
0

S∗
Rk

(u−)

SRk
(u)

(
F ∗

Lk
(u−) − F̂Zk

(u−)
)dMk (u) .

Since
S∗

Rk
(u−)

SRk
(u)

(
F ∗

Lk
(u−) − F̂Zk

(u−)
) is predictable with respect to

Fkt, Theorem 1 page 890 of [48] shows that ξ∗
nk (t) is an Fkt− mar-

tingale.

ii) Using [[48], Theorem 1 page 890], relation (5.23) shows that
S∗

Rk
(t)

SRk
(t)

is an Fkt−martingale. So, the claimed result can be proved in the

same way as in [[21], Theorem 3.2.1].



iii) Set Ynk (t) = 1
n

n∑
i=1

I{Xki≥t,Rki≥t} and enk (t) = F ∗
Lk

(
t−)− F̂Zk

(
t−)−

F ∗
Lk

(
t−)Ynk (t) .

We have for all t ∈
[
IRk

, Z(kn)
]

F ∗
Lk

(
t−)− F̂Zk

(
t−) ≥ F ∗

Lk

(
I−

Rk

)
Ynk (t) + enk (t) .

So

1
F ∗

Lk
(t−) − F̂Zk

(t−)
≤ 1

F ∗
Lk

(
I−

Rk

)
Ynk (t) + enk (t)

. (5.24)

Furthermore, we have

sup
IRk

≤t≤Z(kn)

∣∣∣∣∣∣ 1
F ∗

Lk

(
I−

Rk

)
Ynk (t) + enk (t)

− 1
F ∗

Lk

(
I−

Rk

)
Ynk (t)

∣∣∣∣∣∣
= sup

IRk
≤t≤Z(kn)

∣∣∣∣∣∣ enk (t)(
F ∗

Lk

(
I−

Rk

)
Ynk (t) + enk (t)

)
F ∗

Lk

(
I−

Rk

)
Ynk (t)

∣∣∣∣∣∣ .
Since for t > TLk

, we have F ∗
Lk

(
t−) = 1, so

enk (t) = 1 − F̂Zk

(
t−)− Ynk (t)

= 1
n

n∑
i=1

I{Xki
∧Rki

≥t} − 1
n

n∑
i=1

I{
X

ki
≥t,Rki

≥t

}
= 0 a.s.

(
I{Zki

≥t} = I{Xki
∧Rki

≥t} a.s. because Lki < t a.s. since t > TLk

)
.

Therefore

sup
IRk

≤t≤Z(kn)

∣∣∣∣∣∣ 1
F ∗

Lk

(
I−

Rk

)
Ynk (t) + enk (t)

− 1
F ∗

Lk

(
I−

Rk

)
Ynk (t)

∣∣∣∣∣∣
= sup

IRk
≤t≤TLk

∣∣∣∣∣∣ enk (t)
F ∗

Lk

(
I−

Rk

)
Ynk (t)

(
F ∗

Lk

(
I−

Rk

)
Ynk (t) + enk (t)

)
∣∣∣∣∣∣ .

Moreover, for IRk
≤ t ≤ TLk

, we have for n large enough

F ∗
Lk

(
I−

Rk

)
Ynk (t) ≥ F ∗

Lk

(
I−

Rk

)
Ynk (TLk

)

≥ FLk
(IRk

) SXk
(TLk

) SRk
(TLk

)
2

=: α



and F ∗
Lk

(
I−

Rk

)
Ynk (t) + enk (t) ≥ α + enk (t) > 0, for n large enough

(since sup
IRk

≤t≤TLk

|enk (t)| = oa.s. (1)). Thus

sup
IRk

≤t≤Z(kn)

∣∣∣∣∣∣ 1
F ∗

Lk

(
I−

Rk

)
Ynk (t) + enk (t)

− 1
F ∗

Lk

(
I−

Rk

)
Ynk (t)

∣∣∣∣∣∣ ≤ sup
IRk

≤t≤TLk

∣∣∣∣ enk (t)
α (α + enk (t))

∣∣∣∣
≤ 2

α2 sup
IRk

≤t≤TLk

|enk (t)| for n large enough

= oa.s. (1) .

So relation (5.24) implies that

1
F ∗

Lk
(t−) − F̂Zk

(t−)
≤ 1

F ∗
Lk

(
I−

Rk

)
Ynk (t)

+ oa.s. (1)

where the oa.s. (1) is uniform on t ∈
[
IRk

, Z(kn)
]
. So

FLk
(t) − FZk

(t)
F ∗

Lk
(t−) − F̂Zk

(t−)
≤ FLk

(t) SXk
(t) SRk

(t)
F ∗

Lk

(
I−

Rk

)
Ynk (t)

+ oa.s. (1)

≤ SXk
(t) SRk

(t)
F ∗

Lk

(
I−

Rk

)
Ynk (t)

+ oa.s. (1) . (5.25)

Since
1

F ∗
Lk

(
I−

Rk

) a.s.−→ 1
FLk

(IRk
) , as n → ∞

we have
1

F ∗
Lk

(
I−

Rk

) = OP (1) (5.26)

and

sup
IRk

≤t≤Z(kn)

∣∣∣∣SXk
(t) SRk

(t)
Ynk (t)

∣∣∣∣ = OP (1)

(see [[52], Remark 1 (ii)]). Combining this with (5.25) and (5.26) gives

the claimed result. This ends the proof of Lemma 5.7.

Using this lemma, we can show that

lim
τ↑TZk

lim sup
n→∞

P

 sup
τ≤t≤Z(kn)

∣∣∣∣∣∣
t∫

τ

h (s) dξ∗
nk (s)

∣∣∣∣∣∣ > ε/2

 = 0 (5.27)



in the same way as in [[22], Theorem 2.1], see also [[1], Proposition 3].

Now, we deal with the probability P2. We have for τ ≤ t ≤ Z(kn)∣∣∣∣∣ ŜRk
(t) − S∗

Rk
(t)

SRk
(t)

∣∣∣∣∣ ≤ 1
SRk

(t)
∑

i/Zki≤t

∣∣∣∣∣∣I{Aki=1}
n

 1
F̂Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

) − 1
F ∗

Lk

(
Z−

ki

)
− F̂Zk

(
Z−

ki

)
∣∣∣∣∣∣

≤ sup
τ≤t≤Z(kn)

∣∣∣∣∣∣ F̂Lk
(t−) − F ∗

Lk
(t−)

SRk
(t)
(
F̂Lk

(t−) − F̂Zk
(t−)

) (
F ∗

Lk
(t−) − F̂Zk

(t−)
)
∣∣∣∣∣∣× 1

n

n∑
i=1

I{Aki=1}

≤ sup
τ≤t≤TLk

∣∣∣∣∣∣ F̂Lk
(t−) − F ∗

Lk
(t−)

SRk
(t)
(
F̂Lk

(t−) − F̂Zk
(t−)

) (
F ∗

Lk
(t−) − F̂Zk

(t−)
)
∣∣∣∣∣∣

(since for t > TLk
, F̂Lk

(
t−) = F ∗

Lk

(
t−) = 1).

Therefore

√
n sup

τ≤t≤Z(kn)

∣∣∣∣∣ ŜRk
(t) − S∗

Rk
(t)

SRk
(t)

∣∣∣∣∣ ≤ 1
SRk

(TLk
)

×

√
n sup

τ≤t≤TLk

∣∣∣F̂Lk
(t−) − F ∗

Lk
(t−)

∣∣∣
inf

τ≤t≤TLk

∣∣∣F̂Lk
(t−) − F̂Zk

(t−)
∣∣∣ inf

τ≤t≤TLk

∣∣∣F ∗
Lk

(t−) − F̂Zk
(t−)

∣∣∣ .
(5.28)

Moreover, since
√

n
(
F̂Lk

− FLk

)
and

√
n
(
F ∗

Lk
− FLk

)
converge weakly in l∞ ([τ, TLk

]),

we get
√

n sup
τ≤t≤TLk

∣∣∣F̂Lk

(
t−)− F ∗

Lk

(
t−)∣∣∣ = OP (1) (5.29)

and we have for all τ ≤ t ≤ TLk

sup
τ≤t≤TLk

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)− (FLk

(t) − FZk
(t))

∣∣∣
≥ FLk

(t) − FZk
(t) −

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)∣∣∣

≥ FLk
(IRk

) SXk
(TLk

) SRk
(TLk

) −
∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)∣∣∣ .

Thus

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)∣∣∣ ≥ FLk

(IRk
) SXk

(TLk
) SRk

(TLk
)

− sup
IRk

≤t≤TLk

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)− (FLk

(t) − FZk
(t))

∣∣∣



and

inf
τ≤t≤TLk

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)∣∣∣ ≥ FLk

(IRk
) SXk

(TLk
) SRk

(TLk
)

− sup
IRk

≤t≤TLk

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)− (FLk

(t) − FZk
(t))

∣∣∣
=: β − sup

IRk
≤t≤TLk

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)− (FLk

(t) − FZk
(t))

∣∣∣ .
Therefore

1
inf

τ≤t≤TLk

∣∣∣F̂Lk
(t−) − F̂Zk

(t−)
∣∣∣ ≤ 1

β − sup
IRk

≤t≤TLk

∣∣∣F̂Lk
(t−) − F̂Zk

(t−) − (FLk
(t) − FZk

(t))
∣∣∣ = OP (1)

because

sup
IRk

≤t≤TLk

∣∣∣F̂Lk

(
t−)− F̂Zk

(
t−)− (FLk

(t) − FZk
(t))

∣∣∣ a.s.−→ 0, as n → ∞

and with the same manner we can show that

1
inf

τ≤t≤TLk

∣∣∣F ∗
Lk

(t−) − F̂Zk
(t−)

∣∣∣ = OP (1) .

Combining this with (5.28), (5.29) and (??), we obtain

sup
τ≤t≤Z(kn)

|R∗
nk (t)| = OP (1) .

Moreover, using an integration by parts we can write∣∣∣∣∣∣
t∫

τ

h (s) dR∗
nk (s)

∣∣∣∣∣∣ =

∣∣∣∣∣∣h (t) R∗
nk (t) − h (τ) R∗

nk (τ) −
t∫

τ

R∗
nk (s) dh (s)

∣∣∣∣∣∣
≤ 2 sup

τ≤s≤Z(kn)

|h (s)| sup
τ≤s≤Z(kn)

|R∗
nk (s)| + sup

τ≤s≤Z(kn)

|R∗
nk (s)| |h (t) − h (τ)|

≤ 4 sup
τ≤s≤Z(kn)

|h (s)| sup
τ≤s≤Z(kn)

|R∗
nk (s)| .

So

P

 sup
τ≤t≤Z(kn)

∣∣∣∣∣∣
t∫

τ

h (s) dR∗
nk (s)

∣∣∣∣∣∣ > ε/2

 ≤ P

(
sup

τ≤t≤TZk

|h (t)| sup
τ≤t≤Z(kn)

|R∗
nk (t)| > ε/8

)
.

(5.30)

It remains to show that

lim
t↑TZk

lim sup
n→∞

P

(
sup

τ≤t≤TZk

|h (t)| sup
τ≤s≤Z(kn)

|R∗
nk (t)| > ε/8

)
= 0.



This is equivalent to

∀δ > 0, ∃ηδ > 0 : |t − TZk
| < ηb ⇒ lim sup

n→∞
P

(
sup

τ≤t≤TZk

|h (t)| sup
τ≤t≤Z(kn)

|R∗
nk (t)| > ε/8

)
≤ δ.

Let δ > 0, since sup
τ≤t≤Z(kn)

|R∗
nk (t)| = OP (1), there exist bδ > 0 and mδ ∈

N∗/∀m ≥ mδ

P

(
sup

τ≤t≤Z(kn)

|R∗
mk (t)| > bδ

)
< δ

⇒ sup
m≥mδ

P

(
sup

τ≤t≤Z(kn)

|R∗
mk (t)| > bδ

)
≤ δ

⇒ lim sup
n→∞

P

(
sup

τ≤t≤Z(kn)

|R∗
nk (t)| > bδ

)
≤ δ

and since lim
τ↑TZk

sup
τ≤t≤TZk

|h (t)| = 0, there exists ηδ > 0 such that

|τ − TZk
| < ηδ ⇒ sup

τ≤t≤TZk

|h (t)| ≤ ε

8bδ
.

So, for τ such that |τ − TZk
| < ηδ, we have

P

(
sup

τ≤t≤TZk

|h (t)| sup
τ≤t≤Z(kn)

|R∗
nk (t)| > ε/8

)
≤ P

(
sup

τ≤t≤Z(kn)

|R∗
nk (t)| > bδ

)

⇒ lim sup
n→∞

P

(
sup

τ≤t≤TZk

|h (t)| sup
τ≤t≤Z(kn)

|R∗
nk (t)| > ε/8

)
≤ lim sup

n→∞
P

(
sup

τ≤t≤Z(kn)

|R∗
nk (t)| > bδ

)
≤ δ.

Thus

lim
τ↑TZk

lim sup
n→∞

P

(
sup

τ≤t≤TZk

|h (t)| sup
τ≤t≤Z(kn)

|R∗
nk (t)| > ε/8

)
= 0

and relation (5.30) gives

lim
τ↑TZk

lim sup
n→∞

P

 sup
τ≤t≤Z(kn)

∣∣∣∣∣∣
t∫

τ

h (s) dR∗
nk (s)

∣∣∣∣∣∣ > ε/2

 = 0.

Combining this with (5.21) and (5.27) shows that relation (5.20) is satisfied which

ends the proof.

Proof of Theorem 4.3 : Using theorem 4.2, this theorem can be proved in the same way

as [[23], Theorem 2] i.e The first step of the proof consists of reducing the problem to

the case where the marginals T1 and T2 are uniformly distributed due to Assumptions

H1 − H6 and Lemma 4.2.



Bibliography

[1] Akritas, M. G., The central limit theorem under censoring, Bernoulli 6, 1109-1120,

(2000).

[2] Andersen, P. K., Ekstrøm, C. T., Klein, J. P., Shu, Y., and Zhang, M.-J., A class of

goodness of fit tests for a copula based on bivariate right-censored data, Biometrical

Journal 47, 815-824, (2005).

[3] Aouicha, L. and Messaci, F., Kernel estimation of the conditional density under a

censorship model, Statistics and Probability Letters 145, 173-180, (2019).

[4] Imane, B. E. N. E. L. M. I. R. Modélisation de la Dépendance par les Copules. Diss.

Université de Biskra, 2018.

[5] BitouzÃ©, D., Laurent, B. and Massart, P., A Dvoretzky-Kiefer-Wolfowitz type in-

equality for the Kaplan-Meier estimator, Annales de l’Institut Henri Poincare (B)

Probability and Statistics 35, 735-763, (1999).

[6] Boukeloua, M., Rates of Mean Square Convergence of Density and Failure Rate Es-

timators Under Twice Censoring, Statistics and Probability Letters 106, 121-128,

(2015).

[7] Boukeloua, M., Study of semiparametric copula models via divergences with bivariate

censored data, Communications in Statistics Theory and Methods 50, 5429-5452,

(2021).

[8] Boukeloua, M. and Messaci, F., Asymptotic normality of kernel estimators based upon

incomplete data, Journal of Nonparametric Statistics 28, 469-486, (2016).

71



[9] S. Bouzebda, and A. Keziou, it New estimates and tests of independence in semi-

parametric copula models, Kybernetika, no. 1, 178–201. (2010)

[10] Bouzebda, S. and Zari, T., Strong approximation of empirical copula processes by

Gaussian processes, Statistics 47, 1047-1063, (2013).

[11] Breslow, N. and Crowley, J., A large sample study of the life table and product limit

estimates under random censorship, The Annals of Statistics 2, 437-453, (1974).

[12] DEHEUVELS, P. Proprietes d’existence et proprietes topologiques des fonctions de

dependance avec applications à la convergence des types pour des lois multivariées

(1979).

[13] Deheuvels, P., Nonparametric tests of independence, In Nonparametric Asymptotic

Statistics (Proceedings of the Conference held in Rouen in 1979), J.-P. Raoult, ed.

NewYork: Springer 95-107, (1980).

[14] Deheuvels, P., A Kolmogorov-Smirnov type test for independence and multivariate

samples, Rev. Roumaine Math. Pures Appl. 26, 213-226, (1981).

[15] Deheuvels, P., A multivariate Bahadurâ“Kiefer representation for the empirical cop-

ula process, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). 364,

120-147 (2009).

[16] Dvoretzky, A., Kiefer, J. and Wolfowitz, J., Asymptotic minimax character of the

sample distribution function and of the classical multinomial estimator, The Annals

of Mathematical Statistics 642-669, (1956).

[17] Fermanian, J.-D., Radulovic, D. and Wegkamp, M., Weak convergence of empirical

copula processes, Bernoulli 10, 847-860, (2004).

[18] Ferraty, F. and Vieu, P., Nonparametric functional data analysis: Theory and prac-

tice, Springer, Berlin, (2006).

[19] Genest, C., & Rivest, L. P. Statistical inference procedures for bivariate Archimedean

copulas. Journal of the American statistical Association, 88(423), 1034-1043 (1993).



[20] Genest, C., Ghoudi, K., & Rivest, L. P. A semiparametric estimation procedure of

dependence parameters in multivariate families of distributions. Biometrika, 82(3),

543-552 (1995).

[21] Gill, R. D., Censoring and stocasthic integrals, Mathematisch Centrum tracts, Ams-

terdam, (1980).

[22] Gill, R. D., Large sample behaviour of the product-limit estimator on the whole line,

The Annals of Statistics 11, 49-58, (1983).

[23] Gribkova, S. and Lopez, O., Non-parametric Copula estimation under bivariate cen-

soring, Scandinavian Journal of Statistics 42, 925-946, (2015).

[24] Gribkova, S., Lopez, O. and Saint-Pierre, P., A simplified model for studying bivari-

ate mortality under right-censoring, Journal of Multivariate Analysis 115, 181-192,

(2013).

[25] IDIOU, Nesrine. MULTI-PARAMETRIC COPULA ESTIMATION BASED ON

MOMENTS METHOD UNDER CENSORING. Diss. Université de mohamed khei-

der biskra, 2022.

[26] Idiou, N. and Benatia, F., Survival copula parameters estimation for Archimedean

family under singly censoring, Advances in Mathematics: Scientific Journal 10, 1-4,

(2021).

[27] Idiou, N., Benatia, F., and Brahimi, B., A semi-parametric estimation of copula

models based on moments method under right censoring, Journal of TWMS J. App

and Eng. Math. (To appear).

[28] Idiou, N., Benatia, F. and Mesbah, M., Copulas and frailty models in multivariate

survival data, Journal of Biostatistics and Health Sciences. ISTE OpenScience, BHS

2, 13-39, (2021).

[29] Kaplan, E. L., & Meier, P. Nonparametric estimation from incomplete observations.

Journal of the American statistical association, 53(282), 457-481 (1958).



[30] Kebabi, K. and Messaci, F. Rate of the almost complete convergence of a kernel

regression estimate with twice censored data, Statistics and Probability Letters 82,

1908-1913, (2012).

[31] Kiefer, J., On large deviations of the empiric df of vector chance variables and a law

of the iterated logarithm, Pacific Journal of Mathematics 11, 649-660, (1961).

[32] Kitouni, A., Boukeloua, M. and Messaci, F., Rate of strong consistency for nonpara-

metric estimators based on twice censored data, Statistics and Probability Letters 96,

255-261, (2015).

[33] Stephens, M. A. Introduction to Kolmogorov (1933) on the empirical determination

of a distribution. In Breakthroughs in Statistics: Methodology and Distribution (pp.

93-105). New York, NY: Springer New York (1992).

[34] Liang, K.-Y., Self, S. G. and Chang, Y.-C., Modelling marginal hazards in multivari-

ate failure time data, Journal of the Royal Statistical Society. Series B (Methodolog-

ical) 55, 441-453, (1993).

[35] Lopez, O. and Saint-Pierre, P., Bivariate censored regression relying on a new esti-

mator of the joint distribution function, Journal of Statistical Planning and Inference

142, 2440-2453, (2012).

[36] Major, P. and Rejto, L. Strong embedding of the estimator of the distribution func-

tionunder random censorship, The Annals of Statistics 16, 1113-1132, (1988).

[37] Massart, P. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The

annals of Probability, 1269-1283 (1990).

[38] Messaci, F., Local averaging estimates of the regression function with twice censored

data, Statistics and Probability Letters 80, 1508-1511, (2010).

[39] Morales, D., Pardo, L. and Quesada, V., Bayesian survival estimation for incom-

plete data when the life distribution is proportionally related to the censoring time

distribution, Communications in Statistics, Theory and Methods 20, 831-850, (1991).



[40] Nielsen, G. G., Gill, R. D. , Andersen, P. K. and Sørensen, T. I. A., A Counting

Process Approach to Maximum Likelihood Estimation in Frailty Models, Scandinavian

Journal Of Statistics 19, 25-43, (1992).

[41] Oakes, D. Multivariate survival distributions. Journaltitle of Nonparametric Statis-

tics, 3(3-4), 343-354 (1994).

[42] Omelka, M., Gijbels, I., & Veraverbeke, N. Improved kernel estimation of copulas:

weak convergence and goodness-of-fit testing (2009).

[43] Patilea, V. and Rolin, J.-M., Product limit estimators of the survival function with

twice censored data, The Annals of Statistics 34, 925-938, (2006).

[44] Pollard, D. A. A review of ecological studies on seagrass—fish communities, with

particular reference to recent studies in Australia. Aquatic Botany, 18(1-2), 3-42

(1984).

[45] Romeo, J. S., Tanaka, N. I. and Pedroso-de-Lima, A. C., Bivariate survival modeling:

a Bayesian approach based on copulas, Lifetime Data Analysis 12, 205-222, (2006).

[46] Rouabah, N.H., Nemouchi, N. and Messaci, F., A rate of consistency for nonpara-

metric estimators of the distribution function based on censored dependent data, Sta-

tistical Methods and Applications 28, 259-280, (2019).

[47] Shih, J. H. and Louis, T. A., Inferences on the association parameter in copula models

for bivariate survival data, Biometrics 51, 1384-1399, (1995).

[48] Shorack, G. R. and Wellner, J. A., Empirical processes applications to statistics, John

Wily and sons, New York, (1986).

[49] Sklar, A., Fonctions de repartition Ã n-dimensions et leurs marges, Publ. Inst.

Statist. Univ. Paris A. 8, 229-231, (1959).

[50] Samia, T., Mohamed, B., Nesrine, I., & Fatah, B. Nonparametric Estimation of the

Copula Function with Bivariate Twice Censored Data(2022).



[51] Tsukahara, H. . Semiparametric estimation in copula models. Canadian Journal of

Statistics, 33(3), 357-375. (2005).

[52] Wellner, J. A., Limit Theorems for the Ratio of the Empirical Distribution Function

to the True Distribution Function, Z. Wahrscheinlichkeitstheorie verw. Gebiete 45,

73-88, (1978).


	Résumé
	Abstract
	Introduction
	 blue Preliminaries  
	 blueCopula Conseption
	Bivariate Copula
	Density of the copula
	Copula properties

	Bivariate copula families
	Usual Copulas
	Elliptique copula
	Gaussian copula
	Student copula
	Emprical Copula


	 blue Censoring Notion
	Type of censorship
	Non-parametric estimation for right-censoring model
	Non-parametric estimation for mixed censoring model
	 Smooth estimators of the copula and its density
	Semi-parametric estimation for Copula models


	 blue Simulation of the Copula Function with Bivariate Twice Censored Data 
	Empirical copula for twice censored data
	Main results
	Simulation study

	 blue Kernel estimation of the copula function under twice censoring
	Kernel copula estimators
	Weak convergence of the proposed estimators
	Simulation study

	Conclusion
	Appendix
	Proofs

	Bibliography

