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Abstract

This thesis expands upon Pontryagin’s stochastic maximum principle to accommodate

systems modeled by fractional Brownian motion. we present two research topics. The

first centers on an optimal control problem wherein the state equation is driven by

fractional Brownian motion, and the cost functional follows a risk-neutral type. Ini-

tially, we present the optimal control problem and its underlying dynamics, followed

by the convex perturbation method in which the set of admissible controls is con-

vex. Subsequently, we establish both optimality conditions for this model. Finally,

we demonstrate our findings through a linear quadratic problem, solving the associated

Riccati type equation. The second topic focuses on characterizing optimal control prob-

lems within a risk-sensitive framework. The system dynamics are defined using only

the backward stochastic differential equations. However, the performance criterion is

distinct; instead of directly minimizing costs, we aim to minimize a convex disutility

function of the cost. As an initial step, we elucidate the relationship between risk-

neutral and risk-sensitive loss functionals. Next, we establish the equivalence between

expected exponential utility and quadratic backward stochastic differential equations.

Further, we reformulate the risk-sensitive problem into a standard risk-neutral one by

introducing an auxiliary term and demonstrate the determination of the adjoint equa-

tion. Thus, we derive the stochastic maximum principle using a standard application of

risk-neutral results. Finally, we apply these concepts to a control problem with linear

quadratic risk sensitivity.

Key words: Fractional Brownian motion, Risk-sensitive control, SDE, SMP.
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Résumé

Cette thèse étend le principe du maximum stochastique de Pontryagin pour prendre

en compte les systèmes modélisés par le mouvement brownien fractionnaire. Nous

présentons deux sujets de recherche. Le premier se concentre sur un problème de con-

trôle optimal dans lequel l’équation d’état est gouvernée par un mouvement brownien

fractionnaire, le fonctionnel de coût est donné de type risque-neutre. Initialement, nous

présentons le problème de contrôle optimal et sa dynamique sous-jacente, suivi de la

méthode de perturbation convexe dans laquelle l’ensemble des contrôles admissibles est

convexe. Ensuite, nous établissons les conditions d’optimalité pour ce modèle. Enfin,

nous démontrons nos résultats à travers un problème linéaire quadratique, en résolvant

l’équation de type Riccati associée. Le deuxième sujet se concentre sur la caractérisa-

tion des problèmes de contrôle optimal dans un cadre risque-sensible. La dynamique

du système est définie uniquement à l’aide des équations différentielles stochastiques

rétrogrades. Cependant le critère de performance est différent, au lieu de minimiser

directement le coût, nous visons à minimiser une fonction de désutilité convexe du

coût. Dans un premier temps, nous élucidons la relation entre risque-neutre et risque-

sensible. Ensuite, nous établissons l’équivalence entre l’utilité exponentielle attendue

et les équations différentielles stochastiques rétrogrades quadratique. De plus, nous re-

formulons le problème sensible au risque en un problème standard neutre au risque en

introduisant un terme auxiliaire et démontrons la détermination de l’équation adjointe.

Ainsi, nous dérivons le principe du maximum stochastique. Enfin, nous appliquons ces

concepts à un problème de contrôle avec une sensibilité au risque linéaire quadratique.

Mots Clés: mouvement Brownien fractionnaire, Contrôle de risque-sensible, EDS,

PMS.
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Symbols and Abbreviations

For readers’convenience, we list the different symbols and abbreviations used in this

thesis as follows.

Abbreviations

fBm : fractional Brownian motion.

BDSDE : backward doubly stochastic differentiale quations.

PDE : partial differential equations.

STEM : science, technology, engineering and mathematics.

FBSDE : forward backward stochastic differential equation.

SDE : stochastic differential equation.

SMP : stochastic maximum principle.

BDG : Burkholder-Davis-Gundy.

BSDE : backward stochastic differential equation.

LQ : linear quadratic.

a.s. : almost surely.

i.e. : Namely or that is.

viii



Symbols and Abbreviations

Symbols

E : Mathematical expectation.

Ẽ : Quasi-conditional expectation.

BH : Fractional Brownian motion.〈
BH
〉

: Quadratic variation process of BH .

(Ω,F ,P) : Probability space.(
FHt
)
t∈[0,T ]

: Filtration generated by BH .

U : The set of all admissible controls.

|·| : Euclidean norm on R.

u : Optimal control.

uθ : Perturbed control.

θ : Perturbation index.

ε : Risk sensitivity index.

v : Arbitrary control

P� Q :
The probability measure P is absolutely

continuous with respect to the measure Q.

H : The risk neutral Hamiltonian.

Hε : The risk sensitive Hamiltonian.
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Introduction

Optimization Theory revolves around the task of solving mathematical problems where

the goal is to either minimize or maximize the value of a given function. Optimization

has emerged as a crucial element in research and learning across diverse fields, extend-

ing beyond STEM disciplines to encompass finance, economics, life sciences, genetics,

biology, healthcare and population studies. The subject of optimization is frequently

deliberated upon due to its broad applicability and significance in various areas of study.

The historical roots of optimization theory trace back to as early as 100 BC, where

it was used to calculate the most suitable distance between two points. In the 17th

century, Lagrange tackled the "brachistochrone problem" initially posed by Newton in

1699. Lagrange’s efforts led to the publication of two papers [55, 56]. The first paper,

titled "Essai d’une nouvelle méthode pour déterminer les maxima et les minima des

formules intégrales indéfinies", was released in 1762. The second paper, "Mécanique

Analytique", followed in 1788. Throughout the nineteenth and twentieth centuries, sig-

nificant advancements were made in the development of optimization theorems and

concepts. Nowadays, optimization techniques are applied extensively to enhance the

performance of various tasks, with different techniques yielding different performance

outcomes. According to Oxford dictionary, optimization is a procedure or technique

that can make something ideal and effi cient, where a design system or decision that be-

comes better and better over time using the optimization process could be considered.

According to the Cambridge dictionary, optimization is the practice of making some-
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Introduction

thing as good or as effective as possible. One thing that all of these frequent definitions

have in common is the enhancement of a process, method, design or choice to make

something more effi cient and more effective. Despite being referred to as a process

or methodology, optimization is actually made up of a number of different elements,

including decision factors, constraints and objectives, where constraints are specific con-

ditions that must be met for optimization to generate the intended result (its target),

whereas variables are the most significant and vital guiding factors.

Take for example the bustling rush hour traffi c in major cities like New York, Beijing or

Tokyo. Despite its seemingly chaotic nature, the daily movement of commuters along

main roads follows stochastic patterns. It’s a common expectation that during rush

hours when everyone is heading home from work, congestion is bound to occur, leading

to gridlock on almost every road. Governments must proactively consider strategies to

minimize traffi c flow and regulate it to prevent such bottlenecks. Another intriguing

scenario arises in finance, it’s well-known that salaries in public sectors are typically

disbursed on the same day each month, leading employees to withdraw their wages sim-

ultaneously. This synchronized action significantly increases the likelihood of a wide-

spread financial crash. If for any reason some employees fail to receive their wages on

time, they may resort to strikes, thereby paralyzing the economy further. Governments

must address the potential risks associated with cash shortages, bankruptcy or even

inflation, which could arise if bank accounts are depleted or if individuals are unable to

access their funds.

In the realm of formal and rigorous mathematical frameworks, The programming dy-

namic principle also called Bellmann’s principle and the Pontryagin’s maximum prin-

ciple are the two basic approaches for solving such optimization problems, which we

will discuss in detail in the first chapter. In this thesis, we adopt the latter approach,

specifically Pontryagin’s stochastic maximum principle (also known as the necessary

conditions of optimality) for risk-neutral and risk-sensitive control problems associated

2



Introduction

with dynamics driven by many systems.

The method for solving a linear backward stochastic differential equation (BSDE) which

serves as the adjoint process for a stochastic control problem was initially explored by

Kushner [52] in 1972, followed by Bismut [11], [12] in 1973, then Bensoussan [8] in 1983

and Haussmann [37] in 1998. Pioneering work on the existence of an adapted solution

to a continuous nonlinear BSDE with Lipschitzian coeffi cient was achieved by Pardoux

and Peng in 1990. Subsequently, they expanded upon this theory and its applications

in a series of papers [64, 65, 66, 67], under the assumption that coeffi cients satisfy either

globally or locally Lipschitzian conditions, albeit with certain additional requirements.

For the nonlinear backward stochastic differential equations driven by fractional Brownian

motion (fBm), Hu and Peng achieved a groundbreaking result regarding the existence

and uniqueness of solutions when the Hurst parameter H exceeds one half [44]. Their

approach relied on the utilization of Malliavin calculus and the theory of partial differ-

ential equations (PDEs). A similar results was presented in another study [48]. Various

works have addressed the issue of existence and uniqueness of solutions for stochastic

differential equations (SDEs) driven by fBm. For instance, references [62, 78, 83] discuss

this topic. In [62], the authors explored the existence and measurability of solutions,

while [78] employed approximation techniques and a comparison theorem, subject to

certain conditions of linear growth. In [83], Zhu et al. investigated the aspect of con-

tinuous dependence on the initial state variable. The exploration of controlled dynamics

driven by fBm has been relatively limited in existing literature. Biagini et al. [9] delved

into a stochastic maximum principle (SMP) concerning backward doubly stochastic

differential equations (BDSDEs) driven by an m-dimensional fBm. Their approach in-

volved utilizing an adjoint BSDE driven by fBm alongside a conventional Brownian

motion. Similarly, Han et al. [35] achieved an SMP for a system governed by fBm,

particularly when the Hurst parameter exceeds one-half. Meanwhile, Hu and Zhou

[45] tackled a linear stochastic control problem associated with fBm characterized by

3
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a Hurst parameter less than one-half. Their methodology incorporated the utilization

of the Riccati equation, a type of BDSDE driven by both fBm and standard Brownian

motion. Additionally, Bender [6] examined the explicit solution of a specific class of

linear fractional BSDEs through PDEs, considering the parameter H within the range

]0, 1[ . In [13], the authors employed Malliavin calculus to establish a stochastic max-

imum principle applicable to systems driven by both fractional and standard Wiener

processes, specifically addressing BSDE with quadratic growth.

The fBm presents intriguing characteristics like long-range dependence, prompting us

to explore controlled dynamics driven by fBm due to its broad applicability. However,

fBm doesn’t conform to the properties of either a semi-martingale or a Markov pro-

cess, rendering classical methods like the dynamic programming principle inapplicable.

Hence, we turn to the Pontryagin stochastic maximum principle for guidance.

This thesis addresses two primary objectives. The first objective [39] involves solving a

stochastic control problem for a forward-backward dynamics propelled by an fBm. Our

principal approach to resolving this problem relies on the generalized Itô formula. We

leverage variational calculus techniques to address a stochastic optimization problem,

employing Pontryagin’s SMP. This involves dealing with forward-backward dynamics

governed by an fBm with the Hurst parameter H ∈ (0, 1). The system is characterized

by a nonlinear forward-backward stochastic differential equation (FBSDE)

 dxt = b (t, xt, vt) dt+ σ (t, xt, vt) dB
H
t ,

−dyt = f (t, xt, yt, zt, vt) dt− ztdBH
t .

Recently created and developed stochastic analysis for fBm utilizing Malliavin calcu-

lus. In this study, we demonstrate many principal results can be reached using simple

elementary justifications and calculations. The primary advantage of this approach

over those outlined in previous studies is its ability to define the stochastic integral

for any value of H from 0 to 1. Moreover, it doesn’t necessitate the incorporation of

4



Introduction

fractional white noise theory, since it relies on the well-established theory applicable to

the standard case.

The second objective, as outlined in [40], pertains to the risk-sensitive Pontryagin’s

SMP applied to BSDE driven by fractional Wiener motion

−dyt = f (t, yt, zt, υt) dt− ztdBH
t .

To address this problem, we adopted the approach developed by Djehiche et al. [23],

their contribution can be summarized as follows: they established an SMP for a specific

class of risk-sensitive mean-field type control problems. In these problems, the distri-

bution only influences the mean of the state process, implying that the drift, diffusion

and terminal cost functions are dependent on the state, control and means of the state

process. The necessary and suffi cient optimality conditions for risk-sensitive control

problems, where the systems are driven by an SDE, were investigated by Lim and Zhou

in [57]. Furthermore, Shi and Wu extended this analysis to cases involving nonlinear

forward SDEs with jumps, where the set of admissible controls is characterized as con-

vex, as elaborated in [74]. They also applied these principles to finance as discussed

in [75]. Pontryagin’s SMP applied to risk-sensitive control is discussed in references

[19, 20], focusing particularly on systems driven by BSDEs and SDEs, respectively. For

a more comprehensive exploration of the risk-sensitive SMP in more general cases, you

may find insights in the paper authored by Khallout and Chala [49], this work addresses

FBSDE. Additionally, if you are interested in BDSDEs, relevant insights can be found

in the paper edited by Hafayed and Chala [32], both of which tackle situations where the

admissible control set is convex. In [14], the Malliavin calculus have been employed by

the authors to established an intriguing result on the risk-sensitive maximum principle

for a BSDE driven by an fBm.

5



Introduction

This is a thesis presented for the degree of Doctorate in Mathematics in the field of

probability, and it is organized as follows:

In the first chapter: we provides background on the Control Problem, stochastic pro-

cesses, natural filtration and provide the Wiener and fractional Brownian motion pro-

cesses along with their properties. Additionally, we discussed two prominent methods

for analyzing optimal control: Bellman’s dynamic programming method and Pontry-

agin’s SMP. Towards the end of this chapter, we review various classes of stochastic

control with notable properties for our study, such as admissible control, feedback con-

trols, and relaxed controls....

In the second chapter: We introduce the main tools necessary for our subsequent

analysis. by formulate the problem including the Itô-Russo-Vallois stochastic integral

with respect to fractional Brownian motion. These tools lay the groundwork for present-

ing the first major result of this thesis: Stochastic Controls of Fractional Brownian

Motion. We establish both necessary and suffi cient optimality conditions in the form

of a stochastic maximum principle, preceded by presenting preliminary results on the

solutions and linearization of the state equations.

In the third chapter: We delves into a risk-sensitive control problem, wherein we

aim to optimize a risk-sensitive cost functional for a system driven by a BSDE governed

by an fBm. Initially, we establish optimality conditions for risk-neutral controls as

a preliminary step. The approach involves utilizing an auxiliary state process, which

serves as a solution to certain SDEs, enabling the transformation of our system into one

governed by an FBSDE. Finally, we demonstrate our main result through an illustrative

linear quadratic example.
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Chapter 1

Basic Notations and Stochastic

Control

In this auxiliary chapter, divided into three key sections, We establish the framework

that serves as the foundation for our work throughout this thesis. The initial section

delves into fractional Brownian motion, where we discuss various concepts and results

crucial for proving our findings, including stochastic processes and natural filtration.

Additionally, we introduce this process, extending its properties and associated theor-

ems. The second section, we talk about two distinct approaches for addressing optimal

control problems. Finally, we wrap up the chapter in the concluding paragraph, where

we touch upon some classes of stochastic control.

Furthermore, those interested in further details on the subsequent sections can refer to

[10, 31, 53, 61, 68].
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Chapter 1. Basic Notations and Stochastic Control

1.1 Fractional Brownian motion

Many instances of non semi-martingale processes can be found in gaussian processes.

Fractional Brownian motion is one of the most common Gaussian processes, and its

covariance function is especially straightforward.

1.1.1 Stochastic processes

Let T be a nonempty index set, and consider the probability space (Ω,F ,P), where Ω

represents the sample space, F is the sigma-algebra of events, and P is the probability

measure. In the context of control theory, a crucial concept of the stochastic process is

defined as a family X = (X (t) , t > 0) of random variables from the probability space

(Ω,F ,P) to Rn.

The function associating each time point t to the appropriate valueX(t, w) (t→ X(t, w))

for any w in Ω is called a sample path. With this stochastic framework, systems influ-

enced by random variables may be effectively modeled, and capturing their evolution

across time in a probabilistic manner.

1.1.2 Natural filtration

Natural filtration (the filtaration generated) plays a crucial role in the domain of

stochastic processes, specifically when it comes to the stochastic process {X(t) : t ∈ T}

on the probability space (Ω,F ,P). Denoted by FXt , it represents the natural filtra-

tion of X and has the formula FXt = σ(Xs, 0 ≤ s ≤ t). This filtration retains the

information producing up to the time t, created by the whole historical trajectory of

the process leading up to that moment, illuminating on the dynamics of the process

as it changes and providing a critical foundation for comprehending the interaction of

random variables over time.

10



Chapter 1. Basic Notations and Stochastic Control

1.1.3 Brownian motion

Let (Wt)t≥0 be a process on the space (Ω,F ,P), We say that the process (Wt)t≥0 is a

standard Brownian motion if:

1)P [W0 = 0] = 1.

2) For all 0 ≤ s ≤ t, the random variable Wt −Ws follows a normal distribution center

with variation (t− s), (Wt −Ws  N (0, t− s)) .

3) The mapping t→ Wt, is continuous P p.s.

4) (Wt)t≥0 has independent increments i.e: for any 0 < t1 < t2 < ... < tn, the variables

Wtn −Wtn−1 , ...,Wt1 −Wt0 ,Wt0 are independents.

1.1.4 Fractional Brownian motion

Kolmogorov was first described the fractional Brownian motion in 1940 in [50], under

the name Wiener Helix, within a Hilbert space framework, then Yaglom continued to

research it in [79]. The term fractional Brownian motion is credited to Mandelbrot and

Van Ness, who published in 1968 a stochastic integral formulation of this process in

terms of a normal Brownian motion in [59].

Definition 1.1 An fBm BH =
(
BH (t) : 0 ≤ t ≤ T

)
with Hurst index H ∈ ]0, 1[, is a

continuous and centered Gaussian process with covariance function

E[BH (t)BH (s)] =
1

2
(t2H + s2H − |t− s|2H),∀s, t ∈ [0, T ].

For H = 1
2
then the fBm is a Brownian motion.

According the above definition, the fBm has the following properties:

• BH(0) = 0 and E
[
BH (t)

]
= 0 for all t ≥ 0.

11



Chapter 1. Basic Notations and Stochastic Control

• The process BH(t + s) − BH(s) has the same law of BH(t) for s, t ≥ 0. (homo-

geneous increments).

• BH has continuous trajectories.

• BH is a Gaussian process and E
[
BH (t)2] = t2H , t ≥ 0, for all H ∈ ]0, 1[ .

• BH is a semimartingale if and only if H = 1
2
.

• BH is a Markov process if and only if H = 1
2
.

• The mbf of the parameter H is order self-similarity H.

• The mbf has a long memory, if H > 1
2
and it has a short memory if H < 1

2
.

Remark 1.1 If you are interested in proofs of these properties, you may consult [38].

The existence of the fBm comes from the general existence theorem of centered Gaussian

processes with given covariance functions. (see [69]).

The fBm is divided into two common families according to the value of H and they are:

0 < H < 1/2 and 1/2 < H < 1 (if we consider that H = 1/2 as an independent case),

and there is also another case which takes up the whole value of index H . In our work,

we are intrested about this most recent situation.

Mandelbrot named the H parameter "Hurst parameter" after the British hydrologist

Harold Edwin Hurst, who made a statistical study of yearly water run-offs of the Nile

river. He took into account the values of η1, ..., ηd of d-consecutive annual run-offs and

their corresponding cumulative value ∆d =
∑d

j=1 ηj for the years 662 through 1469.

The behavior of the normal values for the amplitude of deviation from the experimental

mean, discovered by Harold Edwin Hurst in the case where H = 0.7, was almostly cdH .

Furthermore, with H > 1/2, the distribution of ∆d =
∑d

j=1 ηj was quite similar to

that of dHη1. As a result, this phenomenon could not be represented by a process

with independent increments; rather, we can be consider the ηj as an increments of an

12
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fBm. Mandelbrot coined the term Hurst index as a result of this research (see [46]).

There have been several recent approaches introducing integral representation for the

fractional Brownian motion. One might see [22, 63, 76], and the references therein for

more information on these approaches.

By the approach of Mandelbrot et al. in [59], have proven that the process

Z (t) = 1
Γ(H+1/2)

∫
R

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dB (s)

= 1
Γ(H+1/2)

(∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dB (s)

+
∫ t

0
(t− s)H−1/2 dB (s)

)
,

(1.1)

where B(t) is a standard Brownian motion and Γ represents the gamma function given

by ∀n > 0, Γ (n) = (n− 1)!, is an fBm with Hurst index H ∈ ]0, 1[ . The integral (1.1)

yields the complex fBm if B(t) is changed to a Brownian motion with complex values.

By adhering to [63], we sketch a proof for the representation (1.1). Additional details

can be found in [72].

Initially, it is observed that Z (t) constitutes a continuous centered Gaussian process.

Therefore, our focus shifts to computing the covariance functions. Throughout the

subsequent calculations, we omit the constant 1
Γ(H+1/2)

for the sake of simplicity. The

result yields

E [Z2 (t)] =
∫
R

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)2

ds.

Incorporating the change of variable s = tu, we arrive at the following expression:

E [Z2 (t)] = t2H
∫
R

(
(1− u)H−1/2

+ − (−u)H−1/2
+

)2

du

= t2HC (H) .

13
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Similarly, we find that

E
[
|Z (t)− Z (s)|2

]
=

∫
R

(
(t− u)H−1/2

+ − (s− u)H−1/2
+

)2

ds

= |t− s|2H C (H) .

As we know that

E
[
|Z (t)− Z (s)|2

]
= E [Z2 (t)] + E [Z2 (s)]− 2E [Z (t)Z (s)] .

Then

E [Z (t)Z (s)] =
1

2

(
t2H + s2H − |t− s|2H

)
.

Therefore, we can deduce that Z (t) is an fBm with a Hurst index of H. Now, we

present the following generalization of Itô formula.

Theorem 1.1 (A fractional Itô formula) Let H be in ]0, 1[, assume that ψ (s, x) :

R× R→ R belongs to C1,2 (R× R), and assume that the random variables

ψ
(
t, BH

t

)
,

∫ t

0

∂ψ

∂s

(
s, BH

s

)
ds and

∫ t

0

∂2ψ

∂x2

(
s, BH

s

)
s2H−1ds,

are square integrable, for all t ∈ [0, T ] . Then

ψ
(
t, BH

t

)
= ψ (0, 0) +

∫ t

0

∂ψ

∂s

(
s, BH

s

)
ds+

∫ t

0

∂ψ

∂x

(
s, BH

s

)
dBH

s

+H

∫ t

0

∂2ψ

∂x2

(
s, BH

s

)
s2H−1ds.

Remark 1.2 This formula is formulated in terms of The Wick Itô Skorohod integral

(WIS integral) and holds for every H ∈ ]0, 1[ .

Proof. see [10].

Lemma 1.1 [25] Let BH
t be a fractional Brownian motion, and u (s) be a stochastic

14
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process, For every T <∞, there exists a constant C (H,T ) = HT 2H−1 such that

E

[(∫ T

0

utdB
H
t

)2
]
≤ C (H,T )E

[∫ T

0

u2
tdt

]
. (1.2)

Proposition 1.1 Let η a deterministic continuous function, then

E

[(∫ T

0

ηtdB
H
t

)2
]

= E
[∫ T

0

η2
t d
〈
BH
t

〉]
.

All distributional uncertainty associated with the fractional Brownian motion is con-

centrated in
〈
BH
t

〉
. From the above, we can discernible that

E

[(∫ T

0

ηtdB
H
t

)2
]

= E
[
H

∫ T

0

η2
t t

2H−1dt

]
.

Lemma 1.2 Let ϑ and % are two process, suppose that

E
[∫ T

0

(
|ϑi (t)|2 + |%i (t)|2

)
ds

]
<∞, for i = 1, 2.

If we put: K (t) =
∫ t

0
ϑ1 (s) ds +

∫ t
0
ϑ2 (s) dBH

s and L (t) =
∫ t

0
%1 (s) ds +

∫ t
0
%2 (s) dBH

s .

Then we have

(KL) (t) =

∫ t

0

K (s) %1 (s) ds+

∫ t

0

K (s) %2 (s) dBH
s

+

∫ t

0

L (s)ϑ1 (s) ds+

∫ t

0

L (s)ϑ2 (s) dBH
s + 〈K,L〉t

Or in the context of differential notation:dK (t) = ϑ1 (t) dt+ ϑ2 (t) dBH
t and

dL (t) = %1 (t) dt+ %2 (t) dBH
t . Then

d (KL) (t) = K (t) dL (t) + L (t) dK (t) + d 〈K,L〉t

In this case the quadratic covariation is 〈K,L〉t = H
∫ t

0
ϑ2 (t) %2 (t) t2H−1dt.
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In the next, We introduce Girsanov’s theorems, it plays an important role in the ap-

plication, especially in economics and optimal control.

Girsanov’s type transformation

Girsanov’s theorem is used frequently since it transforms a class of processes to Brownian

motion with an equivalent probability measure transformation. At first we give the

definition of equivalent probability measures.

Definition 1.2 Let
(

Ω,F ,
(
FHt
)
t∈[0,T ]

,Q1

)
, and Q2 be another probability measure.

We say that Q1 is equivalent to Q2 | FT if and only if

Q1 | FT � Q2 and Q2 | FT � Q1,

and we write Q1 | FT ∼ Q2. or equivalently if Q1 and Q2 have the same zero sets in

FT .

The theorem presented below is regarded as an extension of the conventional probability

transformation theorem introduced by I. W. Girsanov [28].

Theorem 1.2 Let T ≥ 0, and let ϕ be a continuous function with suupϕ ⊂ [0, T ]. Let

l be a function with suppl ⊂ [0, T ] , On the σ-algebra FHT , generated by the process{
BH
s : 0 ≤ s ≤ T

}
, a probability measure Q can be defined as

Q
P

:= exp

{
−
∫ t

0

l (s) dBH
s −

1

2
l2 (s)Ht2H−1dt

}
.

Then B̃H
t := BH

t +
∫ t

0
ϕ (s) ds, 0 ≤ t ≤ T, is a fractional Brownian motion under Q.

Proof. The reader can see [10].
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1.2 Approaches for resolving optimal control prob-

lems.

There are two main techniques for study optimal control: Bellman’s dynamic program-

ming method and Pontryagin’s maximum principle stochastic.

1.2.1 Dynamic programming method

In this section we are discussing a valuable approach to solving optimal control problems

following the dynamic programming technique that was pioneered in the early 1950s by

R. Bellmane. This mathematical technique is adept at addressing a sequence of inter-

connected decisions and can be used to a wide range of various optimization cases par-

ticularly those posed by optimal control problems. The major idea behind this method

utilized for optimal control is to look at a family of optimal control problems, each

with different initial conditions and states. The connections between these problems

are clarifies through the Hamilton-Jacobi-Bellman equation (HJB), a nonlinear first-

order equation in deterministic cases or a second-order equation in stochastic cases of

PDEs. Resolving the HJB equation, whether analytically or numerically, enables the

derivation of optimal feedback control by maximizing or minimizing the Hamiltonian or

generalized Hamiltonian embedded within the HJB equation which is a process referred

to as the authentication technique.

Notably, This approach provides solutions for the complete set of problems , each char-

acterized by unique initial conditions and states. However, the classical dynamic pro-

gramming approach had a major flaw: it required the HJB problem to admit classical

solutions, which implied that the solutions had to be suffi ciently smooth (relative to the

order of derivatives in the equation). To get over this restriction, Crandall and Lions

proposed the so-called viscosity approaches in the early 1980s. This new paradigm is
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a non-smooth method of solving partial differential equations, fundamentally replacing

conventional derivatives with (set-valued) super-/sub-differentials while ensuring the

uniqueness of solutions under extremely mild conditions. The HJB equation may also

lack classical solutions, particularly in the stochastic case where diffusion can degener-

ate.

The Bellman principle

Consider a filtered probability space (Ω,F , (Ft)t∈[0,T ] ,P) satisfying the usual conditions,

Let W (t) be a Brownian motion valued in Rd, denote by A the set of all progressively

measurable processes {u(t), t ≥ 0} valued in U ⊂ Rk. Also given a positive constant T

and a metric space U , for any (s, y) ∈ [0, T )×Rn, we consider the following stochastic

controlled system

 dy (t) = a (t, y (t) , u (t)) dt+ b (t, y (t) , u (t)) dW (t) ,

y (0) = y,
(1.3)

where

a : [0, T ]× Rn × U → Rn, b : [0, T ]× Rn × U → Rn×d,

be two given functions satisfying, for some constant C > 0 :

|a(t, y(t), u(t))− a(t;x(t), u(t))|+ |b(t, y(t), u(t))− b(t;x(t), u(t))|

|a(t, y(t), u(t))|+ |b(t, y(t), u(t))|

≤ C |y − x| ,

≤ (1 + |y (t)|) ,

this above conditions is to ensure the existence and uniqueness of the solution to SDE

1.3.

We define the cost functional associated with equation 1.3 as following:

J (t, y, u) = E
[∫ T

t

l (s, y(s), u(s)) ds+ g (y (T ))

]
, (1.4)
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where l : [0, T ]×Rn ×U → R and g : Rn → R be also two given functions, we suppose

that

l (s, y, u) ds+ g (y) ≤ C
(
1 + |y|2

)
, (1.5)

where C is constant.

The quadratic growth condition expressed in equation 1.5 serves to guarantee the well-

definedness of the functional J . This condition ensures that the associated cost func-

tional possesses a growth rate proportional to the square of the state variables or related

quantities. Dynamic programming stands as a foundational principle in stochastic con-

trol theory, and we present a rendition of the stochastic Bellman’s optimality principle.

We recommend reading papers by Lions [58], Krylov [51], Yong and Zhou [80], Fleming

and Soner [26], for in-depth mathematical analysis of this problem. The goal here is

to maximize the gain function, leading us to introduce what is known as the value

function.

Definition 1.3 We define the value function of the original Problem


V (s, x) = inf

u(.)∈U
J (t, x, u (.)) ,∀ (s, x) ∈ [0, T ]× Rn,

V (t, x) = g (x) ,∀x ∈ Rn.

Assumption 1.1 It’s important to note that for the value function J (t, x, u (.)) to be

well-defined, the functions a, b, l and g must satisfy the following conditions:

- The functions a, b, l and g are uniformly continuous.

- (U, d) is polish space (complete separable metric space).

Theorem 1.3 Under the above conditions, for any (t, y) ∈ [0, T ]× Rn be given. Then

we have

V (t, y) = inf
u(.)∈U

E
[∫ t+h

t

l (s, y(s), u(s)) ds+ V ((t+ h) , x (t+ h))

]
,∀t ≤ t+ h ≤ T.

(1.6)
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Proof. The technical proof of the dynamic programming principle has been studied

through various methods. For a detailed understanding, we direct the reader to the

work of Yong and Zhou [80].

The Hamilton-Jacobi-Bellman equation

Now, we present the Hamilton-Jacobi-Bellman (HJB) equation, representing the infin-

itesimal form of the dynamic programming principle.

Proposition 1.2 Let the conditions in assumption 1.1 hold. Then the value function

V (s, x)satisfies the following:

1. |V (s, x)| ≤M (1 + |x|) ,∀ (t, y) ∈ [0, T ]× Rn,M > 0.

2. |V (s1, x1)− V (s2, x2)| ≤ M
{
|x1 − x2|+ (1 + |x1| ∨ |x2|) |s1 − s2|

1
2

}
, ∀x1, x2 ∈

Rn, ∀s1, s2 ∈ [0, T ], (p ∨ q = max (p, q)) .

3. If V ∈ C1,2 ([0, T ]× Rn) . Then V is a solution of a second-order partial differen-

tial equation:

 −v (t) + supG (t, y, u,−vy,−vyy) = 0, (t, y) ∈ [0, T ]× Rn,

v|t=T = g (y) , y ∈ Rn,
(1.7)

where, the function G(t, y, u, p, P ) is called the generalized Hamiltonian and is

defined as G(t, y, u, p, P ) = 1
2
tr
(
Pb(t; y, u)b(t; y, u)T

)
+ (p, l (t, s, u))− l (t, y, u) .

Viscosity Solutions

Regular solutions, specifically those outside of C1,2([0, T ]×Rn), are typically not admit-

ted by the HJB equation. To address this shortcoming, Crandall and Lions (1983) [27]

introduced viscosity solutions, offering a remedy for the lack of regularity in solutions.
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Definition 1.4 1. A function v ∈ C([0, T ] × Rn) is referred to as a viscosity super-

solution of equation 1.7 if

v (T, y) ≥ g (y) ,∀y ∈ Rn,

and for ψ ∈ (C1,2 × Rn) , whenever v−ψ attains a local minimum at (t, y) ∈ [0, T ]×Rn,

we have

−ψt(t, y) + sup
u∈U

G(t, y, u,−ψy(t, y),−ψyy(t, y)) ≥ 0.

2. A function v ∈ C([0, T ] × Rn) is referred to as a viscosity sub-solution of equation

1.7 if

v (T, y) ≤ g (y) ,∀y ∈ Rn,

and for ψ ∈ (C1,2 × Rn) , whenever v−ψ attains a local maximum at (t, y) ∈ [0, T ]×Rn,

we have

−ψt(t, y) + sup
u∈U

G(t, y, u,−ψy(t, y),−ψyy(t, y)) ≤ 0.

3. A function v ∈ C([0, T ]×Rn)is referred to as a viscosity solution of 1.7 if it is both

a viscosity supersolution and viscosity sub-solution of equation 1.7.

Theorem 1.4 Assuming that conditions of assumption 1.1 are satisfied, the value func-

tion V is considered a viscosity solution of equation 1.7.

The classical verification

The traditional verification method involves seeking a smooth solution to the HJB

equation and subsequently verifying that this proposed solution aligns with the value

function, subject to specific and appropriate conditions. Commonly referred to as a

verification theorem, this outcome not only confirms the solution’s validity but also

yields an optimal control. The specifics of a verification theorem may vary depending

on the unique aspects of each problem, dictated by the necessary technical conditions.

It is crucial to tailor these conditions to the specific context of the given problem. For
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more information about classical verification and its theories, we refer the reader to the

book Yong & Zhou [80].

1.2.2 Pontryagin’s maximum principle

Kushner laid the groundwork for the stochastic maximum principle, and subsequent

significant contributions to this field have been made by researchers such as Bensous-

san, Peng and others. In the realm of optimization and control problems, the conven-

tional approach involves ensuring that optimal solutions meet the necessary conditions.

The proposition here is to employ a precise calculus of variations on the gain function

J (t, x, .), specifically with respect to the control variable. This method aims to derive

the essential optimality conditions.

The Maximum Principle introduced by Pontryagin in the 1960s, dictates that the op-

timal state trajectory should satisfy the Hamilton system and adhere to the max-

imum condition of a function known as the generalized Hamilton. Generally, solving a

Hamilton is expected to be more tractable task compared to solving the original con-

trol problem. The Pontryagin Maximum Principle in its original form was developed

for deterministic concerns. Following a concept akin to the traditional variance cal-

culus, the fundamental approach entails perturbing the optimal control and utilizing

a Taylor expansion for both the state trajectory and the objective functional centered

around the optimal control. By transmission a perturbation to zero, any inequality can

be derived, and through duality, the maximum principle is expressed in terms of an

adjoint variable. During the 1970s, Bensoussan, Bismut, Haussmann and Kushner in

[8, 11, 12, 37, 52]. They played a significant role in the extensive development of the

initial version of the stochastic maximum principle. However, it’s important to note

that during that period, the outcomes were primarily derived under the assumption of

no control over the coeffi cient of diffusion. For example, Haussmann and Suo [36] delved

into the maximum transformation principle of Girsanov, and this constraint elucidates
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why this approach is ineffective when dealing with control dependent and degenerate

diffusion coeffi cients, as evidenced in [33, 34].

However, Peng was the one to derive the first version of the stochastic maximum prin-

ciple, wherein the diffusion coeffi cient is directly influenced by the control variable,

and the control domain is not necessarily convex. Peng achieved this by examining the

second-order term in Taylor’s expansion of the perturbation method arising from the Itô

integral. Through this exploration, he established the maximum principle applicable to

potentially degenerating and control-dependent diffusion. Notably, this formulation en-

compasses not only the first-order adjoint variable but also introduces the second-order

adjoint variable. These adjoint variables find their definition in what is now recognized

as BSDE. In 1973, Bismut initially proposed linear BSDE. It’s worth mentioning that

Pardoux and Peng established the uniqueness and existence theorem for solutions of

nonlinear BSDE driven by Brownian motion in 1990, subject to the Lipschitz condition.

Presently, BSDE theory holds significant importance not only in addressing problems

related to stochastic optimal control but also in the broader realm of mathematical

science. It plays a crucial role in areas such as hedging and nonlinear pricing theory,

particularly in the context of imperfect markets.

The maximum principle

We present an outline of the derivation process for the maximum principle in the context

of a deterministic control problem. Within this framework, let’s consider the stochastic

controlled system ∀t ∈ [0, T ]

dxt = a (t, xt, ut) dt; x0 = κ, (1.8)

where a : [0, T ]× R×U → R.

The action space U is defined as a subset of the real numbers R, and the fundamental

objective is to minimize a cost function structured in the following form:
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J (u (.)) =

∫ T

0

c (t, xt, ut) dt+ g (x (T )) ,

where c : [0, T ]× R×U → R and g : R→ R.

In this context, the function c imposes a running cost, while the function g imposes a

terminal cost. For any u∗ ∈ U satisfying J (u∗ (.)) = inf
u
J (u (.)) , it is referred to as an

optimal control.

We proceed by assuming the existence of an optimal control (t). To derive necessary

conditions for optimality, we introduce small perturbations to the optimal control

uε (t) =

 v for τ − ε ≤ t ≤ τ,

u∗ (t) otherwise.

Where uε is the spike variation of u∗

The solution to equation 1.8 with the control uε (t) is represented by xε (t). we put that

x∗ (t) and xε (t) are equal up to t = τ − ε, and that

xε (τ)− x∗ (τ) = (a (τ, xε (τ) , v)− a (τ, x∗ (τ) , u∗ (τ))) ε+ o(ε) (1.9)

= (a (τ, x∗ (τ) , v)− a (τ, x∗ (τ) , u∗ (τ))) ε+ o(ε)

The second equality is valid because xε (τ)−x∗ (τ) is of order ε. Examining the Taylor

expansion of the state with respect to ε, we put z (t) = ∂
∂ε
xε (t) |ε=0, in other words,

the Taylor expansion of xε (t) is expressed as: xε (t) = x∗ (t) + z (t) ε+ o(ε).

and from 1.9, we get

z (τ) = a (τ, x∗ (τ) , v)− a (τ, x∗ (τ) , u∗ (τ)) . (1.10)
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We will employ duality to derive a more explicit necessary condition. For this purpose,

we introduce the adjoint equation: dΨ (t) = −ax (t, x∗t , u
∗
t ) Ψ (t) dt, where t ∈ [0, T ] ,

and Ψ (T ) = gx (x∗ (T )) .

Considering the terminal condition for the adjoint equation, we obtain:

Ψ (t) z (t) = gx (x∗ (T )) z (T ) ≥ 0, for all 0 ≤ t ≤ T.

Especially, by 1.10: Ψ (τ) (a (τ, x∗ (τ) , v)− a (τ, x∗ (τ) , u∗ (τ))) ≥ 0.

As τ was selected arbitrarily, this is equivalent to:

Ψ (t) a (t, x∗ (t) , u∗ (t)) = inf
v∈U

Ψ (t) a (t, x∗ (t) , v) , for all 0 ≤ t ≤ T.

By performing the computations again for this two-dimensional system, we can deduce

the necessary condition.

H (t, x∗ (t) , u∗ (t) ,Ψ (t)) = inf
v
H (t, x∗ (t) , v,Ψ (t)) , for all 0 ≤ t ≤ T, (1.11)

where H is the Hamiltonian, (sometimes defined with a minus sign, which transforms

the minimum condition above into a maximum condition) define as H (x, u,Ψ) =

c (x, u) + Ψa (x, u) . The adjoint equation is expressed as:

 dΨ (t) = − [cx (t, x∗ (t) , u∗ (t)) + ax (t, x∗ (t) , u∗ (t)) Ψ (t)] dt,

Ψ (T ) = gx (x∗ (T )) .
(1.12)

The Hamiltonian system for our control problem is determined by the minimum con-

dition 1.11 along with the adjoint equation 1.12.

The stochastic maximum principle

Stochastic control is the extension of optimal control, it is recognizes and accommodates

25



Chapter 1. Basic Notations and Stochastic Control

uncertainties in the system by incorporating SDE instead of deterministic ones:

dxt = a (t, xt, ut) dt+ b (t, xt) dBt, t ∈ [0, T ] . (1.13)

The functions a and b are deterministic, and the last term represents an Itô integral with

respect to a Brownian motion B, defined on a probability space (Ω,F , (Ft)t∈[0,T ] ,P).

In more general cases, the diffusion coeffi cient b can explicitly depend on the control

variable as follow

dxt = a (t, xt, ut) dt+ b (t, xt, ut) dBt, t ∈ [0, T ] . (1.14)

The optimal control problem we are addressing involves over the control space U [0, T ]

minimizing the following cost functional J (u (.)) = E
[∫ T

0
c (t, xt, ut) dt+ g (x (T ))

]
.

For the case 1.13, the adjoint equation is expressed as the following BSDE:


−dΨ (t) = [ax (t, x∗ (t) , u∗ (t)) Ψ (t) + bx (t, x∗ (t))P (t) + cx (t, x∗ (t) , u∗ (t))] dt,

− P (t) dB (t) ,

Ψ (t) = gx (x∗ (T )) .

(1.15)

A solution to this BSDE is a pair (Ψ (t) , P (t)) that satisfies 1.15. The Hamiltonian is:

H (x, u,Ψ (t) , P (t)) = c (t, x, u) + a (t, x, u) Ψ (t) + b (t, x)P (t) ,

and the maximum principle reads for all 0 ≤ t ≤ T ,

H (t, x∗ (t) , u∗ (t) ,Ψ (t) , P (t)) = inf
u∈U

H (t, x∗ (t) , u,Ψ (t) , P (t)) P−a.s.

Notably, there is a third case to consider: when the state is described by 1.14, but the
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action space U is supposed to be convex, it is potential to derive the maximum principle

in a local form. This is achieved by employing a convex perturbation of the control

instead of a spike variation, as detailed in Bensoussan [7], and the necessary condition

for optimality in this case is expressed as follows:

E
[∫ T

0

Hu (t, x∗ (t) , u∗ (t) ,Ψ∗ (t) , P ∗ (t)) (u− u∗ (t))

]
≥ 0, for all 0 ≤ t ≤ T.

1.3 Some classes of stochastic controls

Consider a filtered probability space (Ω,F ,Ft≥0,P) that is complete.

1.3.1 Relaxed control

The concept is to condense the control space U by broadening the definition to en-

compass the space of probability measures on U . The collection of relaxed controls

µt(du)dt, where µt is a probability measure, is the closure under the weak topology of

the measures δu(t)(du)dt associated with conventional or strict controls. The introduc-

tion of this idea of relaxed control is credited to Young in the context of deterministic

optimal control problems [81].

In the researchs of Chala [15, 16, 17, 18]. This control type has applied, employing the

stochastic maximum principle to fully coupled forward-backward doubly systems and

Mean-Field SDEs systems with Poisson jumps, along with its application to the LQ

problem.

1.3.2 Random horizon

In the classical problem, the time horizon is predetermined, extending until a determ-

inistic terminal time T . However, in certain practical applications, the time horizon
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may be subject to randomness, and the cost functional is expressed as follows

J (u (.)) = E
[
h (x (τ)) +

∫ τ

0

h (t, x (t) , y (t) , u (t)) dt

]
,

where τ is a finite random time.

1.3.3 Admissible control

An admissible control is an Ft-adapted process u(t) with values in a Borelian set A ⊂

Rn, meeting certain conditions specific to the given problem.

1.3.4 Feedback control

We define v(·) as a feedback control if the control v(·) is contingent upon the state

variable X (.). Specifically if FXt represents the natural filtration generated by the

process X, then v(·) qualifies as a feedback control if it is adapted to FXt .

1.3.5 Optimal control

The objective of the optimal control problem is to minimize (or maximize) a cost

function J (u) within the set of admissible controls U . The control u′(·) is consider as an

optimal control for all u (t) ∈ U , if J (u′ (t))−J (u (t)) ≤ 0 (or J (u′ (t))−J (u (t)) ≥ 0).

1.3.6 Near-optimal control

Let ε > 0, a control is considered as a near—optimal control (or ε-optimal) if for any

control u (.) ∈ U we have

J (uε (t))− J (u (t)) ≤ ε,

for more details about this type, the reader can see [80].
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1.3.7 Ergodic control

In certain stochastic systems, a prolonged duration may reveal a stationary behavior

marked by an invariant measure. If such a measure exists, it is derived through the

average of states over an extended period. An ergodic control problem involves op-

timizing a criterion over the long term, considering this invariant measure. The cost

functional is expressed as:

lim
T→+∞

sup
1

T
E
[∫ T

0

f (x (t) , u (t)) dt

]
.

For a more comprehensive understanding, the reader can refer to Pham [68].

1.3.8 Robust control

In the problems stated above, we assume that the dynamics of the control system are

both known and constant. Robust control theory provides a methodology for evaluating

how the performance of a control system is affected by variations in system parameters.

This is particularly crucial in engineering systems and has more recently found applic-

ations in finance, particularly in connection with the theory of risk measures initiated

by Artzner et al. [3].

It has been demonstrated that a coherent risk measure for an uncertain payoff XT at

time T is represented by

ρ (−XT ) = sup
Q∈K

EQ [XT ] ,

where K is a set of absolutely continuous probability measures concerning the original

probability P. In a more general sense, a risk measure can be defined as

ρ (−XT ) = − inf
Q∈Q

EQ [U (−XT )] ,
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where U is a concave and nondecreasing function. In the realm of finance, these robust

optimization problems have been the subject of recent studies in [29] and [73].

1.3.9 Partial observation control problem

Up to this point, the assumption has been that the controller possesses complete ob-

servations of the state system. In various practical situations, the controller is often

limited to partial observations of the state through additional variables, and the ob-

servation process is subject to inherent noise. For instance, in financial models, one

might observe the asset price without having complete information about its rate of

return and/or volatility. Consequently, portfolio investment decisions are based solely

on the available asset price information. This scenario gives rise to a partial observation

control problem, which can be generally formulated as follows:

A controlled signal (unobserved) process is governed by the SDE

dXt = α (t, xt, yt, ut) dt+ β (t, xt, yt, ut) dBt,

and an observation process dYt = λ (t, xt, yt, ut) dt + δ (t, xt, yt, ut) dWt, where W (t)

represents another Brownian motion, potentially correlated with B (t). The control

u (t) is adapted concerning the filtration generated by the observation FY =
(
FYt
)
.

we find this type of control in works of Lakhdari et al. [1, 2, 54, 60].

1.3.10 Singular control

An admissible control is defined as a pair (u(·), ξ(·)) consisting of measurable processes

taking values in A1 × A2, both are Ft-adapted. Additionally, ξ(·) is required to be of

bounded variation, non-decreasing, continuous on the left with right limits and ξ(0−) =

0. It is noteworthy that dξ(t) might be singular concerning Lebesgue measure dt;
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hence, ξ (.) is referred to as the singular part of the control, while the process u(·) is its

absolutely continuous part.

This control has been demonstrated with stochastic maximum principle in the works

of Chala [4, 5, 20], and of Guenane et al. [30].

31



Chapter 2

Stochastic Maximum Principle for

Risk-Neutral Control Problem

In this chapter, we introduce the first main result of this thesis: Stochastic controls of

fractional Brownian motion. we aime to solving a stochastic optimization problem for a

forward-backward stochastic differential equations (FBSDE) and we extracted it from

our work [39]. For all 0 ≤ t ≤ T,

 dxvt = b (t, xvt , vt) dt+ σ (t, xvt , vt) dB
H
t , x

v
0 = κ,

dyvt = −f (t, xvt , y
v
t , z

v
t , vt) dt+ zvt dB

H
t , y

v
T = ξ.

The cost functional associated with the system is

J (v) = E
[
l (xvT ) + g (yv0) +

∫ T

0

h (t, xvt , y
v
t , z

v
t , vt) dt

]
.

we consider the control u as an optimal one if it solve J (u) = infv∈U J (v) .

Our goal in this chapter is to derive the necessary as well as suffi cient conditions of

optimality for this model. We give the results in the form of an SMP. On which

the domain of controls is convex. Firstly, we establish these necessary conditions by

employing the convex perturbation method. Specifically, if we denote u as an optimal
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control and v as any arbitrary control, we can create a perturbed control, denoted as

uθt = ut + θvt, for each t ∈ [0, T ], with θ > 0 being suffi ciently small, by utilizing some

assumptions on the coeffi cients, we then derive the SMP in the global form.

2.1 Problem formulation

Let T be a positive real number, we define BH =
(
BH
t

)
t≥0

, a one-dimensional fractional

Brownian motion with Hurst parameter H ∈ ]0, 1[ , on a probability space (Ω,F ,P).

Let N denote the class of P−null sets of F , we provide the space (Ω,F ,P) by the

natural filtration of the fBm BH , FHt = σ
(
BH
s , 0 ≤ s ≤ t

)
∨N for each t ∈ [0, T ] , such

that
(

Ω,F ,
(
FHt
)
t≥0

,P
)
satisfying the usual conditions.

We will work in the following spaces throughout this chapter:

M2 ([0, T ] ,R) := FHt -adapted processes φ such that E
[∫ T

0

|φt|2 dt
]
<∞,

K2 ([0, T ] ,R) := FHt -adapted processes φ such that E
[∫ T

t

(
Hs2H−1 − 1

)
|φs|2 ds

]
<

∞, for every H ∈
]

1
2
, 1
[
when s ∈ ]1, T ] , and H ∈

]
0, 1

2

[
when s ∈ [t, 1[ , respectively.

Let U be a closed, convex, nonempty subset of R.

Definition 2.1 An admissible control v is an FHt −adapted process assuming values in

U, where it satisfies

E
[∫ T

0

|vt|2 dt
]
<∞. (2.1)

We denote the set of all admissible controls by U , which we suppose convex.

Now, we consider the following FBSDE for all v ∈ U , t ∈ [0, T ]

 dxvt = b (t, xvt , vt) dt+ σ (t, xvt , vt) dB
H
t , x

v
0 = κ,

dyvt = −f (t, xvt , y
v
t , z

v
t , vt) dt+ zvt dB

H
t , y

v
T = ξ.

(2.2)

This system is associated with a cost functional defined as:

33



Chapter 2. Stochastic Maximum Principle for Risk-Neutral Control Problem

J (v) = E
[
l (xvT ) + g (yv0) +

∫ T

0

h (t, xvt , y
v
t , z

v
t , vt) dt

]
, (2.3)

where

f, h : [0, T ]× R× R× R× U → R,

b, σ : [0, T ]× R× U → R,

and l, g : R → R.

κ is an FH0 −adapted random variable and the final condition ξ is an FHT -adapted and

square integrable random variable.

Note that the integral with respect to the fBm BH
t is in the Russo-Vallois sense.

The optimal control problem involves minimizing the functional J over the set U . If

u ∈ U is an optimal control (solution), then

J (u) = inf
v∈U
J (v) . (2.4)

A control that satisfies the conditions (2.2), (2.3) and (2.4) is called optimal. Our

aim is to derive both necessary and suffi cient optimality conditions for a given control.

specifically in the context of stochastic maximum principle performance functional.

Assumption 2.1 To ensure the well-posedness of the control problem defined by equa-

tions (2.2), (2.3), and (2.4), we suppose

(H1) There exist constants γ, ζ > 0, such that for any (w, t) ∈ Ω × [0, T ] ; (xi, ui) ∈

R× U and (xi, yi, zi, ui) ∈ R× R× R× U , i = 1, 2; we have

|b (t, x1, u1)− b (t, x2, u2)|2 ≤ ζ
(
|x1 − x2|2 + |u1 − u2|2

)
.

|σ (t, x1, u1)− σ (t, x2, u2)|2 ≤ ζ
(
|x1 − x2|2 + |u1 − u2|2

)
.

|f (t, x1, y1, z1, u1)− f (t, x2, y2, z2, u2)|2 ≤ γ
(
|x1 − x2|2 + |y1 − y2|2 |z1 − z2|2 + |u1 − u2|2

)
.
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(H2) The functions b and σ are continuously differentiable with respect to (x, u) .

(H3) The functions f and h are continuously differentiable with respect to (x, y, z, u) .

(H4) The derivatives bx, bu, σx, σu, fx, fy, fz, fu, hx, hy, hz, hu, b2
x, f

2
x and f

2
z are bounded.

(H5) The functions lx and gy are bounded and continuous.

Under the above hypothesis (H1)-(H3), for all v ∈ U , the equation (2.2) admits a

unique solution. (For further details, the reader is encouraged to refer to these works.[6]

and [47]).

Remark 2.1 As indicated in the previous chapter, this process is a semimartingale if

and only if H = 1
2
, which is why we will present the next paragraph.

The Russo & Vallois Integral

The first foundations of a stochastic calculus were established in 1993 by F. Russo

and P. Vallois, where they generalizing those of Itô and stratonovich. One advantages

of this calculus is that it possible the interpretation of integrals versus processes that

aren’t always semi-martingales. It is no longer possible to define a stochastic integral

with regard to the fBm using the traditional stochastic Itô integration since the fBm

fails to satisfy the semimartingale property unless H = 1/2. In the meantime, many

approaches to explain an integration with regard to the fBm have been used in the

literature, including [9], [41] and the references therein. Amongst these approaches, the

Russo-Vallois integral described by Russo-Vallois in [70], [71] which we use throught

this thesis.

Definition 2.2 If Y1 = {Y1 (t) , t ∈ [0, 1]} and Y2 = {Y2 (t) , t ∈ [0, 1]} are two continu-
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ous stochastic processes at 0 and 1, we put

I− (ε, Y1, dY2) =

∫ 1

0

Y1 (t)
Y2 [(t+ ε) ∧ 1]− Y2 (t)

ε
dt,

I+ (ε, Y1, dY2) =

∫ 1

0

Y1 (t)
Y2 (t)− Y2 [(t− ε) ∨ 0]

ε
dt,

I◦ (ε, Y1, dY2) =

∫ 1

0

Y1 (t)
Y2 [(t+ ε) ∧ 1]− Y2 [(t− ε) ∨ 0]

ε
dt,

when the limit in probability exists, we denote by

∫ 1

0

Y1d
−Y2 = lim

ε→0
I− (ε, Y1, dY2) ,

∫ 1

0

Y1d
+Y2 = lim

ε→0
I+ (ε, Y1, dY2) ,∫ 1

0

Y1d
◦Y2 = lim

ε→0
I◦((ε, Y1, dY2) .

These limits are called forward, backward and symmetric, integral of Y1 with respect to

Y2, respectively. We can be aware I◦((ε, Y1, dY2) = I+(ε,Y1,dY2)+I−(ε,Y1,dY2)
2

, and therefore

that
∫ 1

0
Y1d

◦Y2 = 1
2

(∫ 1

0
Y1d

+Y2 +
∫ 1

0
Y1d

−Y2

)
.

2.2 Primary results

In this chapter, we shall derive a Pontryagin’s maximum principle. In particular, we aim

to prove the optimality conditions. However, In order to give and prove thses conditions,

it is convenient to present some essential lemmas and results, that serve our purpose

in the sequel. And since the set U is convex, the conventional methods for establishing

the necessary as well as suffi cient conditions involve employing a convex variational

perturbation method. More precisely, let u be an optimal control and (xu, yu, zu) the

solution of (2.2), controlled by u. Then, for every t ∈ [0, T ], defines the perturbation of

the optimal control as:

uθt = ut + θvt, (2.5)

36



Chapter 2. Stochastic Maximum Principle for Risk-Neutral Control Problem

where θ > 0 is suffi ciently small and v represents any arbitrary element of U , (i.e v ∈ U) ,

then uθ ∈ U , i.e. uθ is an admissible control.

Let xθ represent the trajectory associated with control uθ ∈ U ; xθ is the trajectory

defined as:  dxθt = b
(
t, xθt , v

θ
t

)
dt+ σ

(
t, xθt , v

θ
t

)
dBH

t ,

dyθt = −f
(
t, xθt , y

θ
t , z

θ
t , v

θ
t

)
dt+ zθt dB

H
t .

(2.6)

From (2.4) and the optimality of u we have

0 ≤ J
(
uθ
)
− J (u) . (2.7)

Let
(
xθ, yθ, zθ

)
and (x, y, z) be the trajectories associated with the perturbed control

uθ and the optimal control u , respectively.

Lemma 2.1 Under Assumption (H1) and the definition of the perturbation uθ, we

have

E

[
sup
t∈[0,T ]

∣∣xθt − xt∣∣2
]
≤ C ′θ2, (2.8)

and

E

[
sup
t∈[0,T ]

∣∣yθt − yt∣∣2
]

+ E
[∫ T

t

(
Hs2H−1 − 1

) ∣∣zθs − zs∣∣2 ds] ≤ Cθ2. (2.9)

Before making the proof of 2.1, for simplicity, we employ abbreviated notations.

Notation 2.1 For τ ∈ {u, v} , φ ∈ {f, h} , Π ∈ {b, σ} , z ∈ {φ,Π, l, g} , κ ∈ {x, y, z, u} ,

then


Πτ (t) = Π (t, xt, τt)

Πθ (t) = Π
(
t, xθt , u

θ
t

)
Πuθ (t) = Π

(
t, xt, u

θ
t

) ,


φτ (t) = φ (t, xt, yt, zt, τt)

φθ (t) = φ
(
t, xθt , y

θ
t , z

θ
t , u

θ
t

)
zκ (t) =

∂z
∂κ

(t, xt, ut)

,
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 x = xs + λ
(
xθs − xs

)
, y = ys + λ

(
yθs − ys

)
z = zs + λ

(
zθs − zs

)
, u = us + λ

(
uθs − us

) , and
 A

θ,λ
s = (s, x, y, z, u)

Qθ,λs = (s, x, u)
.

Proof. At first, by substituting the values of xθt and xt, we derive

d(xθt − xt) =
[
bθ (t)− buθ (t) + bu

θ

(t)− bu (t)
]
dt

+
[
σθ (t)− σuθ (t) + σu

θ

(t)− σu (t)
]
dBH

t .

Integrating from 0 to T , then taking the mathematical expectation, applying the

Cauchy-Schwarz’s inequality and the isometry property, we obtain

E
[∣∣xθt − xt∣∣2] ≤ 4TE

[∫ T

0

∣∣∣bθ (t)− buθ (t)
∣∣∣2 dt]+ 4TE

[∫ T

0

∣∣∣buθ (t)− bu (t)
∣∣∣2 dt]

+ 4E
[∫ T

0

∣∣∣σθ (t)− σuθ (t)
∣∣∣2Ht2H−1dt

]
+ 4E

[∫ T

0

∣∣∣σuθ (t)− σu (t)
∣∣∣2Ht2H−1dt

]
.

Since b and σ are Lipschitz in (x, u) and from (2.5), we have

E
[∣∣xθt − xt∣∣2] ≤ 4Tζ

(
E
[∫ T

0

∣∣xθt − xt∣∣2 dt]+ E
[∫ T

0

∣∣uθt − ut∣∣2 dt])
+4ζHT 2H−1

(
E
[∫ T

0

∣∣xθt − xt∣∣2 dt]+ E
[∫ T

0

∣∣uθt − ut∣∣2 dt])
≤ C1

(
E
[∫ T

0

∣∣xθt − xt∣∣2 dt]+ θ2E
[∫ T

0

|vt|2 dt
])

,

where C1 = 2 max
(
4Tζ, 4ζHT 2H−1

)
, and from (2.1) , then we have

E
[∣∣xθt − xt∣∣2] ≤ C1

(
E
[∫ T

0

∣∣xθt − xt∣∣2 dt]+ θ2C2

)
.
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Using the Gronwall’s inequality, we arrive at

E

[
sup
t∈[0,T ]

∣∣xθt − xt∣∣2
]
≤ θ2C ′. (2.10)

such that C ′ = C2 exp {C1T} .

In order to prove the second estimation, we apply the Itô formula, we get

d
∣∣yθt − yt∣∣2 = 2

∣∣yθt − yt∣∣ (fu (t)− f θ (t)
)
dt

−2
∣∣yθt − yt∣∣ (zt − zθt ) dBH

t +Ht2H−1
∣∣zθt − zt∣∣2 dt.

Passing the integral from t to T , we find

∣∣yθt − yt∣∣2 +

∫ T

t

Hs2H−1
∣∣zθs − zs∣∣2 ds = 2

∫ T

t

(
yθs − ys

) (
f θ (s)− fu (s)

)
ds

+ 2

∫ T

t

(
yθs − ys

) (
zs − zθs

)
dBH

s .

Since f is Lipschitz in (x, y, z, u) and from (2.5) , it comes

∣∣yθt − yt∣∣2 +

∫ T

t

Hs2H−1
∣∣zθs − zs∣∣2 ds

≤ 2γ

∫ T

t

∣∣xθs − xs∣∣ ∣∣yθs − ys∣∣ ds+ 2γ

∫ T

t

∣∣yθs − ys∣∣2 ds+ 2θγ

∫ T

t

∣∣yθs − ys∣∣ |vs| ds
+ 2γ

∫ T

t

∣∣yθs − ys∣∣ ∣∣zθs − zs∣∣ ds+ 2

∫ T

t

(
yθs − ys

) (
zs − zθs

)
dBH

s .

We take the mathematical expectation and apply Young’s inequality, we get

E
[∣∣yθt − yt∣∣2]+ E

[∫ T

t

Hs2H−1
∣∣zθs − zs∣∣2 ds]

≤ E
[∫ T

t

∣∣xθs − xs∣∣2 ds]+ γ2E
[∫ T

t

∣∣yθs − ys∣∣2 ds]+ 2γE
[∫ T

t

∣∣yθs − ys∣∣2 ds]
+ γ2E

[∫ T

t

∣∣yθs − ys∣∣2 ds]+ θ2E
[∫ T

t

|vs|2 ds
]

+ γ2E
[∫ T

t

∣∣yθs − ys∣∣2 ds]
+ E

[∫ T

t

∣∣zθs − zs∣∣2 ds] ,
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if we put πθ (t) = E
[∫ T

t

(
θ2 |vs|2 +

∣∣xθs − xs∣∣2) ds] . Then, it comes
E
[∣∣yθt − yt∣∣2]+ E

[∫ T

t

(
Hs2H−1 − 1

) ∣∣zθs − zs∣∣2 ds]
≤ (2γ + 3γ2)E

[∫ T

t

∣∣yθs − ys∣∣2 ds]+ πθ (t) ,

As a direct result from (2.10), there exists some positive real constant C3, such that

πθ (t) ≤ θ2C3.

On the one hand, we have

E
[∣∣yθt − yt∣∣2] ≤ (2γ + 3γ2

)
E
[∫ T

t

∣∣yθs − ys∣∣2 ds]+ θ2C3. (2.11)

By using the Gronwall’s inequality on (2.11), we obtain

E
[∣∣yθt − yt∣∣2] ≤ θ2C3 exp

{(
2γ + 3γ2

)
T
}
.

Hence, we get

E

[
sup
t∈[0,T ]

∣∣yθt − yt∣∣2
]
≤ θ2N, (2.12)

such that N = C3 exp {(2γ + 3γ2)T} . On the other hand, we note

K = Hs2H−1 − 1, (2.13)

then

E
[∫ T

t

K
∣∣zθs − zs∣∣2 ds] ≤ (2γ + 3γ2

)
E
[∫ T

t

∣∣yθs − ys∣∣2 ds]+ θ2C3,

≤ θ2 (N + C3) . (2.14)
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If we note θ2 (2N + C3) = C, then sum up the inequalities (2.12) and (2.14) , we have

E

[
sup
t∈[0,T ]

∣∣yθt − yt∣∣2
]

+ E
[∫ T

t

(
Hs2H−1 − 1

) ∣∣zθs − zs∣∣2 ds] ≤ θ2C,

which ends the proof of lemma 2.1.

Lemma 2.2 We suppose that hypotheses (H2) and (H3) in assumption 2.1 hold. If

we put

Xt = lim
θ→0

1

θ

(
xθt − xt

)
, Yt = lim

θ→0

1

θ

(
yθt − yt

)
and Zt = lim

θ→0

1

θ

(
zθt − zt

)
.

Then X and Y can be written in the following forms

Xt =

∫ t

0

{bx (s, xs, us)Xs + bu (s, xs, us) vs} ds

+

∫ t

0

{σx (s, xs, us)Xs + σu (s, xs, us) vs} dBH
s ,

(2.15)

and

Yt =

∫ T

t

{fx (s, xs, ys, zs, us)Xs + fy (s, xs, ys, zs, us)Ys

+ fz (s, ys, zs, us)Zs + fu (s, ys, zs, us) vs} ds−
∫ T

t

ZsdB
H
s .

(2.16)

Proof. We use notations 2.1. By applying Taylor’s expansion with integral remain of
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b
(
s, xθs, u

θ
s

)
and σ

(
s, xθs, u

θ
s

)
at (x, u) , and of f

(
s, xθs, y

θ
s , z

θ
s , u

θ
s

)
at (x, y, z, u), we get

1

θ

(
xθt − xt

)
=

∫ t

0

(
bθ(s)−bu(s)

θ

)
ds+

∫ t

0

(
σθ(s)−σu(s)

θ

)
dBH

s

=

∫ t

0

∫ 1

0

bx
(
Qθ,λs

)(xθs − xs
θ

)
dλds

+

∫ t

0

∫ 1

0

bu
(
Qθ,λs

)(uθs − us
θ

)
dλds

+

∫ t

0

∫ 1

0

σx
(
Qθ,λs

)(xθs − xs
θ

)
dλdBH

s

+

∫ t

0

∫ 1

0

σu
(
Qθ,λs

)(uθs − us
θ

)
dλdBH

s ,

(2.17)

and

1

θ

(
yθt − yt

)
=

∫ T

t

(
f θ (s)− fu (s)

θ

)
ds−

∫ T

t

(
zθs − zs
θ

)
dBH

s

=

∫ T

t

∫ 1

0

fx
(
Aθ,λs

)(xθs − xs
θ

)
dλds

+

∫ T

t

∫ 1

0

fy
(
Aθ,λs

)(yθs − ys
θ

)
dλds

+

∫ T

t

∫ 1

0

fz
(
Aθ,λs

)(zθs − zs
θ

)
dλds

+

∫ T

t

∫ 1

0

fu
(
Aθ,λs

)(uθs − us
θ

)
dλds−

∫ T

t

(
zθs − zs
θ

)
dBH

s .

(2.18)

We take the limits when θ → 0, due to the hypothesis which we have indicated, and we

apply Lebesgue’s bounded convergence theorem, equations (2.17) and (2.18), respect-

ively, become

Xt = lim
θ→0

1

θ

(
xθt − xt

)
=

∫ t

0

{bx (s, xs, us)Xs + bu (s, xs, us) vs} ds

+

∫ t

0

{σx (s, xs, us)Xs + σu (s, xs, us) vs} dBH
s ,
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and

Yt = lim
θ→0

1

θ

(
yθt − yt

)
=

∫ T

t

fx (s, xs, ys, zs, us)Xsds+

∫ T

t

fy (s, xs, ys, zs, us)Ysds

+

∫ T

t

fz (s, xs, ys, zs, us)Zsds+

∫ T

t

fu (s, xs, ys, zs, us) vsds

−
∫ T

t

ZsdB
H
s .

which is the result.

Considering lemma 2.1 and lemma 2.2, we arrive at the following

Lemma 2.3 We suppose that assumptions (H2) and (H4) hold. We note

x̃θt =
1

θ

(
xθt − xt

)
−Xt, ỹθt =

1

θ

(
yθt − yt

)
− Yt and z̃θt =

1

θ

(
zθt − zt

)
− Zt. (2.19)

Then by virtue of lemmas 2.1 and 2.2, we have the convergences

E

[
sup
t∈[0,T ]

∣∣x̃θt ∣∣2
]
→ 0
θ→0

, and (2.20)

E

[
sup
t∈[0,T ]

∣∣ỹθt ∣∣2
]

+ E
[∫ T

t

(
Hs2H−1 − 1

) ∣∣z̃θs ∣∣2 ds] →
θ→0

0. (2.21)

Proof. By using notations 2.1 and the x̃θt , ỹ
θ
t and z̃

θ
t formulas given in 2.19, we have

E
∣∣x̃θt ∣∣ = E

∣∣∣∣∫ t

0

(
bθ (s)− bu (s)

θ

)
ds+

∫ t

0

(
σθ (s)− σu (s)

θ

)
dBH

s −Xt

∣∣∣∣
= E

∣∣∣∣∫ t

0

∫ 1

0

bx
(
Qθ,λs

)(xθs − xs
θ

)
dλds+

∫ t

0

∫ 1

0

bu
(
Qθ,λs

)(uθs − us
θ

)
dλds

+

∫ t

0

∫ 1

0

σx
(
Qθ,λs

)(xθs − xs
θ

)
dλdBH

s +

∫ t

0

∫ 1

0

σu
(
Qθ,λs

)(uθs − us
θ

)
dλdBH

s

−
∫ t

0

{bx (s)Xs + bu (s) vs} ds−
∫ t

0

{σx (s)Xs + σu (s) vs} dBH
s

∣∣∣∣ .
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Namely

E
∣∣x̃θt ∣∣ = E

∣∣∣∣∫ t

0

∫ 1

0

bx
(
Qθ,λs

) (
x̃θs +Xs

)
dλds+

∫ t

0

∫ 1

0

bu
(
Qθ,λs

)
vsdλds

+

∫ t

0

∫ 1

0

σx
(
Qθ,λs

) (
x̃θs +Xs

)
dλdBH

s +

∫ t

0

∫ 1

0

σu
(
Qθ,λs

)
vsdλdB

H
s

−
∫ t

0

{bx (s)Xs + bu (s) vs} ds−
∫ t

0

{σx (s)Xs + σu (s) vs} dBH
s

∣∣∣∣ . (2.22)

If we define

$θ =

∫ t

0

∫ 1

0

bx
(
Qθ,λs

)
Xsdλds+

∫ t

0

∫ 1

0

bu
(
Qθ,λs

)
vsdλds

+

∫ t

0

∫ 1

0

σx
(
Qθ,λs

)
XsdλdB

H
s +

∫ t

0

∫ 1

0

σu
(
Qθ,λs

)
vsdλdB

H
s

−
∫ t

0

{bx (s)Xs + bu (s) vs} ds−
∫ t

0

{σx (s)Xs + σu (s) vs} dBH
s .

Then (2.22) becomes

E
∣∣x̃θt ∣∣ = E

∣∣∣∣∫ t

0

∫ 1

0

bx
(
Qθ,λs

)
x̃θsdλds+

∫ t

0

∫ 1

0

σx
(
Qθ,λs

)
x̃θsdλdB

H
s +$θ

∣∣∣∣ ,
Using triangular inequality, we obtain

E
∣∣x̃θt ∣∣2 ≤ 6E

[∫ t

0

∫ 1

0

b2
x

(
Qθ,λs

) ∣∣x̃θs∣∣2 dλds]+ 6E
[∫ t

0

∫ 1

0

σ2
x

(
Qθ,λs

) ∣∣x̃θs∣∣2 dλdBH
s

]
+ E

[∣∣$θ
∣∣2] .

Since

E
[∫ t

0

∫ 1

0

σ2
x

(
Aθ,λs

) ∣∣x̃θs∣∣2 dλdBH
s

]
= 0,

and E
[∣∣$θ

∣∣2] →
θ→0

0.

Applying the assumptions imposed on the functions b and σ mentioned in (H2) and
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(H4), get

E
[∣∣$θ

∣∣2] →
θ→0

0.

Using the Gronwall’s inequality, we have

E
∣∣x̃θt ∣∣2 ≤ E [∣∣$θ

∣∣2] exp

{
T

∫ 1

0

b2
x

(
Aθ,λs

)
dλ

}
→
θ→0

0,

which yields finally to

E

[
sup
t∈[0,T ]

∣∣x̃θt ∣∣2
]
→
θ→0

0. (2.23)

For establishing (2.21) , we apply Itô’s formula to
∣∣ỹθt ∣∣2 , we get

d
∣∣ỹθt ∣∣2 = 2

∣∣ỹθt ∣∣ [1

θ

(
dyθt − dyt

)
− dYt

]
+ d

〈
ỹθt
〉

= 2
∣∣ỹθt ∣∣ [(fu (t)− f θ (t)

θ

)
dt−

(
zt − zθt
θ

)
dBH

t

]
+ 2

∣∣ỹθt ∣∣ [fx (t, xt, yt, zt, ut)Xtdt+ fy (t, xt, yt, zt, ut)Ytdt

+fz (t, xt, yt, zt, ut)Ztdt+ fu (t, xt, yt, zt, ut) vtdt]

− 2
∣∣ỹθt ∣∣ZtdBH

t +Ht2H−1
∣∣z̃θt ∣∣2 dt.

Integrating from t to T , we have

∣∣ỹθt ∣∣2 +

∫ T

t

Hs2H−1
∣∣z̃θs ∣∣2 ds

= 2

∫ T

t

∣∣ỹθs ∣∣ [(f θ (s)− fu (s)

θ

)
ds−

(
zθs − zs
θ

)
dBH

s

]
− 2

∫ T

t

∣∣ỹθs ∣∣ [fx (s, xs, ys, zs, us)Xs + fy (s, xs, ys, zs, us)Ys

+fz (s, xs, ys, zs, us)Zs + fu (s, xs, ys, zs, us) vs] ds+ 2

∫ T

t

∣∣ỹθs ∣∣ZsdBH
s .

With some Taylor expansion with integral remain of f
(
s, xθs, y

θ
s , z

θ
s , u

θ
s

)
at

(x, y, z, u), from (2.19) we get the expressions of x̃θt , ỹ
θ
t and z̃

θ
t , and inject them in the
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last equality, it comes

E
[∣∣ỹθt ∣∣2]+ E

[∫ T

t

Hs2H−1
∣∣z̃θs ∣∣2 ds]

= 2E
[∫ T

t

∫ 1

0

∣∣ỹθs ∣∣ (fx (Aθ,λs ) (x̃θs +Xs

)
+ fy

(
Aθ,λs

) (
ỹθs + Ys

)
+fz

(
Aθ,λs

) (
z̃θs + Zs

)
+ fu

(
Aθ,λs

)
vs
)
dλds

]
− 2E

[∫ T

t

∣∣ỹθs ∣∣ (fx (s, xs, ys, zs, us)Xs + fy (s, xs, ys, zs, us)Ys

+fz (s, xs, ys, zs, us)Zs + fu (s, xs, ys, zs, us) vs) ds] .

Applying Young’s inequality

E
[∣∣ỹθt ∣∣2]+ E

[∫ T

t

Hs2H−1
∣∣z̃θs ∣∣2 ds]

≤ E
[∫ T

t

∫ 1

0

∣∣ỹθs ∣∣2 f 2
x

(
Aθ,λs

)
dλds

]
+ 2E

[∫ T

t

∫ 1

0

∣∣ỹθs ∣∣2 fy (Aθ,λs ) dλds]
+ E

[∫ T

t

∫ 1

0

∣∣ỹθs ∣∣2 f 2
z

(
Aθ,λs

)
dλds

]
+ E

[∫ T

t

∫ 1

0

∣∣z̃θs ∣∣2 dλds]+ E
[
ρθ
]

≤ E
[∫ T

t

ϕθ
∣∣ỹθs ∣∣2 ds]+ E

[∫ T

t

∣∣z̃θs ∣∣2 ds]+ E
[
ρθ
]
,

where

ϕθ =

∫ 1

0

(
f 2
x

(
Aθ,λs

)
+ 2fy

(
Aθ,λs

)
+ f 2

z

(
Aθ,λs

))
dλ, and

ρθ = 2

∫ T

t

∫ 1

0

∣∣ỹθs ∣∣ [fx (Aθ,λs )Xs + fy
(
Aθ,λs

)
Ys + fz

(
Aθ,λs

)
Zs

+ fu
(
Aθ,λs

)
vsdλds

]
+

∫ T

t

∫ 1

0

∣∣x̃θs∣∣2 dλds
− 2

∫ T

t

∣∣ỹθs ∣∣ [fx (s, xs, ys, zs, us)Xs + fy (s, xs, ys, zs, us)Ys

+ fz (s, xs, ys, zs, us)Zs + fu (s, xs, ys, zs, us) vs] ds.

We recall that K is defined in (2.13), we arrive at

E
[∣∣ỹθt ∣∣2]+ E

[∫ T

t

K
∣∣z̃θs ∣∣2 ds] ≤ E [∫ T

t

ϕθ
∣∣ỹθs ∣∣2 ds]+ E

[
ρθ
]
.
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On the one hand, we have E
[∣∣ỹθt ∣∣2] ≤ E [∫ T

t

ϕθ
∣∣ỹθs ∣∣2 ds]+ E

[
ρθ
]
.

By using the Gronwall’s inequality obtain to: E
[∣∣ỹθt ∣∣2] ≤ E [ρθ] exp

{
ϕθT

}
,

from hypothesis (H4), with Lebesgue bounded convergence theorem, we can simply

show that E
[
ρθ
]
→
θ→0

0, hence, it comes E
[
supt∈[0,T ]

∣∣ỹθt ∣∣2] →
θ→0

0.

On the other hand

E
[∫ T

t

K
∣∣z̃θs ∣∣2 ds] ≤ E [∫ T

t

ϕθ
∣∣ỹθs ∣∣2 ds]+ E

[
ρθ
]
→
θ→0

0.

Summing up the two last above inequalities we get

E

[
sup
t∈[0,T ]

∣∣ỹθt ∣∣2
]

+ E
[∫ T

t

(
Hs2H−1 − 1

) ∣∣z̃θs ∣∣2 ds] →
θ→0

0.

Lemma 2.4 Under assumptions (H3) to (H5), we have the following limits

1

θ
E
[
l
(
xθT
)
− l (xT )

]
→
θ→0

E [lx (xT )XT ] , (2.24)

1

θ
E
[
g
(
yθ0
)
− g (y0)

]
→
θ→0

E [gy (y0)Y0] , (2.25)

1

θ
E
[
hθ (t)− h (t)

]
→
θ→0

E
[∫ T

0

(hx (t)Xt + hy (t)Yt + hz (t)Zt + hu (t) vt) dt

]
. (2.26)

Proof. We apply Taylor’s expansion with integral remain to the functions g
(
yθ0
)
and

l
(
xθT
)
at y0 and xT , respectively, we get

l
(
xθT
)
− l (xT ) =

∫ 1

0

lx
(
xT + λθ

(
x̃θT +XT

))
θ
(
x̃θT +XT

)
dλ,

and

g
(
yθ0
)
− g (y0) =

∫ 1

0

gy
(
y0 + λθ

(
ỹθ0 + Y0

))
θ
(
ỹθ0 + Y0

)
dλ.
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Then we have

1

θ
E
[
l
(
xθT
)
− l (xT )

]
= E

[∫ 1

0

lx (xT + λθ (x̃T +XT )) x̃θTdλ

]
+ E

[∫ 1

0

lx (xT + λθ (x̃T +XT ))XTdλ

]
,

and

1

θ
E
[
g
(
yθ0
)
− g (y0)

]
= E

[∫ 1

0

gy
(
y0 + λθ

(
ỹθ0 + Y0

))
ỹθ0dλ

]
+ E

[∫ 1

0

gy
(
y0 + λθ

(
ỹθ0 + Y0

))
Y0dλ

]
.

Since lx and gy bounded and continuous (from (H5)), and from Cauchy-Schwarz’s

inequality, then we apply Lebesgue’s bounded convergence theorem, and from (2.20)

and (2.21) , we have

E
[∫ 1

0

lx
(
xT + λθ

(
x̃θT +XT

))
x̃θTdλ

]
→
θ→0

0,

and

E
[∫ 1

0

[
gy
(
y0 + λθ

(
ỹθ0 + Y0

))
ỹθ0dλ

]]
→
θ→0

0.

On the other hand, we have

E
[∫ 1

0

lx
(
xT + λθ

(
x̃θT +XT

))
XTdλ

]
→
θ→0

E [lx (xT )XT ] ,

and

E
[∫ 1

0

gy
(
y0 + λθ

(
ỹθ0 + Y0

))
Y0dλ

]
→
θ→0

E [gy (y0)Y0] .

Therefore
1

θ
E
[
l
(
xθT
)
− l (xT )

]
→
θ→0

E [lx (xT )XT ] ,
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and
1

θ
E
[
g
(
yθ0
)
− g (y0)

]
→
θ→0

E [gy (y0)Y0] .

Analogously, we find

hθ (t)− h (t) =

∫ 1

0

hx

(
Aθ,λt

) (
xθt − xt

)
dλ+

∫ 1

0

hy

(
Aθ,λt

) (
yθt − yt

)
dλ

+

∫ 1

0

hz

(
Aθ,λt

) (
zθt − zt

)
dλ+

∫ 1

0

hu

(
Aθ,λt

) (
uθt − ut

)
dλ.

By taking the mathematical expectation, using (2.5) and (2.19) , we obtain

1

θ
E
[
hθ (t)− h (t)

]
= E

[∫ 1

0

hx

(
Aθ,λt

)
x̃θtdλ

]
+ E

[∫ 1

0

hx

(
Aθ,λt

)
Xtdλ

]
+ E

[∫ 1

0

hy

(
Aθ,λt

)
ỹθt dλ

]
+ E

[∫ 1

0

hy

(
Aθ,λt

)
Ytdλ

]
+ E

[∫ 1

0

hz

(
Aθ,λt

)
z̃θt dλ

]
+ E

[∫ 1

0

hz

(
Aθ,λt

)
Ztdλ

]
+ E

[∫ 1

0

hu

(
Aθ,λt

)
vtdλ

]
.

Letting θ tend to 0, and according the assumption on the function h in assumption 2.1,

we apply Lesbesgue’s bounded convergence theorem, we get

1

θ
E
[
hθ (t)− h (t)

]
→
θ→0

E
[∫ T

0

(hx (t)Xt + hy (t)Yt + hz (t)Zt + hu (t) vt) dt

]
.

which is the result shown in 2.26.

2.3 Stochastic maximum principle

In this section, we introduce our primary finding: the Pontryagin stochastic maximum

principle for a fractional Brownian motion driven FBSDE, where the Hurst parameter

H ∈ ]0, 1[ .We will establish this result in terms of both necessary and suffi cient optim-
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ality conditions, addressing an optimal control in the stochastic optimization problem

(2.2), (2.3) and (2.4). Our approach begins by defining the Hamiltonian functional

related to the problem, as outlined in the subsequent definition.

Definition 2.3 The Hamiltonian functional H, associated to the control problem (2.2),

(2.3), and (2.4), is defined by

H (t, xt, yt, zt, ut, pt, Pt, qt) = h (t, xt, yt, zt, ut) + ptf (t, xt, yt, zt, ut) + qtb (t, xt, ut)

+ Ptσ (t, xt, ut) . (2.27)

where H (t, xt, yt, zt, ut, pt, Pt, qt) : [0, T ]× R× R× R×U×R× R× R→ R.

For the sake of simplicity, we introduce the following notations.

Notation 2.2 For τ ∈ {u, v} , κ ∈ {x, y, z, u} , φ ∈ {f, h} , Π ∈ {b, σ} , we note

Hτ (t, ι) = H (t, xut , y
u
t , z

u
t , τt, p

u
t , P

u
t , q

u
t ) , Hκ (t, ι) =

∂H
∂κ

(t, ι) ,

H (t, ι) = H (t, xut , y
u
t , z

u
t , ut, p

u
t , P

u
t , q

u
t ) , Hκ (t) =

∂H
∂κ

(t) ,

φκ (t, ς) = φκ (t, xut , y
u
t , z

u
t , ut) , Πκ (t, %) = Πκ (t, xut , ut) .

Combining the definition of the Hamiltonian and the previous notations 2.2, we intro-

duce the adjoint dynamics.



dput = Hy (t, ι) dt+
1

Ht2H−1
Hz (t, ι) dBH

t

= {hy (t, ς) + put fy (t, ς)} dt+
1

Ht2H−1
{hz (t, ς) + put fz (t, ς)} dBH

t ,

dqut = −Hx (t) dt+
1

Ht2H−1
P u
t dB

H
t

= −{hx (t, ς) + put fx (t, ς) + qut bx (t, %) + P u
t σx (t, %)} dt

+
1

Ht2H−1
P u
t dB

H
t

pu0 = gy (yu0 ) , and quT = lx (xuT ) .

(2.28)
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Remark 2.2 From lemma 2.4, by virtue of the convergences (2.24) , (2.25) and (2.26),

the variational inequality (2.7) becomes

0 ≤ E [lx (xT )XT ]+E [gy (y0)Y0]+E
[∫ T

0

{hx (t)Xt + hy (t)Yt + hz (t)Zt + hu (t) vt} dt
]
.

(2.29)

2.3.1 A necessary maximum principle

We are now able to express the necessary optimality conditions for the stochastic control

problem (2.2), (2.3), and (2.4).

Theorem 2.1 (Necessary optimality conditions) Let (xut , y
u
t , z

u
t , ut) be the optimal solu-

tion to our problem, then there exists a unique adapted process (p, P, q) solution to the

differential equation (2.28) and the variational inequality

E
[∫ T

0

Hu (t, xut , y
u
t , z

u
t , ut, p

u
t , P

u
t , q

u
t ) (vt − ut) dt

]
≥ 0, (2.30)

holds for all v ∈ U ,P.a.s.

Proof. Let u be optimal for {(2.2), (2.3), (2.4)} and v some random control from U .

We apply the integration by parts formula to ptYt, then take the expression of dYt and

dpt from (2.16) and (2.28), respectively, we obtain

E [pu0Y
u

0 ] = E
[∫ T

0

{−Y u
t hy (t, ς)− Zu

t hz (t, ς) + put fx (t, ς)Xu
t + put fu (t, ς) vt} dt

]
.

(2.31)
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Similarly, applying the integration by parts formula to qtXt, and recalling dXt and dqt

from (2.15) and (2.28), respectively, it comes

E [quTX
u
T ] = E

[∫ T

0

{−Xu
t Hx (t, ι) + qut bx (t, %)Xu

t + qut bu (t, %) vt + P u
t σx (t, %)Xu

t

+ P u
t σu (t, %) vt}]

.

(2.32)

Since we have pu0 = gy (yu0 ) and quT = lx (xuT ), by substituting equations (2.31) and

(2.32) into the variational inequality (2.29) introduced in remark 2.2, we get directly

E
[∫ T

0

Hu (t) vtdt

]
≥ 0. Due to the convexity of the set U , we may choose some per-

turbed control uθt = ut + θ (vt − ut) ∈ U , as u is optimal, we get

E
[∫ T

0

Hu (t) (vt − ut) dt
]
≥ 0.

which leads to the result.

2.3.2 A suffi cient maximum principle

After establishing the necessary optimality condition in Theorem 2.1, this paragraph

delves in which the condition (2.30) transitions from being necessary to suffi cient. The

principal result is presented in the following theorem. Prior to that, we provide the

next notation.

Notation 2.3 For τ ∈ {u, v} , κ ∈ {x, y, z, u} , φ ∈ {f, h} , Π ∈ {b, σ} , we propose

Πτ (t, %) = Π (t, xut , τt) , φ
τ (t, ς) = φ (t, xut , y

u
t , z

u
t , τt) .

Assumption 2.2 To drive the suffi cient optimality condition, first, we suppose the

following:

1. The function l and g are convex with respect to x and y, respectively.
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2. The Hamiltonian H is convex with respect to (x, y, z, u).

Theorem 2.2 (Suffi cient optimality condition) Assume the assumptions 2.2 are

satisfied. Then u is the optimal control for the problem (2.2), (2.3), and (2.4), if the

variational inequality (2.30) holds for all v ∈ U P.a.s.

Proof. Let v ∈ U and u ∈ U candidate to be optimal, by using the fact that the

functions g and l are convex in y and x, respectively, taking into consideration that

pu0 = gy (yu0 ) and quT = lx (xuT ) , get

g (yv0)− g (yu0 ) ≥ gy (yv0) (yv0 − yu0 ) = p0 (yv0 − yu0 ) ,

and l (xvT )− l (xuT ) ≥ lx (xvT ) (xvT − xuT ) = qT (xvT − xuT ) .
(2.33)

Recall notations 2.1 and 2.2, from (2.3) , the difference between J (υ) and J (u) becomes

J (v)− J (u) ≥ E
[∫ T

0

(hv (t, ς)− hu (t, ς)) dt+ quT (xvT − xuT ) + pu0 (yv0 − yu0 )

]
. (2.34)

Using integration by parts formula to put (yvt − yut )

d (put (yvt − yut )) = (yvt − yut ) dput + put d (yvt − yut ) + d 〈put , (yvt − yut )〉

= Hy (t, ι) (yvt − yut ) dt+ (yvt − yut )
1

Ht2H−1
Hz (t, ι) dBH

t

− put f v (t, ς) dt+ put f
u (t, ς) dt+ put (zvt − zut ) dBH

t

+Hz (t, ι) (zvt − zut ) dt.

That implies

E [pu0 (yv0 − yu0 )] = −E
[∫ T

0

Hy (t, ι) (yvt − yut ) dt

]
− E

[∫ T

0

Hz (t, ι) (zvt − zut ) dt

]
+ E

[∫ T

0

put f
v (t, ς) dt

]
− E

[∫ T

0

put f
u (t, ) dt

]
, (2.35)

53



Chapter 2. Stochastic Maximum Principle for Risk-Neutral Control Problem

also, using integration by parts formula to qut (xvt − xut )

d (qut (xvt − xut )) = (xvt − xut ) dqut + qut d (xvt − xut ) + d 〈qut , (xvt − xut )〉

= −Hx (t, ι) (xvt − xut ) dt+ (xvt − xut )
1

Ht2H−1
P u
t dB

H
t

+ qut (bv (t, %)− bu (t, %)) dt+ qut (σv (t, %)− σu (t, %)) dBH
t

+ P u
t (σv (t, %)− σu (t, %)) dt.

Hence

E [quT (xvT − xuT )] = −E
[∫ T

0

Hx (t, ι) (xvt − xut ) dt
]

+ E
[∫ T

0

qut (bv (t, %)− bu (t, %)) dt

]
+ E

[∫ T

0

P u
t (σv (t, %)− σu (t, %)) dt

]
. (2.36)

By injecting (2.35) and (2.36) in (2.34) , we obtain

J (v)− J (u) ≥ E
[∫ T

0

{hv (t, ς) + ptf
v (t, ς) + qtb

v (t, %) + Ptσ
v (t, %)} dt

]
− E

[∫ T

0

{hu (t, ς) + ptf
u (t, ς) + qtb

u (t, %) + Ptσ
u (t, %)} dt

]
− E

[∫ T

0

Hy (t, ι) (yvt − yut ) dt

]
− E

[∫ T

0

Hz (t, ι) (zvt − zut ) dt

]
− E

[∫ T

0

Hx (t, ι) (xvt − xut ) dt
]

recalling the definition of the Hamiltonian from 2.3, the above inequality becomes

J (v)− J (u) ≥ E
[∫ T

0

Hv (t, ι) dt

]
− E

[∫ T

0

Hu (t, ι) dt

]
− E

[∫ T

0

Hy (t, ι) (yvt − yut ) dt

]
− E

[∫ T

0

Hz (t, ι) (zvt − zut ) dt

]
− E

[∫ T

0

Hx (t, ι) (xvt − xut ) dt
]
.
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More than we have the Hamiltonian function is convex, we use this property in the last

inequality, and according to the simplification and the assumption of the theorem (the

condition 2.30), we get which assures

J (v)− J (u) ≥ E
[∫ T

0

Hu (t, ι) (vt − ut) dt
]
≥ 0.

Hence J (v)− J (u) ≥ 0. Then u is an optimal control.

2.4 LQ problem

In this section, as an application of our result, we consider a one-dimensional linear

quadratic (LQ) control problem for Stochastic Maximum principle, We consider the

linear forward backward stochastic differential dynamics


dxt

−dyt

x0

= xdt+ xdBH
t ,

= (yt + zt + υt) dt− ztdBH
t ,

= κ and yυT = ξ, t ∈ [0, T ] .

(2.37)

We associate this system (2.37) with the following linear quadratic functional cost

J (υ) = E
[∫ T

0

h (t, xvt , y
v
t , z

v
t , vt) dt+ l (xvT )

]
, (2.38)

where

h (t, xvt , y
v
t , z

v
t , vt) = −1

2

(
x2 + y2

t + z2
t + v2

t

)
and l (xvT ) =

1

2
x2
T .

that we want to minimize (2.38) over the set U and find some optimal control u, that

satisfies

J (u) = inf
v∈U
J (v) . (2.39)
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The triplet {(2.37), (2.38), (2.39)} forms our linear quadratic control problem. From

the definition 2.3, the stochastic Hamiltonian takes the form

H (t, xt, yt, zt, ut, pt, Pt, qt) = −1

2
(x2 + y2

t + z2
t + u2

t ) + pt (yt + zt + ut)

+ qtxt + Ptxt.

As (2.28), the triplet (pu, P u, qu) is the adjoint process, solution of the system


dput = −{yut − put } dt+

1

Ht2H−1
{−zu + put } dBH

t ,

dqut = −{xut − qut − P u
t } dt+

1

Ht2H−1
P u
t dB

H
t ,

pu0 = 0 and quT = xuT .

(2.40)

We minimize the Hamiltonian functional with respect to u over U . We have

Hu (t) = −ût + p̂t = 0, (2.41)

then

ût = p̂t. (2.42)

In view of theorem 2.1 and the convexity of l(xT ) =
1

2
x2
T andH (t) in xT and (x, y, z, u) ,

respectively, ût is optimal. In what follows, we derive a feedback state of such control

(2.41). We proceed as Young [82], and introduce the adjoint process pt, solution of

(2.40), as a linear combination

p̂t = αtŷt + βt, (2.43)

with αt and βt are two deterministic differentiable functions.
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Differentiating (2.43) then using (2.37), (2.42) and (2.43) yield to

dp̂t = α̇tŷtdt+ αtdŷt + β̇tdt

= α̇tŷtdt− αt (ŷt + ẑt + ût) dt+ αtẑtdB
H
t + β̇tdt

= α̇tŷtdt− αt (ŷt + ẑt + αtŷt + βt) dt+ αtẑtdB
H
t + β̇tdt

=
{
ŷt
(
α̇t − αt − α2

t

)
− αtẑt − αtβt + β̇t

}
dt+ αtẑtdB

H
t . (2.44)

On the other hand, injecting (2.37) and (2.43) in (2.40) , then dp̂t becomes

dp̂t = {−ŷt + αtŷt + βt} dt+
1

Ht2H−1
{−ẑ + αtŷt + βt} dBH

t . (2.45)

Identifying diffusion terms of (2.44) and(2.45) yields to ẑt = αtŷt+βt
αtHt2H−1+1

.

Identifying the drift terms, we get

{
α̇t = α2

t + 2αt − 1, α0 = 0, (2.46)

and {
β̇t − (1 + αt) βt = αtẑt, β0 = 0. (2.47)

The equation (2.46) is a Riccati equation and (2.47) is an ordinary differential equation

(ODE in short).

2.4.1 Integrating Riccati and ordinary differential equations

This part is devoted to finding the explicit solution of the Riccati differential equation

(2.46), then the ordinary differential equation 2.47. At first, applying some simple

algebra to (2.46) , we obtain

dt

dαt
=

1

2
√

2

[
1

αt − α1

− 1

αt − α2

]
, (2.48)
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where α1 =
√

2− 1 and α2 = −
√

2− 1. Integrating (2.48) from 0 to t, it comes

2t
√

2 = (ln |(αs − α1)| − ln |(αs − α2)|)|t0 .

Since α0 = 0, and by simple simplifications, we obtain αt−α1
αt−α2 = α1

α2
exp

{
2t
√

2
}
.

Finally, the solution of the Riccati equation (2.46) is

αt =
α1

(
1− exp

{
2t
√

2
})

1− α1
α2

exp
{

2t
√

2
} . (2.49)

On the other hand, the explicit solution of the ODE (2.47) is

βt = η exp {−% (t)}+

∫ t

0

αsẑs exp {% (s)− % (t)} ds, (2.50)

where αt is introduced in (2.49), % (t) is the derivative of − (1 + αt) and η is some real

constant. Consequently, replacing (2.49) and (2.50) in (2.42), we have

ût =
α1

(
1− exp

{
2
√

2t
})

1− α1
α2

exp
{

2
√

2t
} ŷt + η exp {−% (t)}+

∫ t

0

αsẑs exp {% (s)− % (t)} ds. (2.51)

Corollary 2.1 The solution to the Riccati equation (2.46) is explicitly given by (2.49).

Moreover, The equation (2.47) has an explicit solution represented by (2.50).

Corollary 2.2 If equations (2.46) and (2.47) each have solutions denoted as α (.) and

β (.) respectively, then the feedback control (2.42) in our linear quadratic stochastic

optimal control problem {(2.37), (2.38)} yields optimality.

Theorem 2.3 If the equations (2.46) and (2.47) admits the solution α (.) and β (.)

given by the expressions (2.49) and (2.50) , respectively, then the optimal control of the

problem of linear quadratic stochastic has the state feedback form (2.51) .
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Chapter 3

A Risk-Sensitive Stochastic

Maximum Principle for Backward

Stochastic Differential Equation

with Application

In this chapter, we present our second result of this thesis: Pontryagin’s Control Prob-

lem of risk-sensitive for fractional backward stochastic differential equation with ap-

plication. We aim to establish both necessary and suffi cient optimality conditions for

a system under risk-sensitive control problem. We achieve this goal by employing

Pontryagin’s maximum principle and the system’s dynamics are described by a back-

ward stochastic differential equation (BSDE) driven by a fractional Brownian motion

(fBm) with a Hurst parameter H ∈ ]0, 1[ .

Our strategy to solving the problem is inspired from the approach outlined by Dje-

hiche et al. in their publication [23]. Their methodology considers not only the state

and control variables but also incorporates the means of the state process within the

drift, diffusion, and initial cost functions. In the context of risk-sensitive control, the
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system is influenced by a nonlinear BSDE driven by an fBm dyt = −f (t, yt, zt, υt) dt+

ztdB
H
t , where yT = ξ. The criterion to be minimized, with initial risk-sensitive cost

is: J ε (υ) = E
[
exp ε

(∫ T
0
h (t, yt, zt, υt) dt+ g (y0)

)]
. A control u is called optimal if it

solves J ε (u) = inf
υ∈U
J ε (υ) .

We have been effectively addresses the existence of an optimal solution to achieve the

objectives outlined, and it establishes both necessary and suffi cient optimality condi-

tions for these models. The methodology employed entails a systematic transformation

of the risk-sensitive control problem. Initially, it is reframed in the context of an aug-

mented state process and a terminal payoff problem. This transformation considers

the convexity of the control set. Following this, the intermediate first-order adjoint

processes are streamlined into a simpler form. Necessary and suffi cient optimality con-

ditions are subsequently derived, utilizing the logarithmic transform as illustrated in

Lemma 3.2. To be more accurate, the approach, as depicted in the study by Lim and

Zhou [57], indicates that employing a square-integral martingale suffi ces for converting

the pair (p1, q1) into the adjoint process (p̃1(t), 0), where p̃1(t) remains a square integ-

rable martingale. This suggests that p̃1(t) equals p̃1(T ), which also equals the constant

E[p̃1(T )]. It’s crucial to emphasize that while this generic martingale is not directly

associated with the adjoint process p(t) as detailed in Lim and Zhou, it plays a signi-

ficant role in the adjoint equation linked with the risk-sensitive SMP, as indicated in

Theorem 3.2 bellow.

This chapter is extracted from our second results [40] and is structured as follows:

we start by present a comprehensive problem formulation, describe the risk-sensitive

model, and define the assumptions that govern our approach in Section 3.1. Section 3.2

is devoted to examining our system of BSDE driven by an fBm and explains the rational

behind our decision to convert the system into forward-backward stochastic differential

equation. In Section 3.3, we introduce our initial main result, which consists of the

necessary optimality conditions for the risk-sensitive control problem. Before that, we
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prove the relationship between the expected exponential utility and the quadratic back-

ward stochastic differential equation. Moving on to Section 3.4, we present the second

principal result, which pertains to suffi cient optimality conditions for risk-sensitive per-

formance. The last section we conclude this chapter with an application to the linear

quadratic control problem.

3.1 Statement of risk-sensitive problem

Consider
(

Ω,F ,
(
FHt
)
tε[0,T ]

,P
)
as a filtered probability space that satisfies the usual

conditions. Let T be a strictly positive real number, we define BH as one dimensional

fBm with Hurst parameter H belonging to the interval 0 to 1, and U is a nonempty

convex subset of R. Subsequently, a controller influences the system through an FHt -

adapted stochastic process and satisfies E
[∫ T

0

|vt|2 dt
]
< ∞. The collection of such

controls is called admissible and is represented by U , and we suppose it convex

Let S2 ([0, T ] ,R) the set of one-dimensional continuous random FHt -adapted processes

{φt, t ∈ [0, T ]} which satisfy ‖φ‖2
S2 = E

[
sup
t∈[0,T ]

|φt|2
]
<∞.

In the same way we denote by M2 ([0, T ] ,R) the set of one dimensional jointly FHt -

adapted random processes which satisfy ‖φ‖2
M2 = E

[∫ T
0

(
Hs2H−1

)2 |φs|2 ds
]
<∞.

Having introduced the primary tools and definitions of our framework in the previous

chapters, now we examine the following controlled BSDE

 dyυt = −f (t, yυt , z
υ
t , υt) dt+ zυt dB

H
t ,

yυT = ξ, t ∈ [0, T ] ,
(3.1)

where f : [0, T ] × R × R × U →R, and the terminal condition ξ is an FHt −measurable

random variable such that E|ξ|2 <∞, and υ is an admissible control.
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We define the criterion to be minimized, with initial risk-sensitive cost, as follows

J ε (υ) = E
[
exp ε

(
g (yυ0 ) +

∫ T

0

h (t, yυt , z
υ
t , υt) dt

)]
, (3.2)

where ε is the risk-sensitive index, g : R→ R, h : [0, T ]× R× R× U →R.

The following assumptions concerning the driver f of the system (3.1) and the cost

functional (3.2) are necessaire for ensuring the well-posedness of our problem.

Assumption 3.1 -The functions f and h are continuously differentiable with respect

to (y, z, u) .

-The function g is continuously differentiable, and it is bounded by |g(y)| ≤ c(1 + |y|)

for c > 0.

-There exists C > 0, such that all the derivatives of f and h are bounded by C(1 + |y|+

|z|+ |υ|).

Assumption 3.2 The second derivatives of the Hamiltonian Hε with respect to (y, z)

are bounded.

Theorem 3.1 The system (3.1) admits a unique solution .

Proof. See [6].

In the control problem, our objective is to minimize the cost functional J ε over the set

of admissible controls U . If u ∈ U is an optimal control (solution), that means

J ε (u) = inf
υ∈U
J ε (υ) . (3.3)

An admissible control that solves the problem {(3.1) , (3.2) , (3.3)} is referred to as

optimal. Our purpose is to derive both necessary and suffi cient optimality conditions,

met by such a control, in the context of the stochastic maximum principle with risk-

sensitive performance.
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Remark 3.1 Solving the problem {(3.1) , (3.2) , (3.3)} and determining the necessary

condition through classical methods is challenging due to the presence of the exponen-

tial function in the expression of the cost functional J ε. Therefore, as we present the

following section, we will follow a new approach.

3.2 Risk-neutral SMP for fractional backward stochastic

differential equation

To address our problem and surmount this obstacle, we must first take an intermediate

step, wherein we introduce an auxiliary state process xυt that satisfies to the following

stochastic differential equation dxυt = h (t, yυt , z
υ
t , υt) dt, xυ (0) = 0 .

Then, the control problem {(3.1) , (3.2) , (3.3)} is equivalent to



inf
υ∈U
E [exp ε (xυT + g (yυ0 ))] = inf

υ∈U
E [∆(xυT , y

υ
0 )] ,

subject to

dxυt = h (t, yυt , z
υ
t , υt) dt,

dyυt = −f (t, yυt , z
υ
t , υt) dt+ zυt dB

H
t ,

xυ0 = 0, yυT = ξ.

(3.4)

We define

AεT = exp
[
ε
(∫ T

0
h (t, yυt , z

υ
t , υt) dt+ g (yυ0 )

)]
,

and ΘT =
∫ T

0
h (t, yυt , z

υ
t , υt) dt+ g (yυ0 ) ,

(3.5)

the risk-sensitive loss functional is given by

Θε :=
1

ε
logE

[
exp

{
ε

(∫ T

0

h (t, yυt , z
υ
t , υt) dt+ g (yυ0 )

)}]
=

1

ε
logE [exp {εΘT}] .

(3.6)

When the risk-sensitive index ε is small, the loss functional Θε can be expanded as
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E (ΘT ) + ε
2
V ar (ΘT ) + O (ε2) , where, V ar(ΘT ) denotes the variance of ΘT . If ε is less

than 0, the variance of ΘT , as a measure of risk, enhances the performance Θε, in which

case the optimizer is referred to as a risk seeker. Whereas if ε > 0, the variance of

ΘT worsens the performance Θε, and the optimizer is labeled as risk averse. For more

detailed information, please refer to the paper [77].

Notation 3.1 Throughout this paper, we will use the following notations.

For % ∈ {f, h} , τ ∈ {υ, u} and ζ ∈ {x, y, z, υ, u} , we put


% (t) = % (t, yt, zt, υt) ,

%τ (t) = % (t, yt, zt, τt) ,

%ζ (t) = ∂%
∂ζ

(t, yt, zt, υt) .

,

 H̃
ε (t) = H̃ε (t, xt, yt, zt, υt,

−→p (t) ,−→q (t)) ,

H̃ε
ζ (t) = ∂H̃ε

∂ζ
(t, xt, yt, zt, υt,

−→p (t) ,−→q (t)) .

and  H
ε (t) = Hε (t, yt, zt, υt, p̃2 (t) , q̃2(t), V ε (t) , l (t)) ,

Hε
ζ (t) = ∂Hε

∂ζ
(t, yt, zt, υt, p̃2 (t) , q̃2(t), V ε (t) , l (t)) .

If we assume that assumption 3.1 holds true, then by applying the stochastic max-

imum principle for risk-neutral performance of forward-backward type control to the

augmented state dynamics (x, y, z), we can determine the adjoint equation satisfied

by a unique FH-adapted pair of processes ((p1, q1), (p2, q2)), which solves the following

system of forward-backward stochastic differential equations.

Lemma 3.1 A unique pair of FH-adapted processes ((p1, q1), (p2, q2)) exists, which

serves as a solution to the following system of forward-backward stochastic differen-
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tial equation



d−→p (t) =

 dp1 (t)

dp2 (t)

 =

 0 0

hy (t) fy (t)


 p1 (t)

p2 (t)

 dt

+

 q1 (t)

H̃εz(t)
Ht2H−1

 dBH
t ,

p1 (T ) = εAεT , p2 (0) = εAεTgy (yu0 ) ,

(3.7)

with E
[

2∑
i=1

supt∈[0,T ] |pi (t)|
2 +

∫ T
0

(
Ht2H−1

)2 |q1 (t)|2 dt
]
<∞.

Proof. In this context, we assume that H̃ε represents the Hamiltonian associated with

the optimal state dynamics (x, y, z) and the pair of adjoint processes (−→p (t) ,−→q (t)),

where

H̃ε (t) = h (t) p1 (t) + f (t) p2 (t) . (3.8)

We have  dp1 (t) = H̃ε
x (t) dt+ q1 (t) dBH

t , p1 (T ) = ∆x(x
υ
T , y

υ
0 ),

dp2 (t) = H̃ε
y (t) dt+ 1

Ht2H−1 H̃
ε
z (t) dBH

t , p2 (0) = ∆y(x
υ
T , y

υ
0 ),

where p1 (T ) = ε exp ε (xυT + g (yυ0 )) = εAεT ,

and p2 (0) = εgy (yυ0 ) exp ε (xυT + g (yυ0 )) = εgy (yυ0 )AεT .

That implies


dp1 (t) = 0dt+ q1 (t) dBH

t , p1 (T ) = εAεT ,

dp2 (t) = (hy (t) p1 (t) + fy (t) p2 (t)) dt

+ 1
Ht2H−1 (hz (t) p1 (t) + fz (t) p2 (t)) dBH

t , p2 (0) = εgy (yυ0 )AεT .

Which is equivalent the system (3.7) .

The following theorem is referred to as the stochastic maximum principle for risk-neutral
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control in the forward-backward type form.

Theorem 3.2 Under the assumption that 3.1 holds, when (x, y, z) represents an op-

timal solution to the risk-neutral control problem (3.4), there exist pairs of FHt −adapted

processes (p1, q1) and (p2, q2) that fulfill (3.7), as follows:

H̃ε
υ (t) (υt − ut) ≥ 0, (3.9)

for all υ ∈ U , almost every t ∈ [0, T ] and P-almost surely.

Proof. See [39].

3.3 Results statment

In this section, we unveil the main result of our study. However, before delving into that,

we introduce several lemmas that will aid us in our analysis. To start, our objective

is to establish the relationship between exponential utility and the backward quadratic

stochastic equation with a Hurst parameter H. It is essential to articulate the expected

exponential utility.

3.3.1 Expected exponential utility and backward quadratic

stochastic equation

First and foremost, it is crucial to express the expected exponential utility in the fol-

lowing format

e
εY εt = Ẽ

[
Aεt,T | FHt

]
= Ẽ

[
exp ε

(∫ T

t

h (s) ds+ g (yυ0 )

)
| FHt

]
, (3.10)

Here, Ẽ denotes the quasi-conditional expectation introduced by [42].
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The process Y ε represents the initial component of the FHt -adapted paire of processes

(Y ε, l), satisfies the following quadratic fractional BSDE

 dY ε
t = −

(
h (t) + εHt2H−1

2
|l (t)|2

)
dt+ l (t) dBH

t ,

Y ε
T = g

(
y
υ

0

)
,

(3.11)

where E
[∫ T

0

(
Ht2H−1

)2 |l (t)|2 dt
]
<∞.

For further insights into the optimization of expected exponential utility, readers can

refer to the papers [21] and [43].

Lemma 3.2 We have equivalence between assertions (3.10) and (3.11)

Proof. we will divide the proof into two steps.

Step 1: From (3.10) we can write

eε(Y
ε
t +

∫ t
0 h(s)ds) = Ẽ

[
exp ε

(∫ T

0

h (s) ds+ g (yυ0 )

)
| FHt

]
= Ẽ

[
AεT | FHt

]
,

by the fractional Clark-Ocone formula [41], there exists a unique FHt -adapted square

integrable process M such that

eε(Y
ε
t +

∫ t
0 h(s)ds) = E [AεT ] +

∫ t

0

MsdB
H
s . (3.12)

We applying Itô formula to (3.12) , get

d
(
eε(Y

ε
t +

∫ t
0 h(s)ds)

)
=

[
εdY ε

t + εh (t) dt+
1

2
ε2 〈dY ε

t , dY
ε
t 〉
]
eε(Y

ε
t +

∫ t
0 h(s)ds)

= MtdB
H
t ,

which implies

dY ε
t + h (t) dt+

1

2
ε 〈dY ε

t , dY
ε
t 〉 =

Mt

ε
e−ε(Y

ε
t +

∫ t
0 h(s)ds)dBH

t . (3.13)
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Hence the second term is an FHt -quasi-martingale, then

〈dY ε
t , dY

ε
t 〉 =

(
Mt

ε
e−ε(Y

ε
t +

∫ t
0 h(s)ds)dBH

t

)2

= Ht2H−1 |l (t)|2 dt,

where l (t) := Mt

ε
e−ε(Y

ε
t +

∫ t
0 h(s)ds). Then (3.13) becomes

dY ε
t + h (t) dt+

ε

2
Ht2H−1 |l (t)|2 dt = l (t) dBH

t .

Finally, we arrive at.

dY ε
t = −

(
h (t) +

εHt2H−1

2
|l (t)|2

)
dt+ l (t) dBH

t , Y
ε
T = g

(
y
υ

0

)
.

Step 2: We will prove the opposite, by applying Itô to e
εY εt ,and from (3.11) we get

d
(
e
εY εt

)
= −εeεY

ε
t h (t) dt+ εe

εY εt l (t) dBH
t . (3.14)

On the other side we have

d

(
e
ε(Y εt +

∫ t
0 h(s)ds)

)
= e

εY εt d
(
e
ε
∫ t
0 h(s)ds

)
+ eε

∫ t
0 h(s)dsd

(
e
εY εt

)
= e

ε(Y εt +
∫ t
0 h(s)ds)

εh (t) dt+ eε
∫ t
0 h(s)dsd

(
e
εY εt

)
,

we replacing (3.14) into above equality we get

d

(
e
ε(Y εt +

∫ t
0 h(s)ds)

)
= e

ε(Y εt +
∫ t
0 h(s)ds)

εl (t) dBH
t ,

but we have
∫ T
t
d
(
e
ε(Y εs +

∫ s
0 h(u)du)

)
= e

ε(Y εT+
∫T
0 h(s)ds) − e

ε(Y εt +
∫ t
0 h(s)ds)

,
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that implies

e
ε(Y εT+

∫T
0 h(s)ds)

= e
ε(Y εt +

∫ t
0 h(s)ds)

+

∫ T

t

e
ε(Y εs +

∫ s
0 h(u)du)

εl (s) dBH
s ,

by passing mathematical quasi-conditional expectation

Ẽ
[
e
ε(Y εT+

∫T
0 h(s)ds)

| FHt
]

= Ẽ
[
e
ε(Y εt +

∫ t
0 h(s)ds) | FHt

]
= e

ε(Y εt +
∫ t
0 h(s)ds)

.

Since Y ε
T = g

(
y
υ

0

)
, finally we get

e
εY εt = e

−ε
∫ t
0 h(s)dsẼ

[
e
ε(Y εT+

∫T
0 h(s)ds)

| FHt
]

= Ẽ
[
e
ε(g(y

υ

0 )+
∫T
t h(s)ds)

| FHt
]

= Ẽ
[
Aεt,T | FHt

]
.

Which is equal to the given form (3.10) .

3.3.2 New adjoint equations and risk-sensitive necessary op-

timality conditions

To derive our result, we adopt the methodology introduced by Djehiche et al. in [23],

and introduce a transformation of the adjoint processes (p1, q1) and (p2, q2) into a new

pair by removing the first component (p1, q1). This enables us to express the stochastic

maximum principle exclusively in terms of the new process, which consists solely of the

last two adjoint processes.

At first, we remark that dp1 (t) = q1 (t) dBH
t , p1 (T ) = εAεT .

The explicit solution of this fractional BSDE is

p1 (t) = εẼ
[
AεT | FHt

]
= εV ε (t) , (3.15)
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and V ε
t := Ẽ

[
AεT | FHt

]
, 0 ≤ t ≤ T. If we take a close-up look of (3.15) , we can

determine a transformation of (−→p ,−→q ) into an adjoint process (p̃, q̃), where p̃1 (t) =

1
εV εt

p1 (t) = 1; that mean

p̃ (t) =

(
p̃1 (t)

p̃2 (t)

)
:=

1

εV ε
t

−→p (t) , 0 ≤ t ≤ T. (3.16)

By using (3.7) and (3.16), we get p̃1 (T ) = 1 and p̃2 (0) = gy (yυ0 ) .

To explore the characteristics of this novel process (p̃ (t) , q̃ (t)), it is imperative to

demonstrate the following crucial properties of the quasi-martingale V ε. As demon-

strated in Lemma 3.2, the process Y ε serves as the initial component of the FHt -

adapted pair of processes (Y ε, l), representing the unique solution to quadratic back-

ward stochastic differential equation (3.11) . The next lemma serves as a supporting

result within this chapter, aiding us in achieving our primary objective in the following

paragraphs.

Lemma 3.3 Suppose that assumption 3.1 holds, then

E [sup |Y ε
t |] ≤ CT . (3.17)

In particular, V ε solves the following linear backward SDE

 dV ε
t = εl (t)V ε

t dB
H
t ,

V ε
T = AεT .

(3.18)

Then, the process defined on
(

Ω,F ,
(
FHt
)
t∈[0,T ]

,P
)
for every 0 ≤ t ≤ T, by

V ε
t

V ε
0

= exp

(
ε

∫ t

0

l (s) dBH
s −

ε2

2

∫ t

0

Hs2H−1 |l (s)|2 ds
)
, (3.19)

is a uniformly bounded FHt -quasi-martingale.
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Proof. First, we prove (3.17) , we have h and g are bounded by constant C > 0, we

get  −εC ≤ εg (yυ0 ) ≤ εC,

−εCT ≤ ε
∫ T

0
h (t) dt ≤ εCT,

by addition the two above inequalities and since the exponential function is positive,

then from (3.5) we get

0 ≤ e−(1+T )εC ≤ AεT ≤ e(1+T )εC . (3.20)

Therefore V ε is uniformly bounded FHt -quasi-martingale satisfying

0 ≤ e−(1+T )εC ≤ V ε
t ≤ e(1+T )εC , 0 ≤ t ≤ T. (3.21)

The suffi cient conditions of the logarithmic transform established in [24], can be applied

in the quasi-martingale V ε as follows

V ε
t = exp ε

(∫ t

0

h (s) ds+ Y ε
t

)
, (3.22)

for every 0 ≤ t ≤ T, and V ε
0 = exp (εY ε

0 ) = E [AεT ] . It is very easy to see from (3.21)

and the boundedness of h that E [sup |Y ε
t |] ≤ CT , where, CT is a positive constant that

depends only on T and the boundedness of l and g.

Second, we move to prove (3.18) , by applying Itô to (3.22) , then from (3.11) we obtain

dV ε
t = d

[
exp ε

(∫ t
0
h (s) ds+ Y ε

t

)]
= εh (t)V ε

t dt+ εV ε
t

[
−
(
h (t) + ε

2
Ht2H−1 |l (t)|2

)
dt+ l (t) dBH

t

]
+ ε2

2
V ε
t Ht

2H−1 |l (t)|2 dt

= εV ε
t l (t) dB

H
t .
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Finally, we can prove (3.19) , by replacing formula of Y ε
t in (3.22) , we get

V ε
t = exp

{
ε

∫ t

0

h (s) ds−
∫ t

0

ε
(
h (s) +

ε

2
Hs2H−1 |l (s)|2

)
ds

+ε

∫ t

0

l (s) dBH
s

}
= exp

{
−ε

2

2

∫ t

0

Hs2H−1 |l (s)|2 ds+ ε

∫ t

0

l (s) dBH
s

}
.

Then

d (lnV ε
t ) = d

(
−ε

2

2

∫ t

0

Hs2H−1 |l (s)|2 ds+ ε

∫ t

0

l (s) dBH
s

)
.

By introducing the integral and from properties Logarithmic function, we obtain

ln
V ε
t

V ε
0

= −ε
2

2

∫ t

0

Hs2H−1 |l (s)|2 ds+ ε

∫ t

0

l (s) dBH
s .

At last, we have V εt
V ε0

= exp
(
ε
∫ t

0
l (s) dBH

s − ε2

2

∫ t
0
Hs2H−1 |l (s)|2 ds

)
.

In view of (3.18), the last expression is a uniformly bounded FHt -quasi-martingale.

In Coming up, we assert and demonstrate the necessary optimality condition for the

system governed by SDE with a risk-sensitive performance objective. thereafter, we

introduce the Risk-Sensitive SMP theorem.

Proposition 3.1 The risk-sensitive for the adjoint equation satisfied by (p̃2, q̃2) and

(V ε, l) becomes

 dp̃2 (t) = Hε
y (t) dt+ 1

Ht2H−1H
ε
z (t) dBH,ε

t , p̃2 (0) = gy (yu0 ) ,

dV ε
t = εl (t)V ε

t dB
H
t , V

ε
T = AεT .

(3.23)

The solution (p̃, q̃, V ε, l) of the system (3.23) is unique, such that

E

[
sup
t∈[0,T ]

|p̃ (t)|2 + sup
t∈[0,T ]

|V ε (t)|2 +

∫ T

0

(
Ht2H−1

)2 (|q̃ (t)|2 + |l (t)|2
)
dt

]
<∞, (3.24)
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where

Hε (t) := Hε

t, yt, zt,
 p̃2 (t)

q̃2(t)

 , V ε (t) , l (t)


=

(
f (t)− ztεl (t)Ht2H−1

)
p̃2 (t) + h (t) .

(3.25)

Proof. Under the assumption 3.2, the system (3.23) has a unique solution. Now we

identify the processes α̃ and β̃ such that

dp̃ (t) = α̃ (t) dt+ β̃ (t) dBH
t . (3.26)

By applying integration by parts formula to the process −→p (t) = εV ε (t) p̃ (t) , and using

the expression of V ε
t in (3.18), we obtain

d−→p (t) = d (εV ε (t) p̃ (t))

= ε2p̃ (t) l (t)V ε
t dB

H
t + εV ε (t) dp̃ (t) + ε2l (t)V ε

t β̃ (t)Ht2H−1dt.

That implies

dp̃ (t) =
1

εV ε
t

d−→p (t)− εp̃ (t) l (t) dBH
t − εl (t) β̃ (t)Ht2H−1dt.

According to the system (3.7) , we have

dp̃ (t) =

 1
εV εt


 0 0

hy (t) fy (t)


 p1 (t)

p2 (t)


− εl (t) β̃ (t)Ht2H−1

 dt

+

 1
εV εt

 q1 (t)

H̃εz(t)
Ht2H−1

− εp̃ (t) l (t)

 dBH
t .
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By using the relation (3.16) , we get

dp̃ (t) =


 0 0

hy (t) fy (t)


 p̃1 (t)

p̃2 (t)

− εl (t) β̃ (t)Ht2H−1

 dt
+


 q̃1 (t)

1
Ht2H−1 (hz (t) p̃1 (t) + fz (t) p̃2 (t))

− εp̃ (t) l (t)

 dBH
t .

(3.27)

By identifying the coeffi cients between (3.26) and (3.27), we get the drift term

α̃ (t) =

 0 0

hy (t) fy (t)


 p̃1 (t)

p̃2 (t)

− εl (t) β̃ (t)Ht2H−1,

and the diffusion term of the process p̃(t)

β̃ (t) =

 q̃1 (t)

1
Ht2H−1 (hz (t) p̃1 (t) + fz (t) p̃2 (t))

− εp̃ (t) l (t) . (3.28)

Finally, we obtain

dp̃ (t) =


 0 0

hy (t) fy (t)


 p̃1 (t)

p̃2 (t)

− εl (t) β̃ (t)Ht2H−1

 dt+ β̃ (t) dBH
t .

It easily confirmed that

dp̃1 (t) = −εl (t) β̃1 (t)Ht2H−1dt+ β̃1 (t) dBH
t

= β̃1 (t)
[
dBH

t − εl (t)Ht2H−1dt
]
, p̃1 (T ) = 1.

Bearing in mind (3.19) , the fractional Girsanov’s theorem permits us to write
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dp̃1 (t) = β̃1 (t) dBH,ε
t , p̃1 (T ) = 1 Pε − a.s, where

dBH,ε
t = dBH

t − εl (t)Ht2H−1dt, (3.29)

is a Pε fBm, and

dPε

dP
:= exp

(
ε

∫ t

0

l (s)Hs2H−1dBH
s −

ε2

2

∫ t

0

(
Hs2H−1

)2 |l (s)|2 ds
)
.

As stated by in (3.19) and (3.20), the probability measures Pε and P are equival-

ent. Hence, noting that p̃1 (t) = 1
εV εt

p1 (t) , is square integrable, we get that p̃1 (t) =

ẼPε
[
p̃1 (T ) | FHt

]
= 1, and so on, we can find that the process q̃1 (t) is a finite quadratic

variation, such that E
[∫ T

0
|q̃1 (t)|2 dt

]
= 0.This implies that, for almost every 0 ≤ t ≤ T,

q̃1 (t) = 0, Pε and P− a.s. we have

dp̃ (t) =

 0 0

hy (t) fy (t)


 p̃1 (t)

p̃2 (t)

 dt+ β̃ (t) dBH,ε
t . (3.30)

By replacing the relation(3.28) into (3.30), we obtain

dp̃ (t) =

 0 0

hy (t) fy (t)


 p̃1 (t)

p̃2 (t)

 dt

+


 q̃1 (t)

1
Ht2H−1 (hz (t) p̃1 (t) + fz (t) p̃2 (t))

− εp̃ (t) l (t)

 dBH,ε
t .

(3.31)

Therefore, the second component p̃2 (t) given in (3.31) has the form

dp̃2 (t) = [hy (t) p̃1 (t) + fy (t) p̃2 (t)] dt

+ 1
Ht2H−1

[
hz (t) p̃1 (t) + fz (t) p̃2 (t)−Ht2H−1εp̃2 (t) l (t)

]
dBH,ε

t .

The main risk-sensitive for the second adjoint equation satisfied by (p̃2, q̃2) and (V ε, l)
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becomes  dp̃2 (t) = Hε
y (t) dt+ 1

Ht2H−1H
ε
z (t) dBH,ε

t , p̃2 (0) = gy (yu0 ) .

dV ε
t = εl (t)V ε

t dB
H
t , V

ε
T = AεT ,

The solution (p̃, q̃, V ε, l) of the system (3.23) is unique, such that

E

[
sup
t∈[0,T ]

|p̃ (t)|2 + sup
t∈[0,T ]

∣∣V θ (t)
∣∣2 +

∫ T

0

(
Ht2H−1

)2 (|q̃ (t)|2 + |l (t)|2
)
dt

]
<∞,

where

Hε (t) := Hε (t, yt, zt, p̃2 (t) , q̃2(t), V ε (t) , l (t))

=
(
f (t)− ztεl (t)Ht2H−1

)
p̃2 (t) + h (t) .

The proof is completed.

Theorem 3.3 (Risk-sensitive SMP) Assume that assumption 3.1 holds, if (y, z, u) is

an optimal solution to the risk-sensitive control problem {(3.1) , (3.2) , (3.3)}, then there

exist pairs of FHt −adapted processes (p̃2, q̃2) and (V ε, l) that satisfy (3.23) and (3.24),

such that

Hε
υ (t) (υt − ut) ≥ 0, (3.32)

for all υ∈ U , almost every 0 ≤ t ≤ T and P-a.s, where the Hamiltonian H̃ε associated

in (3.4) is given by

H̃ε (t, xt, yt, zt, υt,
−→p (t) ,−→q (t)) = εV ε

t Hε (t, yt, zt, υt, p̃2 (t) , q̃2(t), V ε
t , l (t)) , (3.33)

where Hε is given by (3.25) .

Proof. To arrive at a risk-sensitive stochastic maximum principle expressed in terms

of the adjoint processes (p̃2, q̃2) and (V ε, l), which solve (3.23), where the Hamiltonian
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H̃ε associated with (3.9) given by (3.8) satisfies

H̃ε (t, xt, yt, zt, υt,
−→p (t) ,−→q (t)) = εV ε

t Hε (t, yt, zt, υt, p̃2 (t) , q̃2(t), V ε
t , l (t)) ,

and Hε is the risk-sensitive Hamiltonian given by (3.25).

Hence, since V ε > 0,the variational inequality (3.9) translates into Hε
υ (t) ≥ 0, for all υ

∈ U , almost every 0 ≤ t ≤ T and P-almost surely.

3.4 Risk-sensitive suffi cient optimality conditions

In this section, we aim to explore the conditions that lead to the transformation of the

necessary optimality condition (3.9) into a suffi cient condition for optimality.

Assumption 3.3 We suppose:

1. The Hamiltonian function H̃ε is convex for all (y, z, u) .

2. The finction g is convex.

Theorem 3.4 If the above assumption 3.3 hold, and for any υ ∈ U , the process yυT = ξ

is a one-dimensional FHT −measurable random variable with E|ξ|2 < ∞, then u consti-

tutes an optimal solution to the control problem {(3.1) , (3.2) , (3.3)} if and only if it

complies with the necessary optimality condition (3.9) .

Proof. Let υ, u ∈ U (u be the optimal), we have

J ε (υ)− J ε (u) = E [exp ε (xυT + g (yυ0 ))− exp ε (xuT + g (yu0 ))] ,
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by a Taylor’s expansion of exponential function, then by (3.5) , and according to (3.7),

we get

J ε (υ)− J ε (u) = E [εgy (yu0 ) (yυ0 − yu0 ) exp ε (xuT + g (yu0 ))]

+ E [ε (xυT − xuT ) exp ε (xuT + g (yu0 ))]

= E [p2 (0) (yυ0 − yu0 )] + E [p1 (T ) (xυT − xuT )] .

(3.34)

By applying integration by parts formula to p1 (t) (xυt − xut ) , we obtain

d (p1 (t) (xυt − xut )) = (xυt − xut ) q1 (t) dBH
t + p1 (t) (hυ (t)− hu (t)) dt.

By introducing integral then passing expectation, we get

E [p1 (T ) (xυT − xuT )] = E
[∫ T

0

p1 (t) (hυ (t)− hu (t)) dt

]
, (3.35)

and applying also integration by parts formula to p2 (t) (yυt − yut )

d (p2 (t) (yυt − yut )) = (yυt − yut ) H̃ε
y (t) dt+ 1

Ht2H−1 (yυt − yut ) H̃ε
z (t) dBH

t

− p2 (t) (fυ (t)− fu (t)) dt+ p2 (t) (zυt − zut ) dBH
t

+ 1
Ht2H−1 H̃

ε
z (t) (zυt − zut )Ht2H−1dt.

By introducing integral then passing matematical expectation

E [p2 (0) (yυ0 − yu0 )] = E
[
−
∫ T

0
(yυt − yut ) H̃ε

y (t) dt
]

+ E
[∫ T

0
p2 (t) (fυ (t)− fu (t)) dt

]
− E

[∫ T
0
H̃ε
z (t) (zυt − zut ) dt

]
.

(3.36)
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By replacing (3.35) and (3.36) into (3.34), we get

J ε (υ)− J ε (u) = E
[∫ T

0
H̃ε (t, xυt , y

υ
t , z

υ
t , υt,

−→p (t) ,−→q (t))

− H̃ε (t, xut , y
u
t , z

u
t , , ut

−→p (t) ,−→q (t)) dt
]

− E
[∫ T

0
(yυt − yut ) H̃ε

y (t) dt
]
− E

[∫ T
0
H̃ε
z (t) (zυt − zut ) dt

]
.

(3.37)

With using the Hamiltonian convexity at (y, z, υ) in the above inequality and as a direct

result from (3.9) , we arrive at J ε (υ)− J ε (u) ≥ 0.

Remark 3.2 Due to equation (3.33), a relationship between the Hamiltonian concern-

ing risk-neutral and the Hamiltonian concerning risk-sensitive. Specifically, we have

J ε (υ)− J ε (u) ≥ E
[∫ T

0
εV ε

t Hε
υ (t, yut , z

u
t , ut, p̃2 (t) , q̃2(t), V ε

t , l (t)) (υt − ut) dt
]

≥ 0.

Given that εV ε
t is greater than 0, the previous inequality can be restated as

J ε (υ)− J ε (u) ≥ E
[∫ T

0
Hε
υ (t, yut , z

u
t , ut, p̃2 (t) , q̃2(t), V ε

t , l (t)) (υt − ut) dt
]
≥ 0

Referring to the necessary optimality conditions (3.32), the latest inequality indicates

that J ε (υ)− J ε (u) ≥ 0.

3.5 Application

3.5.1 A control problem with linear quadratic risk sensitivity

We present an example of risk-sensitive backward stochastic linear quadratic problem,

and give the explicit optimal control in the feedback forme, and illustrate our main

results (Risk-sensitive SMP) in Theorem 3.3.
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We consider the following state dynamics

 dyt = − (αyt + υt) dt+ ztdB
H
t ,

yυT = ξ, t ∈ [0, T ] ,
(3.38)

and our risk-sensitive cost functional has the form

J ε (υ) = E
[
exp ε

(
−1

2

∫ T

0

(
υ2
t + y2

t

)
dt+

1

2
y2

0

)]
, (3.39)

where: α is real constant and ε > 0.

Our aim is to minimize over U , (3.39) subject to (3.38) by choosing υ which satisfies

the following equality

J ε (u) = inf
υ∈U
J ε (υ) . (3.40)

Hence, we can apply Theorem 3.3 to solve our linear-quadratic risk-sensitive stochastic

optimal control problem {(3.38) , (3.39) , (3.40)}. The Hamiltonian function (3.25) is

defined by

Hε (t, yt, zt, υt, p̃2 (t) , q̃2(t), V ε (t) , l (t)) :=
(
αyt + υt − ztεl (t)Ht2H−1

)
p̃2 (t)

− 1
2

(υ2
t + y2

t ) ,

minimizing the Hamiltonian over U we obtain

ut = p̃2 (t) . (3.41)

Then, (3.38) becomes

dyut = − (αyut + p̃2 (t)) dt+ zut dB
H
t , yuT = ξ. (3.42)
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By taking into consideration (3.29) , the optimal adjoint equation (3.23) can be written

as follow

dp̃2 (t) = Hε
y (t) dt+

1

Ht2H−1
Hε
z (t) dBH,ε

t

=
{
−yut +

(
α + ε2l2 (t)Ht2H−1

)
p̃2 (t)

}
dt− εl (t) p̃2 (t) dBH

t . (3.43)

Through (3.42) and (3.43) we have produced a system called fully coupled forward

backward system



dyut = − (αyut + p̃2 (t)) dt+ zut dB
H
t ,

dp̃2 (t) =
{
−yut +

(
α + ε2l2 (t)Ht2H−1

)
p̃2 (t)

}
dt

− εl (t) p̃2 (t) dBH
t ,

yuT = ξ, p̃2 (0) = yu0 .

(3.44)

Which his solution is diffi cult to find explicitly. To solve this system, we consider the

following linear form

p̃2 (t) = ϕ (t) yut + χ (t) , (3.45)

with ϕ and χ are deterministic functions. Then applying Itô’s formula on (3.45) , we

obtain

dp̃2 (t) =
·
ϕty

u
t dt+ ϕtdyt +

·
χtdt

=
(
·
ϕty

u
t − αϕtyut − ϕtp̃2 (t) +

·
χt

)
dt+ ϕtz

u
t dB

H
t , (3.46)

where
·
ϕ and

·
χt are the derivative of ϕ and χ with respect to t.

Putting (3.45) into (3.46)
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dp̃2 (t) =
(
·
ϕty

u
t − αϕtyut − ϕt (ϕty

u
t + χt) +

·
χt

)
dt+ zut dB

H
t

=
((

·
ϕt − αϕt − ϕ2

t

)
yut − ϕtχt +

·
χt

)
dt+ ϕtz

u
t dB

H
t . (3.47)

On the other hand, after substituting (3.45) into (3.43), we arrive at

dp̃2 (t) =
{((

α + ε2l2 (t)Ht2H−1
)
ϕt − 1

)
yut

+
(
α + ε2l2 (t)Ht2H−1

)
χt
}
dt− εl (t) (ϕtyt + χt) dB

H
t .

(3.48)

By identification drift terms between (3.47) and (3.48) , we obtain the following Riccati

and ordinary differential equations, respectively.


·
ϕt − ϕ2

t − 2ϕt
(
α + 1

2
ε2l2 (t)Ht2H−1

)
+ 1 = 0,

ϕ0 = 1.
(3.49)


·
χt −

(
ϕt + α + ε2l2 (t)Ht2H−1

)
χt = 0,

χ0 = 0.
(3.50)

By using the same identification, we get ϕtzt = −εl (t) (ϕtyt + χt) , which implies

χt = − 1

εl (t)
ϕtzt − ϕtyt. (3.51)

Finally, from (3.41) and by substituting (3.51) into (3.45) we have

ut (zt) = p̃2 (t) = − 1

εl (t)
ϕtzt, (3.52)

where ϕ (t) is determined by (3.49).

Theorem 3.5 We assume that (ϕt, χt) are the solutions of system (3.49) and (3.50),
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then the optimal control of our linear-quadratic risk-sensitive stochastic optimal control

problem {(3.38) , (3.39) , (3.40)} has the state feed-back form (3.52) .

3.5.2 Explicit solution of the Riccati equation

In this part we will find the explicit solution of the Riccati differential equation (3.49).

For simplicity we set

N = −
(
α +

1

2
ε2l2 (t)Ht2H−1

)
. (3.53)

Therefore we have
·
ϕt = ϕ2

t − 2ϕtN − 1.

It is easily to find the discriminant ∆ = 4 (N2 + 1) , And through it we can find two

solutions ϕ1 = N −
√
N2 + 1 and ϕ2 = N +

√
N2 + 1.

Then we get dt = 1
ϕ2t−2Nϕt−1

dϕt.Integrating from 0 to t, taking into consideration ϕ0 =

1, then after some simplification, we arrive at last

ϕt =

(
N +

√
N2 + 1

)
−
(
N −

√
N2 + 1

) ∣∣∣∣1−(N+
√
N2+1)

1−(N−
√
N2+1)

∣∣∣∣ exp
(
2t
√
N2 + 1

)
1−

∣∣∣∣1−(N+
√
N2+1)

1−(N−
√
N2+1)

∣∣∣∣ exp
(
2t
√
N2 + 1

) ,

if we putting

A =

∣∣∣∣∣1−
(
N +

√
N2 + 1

)
1−

(
N −

√
N2 + 1

)∣∣∣∣∣ exp
(

2t
√
N2 + 1

)
, (3.54)

we obtain

ϕt =

(
N +

√
N2 + 1

)
−
(
N −

√
N2 + 1

)
A

1− A . (3.55)

Corollary 3.1 The explicit solution of the Riccati equation (3.49) is given by (3.55) ,

where the coeffi cients N and A are given by (3.53) and (3.54) , respectively.
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In this thesis, as a first result, we provide a solution to a stochastic optimization prob-

lem, employing the Pontryagin stochastic maximum principle. Our problem involves

a forward-backward stochastic dynamics governed by a fractional Brownian motion,

where H lies within the range of 0 to 1. Leveraging the convex nature of the con-

trol domain, we deduce the optimal trajectory of this system by introducing perturbed

control in lemmas 2.1, 2.2, 2.3 and 2.4. Utilizing these findings alongside variational

calculus, we establish necessary optimality conditions in theorem 2.1. Additionally,

by imposing certain concavity constraints on the system’s drivers, we derive suffi cient

optimality conditions in theorem 2.2.

The second one concerns the necessary and suffi cient optimality conditions for a frac-

tional backward stochastic differential equation within a risk-sensitive framework. We

adopt a methodology akin to Djehich et al. [23], employing various advanced mathem-

atical techniques. These include the logarithmic transformation, serving as a generaliz-

ation of the method introduced by Elkaroui and Hamadène in [24], transitioning from

risk-neutral to risk-sensitive logarithmic quasi-martingales.

A key disparity between our risk-sensitive optimal control problem {(3.1) , (3.2) , (3.3)}

and conventional risk-neutral problems lies in the exponential of integral type cost func-

tional (3.2). To tackle this, we exploit the convexity of the Hamiltonian and introduce

an exponential utility for the cost function, echoing the approach in [20]. Further-

more, we establish a connection between expected exponential utility and a backward
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stochastic differential quadratic equation, as detailed in Lemma 3.2.

After conducting this study, we have identified several avenues for future research.

One such area of interest involves addressing optimal control problems where the state

equation is influenced by fractional Brownian motion. Specifically, we intend to seek

the following scenarios:

• We plan to explore the stochastic maximum principle for control systems with

controlled jump diffusions.

• Additionally, we intend to investigate the singular risk-sensitive stochastic max-

imum principle.

• Furthermore, we aim to examine the risk-sensitive stochastic maximum principle

of Mean-Field type, particularly in the context of a relaxed control problem, to

provide insights into its behavior and potential optimizations.
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