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Abstract

‘Zhe main purpose of this thesis is to investigate the existence and uniqueness of solu-
tions, as well as the asymptotic behavior of some viscoelastic problems in one-dimensional
space, precisely, this work addresses the problem of undesirable vibrations and the con-
trol of attitude stabilization of a flexible satellite during the maneuvers. In view of this,
viscoelastic materials are suggested to attenuate or suppress the unwanted vibrations of
a flexible satellite. The flexible satellite system consists of a central rigid hub and two
large symmetric flexible appendages. Mathematically, the problem can be modeled by
a set of partial differential equations (PDEs) taking into account the dynamic boundary
condition. Our research utilizes Lyapunov’s direct method to study some viscoelastic sys-
tems. The results obtained in this thesis aim to enhance much of the previous scientific

research.

Key Words: PDEs; dynamic boundary condition; Euler-Bernoulli beam; existence and
uniqueness of solutions; Galerkin approximation method; arbitrary decay; viscoelasticity;

relaxation function.
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Résumé

28 but principal de cette these est d’étudier 'existence et 1'unicité des solutions, ainsi
que le comportement asymptotique de certains problemes viscoélastiques dans un es-
pace unidimensionnel. Plus précisément, ce travail aborde le probleme des vibrations
indésirables et le controle de la stabilisation de l'attitude d’un satellite flexible pen-
dant les manceuvres. En vue de cela, des matériaux viscoélastiques sont proposés pour
atténuer ou supprimer les vibrations indésirables d’un satellite flexible. Le systeme de
satellite flexible se compose d’un moyeu central rigide et de deux grands appendices flex-
ibles symétriques. Mathématiquement, le probleme peut étre modélisé par un ensemble
d’équations aux dérivées partielles (EDP) tenant en compte les conditions limites dy-
namiques. Notre recherche utilise la méthode directe de Lyapunov pour étudier certains
systemes viscoélastiques. Les résultats obtenus dans cette these visent a améliorer la

plupart des recherches scientifiques précédentes.

Mots Clés: EDP ; conditions dynamiques aux limites ; poutre d’Euler-Bernoulli ; ex-
istence et unicité des solutions ; méthode d’approximation de Galerkin ; décroissance

arbitraire ; viscoélasticité ; fonction de relaxation.
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Introduction

Introduction

‘Zhe attitude control problem for a flexible satellite has received increasing attention from
numerous researchers in recent years due to its important applications, in addition, the
satellite plays a vital role in our daily activities, offering various services including telecom-
munications, weather forecasting, earth observation, navigation, and scientific research.
The effective functioning of these sophisticated technologies relies on their capability to
endure various environmental obstacles such as temperature fluctuations, radiation, and
vibration. Vibrations during launch or in orbit can cause significant harm to the fragile
equipment, therefore, it is crucial to minimize and suppress these undesirable vibrations
to guarantee the longevity and reliability of the satellite or spacecraft, given the potential
consequences of uncontrolled vibrations, the need for accurate and reliable monitoring
in this field is imperative. Consequently, several articles addressed the issue of vibration
control in satellite, highlighting the need for effective monitoring and mitigation measures.
In this regards, we refer some previous studies, early in the 1980s, Breakwell [18] and Ben-
Asher et al. [§] showed the most effective control strategy for flexible spacecraft issues with
vibration suppression, afterwards, several robust control methods have been researched
for the spacecraft attitude control system to enhance robust performance in the pres-
ence of unmodeled dynamics, disturbances, model uncertainty, and structural vibrations
of flexible appendages. In [67] and [53], the researchers studied the H,, control scheme
systematically for the attitude control system to solve the disturbance and the vibration
problems, whereas it cannot address the large model uncertainties of satellite. Also in
[54], a sliding mode controller has been proposed combining with input shaping which is
used to reduce residual vibration while the controller is used to deal with disturbance,
although the control strategy mentioned above has achieved good control performance.
The bounded of disturbance and uncertainty need to be known in advance, based on
quintic polynomial transition a novel trajectory planning scheme has been proposed in
[99].

In [48], the paper has presented a new method for reducing the vibration of flexible space-
craft during attitude maneuver by utilizing the theory of variable structural control (VSC)

to design switching logic for thruster firing and lead zirconate titanate (PZT) as sensor
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and actuator for active vibration suppression. Later, in [52], the authors have addressed
an important question involving the suppression of vibrations in flexible satellites, they
have studied a flexible satellite system with a rigid hub and long flexible solar panels
that are subject to some undesirable vibrations and frictional damping that acts on the

transverse displacements of the left and right panels

Figure 1: The flexible satellite system.

In figure , the functions w’(z,t) and w®(z,t) represent the transverse displacements of
the left and right panels at the position z for the time ¢, and w (1/2,t) is the transverse
displacements of a lumped mass. Specifically, they have derived and analyzed the problem

by utilizing the Hamilton’s, they have been obtained the following system,
pAwk (z,t) + EIwE  (2,t) + ywk (z,t) =0, (x,t) €[0,1/2] x [0,00),

(1)
pAwgi (2,8) + Elwg,,, (1) + 92w (z,4) = 0, (2,8) € [1[/2,1] x [0,00),

with the boundary conditions

wajc: (1/27t) = waIc% (Z/Q, t) =0, waIch (O’t) = wﬁx (l’t) =0, wéxw (0>t) = ngx (l>t) =0,
W (1)2,) = Wi (1/2,8) = w (1/2,4) |

mwy (1/2,t) = u(t) + Elwk, (1/2,t) — EIWE  (1/2,1).

TTrT

(2)

The positive constants p, A, EI, m and 7, v are: the density of the beam material, the
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cross-sectional area, bending stiffness, the mass of the center body and the coefficients of
viscous damping, respectively. u(t) is a single-point control force applied on the center
body of the satellite, which defined as follows:

«

g

W(l)2,1) — kwi(1)2,8) — Smuwi(l/2,8) — kyw(l/2,8), >0, (3)

u(t) = —k 3

where a and 3 represent positive weighting constants, & and k, are the control gains.
Then, they showed a result of exponential decay for the closed-loop system.

Subsequently, in [56], the researchers have improved the previous results by taking into
account the unknown distributed disturbance in the system. They then have proved the

stability of the following model for all t > 0

pAwk (z,t) + ElIwE  (2,t) + ik (z,t) = fL(x,t) + UE(z,t), (x,t) €10,1/2] x RF

pAwl (z.t) + EIwE  (2,1) + yowl (z,t) = fR(x,t) + UR(x,t), (x,t) € [1/2,]] x RT
(4)

with the boundary conditions

wy (1/2,t) = wii (1/2,1) = 0, wg, (0,1) = Wl (I,t) = 0, wi,, (0,1) = wi, (I,t) =0,
W (1)2,8) = WP (1/2,8) = w (1/2,1),

mwy (1/2,t) = u(t) + Elwk,, (1/2,t) — EIWE  (1/2,t) +d(1/2,1),

Txrxr

(5)
where f¥, ff and d represent the distributed disturbance in the left and the right panels
and the disturbance imported on the centrebody, such that U and U” represent the
distributed control inputs to the system. Under some adaptive control laws, the authors
have been established the stability of the system in the presence of a partial actuator
fault.

Later in [57], the authors investigated techniques for controlling vibrations in satellites
with adaptive actuator fault-tolerant and input quantization. There is a large set of other
works in this regards, we mention among them some interested readers [66, 4, [70], [107) 03,
81, 26].

In the present work, we handle with the undesirable vibration problem in a viscoelastic

satellite system, namely, we investigate the influence of a viscoelastic damping on the
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performance of satellite and drive it to the equilibrium position.

Viscoelastic damping is characterized by the ability to absorb and dissipate vibration
energy, as viscoelastic materials work by converting mechanical energy (vibration) into
heat energy through the process of internal friction, this process helps to reduce the
amplitude of the vibrations and prevent them from propagating through the structure.
Due to their viscoelastic component, making them effective in reducing the amplitude
of vibrations, absorbing shock, resisting deformation, or recovering its shape after being
subjected to a load. Due to their excellent damping properties, viscoelastic materials
become an important topic of research in various engineering fields such as aerospace,
automotive and civil engineering.

Viscoelastic materials are ideal for use in satellites as they are lightweight and have a long
lifespan. They also provide a cost-effective solution for vibration suppression as they do
not require any complex mechanical components or electrical systems.

Several scientists, such as Boltzmann, Maxwell, Kelvin and Voigt, have contributed to
model the viscoelastic phenomena. In 1874, Boltzmann provided the first formulation
of an isotropic viscoelasticity three-dimensional theory. Dafermos [29], 30] studied a one-
dimensional viscoelastic model in the early 1970s, and he demonstrated numerous ex-
istence and asymptotic stability results for smooth, monotonically decreasing relaxation
functions. Nevertheless, no rate of decay has been given, after that, many researchers have
focused on viscoelastic problems and various findings concerning long-term behavior and
existence have been obtained. To the best of our knowledge, Dassios and Zafirapoulos [31]
offered the first work that investigate the uniform decay of solutions, in their research,
they presented a viscoelastic problem in R? and demonstrated a polynomial decay for
exponentially decaying kernels. In 1994, Munoz Rivera [82] considered equations for lin-
ear isotropic homogeneous viscoelastic solids, in a bounded domain, with exponentially
decaying memory kernels and proved that, in the absence of body forces, the solutions
decay exponentially in the bounded-domain case, whereas, in R™ the whole space case,
the decay is of a polynomial rate. In [21] Cabanillas and Munoz Rivera studied problems,
where the kernels are of algebraic (but not exponential) decay rates and proved that the

decay of solutions is algebraic at a rate that may be determined by the rate of the decay
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of the relaxation function and by the regularity of solutions. Later, Munoz Rivera, et al.
[7] improved this result by addressing equations related to linear viscoelastic plates. For
viscoelastic problems with localized frictional dampings, Cavalcanti et al. [22] studied the

following problem:

t
Wy — Aw—l—/ C(t—7)Aw (1) dr + a(z)Aw + f (z,t,w) =0, in Q x (0,00),
0
w=0 ondQx (0,00),
w(xao):wo (I)a We (Ia()):wl (ZE), n Qa
(6)
where 2 is a bounded domain and 2 C R" (n > 1) with a regular boundary 0, ( is

a nonegative nonincreasing function satisfying, for m;, msy two positive constants, the

conditions:

—ma( (1) < ¢ (1) < —ma( (1), £ 2 0.

and a(x) > ag > 0, with meas(v) > 0 and satisfying some geometry restrictions, they
showed an exponential rate of decay. Also, Cavalcanti et al. [23] have studied a quasilinear

equation, in a bounded domain, of the form:

t
|wi|” Wi — Aw — Awyy + / C(t—7)Aw (7)dr — m3Aw; = 0,
0

with p > 0, and a global existence result for ms > 0, as well as an exponential decay
for ms > 0 have been proved. Messaoudi and Tatar [76], [77] addressed the case when
mg = 0 and offered polynomial and exponential decay results in the presence, also in
the absence, with a nonlinear source term. For more general decaying kernels, Messaoudi

[78, [79] investigated

t
wtt—Aw—l—/C(t—T)Aw(T)dT:b|w|m_2w, in Q x (0,00),

0
w=0 ondQx (0,00), (7)
w(z,0) =wy (), w(z,0)=w(x), inf,

with b =0, b =1 and for the relaxation functions satisfying
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¢r(t) < h(t)¢(t), (8)

where ¢ : RT — R* is a non-increasing positive differentiable function, he observed
that the energy decay rate is precisely equal to the decay rate of (, which is not always
an exponential or polynomial decay type, after that, Messaoudi [80] proved the general

stability of the problem as follows:

wtt—Aw+/t§(t—T)A0J(T)d7‘+a|wt|mZwt =0, inQx(0,00),
0
w=0 on d2 x (0,00), (9)
w(z,0) =wy(x), wi(x,0)=w(z), inQ,
where a > 0 is a constant, {2 is a bounded regular domain of R", and ( is a non negative
and non increasing function, he obtained a general decay estimate, which depended on
the behavior of ( and m, which usual rates of exponential and polynomial decay are only
particular cases.
In addition to the above, let us now mention other known results that appeared in the
literature treating the well-posedness and asymptotic behavior of solutions for wave equa-

tions with finite memory, Rivera and Salvatierra [80] considered

wy — Aw + /0 ¢ (t—7)div[a(z) Vw (1)]dr =0, in Q x (0,00),
w=0 onI x(0,00), (10)
w(z,0) =wy(x), wi(zr,0)=wi(zx), inQ,

where € is a bounded domain in R” (n € N*) | with smooth boundary I', wy (z) and w; (z)
are the initial data, a (z) is a nonnegative C? function defined over Q such that a (z) = 0
on v\v; and a(x) = 1 on v./, for € > 0, where v, is a subset of 2 and checked some
assumptions. Under some hypotheses on the kernels (, they obtained the existence and
the exponential decay rate of the solution for the system . Many results concerning
the stability of this problem have been obtained, in this regard; the reader is referred to
previous studies Mustafa [84] and Tatar [102]. All these results have been improved by

many authors, in [83], Mustafa and Messaoudi studied the problem (10) with a (z) =1
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on 2, for a wider class of the relaxation functions ( satisfying

where H is a nonnegative function, satisfied H (0) = H’ (0) = 0 and H is strictly increasing
and convex on (0, 7] for some 0 < r < 1. By some arguments of convexity which introduced
and developed by Cavalcanti et al. [25], Tatar [102] and Lasiecka et al. [63], the authors
showed a the general decay rate for the system in which the exponential and polynomial
decay are only special cases.

Regarding the viscoelastic damper effect in the Euler-Bernoulli beam, Let’s introduce a
few papers that are related to the boundary stabilization and boundary controllability of
this problem. In [86], the investigators studied the viscoelastic Euler-Bernoulli beam, with

one end fixed and the other end subjected to a nonlinear control force f, they considered
t

wtt(x,t)+wmm—/ C(t = 8) Weges (7, 8) ds+g (wi(x,t)) =0, (x,t) € [0, L] xR, (11)
0

with the boundary conditions

w(0,t) = wy (0,1) = wer (0,) = way (Lyt) = Waae (0,8) =0, ¢ >0,

/ (12)
o (I, 1) —/g(t—s)wm (L,s)ds = f(w (L), t>0,

They established the well-posedness of the system by using the Faedo-Galerkin method
and showed the uniform decay rate using the multiplier technique under specific conditions
on the kernels ¢ and the functions g and f. It is worth mentioning that in reference [87] ,

a similar problem studied in (11]) with alternative boundary conditions

p

w(0,t) = wx(0,t) = wee(L,t) =0, ¢>0,
wnna(L 1) — / C(t = P (L )7 = ult) — Gsin(t), ¢ >0, (13)

Wout — (A.)t(L, t) t Z 0.

\

where 6 is a positive constant, and they proved the exponential stability of the problem.
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For exponentially decaying kernels, they showed the existence of solutions by using the
Faedo-Galerkin method, and they established the exponential stability under the following

adaptive output feedback controller

u(t) = h(t)wi(L,t) + 6(t)sint, t >0,
he(t) = rw?(L,t), h(0)=hy>0, t>0, r>0, (14)
0:(t) = wi(L,t)sint, 6(0) = b,.

0.1 The main objective of this work

The main goal of this work is to enhance the performance of a satellite, for this, we focus
on studying the stability of systems by using viscoelastic materials, precisely, we consider
the panels as two symmetrical viscoelastic Euler-Bernoulli beams subject to undesirable
vibrations.

Firstly, under a suitable control in the central body of a flexible satellite system and
assuming there are no unknown distributed disturbances during attitude maneuvering, we
prove the arbitrary stabilization of the problem. Secondly, by applying a control force at
the center body of the spacecraft, we establish the well posedness and arbitrary results of
the system under unknown distributed disturbances during attitude maneuvering. Finally,
we study a viscoelastic flexible satellite problem with unknown distributed disturbances,
taking into account the tension of the system, and establish the uniform stability of the

system.

0.2 Outline of the thesis

The dissertation is divided into five chapters:

Chapter 1: In this chapter, we recall properties of viscoelastic materials and their role in
vibrations damping in mechanical systems, as well as functional analysis reminders that
will be utilized throughout this thesis.

Chapter 2: In this chapter, we investigate the viscoelastic flexible satellite system under
unwanted vibrations yielding during the movement, we prove the well-posedness of the

problem as well as the arbitrary decay of the system. The content of this chapter has
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been accepted in International Journal of Control, namely
Berkani A., Hamdi S. and Ait Abbas H. Vibration control of a flexible
satellite system with viscoelastic damping. Int. J. Control. 2023. DOI:
10.1080/00207179.2023.2165163
Chapter 3: We study the stabilization of a flexible satellite system with viscoelastic
panels and under unknown distributed disturbances , to this, we use the multiplier method
to show the uniform stability of our system. The content of this chapter has been published
in the Journal of Mathematical Methods in the Applied Sciences, namely:
Hamdi S. and Berkani A. A new stability result for a flexible satellite system
with viscoelastic damping. Math. Meth. Appl. Sci. 2022;45(16):10070-10098.
DOI: 10.1002/mma.8356
Chapter 4: In this chapter, we discuss the stabilization of a flexible satellite system
with viscoelastic panels subject to an unknown distributed disturbances and taking into
account the tension of system, in this regard , we prove the arbitrary decay of the system.
Appendix: This chapter is devoted to deriving the constitutive equations of motion

for a flexible satellite with two symmetric flexible panels by using Hamilton’s principle.



Chapter 1

Preliminary results

This chapter introduces fundamental concepts in viscoelasticity and functional analysis,
both of which play a crucial role in this work. We begin by presenting some characters
and definitions of viscoelastic materials to understand the nature of these materials and
their properties, after that we present preliminary materials from functional analysis that

shall be utilized in subsequent chapters.

1.1 Basic notions in viscoelasticity linear

1.1.1 Viscoelastic materials

The study of viscoelastic behavior is of interest in widely contexts. First, materials
used for structural applications of practical interest may exhibit viscoelastic behavior
which has a profound influence on the performance of that material. Materials used in
engineering applications may exhibit viscoelastic behavior as an unintentional side effect.
In applications, one may deliberately make use of the viscoelasticity of certain materials

in the design process.

Stress

Stress is the amount of force per unit area that is applied to a material. Mathematically,
stress is defined as the force applied divided by the cross-sectional area of the material.

Stress is usually measured in units of pressure, such as Pascals (Pa) or pounds per square

10
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inch (psi).

Force

Stress (o) = )
(o) Cross-sectional area

Strain

Strain is the amount of deformation or elongation that occurs in a material as a result of
the applied stress. Mathematically, strain is defined as the change in length or deformation
of the material per unit of its original length. Strain is a dimensionless quantity and is

usually expressed as a percentage or a decimal.

Change in length

tral - ‘
Strain (¢) Original length

Definition of viscoelasticity

A viscoelastic materials are exhibited by containing both viscous and elastic behavior in
varying degrees. Also, viscoelastic materials are those for which the relationship between
stress and strain depends on time, where, the viscous word leads to energy dissipation. The
elastic word to energy storage, some of the characteristics of viscoelastic materials are their
capacity to creep, recover, undergo, stress relaxation and absorb energy. For a viscoelastic
material, internal stresses are a function not only of the immediate deformation but also
depend on the whole past history of deformation.

Viscoelastic phenomena are addressed for many different types of materials including
polymers, metals, high damping alloys, piezoelectric materials, cosmetics, rocks, dense
composite materials, cellular solids, and biological materials. Viscoelastic materials show
properties of both solids and liquids in response to any force. The application of vis-
coelasticity are earplugs, automobile bumpers, computer disks, gaskets, medical diagno-
sis, satellite stability, injury prevention, vibration abatement, tire performance, spacecraft
explosions, sports, and music, etc. The main mechanical models of viscoelasticity, the
Maxwell and Kelvin models. For a specific material, the material will seem to be viscous,
if the experiment is done slowly, whilst if the experiment is done rapidly it will show to

be elastic.

11
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1.1.2 Hooke’s law

An English mathematician named Robert Hooke carried out various experiments and
came that stress is proportional to deformation up to elastic limit. This is known as

Hooke’s law. Thus, Hooke’s law can be defined as follows:

o= Fe¢

where o is stress, € is strain and E is the modulus of elasticity or Young’s modulus.

1.1.3 Linear viscoelasticity

Linear viscoelastic materials are those for which there is a linear relationship between
stress and strain (at any given time). Linear viscoelasticity is a theory representing the
behavior of such perfect materials, in addittion, in the linear theory of viscoelasticity, the
differential equations are linear.

If a material is exposed to deformations or stresses tiny enough and its rheological func-
tions don’t depend on the value of the deformation or stress, the material response is con-
sidered in the linear viscoelasticity domain. Linear viscoelasticity represents the simplest
response of a viscoelastic material. Linear viscoelasticity is a reasonable approximation
to the time-dependent behavior of polymers, and metals and ceramics at relatively low

temperatures and under relatively low stress.

Remark 1.1 the solution of any one-dimensional linear viscoelastic problem is obtained

from the knowledge of the creep function or the relazation function.

1.1.4 Fundamental uniaxial tests in one-dimensional viscoelastic

behavior
Creep test

In material sciences and mechanics, creep refers to the slow and continuous deformation
of a solid material under a constant load or stress over a period of time. It occurs when

a material is subjected to a constant load or stress that is below its yield strength or

12
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Figure 1.1: Creep and recovery, stress and strain versus time t.

breaking point, but is high enough to make the material deforms over time. Creep tests
are an experimental methods commonly used in materials science to determine the creep
properties of various materials, including metals, ceramics, and polymers, the test is by
applying a constant load or stress to a specimen of the material and then measuring the
resulting deformation or strain as a function of time. The results of creep tests can provide
valuable informations about a material’s mechanical behavior and help in the design and
analysis of structures and components that are subjected to sustained loads over long
periods of time.

In one-dimension, we assume that the history of stress, as it depends on time t, is a
function. Under the effect of a stress g applied instantaneously to the material at time
to and then maintained constant during the test, creep results in an instantaneous strain
g0 and then an increase in strain ¢; over time (Figure (see [73]).

Thus we write

o(t) = ooHy,

0ift < to
where H,, is the Heaviside function, Hy, = H (t — to), Hy, =

1ift>t0

The viscoelastic response, in terms of time-dependent strain is then expressed by the

following formula:

€<t) = J(t(), t)O'O

13
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Figure 1.2: Creep-recovery test
where J(to,t) represents the creep function.

The creep response is shown in Fig starting at the same time as the stress history.

Relaxation test

A relaxation test, also known as a stress relaxation test, represents a type of material
testing technique utilized to measure the relaxation behavior of a material. During a
relaxation test, a constant strain is applied to the material, and the resulting stress is
measured over time. The strain is then held constant, and the decrease in stress is
observed. The test is designed to measure how the stress in the material decreases over
time while being subjected to a constant strain. This measurement can provide valuable
information about the material’s viscoelastic properties, including its stiffness, strength,
and ability to resist deformation over time.

This relaxation behavior occurs because the properties of material viscoelastic , which
causes it to respond to applied loads in both an elastic (instantaneous) and a viscous
(time-dependent) manner. The elastic response causes an immediate deformation of the
material, while the viscous response causes the relax of the material over time.

Also, we can say that stress relaxation is the progressive decrease of stress when the
material is held at constant strain €. In a relaxation test, a strain of amplitude ¢; is
instantaneously imposed at time ¢y and held constant during the test. The stress in a

viscoelastic material will be decreased, as shown in (Figure (see [73]), Thus we write

14
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Figure 1.4: relaxation test.

5(t) = €0Ht0

The corresponding response, in terms of stress, is then

O'(t) = h(to, t)Eo

where h(tg,t) represents the relaxation function.
In Figure the relaxation response is shown starting at the same time as the strain

history.
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1.1.5 Solids and liquids

Elastic solids constitute a particular case where the creep compliance is, J(t) = JoH (),
Jo is a constant, which is, the elastic compliance. Elastic materials respond instantly to
zero strain after the load is released.

Viscoelastic materials that make a full recovery after enough time following creep or
relaxation are named inelastic materials. Viscous fluids involve another specific case
where the creep compliance is, J(t) = (1/n)tH(t), here n is the viscosity. In viscous
materials, creep deformation is unbounded. A viscoelastic solid is a material at which
h(t) tends to a finite, nonzero limit when the time t increases to infinity; in the case
of a viscoelastic liquid, the function h(t) tends to zero, those properties in the modulus
formulation but in the compliance formulation, a viscoelastic solid is the material which
J(t) function tends to a finite limit when time t increases to infinity; in the case of a

viscoelastic fluid, J(¢) function increases without bound when t increases.

1.1.6 Behavior law of linear viscoelastic material

The basic assumption made for linear viscoelastic materials is that the stress at the current
time is a linear function of the entire deformation history.

Two static tests are most often used to define, for long times, the coefficients of the
behavior laws: the creep test and the relaxation test. The creep test consists in imposing
a constant stress on a specimen and following its deformations as a function of time. In
the relaxation test, an instantaneous deformation is imposed, it is maintained constant
and the variations of the stress are measured as a function of the time. Based on the
Boltzmann superposition principle (see [27]), the behavior law of any linear viscoelastic

material can be written in integral form as

o(t) = / h(t—s)e (s)ds.

—o0
where o represents the stress, ¢ the strain, h the relaxation function and s is the time
integration variable. If the material is at rest initially (¢(¢) = 0 for ¢ < 0), the previous

equation is written as follows
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Figure 1.5: Boltzmann Superposition

o(t):h(t)s(O)—i-/O h(t—s)%(s)d&

1.1.7 Boltzmann superposition principle

Using the linearity property and knowing the creep function, it is possible to determine
the strain response to any (uniaxial) stress history. The stress history can be discretized
as a succession of steps of amplitude do (7) applied at time ¢ .

The response to such a step is

hence

= o (to) J (to, 1) + / 'y (7,1) do;l@ dr

to
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Integrating by parts, we obtain

qw:a%yumw—/ﬂmﬂ%%gﬁm

to

This constitutes the Boltzmann formula.
If we permute o and e, we obtain the stress response to any strain history :
t
dh (T,
a@:thmw—/qﬂ—gim
T

to

1.1.8 Viscoelastic models

Viscoelastic models are widely used in materials science, mechanical engineering, and
other fields to describe the behavior of polymers, gels, and other complex materials.
These models are also used in rheology, the study of the flow and deformation of materials
under stress, to characterize the viscoelastic properties of fluids and soft solids. There are
several types of viscoelastic models that have been developed to describe different types
of materials, each with their own set of parameters and assumptions. Some commonly

used viscoelastic models include: Maxwell model, Kelvin-Voigt model.

Basic elements

A classical approach to the description of the linear viscoelastic behavior of real materials
which exhibit combined viscous and elastic properties is based upon an analogy with
the response of combinations of certain mechanical elements (a spring for elasticity and a
dashpot for viscosity) (see F igure and F igure. Such models are, of course, idealized
and purely hypothetical, and are useful for representing the behavior of real materials only
to the extent that the observed response of the real material can be approximated by that

of the model (see [95]).

e

L AAAAN——D
ir..

>3 i

q

Figure 1.6: Linear elastic element
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The force variable acting on a model will be denoted by Q and its associated geometrical
variable by q, Q(t) = Eq(t), spring of characteristic £, the stress is proportional to the
strain € and they have the same sign, it simulates the ideal linear elasticity. Hooke elastic

solid model given by o = Ee, with £ > 0.

e

s _Q
L— ——
. ;’ :_H

g q

Figure 1.7: Linear viscous element

Notice that o = 77% is damper of characteristic 7, the stress is proportional to the strain
rate ¢ and they have same sign, It can only absorb energy and simulates the so-called

Newtonian normal viscosity. Newtonian fluid model is defined as follows o = 77%, with

n=0,(c=0Q).

Classical models

The rheological models that are commonly referred to the linear viscoelastic are built up
from linear elastic or viscous elements that are connected in series or in parallel. It must
be underscored that the corresponding graphical representations are just analogical and
symbolical, which imply, for instance, that they can be subject to any anamorphosis and

must only be interpreted as one-dimensional.

The Maxwell model (Viscoelastic fluid) The Maxwell model is just the combination
of a linear elastic element and a linear viscous element connected in series (Figure[L.8)). In
any experiment performed on this model, the same force () that is exerted on the model
is exerted on each constituent element, while the stretch ¢ of the model is the result of

the sum of the element stretches (see [99]).
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Figure 1.8: Maxwell model

Parallel assembly rule:

0O =01 =09, E=E1+¢&9

We have :
de
o1 = Eey, 09 = Ud—f
hence, combining all the relations above, yields to:
ldo 1  de

Ea 77" @
which constitutes the rheological equation of Maxwell fluid, it allows to calculate the
response to any type of solicitation (creep, relaxation, oscillation, . .). It follows that the
creep function for a Maxwell model is obtained through the general basic rule, independent
of any linearity or non-aging assumption, stating that: the creep function for a model that
is made up of elements connected in series is the result of the sum of the creep functions

of the constituent elements.

The Kelvin -Voigt model (Viscoelastic solid) The Kelvin model is the combination

of a linear elastic element and a linear viscous element connected in parallel (Figure

[1.9) (see [95]).
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Figure 1.9: Kelvin model

In any experiment performed on this model, the stretch q of the model is the stretch of
both constituent elements, while the force Q exerted on the model is the result of the
sum of the forces that are exerted in the linear elastic element and the linear viscous
element respectively. Then it follows that the relaxation function is obtained from the
general rule, independent of any linearity or non-aging assumption, which states that the
relaxation function for a model that is made up of elements connected in parallel is the
result of the sum of the relaxation functions of the constituent elements.

Parallel assembly rule:

0O =01+02, €=¢€1 =¢&9

we have :

d€2
e E = _—
01 €1, 02 =1] di
hence, combining all the relations above, leads to:
de
77% + Fe=0

which constitutes the rheological equation of Kelvin Voigt solid , it allows to calculate

the response to any type of solicitation (creep, relaxation, oscillation, . .)

1.2 Reminders in functional analysis

In this section, we have introduced basic tools from functional analysis which will be used

in the next chapters. Most of the results are represented without proofs, because consid-
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ered standard and can be found in numerous references like [19]. We start with a review
of concepts and results on weak topologie and weak-star topology, including definitions
and properties of C* () spaces, reflexive spaces, separable spaces, LP({)) spaces. We
then recall some properties of Vector-valued Functions Spaces. Finally, we present some

well-known inequalities.

1.2.1 Weak topology and weak-star topology
The weak topology

Definition 1.1 (See [60]) Let V' be a Banach space. The weak topology on V is the
coarsest (i.e. smallest) topology such that every element of V* is continuous, where V* is
a dual topology. Open (respectively, closed) sets in the weak topology will be called weakly

open (respectively, weakly closed) sets.

A basic neighbourhood system for the weak topology is the collection of sets of the form

U={zeV, |filx —z,)| <e:foralliel}

where o € V, € > 0, [ is a finite indexing set and f; € V* for all 7 € I.

The set U described above forms a weakly open neighbourhood of the point zy € V.
Notation: Given a sequence {z, } in V, we write x,, — x if the sequence converges to
x € V in the norm topology, i.e. if ||z, — z|| — 0 as n — oo. If the sequence converges

to x in the weak topology, we write x,, — x .

Proposition 1.1 Let V be a Banach space and let {z,} be a sequence in V.
1 x, —=xinV if and only if f(z,) — f(x) for all f € V*.

2 Ifx, — x iV, then x, — x.

3 Ifx, = x inV, then {||z,||} is bounded and

[l < liminf, . |znll -

4 If v, =z 'V and f, = [ in V*, then f,(x,) — f(2).
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Proof. See ([60]). =

Proposition 1.2 IfV is a finite dimensional space, then the norm and weak topologies

coincide.

Proposition 1.3 (Schur’s Lemma) (See [60/)In the space {1 a sequence is convergent
in the weak topology if and only if it converges in the norm topology.

ly is a sequence spaces f: N — R such that || f|| = > en [f (7)] < 00 .

Proof. See [60]. m

The weak* topology

Let V' be a Banach space. Then its dual space, V*, has its natural norm topology. It also
is endowed with its weak topology, viz. the coarsest topology such that all the elements

of V** are continuous. In the following, we define an even coarser topology on V*.

Definition 1.2 (See [60]) The weak*topology on V* is the coarsest topology such that
the functionals {J,, x € V} are all continuous, where J : x — J, is the canonical

imbedding of V' into V** .

Clearly, the weak™® topology is coarser than the weak topology on V*. Thus, if S,V and

W* denote the norm, weak and weak™® topologies, respectively, on V*, we have

W*cWcA&s.

Remark 1.2 It is clear that if V is a reflexive Banach space, then the weak and weak™*

topologies on V* are coincide.
Proposition 1.4 (See [60]) Let V' be a Banach space and let {f,} be a sequence in V*.
1 f, =" fanV* if and only if f,(z,) — f(x) forallz € V.

2lffn=>f=fh—-T=/h—>"F.

3Iff,—="f mV*andx, — x inV, then f,(x,) — f(x).
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1.2.2 C*) Spaces

Let Q C R" be an open set, f: ) — Rand k=1,2,.....
We denote :
C*(€2) : the space of real-valued functions on © that are continuously differentiable up to

order k, 0 < k < oo, with finite norm

||U||ck(9) - Z ||Dau||cm)-

|a|<k

and

C(Q) =C"Q) = {f : f continuous in 2} .

where

[ull ooy = sup |u (@)].
€N

CX(€2) : the subspace of functions in C*(Q) with compact support in €2, such that

supp f ={x € Q: f(x)# 0} = the support of f.

and

CH(Q) = CH(Q) N Col),

C=(Q) = M2, C* (),

Cee(2) = the space D(€2) (C5°(£2) is called compactly supported smooth functions

or test functions)

Coo () = C=(Q2) N Co(),

C(Q) : the space of continuous functions on Q.

Cy(Q2) : the Banach space of bounded and continuous functions on .
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1.2.3 Reflexive spaces

Definition 1.3 Let E be a Banach space and let J : EE — E**be the canonical injection

from E into E**. The space E is said to be reflexive if J is surjective, i.e., J(E) = E**.
When FE is reflexive, E is usually identified with E**.

Theorem 1.1 (Kakutani) Let E be a Banach space. Then E is reflexive if
B ={r € E;z <1}

is compact in the weak topology o(E, E*).

Proof. See [958 =

1.2.4 Separable spaces

Definition 1.4 We say that a metric space E is separable if there exists a subset D C E

that is countable and dense.

Corollary 1.1 Let E be a separable Banach space and let (f,)be a bounded sequence in

E . Then there exists a subsequence (f,,) that converges in the weak topology o(E, E*).

1.2.5 Definitions and elementary properties of L?({2) spaces

Definition 1.5 Let p € R with 1 < p < oo; we set
L) ={f: Q=R f is measurable and |f|" € L'(Q)}

with
1/p
11 = 161, = | [ 1 P
Definition 1.6 (See [19] )We set

f is measurable and there is a constant C' | f|P € L'(Q)
L) ={f: Q=R with
such that |f(z)| < C a. e.on 2
[l = [[flloe = inf {C; |f(2)] < C ae. on Q}.
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Theorem 1.2 (Fischer—Riesz) See [19/ L? is a Banach space for every p, 1 < p < 0.

The following table summarizes the main properties of the space LP(£)) when Q is a

measurable subset of RY:

Reflexive Separable Dual space

LP with 1 <p<oo YES YES L1
Lt NO YES L>
L> NO NO Strictly greater than L!

q represent the conjugate exponent, where 1—17 + % = 1.

1.2.6 Definition and elementary properties of Sobolev spaces

Let us start with a motivation for definition of weak derivative.

Weak derivatives

Let Q C R" be an open set, u € C*(Q) and p € C5°(2). Integration by parts given as

follows

Op ou
u——-dr = — | —wdx.

There is no boundary term, since ¢ has a compact support in {2 and thus vanishes

near 0f2.

Then let u € C*(Q), k= 1,2,..., and let a = (a1, g, ..., ) € N (we use the convention
that 0 € N) be a multi-index such that the order of multi-index |a| = a3 + as + ... + ay,

is at most k. We denote

dlely,

Dy=—"
Y 8xj8xj8xj

Remark 1.3 (see [61)])A coordinate of a multi-index indicates how many times a function

18 differentiated with respect to the corresponding variable. The order of a multi-index
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indicates the total number of differentiations. Successive integration by parts gives

/uDagpdx: (—1)“'/D°‘ug0dx.
Q Q

Notice that the left-hand side makes sense even under the assumption u € L}, (£2).

Definition 1.7 Assume that u € Lj,.(Q) and let « € N" be a multi-index. Then v €

Ll

loe (82) is the ath weak partial derivative of w, written D*u = v, if

/uDo‘godx: (—1)|a|/v<pdx.
Q Q

for every test function ¢ € C$°(Q2). We denote D% = D0 = ¢,

Remark 1.4 Ifu € C*(Q), then the classical partial derivatives up to order k are also the
corresponding weak derivatives of u. In this sense, weak derivatives generalize classical

derivatives.

Remark 1.5 (see [20))If u € C'(a,b) and p € C}(a,b), then

b b
/ up'dr = —/ v pdx.

This formula for the one-dimensional case.

Sobolev spaces W"?(Q)

Definition 1.8 (see [61])Assume that € is an open subset of R". The Sobolev space
WHrP(Q) consists of functions u € LP() such that for every multi-index o with |a| < k,

the weak derivative D*u exists and D*u € LP(Q) Thus

WhP(Q) = {u € LP(Q) : D*u € LP(Q), |a| <k }.

Definition 1.9 If u € W*?(Q), we define its norm

3=

T / Dol de| 1< p< oo,
Q

lo| <k
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and

||uHWk,oo(Q) = Z essqsup | Dul .

|o|<k

Remark 1.6 (see [61))) [|ul[yn.cc(qis also equivalent to

D[ e
max | D%l o o)

2) For k =1 we use the norm

S =

lellyroy = (1l + 1 Dulfey)”

:(/|u|pdan+/|Du|pdx)p7 1 <P < oo,
0 0

and

||UHW1,p(Q) = essq sup |u| + essq sup |Dul .

Theorem 1.3 (Completeness) The Sobolev space WFP(Q), 1 < P < oo, k=1,2,....i

a Banach space.

Remark 1.7 The space W"2(Q) or H?()is a Hilbert space with the inner product

<u, U>Wk’2(ﬂ) = Z <D0£U/7 DaU>LQ(Q) .

la|<k

where

(D%, D%v) /DauDO‘vdx

note that

||U||Wk,2(9) =V <U>U>Wk,2(g)-

Sobolev space W'r(Q)

Let © = (a,b) be an open interval, possibly unbounded, and let p € R with 1

The space W1P(Q) is equipped with the norm

28
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lullwre = llull o + 1]l o

where

W ={ue L (Q): v € L (Q)}

or sometimes, if 1 < p < oo, with the equivalent norm (||ul[}, + [|«/||7,) /P The space H'

is equipped with the scalar product

b
<u7 U)Hl - <U, U>L2 + <ul7 U,>L2 - / (U’U + ulvl)

and with the associated norm

5 \1/2
lell s = (Nl + w12

Proposition 1.5 The space WP is a Banach space for 1 < p < oo. It is reflexive for

1 < p < oo and separable for 1 < p < oo. The space H' is a separable Hilbert space.

Proof. (See [19] ). =

Remark 1.8 1) For p > 2, 1 < p < oo,we have
Wme(Q) = {u e LP(Q) : u) € LP(), j <m}.

assotiated with the norm

lellwmogy = lullo@y + D 149 oy

j<m

2) If p=2,Wm™P(Q) = H™(Q) is a Hilbert space with the inner product

<U7U>Hm(9) = (u, U>L2(Q) + Z <U(j)7v(j)>Lz(Q)a u,v € H™ ().

j<m
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1.2.7 Spaces of vector-valued functions

It is required to introduce the spaces of vector-valued functions to study the time-
dependent variational problems. In the following, if it is not specified otherwise,we denote
by (X, ]].|lx) and [0,7] a real Banach space and time interval of interest for 7' > 0, re-
spectively. We define C([0,7]; X) to be the space of functions v : [0,7] — X that are

continuous on the closed interval [0, 7]. With the norm

||U||c([0,T];X) = mazeo,r [[v(t)]lx

the space C([0,T]; X) is a Banach space.

Definition 1.10 (see [98]) A functionv : [0,T] — X is said to be (strongly) differentiable
at to € [0,T] if there exists an element in X, denoted as v/(ty) and called the (strong)

derivative of v at tg, such that

=0
X

fing | ot -+ 1) = ) = 1)

where the limit is taken with respect to h with to +h € [0,T]. The derivative at ty = 0 is
defined as a right-side limit and that at tg = T as a left-sided limit. The function v is said
to be differentiable on [0, 77 if it is differentiable at every ¢y, € [0,7]. It is differentiable
a.e. if it is differentiable a.e. on [0, T].

In this case, the function v/ is called the (strong) derivative of v. Higher derivatives
v j > 2, are defined recursively by v(j) = (vU~)s. Usually we use the notation v*® = v/
and we understand v(¥ to be v.

For an integer m > 0, we define the space

C™([0,T]; X) = {v e C([0,T]; X) : v € C([0,T]; X), j=1,....m}.

This is a Banach space with the norm

||U||cm([o,T};X) = Zmaxte[o,T] H“(j)(t)”)('
§=0

In particular, C*([0,T]; X) denotes the space of continuously differentiable functions on

[0, 7] with values in X. This is a Banach space with the norm
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||U||C’1([O,T];X) = maxte[o,T] ||U(t)||X + maxte[o,T] ||U.(t)||X :

We also set

C>([0,TT; X) = Ni—oC™ ([0, TT; X)

={veC(0,T];X):veC™(0,T]; X)Vm € Z,},

the space of infinitely differentiable functions defined on [0, 7] with values in X.
The spaces LP([0,7]; X). For p € [1,00), we define LP([0,7]; X) to be the space of all

measurable functions v : [0,7] — X such that fOT lo(®)]|% dt < co. With the norm

T 1/p
P ( | o dt)
0

the space LP([0,7T]; X)) becomes a Banach space. We define L>([0,7]; X) to be the space
of all measurable functions
v : [0,7] — X such that ¢ — |[v(t)||y is essentially bounded on [0,7]. The space

L>([0,T];X) is a Banach space with the norm

V]| oo jo77,) = €55 sup [[o(t)] x -
t€[0,T]

When (X, (-,-)) is a Hilbert space, L*([0,T]; X) is also a Hilbert space with the inner

product given by

(1 0) g2 o) = / (w(t) v (6)  dt.

In what follows, the space L?(0,T) is denoted by LP([0,T];R).

1.2.8 Duality and weak convergence

We have the following important result, on separable Banach spaces.

Theorem 1.4 (see [98))If X is a separable Banach space, then each bounded sequence in

X*has a weakly * convergent subsequence.
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It is deduced from the previous theorem that if X is a separable Banach space and the
sequence {u/, } C X* verified sup, ||u/, ||y, < 00, then we can find a subsequence {u/,, } C
{ut,} and an element u/ € X* such that w/,, —* u/ in X*.

If Y is a subspace of a normed space (X, ||.||y), then (Y.||.||y) is a normed space, too. If
it is not explicitly stated otherwise, the norm over a subspace is taken to be the norm of

the original normed space. Moreover, we have the following theorem.

Theorem 1.5 (See [98]) Let (X, ||.||x) be a Banach space and let Y C X be a closed
subspace of X. The following results hold :

(1) Y is a Banach space with the norm ||.|| .

(2) If X is separable, then Y is separable.

(3) If X is reflexive, then Y is reflezive.

1.2.9 Faedo-Galerkin’s approximations

We consider the Cauchy problem abstract’s for a second order evolution equation in the

separable Hilbert space with the inner product (.,.) and the associated norm ||.| .

u'(t)+ At)u(t) = f(¢) tin [0,77, 1)
u(z,0) =wuy (), v (z,0) = ui(x),

where u and f are unknown and given function, respectively, mapping the closed interval
[0,7] C R into a real separable Hilbert space H. A(t) (0 <t <T) are linear bounded
operators in H acting in the energy space V C H.

Assume that (A (t)u(t),v(t)) = a(t;u(t),v(t)), for all u,v € V; where a(t;.,.) is a
bilinear continuos in V. The problem can be formulated as: Found the solution u(t)

such that
we C(0,T);V), u' € C((0,T]; H)

(u"(t),v) + a(t;u(t),v) = (f,v) tin D'([0,T]), (1.2)
up €V, u € H,
This problem can be resolved with the approximation process of Fadeo-Galerkin.

Let V}, a sub-space of V' with the finite dimension d,,, and let{wj,, } one basis of V,,, such

that
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1. V,, CcV (dimV,, < c0), Vm € N

2. V,, — V such that, there exist a dense subspace V in V and for all v € V we can

get sequence {Um}, . € Vin and u,, —> u in V.

3. Voo C Vinsr and Uppen Vi = V.

We define the solution w,, of the approximate problem

wuw:ﬁ%@wm
Um € C([0,T]; V), ul, € C([0,T]; Vi), tun € LQ([O,T];Vm)
(1), wy) + @ (85 (1), W) = Ufrtm) 1 < G <

) = 326 (). 2 (0) = 3% 150

(1.3)

where

ij(t)wjm—>uoinVasm—>oo
Yo ni(t)wim — up in V as m — oo

By virtue of the theory of ordinary differential equations, the system has unique
local solution which is extend to a maximal interval [0, ¢,,,[ by Zorn lemma since the non-
linear terms have the suitable regularity. In the next step, we obtain a priori estimates
for the solution, so that can be extended outside [0, ¢,,[ to obtain one solution defined for

all £ > 0.

Lemma 1.1 (Zorn’s Lemma) [28/ Let S be a partially ordered set. If every totally

ordered subset of S has an upper bound in S, then S contains a maximal element.

1.2.10 Aubin-Lions lemma

The Aubin Lions lemma is a result in the theory of Sobolev spaces of Banach space-valued
functions. More precisely, it is a compactness criterion that is very useful in the study of
nonlinear evolutionary partial differential equations. The result is named after the French

mathematicians Thierry Aubin and Jacques-Louis.
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Lemma 1.2 [65] Let Xy, X and X; be three Banach spaces with Xo C X C X;. Assume
that Xo is compactly embedded in X and that X is continuously embedded in Xi; assume

also that Xy and X, are reflexive spaces. For 1 < p,q < 400, let
W= {ue P (0.7]: X,) /i € L9(0,T]; X))
Then the embedding of W into LP ([0,T]; X) is also compact.

1.2.11 Basic inequalities
Holder’s inequality

Theorem 1.6 Assume that f € LP and g € L? with 1 < p < oco. Then fg € L' and

/ ol <171, Nall, -

q represent the conjugate exponent, where 119 + é =1.
Remark 1.9 [t is useful to keep in mind the following extension of Hélder’s inequality:

Assume that fi, fo, ..., fr are functions such that

Then the product f = fifs...fx belongs to LP, and

A1, < Wfullp, 121l o 1Akl -

In particular, if f € LP N LY with 1 < p < g < oo, then f € L forall r, p <r <q, and

the following “interpolation inequality” holds:

| o
—_

|
Q

Y 1
1F1 < A5 IFIG™ , where o pt
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Cauchy and Young inequalities

Let a,b are any real numbers and p, q are real numbers connected by the relationship

1,1 _
5+E_1‘ Then

Lemma 1.3 (Cauchy inequality)

ab < (a2+b2).

N —

Lemma 1.4 (Cauchy inequality with epsilon)

b2
ab < ea® + —, Ve > 0.
4de

Lemma 1.5 (Young inequality)

al b
_|_

ab .
b q

N
|
|

Poincaré inequalities

Lemma 1.6 (see [52]) For any ¢ (x,t) continuously differentiable on [Ly, Ly] ,we have

/L 16 (P dr < 2 (Lo — Ly) 62 (Lns t) (1.4)
+4(L2—L1)2/L 16 (2, 0)] da
and
/L (6 (@) P de < 2(La — L1) 62 (Lo, 1) (1.5)
+4(L2—L1)2/L [0 (2,0 da.

Inequality is obtained in the same manner.
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Remark 1.10 From Poincaré inequalities (1.4]) and (1.5)), we further have

/L ) (6 (2, 0)]* dz < 2(Ly — Ly) ¢* (Lg, t) + 8 (Ly — L1)* ¢ (La, 1) (1.6)
+16(Ly — L1)4/L 2 (0" ()] da
and
/L 6@ dr <2(Ls — L0) 62 (Li,t) + 8 (La — L1)* 62 (L1, ) (1.7)
+16(Ly — L1)4/L 2 (0" (x,¢)]° dx.

Gronwall inequality

Theorem 1.7 Let x, U and x be real continuous functions defined in [a,b], x(t) = 0 for

t € [a,b]. We suppose that on [a,b], we have the inequality

Then
2(1) < U (1) + /:X (5) W (s) exp U:x(u)du] ds.

Proof. For demonstration (see [34]) =

Corollary 1.2 If V is differentiable, then from the last theorem it follows that, for all

2(8) < U (a) (/;X(u)du> + /: exp (/atx(u)du) W (s) ds.

Corollary 1.3 If VU is constant, then from

t € [a,b]

z(t) < U —I—/ X (s) z(s)ds.

it follows that

2(f) < Wexp </atx(u)du).
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Chapter 2

Arbitrary decay of solutions for a

viscoelastic flexible satellite system

In this chapter, we investigate the viscoelastic flexible satellite system under unwanted
vibrations yielding during the movement, we prove the well-posedness of the problem as

well as the arbitrary decay of the system.

2.1 Introduction

In this chapter, we investigate the stability analysis of a flexible spacecraft problem with
viscoelastic damping, namely when the two symmetric flexible appendages are made with
viscoelastic materials. According to Boltzmann principle and utilizing the constitutive

relationship between the stress and the strain

t

o(x,) = Ele(x, 1) — El/g(t — S)e(x, s)ds,

where o(z,t),e(z,t) represent the stress, the strain respectively and the function ( is

called the relaxation function, then if f& = f = 0 in the problem (4.58) to (4.59)), We

37
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are interested in the following problem:

( t

pAwkL (z,t) + Elwt (1) —E]/C(t—s)wL (x,s)ds =0, x€][0,1/2],

TITXxT

0
t

pAwl (z,t) + EIwE (x,t)—EI/((t—s)wR (x,s)ds =0, x€ll/2,1],

XTI

\ 0
(2.1)
with the boundary conditions
[ (1/2,) = WP (12,0) = 0, Wl (0,8) =B (1) = 0, why, (0,6) = wlt, (1) = 0,
wh (1/2,t) = Wi (1/2,t) =w (1/2,t), t>0
men (1/2,6) = u(t) + ETwk (1/2,6) = ET / Clt— )b (1/2,5)ds
—Eﬂ@@(Uzty+E1/2(t—sy¢;(Uzsyk, t>0
‘ (2.2)
and the initial data
wh(2,0) = wi(2), w/(2,0)=wi(z), =€[0,1/2] 2.3)

wfi(z,0) = wii(x), wfi(@,0) =wi(z), =€l[l/2,1],

The integral term in represents the viscoelastic damping term. The stability of
the problem —, for all ¢ € [0,00) is discussed in this chapter, where the main
contributions are summarized as follows

(i) Without any dampings implemented at the transverse displacements of the left and
right panels, the viscoelastic material is shown to be able to guarantee the arbitrary
stabilization of the flexible satellite system under free vibration condition. Namely, when
the left and the right panels are made by a viscoelastic material.

(ii) Under a suitable control force acting on the centerbody of the satellite, the arbitrary
stabilization of the system f is established for a large class of kernels. Namely,

we suppose that the kernel () satisfies (see [104]):
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(Hy) Forallt >0, ((t) >0, C is a continuously differentiable function satisfies
+oo
0</<;::/ C(s)ds < 1.
0

(Hy) C(t) is absolutely continuous function and of bounded variation on (0,00) and
¢’ (t) < h(t) for some non-negative summable function A (¢) (= max {0, ¢’ (¢)}) and

almost all ¢ > 0.

(Hs) There exists a non-decreasing function ~(¢) > 0 satisfying tlim ~v(t) = +o0, the
—00

ratio 7/(t)/v(t) =: pu(t) is decreasing and
+o00
/ C(s)y(s)ds < +o0.
0

It is important to consider such class as it allows the use of several types of materials that
could be more convenient. For more examples and for more other types of kernels, one

can consult [58] and [96], [97].

Remark 2.1 Notice that the assumption (H3) is satisfied by a large class of functions
namely functions of polynomial type and functions of exponential type. Indeed, the func-
tions y(t) = (1 + )% a > 0 and y(t) = €%, B > 0 satisfy the assumption with

w(t) =a(l+t)~' and u(t) = B, respectively.

2.2 Preliminary results

In this section, we establish some Lemmas and notations which will be needed later.
We use the same notations in [104], for every measurable set B C R, we define the

probability measure Eby

CB) = Lsup [ ¢(s)ds. (2.4)

K t>0 JB,

where B; = BN [0,¢]. The non-decreasingness set is defined by

xe={teR": {'(s) >0} (2.5)
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. Let ¢, > 0 be a real number such that

/t*C(s)ds:: ¢ > 0.
0

Lemma 2.1 The energy functional associated to the problem (2.1)—(2.3)) is defined by

1/2 ) l ) m )
E () :%/0 [w (z,1)] dx+% . [w; (z,1)] dm—i—E[wt (1/2,1)]

El l/2 9 ET l ) (26)
— [ [wh @) de+— [ [wk(z,0)] de, t>0,
2 Jo 2 1/2
satisfies
d /2 t
%E@) :/ wk (x,t)/ C(t—s)wh (x,5)dsdx
" (2.7)
+/ wtzx l't /Ct_s (33 s)dsdaz—l—u()wt(Z/Q,t)
/2
for allt > 0.

Proof. By multiplying the first equation of the system (2.1)) by w! (z,t) and integrat-
ing over [0,1/2], and similarly, multiplying the second equation of (2.2)) by w{® (z,t) and
integrating over [[/2,[], then multiplying the last Eq. of (2.2)) by w; (I/2,t), Using the

conditions of the borders and summarizing the findings, we get (2.7). m

Remark 2.2 Fort > 0, we have

/ / /
2/12%m /C (t—s)wy, (x s)dsdx—/”(C'Dw_fm) (t)dx—((t)/”[wﬁx(x,t)fdx
0 0

4 [ [ oty @i ( [ ds> [t t>J2dx]

(2.8)

and

2/l Wk (z,1) / C(t—s)wh (a, s)dsda:—/l (COw?) (t)d;c—g(t)/l (W (2,1)]" da

/2 /2 1/2

_%[/ (COWR) (t) da — (/g >/Z/l2 W, (x,t)fdx].
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Arbitrary decay of solutions for a viscoelastic flexible satellite system

Therefore, using the relations (2.8)) and (2.9)), the modified energy functional associated
to the problem ([2.1))—([2.3)) is defined by:

1/2 ) m , ! ,
E(t) = %/ﬂ [w (z,1)]" da + 5 [we (1/2,8)]” + % /1/2 [w (z,t)]" dz
1/2 I
+ % i (COwk,) (t) dz + % ” (COwl) (t) dx (2.10)
¢ 1/2 ) I )
+ % 1- </0 ¢ (s) ds)] (/0 (wk, (z,1)] da:—{—/m (Wi (z,1)] da:)

and satisfies

1/2 1
%aws%(A<ﬂm@@m+[gﬂm@wmj+wwmwzw

/2 ) l )
_%g(t) (/0 [wh, (z,t)] dx+/l (Wi (z,1)] dx), t>0.

/2

(2.11)

Now, we state without proof the well-posedness of the problem, first we define

Vo= {(yL,yR)EHQ(OJ/Q)><H2(l/2,l), v (1/2) = y7 (1/2) =0, y"(1/2) =

yR(1/2) = y(1/2)},

and

W= {(" v € H O.2xH 1/2,1), g5 (0) =y (1) =0, yh, (0) =y, () =0}

where H? (0,1/2), H*>(1/2,1), H*(0,1/2) and H* (1/2,1) represent the usual Sobolev spaces.

Theorem 2.1 Let (w(’},wé%) ev, (wf,wf) € W are given. Suppose that ¢'(t) < 0 holds.

Then, under the external force u (t) defined in (2.71)) there exists a unique global weak
solution (w”, wf) of the problem (2.1)) — ([2.3) which satisfies

(wh, wft) e LOO([O,T);W), (wh, Wl € LOO([O,T);V),

(wif, wif) € L=([0,T); L*(0,1/2) x L*(1/2,1))
where T > 0.
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Proof. See the next chapter. m

2.3 Technical lemmas

In this section, we establish some lemmas that will be used to have the main result (i.e.

Theorem . Let
7
4+ ANEi(t), t=0 (2.12)
i=1

Where \;, © = 1,...,5 are positive constants which will be selected later such that A3 =

A =1,and forall t >0

12 !
=, (1) = pA / W (2,8 wF (2, 1) da-tpA / WP (2, 8) W (2, 1) da-meoy (12, 8)w ()2, 1)
0

v (2.13)
1/2 ¢
o (t) = — pA/O wr (x,t)/o C(t—s) (W (z,t) —w" (z,5)) dsdx
—pA | Wl (z, t)/ C(t—s) (W (2,t) — w" (z,5)) dsda (2.14)
1/2 0
— mwy (l/2,t)/0 C(t—s)(w(l/2,t) —w(l/2,5))ds
=4(1) = 5 (CO)(H) + 5 b (1/2, 1)) (2.15)
=4 (1) ::/0 Qo (t — ) (w(1/2,1) —w (1/2,8)) ds, (2.16)
¢ 1/2 ) t 1/2 )
=5 (t) = E[/O 0y (t—9) /o [wh, (z,5)] d:l:ds—l—E[/O 0y (t—9) /o (Wi (z,5)]" dads,
(2.17)
t 1/2 , t 1/2 ,
Z6(t) == EI/O by (t — ) /0 [wh, (z,5)] dxd8+EI/0 by (t — ) /0 (Wi (z,5)]” dzds,
(2.18)
and
- /0 6. (t = 5)W2(1/2, 5)ds, (2.19)
where
/ C(s)e*ds, (1) = / C (s ds (2.20)
and ¢, (t) =7 (t)" 1/t h(s)~(s)ds, (2.21)
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such that « is a positive constant to be selected later for all t > 0,.

Remark 2.3 The functionals =;, i = 1,...,7 should be chosen in such a way that their
derivatives will provide us with similar terms to the ones in the energy & (t), but with
negative coefficients. So these terms can be control and have the energy with a negative

sign for the right-hand side of the estimate of the rate of change of the energy.
7

Now, we compare K (t) and & (¢) + > Z; (¢).
i=3

Proposition 2.1 There exist two positive constants dand 6o, such that
7 7
5 (S(t) +3 s (t)) <K (1) < 6 (S(t) +3 = (t)), (2.22)
i=3 1=3

forallt > 0.

Proof. By using Cauchy-Schwarz, Young’s and Poincarés inequalities, we obtain

A /2 A /2 A l
=1 (t) <p7 / [w" (z, t)]2 dx + %/ [w; (z, t)}2 dz + 2= [w" (z, t)]2 dx
0 0 1/2

0o (2.23)
+ 22wl @) de + 5w (2,601 + 2w (12,8,
2 Jis 2 2
and from Lemma [I.6] and Remark we get
1/2 ) 1/2 )
/ [w" (z,8)] de < 1w (1/2,0)]) + l4/ [wk, (z,1)] dz, (2.24)
0 0

and
!

/l (W (2, )] de < 1w (12, ) + 11 / WP (2, )] da. (2.25)

/2 1/2

then, we have for all t > 0

[1]

4 1/2 ) ! ) m )
1 (1) gpf;u (/0 [fo (:z:,t)] dx +/l [wfx (x,t)} dx) + 5 [we (1/2,1)]

/2

12 , z i . 2
+ % (/0 [wf (z,1)] dx + /1/2 [w; (z,1)] dx) + <pAl + 5) lw(1/2,1)]?,
(2.26)
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for the functional = (t), we have

12 )
=0 g% (/0 [wf (x, t)} dx —|— w )
t /2 l
—1—%(/0 ((s)ds) (/0 CDw t)dx + ” CDW )
+rg wi (1/2,1)] (/ C(s dS) (COw) (1), t > (2.27)

and use the Remark again, we get

1/2 /2
/0 (¢Ow") (t) da < 1(¢Ow) (t) + 14/0 (COwk,) (t)dz, t =0 (2.28)

and
!

(¢Ow™) (t) da < L(COw) (t) + 1! /l (COwk) (t) dz, t =0, (2.29)

/2 1/2

Therefore

- pA( 7?0, 2 : 2 m
=5 (1) <7 (/0 [w) (z,t)]" dz + /1/2 [w; (z,1)] dx) + kK (5 + pAl> (COw) (1)

pAltk

1/2 ! m ,
2 (/0 (k) e+ [ () <t>dx)+5[wt<z/z,t>].

(2.30)

Now, by using ([2.10]), (2.26) and (2.30]), we conclude that

—_

1/2 ) ! )
K(t) < 5,0/1(1 + A1+ A2) (/0 [w (z,1)]" dz + /1/2 [w; (z,t)] dw)
4 1/2 ! 7
(E7 pAl > < /0 (COWE) (2, t) do + /l/ 2 (COwE) (x,t) dx) + z;AE (t)

t 4 1/2 l
+ %(1—/0 C(s)ds>+)\1pAl ( 0 dx+//2 [wfﬁx,t)fdm)
+ % AL (2pAL +m) + 1] [w (1/2,1)] + [Aak (m 4 2pAl) + 1] ((Qw) (t) (2:31)
+ %m (14 As + Ao) wr (1/2, )%
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Similarly, we have

1/2 !
2K (t) = pA(1 =X — \9) (/0 [w) (x’t)}Qd]j + /1/2 [w}? (%t)}zde)

1/2 !
+ (EI — XapAl'k) (/0 (COwl,) (z,t) da +/ (COw) (z,1) d:p)

1/2

+ [El (1-k)— >\1PA54] (/W [w;fac(:v,t)fdx + /l [wfx (x,t)}zcw) (2.32)

1/2
+[1 =X (2pAL+m)] [w (1/2,8)]* 4 [1 = dar (m 4 2pAD)] ((Ow) ()

(L= A =) [ (/2,0 +2) NEi (1)

thus, for
, 1 EI(1-&) , 1 EI
A 1 d A 1—A
1S i S 20AL+m’  pAl* } an 2 mln{ Y (2pAl+m) K pAl‘HJ
(2.33)
7 7
there exists §; > 0, i = 1,2 where <8(t) = (t)) < K (t) <69 (5(25) + > 5 (t)) for
=3 1=3
allt > 0. m

Lemma 2.2 (See [10])]) We have, for ¢ € C(0,00) and w € C ((0,00); [0, L])

[ [ ct=saste =3 ( [coras) i+ [ e— oo tsitas

—5/ ((Ow) dz, t > 0.

0

(2.34)

Lemma 2.3 Let (w', wf) be the solution of (2.1)-([.3). Then, the functional = (t)

satisfies for any positive n; and €1, the estimate

%El 0 <o </Oz/2 [wF (2,1)]” da + /l [w]? (x,t)fdx> + <m + %) [we (1/2, 1))

1/2 Ui

1/2 !
EQI (/ (¢OwE) (=, t)dx+/ (COwE) (=, t)dm) (mk2 — k) [w(1/2,1)])?

/2

[ cama [t dxm/u_s/l; o]
_E1<1—g) (/01/2[w£w(,)] dx+/l/2w )
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fort > 0.

Proof. Direct computations, using (2.71)), we get

1/2 ) l ) ,
%El (t) = Li(t) + I(t) + ,oA/O [w (z,1)]" dz + pA /Z/Q [wi (z,8)]" dz + m [w; (1/2,1)]
+ Elw (12, t)wk, (1/2,t) — Elw (1/2,1) /t C(t—s)wh , (1/2,5)ds
+ Elw(l/2,t) /tC(t —s)whk (1/2,8)ds — Elw (1/2,t) wE (1/2,1)
— ko (1/2, 1) @y (1/2,1) = o [w (1/2,8)]°
(2.36)
where
L(t)y=-FEI /l/2 wh(z Wk (x,t)de — EI /l Wi (z, )Wl (x,t)de,
0 1/2
and

1/2 t
I (t) :EI/ wh (z,1) / C(t—s)wh . (x,s)dsdx
0 0
l t
+ EI/ wh (2,1) / C(t—s)wh . (z,5)dsdz.
1/2 0
Integrating by parts [;, i = 1,2, and in view of the boundary (2.2)), we have

I (t) == Elw(l/2,t)wk (1/2,t) — EI /Z/Q [wh, (x,t)fda; + Elw (1/2,t) Wk (1/2,1)

I
—EI /1/2 [wh (z, t)}2 dx,
(2.37)

and

L) = Elw(ij21) </0t§(t—s)w£m(l/2,s)ds—/0 g(t—s)wfm(z/z,s)ds)
+EI (/Z/Z (z,t) / C(t—s)wy, (z,s)dsdx (2.38)

/ o) [ €l mdsdx)
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Substituting the estimates (2.37)) and (2.38)) in (2.36)) , we get

1/2 , I ) ,
%El (t) = pA (/0 w (z,1)] " da + / [w (z,1)] dx) — k. jw(l/2,t)]

1/2

1/2 ) I , )
— EI (/0 [wh, (z,t)]" dz +/ (Wi (z,1)] dx) +mw; (1/2,1)]

1/2

(2.39)
1/2
—|—E]</ xt/gt—s ' (x,8)dsdx
/ (x,t) / C(t—s)wy, (x s)dsdm) — kyw (1/2,t) we (1/2,1).
Now, we will estimate some terms in (2.39)). For n; > 0 and £; > 0, we have

1

0 1/2,8) 0 1/2,8) < mkE o (/2.0 + - o 172,07, (2.40)
1

for all £ > 0, and by using the Lemma 2.2 we obtain (2.35). =

Lemma 2.4 Let (w® w®) be the solution of R.1)—(2.3). Then, for some positive con-

stants n;, 1 = 2,3,4 the functional =5 (t) satisfies, the estimate

1/2 , I )
%EQ (1) < (ng — ) pA (/0 [w (z,1)]" da +/ [w; (z,1)] dx)

1/2

fﬁTBv[c B ( / " (cowh), de+ /l/; (¢Bes) 0 dx)
pﬁi“ (X/ W <th£z)y<t (t) dx + /l/ ; (hmwfx)xt (t) dx)
+EI(1-¢) ( 3 + 2/-6(( )) (/Ol/2 [w?, (x,t)]zder/l [wi, (x,t)fdx>

1/2

+krﬂ2[w(l/2,t)]2+[% 2EI] ( / Z/Z(CDw )BtUdH / ;(mefm)gt (t)dx>

I

+ ( . 2’2"2) K€ (x) (c<>w) (t) + - (2pAL+m) (X/ h<>w>Xt ()

+%(1—g (/Xt((t—3>/0l/2 [wE, (x,s)fdxder/th(t—s)/l:Q [wi (:c,s)]deds>
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+ 2EI/<¢Z(X) (/01/2 <C|:wam>m (t)dx + /1/12 (CDwf‘x> . (1) d:v)

# (4 g ) w(cow) 0= [ 204 2 vic B(cow) 0 24D

2ny A )

T [% +m (ns — C*)} [we (1/2,8))°

forallt>1t, > 0.

Proof. The differentiation of the functional =, (¢), yields

1/
E t):—pA/ tht xt/{t—s)( ", t) —w" (z,5)) dsdx

pA(/OC ) ”2 W (2,0)] dx—pA</t<(s)ds> /l/; [wh (2,1)]" da

1/2

pA/ wk ( a:t/{ (t—s) —w" (z,5)) dsdx
0
I

pA/ wh (z,1) / C(t—s) —w'(z,s)) dsda
1/2

—mwtt(l/2,t)/0 C(t—s)(w(l/2,t) —w(l/2,5))ds
—pA/l wf(m,t)/o ¢ (t—s) (W (2,t) — " (2,5)) dsda

/2

—mwt(l/Q,t)/o Ct—s) (w(l/2,t)—w(l/2,s))ds—m</0 C(s)ds) wr (12,0
(2.42)

for all ¢ > 0. By using the Eqgs. of (2.1), boundary condition (2.2), and (2.71)), we find

d /2
5 (1) =15(8) + Lu(t) + Is() + It pA/ ¢ (s / (WF (2, )] da

12
—pA/O th(x,t)/O ¢ (t—s) (W (z,t) —w" (z,5)) dsdx
—pA [ W (x, " —5) (W (z,t) — WP (x,5)) dsdz

oA [ @) [t (@ o )

—pA/g / [wWF (2, 1)]” da

— Blw (1/2,1) / C(t—s)(w(l/2,t) —w(l/2,s))ds

—l—EI(/(t—s Wb (1/2,5) )(/(t—s w(l)2.1) — w (12, ))ds)

(2.43)
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—EI</Ct—S Wi (1/2, 5) ></€t—8 (w(l/2,t) —w(l/2,5))d )

—|—(Efwﬁm(l/lt)—|—k:pwt(l/2,t)—|—kTw(l/2,t) /C(t—s)(w(l/?,t)—w(l/Q,S))ds

~ (l/2,t)/0 Ot —5) (w(l/2,t) — w(1/2,5)) ds — m</0 ¢(s) ds> wr (1/2, )
(2.44)

where

12 ¢
L) = BI /0 Wb () /O Clt—5) (0" (2,0) — " (2, ) dsda,

I t
I(t) = EI /1/2 wk (:r,t)/o C(t—s) (W (z,t) — w" (z,5)) dsd,

f5<t>:—E1/0”2(/0t<<t—s e )(/ct—s <,s>>ds>dx,

and

I()——EI//2</Ct—s W (2, 9) )(/Ct—s (,s))ds)dm.

Integrating by parts twice and using the boundary conditions ([2.2)), we get

L(t) = Elwt (1/2,1) /tC t—s) (W (1/2,t) —w" (1/2,5))
—I—El/l/2w (x,1) / C(t—s) Lo(x,8)) dsdz, (2.45)

B0 = =PIl (1/20) [ (=) (" 0/2.0) = 1/2.9) ds
lUJR x t — S CL)R x —(.UR xX,S sax .
VEI [ Gl [ (el (00) ol (o) o, (240

Is(t) = —EI(/O C(t—s)wh, (1/2,5) ds) (/o C(t—s) (wh(1/2,t) —w" (1/2,5)) ds)
2 [ pt
—E]/O (/0 C(t—s)wﬁgc(:v,s)ds) X
(/0 C(t—s) (wh (z,t) —wl, (2,5)) ds) dz, (2.47)
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and

L) = EI(/ g(t—s)wfm(uz,s)ds> (/0 Clt—s) (WR(1/2,0) — ™ (1)2,5) ds)
—FEI —3) (x,s)ds
[L([ comnet ) »

(/ C(t—s) (W (z,t) —wl (z,5)) ds) dx. (2.48)
0

for t > 0.

Injecting the estimates I3(t), I4(t), I5(t) and Is(t) into ([2.43)), we obtain

%52(15):<kpwt(l/2,t)+krw(l/2t /Ct—s (1/2,8) — w (1/2, 5)) ds

+EI<1—/tQ ) 1/2 (x,t) / C(t—s) (wh (z,t) —wl, (2,5)) dsdz
+EI<1—/tC ) ' (x,t) / C(t—s) (Wi (z,t) — Wk (a:,s))dsd:z:
El —3) x R x,s))ds | dx
. //Q(/ct (o) —whh >))
12 [ ot 2
—|—E]/0 (/0C(t—s)(wﬁm(x,t)—w_fm(x,s))ds) dx
t 12 !
— s)ds A wk (x, 2dz + pA wh (z, 2 dx m [w; (1/2, )]
(/Om ><p/ o (0] o4 ||l (0] e 4 (1 t)])

1/2 ¢
— pA/O wr (:c,t)/o ¢ (t—s) (W (z,t) — w" (z,5)) dsda
—pA | W (z)t) / ¢ (t—s) (W (2,t) = w" (2,5)) dsda
1/2 0

— muwy (1/2,1t) /Ot C(t—s)(w(l/2,t) —w(l/2,5))ds, t>0.
(2.49)

Now, using all of Lemma [I.4] Remark and Young’s and Cauchy-Schwarz inequalities
we estimate the terms on the right-hand side of expression (2.49). First, we start with

the 1st and 2nd terms, for all measurable sets B and x where B = R* \ yx, we have

2.0 [ C6=9) @020 =0 0/2.9) ds < 5 Lo Q2.0 +r(60) 0 .
‘ 2.50

\)

+ 1000 (Cow) @),

Xt
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and

w (Z/Q’t)/o C(t—5)(w(l/2,t) —w(l/2,8))ds < na [w (1/2,1)]* + 2—22((%)& (t)
+ 51000 (0w) 1)

Xt

(2.51)

for n, > 0, and using the notation Z; = Z N [0, t].

Similar to Tatar [104], the 3rd, 4th, 5th and 6th terms can be handled in the following

manner

/l/2 (x,t) / C(t—s) (wh, (z,1) — wk (x,s)) dsdx < (773 + ;“E(X)) /01/2 [wﬁx(:ﬁ,t)fcm
(CDw£x> 5 (t) dx + % /Xt Clt—s) /01/2 o 8)}2 duds,

1/2
dng
(2.52)
!
//2 (x,t) / C(t—s) (W (z,t) —wh (z,5)) dsdx < (773 + g@m) /1/2 [wfx(g:,t)}?dx
K 1 ! 2
+ | ” ((Dwi)& (t)dx + 5 /Xt C(t—s) /1/2 (Wi (2, )] dxds, >0
(2.53)
1/2 t 2 1/2
/ / C(t—s) (wh, (2,t) —wh, (2,5)) ds| dz < 2/1/ ((Dwfr> (t) dz
o [o " o (2.54)
2C % d
w0 [ (k) O
and
2 l
— Wk R
//2 / C(t—s) (Wl (2,t) —wl (z,5)) ds| dz < 2k /l/2 <<Dwm>& (t) dz .
l :

+ 2/{2()() /1/2 <(Dw§x>m (t) dx.

Finally, using Lemma hypothesis (Hs) and Remark [1.10] the last 3 terms can be

estimated as follows, for all ¢ >0, ny >0

12 ¢
/0 th(x,t)/ ¢ (t—s) (W (z,t) — w" (z,5)) dsdx

< /W a0 dm—fBV[c, (cov), <>—ﬁBV[c, B [ (),

B

T (x/ ho“’ T (X/ W th&)it (t) da (2.56)
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/l/; wy (z,1) /Ot ¢ (¢ 5) (WF (2, 8) — (1, 5)) dsda

< m / [wf (2, )] dx—}BV[c B](ww)&()—gmc B // 12(c'mwfx)ét (t)d,

4774 (’/ ds h<>w 4774 (4/ th >><z (t) dx (2.57)

and

z/zt/g (t—8) (W (1/2,8) — w (12, 5)) d

< mle (172,00 = 2-BVIC B)(C0w) Q/ (how) _(0x259)

Xt

Plug the previous estimates ([2.50)-(2.58) into (2.49)), Lemma [2.4] is established. m

Lemma 2.5 The derivative of the functional =3 (t) is estimated as follows

S5 (1) < 5 (C00) (1) + s L (172,00 + 205 (C0w) (1)

) ) ) R ' (2.59)
— 4+ — 1/2,t 2 t
# (gt o) b @20+ 20 0 (60) (0,

for allt > 0 and some constants ns, ng > 0.

Proof. Clearly, we have, for all ¢ >0

d _ 1

s ():§(C<>w)()+wt (1/2,t) C (t—3s)(w(l/2,t) —w(l/2,s))ds+w (I/2,t) w (1/2,1),
(2.60)

then, using Lemma we can write

w (1/2,1) / G (t =) (o (1/2,8) =0 (1/25)) ds < o (12,00 + 2w (0) 1)

+27I5</Ct—3 ) CQW>X (t), n75>0,t=0,

(2.61)
and

wi (1/2,t) w (1/2,1) < % wr (1/2,0)]% + 16 [w (1/2,0)]%, 16 >0, t > 0. (2.62)
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This completes the proof. m

Lemma 2.6 For allt > 0, we have

50 < (215, — )24 () = (C0w) (1) + 5 Lot (/2.0 (2.63)

where B, = / o (s)ds and n; > 0 is a constant.
0

Proof. The differentiation of Z4(t), yields

—Z, () =—aZ, (1) — [ C(t—s)(w(l/2,t) —w(l/2,5))*ds
; (2.64)

+ 2w, (l/2,t)/O Vo (t—8) (w(l/2,t) —w (l/2,5))ds,

then, the last term in the right-hand side of (2.64)) will be estimated when, ¢ > 0

Wi (l/271t)/0 Pa (t = s) (W (1/2,t) —w(l/2,5))ds < 4%77 lwe (1/2, 00 + 17, Ea (), 17 > 0.
(2.65)

This completes the proof. m
Lemma 2.7 For the functional Z5(t), we have

12 ) ! ,
im0 <0 ([ 1wl e [ W eal'e) -u0z0

/2

e ( [kt [t <x,s>]2dx) s,

(2.66)

for allt > 0.

Proof. A direct differentiation of Z5(¢) and taking into account (H3) gives

/2

1/2 ) ! )
C55(1) = ¢, (0) ( | kb ol as [ ) dx)
(2.67)

t

+0/90/7(t—3) (/Ol/2 wp, (z, S)}de—l—/l/; [wl (3375)]2613;) ds

or

53



Arbitrary decay of solutions for a viscoelastic flexible satellite system

1/2 ) ! )
925(t) = 0, 0 ( |k woldes [ uhn) daz)

1/2 , l )
C(t—s) (/0 (Wl (z,5)]" dz + /1/2 (Wl (z,5)] dx) ds

M/—S l/2u}LZL’82$ le:L‘SQg(;S

(2.68)

where we have used the assumption that v/(¢)/v(t) = p(t) is a decreasing function. m

Lemma 2.8 For the functional Z¢(t) and =Z;(t), we have

1/2 ) ! )
C20(1) <0, 0) ( [ Eh @) | ) dx) SOEND
, o z (2.69)
— h(t—s wh (z,s ?dx wﬁm x,S ?dz ds,
[ e >(/ ok )] et [ [f 9] )
and
45 (0 <0, OL20P - u =0 - [ ) (12, 5)ds (2.70)
dt i ’ ! 0 ’ ’
for allt > 0.

Proof. Similar to the previous proof. m

2.4 Asymptotic behavior

In this section, we state and prove the uniform stability of the system ([2.1)—(2.3]) under a

suitable control force u(t) applied on the center body of the spacecraft. Firstly, in order
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to stabilize our problem, we propose the following control force
u(t) = —kpwe (1/2,t) — kyw (1/2,t), t >0, (2.71)

where k, and k, are a positive ”control gains”.

Remark 2.4 How to construct the control law from the Lyapunov function is the main
issue of this section. We can then design the control law u(t) for vibration suppression
and substitute it in (2.11). In turn, substitute Lemma to Lemma and boundary

conditions in %K(t) then examine what term should be added in the Lyapunov function

K (t) and control law u(t) in order to satisfy LK (t) < —coy(t)K(t). After continuous
revision and calculation of the Lyapunov function and control law, we can obtain the

appropriate K (t) and u(t) to achieve the control objective.
Now we are ready to state our main result.

Theorem 2.2 Under the assumptions (H1)-(HS3) and the control force u(t) defined in

(2.71)), zfé(x) is sufficiently small, then, there exist positive constants A and v such that

if tgnoou(t) =0 and

if limp(t) # 0.
Remark 2.5 We illustrate the energy decay rate given by Theorem|2.2, if v(t) = (1+1¢)?,

a >0, then u(t) = a(1 + )7t satisfies the condition (H3) and we have
E(t) <c/(1+1t)

for some ¢ > 0 constant. If y(t) = €, B> 0 then u(t) = B satisfies the assumption (H3)
and we have

E(t) < crem2ht
for some ¢y ,co > 0 constants.
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Proof. Differentiating K (¢) with respect to ¢, gathering the estimates in the lemma

to lemma [2.6] making use of (271)) in the expression (ZII) we get, for any t > ¢, > 0,

1/2 ) I )
jtK( t) < By [wy (1/2,1)]” + By [w (1/2,1)]* + Bs (/0 (Wi (z,1)] dx +/ [w; (z,1)] dx)

12

l\')lr—l

1/2 )
2 (C0w) () + (Ba— 1) (COw) (t) + Bs / [WE, ()]  dz + (2075, — a) =4 (1)

! 12
+ Bs / (Wi (z,1)] “dz + % (¢Owl,) () dz
1/2 0

_ 03714 BVI[C, BlAs ( /0 v (Q’Dw£$> OLS: /l/; (C'Dwfz>gt (t) dx)
“ (Z?j + 4%) BV, B (g’ow)& (t) + [Ag ( 2]‘:7 ) + 2775] <<<>”)Bt (1)
; {Mf[ F2 (1) B - Ag} /Otca— s) </Ol/2 W, (,5)] da

l
+ / (Wi (z,9)]" dar) ds — Asp(t)Zs (1) — Ap(t)Z (1) — Arpu(t) =7 (1)

1/2

I (1 —G 2) Elx ( / " (meiz)gt () dz + /l/l 2 (cmﬁ)Bt (t) dx)
o (f000) =] flnce=a ([t

EI : / R
+//2 (Wl (z,5)] dx>ds+7 (¢'Owk) (t) d

1/2
(2.72)
t
=+ 2pAl +m <’/ — A7 / h (t - S) [w(l/2, 3)]2d8
2774 0
~ )\1 1/2 !
+ | 26C(0) — 5 | BT / (¢Owk)) (t) da + / (¢COwl) (t) da
0 1/2
where we have used the following estimates
2
w (1/27 t) Wi (l/27t) < [wt (l/27t)]2 + 78 [w (1/27t)]2 ;Mg > 0,120
U
12 l/2 t /2
/ (howt) e <2 (/ W (o, 8)]2d + 2 / h(t — s) / Wk (z, 5)2dzds
0 Xt
0 0
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t l

// 2<thm (W< 2(/ WF (2, 8)]2dz + 2 / Wt — s) / (W (2, ) dds

l/2 0 1/2
and
t
<h<>w> (t) <2 (/ h(s)ds> [w(l/2,t)]* + 2 / h(t — s)[w(l/2, s)]*ds
Xt / )
where
k2 1 k 1 1 1
By = —k,+— — A 2 — —_—t+—+— (2.
1 p+4n8+(m+4m) 1+ {2 +m (s C)] 2+4n5+4n6+2777’ (2.73)
By :=ns+ (mk2 — kp) M+ ke Ao + 16 + — 2,0AZ +m <,/ +A79,(0), (2.74)
2
and

R 4
Bs :=A\EI (1 —¢,) (773 + %HC( + AQ”;; <,/ ds |+ As4(0) + e (0)

(2.76)

—)\1<1—§)E1

Now, as in [I04], we introduce the sets B, := {s € RT : n(’(s) + ((s) < 0}, n € N.
We note that [JB, = R \ {x¢c U N} where N¢ is the null set where ¢’ is not defined.
furthermore, ifnwe denote x, := R* \ B, then nl—i>r—iI-1c>oZ (Xn) = 3 (x¢) because Xn+1 C Xn
for all n and (x, = xc U N¢. We take B := B, and x := ¥, in (272) and notice that on
B,, we have C'T(Ls) < —((s)/n . Therefore,

/0 Z/Z(C’Dwﬁz) (t) do < —% /0 " (gmwﬁx)gm (t) do + % /0 ” (g’mwgm)ém (t) do

+ /Ol/2 (thﬁm)Xnt (t) dx
1

<-= W(gmw ) m()dm—i—%/olﬂ(CDw ) (t)de
¢ 1/2 1/2
+ 2/h(t —5) /[wL (z,5)]*drds + 2(/ h(s)ds> /[wL (z,1)]*dz

o7



Arbitrary decay of solutions for a viscoelastic flexible satellite system

l

[sotms g [ (@), o} [ (c02), 00

n 1/2 Bnt 2
I
+/ (h[lwfx>~ (t) dx
1/2 Xnt
<! l(gmﬁ) (t)d +1/l (C’D R) (t)d
- T+ = w T
= " on a2 ) 92 12 )5
¢ I I
+2/h(ts)/[wfx(x,s)]Qda:ds—i—Q(‘/ h(s)ds) /[wfx(x,t)]de
0 1/2 nt 1/2

and

(C'0w) (t) < —%(cw) R %(C’Ow) O (h<>w> (t)

Xnt

< _%@“)gm (t) + %(g’ow)ént (t) + 2<' / h(s)ds) w(l/2, )2

nt

42 / h(t — $)w(l/2, 5)ds

For small £ < (,, we select \; = ((, — €)Xy, As = EI(1 —€)Xo/2, y1 = k. /2K, ns = €/2,
ne = (G —e)/4, ng = k(G — e)\a/8, ns = k(G — €)A2/16 and n; = a/4p, for some
positive constant . Therefore, for ¢ > ¢, > 0, (2.72)) becomes

c 1/2 9 ! 9 Qa
%K(t) < —5)\2 (/o [w (z,1)] dz + /1/2 [wi (z,t)] dm) - 554 (t)

12 , I )
+ 7 [wr (12,0 + 72 [w (1/2,8)) + 75 (/0 Wk, (z,t)]" do + /l/2 (Wi (z,1)] dx)

+ 75 ( /0 " (C’Dwix) 5, Bde+ /l/ ; (c’mwﬁx) 5 @ d:c) + 76 <</<>°")A (t) + 74 (COw) (t)

nt nt

+ 78 ( /0 " (C Dw£z> . (t) dz + /l :2 (C Dwf;)gm () d:c) + Ty ( /0 v (COwE,) (t) dw

l ¢ 1/2 , ! . ,
v [ (o) <t>dx) o [ hit=3) ( [ ekl s |t ) dx)ds
TP, /0 h(t—s) [w(l/2,s)]2ds—u(t)<>\555 (t) + AeZe (£) + AEs (t)) +T7(cow)g 0

nt

(2.77)
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where

4k, 1 k, € 1
T = —/{p—i-m-i- (m+4_771) (C*—g))\2—|— [§+m<§_<*)] A2+ —

2 2,
TRG—om e
raim [t 2t e [ o) (] o) +3000) = SEC =D

Xnt Xnt

4

7y i= MEL(1= ) (s + ng(Xn)) + [EI + )\zpzAl (/ h(s)ds)] (/ h(s)ds )

M4

Xnt Xnt

+ X505 (0) + X6, (0) = [(1 = 0) + 0] (G. =€) (1= 5 ) B,

k, ~
Ty = [)\2 (k‘p + 2772) + 2775] kC (xn) — 1,

_EI  pAl* 1 (pAl L m

T5 - 4 25 BV[Q, Bn])\27 Te = Z - )\2 g) Bv[ga Bn]a

k. 1 1-¢ EI (2.79)
= 2 - — = 2| Elk — —
T7 |:>\2 <kp + 2772> + 775:| R 4na 78 )\2 ( 4773 + ) K An IR

Ty 1= (%E(XH) _ @)Ez o = Azp’:l4 (/ h(s)ds) — X

and
A
= 22 (2pA1 + ) / A(s)ds) — Ar (2.80)
Xnt

Now to achieve our goal, we start selecting the different parameters in 7;, i = 1,..., 11 so

that all the coefficients in the right-hand side (2.77) be negative. For small ¢ and large

~

values of n and t,, if ((x,) is sufficiently small, we have

—~ (v — €

W) — 55 <0 2:81)
and
S -Gl <o (6 —9) (1-5) (2.82)
with
3K (1-2¢)
N (2.83)

Observe that, for ¢, large enough, we have 0 < ¢ < 1. For the remaining 1 — o, we require
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that ¢, (0) satisfy

(1-¢)
2

e (0)<(1=0) (6. —2) (1-5). (2.84)

then (284 is satisfied if ¢, (0) < 1 [¢« (8 — k) — 3k] and ¢, > 3k,/(8 — k). Consequently,

combining (2.82)) and ( 2.84)), selecting 13 and &; small enough so that

3 ~ l—¢ K
(=) a5 )| + U5 e, 0) = [0 =0) 4ol - 2) (1= 5) <o.
Once 73, n, t,, and € are fixed, we pick 75, and Ay small enough so that
( o~
(6 + 45) +20] 2 ) -1 <0,
1= (54 2) BVIC, B,] >0,
EL _ eALBV(¢, Ba]Xe > 0, (2.85)

[AQ (kp+2%>+2n5}m—ﬁ<o,
Yo (58 +2) EIn— L <0

and for [ h(s)ds sufficiently small, we select Ag and 7 large enough so that
0

pAl*
€

Ao (/ h(s)ds> — X5 <0 and %(2@41 + m)</ h(s)ds) A <0 (2.86)

Xnt Xnt

Finally, if ¢,(0) is sufficiently small, we also select k, and k, large enough so that

)\ Ly
{1 + 2 (20Al+m) ( / h(s)ds)] ( / h(s)ds) + A6, (0) — 1—}6(@* e <0 (287)
and
AN 2k, 1 Ky
B e o el (m+4_771> (Gmelat [?“”(%_C*)] ha H A
2 20,
+ + e,

k(G — o) | a
(2.88)
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Together with (Z.77), those choices lead to

%K(t) < —Co|E(t) + Es(t) + 54(t)] — Asp()Z5 (1) — Aepa(t)Z6(t) — Arpu()Z7(2), ¢ =t

(2.89)
for some positive constant Cy and if tEnoo 1(t) = 0 then, for this constant Cy, there exists
a t(Cy) > t, such that u(t) < Cy for t > #(Cy). Hence, in virtue of the right-hand side of

Proposition [2.1} we find

%K(t) < —Cip(K (1), t>HCo) (2.90)

for some positive constant Cy. Integrating (2.90)), gives

R fc’lft,u(s)ds _
K@) < K@e 1, t>HCy) (2.91)

Thus, with the help of the left-hand side in Proposition [2.1], we get

o)+ i =(1)] < ke 1 sy, (2.92)

Now, we recall 7/(t)/v(t) = u(t) to conclude that
Et) < M7(1), t=t (2.93)

for some positive constants A and v.

If tlim w(t) # 0 then, there exist a t > t, and C, such that p(t) > Cy for t > t,. Therefore
—00
for (s,
d

which leads to

E(t) < Ae™™, t >+,

for some positive constants A and v. The continuity of £(¢) and the boundedness of
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[0, max{Z, ¢}] allow us to conclude
E(t) < Ay(t)™, t>0 (2.95)

which complete the proof. m
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Chapter 3

Existence and uniform decay for a
flexible satellite system under

unknown distributed disturbance

In this chapter, we prove the well-posedness of a flexible satellite system with viscoelastic
panels and under unknown distributed disturbances as well as we study the stabilization
behavior, to this, we use the multiplier method to show the uniform stability of our

system.

3.1 Introduction

This chapter is devoted to studying the uniform stability result for the problem of a
flexible viscoelastic satellite subjected to an unknown distributed disturbance, for a good
control u applied at the center body of the satellite and a large class of kernels ( satisfying

the following condition (see [10])
C(t) <0 and ~y(t)((1) € L'(0,00)

where 7 is a non-negative function. Let us now consider a flexible viscoelastic satellite

under unknown distributed disturbances during attitude maneuvering and we will work
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to improve its performance, we define the system of this problem by, for all ¢ € [0, c0),

(

pAwL (z,t) + Elwk  (x,t) — EI/C(t —s)wk (x,8)ds = fF(x,t), x€]0,1/2]

pAWE (2.1) + BEIwE._(2.1) — BI / Clt— ) (n5)ds = fR(@, 1), o€ 1/2,]]

\

(3.1)
with the boundary conditions
(2 (1/2,1) = P (1/2,8) = 0, why (0.) = B (1,6) = 0, why, (0,6) =t (1,1) =0,
W (1)2,8) = Wl (1/2,1) = w (1/2,1),
o (1/2.6) = () + Elok, (/2,0) = BT [ ¢t = 9)wk, (1/29)ds
_EIwR_(1/2,4)+ EI / Clt— )k (1/2,8)ds + d(1/2,1),
) (3.2)
and the initial data
wh(z,0) = wl(z), wk(z,0)=wl(x), z€]0,1/2] (33)

w(z,0) = wi'(z), wi(z,0) =wi(z), xell/2,1],

where f¥, f% and d represent the distributed disturbance in the panels and in the cen-

trebody, respectively and ((t) is the relaxation function.

Remark 3.1 An important question on vibration suppression of the flexible satellite has
been raised by Ji and Liu [50]. They have been proved that the solutions of the closed-loop
system decay exponentially to the equilibrium state provided that we have a viscous damp-
ing (i.e. wi(x,t) and wk(xz,t)) under the boundary control u(t) applied on the center body
of the satellite and the distributed control inputs. This damping is known as a frictional
damping. In this work, we improve these results by establishing a simple control force
u(t) yielding the stability of the problem under weaker damping with unknown distributed
disturbances, and without the need for distributed control inputs. Namely, a viscoelastic

damping induced by the material itself.
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3.2 Preliminary Results

In this section, we introduce some lemmas and notations which will be utilized later.
We use the same notations in [89] 00], for every measurable set Z C RT, we define the

probability measure Eby

The flatness set and the flatness rate of ¢ are defined by

xe={s€R"((s)>0and ( (s)=0} (3.5)

and

respectively, we also have

Xe={s €RT:0<s<t, C(t—5)>0and ¢ (t—s) =0} (37)

Let t, > 0 be a real number such that fg* ((s)ds =:( > 0.

We suppose that the kernel ((¢) satisfies (see [104]):

(Hy) Forallt >0, ((t) >0, € is a continuously differentiable function satisfying

0</<;::/+OOC(5)CZ5<1.
0

(Hy) Forallt >0, ¢'(t) <0.

(H3) There exists a nondecreasing function v(¢) > 0 such that 7/(t)/v(t) = 6 (¢) is a

decreasing function and

7 (1) ¢(t) € LH(0,00).

The unknown distributed disturbances are assumed to fulfill the conditions:
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(H,) The functions fL, f# and d are continuous in t such that f& € L*(0,1/2), f% €

L%(1/2,t) and there exist a positive constant d such that d(I/2,t) < d for all t > 0.

To simplify, we denote

(¢Ow) ( /Ct—s (z,t) —w(z,5))*ds, t>0.

and

WV
o

€020 = [ =920 -2  ds ¢
The following lemma will be applied throughout this chapter.

Lemma 3.1 (See [1]). Let Q(t), o(t), 5(t) € C'[0,00). If there exists a positive func-
tion W (t) € C'[0,00) such that

0<o <™ (- F). p0< e (e, 20

IN

then a nonnegative solution ¥ of the following inequality

jﬁ() —QW) V() +a ()P (t)+B(t), t>0

where W (0) 9 (0) < 1, satisfies the estimate
V(t) < ——=, t>0.
Lemma 3.2 The energy functional associated to the problem (3.1)—(3.3)) is defined by

1/2 ) m ) ! i )
E(t) :%/0 [wf (z,1)] dx+5[wt (1/2,1)] +%/1/2 (W]t (z, )] da

EI [V? EI

S et e+ 2L (ot (0o
0 1/2

El 1- (/Otg(s)ds>] (/01/2 [wh, (:c,t)]de
—l—/l/; [wl (:c,t)]Qd:c>
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satisfies
1/2 l 1/2 )
Cem z%( [ enatom s [ Q(C’Dwfx)(t)dfﬁ>—%€“(t) ( | ko)
+/ [wl (:c,t)fda) + (w(t) +d(1/2,8))we (1/2,1)
1/2
1/2 l
th z,t) fE(z, t)dx wf z,t) fB(x, t)dz, > 0. 3.9
+ [t e +/l/2 (2,8) fR(z, O)dw, ¢ (3.9)

Proof. By multiplying the first equation of system (3.1]) by wF (z,t) and integrating over
[0,1/2], and similarly, multiplying the second equation of (3.2)) by wf (z,t) and integrating
over [1/2,1], then multiplying the last Eq. of (3.2)) by w; (1/2,t), using the conditions of

the borders and summarizing the findings, we obtain, t > 0

d (pA [V? A
7 (%/ [wWF (2,6)]" dx + % [wft (2, )] dz + % lwe (1/2, 1))
0 1/2

EI [V? EI [

+ == (W (2, 0)] de+ = | [wF (2,)]" do
2 Jo 2 Jip

1/2 t ! t
- / Wb (2, 1) / Ct— 5wk, (x, s) dsde + / R (2,1) / C(t— )R (z,5) dsda
0 0 1/2 0

1/2 l
+/ wl (z,t) fX(z,t)dx +/ wyt (2, t) fR(x, t)de + (u(t) +d(1/2,t))we (1/2,1) .
0 1/2

(3.10)

Now, for ¢t > 0, we have

2 [Ceteen [[Cumget @it = [ (@0t 0t <o) [ ok 0]

12
-2 [ [ oty i

- (/OtC(s) dS) /01/2 [ (af,t)fdﬂf]

(3.11)
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and

l l

2 /l/; wit, (1) /Ot C(t—s)wk (z,s)dsdx :/Z/Q (C/Dwﬁx) (t)dx — ( (t) /Z/Q [wfx (=, t)}Q dr
d !
- = Ow? dx

_ (/Ot<(5> ds) /l/; (Wl (a:,t)]zdx].

(3.12)

Therefore, using the relations (3.11) and (3.12)) in (3.10)), we get (3.9)).

Remark 3.2 From the equality (3.8)), we can observe that the derivative of the modified
enerqy functional is of an undefined sign. Now, we construct a Lyapunov functional K

which plays an important role in the proof of our stability results.

Let
K{)=E®)+Y NEi(t), t=0 (3.13)

where \;, © = 1,...,5 are positive constants which will be selected later such that \3 =

Ay =1, and

1/2 !
=1 (t) ::pA/O w (z,t)w, (x,1) dx+pA/l/2w (x,t)w;" (x,t) de + mw; (1/2,t) w (1/2,1),
1/2 ¢
o (t) :=— pA/O wr (m,t)/o C(t—s) (w" (z,t) — w" (z,5)) dsda
— mwy (l/2,t)/0 C(t—s)(w(l/2,t) —w(l/2,5))ds

— pA /1/2 wh (m,t)/o C(t—s) (W (2,t) — w"(z,s)) dsdz,

=5(0) 1= 5(C00)(0) + 5 [ (/2.0
Z4(t) = /0 Oa (t —8) (w(1/2,1) —w (1/2,5)) ds,

t 1/2 t l/2
=5 (t) = EI/ 0y (t—9) / [wh, (2, s)]2 da:ds—l—EI/ 0y (t—9) / [wi (z, s)]2 dxds,
0 0 0 0
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where

o [Temerds o =107 [ Con

here « is a positive constant to be selected later, ¢ > 0. Finally, in order to stabilize our

problem, we propose the following control force u(t)
u(t) = —kpwe (1/2,t) — kyw (1/2,t), £t >0, (3.14)

where k, and &, are a positive ”control gains”.

3.3 Well posedness

Now, we state the existence result of the problem (3.1)) — (3.3)), which will be proven by

using the Galerkin approximation method. For this end, we denote

V= {h g e H0.0/2) x H' (1/2.0), ¥ (1/2) =y (1/2) = 0,

yH(1/2) = y™(1/2) = y(1/2) ),
and
W= {(y", v € H2(0,1/2)x H* (1/2,00V, 45 (0) =y, () =0, k., (0) =yl (1) =0}

where H' (0,1/2), H' (1/2,1), H*(0,1/2) and H?(1/2,1) are the usual Sobolev spaces.

Theorem 3.1 Let (wf,wf) € V, (wf,wff) € L*0,1/2) x L*(1/2,1) be given. Suppose
that (Hy) to (Hy) holds. Then, under the external force u (t) defined in (3.14) there ezists
a unique weak solution (w w ) of the problem . . ) which satisfies

(W, W) € C([0,T); V), (wf, w) € C([0,T); L*(0,1/2) x L*(1/2,1)),
where T > 0.

Proof. Let us solve the variational problem associated with (3.1)) — (3.3]), which is given
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by: find (wL, wR) € W x W such that

l/2 ! 1/2
pA/ Wb (1) y <>dx+pA/ W (@,1)y <>dm+E1/ W (1) () da
0 1/2 0

+EI/l Wl (2, 1)y ()dx—EI/l/zym /gt—s) L (x,s)dsdx

/2

—E[/ Yo (T /Ct—s ' (x,s)dsdx
/2

12
+y (1/2) [mwy (1/2,t) + kpwe (1/2,8) + kyw (1/2,t) —d (1/2,1)] = /0 fE(z t)y" () da

; // 0y @) de

for any (yL, yR) eV xV.
Let {(y*°,y™), (v"',y™), (y*2,y™),..} be a complete orthogonal system of W for

which

(w'swo')  (wi'swi') € span{ (y", ™), (y™',y™)}.

For each m € N, let us put

W, = Span{ (yL07 yRO) ) (yL17 le) ’ (yL27 yR2) ) }
We seek solutions of the form

O () = 3 ay (Y (1), @€ [0,0/2], t30

W () = S by (DY (1), @€ [1/2.0], >0
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for the following approximate problems in W,

( l

1/2 1/2
pt [k @)yt @)oo [ W )y <>dx+Ef/ W (2,1) () do
0 0

1/2
/
+EI//12wf;” (z,t)yE (v)dx E[/”ym / C(t—s)wk™ (z,5) dsdax
—E]//Qym /C (t — s) Wi (2, s) dsdzx
1/2
+y(1/2) [mwg (1/2,t) + kpwy™ (1/2,t) + kw™ (1/2,t) —d (1/2,t)] = 5 (x, t)y" (z) do

0
l

() y" (z) da,
1/2

(w"™(2,0) = wi™(z), W' (2,0) = wi™(2)) — (W, wy) in W

(wf™(2,0) = wi™ (@), W™ (2,0) = wi™(x)) — (Wi, wi’) in L*0,1/2) x L*(1/2,1).
(3.15)

Note that the equations (3.15]) leads to a system of ODEs involving m unknown functions
ajm and bj,,. Standard ODE theory guarantees the existence of a unique (w”,w®) on
the maximal interval [0,,,), t,, € (0,7 for each m > 1. It remains to extend ¢, to T

A priori estimate. Set y* = wF™ and y'' = W™ in (3.15) we get for any ¢t > 0

/2 A l EI /2
a %/ [wi™ (a:,t)]zdx+ P [wi™™ (z, )} dr + — (Wi (z, t)} dx
a\ 2 J, 2 Jis 2/,

l
+ 2 ol (o)) e T L (12,0 ) = (/2,0 (1/2,1)
1/2

%
+E[/ thm x,t / C(t—s)wkm (z,5) dsdx — k, [w™(1/2,1)]?
0

l
+EI/ wim (z,t) Q (t — s)wim™ (2, 8) dsdw — k,w™(1/2,t)w™(1/2,1)
1/2
1/2
+ fE(z, t) k™ (z,t) do + fR (z,t) W™ (2,t) dx.

0 1/2
(3.16)

Let
X™(t) = E™(t) + % [wm (12, t)] i (3.17)

71



Existence and uniform decay for a flexible satellite system under unknown distributed
disturbance

where

1/2 ) m , Lo ,
EM(t) :%/0 [wi™ (,t)] d:v—i-?[w;”(l/Z,t)] +%/ [w"™ ()] da

12
/
B ooy e+ EL [ (c0orm () do
2 Jo 2 Jip
I ! 2 Lm 2 : Rm 2
|1 </0 ¢ (s) ds)] (/0 [wm (x,t)} dar:—i—/l/2 [wm (x,t)] dx)
(3.18)
A differentiation of X™(t), gives
d d
EX’”()—ES’”()—I—/{% (1/2,t)w™ (1/2,1). (3.19)

The equation (3.16)), the relations (3.11) and (3.12)) permits to obtain

d EI{ [V? ! 1/2

Gen =5 [ enetmde+ [ @000 )+ [ b 00) £t
dt 2 \Jo 12 0

[l . , v ) I .
_ 7§ () (/0 (Wi (z,1)] daj—l—/m [wii™ (,1)] d:c) + /1/2 wim (2, t) f(x, t)da
— kew"(1/2,)w™(1/2,t) — k, [w]{”(l/Q,t)F +wit(1/2,t)d (1/2,1) .

(3.20)
Now, by using Lemma [I.4] we have
1
W, t)d (1/2,1) < nlwr(z, )] + Edz (1/2,t), n==k, (3.21)
From (3.19), (3.20) and (3.21)), we obtain
d /2 1 1
—X™(t) —/ wk™ (z,t) f5(x, t)dx+/ wim™ (x,t) f (2, t)dx + —d? (1/2,t) (3.22)
dt ; 2 1k,

for any ¢ € [0,t,). Integrating (3.22]) over [0,¢] using Holder and Young’s inequality and
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assumption (Hs), result in
t t plf
X (1) gxm(o>+i/ [d(l/z,s)]QdHi,/ / 175 (0 )] duds

l/2
+77// dxds+—/ ’ fR (x, s ? dxds (3.23)
2

—i-n/// ;™™ (x,s)} dxds, n > 0.
0 Ji2

From (3.17)), choosing n’ sufficiently small, taking into account assumption (H4) and

(wf™, wlt™), (wf™, wf™) are bounded in W, and employing Gronwall’s lemma, we infer
£m(t) < M (3.24)

where M is a positive constant independent of ¢t and m.
Therefore, using the fact that (H;) and the estimate (3.24)) together with (3.18) give us,

for all m € N, t,,, =T, we deduce

wl™) and (w®™) are bounded in L*((0,7), V),
(&) and () (01, % -

(wfm) and (thm) are bounded in LOO((O,T), L*(0,1/2) x L2(l/2,l)),
It follows from (B.25)) that there exists a subsequence (w™, w™) of (w™™, w™) such that

wh =~ Wk W~ W weakly star in LOO((O, T),V)

(3.26)
wr = w, wi = wft weakly star in L™((0,T), L*(0,1/2) x L*(1/2,1)).
Then from Aubin-Lions theorem [65], for any 7" > 0
wh — Wt W — W strongly in C’((O,T),V) )
(3.27

Y — v, v — oft strongly in C((0,T), L*(0,1/2) x L*(1/2,1)).
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These results are sufficient to pass to the limit in (3.15]) to get

l/2 ! 1/2
pA/ Wb (2,1)y <>dx+pA/ Wl (@, 1)y <>dm+E1/ W (1) g () da
0 1/2 0

+EI/l Wl (2, 1)y ()dx—EI/l/zym /gt—s) L (x,s)dsdx

1/2
—E1 —5) x,s)dsdx
//2 Yow (% / ¢t v (2, 5)
1/2
+y (1/2) [mwy (1/2,t) + kpwe (1/2,8) + kyw (1/2,t) —d (1/2,t)] = fE(z t)y" () da

0
l

f () y" (2) da,
1/2

for any (yL, yR) eV xV.
For the uniqueness

Let (le,le) and ( L2 ) be two solutions of the problem . . ) which satisfy
(Wh, W) € C([0,T); V), (wi, w™) € C([0,T); L*(0,1/2) x L*(1/2,1)),

where 1 = 1, 2.

then (zL, ZR) = (le —whe2 W — wR2) verifies for any (yL,yR) eV xV.

1/2 ! 1/2
pd [t @) despa [ ey @de+ B[ ek (e
0 1/2 0

! 1/2 ¢
—i—EI/ zﬁp (x,t) yfm () dx — EI/ yf;x (x) / C(t—s) zfx (x,s)dsdx
0 0

1/2
I t
—FEI R (x —5) 28 (2, 5) dsdx 3.28
IRy RIGEEES (3.29)
12
+y (1/2) [mz (1/2,t) + kpze (1/2,8) + kpz (1/2,8) — d (1/2,1)] = fE(x, t)y" () da

0
l

Fi @, ) y™ (x) da
1/2

By reasoning in the same way as for the case of the first a priori estimate, and using the

Gronwall lemma again, we obtain directly. wit = w2 Wi = w2 =
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3.4 Technical lemmas

In this section, we establish some lemmas which will be used to have the main result (i.e.

Theorem 3.2

Lemma 3.3 There exist two positive constants d1and o, such that

& (5@) +Y E (t)) < K () < 6 (5@) +) E (t)) , (3.29)

for allt > 0.
Proof. See chapter 3. m

Lemma 3.4 Let (W', wf) be the solution of (3.1)—(3.3). Then, the functional = (t)

satisfies for any positive n; and €1, the estimate

1/2 ) I ) ,
%El (t) <pA (/0 [w (z,1)] d:c+/l [w (z,1)] dx) + <m—i— 4%1) [we (1/2,1)]

/2
EI

1/2 }
5 ( /0 (CCwy) (2, t) da + /Z (COwE,) (x,t)dx>

/2

+%(/Otc(t_s)/ol/2 [%(I,S)}dedw/otg(t—s)/l/; [wﬁc(x,s)fdxds)
+EI {2;1114 - (1—%)} </01/2 Wi (:c,t)fdzw/ll @i (a:,t)}de)

/2

1 1/2 ) l )
L </O [, )] de+ [ [f(x, )] do+ dP(1)/2, t))

1/2

+ a2+ 1) + mk2 — k] [w(1/2,1)]
(3.30)

fort > 0.

Proof. Direct computations, using (3.14), we get

/2 2 : 2
—Z1(t) = L(t) + () + pA/O [w} (z,t)] " da + pA /1/2 [wf (2, 6)]" da +m [w, (1/2,1)]

—E]w(l/2,t)/0 C(t—s)wfm(l/Q,s)dstElw(l/Q,t)/O C(t—s)wh (1/2,5)ds

— o (1/2,) wi (1/2,1) — Ky [w (1/2,)]2 + d(1/2, t)w (1/2, 1)
(3.31)
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+ BLw(1/2,)wh, (1/2,1) — ELw (1/2,1) W, (1/2.1)

1/2 !
L L R R
+/0 w" (z,t) f (x,t)da:+/l/2w (z,2) f*(x, t)dx

where

1/2 !
I (t) :_EI/ wL <x7t)w£zmx ([E,t)dl'—E]/ wR(x7t>wﬁxxr (C(],t) dZE,
0 1/2

and

/ ¢
L (t) =EBI / P ) / Clt— )b (2 5) dsda
0 0

! t
+ EI/ Wi (z,1) / C(t—s)wh . (z,s)dsdz.
1/2 0

Integrating by parts in I;, i = 1,2, and in view of the boundary (3.2)), we have

Ii(t) = —Elw(l/2,t) m(z/2,t)—E1/l/2 [wfx(a:,t)]de+Elw(l/2,t) wi (1/2,1)
—EI le 2,0 dx, t>0 3.32
/W[m< 0] de, > (3.32)

and

L(t) = Flw(l/2,t) </0 C(t—s)wﬁm(l/Q,s)ds—/o C(t—s)wﬁm(Z/Q,s)ds)

+E1 (/Z/Q (x,1) / C(t —s)wk (z,5)dsdx (3.33)

/ o) [ €l Mm) >0

Substituting the estimates (3.32)) and (3.33)) in (3.31]) , we get

1/2 ) I ) vz )
%El (t) =pA (/0 [wi (z,1)] dx + /1/2 [w; (z,1)] dx) —FEI (/0 (Wi, (2,1)] da

+/ (Wl (z,1)] dx) +/l/2w (z,t) ff(x, t)dx + d(1/2,t)w (1/2,1)

1/2
—l—EI(/ xt/Ct—s ' (x,s)dsdx

(3.34)
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(z,t) (t —s)w,. (x,s)dsdx —krwl2,t2
o e [ ) ) w0 (1/2.0)
12
+mw (1/2,6)]) = kpw (1/2,1) wy (l/2,t)—|—/0 wk (x,t) fX(x,t)dx.

Now, we will estimate some terms in (3.34)). For n; > 0 and £; > 0, we have

kpw (1/2,t) wy (1/2,8) < k2 [w (1/2,0)]° + 4%71 lwi (1/2,0)]

1/2

1/2 ) 1/2 1 2
/0 Wk (z,t) fE(z, t)dr < el w (1/2,1)] ~|—€1l4/0 [wh, (z, )} dx+— i ([ (z,1)] d,

461
(3.35)
l

/ Wi (z,t) fR(z, t)dr < el w (l/2,t)]2+81l4/ (Wl (z, )] dx—i—i [fR(:U,t)}de
1/2 1/2 LJi/2

and

1
d(l/2,t)w (1/2,t) < Ed2(l/2, )+ e [w(l/2,8) (3.37)
1
for all t > 0, and by using the Lemma [2.2] we obtain (3.30). =

Lemma 3.5 Let (w, w®) be the solution of (3.1)—(3.3). Then, for some positive con-

stants n;, 1 = 2,3, 4 the functional =5 (t) satisfies, the estimate

1/2

1/2 ,
X [wy (1/2, t)]2 + % (1—2¢) (/ C(t— 3)/0 [fo (x, s)} dxds

+ /X t(’(t— 5) /l/; Wl (g;,s)fdxds) - {p—Al + ﬁ} ¢(0) (¢"0w) ()

214 4ny

1/2 ) ! ,
I, (t)é(m—é*)pfl( [t [ o] dx) # |5 mon -]

o pAl! 2 L Lo R
oz = S0 ([ ) ars [ (et @)

N3 + ; </ C(t—s) ds) (/OW [wl, (:v,t)fd:)s + /l/; (Wl (x,t)fda:)

+[M+2E[} (/1/2 RISDIZ AR ())? dsda

4ns

//2 ZCt—s () —wh (s)) dsda:)

+EI(1-¢)
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# (2t g2 ) [ - 0/2.0 — w297 dss
+2E1(/Xt<<t—s>ds> (/Ol/z/mcu—@ (k0. ) — oy (,9))
+ /l/; /X C(t=s) (wii, (2, 1) — Wi, (=, s>)2d5dx>

<2€2+k ! )(/ Ct=9) d)/ C(t—8) (w (1/2,0) = w (1/2,9))* dsda

1/2
1 eyl ( /O (¢Ow?,) (t) dz + /l/ 2 (¢Owk) (1) da:) + 2e2lK (COw) (1)

/2 l
+ L (/ (5 t)] da + /Z/2 (PR, 0)] de + d2(1)2, t)) ,

451

forallt >t, > 0 where g3 > 0.

Proof. The differentiation of the functional =, (), yields

Sz = pA [ o) [ -9 (o )~ (o) dode
A /Ol/2 W (1) /Ot ¢ (= 5) (W (2,8) — W (2, 5)) dsda

t " t l

—pA</O ¢(s) ds) |t i pA(/O ¢(s) ds) /l/ W (,0)] do
—pA/l/;wg (2, 1) /Otg(t— $) (WP (z,1) — w (2, 5)) dsda
— s 1/21) [ () (@ 12.0) — w (1/2,9) ds
—pA/l wR(x,t)/tC’ t—s) (W (z,t) = w" (z,5)) dsda
— (12,1 / ¢ (= 5) (w(1/2,6) = w (1/2,5)) ds

_m(/o ¢ (s) ds) W (12,02, ¢ > 0.
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By using the Egs. of (3.1]), boundary condition (3.2]), and (3.14)) , we find

d /2
0

I ¢
- fR(as,t)/ C(t—s) (w (:v,t)—wR(x,s)) dsdzx
1/2 0
1/2 t
—pA/ thxt/(’t—s (w" (2,t) — w" (z,5)) dsdz

1/2 !
— pA (x dx — pA wh (, ?dx
p/( / ) p/( //2[(75)]
—pA/th (x,t)/o ¢ (t—s) (W (2,t) = w" (2, 5)) dsda
— (ElIwk, (l/2,t)+d(l/2,t))/0 Clt—s)(w(l/2,t) —w(l/2,5))ds

+EI</ C(t—s)wfm(l/Q,s)ds) (/ C(t—s)(w(l/?,t)—w(l/2,s))ds>
—Ef(/ct—s (12,5 )(/u—s w(l/2,1) — w (1/2,5))d )

+ (Elwfm (1/2,t) + kpwy (1/2,t) + kyw (1/2,1) / C(t—s)(w(l/2,t) —w(l/2,s))ds

_mwt(l/2,t)/0 C'(t—s)(w(l/Z,t)—w(l/?,s))ds—m(/o C(s)ds) lwe (1/2,1)]
(3.38)

where

12 ¢
I3(t) = EI/O wk (x,t)/o C(t—s) (w" (z,t) — w" (z,5)) dsdz,

I ¢
Ii(t) = EI /1/2 wk (x,t)/o C(t—s) (W (z,t) — w" (z,s)) dsdz,

f5<t>:—EI/Ol/2(/0t<<t—s )(/ct—s <,s>)ds>d:c,

and

f():_m/ﬂ(/u_s )(/U_S (,S»ds)dx.
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Integrating by parts twice and using the boundary conditions (3.2)), we get,
t
Li(t) = ElwE (l/2,t)/ C(t—s) (wh(1/2,t) —w" (1/2,5)) ds
0

1/2 t
+E1 wéa: (.1', t) / C (t - 8) (wfx ($7 t) o w:IcJ:r: (.I', 5)) dexa
0 0

L(t) = —BIwf (l/2,t)/0 C(t—s) (W (1/2,t) —w™(1/2,5)) ds
! ¢
+E1 ng (wat)/ C(t_s) (wfx (x>t) _wa]:%x (‘1'7 S)) del’,
12

I5(1) =—E1</<t—s E (1/2,5)d )(/ct—s E(1/2,8) - w <Z/2,s>)ds>
—EI/W(/ct—s )(/ct—s (,s>)ds>dx
Il EI(/ct—s R, (1/2,5)d >(/<t—s R(1/2,1) - w (l/2,s>)ds)
—BI // ( / C(t—s)wh <x,s>ds> ( / Gt —5) (W (2.0) — wF (2.5)) ds)dx-

Plug the estimates I3(t), I4(t), I5(t) and Is(t) into (3.38]), we obtain

1/2 ¢
EEQ (t) = — i fL(x,t)/O C(t—s) (w" (z,t) —w" (z,5)) dsdx
— Rg, t —5) (W (2, t) — W (x,5)) dsdx
[ " t>/oc<t ) (@ (2, 8) — W (z, 5))
—d(/2.t) / Ct—3) (@ (1/2.1) — w ()2, 5)) ds

+ <kpwt(l/2,t)+k;rw(l /g (t—5) (W (1/2,1) — w(i/2,5)) ds

+EI(1—/Ot§ > Z/Q xt/(t—s Lo(x,8)) dsdx
m(l_/oz )
+Ef/l/:</0t<<t—s>(wﬁgc(x,t)—wﬁx(x,s))dsydx

2 [ gt
+ EI/() (/0 C(t—s) (wh, (2,t) —wl, (z,5)) ds) dx
¢ 1/2 , I )
- (/ ¢ (s) ds) (pA/ [w (z,1)]" dz + pA [wi (z,t)]" dz
0 0 1/2
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1/2
+m [wy (1/2, t)])—pA/ wk (z,t) /C (t —s) (w" (z,t) — w" (z,s)) dsda
—pA/ Wi ( / ¢ (t—s) (z,t) — w (2, 5)) dsdx (3.39)

—mwt(l/Q,t)/OC’(t—s)(w(l/Q,t)—w(l/Q,s))ds, t>0.

Now, using all of Lemma [I.4] Remark [I.10] and Young’s, Cauchy-Schwarz inequalities we
estimate the terms on the right-hand side of expression (3.4). First, we start with the 1st,

2nd, 3rd, 4th and the 5th terms, for e > 0, we have

1/2 ¢
i f(x,t)/o C(t—s) (wL (x,t) — W (z, s)) dsdx < el ((Qw) (t)
1/2

1/2 1
4 L T+ — *(a
+ el /D (COw,) (t) dz + ey Pl e (3.40)

! t
" f(z, t)/o C(t—s) (W (z,t) — w (z, s)) dsdx < e5lk ((Qw) (t)

! 1
+ 8214/€/ (COwl) (t)dz+— [ f(z,t)dz
1/2 des 1/2

and for all measurable sets Z and y where Z = R* \ y, we have

d(l/2,t)/0 Clt—s)(w(l/2,t) —w(l)2,5))ds < 4id2 (1/2,1)

€2

+ 2Ke9 ; C(t—s)(w(l/2,t) —w(l/2,5))* ds

+252</ C(t—s)ds)/ Clt—s)(w(l/2,t) —w(l/2,5))ds

wt(l/Z,t)/O C(t—s)(w(l/2,t) —w(l/2,5))ds < %[wt (l/2,t)]2

K ; C(t—s)(w(l/2,t) —w(l/2,5))*ds
+</ C(t—s)ds)/ Ct—s)(w(l/2,t) —w(l/2,5)ds

w (l/2,t)/0 Ct—s)(w(l/2,t) —w(l/2,8))ds < no [w (l/2,t)]2

bo | G- /2 - w29 ds

2772</ C(t—s) 5) /XtC(t—S)(W(l/Q,t)—w(l/2,s)) ds
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for n, > 0, and using the notation Z; = Z N[0, ¢.

Similar to Tatar [104], the 6th, 7th, 8th and 9th terms can be handled in the following

/W xt/@t—s —wh (z,5)) dsdx
<n3+ /ct—s )/W o) do

manner

12 (3.41)
—i-% Ct—s (wx (75)) dsde
1/2
+ 5/ ¢(t— 8)/0 (W, (2, )] duds,
(= =) x wh (x,5)) dsdzx

//2 ‘) / C(t = 5) (W (0,1) =i (3,9))
S| m+s [ CE—s) ds) (W (2,1)]" dx
( / / (3.42)

477/ tC t—s)( xx(x t)—(,u (, S)) dsdx

3 Jij2 )z
+—/ ((t—s)/ [wh (a:,s)] dxds, n2 >0
2 Xt /2

/Ct—s wk (t) —wk ())ds dx

/l/2

12
<2m/0 [ =) (@l (0 -k () s (3.43)

+2</th(t—s)ds> /OZ/Q/th(t—s) (Wh (1) — W, (5))° dsda

[ ce-9eto-atona]

dx
<2 //2 [ (=) (o 1) o ()" dse (3.44)

”([f“‘s )// (€9 (20~ ol (9)" dsde

Finally, using Lemma hypothesis (Hs) and Remark [1.10] the last 3 terms can be

and

estimated as follows

1/2 t
/0 wf (z, t)/o ¢ (t—s) (w" (z,t) — w" (z,5)) dsda (3.45)
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1/2 ) ¢ 1/2
<m / Wk (2, )] d:c+4im< / \<'<s>|ds> / (I¢'| Ow®) () de

1/2 ) 4 12
< m / k(. )] dw—ﬁam(c'om()—l—c() / (COWE) (1) da,

//2% (1) /< (t =) (W (1) = W (2, 5)) dsda (3.46)

< m/lﬂ[wt(x ) dw+—</ ¢ (s |ds)//;(|<|mw ) (1) da

<o [ el e - 0 C00) (0 - 50 [ (©0E) () ds,

12 74 4y 12

and

wy (Z/Q,t)/ C(t—s)(w(l/2,t) —w(l/2,5))ds (3.47)

< mlw (/2,0 +—(/|< |ds>/|<t—s (1/2.8) = w (1/2,5)) ds

< mlw (12,0 ‘4774“0) (COw) (1), >0 >0,

Plug the previous estimates ([3.40) to (3.47) into (3.4), Lemma [3.5] is established. m

Lemma 3.6 The derivative of the functional =5 (t) is estimated as follows

(C Ow) (8) + 16 [w (1/2, )] + 25 | C(t = 8) (w(1/2,t) = w(1/2,5))" ds

Z4

+2775</ ((t—s)ds)/ C(t—s)(w(l/2,t) —w(l/2,5))*ds

N (i n L) lwe (1/2, 1))

EE()

) I

dns — 4Ane
(3.48)
for allt > 0 and some constants ns, ng > 0.
Proof. Clearly, we have
d_ 1, !
— 23 (1) =5 ((Ow) () +we (1/2,1) [ C(t =) (w(l/2,t) —w(l/2,5))ds
at 2 0 (3.49)

Fw /2, )w(l/2,t), t=0

83



Existence and uniform decay for a flexible satellite system under unknown distributed
disturbance

then, using Lemma [1.4] we can write

we (1/2,t) | C(t—8)(w(l/2,t) —w(l/2,s))ds < =N [wy (l/2,1t)]2
0 4n

5

+ 2Km;5 ; C(t—s)(w(l/2,t) —w(l/2,5))ds

—1—2775(/((t—s)ds)/((t—s)(w(l/2,t)—w(l/2,8))2ds, ns >0, t >0,

1
G 1/2,00(1/20) € -l (U2 0F + [0 0207, 1 >0, 120, (350
6
This completes the proof. m

Lemma 3.7 For allt > 0, we have

C24(1) < (2P — 0)Z4 (1) — (C0w) (1) + % wr (12,0, (3.51)

where @, = / Yo (8)ds and n7 > 0 is a constant.
0

Proof. The differentiation of Z4(t), gives

—Z () =—aZ, (1) — | Ct—s)(w(l/2,t) —w(l/2,5))*ds
N (3.52)

+ 2wy (l/2,t)/O Vo (t—8) (w(l/2,t) —w(l/2,5))ds,

then, for ¢ > 0 the last term in the right-hand side of (3.52) will be estimated as follow

w (1/2,1) /Ot Yo (t—5) (w(l/2,t) —w (l/2,5))ds < % [wy (l/2,t)]2+777¢a54 (t), n;>0,

Uk
(3.53)
This completes the proof. m
Lemma 3.8 (See [10]|]). For the functional Z5(t), we have
d /2 2 ! 2
555 (t) <El¢,(0) / [wﬁx (x, t)} dx + / [wfx (x,t)] dx | — EIo (t) =5 (t)
!
’ 2 (3.54)

— EI /OtC(t — ) (/OZ/Q Wk, (3;75)}2dx + /l/l2 (Wl (z, s)]de> ds,

for allt > 0.
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3.5 Asymptotic behavior

In this section, we state and prove the uniform stability of the system (3.1)—(3.3|) under
a suitable control force u(t) applied on the center body of the spacecraft. Now we are

ready to state our main result.

Theorem 3.2 Assume that (Hy) to (Hy) holds. Under the control force u(t) defined in

. if Re is sufficiently small and there exists a positive function U € C'[0,00) such

o< (00-59)

that

and

2 L 2 : R 2 2 i - (1)
/0 [wf (z,1)] dx+/l/2 [w/t (z,8)] " dx + d*(1/2,t) < 10 (Q(t) ) t >0,

where B is given in (3.61) below. Then, for some positive constant C
C
E()< ——, t >0,
provide that W(0)K (0) < 1 in the cases
(a) tlifrn d(t) =0 and Q(t) = c10 (t) (c1 will be chosen in the proof), or
—+00

(b) lim 0 (t)=6# 0 and Q (t) = ¢3 (cy is as in (T61)).

t—-+o0

Proof. Differentiating K (¢) with respect to ¢, gathering the estimates of the lemma
to lemma [3.7} making use of (BI4) in the expression ([39) we get, for any ¢ > ¢, > 0,

%K (t) < Bi [we (1/2,6)]" + By [w (1/2, )" + (2110 — @) B () — BN (1) Es (¢)
EI  pAl v L R
(5 - Gc o) ( | ot tan+ /l/ (COWE) (1) da
l s (3.55)
[ emy @ f w0+ [T (ouk) 0

/2

1/2 , I ,
+ By (/o (Wl (z,1)] dv + /z (Wi (z,1)] dx) + Bs (CQw) (t)
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1/2 )
+[ﬁ+% (1—-¢)— )\5]E[/Ct—s (/o [wh, (z,5)]" dz

o[ i s>]2dx> s+ [1 - (2204 ] coy (o )

+ { 5 < 2’; > +2n5} K ((t—s) (w(1/2,t) —w ()2, 5))* dsdx

1/2
+A (14 G +2>EI/<;</ ZC(t—S)( wh, (1) — wk, (5))” dsdz (3.56)

A
2

13
//22Ct—5 B (1) — f ())dsdx)
12
Bs Ow?, dz Ow® dz
¥ (/ (CTwt) (1) +/W(< 10 )

1/2 !
+B7</0 [F5 (2, 6)]° da + [fR(x,t)]de—l—cF(l/Z,t)),

1/2
where we have used the following estimates

2
T

w(1/2,t)we (1/2,1) <~ [w (/2,0 + s [w (1/2,8)]*, ns >0, t =0

UK

1/2 1/2 1 1/2 )
/ wi (x,t) f¥ (x, 1) dr < e / Wi (2, 0] de+— [ [fF(@.0)] do, e3> 0,
0 0

483

! ! !
/wf(m,t)fR(:p,t)dxéeg/ [w;® (2, )] dx+L [fR(a:,t)]zdx

1/2 1/2 4es 1/2
and
1
d(l/2,t)w (1/2,1) < EdQ(l/Z,t) + &3 [wy (l/2,t)]2, g3 >0
3
such that
k2 < 1 ) {k } 1 1 1
B, = m+— M+ |Z+m ()| A+ — 4+ —+ —,
s an ) T2 01 = )| At e e T

Bg =Mg + (61(2l -+ 1) + nlki — kr) )\1 + kTTI?)\Q =+ e, B3 =e3+ AlpA + )\2 (n4 B C*) pA

B, := —1—{)\2(1 — () (mﬁ—%/ C(t—s) ds) + A5 (0) + Aq {2;1[[4 B <1 — g)} }E],

)\1 €2l4/€)\2
Bsi= |2 - - EI
5 ()\g/mg(t s)ds 2+ o ) ,
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k,
Bg = [)\ < 5 >+2775:|/Ct—8)d8—1+2€2l/i)\2
2
and
B, = I U
4 4€1 482

Now, as in [104], we introduce the sets
Z,={seR": n((s)+((s) <0}, neN.

and

va::{sER*, 0<s<t n((t—s)+((t—s) <0}, neN.

We note that UZ,, = R* \ {x U N¢}, where N, is the null set where ¢’ is not defined.

furthermore, if we denote that y,, := R*\ Z,, then lirf Z(Xn) = E(Xg) because xn11 C Xn
n—-+0o0

for all n and Nx, = xc UN,. We take Z; := Z~nt and x; := X in (B.55). Therefore,

12 "
L / (COWE) de < —— Clt—s) (why (1) — Wb (5))” dsda
0

4 an J, z,

17
1 /Q(CD < //2 Zt{t—s(m()—w ()) dsdx

and

10 0 <~ [ ¢l s) /2,0 —w1/2,5)ds

an Jz
For small € < (,, we select A\; = (G —€)A2, A5 = (1 —e)\o/2, ny = /2, g5 = eXapA/4,
ne = (G —€)/4, 15 = 1/16kn, ng = ns = k.M1/8, €1 = k. /2(2l — 1) and 1; = /4, for
some positive constant a.
Now, for notation convenience we shall write all the coefficients in the right hand side of

(3.55) in the simple form, so for some 0 < ¢ < 1, setting

€ A,\2 kr kp

2
2,

a )

7y 1= Xo(Ge =€) [e1(2 4+ 1) 4+ muk2 = 5], 7 = 1 — 224 (0) Ao, 7 1= B — 225¢ (0) D,

4 2e 4 2¢e

B [AQ (282 oy Cik—Ts) T 8nni| ”C (Xn) — 14 2e9lK)s,

T6 = Ao {(1 — ) [773 + %“E(Xn)} + 5520, (0) + (1 - 0) + 0] (G —2) [221][4 - g)} } EL
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4ns 8n?

T7 1= [A2 (1{*‘*‘2)5—%} El, 7'8:/\2(2524_1{;?—’_kE_T)Fd_L

To 1= Ay <2/<;C (Xn) — % + %) ET and 7y := (C*;;)Az + ;\_22 + 5A21pA‘
Therefore, for t > t, > 0, (3.55]) becomes

%K@<ﬁ@ﬂﬂjﬁ+@waﬂﬁf—%i@—EM@Eﬂ®&+mK@@@

1/2 1
+ 74 ( /0 (¢'Bwy,) (t) dz + /l (¢'DCwyt) (2) dw) + 75 (COw) ()

/2

/2 l
+ 79 (/0 (Cljw:fx) (t) dx + /1/2 (CDwfx) (t) dx)

1/2 9 l 9
st ([t [ )

+ 75 ( /0 v [WE, (2,1)]” da + /l/l 2 (W (2,1)] dm)

72 L L 2
+ 7 / : C(t—s) (wh (z,t) —wi, (z,)) dsdx
0 nt

| R R 2
+/ _ (= s) (Wit (2,1) — wpl, (s,7)) dsdx)
l/2 Znt

+75 | C(t—s)(w(l/2,t) —w(l/2,5))? dsdx

Z’nt

1/2 ) ! )
+ T10 (/0 (5 (z, )] dw+/l/2 [f7 (z,1)] d:1:+d2(l/2,t)> .
(3.57)

To achieve our goal, we start selecting the different parameters in the right hand side of

(3.57)) so that all the coefficients in the right-hand side (except 71¢). For small ¢ and large

~

values of n and t,, if ((x,) is sufficiently small, we have

W) — 75 <0
and
S (- allu) <o (G -2 (1-5) (3.58)
with
3k(1-¢)
TT UL (2 —R)

Observe that, for t, large enough, we have 0 < ¢ < 1. For the remaining 1 — o, we require
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that ¢, (0) satisfies

e (0) < (1=0)(¢C.—2) (1-5). (3.59)

then (BEJ) is satisfied if ¢, (0) < 1 [¢ (8 — k) — 3k] and ¢, > 3k,/(8 — k). Consequently,

combining all of (B.58)), ([B.59), select 3 and £, small enough, we obtain

251[4

(1_6)%(0)+[(1—0)+0](<*_5>{E] —(1—9] =

2

(1-¢) [773 + gﬁf(xn)] +

Once 73, €1, n, t,, and ¢ are fixed, we pick 7y, €2, A small enough and we select k, large

enough, lead to the following system

(
Yo (58 +2) k=& <0,

4n3

Xy (260 + kp+2) k— &= <0,
EL _ pAZ - (0) Ay > 0,

4 2e

L 2AEm (0) A3 > 0,

[Az (252 Ly 4 2k ) v L] KC (n) + 260lkg — 1 < 0

(x—e€ 8kn

= 4K, *—E&
26C (Xn) + 255 — &2 <0,

e1(2l+1) +mk — % <.

\

Finally, we select £, large enough, where

epAg 2k, 1 B kyp g

k, + 1 +(C*—5))\2+ m+4m (e —e)Aa + 2+m<2 Q) Ao

2 20
X SOa<

B —e o U

+ 4Kkn +

Together with (3.57)), those choices lead to

%K(t) <—c[E(t)+Z3(t) + 24 ()] — AEILS(t) 25 (2)

1/2

1/2 l
+g</0 (£ (z,0)]" dz + [fR(x,t)]de+d2(l/2,t)),t}t*>0

For some positive constants ¢y and p and

if lim 4 (¢) = 0 then, for this constant ¢y, there exists a ¢ (cy) > t. such that § (t) < ¢

t—+o00
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Existence and uniform decay for a flexible satellite system under unknown distributed
disturbance

for t > #(co). Therefore, from the right-hand side of the Lemma [3.3] we obtain

d l

1/2
%K(ﬂ < —c0(t)K(t)+ o (/0 [f* (x,t)]Qda: +

~

(7 <x,t)]2dx+d2<z/2,t)> Ct>1
(3.60)

1/2

for some positive constant ¢;. Now, applying Lemma [3.1| with

12 )
Q(t)=c10(t),o(t)=0and B (t) = o (/0 [f (x,t)] dr + /1/2
we infer from that (B.60)

l

(£ (2,0)]" dx + d2(l/2,t)>

C
<—, t >
S(t)\\ll(t), t=>0

for some C' > 0, on condition ¥ (0) K (0) < 1.

If lim 0 (t) =0 # 0, then there exist a t > t, such that § (t) = ¢ for t>t,. Hence,

t——+o0

iK(t) < —cK(t)+o (/OZ/Q [f* (a:,t)]zdx—F/ZZ [ (a:,t)fdwrd?(l/z,t)) >,

(3.61)

for ¢y > 0, consider

1/2 ) ! )
Q(t) =c20(t),0(t) =0and B (t) = o </ [fL (z,1)]" dx +/ [fR (z,1)] dz + d2(l/2,t)> .
0 1/2
we conclude that
E(t) < \Di(t) t>0

for some positive constant C' > 0, provide that U (0) K (0) <1. m
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Chapter 4

Stabilization of a flexible satellite
system with memory term under

tension effects

In this chapter, we study a viscoelastic flexible satellite problem with unknown distributed
disturbance and take into account the tension of the system. Based on the multiplier

method, we prove the stability of the system for a large class of relaxation functions.

4.1 Introduction

We study a viscoelastic flexible satellite under unknown distributed disturbances during
attitude maneuvering. The system composed of a rigid central hub that represents the
spacecraft with two symmetrical viscoelastic Euler-Bernoulli beams and subject to un-
desirable vibrations under the tension effects. The problem can be modeled by a set of
partial differential equations (PDEs) taking into account therefore the dynamic boundary

condition. Namely, for a large class of the relaxation function ¢(t) (see [L01]) satisfying

(A1) We assume that the function ¢ is continuous, differential, non-negative and satisfies

400
the condition 0 < k = / q(s)ds < 1.
0

(Ay) We assume that 0 < ¢’ (t)+puq (t) < ¢ (¢) such that g > O and ( (¢) is a non-negative

function, for all t > 0.
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Stabilization of a flexible satellite system with memory term under tension effects

Then, we consider our problem as follows

for (z,t) € [-1,0] x [0, 00)

t
pAwtt (.l’ t)+E]wxxxm( 7t)_Tw£$ (ZE,t)—E]/q(t-S)U]L (ZE,S)dS:h(l'7t),
0

for (x,t) € [0,1] x [0, 00)

pAwE (z,t) + EITwl  (x,t) — Twk E[/q (t —8) Wy (x,8)ds = h(z,t),
0

with the boundary conditions

(

wk (0,t) = whk(0,t) =0, wk (=1,t) =wk (I,t)=0, t>0
wk (0,t) = R(Ot)— 0,t), t>0

ElTwk

Trxr

(t—s)wh  (—1,8)ds =Twk (~1,t), t>0

Ji$$

\ EIwf (1,t) = EI [ q(t —s)wk,, (I,s)ds=Twf(,t), t>0

e
/

0
t

mue(0.0) = u(t)+ ETuk, (0.0) = BT [ q(t=s)uk,, (0.5)ds

0
t

—E]wmm((),t)—l—E]/q(t—s) wh (0,5)ds +d(0,t), t>0

\ 0

(4.2)

and the initial data

wh(z,0) = w(x), ul(x,0) =wk(z), ze€[-1,0]
wh(z,0) = wgi(x), w'(x,0) = wi(z), = €01,

(4.3)

where T represents the tension of the satellite, we keep the same notation as in the
previous chapters. In (4.1]), the integral term describes the memory term.

Unknown distributed perturbations are assumed to satisty the following conditions:

(A3) h, d are a continuous functions in ¢ where h € L*(—[,1) and there exists a positive

constant d such that d (0,t) < d for all ¢ > 0.
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Stabilization of a flexible satellite system with memory term under tension effects

4.2 Preliminary Results

In this section, we introduce some lemmas and notations which will be utilized.
We show that the global existence and the uniqueness of the solution of our system can be
established by using Faedo-Galerkin approximation, (we follow the same ideas presented

in the previous chapter). To this end, we set
v ={(6%, 0") € H(~1,0) x H2(0,0), 0% (0) = 0% (0) =0, 6%(0) = 0%(0) = 0(0) },
and
W —{(0%, 0") € H' (~1,0) x H*(0,), 0% (~1) = 0% (1) = 0}
where H? (—1,0), H*(0,1), H*(—1,0) and H*(0,1) are Sobolev spaces.

Proposition 4.1 Let (w§, wf) € V, (wf, wff) € W be given. Suppose that (A;) to (Ay)
are satisfied. Then, under a suitable external force w (t) set out in , the problem
— has a global weak unique solution (w*, w¥) in the sense that for any time t,
satisfies

(w", w™) € L*([0,T); W), (w/, w;) € L=([0,T); V)
(wyy, wif) € L=([0,T); L*(—1,0) x L*(0,1))
where T > 0.

Lemma 4.1 The classical energy functional associated to the problem (4.1])—(4.3) is given

through

E(t):%/ [wy (z, t)] dx+—/ wl xt)} dr + — 5 [wt(O )]

2 )
EI [°
+7 [ (ZEt dCL’—l—— dx (4.4)
-1
T 0
—1
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Stabilization of a flexible satellite system with memory term under tension effects

satisfies

d 0 t l t
B = / Wk, (2,t) / ¢ (t - s)wh, (a,5) dsde + / Wf, (2, 1) / 0(t — 5) W (x,5) dsde
0 0 0

-l

+ /0 wl (x,t) h(x, t)ds + /l wft (z,t) h(z, t)dr + (u (t) + d(0,t))w, (0,t)

(4.5)

for allt > 0.

Proof. Multiplying the first equation of the system (4.1)) by w’ (x, ) and integrating over
[—1, 0], secondly, multiplying the second equation of (4.2)) by w? (z,t) and integrating over
[0,1], also multiplying the last Eq. of (4.2) by w, (0,t), gathering the conditions of the

borders and summarizing the results, we reach to (4.5). m

Remark 4.1 Fort > 0, we have

2/0 Wiy (2,1) /th(t—s) wy, (2, 5) dsde/O (¢DOwy,) () dfff-a(t)/ [wh, ()] d

-l -1 —l

_ % [ / (¢Owk,) (1) da

-l

and

2 [t ) [ - o)l ) dste = [ (@O e —g@) [ o 0] a0
d /Ol (quf;) (t) dx

_ (/th(s)ds) /Ol [wfx(x,t)fd:c].

dt
(4.7)

Thus, in view of the above (4.6)) and (4.7)), we can find that the modified energy functional
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Stabilization of a flexible satellite system with memory term under tension effects

associated to problem (4.1)—(4.3)) is defined by

1 2 2

Bl 1- (/th(s)ds> (/_(: [wafx(x,t)]de+/0l [wfm(:c,t)fda:>

+ g (/_ [wf (a:,t)]Q dr + / [wf (z, t)}2 dx) + %/0 (quwfx) (t) dz

0 m , Lo , 0 .,
£ (t) :%/ [wf (a:,t)fdx + — [w (0,8)] + &/0 [w (x,t)] " da + % /—z (¢Owy,) (t) dz

2
l 0

(4.8)

and satisfies

Cem =" ( | outde + /0 (q’Dwﬁx)(t)dx> T (u () + d(0, ), (0, )

-l

-l ( [ ok oo | [wm,t)}?dx) (1.9)

-l

0 l
+/ wy (iv,t)h(x,t)d:wr/ wl (z,t) h(z, t)dx, t>0.

Remark 4.2 Through the equality (4.9), clearly that the derivative of the modified energy
functional is of an undefined sign. Now, we will build a Lyapunov functional T which plays

an essential role in proving our stabilization results.

Let

T (%) :S(t)+i/\i]-} (t), t>0 (4.10)

where \;, © = 1,...,5 are positive constants that will be specified later. such that \3 =

M =1,and fort > 0

0 I
w” (z,t) wk (x,t) do + pA/ w? (z,t) wf (2,t) dr + mw, (0,t) w (0,1),
0

Fi () =pA /

-l

Fo(t) :=—pA /_l wk (x,t)/o q(t—s) (v (z,t) — w" (z,s)) dsdx
— (O,t)/o g (t— ) (w(0,1) —w (0, 5)) ds

- pA/O wl (x, t)/o q(t—s) (W (z,t) —w" (z,s)) dsdz,

Fi(t) = 5(a0w)(t) + 5 [w (0,0
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Stabilization of a flexible satellite system with memory term under tension effects

t 0 t l
Fatt)= [ eatt=s) [ Tk oo duds s [ppte—s) [ [wlt (@9) deds,
0 I 0 0
t
Fot) = [ oalt - 9) w9 ds
0
where ¢g (t) = e ftoo ¢ (s)eP*ds, t > 0, such that 3 is a positive constant to be precise
5
later. Now, we prove that 7 (¢) and £ (t) + >_ F; (t) are equivalent .
i=3
Proposition 4.2 There exist two positive constants d,and 6o, such that, for all t > 0.
5 5
0] <5<t> +Y T <t>> <T () <6 (€<t> +Y F (t)) : (4.11)

=3 i=3

Proof. From Cauchy-Schwarz, Young’s and Poincarés inequalities, we get

]:(t)<%/_[ (z,1)] d:c—l——/ d:r;—l——/ dx

) (4.12)
m
+p7 [wf( 1]? d$+§[wt(0t)] + 5 [w (0,6
0
then applying Lemma [1.4] and Remark [I.10] it follows
0 2 0 2
/ [w" (z,t)] " de < 2 [w (0,8)]° + 16l4/ [wh, (z,1)] dz, (4.13)
-1 -l
and
I I
/ [w" (z, t)]2 dr < 20[w (0,1)]* + 16[4/ (Wl (x, t)}2 dx. (4.14)
0 0

next, we obtain that

-l

* % (/l [ (2.0))"do + /ol i .0)]" dl’) + (2ﬂAl + %) [w (0,8)*, t > 0.

(4.15)

Fi () <8pAl* </ [wh (z, t)]2 dx + /0 [wh (z, t)}2 dx) + % [w, (0,1)]?
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Stabilization of a flexible satellite system with memory term under tension effects

For the functional =, (¢), we have

l

Fa (t) é% (/ [wf (x,i&)]2 dx +/0 [wf (z, t)]2 dx) + % [w, (0,1)]?

-l

22 ( /0 "a(s) ds> < / (: (qOwb) (1) de + /O (@) () dx)

+%</th(s>ds) (qOw) (t), t > 0.

then by using the Remark once more, we get

0

/_ (: (¢0w") (t) dz < 21 (¢Ow) (t) + 161* /_ l (¢Owl,) (t)dx, t >0

/l (¢Ow™) (t) dz < 21 (¢Ow) (t) + 161* /l (¢Owk) (t)dz, t > 0.

£ <A ( / ’ (wk (2, 8)]” da + /0 l [wh (z,1)]” dx) e (% + 2pAl> (qOw) (¢)

\2 .

(4.16)
0 I
+ 8pAltk (/ (¢Owk,) (t) d +/O (¢qOwl) (t) dx) + % [wy (0,1)]7.

-l

using (4.8)), (4.15) and (4.16]), we obtain

[w) (:c,t)}2dx+/0 [wff (x,t)]gdx>

-l

T () < %pA(1+)\1+)\2) (/
+ (% + 8)\2,0Al4m> (/0 (¢Owk,) (z,t) dz +/O (¢Owk) (z,t) dx)
1
2

-1
+ = [\ (4pAl+m) + 1] [w (0,1)]* + % [Nk (m + 4pAl) + 1] (¢Ow) (2)

13

(/_(z [wh, (2,1)]" dz + /Ol [wr, (x,t)]2dgj)

+ —m(l +/\1 +/\2) [wt (0,t>]2 +J—"4 (t) +)\5]:5 (t) .

El t
— (1 —/ q(s) ds) + 8\ pAlt
0

N —
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on the other hand, we have

0

IT(#) > pA (1 — M — A) </

-l

!
[wy (z,t)] “dz + /o [w (z, 75)}2 dx)

-l

+ (EI — 16X\pAl*k) (/ (qOw?,) (z,t) dz + /Ol (qOwl) (z,t) dx)

0

-l

!
+ [EI(1— k) — 16X\ pAl*] (/ [wﬁw(x,t)f dx +/0 [wl, (gv,t)}2 dx)

+ [1 = dori (m + 4pAD)] (qOw) (1) + [1 = A1 (4pAl +m)] [w (0,1)]*

+m (1= Ay — o) [wy (0,8)]7 + 2F, (£) + 205 F5 (1) .

Then, there exists §; > 0, ¢ = 1,2 such that ¢, (5(25) + ZF(t)) < T (t) < b9 <€(t) +

=3

5
. EI(1-r .
;})}] (t)), where \; < min [1, 4PA%+m, 16(pAl4)1 and \y < min [1 — A, (4pAll+m)m 16'0%%] m
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In the next sections, we will use the notations ¢ := / ((s)ds and (g := / ¢ (2) dz
0 0

tx
and let t, be a positive number such that / q(s)ds:=q, > 0.
0

4.3 Technical lemmas

In this section, we will introduce some lemmas needed to help in the proof of our main

result (i.e. Theorem [4.1)).

Lemma 4.2 The derivative functional of Fy (t) along solutions of (4.1)) to (4.3)) satisfies,

for any positive ny, ny and £,

l -l

N {16E5}l4 = (1— k)} EI (/(Z [wafgx (:C,t)]2d:c + /Ol [wfx (x,t)]Qda:>

%.7:1( t) <pA/_ [w; (x,t)]2dx — T</ [w (x,t)]2dx +/O [wh (x,t)]2dx> (4.17)

+ pA /Ol [w]t (x,t)}2 dzx + (m + 4L> [w, (0, 8]

2

0 !
+ ﬂ/-ﬂ(/ (¢qOwk,) (t) d +/0 (0wl () d:v)

(4.18)

4 _

de1 \ J

+ (61 (AL + 1) + mok? — k) [w (0,1)]° + L (/l [h(z, )] dx + d2(0, t))
fort > 0.

Proof. By simple calculations, a differentiation of F; (f) with respect to ¢, making up of
(4.45), we find

d 0

SF(0) = 1(0) + 1) + (0) + pA / |

[wf (z, t)}2 dx + pA/O [w (z, t)}2 dx

+ m [wy (0,1)]> + ETw (0,t) wk,, (0,t) — Elw (0,t) wk , (0,t) 4+ d(0,t)w (0, 1)

¢

— Elw ( Ot/q (t —s)wk, . (0,5)ds + Elw (0, t)/q(t—s)wxm(() s)ds
0 0

0

— kyw (0,t) wy (0,t) — K, [w (0, t)]2 + /

-

w” (z,t) h(z, t)dx + /l w? (z,t) h(z, t)d
’ (4.19)
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where

I (t) = —BI / "t (e wh (o t)de — EI / W (o )l (2.1) de.
Lt) = £ w!

T/_(:wL(a: (:ct)derT/Ol R (o )l (24) dz,

and

I (1) =BT / "t (2.) /O "yt — )k (z.s) dsdx

-l
I t

+E[/ wh (x,t)/ q(t —s)wh (x,s)dsdr.
0 0

Integrating by parts I;, i = 1,2, 3 and using the boundary conditions, we have

L (t) = —FEIw(0,t)w,,, (0,t)+ Elw (=, t)w [,t)

CL‘ICL' LL'LL’TL’ (

_EI/O [wh, (z,t)]" dz + ETw (0,t) wk,, (0,1) (4.20)

l
—Elw (l,t)wk , (1,t) - EI/ [wh (:c,t)]Qda:, t>0
0

L) = —Twk(=l,t)w" (=1,t) + Tw? (1,t)w (1,1

_T</0 [w (x,6)]” da + /l [wh (:c,t)}Qd:c) t=0 (4.21)

and

L) = Blw() (/th@—s) b (0.9)ds = [ a5l 0 s>d)
—i—E[/_j ' (x, 1) /th(t—s)wfx (x,)dsdx
—l—EI/O ' (x,t) /th(t—s)ng (x,s)dsdx

t
—Flw (-1,t) / q(t—s)wk, (~1,s)ds
0

+ETw (1, 4) / "= s k. (1s)ds, £ 30, (4.22)
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Taking into account the above estimates in (4.19)), we obtain

%.7:1 (t) = pA (/ [th (x,ifﬂ2 dx +/ [wf (x,t)}z dx) —FEI (/ [wﬁx (x,t)}z dx

+/l [wh, (a:,t)}zdx) +/0wL (x,t)h(x,t)dm—i—/le (z,t) h(z,t)dx

—I

-l

0 ¢
+FEI </ wh (1) / q(t —s)wk (z,s)dsdx
0

+ /0 wh (1) /0 q(t—s)wk (r,s) dsdx) — ky [w (0,0)]?

+m [w (0,)]* = kpyw (0,8) w; (0, 1) + d(0, t)w (0,t)
— T(/—z [w (:v,t)fdxjt/o [wi (x,t)]2da:>.

Now, we will begin to estimate some terms in (4.23)). For n; > 0, 7, > 0 and £; > 0, we

(4.23)

have

0

EI/ wkh (x,1) /o q(t—s) (wh, (z,8) —wk, (,1)) dsdx <771EI/ [ (z, t)}2 dx

—l -1

0
+ ﬂli/ (quﬁm) (t) dx,

dm- J
(4.24)
I t I
EI/O wh (z,t) /0 q(t—s) (Wl (z,s) —wk (z,t)) dsdx <771EI/0 (Wi (z, t)]2 dx
+ %H/{) (qOwl) (t) dx
(4.25)
kpw (0, 1) wy (0,8) < mak [w (0, H° + 4—7172 [w; (0,1)]%, (4.26)
and

0 ) 0 ) 1 /0 ,
w (z,t) Wz, t)dr < 2,1 [w (0,)]° + 165114/ (wh, (z,t)]" dz + e [h(z, )] dz,
(4.27)

I I ) 1/ )
/ wh (z,t) h(z, t)dx < 2e10 [w (0,1)]° + 1651l4/ (Wi (z,t)] dv + e, [h(z,t)]" dz
(4.28)
d(0, tyw (0,1) < %dQ(O,t) ey [w (0, ) (4.29)
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for all t > 0, and by using the inequalities (4.24)), (4.25)), (4.26)), (4.27), (4.28)) and (4.29)

n (£23), we get (L17). m

Lemma 4.3 Suppose that (Ay) and (Ay) hold, let (wr, wf) be a solution of ([4.1)—(4.3).

Then, for some positive constants n;, i = 2,3,4,5,6,7, the estimate of Fy (t) satisfies

-l

0 l
Fy(t) <n3E1< / [wh, ()] dv + / [wfmtﬂzdx)m [w (0,1))?

0

!
+ (N6 + Mapt — ) (pA /_z [wf (x, t)]2 dx + pA/O [wf (z,t)] d:z:)

EI ApApl*  TI? 0
+ (1652l4 ER Y o R i —) /4(/ (¢Ow?,) (t) dx
4ns3 N4 n7 -1

! kp +mp k2 pAul
+/ (qOwl) (t )dx) <(4l+1)€2+4—774+4775+ s )/{(C]Ow) (1)

4/»414 ( / C(s )( / (COwk,) (t) dz + /0 l (¢Owyl) (2) dw)

+i (par+ 7 ( / C(s ><<>w><> o + (ky + mps) i — ma.) [y (0, )]

Mo

+n7T</_l [wh <x,t)}2dx+/0 [wf(x,t)fdx) +4—;</l[h(:c,t)]2dx+d2(0,t)>,

for allt >1t, > 0 where g5 > 0.
Proof. Differentiating the functional F; () , we get

d

E}"z() —pA/ltht (x,t)/o q(t—2s) (wL (z,t) —w” (:1:,3)) dsdx

—pA</0tq<s>ds> /Ol [wf(a:,tﬂzdx—pA(/otq(s)ds) /Ol [wf (2,1)]" da

— pA/ wk (as,t)/o q (t—s) (W (z,t) —w" (z,s)) dsdx
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By utilizing the Egs. of (4.1)), boundary condition (4.2]) and (4.45]) , result in

L Fy () =Io() + Lu(t) + I (1) + Io(t) + L(t) + Ls(2)

it
—,oA/_(z L, t)/otq’(t—s) (wh (,1) - w" (z, 5)) dsdz
—pA/t (s )ds/o [wF (z,1)] dx—pA/th(s)ds/ol [wh (,)]” da
—pA/wt xt/ (t— s) (" (2,1) — w" (2, 5)) dsdz
~ (Bt 0.0 +d0,0) [ gt - 9) 0.0~ w(0,9) ds

0

+EI</O q(t—s)wk (0, s)d)(/o q(t—s)(w(O,t)—w(O,s))ds)
-JH(Aqu—@ MA0@d>(Aqa—@@uaw—wms»@)

+ (Efwm (0,2) + kyw, (0,1) + Eyaw (0, t)) / (= 5) (w (0.8) — w (0, 5)) ds

— may (0, 1) /0 q (t—3s)(w(0,t) —w(0,s))ds —m (/0 q(s) ds) [w, (0,1)]?
. (4.30)
- /—z h(x,t)/o q(t—s) (W (z,t) —w" (z,s)) dsdx

l t (4.31)
- /0 h(z,t) /0 q(t—s) (w(z,t) —w(z,s)) dsdx
/ wh (z, t)/o q(t—s) (w" (z,t) — w" (z,s)) dsdz,
Ii(t) = EI/O wh (x, t)/o q(t—s) (w(z,t) —w" (z,s)) dsdz,
/ wh (x,t)/o q(t—s) (w" (z,t) — w" (z,s)) dsdz,
I t
Is(t) = —T/O wh (x, t)/o q(t—s) (W (z,t) —w™(z,s)) dsdz,

I(t) = —EI /j (/th(t —s)wk () ds) (/th(t —5) (W (2, 1) — w” (z, 5)) ds) dz,

(4.32)

and

Ig(t) = —EI/OZ (/th(t —s)whk (x,s) ds> (/th(t— s) (wf (z,t) — w™ (z,s)) ds> dz.
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Stabilization of a flexible satellite system with memory term under tension effects

Integrating by parts twice and using the boundary conditions, we obtain, for ¢ > 0

16 = Bl (0.0 [ 06— ) (0" 0.0) = 0" (0.5) ds
~Elut, (1) [ 4= ) (0" (L0 -t (-9) ds
VL [ b o) [ 9) (ks (0.0) - ks (0,9) ds
146) =~ 0.0) [ a(t=5) (07 (0.6 = 0" 0.9)) ds
FEREL (1) [ alt=9) (07 1)~ 0" (19) ds

l

t
+EI | wk (2,1 / q(t—s) (Wl (z,t) — wl (z,s)) dsdz,
0

S—

t

ng(—z,t)/o 0 (t —5) (wh (—1,t) — w" (1, 5)) ds

&

—
~

N—
I

+T/_ wk (a:,t)/o q(t—s) (wl(z,t) —wl (z,s)) dsdz,

l

Is(t) = —Twk (l,t)/o q(t—s) (w(l,t)—w"(,s))ds

—i—T/O wk (z,t) /0 q(t—s) (vl (z,t) — wl(z,s)) dsdz,

I;(t) = —FEI (/0 q(t—s)wk  (0,s) ds) (/0 q(t—s) (w"(0,t) —w"(0,s)) ds)

+EI (/0 q(t—s) w£x$ (=1, s) d8> /0 q(t—s) (wL (=1,t) — wr (—l,s)) ds)

—EI/_(Z</OtQ(t—S)wgfz(%8)d$

[ at=9) (ks (w0~ wk (29) ds) .

and
I(t) = FEI (/0 q(t—s)wk (0, s) ds) (/0 q(t—s) (w™(0,t) —w™(0,s)) ds)

_EI</O q(t—s)wk (1,s) ds) (/0 q(t—s) (wR (1,t) — wh (l,s)) ds)
_EI/O (/0 q(t —s)wk (z,s) ds) </o q(t—s) (wfx (z,t) — wk (;U,S)) ds) dz,
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Stabilization of a flexible satellite system with memory term under tension effects

According to the estimates I3(t), I4(t), I5(t) , Is(t), I7(t) and Ig(t), (4.30) becomes

%fz (t)=— /—z h(x,t)/o q(t—s) (wL (z,t) — w” (x, s)) dsdx

7 k@) [a =) (0 @0) -k 2.9) dse

T [ [ 5 ) - o 09) dsto

([ o) (o [t o [l 007
—pA/_jth(:c,w/Ot(q'u—s)wq(t—s)) (w" (2,8) - w" (z,5)) dsda

—oa | wft (2,1) [(a=9+nat-9) @ @ —u® o) st 05)
toan [t ) [ a9 (0 0.0 -t 0,0) e

Fot [l ) [ a-9) @R @0 - 0 (0,9) dsda

(bt ) (0.0 [ 46— ) (0 0.0) = w (0.5))ds

—mwt(O,t)/O(q’(t—s)—f—uq(t—s)) (w(0,t) —w(0,s))ds, t>0.
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Stabilization of a flexible satellite system with memory term under tension effects

Next, using Lemma and Remark [I.10] Young’s and Cauchy-Schwarz inequalities, we
can estimate the terms on the right-hand side of (4.33). Thus we have for 5 > 0

/_ h(:z:,t)/o q(t—s) (w" (z,t) —w" (z,s)) dsdx < 2e5lk (¢Ow) ()

: . . (4.34)
+ 1652l4/£/ (¢Owk,) (t) dx + L h?(x,t)dz,
— €2 Jy
! t
/ h(z,t) / q(t—s) (W (z,t) —w(z,s)) dsdx < 2e5lk (qOw) (1)
0 0 (4.35)

l 1 l
+ —1—165214/1/ (qOwl) (t)dz+ — [ h*(z,t)dz

d(0,1) /Ot q(t—s)(w(0,t) —w(0,s))dsdr < %dz(o, t)dx + 9k (qQw) (1) (4.36)

and
[ k@) [Catt=s) (ke te.) =l 9)) dsde <o [ (@0)) ds
+ 4i773 g (qufz) (t)dz, n3 >0
l ¢ !
/0 wh (x,t) /0 q(t—s) (wh (z,t) —wl (z,5)) dsdx < 773/0 (Wi (z, 15)}2 dx
I
+ 4—/; i (¢Owk) (t) dz, n3 >0
/ (/ q(t—s) (wk (z,t) —wk, (s)) ds) dr < H/ (¢Owk,) (t) dz,
-1 0 -l
ar 2 I
/o (/o q(t—s) (wh (z,t) —wl (s)) ds) dr < /-@/O (¢Owl) (t) dz,
(ky + mps) w, (O,t)/o ¢ (t—s) (w(0,) — w (0, 5)) ds
< ) o 0,0+ B 0 (1), > 0
/_l wl (z, t)/o q(t—s) (w" (z,t) — w" (z,5)) dsdz <m /_z la/ (x,t)}2 dx + ;_7;4 (qOw) (t)

41t 0

(¢Owy,) (t) dz,
Na J—g
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Stabilization of a flexible satellite system with memory term under tension effects

/0 Wz, 1) / 0(t — 5) (wr (2,8) — wi (2, 5)) dsdz <y / [wf<x,t>]2dx+%<qow> (t)

4 l4 l
+ il (qufx) (t) dx
Ns Jo

and

by (0,1) / 20t — ) (w(0,1) —w (0, 5)) ds < 75 [w (0, ) + ~T (qOw) (1), 75 > 0,

s

for all t > 0. Next, by Lemma [1.4] assumptions (A4;) and Remark [1.10} leads to, for

ne > 0
/_l wk (x,t)/o (¢ (t—s)+pg(t—s) (w"(z,t) —w"(z,s)) dsdz
<n6/ [w (x,1 dx+2—%</< ) (COw) (1) (4.37)
4l4</c )/(@w ) ().
/0 wl / "(t— )+ pgt—s)) (W (z,t) — w" (z,s)) dsdx
<n6/0 dm+—(/€ ) (COw) (¢) (4.38)
4l4 ( ) (¢COwl) (t) dx
and

w (0.1) / (@ (t—3)+ g (t — 8)) (w (0,2) — w (0, ) ds < 16 [y (0, )]

4n6</< ) (cow) (1),

Due to Young’s inequality and Lemma 1.6, we obtain, for all ; > 0 the following estimate

/_0 wy (z,1) /th(t — ) (wk (z,t) — w (x, ) dsdz < n /0 [wE(z,1)]” do

l -1
l2 0
+ il (q[]wfm) (t) dz,
nr J-i

(4.39)
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Stabilization of a flexible satellite system with memory term under tension effects

and

g (4.40)

+— [ (¢Owk,) (t) do
nr Jo

/o wh(z, t)/o q(t—s) (0l (z,t) —wf (2,5)) dsdx < 777/0 [wR(x,t)]2 dx

Combining the last estimates in (4.33)), the assertion of the Lemma is presented. m

Lemma 4.4 The estimate derivative of the functional F3 (t) is defined as follows, for all
N, Mo > 0

(1) < 5 (@ 0u) (1) + <4—7178 + 4%79> [we (0, +msrs (q0w) (£) + 10 [w (0, 1)), (4.41)

forallt > 0.

Proof. It is clear to see that, for ¢ > 0.

Fit) = % (¢Ow) (1) +w, (0,1) /O g (t—5) (w(0,8) —w (0, 5)) ds + wy (0,4) w (0, 1) (4.42)

Hence, applying Lemma [I.6], leads to

we (0, t)/o q(t=s)(w(0,t) —w(0,s))ds < 4%78 [we (0,)]" + s (¢0w) (1) , ms > 0.

(4.43)

wy (0,8)w (0,4) < 4%]9 e (0, £)]2 + 1 [w (0, £)]2, m9 > 0, (4.44)

consequently, we obtain (4.41). m
Lemma 4.5 For allt > 0, the functional F) can be estimated as follow

Fi(t) < —pF.(t) - /OtC(t —5) /_(: [w?, (s)fdxds — /OtC(t— s) /Ol [wi (s)fdxds
% [k 0 dr 4, [t 0] e

-l

forallt >0
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Stabilization of a flexible satellite system with memory term under tension effects

Lemma 4.6 For the functional F5(t), we have

F5(t) < =BF5 (1) —/0 C(t—8) [w(0,)]"ds + (g [w (0,0))%,

for allt > 0.

4.4 Asymptotic behavior

In this section, we state and illustrate the uniform stability of the system (4.1))—(4.3]) under

a suitable control force u(t) applied on the center body of the spacecraft.
u(t) = —kpwi (0,1) — kew (0,1), £ >0, (4.45)

where £, and k, are a positive ”control gains”.

The stabilization result reads as follows.

Theorem 4.1 Assume that (Ay), (A2) and / e?*¢ (s)ds < oo are satisfied. Under the
0

control force u (t) defined in (4.45), if there exists a positive function ® (t) € C'[0,00)

such that

og(@(t)—i((f))), /_lh2<x,t)dx+d2(0,t>s%(Q(t)—g((f))), {20,

note that B is given in ({4.51). Then for some positive constant C

E() < —, t>0,

C

provided that (5 = / P3¢ (s) ds is sufficiently small and ®(0)T(0) < 1.
0

Proof. Differentiation of T (t), collecting Lemma {4.2| to Lemma (see Appendix A for
more detailed derivations) and plug (4.45)) into (4.9) and using the estimates as follows

k2
kTw (07 t) Wt (07 t) < 47; [wt (07 t)}Q =+ 7o [w (07 t)]Q , o > 07
10
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Stabilization of a flexible satellite system with memory term under tension effects

and
0 0 ) 1 [0
/ wk h(z,t)dz < 53/ [wf(z, )] dx + . h*(x,t)dr, &3>0
l -l 3J-
l ! ) 1
/ wlt z, t)dr < 63/ [wi(z, )] de + — [ B*(z,t)dz, e5>0
0 0 des Jo
1
d (0,t) w; (0,1) < EdQ (0,8) +e3[w, (0,8)]°, e3>0
3
we obtain

!
T (¢) <% (/ (¢ Owk L) (t) dx + /0 (q'Dwfx) (1) dm) + 2F; (t) + % (¢ Ow) (¢)

0

+ {)\1 {1(;314 = (1 ﬁ)} + A2n3}E1 (/ [wh, (z,t)]” do

-l

+ /Ol [wh (z,1)]" dx) + i (513 + 2—11 + 2-5) (/ll W2 (z,t)dx + d® (O,t))

EI EI ApAupl*  TI? 0
+ {)\1— + Ao (168214 +—+El+ pos + )] K / (qu ) (t) dx
4m 43 un n7

+ (a0l (t)dw>+2Elﬂ(t> %2 (par s ( / (s )cowm

M6

1 11 kK
+<e3+ N m~I—E +)\2[n6m+(k +mu)n4—mq*}+—+—+
2

dng  4ng  4mo

— k‘p} [wt (0, t)]Q + [)\1 (81 (4l + 1) + 772]{7; — kr) + )\2775 + M9 + 7710] [’LU (O, t)]Q

0

+ 20+ ApA - Xa (s + mus — 9.) pA| ( / wf (@ 0] da+ / Tl t)fdw)

+{A2<(k +m“)+k2 pAMl + @l +1)e >+ns}fﬁ(q<>w)(t)

4ny M
)( (COwk,) (t) dz + /0 (¢COwk) (t) dm)

N )\24pAl4 (
+ (=M1 +1702) (/ 2dx + /l [wh (x,t)fdx) (4.46)

U
forallt > ¢, > 0.
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Stabilization of a flexible satellite system with memory term under tension effects

Now, according to the hypothesis (As), we can write

1, (hp +mp) k7 pApl
3 (¢'Ow) (t) + PQ (4—774 + y. + e + (4l +1) 52> + ng] Kk (gQw) (t)

+2— pAl (/c ) (Cou) (1) (4.47)

(kp +mp) k2 pAul Il
< {|:/\2 ( s +4—775+—774 +(4l—|—1)82) +778] H—E}(qu) (t)

+2§[1 A2(Al+ 4)4] [w (0, £)]*42 B 22<Al+ 4)4 /OtC(t—s)[w(O,s)]st,

2776

and

EI EI dpAult  TI? 0
{Al— EIW (1652l4 T2 S e s —)] m/ (¢0w’,) (1)
4m 4ns3 -

M4 Uk l
t 0 0
Ao AL ( / <<s>ds) | ouk) e+ 5 [ (@Ot 0o <
0 -l -1

M6

EI EI ApAplt  TI? EI 0
{ {)\1— + Ao (166214 +——+El+ Per + —)} K — —M} / (qufgC) (t) dx
4n 4ns3 M4 Ul 2 —

+2¢ (EI )\24pAl4Z) /0 [w, (:E,t)]QdI

UGS !
EI 4pArN [0 [
+2(—+)\2 pAl ()/ /C(t—s) [wﬁx(x,s)fdsdx.
2 M6 ~1Jo

hence, we get for all ¢t > ¢, >0

(4.48)

-l

0 l t
T (1) <o (/ [wF (x,t)}zd:v%—/o [wh (g;,t)fdx> +a7/0 C(t—s)[w(0,s)ds
0 l
+a2EI< / [wE, (z,1)]" do + /0 [wh, (x,t)fdx) + ag [w (0, 1))

—l

+ az [w; (0,1)]° + ay (¢Ow) () + as (/ (¢Owl,) (t) dx + /0 (¢qOwl) (t) dx)

(/ /Ct—s (z,5) dsda:—l—//(t—s s)fdsdx)
_98F, (t) — 28ELF (t) + aoT ( /

; [w (z,1)] dx—i—/o [wi (z,t)] dx)

11 M /l ) )
“|=+=+= h?(z,t)dx + d? (0,t
+4<€3+€1+82><_l (z,t)dx +d” (0, )

(4.49)
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where
ag = g3+ MpA+ Ao (06 + napt — ) pA,

1681l4
ET

4
+771—(1—/£)} +A2ng+f(1+A28pAl Z> +2¢4

=\
drm { Bl

1 1
- )\ - A [ k‘ - *] —_— R T _k7
Qs €3+ 1<m+4772)+ 2 776m+<1>+m'u)774 md +4778+4779+47710 '

k, + k2 Apl
ay = [)\Z(M+_T+u+(4l+1)52)+778:|,{_H’

41y 4ns N4 2
El BT dpApl*  TI? El
a5 1= |:)\1—+)\2 (16€2l4+_+El+ i +—>:|I€——,u
4m 4ns M4 N7 2
2 — 2o m\ — _
ag = A1 (61 (4l + 1) + k) — ky) + Aams + 19 + o + ¢ |1+ P (pAl—l- Z) C| +2Cg,
6
Ao m\ — pAl*
== (pAl+ =) (-1 =\ — FEI.

az ” (P + 2>C , 0 2 oS ¢

and

g = —A1 + 17

Now, we select the remaining constants with attentively thus that all the coefficients in

the right hand side of (4.49)) will be negative exception the last one. First, we choose

A= de = e = g = B = s = g s = G = 4./16,
I8 = Ao g = Mo = )‘18kT, €3 = q*lféA 2. Then, we determine €1, €5 and\, sufficiently small
so that
G EIk 4 SEI S8pAp’lt  16T1? El
Ay | —— 1665l + ——— + EI ——nu<0
2[16(1—n)+ﬁ( €2 +q*(1_,€)+ + . + “ 5 M ;
k 16k, Al
A (ot A0k p il gy ) <,
24, G 2q, 4
2p Al
Ao (—FEI <O,
qx

and

4o

*

(pAl+%>Z—1<O.

Once )\, is fixed, we then take k, large enough and ¢ and Zﬁ small enough (i.e. (< ZB
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)that

g (1 — k) 2e1l'q. | - 320A10\  —
_ 1 5
Ao 3 + A o +C + A q*E[C +2¢5 <0,

o 1 (4l +1 A
W +)\2q51( +1) 8\

64 8

+Z[1+ @AH%)E] +205 <0,

*

Finally, we select k, sufficiently large, so that

C]*k?f, kp . qxpA 16k, 16 K
— P A A — < 0.
16k, > + 2u 2+ 16 + Qx N2 + Gk, + 1

qx
— g ham —ky +

thus, we have all the coefficients in the right-hand side of (4.49)) negative, and we deduce

that

T () <—C(E@)+Fs(t)+ Fa(t) + F5 (1))

11 M A : (4:50)
4\es & €9 l

where C' > 0. Furthermore, in virtue of the right-hand side of Prop. we get

52 4 £3 €1 €9 1

T (t) < _—CT(t) +1<l + M + ﬁ) (/l h*(x,t)dx + d (0,t)>,t >t,>0. (4.51)

Now, using Lemma [3.1| with

Q(t) =

C
5—2, O'(t)—o

and

1/1 M N . >
6<t>:1<5+5+5) (/lh (x,t)dx 4+ d (0,75)),

and with the aid of the left-hand side in Prop [4.2] we conclude that

C
t) < o, 20,
E(1) 0 0

provide that ®(0)7(0) < 1 for some positive constant C' . This completes the proof of
Theorem 1.1l =
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Appendix

In this chapter, we will outline the fundamental procedures for deriving the governing

constitutive equations of motion for a flexible satellite system.

4.5 Introduction

We consider a flexible satellite system with a rigid hub and long flexible solar panels
subject to unknown distributed disturbances and some undesirable vibrations. The left
and the right panels are modeled as two viscoelastic Euler-Bernoulli beams as shown in
the following image

In Fig the functions w’ (z,t), wf (z,t): represent the transverse displacements of
the left and right panels at the position x for the time t, and w (1/2,t) is the transverse
displacements of a lumped mass. Also, fr, fr and d describe the unknown distributed

disturbances during attitude maneuvering. We define the classical energy of a flexible

right panel

center body

left panel

-
Q"
NI \-
x0T | | Vaaszo
W

Figure 4.1: Flexible satellite system with distributed disturbance
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satellite by
E{t)=E,(t)+E,(t), t >0,

where the kinetic energy F (t) of the beam can be defined by

&uxt 1/ dw (1))’
then from , we find
1 V2 (oWt (1)) 1 Ow (z,t)\?
x=l/2
1 L/ Owh (1)

The potential energy E, () is given by

- ‘K/ <828x2 )

where K = FEI, the independent variables for space and time are denoted by z and ¢,

(4.53)

respectively. The source of the potential energy E,(t) resulting from the bending, then,

we can write E, (t) as

1 V21 92wk (2,4)\ 1 L 2wh (2, 6))

and the total virtual work done by the external forces on the system is described by
W (t) = W, (t) + Wa (1),

where W, and W; represent: the virtual work created by control force w (t) and the
virtual work created the unknown distributed disturbances during attitude maneuvering,

respectively. Therefore we set dW, (t) = u (t) dw (/2,t) and

l/ I
Wy (t) = d(1/2,t)ow (1/2,t) + : (@, t)ow” (z,t)de + [ [Pz, t)0w’ (z,t) dz.
0 1/2
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4.6 Mathematical modeling of a flexible satellite

To derive the governing equations of the dynamic motion of the flexible satellite system, we
need to use Lagrangian for the system and applying the generalized Hamilton’s principle
[74]. The Lagrangian for the system is defined by L = Ej, (t) — E, (t)+W (t) . Considering

the associated functional of Hamilton’s principle

to
B:/ oLdt,
t1

where ¢ is the variational operator, t; and ¢, represent two time instants and t; < t < t,
represent the operating interval.

The minimizing statement considered by Hamilton’s principle is

to to 12 t2
/5Ldt:/ 6Ek(t)dt—/ 5Ep(t)+/ ST (t) = 0.
t1 t1 t1 t1

Then; applying the variational operator and integrating over (to; ¢1) in (4.53)), (4.55)), we

get

to to l/2 a to 8
/ Sy (1) dt = pA / / WE (2,1) 2 60 (2, 1) dadt +m / () Low (@, 0)|  dt
; s ot 3 ot

z=l/2

to l a
+ pA/ / Wi (z,t) =6w® (z,t) drdt.
Then, using the following conditions

dwl(x, tg) = dwh(z, 1) = 0,
dwh(x,ty) = dwh(x, ;) = 0, (4.56)
dw(l/2,tg) = dw(l/2,t1) =0,

we obtain

to l/2
/ B (1) dt = —pA/ / wrwk (o,t) dw” (x,t) dadt
t1

to
—pA/ / wh (z,t) 0w’ (z,1) dxdt—m/ wie (1/2,t) dw (1/2,1) dt.
t1 l/2

t1
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Moreover
1/2 92
/1 IE, ( :Ej'/t1 /0 wk (z,1) @&u (x,t) dedt
to l
EI t —0 t) dxdt
+ /t/l/Qw x, aIQw(:c,)x

and if we set

wh(1/2,t) = 0wB(1/2,t) =
dwl (0,t) = 6wl (1) = 0, (4.57)

Swh (0,t) = 6wl _(1,t) =0,

.Z’Z‘Z‘

we obtain

to to /2
SE, (t)dt — BI / Wh(mt) dw (2, 1) dudt
0

to l
+ EI/ / Wl (x,t) 6w (z,t) dedt

Now, applying Hamilton’s principle with w® (1/2,t) = w®(1/2,t) = w (I/2,t), to obtain

2 /2
_ / /’ [,kotIZ (z,t) + ElwE  (x,t) — fA(z,t) (2, t)}éwL (2, 1) dsdt
0
_ /t2 /1 [pAwtb; (z,t) + EIwf  (2,t) — fR(x,t) (x,t)]éwR (2, 1) dadt
1 /2

+ / § [Elw?,, (1/2,t) — EIwl (1/2,t) — mw) (1/2,t) +u (t)] dw (1/2,t) dt = 0.

t1

Finally, since w’ (z,t) # 0, w® (x,t) # 0 and w (1/2,t) # 0, we can summarize the dynamic

of this system as follows

pAGE (2,8) + BIwk,,, (x,6) = f*(a,1), (2.t) € [0,1/2] x [0, 50).
pAwtt ('T t) + E‘Iwzmxw( 7t) = fR (I’t) ) (l’,t) S [l/27l] X [07 OO>7

(4.58)
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with the boundary conditions

wy (1/2,t) = wit (1/2,1) = 0, wy, (0,¢) = wl (1,1) =0, wy,, (0,1) = wik, (1,1) =0,
WL (1)2,8) = WP (1)2,8) = w (1/2,1),

mwy (1/2,1) = u(t)+ Elwk  (1/2,t) — EIWE _(1/2,t).

Txrxr

(4.59)
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Conclusion

The thesis addressed the stability analysis of a flexible satellite system with viscoelastic
damping. A precise mathematical model was designed to describe the system behavior,
considering the effects of viscoelastic damping and structural flexibility. Using Lyapunov’s
method, the stability of the flexible system was proved under certain assumptions, con-
sidering viscoelastic damping properties.

In general, this research highlighted the significance of employing control and damping
techniques to mitigate excessive vibrations in flexible satellite systems while ensuring
the stability of system in the presence of structural flexibility and viscoelastic damping.
Such study contributes to enhancing the performance of satellite systems and to achieve
a practical mission objectives with high efficiency. For instance, research in the field of
satellite quality is still ongoing, we mention of them the work [64].

In conclusion, the use of viscoelastic materials is a critical component in reducing and
suppressing unwanted vibrations in satellite system. By controlling these vibrations and
suggesting a simple control force u (t), the study demonstrates the stability of the problem
under weaker damping with or without unknown distributed disturbances, these materials
help to ensure the safe and successful operation of these advanced technologies, enabling

us to benefit from the many services they provide.
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