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Abstract

Object detection has recently become a crucial component of safety-critical perception
tasks in autonomous driving. Advancements in object detection within Automated
Driving Systems (ADS) have largely been driven by the success of the Convolutional
Neural Network (CNN). However, supervised passive learning of a deep object detection
model is computationally costly and requires a large amount of annotated data to
cover the wide diversity of objects and scenarios in vehicular environments. This
presents challenges due to visual similarity and variability of objects and labeling costs.
Consequently, acquiring this data is a time-consuming and expensive process, often
requiring domain experts to manually annotate high-quality bounding boxes. Moreover,
ensuring the functional safety of ADS requires robust object detectors, especially in
critical situations encountered within this environment.

In this context, the primary challenge is how to efficiently achieve the desired
performance with a small set of labeled data while carefully balancing the trade-off
between cost and accuracy. To deal with these limits, this thesis proposes and designs two
contributions for object detection in autonomous driving, considering their characteristics
and challenges: a batch-based query strategy and a Cost-Effective Deep Batch Mode
Active Learning (CEDBMAL) framework. These solutions aim to ensure a robust and
high-performance CNN-based object detector with low false detection rates and reduced
annotation and training costs.

Unlike the single-criterion query strategy, which may pick redundant or outlier
samples that negatively affect the detector’s performance, our proposed batch-based query
strategy automatically selects a batch of the top-ranked samples based on uncertainty
and diversity criteria. These samples are more representative and informative, leading
to more efficient training of the detector. To tailor classification uncertainty heuristics
for deep object detection, we propose incorporating the detection model’s outputs, such
as classification and regression predictions, into the uncertainty metric measurement,
arguing that samples inducing uncertainty in the model are typically not outliers, but
rather instances that exhibit a larger object distribution and are expected to improve its
performance. To reduce the annotation burden from redundant samples, we also propose
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using Euclidean distance as a representativeness measure, quantifying diversity in terms
of similarity.

To mitigate the limitations posed by impractical batch size settings, our second
proposal (CEDBMAL) combines our proposed query with labeling time prediction to
design a cost-aware batch query. Initially, a set of batches with varied sizes is selected
by the proposed query. Subsequently, we propose using labeling time prediction and
dynamic programming to choose the best batch size by solving a 0-1 Knapsack problem
under the constraints of annotation time, dataset size, and desired performance. This
iterative process leads to an adaptive selection of the most useful and diverse training
samples based on the cost of labeling. As a result, it becomes possible to effectively
handle variations in annotation costs and significantly reduce the training and labeling
expenses, both at the individual instance and batch level.

To validate our approaches, extensive experiments were conducted on the Caltech
Pedestrian dataset to fine-tune a pre-trained deep object detector (Tiny-YOLOv3)
for pedestrian detection tasks. The effects of classification uncertainty, regression
uncertainty, score aggregation methods, and batch size during sample selection were
thoroughly investigated. The experimental results demonstrated that the uniform-cost
DAL based on our proposed batch-based query strategy outperformed random sampling
and transfer learning baselines. Moreover, our cost-effective DAL approach further
boosted the performance compared to other baseline deep pedestrian detectors and
uniform-cost DAL approaches with a specific deep pedestrian detector. Notably,
our approaches enabled the development of a robust deep pedestrian detector with
significantly fewer parameters, making it suitable for deployment on low-resource
devices, while maintaining the detection error rate below 57%, saving up to 50% of
the labeling effort, increasing the number of pedestrians detected at early cycles, and
alleviating batch size dependency.

Keywords: Autonomous driving, object detection, visual similarity, deep active learning,
cost-effective training, pedestrian detection.
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Résumé

La détection d’objets est devenue une composante critique de la perception pour la
sécurité dans la conduite autonome. Les progrès en matière de détection d’objets dans
les systèmes de conduite automatisée (ADS) sont largement dus au succès des réseaux
neuronaux convolutifs (CNN). Cependant, l’apprentissage supervisé passif d’un modèle
profond de détection d’objets est coûteux en termes de calcul et nécessite de grandes
quantités de données annotées pour couvrir les divers objets et scénarios présents dans
les environnements véhiculaires. Cela pose des problèmes en raison de la similarité et
de la variabilité visuelles des objets ainsi que du coût de l’étiquetage. Par conséquent,
l’acquisition de ces données est un processus long et coûteux, nécessitant souvent
l’intervention d’experts pour annoter manuellement des boîtes englobantes de haute
qualité. En outre, pour garantir la sécurité fonctionnelle des ADS, des détecteurs d’objets
robustes sont indispensables, en particulier dans les situations critiques rencontrées dans
ces environnements.

Dans ce contexte, le principal défi consiste à atteindre la performance souhaitée
en utilisant efficacement un petit ensemble de données étiquetées, tout en équilibrant
soigneusement le compromis entre le coût et la précision. Pour répondre à ces enjeux,
cette thèse propose et conçoit deux contributions pour la détection d’objets dans la
conduite autonome, en tenant compte de leurs caractéristiques et défis : une stratégie de
sélection par lots et un cadre d’apprentissage actif profond à coût-effectif (CEDBMAL).
Ces solutions visent à concevoir un détecteur d’objets basé sur des CNNs robustes, tout
en réduisant les coûts liés à leur développement et à leur déploiement.

Contrairement à la stratégie de sélection à critère unique, qui peut sélectionner un
échantillon redondant ou aberrant susceptible d’affecter les performances du détecteur,
notre stratégie de sélection par lots choisit automatiquement un lot d’échantillons les
mieux classés sur la base de critères d’incertitude et de diversité. Ces échantillons sont plus
représentatifs, plus informatifs et permettent d’entraîner plus efficacement le détecteur.
Pour adapter l’heuristique d’incertitude de la classification à la détection d’objets, nous
proposons d’incorporer les prédictions de classification et de régression dans la mesure de
l’incertitude, en soutenant que les échantillons induisant de l’incertitude dans le modèle
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ne sont pas des valeurs aberrantes, mais plutôt des instances présentant une distribution
d’objets plus large, susceptibles d’améliorer ses performances. Pour éviter la charge
d’annotation liée aux échantillons redondants, nous proposons également l’utilisation de
la distance euclidienne comme mesure de représentativité, quantifiant la diversité entre
instances en termes de similarité.

Afin de pallier les limites liées à la taille des lots, la deuxième proposition
(CEDBMAL) combine notre stratégie proposée avec la prédiction du temps d’étiquetage
pour concevoir une stratégie consciente des coûts. Initialement, un ensemble de lots
de tailles variées est sélectionné par la stratégie proposée. Ensuite, nous proposons
d’utiliser la prédiction du temps d’étiquetage et la programmation dynamique pour
résoudre le problème de sélection du lot de taille optimale, comme un problème de
sac à dos 0-1, sous les contraintes de temps d’annotation, de la taille de l’ensemble
de données et des performances souhaitées. Ce processus itératif permet une sélection
adaptative des échantillons d’entraînement les plus utiles et diversifiés en fonction du coût
de l’étiquetage. En conséquence, il devient possible de gérer efficacement la variation des
coûts d’annotation et de réduire de manière significative les coûts liés aux processus
d’entraînement et d’étiquetage, tant au niveau de l’instance individuelle que du lot.

Pour valider nos approches, des expériences approfondies ont été menées sur
l’ensemble de données Caltech Pedestrian afin de fine-tuner un détecteur d’objets
profond pré-entraîné (Tiny-YOLOv3) pour la tâche de détection des piétons. Les effets
de l’incertitude de la classification, de l’incertitude de la régression, des méthodes
d’agrégation des scores et de la taille du lot lors de la sélection des échantillons ont
également été étudiés. Les résultats expérimentaux ont montré que l’apprentissage
actif profond à coût uniforme, basé sur notre stratégie de sélection par lots, surpasse
l’échantillonnage aléatoire et les approches de transfert d’apprentissage. En outre,
notre approche DAL à coût effectif a amélioré les performances par rapport à d’autres
détecteurs de piétons profonds de référence et aux approches DAL à coût uniforme
utilisant un détecteur de piétons profond spécifique. En particulier, nos approches
ont permis le développement d’un détecteur de piétons robuste avec beaucoup moins
de paramètres, adapté au déploiement sur des appareils à faibles ressources, tout en
maintenant un taux d’erreur de détection en dessous de 57 %, économisant jusqu’à 50
% de l’effort d’étiquetage, augmentant le nombre de piétons détectés dans les premiers
cycles et atténuant la dépendance à la taille du lot.

Mots Clés: Conduite autonome, détection d’objets, similarité visuelle, apprentissage
actif profond, entraînement à coût-efficace, détection de piétons.
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Introduction

Recently, road traffic crashes have become one of the world’s largest public health and
injury problems. According to a recent technical report by the National Highway Traffic
Safety Administration (NHTSA), 94% of road accidents are caused by human errors [14].
Consequently, enhancing road safety has emerged as a critical concern.

Over the last ten years, the field of road safety has received serious attention,
with substantial research and development efforts have been directed towards improving
road safety. These efforts, driven by government agencies, the automobile industry, and
academic researchers, have focused on implementing a range of measures and solutions.
Two broad classes of safety approaches are identified: "active" and "passive". Passive
safety, also known as "post-crash approaches," involves reactive strategies and features
designed to minimize injury and damage, thereby reducing the severity of accidents when
they occur. These approaches focus on protecting vehicle occupants and the lives of
those involved during and after a crash, by enhancing the physical structure of the
vehicle by incorporating safety features such as seat belts, airbags, anti-lock brakes,
energy-absorbing materials, and electronic stability control. On the other hand, various
measures target improvements in roadside infrastructure. In contrast, active safety, also
referred to as "pre-crash approaches," encompasses technologies and proactive strategies
designed to prevent accidents from occurring and actively assist drivers in critical
situations. These approaches typically focus on designing active safety systems that
continuously monitor vehicle and driver status in real-time, enabling collision prediction
[15].

Intelligent Transport Systems (ITS) have long been considered a key technology for
increasing safety and improving transport infrastructure in the on-road environment [15].
The rapid evolution of ITS is marked by the adoption of cutting-edge technologies and
data-driven insights. The incorporation of smart sensors, the Internet of Things (IoT),
big data, data fusion, computer vision, cloud computing, and artificial intelligence (AI)
has led to improved ITS service levels in real-world vehicular applications. They are also
playing a role in the transition from connected Vehicles (CV) to Autonomous Vehicles
(AV). In conjunction with conventional and electrical vehicles, they will enable the shift
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to more advanced ITS, like autonomous driving and green ITS, over the next decade [16].
The Vehicle Ad-Hoc Network (VANET) is a key enabler for deploying ITS

applications, communication systems, and services in vehicular network environments.
By supporting and including autonomous vehicles as network elements and nodes,
VANET technologies can significantly reduce vehicular accidents. This is achieved by
enabling cooperation among vehicles and infrastructure to improve the range, quality,
and reliability of safety-related information, thereby perceiving potentially dangerous
situations [15, 16].

In light of extensive research conducted in the fields of ITS and road safety, findings
have highlighted the transition from manual to autonomous driving which is highly
relevant for addressing key challenges in modern transportation and aligning seamlessly
with the goals of ITS. In this context, research and development in automated driving
technologies, as well as regulatory reforms worldwide signify a significant step forward
in the development of autonomous vehicles (automated or self-driving vehicles). An AV
can either assist a human driver or independently operate the vehicle based on the levels
of vehicle automation. These levels indicate the extent of involvement of human drivers
and automated systems in monitoring the surrounding environment and controlling the
vehicle, spanning from no automation to full automation levels. Consequently, new
possibilities may arise to address economic, environmental, and safety-related concerns,
where the AVs have the potential to enhance road safety by mitigating or reducing some
accidents caused by human error or collisions with vulnerable road users (VRUs eg. other
vehicles, pedestrians, cyclists, animals) [17, 18].

Inspired by these objectives, Automated Driving Systems (ADSs) are being
developed to handle the full range of dynamic driving tasks at automation levels 3, 4, and
5 when activated. Ongoing efforts are focused on designing and testing these systems to
boost economic growth, promote safety, and enhance the passenger experience, with the
expectation that their annual societal benefits could reach nearly $800 billion by 2050.
The first attempts focused on testing the ability of prototypes to navigate autonomously
in typical urban environments that model urban scenes. This was the subject of the
US Department of Defense’s DARPA challenges from 2004-2007, alongside other series
of challenges and competitions organized by different research groups worldwide. In
the meantime, existing insights have moved beyond the prototype stage to production,
identifying multifaceted implications that are likely to limit progress in introducing ADS
[14, 18].

ADSs are designed either as standalone, ego-only systems or as connected
multi-agent systems. Furthermore, these design philosophies are implemented through
two alternative approaches: modular or end-to-end driving. The typical basic functions of
a modular ADS can be summarised as perception, localization and mapping, assessment,
planning and decision making, vehicle control, and human-machine interface [14]. In

2



Introduction

addition, these automated systems rely on autonomous sensor technologies, such as
Radio Detection and Ranging technology (RADAR), Light Detection and Ranging
(LiDAR), ultrasonic, and cameras, that can perceive and therefore reach real-time vehicle
surrounding situation awareness [19].

Despite the widespread deployment and advancement of AVs, road safety remains
a critical challenge. In this context, the performance of perception, planning, and
control modules has a significant impact on the achievement of safe autonomous
driving. Besides, from a research and development perspective, accident-based statistical
analysis, in conjunction with on-road, hardware, and software testing, is regarded as a
useful technique for evaluating the effectiveness of implemented safety countermeasures.
Furthermore, these findings drive further research aimed at identifying potential safety
risks, various types of failures or accidents, and understanding the present condition of
automotive technology development. In other words, safety concerns and impacts can be
studied to facilitate a successful transition from manual driving to autonomous driving,
and the expected reductions in crash severity and frequency can be assessed for the
gradual introduction of connected and automated vehicles alongside conventional ones
[17, 20, 21].

Motivation of Object Detection in Autonomous Driving

While autonomous driving technology continues to gain significance, it is still far from
being mature since it faces considerable developmental hurdles. To fill this gap, one of
the biggest challenges that needs to be strongly investigated by the autonomous driving
research community is object detection. At the heart of the transformation from manual
to autonomous driving, object detection is a sub-field of computer vision that seems very
beneficial for AV technology development from several perspectives.

In autonomous driving scenarios, AV requires navigating safely and effectively
through hostile, uncertain, and rapidly changing environments, such as urban areas
and roads, where multiple objects such as VRUs, traffic signs, lines, street furniture,
and obstacles coexist. In such a context, it’s vital to equip autonomous vehicles with
powerful and sophisticated perception systems to accurately perceive and comprehend
their surroundings, behave appropriately, and adapt to their environment. Object
detection can fit the requirement of developing a reliable AV perception system by
providing semantic comprehension of the collected data through detecting and tracking
other objects and recognizing their characteristics, including size, shape, color, distance,
and speed. This enables autonomous vehicles to plan their route, avoid collisions with
other objects, and obey traffic laws, thus, ensuring the safety of VRUs and leading to
safe and efficient autonomous driving.

Furthermore, sensing information required by perception systems is acquired and
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collected through an array of onboard sensors, serving as a primary source integrated into
an AV. However, the emergence of sophisticated, cost-effective sensors such as automotive
radars, multi-layer laser scanners, and cameras with depth and appearance capabilities
has paved the way for benefiting from novel information modalities and sources.

Significant advancements in the domains of computer vision and deep learning
(DL) have profoundly impacted the evolution of ADS. In particular, the advent of
convolutional neural networks (CNNs) has led to the emergence of novel techniques
that surpass traditional state-of-the-art approaches in areas such as object detection,
whether implemented as standalone modules or within fully trainable end-to-end systems.
In this context, a detailed evaluation of the AVs’ object detection-related application
requirements will be crucial from the software development perspective, by determining
the potential safety risks concerns and developing strategies that support the smooth
integration of AVs into future transportation networks. For this reason, selecting the most
appropriate object detection method is crucial for guaranteeing effective performance in
the specified environmental conditions.

Vehicle functions pose functional safety problems regardless of underlying
malfunction and failure patterns and stages. These problems can lead to critical safety
issues if not carefully controlled and maintained beforehand. In this regard, scene
understanding, the most crucial step in autonomous driving, relies on detecting the
surrounding objects of a vehicle. Therefore, failure to identify those objects correctly
on time can cause irreparable damage. Although DL-object detection approaches aim
to reduce false detection, the main drawbacks of OD-based safety-critical perception
tasks are heavily dependent on deep learning specific insufficiencies and sensor failures
[22, 17, 23].

The aforementioned context motivates us, in this thesis, to contribute to the research
effort by exploring solutions to object detection shortcomings, with an emphasis on
guaranteeing robust deep object detection algorithms necessary for the functioning of
the AV’s perception systems.

Problem Statement

This thesis was proposed to address the challenges of improving object detection in the
autonomous driving field, focusing on the following aspects:

• Autonomous driving datasets constraints: Perception models based on
deep learning typically require large-scale and diverse training datasets to ensure
consistent performance in different driving conditions. Traditionally, these datasets
are compiled by gathering extensive visual frames from urban public areas and
manually annotating each object of interest within these frames. However, due to
the diverse classes (background and foreground) and varying density distributions of

4



Introduction

on-road objects (sparse and dense), training samples collected from non-deterministic
urban scenes often exhibit biases, data imbalances, and repeating visual patterns.
Furthermore, the process of gathering and annotating such a wide array of data is
costly and time-intensive. Although synthetic data generation through simulation
offers a cost-effective alternative to augmenting real-world data, creating realistic
synthetic data remains challenging.

• Training efficiency: Training DL-based object detection models for real-time
identification of objects, irrespective of image distortions or meteorological conditions
in real-world applications such as autonomous driving, is inherently challenging
due to the constraints of the passive supervised learning paradigm. This learning
scheme requires training the model using fully annotated training data. However,
annotating data in large-scale autonomous driving datasets is particularly difficult
due to several factors, including the labour-intensive nature and high costs of
manual labeling by domain experts, challenges in obtaining representative data and
accurate annotations, and issues related to noisy and less effective samples during
annotation and training process. To address these challenges, a primary hypothesis
proposes optimizing annotation and training resources by selectively annotating a
subset of informative samples that maximize performance gains while minimizing
human labeling effort, with the constraints of the annotation budget. This approach
emphasizes capturing diverse visual patterns. Active learning (AL) emerges as a
promising alternative learning paradigm that offers a label-efficient iterative learning
scheme for addressing the limitations of supervised models. This is achieved through
actively selecting a small subset of relevant data for manual annotation, thereby
maximizing its impact on model training. However, the primary challenge lies in
determining effective criteria for selecting the most valuable instances and deciding
how many instances to query at a time, considering the inherent characteristics of
DL training and dataset instances. Additionally, given the substantial manual effort
required for data preparation, integrating label-efficient learning schemes into the
training pipeline of object detection systems presents another significant issue.

• Variable labeling cost: In several autonomous driving scenarios, manual labeling
by domain experts is a critical but time-consuming and cost-sensitive process with a
limited annotation budget. Consequently, annotation cost is a significant issue and
major limitation. Although the impact of annotation cost can be assessed, most
passive learning schemes, such as supervised learning, did not consider it during
training DL-based object detection models. A cost-effective approach is needed
to incorporate annotation cost during training while addressing trade-offs between
accuracy and cost. Some sparse batch-mode DAL solutions have been proposed
for generic objects and other vision tasks. However, such approaches could not
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adopted for object detection tasks, particularly in the context of on-road objects,
when assuming a fixed batch size and labeling cost. In autonomous driving scenarios,
these assumptions, without accounting for the correlation between the number of
objects of interest and the varied labeling cost across dataset instances, may not lead
to optimal generalization accuracy, effective management of labeling cost variability,
practical batch size determination, or minimized redundancy.

Contributions

In this Doctorate thesis, our main contributions to overcome the aforementioned
drawbacks related to the training cost and deployment of a deep object detector in
autonomous driving include:

• The first contribution is an efficient and scalable batch sampling query strategy
designed to deal with class imbalance, visual pattern similarity, and domain-shift
during selection from a large-scale sequence of highly similar unlabeled frames. Our
proposed strategy leverages the uncertainty of both classification and regression
model outputs to elaborate an uncertainty-based sampling metric for informativeness
measurement while employing Euclidean distance as a similarity metric for
representativeness measurement. Additionally, it examines various aggregation
functions to generate image-level scores for ranking purposes. This approach aims to
query more informative, less noisy (outliers), and less redundant instances, primarily
based on the density of the most promising predicted objects.

• The second contribution is a new training framework called Cost-Effective Deep
Batch Mode Active Learning framework (CEDBMAL), featuring a label-efficient
iterative learning algorithm. Our proposed CEDBMAL aims to incrementally
improve the performance of a single-stage CNN-based object detector with less
training and labeling costs. By enhancing the proposed query strategy, our proposed
CEDBMAL leverages labeling time prediction and dynamic programming to solve
the optimal batch size determination under the constraints of a given budget and
annotation cost variation at batch-level. Additionally, our proposed CEDBMAL
investigates the integration of other label-efficient iterative learning schemes, such
as transfer learning(TL) alongside AL within the same training framework. This
approach aims to acquire the labeling of a less noisy and more diverse batch of
frames with size aligned with minimal annotation cost varied over the batches. At
that time, the selected batch is subsequently used as a mini-batch to train an efficient
and robust object detector model without extra burden.

• The third contribution is the training of a tiny version of an object detector and the
estimation of the annotation time, expressed as a function of a batch rather than of
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a single sample, specifically in the context of autonomous driving. This approach
allows us to explore the potential for building comparative high-performance deep
object detectors with simpler architecture and fewer parameters, rendering them
suitable for deployment on low-resource devices.

Thesis Organisation

The rest of this thesis is organized as follows:

• Chapter 2: Provides an overview of the thesis context, detailing the background,
architectural designs, and key implications of autonomous vehicles. This chapter
also highlights the significant challenges that arise and how they can be addressed
in this context.

• Chapter 3: Introduces, reviews, and discusses object detection in the field of
autonomous driving. This chapter details the fundamental concepts of object
detection, as well as recent architectures, and cost reduction methods proposed in the
literature. It also examines datasets and metrics and presents the existing solutions
suggested for object detection in autonomous driving literature.

• Chapter 4: Presents an overview of active learning, with a particular focus on
its applications in autonomous driving. It introduces the concepts and theory
underlying Deep Active Learning (DAL)-based approaches, the diverse query
strategies, scenarios, and settings that our proposed contributions are based on
and inspired by. It also reviews the state-of-the-art applications of DAL for object
detection in autonomous driving, discusses the weaknesses and inadequacies of
such techniques, and critiques their limits, shortcomings, and challenges to propose
effective solutions based on this analysis.

• Chapter 5: Describes the general process of designing and developing our
cost-effective training framework. It details the design of our batch-mode query
strategy to improve Deep Batch Mode Active Learning for object detection. It then
presents the enhancement of this strategy integrated into our proposed training
framework, named Cost-Effective Deep Batch Mode Active Learning framework
(CEDBMAL). Finally, it illustrates and discusses both quantitative and qualitative
results of performance evaluation and comparison with similar solutions.

• Conclusion: Summarises this thesis, outlines the findings toward object detection
in autonomous driving, and suggests some future research directions in this domain.
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Chapter 1
Autonomous Driving: An Overview

Introduction

Over the past decade, autonomous driving (or driving automation) has drawn
significant interest from both academia and industry. With today’s advancements,
AVs (automated vehicles or self-driving cars) have the potential to revolutionize human
mobility and provide a safer driving experience. By leveraging advanced technologies,
their deployment promises substantial economic and societal benefits, including traffic
congestion mitigation, decreased energy consumption, and reduced driving-related errors.
From another point of view, “driving automation” encompasses both Advanced Driver
Assistance Systems (ADAS) and Automated Driving Systems depending on the level of
automation.

This chapter provides a comprehensive understanding of the current state of
autonomous driving technologies. Section 1.1 delves into the technological background of
transportation systems and presents a taxonomy of contemporary road safety approaches.
Section 1.2 then examines the historical development of autonomous vehicles, classifying
these systems based on various criteria, including levels of driving automation. This
section also outlines the evolution of high-level system architectures and their implications
and highlights emerging trends addressing current challenges. By examining the
technological landscape and current issues, this chapter represents a step forward towards
in-depth discussions and proposed solutions in subsequent chapters.

1.1 Intelligent Transportation Systems and Road Safety

1.1.1 Intelligent Transportation Systems
Intelligent Transportation Systems have long been recognized as pivotal technologies for
enhancing safety and improving transport infrastructure in the on-road environment.
ITS communication systems, which enable connected vehicles to perform vehicular
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communications and cooperate with each other, are an important pillar of ITS
applications [15].

Today, smart sensors, IoT, big data, data fusion, computer vision, cloud computing,
and AI are crucial enablers for advancing ITS service levels in future smart cities. These
technologies are also pivotal in transitioning from connected vehicles to autonomous ones.
Together with conventional and electrical vehicles, they will drive the evolution towards
more advanced ITS, including autonomous driving and green ITS, over the next decade
[16].

The Vehicle Ad-Hoc Network serves as a vital communication framework within
the broader ITS infrastructure, facilitating the deployment of ITS applications and
services in vehicular network environments. As a specialized form of Mobile Ad-hoc
Network (MANET), VANET consists of moving vehicles acting as nodes. It is a
spontaneous, self-organized, and distributed network deployed in on-road environments.
Its unique characteristics include predictable mobility, lack of power constraints, high
computational ability, large scale and strength with variable density, and rapid changes
in network topology. Intending to deploy a cooperative driving system, VANET has
emerged as an active area of research, standardization, and development. Numerous
researchers and vehicle manufacturers have proposed and developed a broad range of
safety and non-safety applications. These applications are expected to improve road
safety, traffic efficiency, and driver and passenger comfort. They require a specialized
data structure format, along with inter-vehicle (V2V) and vehicle-to-infrastructure (V2I)
networks to disseminate and share different types of information. Examples include safety
information for accident prevention and data about weather, traffic flow, and points of
interest (gas stations, shopping malls, and fast food) to improve passenger comfort and
traffic efficiency. To achieve this, VANET adopts Wi-Fi-based and cellular-based access
technologies to provide wireless connectivity among connected vehicles. Additionally,
significant efforts have been devoted to standardizing vehicular communication to support
various applications on such vehicles.

Popular wireless technologies employed within the context of vehicular
communication standards encompass IEEE 802.11p, Dedicated Short Range Spectrum
(DSRC), and Wireless Access in Vehicular Environments (WAVE). Besides, other
communication technologies and standards, including WiMax and Bluetooth, are also
used [24]. Nowadays, the prospect of vehicles sharing and exchanging data with a
range of other devices, including pedestrians’ handheld computers, bicycles, ground
stations (GN), and unmanned aerial vehicles (UAV), is becoming increasingly feasible
as the automotive industry develops. Consequently, VANET necessitates heterogeneous
cooperation with other wireless technologies and network infrastructures, achieved
through vehicle-to-everything (V2X) communication [25].

Although existing standards are currently being used to deploy VANET networks,
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the automotive industry and research community are addressing the deficiencies and
shortcomings of these standards. New standards, such as IEEE 802.11bd (for DSRC) and
5G NR V2X (for C-V2X), are being developed to meet the high reliability, low latency,
and Quality of Service (QoS) requirements of future autonomous driving applications
[26].

Alongside Trusted Authorities (TAs) and Roadside Units (RSUs), connected
vehicles play a pivotal role in facilitating VANET deployment. Each vehicle node
is equipped with an On-Board Unit (OBU), a radio interface enabling vehicular
communication to support cooperative data and information exchange necessary for
various vehicular applications. Furthermore, a set of in-vehicle sensors is embedded
to collect and process information about the surrounding environment [24]. Recently,
inter-vehicle communication systems using Wi-Fi on Android smartphones have also been
explored as an alternative to the 802.11p OBU before its widespread use on modern
vehicles [27].

Currently, Blockchain and AI-based VANET are emerging as promising approaches
for contributing to the fulfillment of the Sustainable Development Goals (SDGs).
They effectively address various issues within VANETs, including routing protocols,
security and privacy, and meeting secure ITS applications requirements [28, 29].
Moreover, cost-effective communication technologies such as device-to-device (D2D)
and mmWave communication, satellite communication, coupled with softwareization
techniques like Software-Defined Networking (SDN), fog computing, and IoT are
contributing significantly to the advancement of VANETs and the evolution of emerging
Internet of Vehicles (IoV) applications [25]. Figure 1.1 summarises the relationship
between the aforementioned technologies.

Figure 1.1: Transition from manual driving to autonomous driving.

Despite the extensive implementation and advancement of ITS, road safety remains
a critical challenge. Achieving substantial ITS deployment will likely require significant
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efforts to address the various issues associated with this challenge. In light of the above,
the next subsection examines details regarding the concept of road safety.

1.1.2 Road Safety
Over the past decade, safety on roads, or the “road safety problem,” has received serious
attention. To address this issue globally, a range of measures and solutions have been
implemented by government agencies, the majority of automobile manufacturers, and
academic researchers. Figure 1.2 presents a taxonomy of various approaches and strategies
for improving road safety.

Figure 1.2: Taxonomy of road safety-oriented approaches.

As shown in Figure 1.2, this taxonomy differentiates between "active" and "passive"
safety approaches. Passive safety (or "post-crash" safety) approaches encompass reactive
strategies and features oriented towards minimizing injury and damage, thereby reducing
the severity of accidents when they occur. Consequently, vehicle occupants can be
protected, and lives can be preserved during and after a crash.

A multitude of measures within this category reinforce the vehicle’s physical
structure by incorporating safety features such as seat belts, airbags, anti-lock brakes,
energy-absorbing materials, and electronic stability control. Nevertheless, other measures
focus on enhancing roadside infrastructure, including [15, 30]:

• Enhancing road geometry, signage, and visibility to limit accident-prone areas when
designing roads.

• Optimizing traffic flow, controlling speed limits, and effectively using traffic signals
for traffic management.
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• Installing physical barriers to prevent vehicle collisions with vulnerable road users
such as pedestrians or animals, as well as with other on-road objects.

Conversely, active safety (or "pre-crash" safety) approaches typically focus on
designing active safety systems that provide real-time vehicle and driver monitoring for
collision prediction. This proactive approach actively assists the driver in preventing
accidents or minimizing their impact in critical situations. The primary objective is
to enhance the driver’s/user’s awareness of potential collision risks through warnings,
assistance, behavior modification, or partial automation of the driving process. For
instance, well-studied active safety systems include collision warning, avoidance, and
mitigation systems, as well as object detection systems [15].

The effectiveness of an active safety system can vary depending on factors such
as collision type, installation location, visibility conditions, and available surrounding
information. In scenarios of limited vehicle visibility, ADAS relies on in-vehicle sensors
to capture and collect ambient environment data. Interpretation of the sensor signals
enables continuous monitoring of the vehicle and driver state. Commonly sensors used
for this purpose include passive sensors such as laser, ultrasound, infrared, and radar, as
well as active sensors like cameras [15, 31]. Additionally, smartphones can function as
front vision sensors, placed between the rear-view mirror and the windscreen [32].

Effective cooperation among active safety systems has the potential to improve
safety in conditions of low visibility. This cooperation may entail assistance and
support from the road infrastructure, other vehicles, or both. ITS-based approaches,
leveraging VANET communication techniques, have exhibited promising advantages for
cooperative active safety systems. Within a vehicle network, safety-related information
can be efficiently disseminated through V2V and V2I communication. This information,
including sensor data from both infrastructure-based and in-vehicle sensors, or urgent
messages, plays a pivotal role in alerting the assisted driver and/or influencing their
maneuvers [15, 33]. Moreover, leveraging the roadside active safety system, RSU-based
cooperative perception is tailored to effectively support V2X communication as an integral
component of cooperative ITS [34].

From a research and development perspective, utilizing accident-based statistical
analysis coupled with on-road hardware and software testing is valuable for evaluating
the effectiveness of implemented safety countermeasures and the expected reductions in
crash severity. The findings of this evaluation drive ongoing research to identify safety
risks, understand various types of failures or accidents, and advance our knowledge
of the current state of automotive technology development. Additionally, studying
safety concerns and their implications facilitates a smooth transition from manual to
autonomous driving, assessing the gradual integration of connected and automated
vehicles alongside conventional ones [17, 20, 21].

Based on active and passive strategies, a global approach to road safety has been
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introduced to create effective road safety programs. For example, the United Nations
General Assembly (UNGA) adopted a resolution establishing the "Decade of Action for
Road Safety" (2011-2020 and 2021-2030). Additionally, several countries have planned
effective road safety programs that include legislative changes and road safety laws (such
as seat belt use, speed reduction, and banning the use of mobile phones during driving)
to improve the behavior of road users.

Given in-depth ITS and road safety research, findings reveal that autonomous
driving is highly relevant to addressing modern transportation challenges and aligns
perfectly with ITS objectives. However, an overview highlighting the transition from
manual to autonomous driving is essential, focusing on vehicle automation levels, the
current state of AV development and deployment, and technological and scientific
bottlenecks. This provides the fundamental knowledge for further improving road safety,
as discussed in the next section.

1.2 Autonomous Driving: A New Era of ITS

The rapid evolution of ITS, marked by the incorporation of cutting-edge technologies and
the emergence of technology-driven road safety measures, has facilitated the seamless
transition toward autonomous driving. The integration of AVs, CVs, and electrical
vehicles alongside conventional vehicles, coupled with the design of systems aligned with
ITS objectives in terms of safety and efficiency, has demonstrated the potential to fulfill
the promise of safe, cost-effective, intelligent, and sustainable ITS.

This section presents an overview of the fundamental principles underlying
autonomous driving, encompassing architectural considerations, development processes,
safety implications, and associated challenges.

1.2.1 From the Lab to Real-world Application Use
Driven by convenience, safety, and economic benefits, autonomous driving and
autonomous/self-driving vehicles (cars) have become subjects of intensive study from
both development and real-world testing perspectives. Several key areas related to the
performance of functional automated driving tasks are explored in detail below.

- AV Projects and Challenges: The timeline of AVs began in 1980 with the
Eureka Project, known as the "Programme for European Traffic of Highest Efficiency
and Unprecedented Safety (PROMETHEUS)," marking the initial milestone in the
development and testing of automated driving. From 1987 to 1995, Daimler-Benz
developed, through this project, a vision-guided robotic vehicle called VITAII and tested
its ability to drive autonomously on European motorways [35, 36].

In contrast to earlier efforts, recent advancements include gradual deployments of
new semi-automatic and fully automatic driving features in vehicles. These innovations
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leverage cutting-edge technologies, including artificial intelligence, machine learning, and
advanced sensors, driving the 21st-century autonomous vehicle revolution.

Initial efforts focused on testing prototypes’ ability to navigate autonomously in typical
urban environments. This was the subject of the US Department of Defense’s DARPA
challenges (2004-2007) and other series of global competitions [14]. Since 2009, a notable
shift from development and testing to real-world deployment and production has occurred.
Currently, major automotive manufacturers (Ford, Mercedes Benz, Volkswagen, Audi,
and BMW) and IT companies (Google, Uber, NVIDIA, and Tesla) are developing their
autonomous vehicles. For example, Google’s self-driving car, known as ’Waymo,’ has
undergone real-world testing in complex urban traffic scenarios [37].

In the coming decades, advancements in development tools, algorithms, and processing
hardware are expected to lead to significant progress in the large-scale deployment of
autonomous vehicles, ultimately reaching a high automation level. Autonomous vehicles
are already being tested on public roads in the US, Europe, and East Asia. The National
Highway Traffic Safety Administration (NHTSA) has provided estimates for commercial
availability and deployment timelines, as illustrated in Figure 1.3 [38].

Figure 1.3: Estimated AV Deployments by Region.

Despite progress and research achievements, autonomous vehicle benefits, costs,
impacts, and implications are still under investigation. Extensive literature attempts
to predict these factors using various approaches [39]. These investigations have led to
the classification of automation levels and define of current capabilities, technologies, and
functionalities at each level, as described in The following subsection.
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1.2.2 Autonomy Level Evolution
The transition between different stages of autonomous vehicle development is closely
related to balancing autonomous and manual control dimensions, requiring a standardized
classification of automation levels. Two primary approaches have been proposed in the
literature.

The first approach, proposed by Flemisch et al. [40], focuses on vehicle transitions
from manual to fully automated control. Accordingly, the envisaged classification spans
from providing driver assistance and warnings to achieving complete automation of the
driving task. Figure 1.4 illustrates the transitions between different levels of assistance
and automation [15].

Figure 1.4: Transition between different levels of assistance and automation.

As shown in Figure 1.4, the vehicle system may transition from driver-only to
driver-assisted, semi-automated, highly automated, and fully automated states.

Alternatively, the second approach focuses on establishing a standard, as exemplified
by the Society of Automotive Engineers (SAE) case. Figure 1.5 illustrates the SAE J3016
standard, which defines a 0-5 scale for categorizing autonomous driving capabilities into
different levels [41].

As illustrated in Figure 1.5, semi-automatic levels (L0-L2) pertain to advanced driver
assistance systems providing basic driver assistance, with the driver monitoring and
controlling the vehicle. Conversely, higher levels (L3-L5) progress beyond ADAS, where
automated driving systems actively take almost total control of driving tasks without
human intervention. Level 5 represents the anticipated future of highly automated
vehicles.

Although technological boundaries for each level are well-defined, ongoing research
focuses on design and development implications regarding potential bottlenecks,
constraints, trade-offs, and performance-related requirements. Subsequent subsections
detail these critical implications.
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Figure 1.5: Levels of autonomy within the scope of SAE J3016 standard.

1.2.3 Architectural and Development Implications
Autonomous driving systems can be broadly classified as either ADAS or ADS, each
with distinctive functionalities and constraints. Consequently, their design must
satisfy rigorous performance standards in terms of efficiency, real-time processing,
and operational and functional safety. Identifying these key design and development
considerations is crucial.

- Advanced Driver Assistance Systems:
Falling within the semi-autonomous driving category (L0-L2), ADAS is an active safety

system that intends to enhance driver situational awareness and safety by providing
critical information, automating complex or repetitive tasks, and mitigating the severity
of accidents. ADAS can also manage vehicle actuators in fully autonomous driving.
Since 2000, ADAS has seen consistent growth driven by technological advancements [42].
To address driver assistance issues, industry reports indicate that collaborative efforts
have been made in several projects such as CARSENSE (2000–2002) [43], INVENT
(2001–2005), and PREVENT (2004–2008) [44]. By 2015, around 50-60% of vehicles
were equipped with driver assistance systems, representing a market value of 7 trillion
USD [31]. ADAS applications in safety-related disciplines vary depending on sensor types
and placements, as seen in Figure 1.6 [42].

As illustrated in Figure 1.6, ADAS, such as object detection systems, are integrated
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Figure 1.6: Key application areas for Advanced Driver Assistance (ADAS) using different colors to
indicate type and position of Sensor [42].

into vehicles as critical embedded systems characterized by closely integrated hardware
and software components. Figure 1.7 depicts an overview of the main components of an
ADAS architecture.

Preprocessing Embedded 
Algorithm

Software Framework and 
Tools

Real-Time Operating System

Embedded Processor

Sensors 

inputs

Issues Warnings



Maintains control

Feedback

Figure 1.7: Primary building blocks of an ADAS architecture.

As illustrated in Figure 1.7, the system engine maps input sensor data, acquired
using various in-vehicle sensors, into appropriate actions by processing them through
a decision mechanism. These actions notify the driver and/or maintain control over
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vehicle functions. Specifically, input sensor data is pre-processed and transformed into a
format suitable for ADAS function-related embedded algorithms (e.g., embedded vision
algorithms), serving as the ADAS cognitive core. These embedded algorithms require
dedicated execution environments tailored to their functions, featuring tools and a
software framework that maps processes to tasks through real-time operating systems
(RTOS). The RTOS in ADAS manages a range of tasks, including general operating
system tasks and ADAS-specific ones like security mechanisms [42].

From a technological perspective, achievements in fields like artificial intelligence have
significantly benefited the development of embedded algorithms. For instance, ML and
DL algorithms build models for interpreting vision sensor data (cameras, image sensors),
enabling vision-based ADAS systems to effectively detect a wide range of objects on the
road, estimate their trajectories and intentions, and ultimately improve road safety [45].
For more details, please refer to [46].

For guaranteeing consistent and reliable functioning, ADAS development,
implementation, and verification phases should comply with SPICE (ISO/IEC 15504)
and the functional safety standard (ISO 26262) [47]. Furthermore, the development
pipeline should address the key challenges associated with the implications listed below:

• Robust performance: ADAS should operate effectively in diverse weather and
lighting conditions, with occlusion, or sensor failures. In case of deactivation, the
system should automatically notify the driver of its non-operational status.

• Accuracy: The system should maintain high-precision sensor data processing and
decision-making to avoid false positives/negatives and ensure safety.

• Real-time processing: The system should process vast sensor data and make
timely decisions necessary for safe vehicle operation. This requires highly efficient
algorithms, powerful processing hardware, and a reduction in the amount of
information the driver should react to.

• Efficiency: ADAS should optimize algorithms, software, and systems to meet
resource and time constraints imposed by the operating system.

• Lack of industry standards: ADAS should be able to cope with the lack of
industry standards for embedded processing algorithms and variability in provided
functions, data types, and sensor settings.

• Safety, security, and reliability: Emphasis on safety, security, and reliability in
all ADAS development aspects.

• Testing and validation: The system should address extensive testing and
validation challenges to achieve required performance standards under all possible
scenarios.
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Moreover, the awareness of the feedback provided by these systems has led to the
emergence of innovative user interfaces (UIs), including speech dialog systems and LED
patterns, enhancing the quality of infotainment experiences. Even so, designing and
testing user-friendly systems remains challenging due to the diverse user skills, technical
backgrounds, and qualifications of the intended users [48].

- Automated Driving Systems:
With the emergence of ADS (L3-L5), the prospect of deploying fully automated vehicles

in upcoming years has become a reality. To this end, the NHTSA has provided guidance
and technical assistance for AV-related research and development, extending from AV 2.0
to AV 4.0. Unlike ADAS, which assists the driver, ADS can control the entire driving
task. Consequently, ADS architecture shares a common pipeline mapping sensory inputs
to actuator outputs, addressing specific road environmental requirements, trade-offs, and
safety and design considerations [49]. Literature reviews classify ADS architectures from
different perspectives, as described below [14, 50, 51, 52, 53]:

• Functional architecture vs. Software architecture

– Functional architecture: This approach systematically develops and manages
ADS functionalities while maintaining compliance with safety standards. It
outlines how ADS architecture is decomposed into high-level functional blocks,
as defined by the ISO 26262 functional safety standard. It focuses on functional
flows between blocks and their distribution within the ADS.

– Software architecture: This classification examines the hierarchical organization
of ADS infrastructure components, categorized as high-level software or low-level
hardware. This structure defines each component’s role clearly, facilitating a
systematic flow of information and control from sensors to actuators.

• End-to-end learning vs. Modular approaches

– Modular approaches: Modular architectures divide the ADS into distinct
modules, organized as a pipeline connecting sensory inputs to actuator outputs.
Each module carries out particular functions, including perception, planning,
and control, which cooperate to achieve autonomous driving, like ego-motion
generation. Figure 1.8 presents a typical modular ADS architecture.

– End-to-end learning: This approach avoids error propagation and minimizes
handcrafted components in modular architecture by generating ego-motion
directly from sensory inputs using a single neural network. Training this model
end-to-end maps raw sensor inputs directly to driving actions.

• Ego-only vs. Connected systems
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– Ego-only systems: This viewpoint emphasizes on-board sensors and embedded
processing built into a standalone platform to perform automatic driving
activities. This centralized approach focuses on perceiving and reacting to
the vehicle’s immediate surroundings without extensive communication or data
sharing with external sources or other vehicles.

– Connected systems: This perspective addresses ADS communication needs
with external entities. This distributed approach is oriented toward enhancing
situational awareness and decision-making through communication with other
vehicles and infrastructure components.

Figure 1.8: Primary building blocks of an ADS architecture.

Alternative classifications introduce entirely new requirements for the VA’s Operational
Design Domain (ODD) to specify precise conditions under which the system can operate.
This includes considerations related to infrastructure data processing sites (Cloud-based
architecture) [54, 55, 56], Human-Machine Interface (HMI) [57], safety assurance [58, 59],
and other relevant factors.

Recently, the functional architecture has been extensively studied in the literature [53,
60]. As outlined by [53], it is constructed "on a software stack" comprising input/output
devices, an operating system, autonomous driving frameworks, and middleware. The
specific task execution of each functional component and their interrelations are presented
in a modular pipeline as follows [60]:
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• Perception and localization: The perception component is crucial for
understanding the surrounding driving environment by collecting and interpreting
surrounding information. It uses proprioceptive sensors for monitoring the vehicle’s
internal state and exteroceptive sensors, such as cameras, LiDAR, RADAR, and
ultrasonic sensors, for scene interpretation and object detection. In addition to these
sensors, cooperative perception is facilitated through Vehicle-to-Everything (V2X)
communication, which enhances situational awareness by sharing information with
external entities. As a sub-functional component, localization involves determining
vehicle position relative to identified objects using the Global Positioning System
(GPS) and Inertial Measurement Unit (IMU) data. To improve measurement
accuracy and robustness against noise, clutter, and adverse weather conditions,
sensor fusion modules are often employed to combine sensor data. Additionally,
to enhance the driving experience, the user interface module is used.

• Decision and planning:: The primary responsibility of this stage is to intelligently
determine a collision-free trajectory for safe AV navigation. In contrast to rule-based
methods, a learning-based approach uses data from the perception stage to predict
and plan the AV’s route, behavior, and movement. This iterative decision-making
process involves generating and selecting the optimal prediction while considering
relevant information, including real-time map data. This process is influenced by
various constraints.

• Vehicle platform manipulation: This phase focuses on the functional
components of the control and chassis for AV movement and stability during
autonomous operation. As a closed-loop vehicle navigation controller, the control
module translates high-level plans generated by the decision and planning module
into low-level actions, issuing commands to the vehicle’s actuators (steering, braking,
and acceleration) to follow the predetermined trajectory. Meanwhile, the chassis
component bridges electrical and mechanical systems to ensure safe navigation,
interacting with mechanical parts such as the accelerator pedal, brake pedal, steering
wheel, and gear motors.

Nowadays, with substantial expected benefits and effects, research and development
efforts are in progress to ensure the large-scale deployment of ADS. This involves refining
the design and testing of ADS for a transition from prototype to production, focusing on
understanding their broader implications. Recognizing and addressing these implications
is crucial for unlocking the full potential of ADS, ensuring safe society integration, and
maximizing societal benefits. Key implications of ADS are highlighted below [61]:

• Safety advancements: Ensuring the safety and security of ADS is a primary
concern. The challenge lies in designing safe and secure systems while addressing
potential drawbacks such as traffic congestion and functionality bottlenecks.
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Therefore, careful architectural design, certification, testing, verification, and
validation are pivotal in assessing the safety and security of ADS. These steps
are essential for facilitating the smooth integration of AVs into the transportation
ecosystem.

• Technological innovation: Given that ADS advancement relies on cutting-edge
technologies, deployment pathways need to be flexible and adaptive. This flexibility
accommodates potential changes in funding availability, future research findings,
and broader societal needs and trends impacting the rate of technological adoption.
These pathways also facilitate the testing and demonstration of new technologies,
paving the way for the eventual commercial deployment of ADS-equipped vehicles.

• Regulatory and legal framework: Emerging trends and needs for high-level ADS,
based on existing mature systems, emphasize the importance of working towards
global harmonization of regulations and standards for autonomous driving. This
involves revising and modernizing regulations and laws to eliminate unnecessary
barriers to integrating advanced car designs and features proposed by autonomous
driving systems. Additionally, developing safety-oriented frameworks and techniques
is crucial for evaluating the performance of ADS technology.

• Infrastructure upgrades: Supporting AV deployment and ensuring their safe and
secure operation require significant improvements to current road infrastructure.
This includes enhancing road markings and implementing advanced communication
systems. Additionally, the infrastructure must address potential impacts on the
entire transportation ecosystem that may arise with the introduction of AVs.

• Redefined user experience: The advancement in ADS-equipped cars promises
enhanced convenience for passengers but also introduces complexity in design due
to human factors and behaviors. Human-machine interface (HMI) systems need
human-centered designs to enable an effective understanding and interaction with
users based on their unique characteristics and personalities. The public needs to
adapt to and accept the shift towards autonomous driving, showing a willingness to
invest in automation features and the concept of owning an automated vehicle.

• Ethical considerations: ADS introduction raises normative ethical issues related
to the AV industry, environmental and public health ethics, and decisions made by
ADS algorithms. Ethical debates and guidelines are needed, addressing how the
system prioritizes safety in critical situations.

• Public acceptance: ADS technology needs to be widely accepted and trusted as
a prerequisite for deployment to be successful. Public education and awareness
campaigns must balance divergent opinions on the technology’s practicality and
acceptability in the marketplace.
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While the previously discussed implications are important, the significant progress in
automated driving technologies currently overshadows the existing challenges related to
deployment and implementation, which may be difficult to address in the near term, as
discussed in the next subsection.

1.2.4 Challenges of Autonomous Driving
Despite the substantial benefits of autonomous driving, several challenges and open
issues require the research and industry community’s attention for a mass production
perspective. This section examines key challenges of autonomous driving from various
perspectives [62, 63, 64, 65, 66, 67, 68, 69, 70].

- Technology-related issues:

• Sensing and perception: Safe navigation depends on the AV’s capacity to
understand its environment through vehicle perception, as outlined in earlier
subsections. Given the dynamic and unpredictable nature of a vehicle’s environment,
as well as challenges in sensor technology, sensor fusion, and sensor data,
developing effective and reliable perception algorithms requires accurate detection,
interpretation, and semantic assignment to visual cues. This includes on-road object
detection and tracking, contextual information awareness, drowsiness monitoring,
anomaly detection, and traffic sign recognition.

• AI and machine learning: AVs rely on AI algorithms, like DL-based predictive
models, to perform complex rational, intelligent, real-time driving tasks. However,
these AI-powered applications face challenges, including limited driving scenarios
datasets, sparse and costly annotations, training inefficiencies, and handling corner
cases such as anomaly data, outliers, and out-of-distribution (OOD) data, with
a lack of effective evaluation metrics. Training models with such datasets
struggles with scalability, robustness, and adaptability. Promising approaches to
address these issues include online learning strategies, reduced data dependency
learning methods, human-in-the-loop AI integration, and improved mobility-related
decision-making. Further exploration in areas like emotional intelligence and
complex social interactions is needed.

• Planning and control: Path and motion planning for autonomous driving
technology face several challenges, including simulation validation dependencies,
data processing, real-time performance, and safety assurance. Despite DRL
advances, issues such as balancing exploration and exploitation and bridging
the simulation-reality gap remain. Future research aims to enhance planning
strategies for incomplete perception data, improve planning quality and consistency,
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interpret learning-based planners better, and explore cooperative multi-agent
planning. Vehicle control algorithms need to address safety, vehicle interactions, and
complex dynamics. Promising areas for development include cooperative control
in the IoV, multi-objective optimization, coordinated control under uncertainty
and delays, fault-tolerant techniques, and real-world traffic testing. Moreover,
improving DL-based vehicle controllers in terms of computational load, architectural
constraints, and goal specification is necessary, with the potential exploration of
remote control and energy-aware frameworks.

• Mapping and localization: High-definition maps play a crucial role in the
localization of autonomous cars, but they present several issues. Developing universal
mapping formats fulfilling algorithm requirements, providing necessary static and
dynamic information, determining the minimal data quality required for safe driving,
and assessing the impact of poor data, is complex. Additional challenges include
storage, updating, dissemination, and ensuring privacy and trust in mapping data
within shared frameworks, particularly when integrating data from multiple open
and commercial map sources. Developing a common mapping standard is essential
for transitioning from testing to real-world autonomous driving.

• Testing and validation: Comprehensive testing and validation are crucial for
ensuring the safety and reliability of AVs before mass production. Nevertheless,
developing standardized test protocols and scenarios mimicking real-world
environments and defining evaluation criteria for computer-simulated testing
pose significant challenges. Bridging the gap between simulated and real test
environments remains an unresolved issue.

Safety-related issues: Overcoming autonomous driving safety challenges related to
hardware failures and software malfunctions is a primary concern for the research and
industry community. The most likely issues in this regard are explored below [71, 65, 72,
73, 74, 75, 76, 77]:

• Functional safety and technical safety: The overall safety of critical autonomous
driving systems depends on reliable hardware, software, and architectural
components. Ensuring the functional safety of DL-based systems is particularly
challenging due to potential malfunctions and failures at various vehicle operation
levels, probabilistic error rates, and the inherent nature of deep learning models.
Various approaches have been proposed to address these challenges, including
risk assessment in real-world environments, safety analysis to identify underlying
concerns and objectives, policy functions and control strategies to ensure safe
operation, thorough model accuracy and uncertainty evaluations, and real-world
testing. Additionally, addressing dataset completeness, fairness in learning,
context awareness, and compliance with regulatory constraints remains an active
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area of research. Specifying technical safety requirements for system interfaces,
environmental constraints, and failure detection mechanisms is also crucial to ensure
overall safety according to ISO 26262 standards.

• Privacy and security: Given that AVs generate and collect significant data in
public places, concerns exist about sharing knowledge while balancing sensitive
passenger data security and privacy. Protecting vehicle occupant privacy and
ensuring security involves addressing vulnerabilities in hardware and software
systems, detecting intrusions, and securing real-time and historical on-board
data collection, transmission, and storage. This is crucial to prevent attacks,
and unauthorized access, and to maintain data confidentiality, integrity, and
authentication. Since DL-based algorithms embedded in the AV software
architecture are vulnerable to threats, ensuring robustness against adversarial
attacks is essential.

• Failure detection and diagnostics: Safety-critical driving scenarios require
robust fail-safe mechanisms to effectively handle operational failures or emergencies
beyond functional and technical safety. Addressing failures and diagnosing issues
poses significant challenges, particularly in developing fallback strategies for safe
human control transitioning and establishing safe recovery protocols. Challenges
include the lack of standardized definitions for sensor failures, insufficient research
on sensor failure detection, difficulties in detecting sensor data failures even when
the sensors are functioning properly, and algorithm failures in complex scenarios.
Addressing these challenges involves developing advanced algorithms to improve
performance and mitigate software design errors.

• Collision avoidance: The ultimate objective of autonomous driving collision
avoidance is to develop technologies emphasizing safety first and preventing accidents
through accurate collision prediction and correct avoidance decisions. Even with the
progress made in AI and V2X communication, effectively handling various types of
collisions remains an unanswered question. These challenges include addressing the
limitations of deep learning techniques in terms of performance, mimicking human
driver cognition, achieving high automation levels in critical situations, and shifting
towards cooperative collision avoidance schemes.

- Broader challenges: In addition to the aforementioned challenges, further issues
remain encompassing broader aspects of autonomous driving. Some of the key challenges
include the following [22, 78, 63, 71, 79, 80]:

• Fairness and transparency in DL for AD: Recent concerns emphasize the
necessity of explainability in DL-based models for perception, decision-making, and
action or control. Due to the black-box nature of these models and outcomes
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uncertainty, explainable AI can enhance fairness and transparency in autonomous
driving systems by interpreting what the model has learned, identifying sources
of bias, and analyzing decision-making processes. However, achieving explainability
presents several challenges, including issues related to model and algorithm selection,
safety assurance, trust and user acceptance, legal and ethical responsibilities,
human-machine interaction, regulatory compliance, training, and debugging.

• Complexity and uncertainty: AV embedded systems involve multiple
decision-making components whose interactions can be challenging to understand,
even for experts. These components, often relying on AI models, increase
system complexity and exhibit uncertainty due to computational challenges, lack
of explainability, and "black-box" nature. Ongoing debates propose various methods
for reducing both epistemic and aleatoric uncertainty. Balancing complexity and
uncertainty is crucial to developing an efficient autonomous driving system and
requires further investigation.

• Robustness and adaptability: Since most AI algorithms utilized for autonomous
driving are learning-based, their performance heavily relies on data reflecting
specific environmental conditions. However, accuracy remains substantially low,
as the dynamic nature of road scenarios compromises the effectiveness of various
autonomous driving tasks. Consequently, systems designed for AD-related tasks
must possess robust adaptability to adjust seamlessly to changing environments.

• Big Data and real-time processing: Ensuring the safety of AVs involves
continuously acquiring substantial quantities of data of varying types and
quality through an array of sensing technologies. This practice generates vast
quantities of big data, essential for the vehicle’s comprehensive environmental
awareness. However, real-time processing of such extensive and diverse datasets
presents significant challenges, including ensuring data accuracy, minimizing power
consumption, and managing costs. To address these challenges, an intelligent
data prioritization system is necessary to recognize and rank a wide range of
data, retaining only the most relevant data for further analysis while discarding
unnecessary data.

• Connectivity and communication: The emergence of AVs has created
opportunities for more advanced systems beyond ego-only systems (or standalone
vehicles) to include cooperative driving automation (CDA), connected vehicles, and
connected autonomous vehicles (CAV). These developments highlight the critical
role of connectivity and cooperative decision-making in improving performance. A
significant technical challenge is ensuring interoperability among diverse autonomous
systems from various manufacturers, which necessitates the development of unified
standards. Next-generation wireless networks, particularly 5G and forthcoming 6G
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technologies, are pivotal in providing the necessary environmental awareness for
vehicles through ultra-reliable and low-latency communications. These technologies
are vital for the broad deployment of CAVs, enabling smoother vehicular
communication. However, integration of 5G, beyond 5G (B5G) technologies, and AV
technologies is still in its early stages, with numerous research challenges to overcome,
including software heterogeneity, validation, verification, and latency issues.

Conclusion

This chapter has provided a comprehensive overview of autonomous driving technologies.
We presented several concepts related to the evolution of this field, such as ITS and
VANET, highlighting road safety approaches and their impact. Subsequently, we explored
the historical development and current state of AV technology, introducing various
architectural designs and implications of AV-integrated systems for autonomous driving
deployment. Finally, we concluded the chapter by discussing the challenges associated
with these systems.

In the next chapter, we will explore concepts related to building object detectors, which
are at the core of an AV’s perception systems. Our focus will be on the foundations,
development approaches, and challenges involved in deploying secure and safe AVs.
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Chapter 2
Object Detection in Autonomous Driving

Introduction

As discussed in the previous chapter, the development of autonomous driving technology
heavily relies on the vehicle’s capability to accurately perceive and interpret its
environment. Object detection represents a core component of vehicle perception systems
and is essential for ensuring safe and reliable navigation. This technology allows AVs to
recognize and track objects such as other vehicles, pedestrians, cyclists, and road signs,
facilitating informed decision-making. Innovative neural architectures have permitted
large steps forward in building robust object detection systems for AVs. However,
this progress has been accompanied by the challenge of expensive labeling and training
processes. Moreover, achieving functional safety necessitates identifying deficiencies in
hardware and software components and developing effective solutions to address these
issues.

This chapter presents a literature review of advances in the field of object detection
and their application to autonomous driving. The first section 2.1 of this chapter
introduces fundamental concepts of object detection, tracing its historical development
through traditional and deep object detection periods and describing various neural
network architectures dedicated to this task. It also examines approaches to reducing
the costs associated with designing deep detector models. The next section 2.2 outlines
key elements in applying object detection within the context of autonomous driving,
including commonly detected objects, sensor modalities, datasets, and evaluation metrics.
This section also reviews state-of-the-art methods and approaches in this context and
summarizes the challenges associated with object detection in autonomous driving,
concluding the chapter. This structured analysis will set the foundation for developing
more robust and real-time object detection systems while ensuring functional safety for
AVs in subsequent chapters.
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2.1 Object Detection

The previous chapter indicates that safety is the primary focus in designing autonomous
vehicles while performing autonomous navigation. This is accomplished by guaranteeing
safe and collision-free road travel through efficient, adaptable, and robust object detection
and path-planning algorithms.

This section covers key concepts of object detection, including its principles,
main categories of object detection strategies, the architecture of recent and popular
frameworks, and the latest methods for label-efficient and cost-effective learning.

2.1.1 Object Detection: Principles
Visual recognition is a fundamental area of computer vision and machine vision, aiming
to imitate human visual capabilities by developing artificial visual systems that can
understand images. Two primary algorithms have been developed to interpret and
categorize scene content: image classification and visual object recognition. While
traditional object detection approaches primarily relied on matching and geometric
verification paradigms for recognizing specific, salient objects, contemporary approaches
employ statistical models of object appearance or shape, acquired through exemplar-based
learning, for both generic (coarse-grained) and fine-grained object recognition tasks.
These models can identify the presence, position, and size of all instances of a given
object class in images, often represented by bounding boxes or pixel-level masks. Object
detection tasks may also involve recognizing multiple categories, which presents challenges
as complex multi-class problems.

More specifically, the object detection algorithm employs a fundamental visual pattern
discovery process, using visual representation to automatically determine the probable
locations of target objects. This process involves extracting relevant visual primitives
that provide useful information about the location, size, and shape of objects. The
analysis of these visual patterns can be conducted using either a top-down or bottom-up
approach, as detailed below [81, 82]:

• Bottom-Up approaches: in bottom-up approaches, Visual pattern discovery
begins by identifying basic visual primitives and progresses through merging these
initial elements to identify more complex visual patterns. These patterns are
considered collections of parts with local appearance. Local visual feature detectors
initially identify object parts in sparse sets of possible locations. Subsequently, the
candidate locations, which initially served as visual primitives, are combined using
geometric or statistical data to suggest and assess potential object placements in the
image space. By leveraging information about the relative placements of parts, the
object detector attempts to consolidate component detections into coherent object
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detections. This is often achieved through local part detectors designed specifically
for particular classes of parts. In addition to discriminative or generative statistical
models, these approaches can use various methods to combine parts and handle
partial occlusions and unexpected variations in object pose. However, they have
limitations, including the relatively lower reliability of small part detectors compared
to larger whole-object detectors, and the complexity of spatial reasoning required to
efficiently combine sets of unreliable part detections, which may include numerous
misses and false alarms.

• Top-down approaches: In top-down object detection approaches, images are
modeled based on high-level visual patterns, representing the entire object by its
appearance. These methods typically use one or more rigid object-shaped templates
that are class-specific, along with intensive multi-scale scanning throughout an image
pyramid to identify object instances and their extents. In most top-down methods,
detectors are discriminatively trained to recognize relatively "rigid" and unoccluded
object classes.

Regardless of the approach employed, the main advancements in object detection can
be divided into two distinct historical eras: the traditional object detection period (before
2014) and the deep learning detection period (after 2014). During this transition, research
findings indicated that the establishment of standard benchmark datasets could facilitate
the building of accurate models for detecting various object classes, as detailed in the
following subsections.

2.1.2 Traditional Object Detection
The adoption of machine learning algorithms has revolutionized visual object recognition,
shifting the landscape towards statistical learning-based approaches. in this context,
conventional generic category object detection approaches identify object categories
similarly to image classification tasks. This is achieved in a supervised setting by
collecting training examples for a target object class, extracting visual features from
annotated samples, and using those features to train a detection model capable of
predicting object localization in unseen images. Figure 2.1 illustrates the fundamental
framework of traditional approaches.

Conventional object detection algorithms typically comprise three stages, as illustrated
in Figure 2.1: object proposal generation, feature extraction and selection, and
classification. During the online recognition stage, object proposals are initially generated
from the input image as regions of interest, using an underlying object position
hypothesis generator. Subsequently, visual descriptors capture visual representations
of the candidate regions by extracting hand-crafted features. Through these extracted
features, the trained classifier’s decision values identify whether or not objects are
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Figure 2.1: Pipeline of traditional generic object detection algorithms.

present in the unseen input image. Leveraging machine learning and supervised learning
techniques, this object/non-object classifier is built by learning decision rules from the
extracted features of a representative training set.

Formulated as a classification problem, these traditional algorithms can perform
real-time detection but at the cost of limited accuracy and heavy computational
load. Their performance and effectiveness can be significantly influenced by the choice
of training data, the underlying feature representation, and the selection between
discriminative and generative classifiers.

A key factor for improving performance is the extraction of visual representation.
Human-engineered visual feature descriptors, such as Local Binary Pattern (LBP),
Histogram of Oriented Gradient (HOG), and Scale Invariant Feature Transform (SIFT)
are commonly used to encode object appearance based on color, texture, and shape
properties. With the possibility of incorporating segmentation or contextual cues, local
and global features extracted from these descriptors play a crucial role in traditional object
detection, helping to distinguish object instances from non-object instances [4, 83].

Another factor is the choice of statistical models for object appearance that can handle
variations in appearance and shape within the same category. Discriminative models are
generally preferred due to their ability to directly model the posterior distribution of class
categories given input features, leading to more accurate object detectors compared to
generative models [4].

As reviewed in the literature [81, 4], current traditional approaches are typically
classified into part-based and window-based techniques. The relationship between these
techniques can be viewed as a balance between representational complexity and search
effort, as explored below:
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• Part-based approaches: part-based object models, which belong to bottom-up
approaches, use a combination of fixed parts and flexible spatial arrangements to
represent objects. These models were initially built using pre-defined templates
based on whole objects, composed of manually created part templates using
pixel-level features. A spring-like mechanism was employed to reduce small shape
distortions to fit these parts together, taking into account differences in the parts
themselves and their spatial positions. In contrast, more recent techniques aim to
learn the appearance of parts directly from training data. The core methodology
still involves finding object segments or parts with similar appearance and spatial
configurations. These parts and their spatial relationships are then used to generate
object models. More efficient part-based object recognition models have emerged
from the development of local invariant features. This approach enables robust object
discrimination across scales and complexities by exploiting a voting system across
different object parts. However, dealing with the high combinatorial complexity
of these models remains a challenge. Various spatial modeling techniques have
been explored to address this issue, each offering different levels of computational
requirements and connectivity. Among the most notable are the Bag of Visual
Words, Constellation, Star, Tree, k-fan, Hierarchical, and Sparse Flexible Models.
Partial occlusions are easier to handle with these approaches, but their practical
effectiveness depends critically on several factors related to the training process of
the learned model, including the type of supervision (full or weak) for the learning
algorithm, the number of training examples and the extent of labeling within these
sets. Other knowledge, including object location, scale, and any uncertainty, can be
derived or learned directly from the annotations provided, such as hand-labeled part
locations.

• Window-based approaches: Window-based approaches, as part of top-down
strategies, process images by considering the whole object’s appearance. The
basic sliding window-based detector pipeline is summarized in Figure 2.2. Initially,
the input image is resampled into a pyramid structure using a sliding window
technique that systematically scans the image at various positions and scales,
forming a pyramid of multi-scale sub-windows considered as candidate object
proposals. Robust visual features are then extracted from each sub-window using
human-engineered feature descriptors, creating a feature pyramid. This structure is
explored, and features are evaluated by a classifier at multiple scales to determine
the presence of an object, leading to the detection of objects of different sizes by
generating bounding boxes for potential objects. To obtain the final detections, the
classifier’s decisions are refined through a post-processing step such as non-maximal
suppression, which consolidates overlapping boxes and eliminates redundancies based
on a threshold. Various discriminative classifiers are used in this context, ranging
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from simple decision trees to more complex models like convolutional neural networks
(CNNs) and Support Vector Machines (SVMs), each chosen based on the specific
requirements of the detection task. Sliding window-based detectors currently show
superior performance for deformable object classes and classes with significant
intra-class or viewpoint variability. However, they have several disadvantages,
including the computational cost of the window-level method, the loss of context
from the overall scene, and the use of rectangular, axis-aligned windows that may
not be suitable for many object categories with non-box-shaped appearances, even
for partially occluded objects. Additionally, data-related bottlenecks in training and
testing, the quality of the classifier, and the granularity of sampling steps during
scale and position sweeps have also impacted the effectiveness of sliding window
detectors.

Figure 2.2: An overview of gradual refinement in localization from coarse to fine by the sliding window
detection approach.

However, the limitations of traditional object detection methods have motivated the
exploration of more advanced techniques. In recent years, the field has experienced
a significant evolution, particularly driven by the emergence of deep learning, which
has revolutionized numerous areas of computer vision. Consequently, research has
increasingly focused on deep learning-based approaches for object detection, promising
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improved accuracy and efficiency.

2.1.3 Deep Object Detection
Due to the abundance of innovative computer vision applications driven by deep learning,
research on object detection has recently shifted toward deep learning-based approaches.
Deep object detection is a multi-task problem that integrates both object category
classification and boundary box regression to perform object recognition and localization.
This is typically achieved using standard deep neural network architectures, a form of
non-symbolic artificial intelligence, which are used either as feature extraction or inference
algorithms as illustrated in Figure 2.3. Figure 2.4 depicts the general pipeline of deep
object detection training.

Figure 2.3: An overview of the deep learning-based object detection task.

Figure 2.4: An overview of the end-to-end deep neural object detection pipeline.

As shown in Figures 2.3 and 2.4, the deep object detector is trained in an end-to-end
scheme. In contrast to traditional approaches, the human-engineered feature extraction
stages are progressively being replaced by learning-based feature extraction networks,
also known as backbone models, such as CNNs. These models aim to automatically
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learn feature representations from raw image pixels, enabling the extraction of high-level
object features and the generation of feature maps for accurate object identification.
The classification task can be performed using the same backbone, a separate DNN,
or a conventional machine learning technique, leading to the construction of a robust
and real-time deep object detector, although at the cost of lower accuracy compared to
traditional object detectors [83, 84, 85].

In practice, the most popular methodologies used to train a deep object detection
model are as follows:

• Training a model from scratch: This method relies on two key factors: (1) a
large amount of labeled training data, and (2) the design of a network architecture,
including layers, weights, and other parameters.

• Using a pre-trained deep learning model: This approach involves a transfer
learning paradigm, where a pre-trained model like AlexNet or GoogLeNet is
fine-tuned as a baseline with a new dataset that includes previously unseen classes.
The training process using this method can converge more quickly and produce
more efficient results by leveraging the knowledge acquired during the baseline
model’s initial training on a large dataset.

In addition to the training of deep models, the design of their architecture is crucial
for the successful application of deep learning, impacting both the development and
deployment of real-time applications. Achieving high target task accuracy and low latency
inference on the target platform is essential for these applications. To automate and
optimize the design of deep model architectures, Neural Architecture Search (NAS) has
been used to develop low-latency networks for various vision tasks [86]. Within the field of
automated machine learning (AutoML), NAS is closely associated with hyperparameter
optimization and meta-learning, aiming to build networks that outperform the best
hand-designed architectures. This approach minimizes the time model developers have
to dedicate to data preparation, algorithm selection, and fine-tuning [87].

More specifically, NAS focuses on determining the "best fit" architectures for artificial
neural networks (ANNs), which are widely used in machine learning. It employs
various methodologies, including gradient-based techniques, evolutionary algorithms, and
reinforcement learning. NAS approaches are classified according to the search space, the
search strategy used, and the performance evaluation strategy, as outlined below [88]:

• Search space: This outlines the complete range of possible architectures and the
type(s) of ANN expected to be developed and optimized.

• Search strategy: This describes the optimization method employed to navigate
through the search space to identify an efficient architecture.
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• Performance estimation strategy: This refers to any technique used to quickly
assess the potential performance of a proposed ANN based on its design, without
the need to build and train it.

Recently, advanced NAS technology has been well-tailored for deep learning to optimize
deeper neural networks, especially in object detection. Aside from the utility of deep
learning models for automated feature learning, automating the tedious step of designing
the detection model architecture by exploring NAS is crucial. This involves encoding
the entire architecture at one level and determining macro-level hyperparameters by
exploring the macro-search space, rather than fully exploring cell-based or hierarchical
search spaces. Additionally, training detection models from scratch is time-consuming
and requires substantial GPU memory due to the complexity of the architecture [88].

In the literature, the use of NAS to optimize DNN architectures for object detection is
rarely explored. In [89], the authors constructed research spaces based on state-of-the-art
image classifier networks to develop improved backbones for object detection, taking
advantage of both pre-training and fine-tuning for detection. Once the pre-trained
backbone architecture is fine-tuned on detection datasets, the architecture search is
carried out on the trained supernet. This process incorporates selected detection-specific
elements from successful dense prediction architectures and utilizes an evolutionary
algorithm for optimization. Conversely, the author in [90] proposed fast versions of NAS
suitable for one-stage object detection macro-architectures. Their method aimed to
search both feature pyramid networks and prediction head architectures while caching
the features generated by a backbone to speed up architecture search.

With the maturity of deep neural networks for object detection tasks, numerous deep
object detection models have been developed over the years. These models typically
share the common architecture shown in Figure 2.5. A deep object detection model
consists of a backbone network and a head network. The backbone network processes
the raw input image to extract features, which are then fused and enhanced through
the neck. The head network uses these extracted features to predict classes (labels)
and the coordinates of bounding boxes surrounding the identified objects. Additionally,
the design of network architecture for these models can be approached from two
different perspectives: micro-architecture, referring to a “small” network unit, and
macro-architecture (meta-architecture), referring to the entire network composed of these
small units.

To provide a comprehensive overview of the current state-of-the-art, Figure 2.6 presents
a detailed taxonomy of mainstream deep object detection algorithms, focusing on their
architectural exploration [83, 84, 85].

As shown in Figure 2.6, deep object detection algorithms can be categorized based on
various criteria. The following subsections outline these categories.
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Figure 2.5: Basic process of deep object detection algorithms.

2.1.3.1 Framework-Related Classification

The primary distinction between two-stage and single-stage detection frameworks, as
classified according to the framework criterion in Figure 2.6, is based on the composition
of the head network in each framework’s meta-architecture and the impact of the object
detection pipeline on the balance between accuracy and detection (inference) speed
metrics. Figure 2.7 clearly illustrates the basic meta-architecture for each framework,
highlighting the differences between single-stage and two-stage detection algorithms as
explained below.

- Two-Stage (two-shot) framework: In two-stage object detection models, the
head network is a multi-stage model consisting of two separate networks: the region
proposal module and object detection module, as shown in Figure 2.7(b). The first
module uses the feature maps generated by the backbone network, which processes
the raw input image, to identify several regions of interest (RoI). Subsequently, these
candidate regions of objects are processed by the pipeline for object classification and
bounding-box regression. Consequently, the objects within the region proposals can be
classified, and their localization can be refined. Two-stage frameworks primarily leverage
selection techniques, such as Edge Boxes or Selective Search, in conjunction with the
NMS post-processing for final detection. Selection algorithms generate region proposals,
while NMS rapidly eliminates redundant prediction boxes [91, 92, 93]. Popular two-stage
frameworks include the R-CNN series, R-FCN, and SPPNet.

Candidate-based two-stage algorithms can achieve relatively high accuracy and
more reliable detections. However, this category suffers from slower inference time
and detection speed. These shortcomings originate from several factors, including the
required fixed size of the input image, the time-consuming nature of the region proposal
generation and post-processing steps, the computational complexity of multi-stage
processing, and the scale of the large models and feature space extracted. Consequently,
these limitations can make two-stage algorithms inappropriate for real-time applications
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Figure 2.6: Taxonomy of deep object detection algorithms.

[94, 92].

- One-Stage (single-shot) frameworks: In contrast to two-stage frameworks,
one-stage object detection frameworks (or regression detection model), as shown in
Figure 2.7(a), skip the region proposal stage and instead fully integrate the region proposal
module with the classification and localization computation, forming an end-to-end object
detection model. In a single-shot detection, a single feed-forward neural network model
delivers object classification probability and bounding box coordinates regression together
at the same stage [94, 92, 95]. SSD, CenterNet, RetinaNet, and YOLO series are
representative one-stage object detection algorithms.

By performing all computations through a single stage and optimizing the entire
pipeline in an end-to-end manner, one-stage detection pipelines can predict results directly
with a notably rapid detection speed. This is achieved by avoiding the explicit production
of region proposals beforehand and employing a less computationally intensive regression
analysis technique. However, they are less effective when dealing with overlapping
and occluded objects and when handling strong foreground-background contrast and
imbalances in positive and negative samples. These issues can prevent one-stage
algorithms from achieving the same level of accuracy as two-stage algorithms [94, 91, 95].
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Figure 2.7: Basic structure of deep object detection frameworks.

2.1.3.2 Backbone-Related Classification

This subsection provides a detailed classification of deep object detection algorithms
based on the integrated "small" network unit used as a building block of the backbone
of the detection pipeline. These units include CNNs, transformers, residual networks,
Generative Adversarial Networks(GAN), and neuro-symbolic models, as explained below.

- CNN-based methods: With the availability of significant computing resources
and plenty of large-scale datasets, CNN-based deep learning algorithms have become the
state-of-the-art approaches for object detection. As a non-symbolic artificial intelligence
technique, CNN (or ConvNets) are deeper feed-forward neural networks frequently used
in backbone networks to learn hierarchical feature representation at different levels,
facilitating pattern recognition. Two varieties of CNNs are distinguished according to the
image input dimension: two-dimensional (2D)-CNN and three-dimensional (3D)-CNN.
The typical architecture of CNNs, depicted in Figure 2.8, consists of iterations of a
sequence of layers, including (1) the input layer, (2) the convolutional layer, (3) the
pooling layer, and (4) the fully connected layer.

This architectural structure is outlined in greater detail below [2, 96, 97]:

• Convolutional layer: As a core layer in CNNs, the convolutional layer integrates
both linear and nonlinear operations through convolution and activation functions.
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Figure 2.8: Basic CNN architecture.

Convolution involves applying learnable filters (convolution kernels) to input tensors,
with hyperparameters such as filter size and number determining the depth of the
output feature map (2D activation map). Additional parameters like padding and
stride control the alignment and spacing of the kernels. Each neuron within a
convolutional layer is engineered to convolve a specific kernel with a limited subset of
the outputs from the previous layer, perceived within its "receptive field." The process
of computing the activation map is depicted in Figure 2.9 and can be described by
this formula: Activation map = Input ∗ Filter = ∑columns

i=0
∑rows

j=0 Inputi−∆i,j−∆j
×

Filter∆i,∆j [98]. Common convolution types include ordinary, transposed, hole, and
depth separable convolutions, all featuring weight sharing across image positions for
pattern learning. Activation functions like ReLU, RReLU, ELU, sigmoid, and tanh
add nonlinearity to CNNs, aiding in learning complex data patterns and nonlinear
models.

Figure 2.9: Convolutional layer [98].

• Pooling layer: Typically positioned between successive convolutional layers, the
pooling layer involves downsampling (or subsampling) operations aimed at reducing
the dimensionality of feature maps by aggregating groups of outputs from the
previous layer into a single neuron. This process eliminates redundant convolutions
while preserving crucial information. This reduction in dimensionality helps decrease
the number of learnable parameters in subsequent layers, thus mitigating overfitting
and accelerating computation speed. Additionally, pooling introduces translation
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invariance to small shifts and distortions. Hyperparameters in pooling operations,
such as filter size, stride, and padding, are similar to those in convolution operations.
Notably, pooling layers do not contain any learnable parameters. Typical pooling
layer operations encompass max-pooling, average pooling, and Spatial Pyramid
Pooling. For example, an average pooling layer computes the average of its input
values, while max pooling selects the maximum value (see Figure 2.10).

Figure 2.10: Types of pooling layers[99].

• Fully connected layer: The fully connected (FC) layer, positioned after the
convolutional and pooling layer blocks, maps the extracted features to the network’s
final outputs, functioning similarly to a traditional neural network. Typically,
the output feature maps from the last block of convolutional and pooling layers
are flattened into a one-dimensional array and then fed into one or more fully
connected layers, also known as dense layers. Each dense layer uses trainable
weights to establish connections between inputs and outputs, followed by a non-linear
activation function like ReLU. Depending on the learning task, the final fully
connected layer acts as a predictor, with the number of nodes adjusted to
match the desired target outputs and the activation function selected accordingly.
Common activation functions for the final layer encompass sigmoid for binary
and multiclass classification, softmax for multiclass single-class classification, and
identity for regression tasks involving continuous values. For example, in multiclass
classification, the last layer acts as a classifier with output nodes matching
the number of classes, and the activation function, typically sigmoid, predicts
probabilities for each class.

Training ConvNets involves the iterative adjustment of learning parameters, such as
the weights of convolutional and FC layers, using backpropagation and gradient descent
optimization. In each iteration, the model’s performance is assessed by optimizing
the loss function, or cost function, by finding parameter values that minimize the
discrepancies between predicted outputs and ground-truth labels in the training dataset,
thereby achieving low error rates. Adam and stochastic gradient descent (SGD) are
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well-known optimization techniques in the optimization and gradient descent classes
[2, 96, 100].

CNN-based backbone networks have several characteristics. The stack of layers aims to
capture feature representations that transform low-level pixel data from raw images into a
discriminant high-dimensional data space, comprising high-level multi-resolution feature
maps that integrate both higher-level details like objects and lower-level data like edges.
In the same layer, the number of convolution kernels and feature maps is equal. The
extent of the receptive field of a feature map represents an area of the input image that
has been transformed into pixels of the high-level feature map [95]. Additionally, these
networks offer numerous advantages and are naturally superior for object detection tasks
due to their multi-resolution feature maps, hierarchical downsampling design, and resilient
parameter learning. Furthermore, resilient local feature extraction and outstanding
performance via convolutional kernel matching are made possible by their inductive bias
qualities, such as translation invariance, weight sharing, and sparse connectivity [85, 101].

However, optimizing these models poses challenges, as training may encounter issues
such as getting stuck in local minima or converging very slowly. Additionally, typical
problems like the vanishing gradient effect can be observed in these architectures,
where gradients diminish significantly during back-propagation, leading to very small
weight updates. Moreover, while CNNs excel at extracting features through sliding
independent convolutional windows, they may struggle to effectively capture global
feature information [85]. AlexNet and VGGs are commonly used CNN-based backbone
networks for deep object detection meta-architecture like SSD.

- Deep residual learning-based methods: The deep residual network (ResNet)
[102], a variant of CNN, introduces residual modules (or residual blocks) as a replacement
for the traditional sequential stacking of convolutional layers. Each residual module
allows the output from an earlier layer to be fast-forwarded and added to the output
of a later layer within the block. This addition occurs before the application of a
non-linear activation function, with this bypass connection referred to as a shortcut or
skip connection. Skip connections facilitate easier learning for the network, enhancing
its performance and mitigating the vanishing gradient problem. ResNet employs two
types of residual modules: basic and bottleneck, with the building block illustrated in
Figure 2.11 [96, 103].

For multiple reasons, the ResNet architecture, which has many stacked residual
modules, offers significant advantages over conventional CNNs. Its deep structure allows
it to produce various tiers of spatial representation and provides wide receptive fields
that capture fine-grained pixel information. ResNet efficiently divides the responsibilities
of classification and localization, improves computational performance at higher levels,
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Figure 2.11: A building block of residual learning.

and utilizes effective encoding techniques with basic arithmetic operations. Despite its
strengths, the current ResNet architecture has various shortcomings that need further
investigation and improvement. These challenges include preprocessing issues like batch
normalization and data augmentation techniques, architectural concerns such as the
balance between computational efficiency and practicality, the implications of adding
skip connections, and the trade-off between network depth and complexity. Additionally,
there are still issues with training, such as the susceptibility to adversarial examples, the
influence of biasing nonlinearities, and the potential impact of small local minima on
training stability [96, 103].

- Generative Adversarial Networks-based methods: Generative Adversarial
Networks (GANs) [104] are a type of unsupervised learning model that uses the principle
of maximum likelihood along with adversarial training techniques for tasks like object
detection [92]. It was initially employed for the generation of synthetic images. Unlike
most recent deep learning methods, which often require numerous labeled instances to
generalize well, GANs can be trained on data that is underrepresented or not included in
the datasets, allowing it to learn about the underlying true data distributions [105].

In a GAN framework, a pair of separate ConvNets collaborate closely. The first is
an unsupervised model, referred to as the generator "G", which is expected to generate
adversarial examples that can trick the system by drawing Gaussian-distributed random
samples. The second model, the discriminator "D", is a supervised model trained on both
synthetic data produced by the generator and real data from a dataset. Its primary goal
is to distinguish between real and generated data, effectively identifying and separating
the artificial images from the real ones [106].

The GAN model’s discriminator (D) and generator (G) undergo simultaneous training
until they achieve a state of equilibrium where D is unable to discriminate between
data produced by G and actual data. By employing an adversarial training strategy,
this technique seeks to improve the detection network by generating occluded and
distorted image samples using an adversarial network. An error signal is produced by
the discriminator when it misclassifies a generated image. In response to this signal,
the generator adjusts its parameters to improve the image. To optimize both models’
parameters, adversarial learning requires them to be trained jointly. This is frequently
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done using optimization algorithms like Adam. These algorithms adjust the parameters
of G and D to minimize their loss functions through the adversarial objective, similar
to a two-player, zero-sum min-max game. Binary Cross Entropy (BCE) is commonly
utilized as the loss function in the discriminator within GANs, serving to evaluate
the discriminator’s certainty in its classification of an image as either generated or
genuine[105].

Compared to CNNs, which are more scalable, GANs are more suitable for achieving
resilience in object scale variations. They are also quickly developing and finding
use in a variety of GAN variants and frameworks reported in the literature. These
variants and frameworks aim to address challenges in object detection tasks, including
self-supervised object detection, learning from synthetic images, domain adaptation,
detecting small-sized objects, feature generation, addressing object-level imbalance, and
implementing data augmentation techniques [106].

- Transformer-based methods: The Transformer [107], a model that has recently
gained prominence, exhibits increased flexibility to deal with massive datasets through
its adaptive parameter learning process, unlike CNNs’ static parameter learning. In the
past decade, integrating transformers as the neck or backbone in various deep object
detection frameworks has become a prominent research direction. The revolutionary
accomplishments of transformer models in computer vision have significantly impacted
this development [85].

One reason why transformer-based detection algorithms work so well at recognizing
objects is that they leverage self-attention techniques to overcome some of the drawbacks
of CNN-based deep object recognition models. Relative positional encoding is used to
preserve translation invariance, and enough sets of heads are centered on every pixel in the
convolutional receptive field for the self-attention process to resemble convolutional layers.
This comprehensive attention operation effectively integrates local and global attention,
seamlessly deriving attention weights based on feature correlations [?, 95, 101]. Another
reason for the success of transformers is their capacity to comprehend and encompass
intricate long-range relationships among objects, effortlessly acquiring comprehensive
global information. Moreover, their scalability allows for training large models on
extensive datasets without encountering performance limitations [108, 85].

However, in real-world scenarios such as autonomous driving, transformers have several
drawbacks. Their substantial computational burden and complexity, influenced by
factors such as storage requirement, energy consumption, performance trade-offs, and
the ineffective use of transformers to represent image data in sequences, pose significant
challenges. This necessitates the development of lightweight transformers for efficient
deployment, along with the utilization of contextual object information and in-depth
basic understanding to enable advancements in model optimization [101].
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According to the literature, there are a couple of algorithms for object detection based
on transformers: DETR-series and ViT-series [85, 95].

- Neuro-symbolic models-based methods: As a part of hybrid reasoning methods,
neuro-symbolic Computing (NSC) aims to combine knowledge-based reasoning with
ML. A subset of NSC is specifically designed to integrate DNNs with neuro-symbolic
reasoning. These models support both "data-driven" deep learning, based on learning
from complex data like images and sensorimotor data, and "knowledge-driven" symbolic
reasoning, which uses complex representations of knowledge such as knowledge bases,
semantic networks, and ontologies. This integration is achieved through a tightly coupled
framework that facilitates enhanced object recognition capabilities[109, 110].

Current DL models typically learn object representations from high-dimensional
raw features, which are often sub-symbolic distributed representations. In contrast,
neuro-symbolic models aim to derive symbols from pixel data, utilizing symbolic
representations instead of raw pixel space. Symbolic representation offers a compressed
form of raw features to depict object attributes such as location, scale, and appearance in
a more compact symbolic space. This approach enables high-level abstraction, reasoning,
and learning, maintaining concepts and knowledge in a hierarchical and structured
format. Symbolic knowledge and its associated reasoning can support deep learning model
building in several ways. This integration can take place in the pre-processing stage for
data augmentation performing, in hidden layers as components of the architectural layout
or optimization functions, and in post-processing stages for model prediction verification
[111, 109].

Neuro-symbolic models show potential in various areas: they can incorporate symbolic
knowledge into neural representations or parameters, improving model controllability
by aligning neural model behavior with high-level goals and symbolic representations.
They also offer the possibility of more effective data utilization and can greatly
enhance interpretability, generalization capabilities, robustness, and explainability [110].
Nonetheless, the symbol grounding problem, which deals with integrating highly abstract
symbolic knowledge with neural representations obtained from actual raw input, such as
text or images, remains a significant barrier to neuro-symbolic AI[112].

In the literature, a notable trend in neuro-symbolic approaches involves the integration
of logic and neural models, known as logic-based neural models. The most typical
neuro-symbolic, end-to-end object detection architectures are Logic tensor networks
(LTN) [112] and its version Faster-LTN [113].

2.1.3.3 Anchor-related Classification

Generally speaking, there are two types of deep object detectors distinguished based on
the assumption regarding prior anchor boxes, as detailed below [85, 114, 115]:
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- Anchor-based methods: Anchor-based techniques employ an anchor mechanism
designed to enhance the precision of bounding boxes and decrease computational
overhead. This involves generating multiple candidate anchor boxes to characterize object
dimensions, positions, and shapes in the image. These anchor boxes are then used to
predict the category for each object and refine their coordinates to ultimately yield the
refined anchor, which serves as the final prediction [114].

Anchor boxes are pre-defined rectangular shapes strategically placed across the feature
map with specific dimensions and aspect ratios. These dimensions and ratios are specified
to represent the range of object sizes and shapes present in the training set. During the
detection phase, these anchor boxes are uniformly distributed over the image, using the
same configuration for every image analyzed. The network predicts properties for each
anchor box tile, including probability scores, background likelihoods, intersection over
union (IoU), and positional adjustments, rather than the bounding boxes themselves.
To ensure the model focuses on real objects, a threshold is specified for the estimated
likelihood and computed IoU. Guided by the ground truth information, a loss function
for every anchor box is calculated using these thresholds [92, 115].

Anchor-based detectors distribute anchors of varying sizes across different levels of a
feature pyramid, enabling the detection of multiple objects, including those of different
sizes or those that overlap [94]. Anchors act as references for regression and as candidates
for classification, facilitating the generation of proposals in two-stage detectors and the
determination of final bounding boxes in one-shot models[115].

Anchor-based methodologies represent a sophisticated technological approach, offering
mechanisms for identifying positive samples crucial for classification and regression tasks.
Nonetheless, configuring anchor boxes manually introduces a series of complications [92,
85]:

• Detection across scales: The reliance on hyperparameters, such as the dimensions
and aspect ratios of anchor boxes, can adversely affect detection capabilities across
different scales.

• Model Generalization: The reliance on artificially predetermined anchor boxes
may compromise the model’s ability to generalize across various scenarios.

• Imbalance between classes: A large portion of anchor boxes generated are
negative samples, creating a significant imbalance between positive and negative
samples.

• Positioning and background noise: Positive sample square anchor boxes may
encounter issues with precise positioning and background feature interference.

• Matching ground truth and IoU: The methodology’s effectiveness is hindered
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by the scarcity of ground truth bounding boxes and the IoU matching process
between these and the anchor boxes.

- Anchor-free methods: Anchor-free methods operate similarly to anchor-based
techniques but without using carefully designed, pre-defined anchor boxes. Instead, they
identify objects directly by focusing on a key, central point, or area (grid of cells) within
the object [114]. Beyond the placement of multiple anchors at each location, the core
concept of these strategies is to make dense predictions at the pixel scale, either by
setting up initial anchor points or by leveraging key feature points to infer the bounding
box coordinates. This reveals that anchor-free algorithms are generally classified into two
groups: one focuses on key points and the other on anchor points [85].

There are several advantages to eliminating anchor boxes[94]:

• It reduces the number of design parameters requiring meticulous adjustment.

• It improves the model’s capacity for generalization by removing the
hyper-parameters associated with anchor boxes.

• It produces a simpler model, enabling faster training and inference times and lower
memory usage by avoiding anchor box-related calculations.

2.1.3.4 Detection-related Classification

As seen in Figure 2.6, both traditional and deep detectors can perform 2D and 3D
object detection, depending on detection output.

- 2D object detection: The 2D object detector heavily relies on RGB images to
estimate the 2D bounding box of detected objects, guaranteeing accurate results within
the image plane. This typically entails using well-defined detection frameworks and
datasets.

Regarding the progress in 2D object detection frameworks, they can be separated
into anchor-based and anchor-free categories based on the utilization of anchor boxes in
the detection process. Most frameworks share a common CNN backbone, enabling an
efficient end-to-end detection. However, a recent approach employs the most attractive
transformer architecture to support feature extraction and fusion.

However, 2D detection on the image plane lacks crucial information about the 3D
position of objects. It fails to fulfill the depth information requirements of real 3D space,
hindering its application in trajectory planning and collision avoidance tasks critical for
safe driving systems.

- 3D object detection: The field of 3D object detection is gaining more and more
attention due to the proliferation of sensor technologies providing 3D information. 3D
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object detection entails generating three-dimensional (3D) bounding boxes and estimating
objects’ location, orientation, and size in three-dimensional space. This differs from 2D
object detection, which estimates object position and dimensions on the image plane,
creating 2D bounding boxes. This method adds a third dimension to dimension regression
and localization by introducing depth information in predicted coordinates.

Applications for 3D object detection can be found in autonomous driving, where
detectors use sensor data to accurately understand the 3D environment, enabling
interaction and navigation in real driving areas. However, 3D object detection is more
than just an extension of 2D algorithms, given the following characteristics [116, 115]:

• Precise localization requires depth estimation, but there is a scarcity of labeled 3D
datasets.

• Estimating depth becomes harder due to the absence of geometric constraints,
particularly for distant or occluded objects.

• Real-time detection becomes difficult due to the increased model complexity and
computation burdens caused by the large multi-dimensional data and additional
dimension regression.

• Processing diverse sensor data sources requires specific fusion techniques.

• Developing standards for model development necessitates a tailored evaluation
system to establish benchmarks.

Frameworks for 3D detection of objects can be classified into broad groups based on
input type, i.e., sensor modality. These groupings include image-based methods, point
clouds techniques, and multi-sensor fusion approaches [116, 117, 118, 12, 85].

2.1.4 Recent Architectures
This subsection presents popular frameworks proposed for object detection within the
deep learning paradigm.

- CNN-based deep object detection frameworks: Due to the deep learning
revolution and its promising results, many researchers have recently focused on employing
CNNs for object detection tasks. As mentioned in Subsection 2.1.3, CNN-based
deep object detection involves two fundamental tasks for accurate detection: object
classification, which identifies the category of objects, and object localization, which
determines their precise coordinates. As discussed in Subsection 2.1.3.1, CNN-based
detection frameworks generally fall into two categories: one-stage and two-stage
frameworks, with the most popular ones presented below:

• One-stage (regression-based) algorithms

48



Chapter 2. Object Detection in Autonomous Driving 2.1. Object Detection

– YOLO series: As mentioned in Subsection 2.1.3.1, the YOLO series stands
out as an extensively explored framework to build various state-of-the-art
meta-architectures for object detection, particularly in real-world applications
like autonomous driving. Originating from the work of Redmon et al. [119],
YOLO (You Only Look Once) is an anchor-based algorithm known for its
speed and accuracy in performing 2D object detection in images and videos.
This model simplifies object detection to a single regression problem, where the
entire image is analyzed in a single neural network pass to directly predict object
bounding boxes and class probabilities, enabling real-time detection. The model
uses a CNN for feature extraction, discarding traditional sliding window methods
for grid-based image division. Each grid cell predicts a fixed number of bounding
boxes and their corresponding class probabilities, using anchor boxes to improve
prediction accuracy. The YOLO series includes several versions, ranging from
YOLOv1 [119] to YOLOv8 [120], each with improvements in accuracy, speed,
and other aspects. This discussion focuses on the YOLOv3 model, emphasizing
the rationale behind our investigation of its potential applications.

∗ YOLOv3: YOLOv3 [121] enhances the efficiency of object detection by
merging all necessary stages into one unified network, eliminating traditional
steps like region proposal generation and feature resampling for a seamless
end-to-end solution. The meta-architecture of the YOLOv3 model, shown
in Figure 2.12, consists of a CNN-based backbone network and a dedicated
detection head. The backbone is built upon the advanced Darknet-53
architecture, the successor of Darknet-19, with a total of 53 convolutional
layers for effective feature extraction, alternating between 3 × 3 and 1 × 1
kernels. The model adopts a Feature Pyramid Network (FPN) to support
multi-scale prediction, allowing for accurate bounding box estimations at
three scales. The dedicated detection head predicts bounding boxes and
class probabilities over three distinct layers, each designed to detect objects
at varying scales. Instead of the traditional softmax classifiers, YOLOv3 opts
for independent logistic classifiers in its output layer. It processes images
with a resolution of 416 × 416, dividing them into S × S grid cells where
each cell is tasked with object detection and can predict up to B bounding
boxes. YOLOv3 can generate three feature maps of different sizes (13× 13,
26 × 26, and 52 × 52), each providing three bounding box predictions per
position that include an objectness score, four bounding box coordinates,
and class probabilities for C classes. The resulting tensor has a dimension
of N × N × [3 × (4 + 1 + C)], where N is the dimension of each feature
map (see Figure 2.13). The model predicts class probabilities using binary
cross-entropy loss to ensure accuracy. However, it calculates each objectness
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Figure 2.12: Structure of YOLOv3 [1]

score as follows [122, 1]:

Cji = Pi,j(Object)× IOUtruth,pred (2.1)

The objectness score, denoted as Cji, reflects the confidence level of the
jth bounding box in the ith grid cell detecting an object. This score is
determined by Pi,j(Object), a function that evaluates the presence of an
object within the bounding box.
The intersection over union (IOUtruth,pred) between the predicted and the
ground truth bounding boxes represents an effective metric for evaluating the
accuracy of the bounding box predictions. To improve prediction precision,
the YOLOv3 algorithm integrates the binary cross-entropy between the
predicted and actual (ground truth) objectness scores into its loss function,
resulting in more accurate object detection outcomes.
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Figure 2.13: prediction output of YOLOv3

E1 =
S2∑
i=0

B∑
j=0

Wobjij [Ĉji log(Cji)− (1− Ĉji) log(1− Cji)] (2.2)

where S2 is the number of grid cells in the image, and B is the number of
bounding boxes. The terms Cji and Ĉji represent the predicted objectness
score and the ground truth objectness score, respectively. Each bounding
box position is based on four predictions: tx, ty, tw, th, assuming that (cx, cy)
is the offset of the grid cell from the top left corner of the image. The center
position of the final predicted bounding boxes is offset from the top left corner
of the image by (bx, by). These values are computed as follows[122, 1]:

bx = σ(tx) + cx

by = σ(ty) + cy

(2.3)

where σ() is the sigmoid function. The width and height of the predicted
bounding box are calculated as follows:

bw = pwetw

bh = pheth
(2.4)
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The values pw and ph represent the width and height of the bounding
box prior (anchor box), respectively, which are determined through
dimensional clustering. The ground truth box consists of four parameters
(gx, gy, gw, andgh), which correspond to the predicted parameters bx, by, tw

and th, respectively. Based on equations 2.3 and 2.4, the true values of
t̂x, t̂y, t̂w and t̂h can be obtained as follows[122, 1]:

σ(t̂x) = gx − cx

σ(t̂y) = gy − cy

t̂w = log(gw/pw)
t̂h = log(gh/ph)

(2.5)

One component of the loss function in the YOLOv3 model involves
calculating the squared error for coordinate predictions. It can be expressed
as follows [122, 1]:

E2 =
S2∑
i=0

B∑
j=0

Wobjij [(σ(tx)ji − σ(t̂x)ji)2 + (σ(ty)ji − σ(t̂y)ji)2]

+
S2∑
i=0

B∑
j=0

Wobjij [((tw)ji − (t̂w)ji)2 + ((th)ji − (t̂h)ji)2]
(2.6)

– Single Shot Multibox Detector (SSD): Developed in 2016, the SSD
framework outperforms YOLOv1 by applying a multi-scale feature map to object
detection. This approach increases the speed of detection while preserving
Fast-RCNN accuracy. As shown in Figure 2.14, SSD combines regression
concepts from YOLO and Fast-RCNN into a unified model by employing
multi-scale regions in various image positions. The algorithm achieves good
results even with low input image resolution, with mAP reaching 74.3% and
speed reaching 59 FPS. However, it requires manual setting of the default box
and has lower detection performance for small objects [123].

• Two-stage algorithms

– Region-CNN (R-CNN): R-CNN represents one of the initial frameworks
that features deep learning techniques with conventional methodologies in
object detection. This approach incorporates the selective search technique
for extracting region proposals and SVMs for classification. R-CNN detection
consists of four steps: receiving input images, extracting 2000 region proposals,
inputting region proposals, computing CNN features, and using SVM for
classification. Figure 2.15 illustrates the main steps of R-CNN [124].

– Faster R-CNN: Developed in 2015, Faster R-CNN leverages the Region
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Figure 2.14: Network structure of SSD

Figure 2.15: R-CNN main steps

Proposal Network (RPN), a CNN-based generator for region proposals and
predictor for object boundaries and scores. This eliminates the need for
the conventional selective search method, enhancing image processing speed
by disregarding the generation of irrelevant region proposals. Despite these
improvements, Faster R-CNN still requires significant computational efforts for
region proposal classification, making real-time detection unattainable [125].
The detection pipeline of the Faster R-CNN framework is highlighted in
Figure 2.16.

– Spatial Pyramid Pooling Network (SPP-NET): SPP-Net introduces a
novel approach to address the inefficiencies of feature extraction with fixed-size
raw images. The full image is fed into the convolution layer followed by
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Figure 2.16: Faster R-CNN detection process

processing through the SPP layer, which produces a fixed-length feature map.
Maximum pooling is applied to the feature map, creating blocks of varying
scales. Despite these improvements, the SPP-Net framework still uses the
multi-stage architecture of R-CNN, while proposing new techniques to address
certain issues. The key innovation of SPP-Net is its ability to handle images of
different scales [126]. Figure 2.17 illustrates the processing pipeline of an input
image through SPP-Net.

Figure 2.17: SPP-Net input images

Table 2.1 briefly compares several CNN-based models.
-Transformer-based deep object detection frameworks: The adoption of the

transformer model for object detection tasks has gained significant prominence. Certain
attributes of the transformer have addressed some of the limitations of CNN. As
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Table 2.1: Comparison of CNN-based deep object detection algorithms

CNN-based models Two-stage
algorithms

One-stage
algorithms

Base model Limitations

R-CNN
√

× -Receives input images,
-extracts about 2000 region
proposals, -inputs region
proposals and computes
CNN features, -uses SVM to
determine classification

-Long training time in multiple
stages and feature map
calculation, -huge space
occupation, -long testing time
due to feature map calculation
for each candidate region.

SPP-NET
√

× -Hole image as input into CNN,
-uses the SPP-Net layer and
accepts image scaling. -SPP
layer reproduces image vectors
with the same length.

-Fine-tuning parameters
difficulty provides low
efficiency, -reproduces a
new feature map for each
image.

Fast R-CNN
√

× -Uses region of interest pooling
Layer instead of convolutional
layer, -Multi-task loss for the
region proposal and position
regression.

-The region proposal extraction
is obtained using selective
search, -wastes time on region
proposal detection.

Faster R-CNN
√

× -Uses Region Proposal Network
(RPN), -Object and score
boundaries are predicted at
the same time.

-Slow speed,- Nonsufficiency
in background learning,
-Occluded objects with
NON-maximum suppression.

YOLO ×
√

-Combines the generated
region proposal and detection
in the object detection task,
-detects target classification
and positioning in the image
at one time.

-Low recall rate,
-Nonimprovment of detection
on tiny objects, -lacks of
accuracy.

SSD ×
√

-SSD maintains the accuracy of
Fast-RCNN while maintaining
the detection speed of YOLO,
-SSD puts the regression of the
idea of YOLO and the anchor
mechanism of Fast-RCNN in
one model.

-It’s still poor at finding tiny
objects, -Manually setting
different parameters like the
min, and the max size value of
the box.

RetinaNet ×
√

-Combins Resnet + FPN,
-uses Focal Loss which
is a modification of the
cross-entropy loss function.

-The problem of noise
interference, -provides the
necessity of the correct labeling
of samples.

CenterNet ×
√

-proposed based on CornerNet,
-uses Cascade Corner Pooling.

-The detection of one center
point and the two objects as
one object
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mentioned in Subsection 2.1.3.2, the ViT and DETR series are among the most studied
algorithms for object detection based on transformers, and they are described below:

• Vision Transformer (ViT): Vision Transformer [127] is a pure transformer-based
detector, initially proposed for the classification task and later tailored to the
detection task. It introduces a universal visual backbone that transforms the image
into a sequence instead of using convolution for feature extraction and integrates
the renowned multiscale feature fusion module [85, 101]. This process starts by
dividing the input image into numerous sparse patches, the number of which depends
on the dimensions of the input image and the resolution of each patch. For
classification, these patches are then linearly embedded and fed into the transformer
encoder along with their positional data and a picture representation of the entire
image. To adapt the patches for processing across all transformer layers, they are
flattened using a constant latent vector and mapped to a dimension size using a
trainable projection. Finally, the output related to each patch is fed to a single
hidden-layer MLP, which then outputs the predicted class. The model design,
illustrated in Figure 2.18, adheres to the original transformer architecture, making
it both scalable and efficient. Despite its advancements, the ViT framework has
several limitations, such as heavy dependence on data, significant computational
demands, single-scale and low-resolution output feature maps, fixed-scale tokens, and
challenges in handling long sequences generated by high-resolution images, as well
as encoding positional information during the patch-to-vector conversion process.
To address these issues, alternative solutions like the Shifted Window Transformer
(Swin Transformer) [128] and Pyramid Vision Transformer (PVT) [129] have been
proposed [95, 115, 101].

• DEtection TRansformer (DETR): DETR is a transformer neck-based detector
that represents a significant shift in object detection techniques by merging
transformers and CNNs, moving away from conventional approaches that rely on
hand-crafted modules like anchor generation and NMS post-processing. It is a
pioneering work that treats object detection as a straightforward set prediction
task, allowing for end-to-end training. DETR employs a pre-trained CNN, typically
Resnets, for extracting features, fed as a single vector supplemented by positional
encodings into a transformer encoder-decoder structure. The novelty of DETR
lies in its decoder’s ability to process a set of learnable object queries in parallel,
directly determining class labels and bounding box parameters. This process
avoids traditional object detection complexities by using a bipartite matching
algorithm for ground truth labeling and optimizing a Hungarian loss considering both
bounding box prediction accuracy and class labels, with SGD minimizing this loss.
DETR demonstrates performance comparable to traditional two-stage CNN-based
object detectors, such as Faster R-CNN, due to its simpler and more adaptable
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Figure 2.18: Vision Transformer base model structure

architecture reducing reliance on predefined information and specialized layers [95].
However, it faces some obvious shortcomings like delayed training convergence,
decreased accuracy for smaller objects detection, efficiency concerns, and a long
training period due to substantial data requirements [101, 95]. Following DETR’s
inception, innovative variants such as Deformable-DETR [130], SMCA-DETR [131],
ANCHOR-DETR [132] and YOLOS-DETR [133] emerged to reduce computational
needs, particularly regarding the self-attention module. While these enhancements
provide notable improvements in various object detection benchmarks, unresolved
issues and potential development areas remain, focusing on refining attention
mechanisms and enhancing both the number and quality of object queries for greater
accuracy and efficiency [134].

Designing a safety-critical AV perception system using a deep learning paradigm
requires a comprehensive closed-loop process, including vehicle data collection, valuable
data selection and annotation, model training or fine-tuning, validation, and deployment.
Building robust deep models for various driving situations necessitates a massive and
diverse collection of labeled training samples. Evaluating defects and failures throughout
the deep learning development process is essential, as the functional safety risks associated
with vehicle operations may raise serious safety concerns.

In response to these challenges, primarily related to passive fully supervised learning
paradigms, researchers are seeking ways to reduce the cost of annotation by using
less strict supervision techniques. Concurrently, efforts are being made to explore
label-efficient and cost-effective learning methods that can be integrated into the deep
object detection model training framework, as examined in the following subsection.
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2.1.5 Cost Reduction Methods
In practice, the success of most deep object detectors relies on a passive supervised
learning paradigm that matches input images to annotations of the objects in those
images. However, the dependence on large, accurately annotated datasets, the
labor-intensive process of annotating densely distributed road objects, and the high cost
of training have prompted the exploration of less supervised methods. This subsection
examines the most studied approaches to reducing supervision requirements.

- Training on a small dataset: Acquiring a large amount of accurately annotated
data for autonomous driving is expensive and time-consuming. In addition to data
augmentation, transfer learning is a commonly used technique for efficiently training
models on smaller, sparsely labeled datasets. This technique involves pre-training a
network on a large-scale dataset like ImageNet, assuming that extracted features from
this large dataset can be shared. The pre-trained network is then applied to the specific
task on a smaller dataset. Currently, pre-trained models from the ImageNet challenge
dataset, such as AlexNet, VGG, ResNet, Inception, and DenseNet, are widely used for
transfer learning.

As depicted in Figure 2.19, there are two primary approaches to applying pre-trained
networks to real-world applications: fixed feature extraction and fine-tuning. Figure 2.19
shows that, in fixed feature extraction, the convolutional backbone of the pre-trained
network remains unchanged, serving as a baseline feature extractor. Additional machine
learning classifiers or new fully connected layers are then built on top of this fixed feature
extractor, with training limited to specific datasets. Conversely, fine-tuning involves
updating the pre-trained model’s weights during training by using backpropagation to
adjust all or part of the convolutional baseline for the new task. This method enables the
acquisition of task-specific features while retaining the general features learned during
pre-training. Fine-tuning can involve adjusting all layers or selectively freezing earlier
layers while fine-tuning deeper ones [2].

Alternatively, deep transfer learning (DTL) extends transfer learning by considering
learning as a continuous task, e.g., progressive learning. Three primary types of
model-based techniques are commonly included in DTL initiatives. Progressive learning
entails introducing new layers for training on the target dataset while maintaining
some of the pre-trained model’s layers unaltered, in contrast to freezing CNN layers or
fine-tuning them. Beyond these, there is the adversarial-based technique, which employs
relational or adversarial strategies to extract features applicable to both source and
target datasets [135].

- Methods based on non-strongly supervised learning: As an alternative to
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Figure 2.19: Approaches to transfer learning: (a) Fine-tuning. (b) CNN baseline for feature extraction.
[2, 3].

59



Chapter 2. Object Detection in Autonomous Driving 2.1. Object Detection

transfer learning, a growing number of researchers are interested in exploring the use
of unlabeled data to address limited dataset challenges and reduce labeling burdens.
Examples of such approaches include semi-supervised learning, weakly supervised
learning, and deep reinforcement learning, reviewed below:

• Methods based on semi-supervised learning: Semi-supervised learning (SSL)
is an effective solution for building safe and robust deep object detector models
in dynamic autonomous driving environments. This is achieved by customizing
supervised and unsupervised learning algorithms to leverage the large set of
unlabeled data alongside a limited amount of labeled data throughout the training
framework [136]. This strategy decreases dependence on labeled data and facilitates
the exploration of latent patterns in unlabeled examples, significantly reducing the
volume of labeled samples required, the learning time of detector models, and the
need for extensive labeling effort [137]. Using assumptions such as the smoothness,
cluster, and manifold hypotheses, SSL-based object detection algorithms attempt
to correlate predictions with learning objectives to determine how similar or nearby
samples are likely to be classified. Based on these assumptions, four main strategies
currently guide SSL in object detection [138]:

– Pseudo labels: Using model predictions as labels for unlabeled data.

– Consistent regularisation: Ensuring model predictions are stable under small
perturbations of the input.

– Graph-based: Leveraging the data structure to propagate labels through the
graph.

– Transfer learning-based: Applying knowledge from large datasets to improve
performance on the target task.

Despite the benefits of semi-supervised models, there remains a performance
gap compared to fully supervised detectors, especially when dealing with
transformer-based models [136].

• Methods based on weakly supervised learning: Weakly supervised learning
offers an alternative approach to labeling irregular objects or objects obscured by
occlusions in high-resolution images or videos, as it only requires coarse-grained,
image-level labels. These networks are trained to make decisions on unknown tasks,
reducing the complexity of label annotation for real-world driving applications.
In the context of object detection, weakly supervised approaches typically utilize
certain types of weak supervision, such as using larger-scale but lower-quality
training datasets created with cost-effective annotators. In these situations, a
few instances are strongly labeled, while other classifiers, heuristic rules, remote
supervision, or crowd workers can provide weakly and imprecisely annotated
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instances [139]. However, the quantity of annotated training data significantly
impacts the performance of these detection models. Additionally, the model may
struggle to identify rare object classes that have minimal or no representation in the
training dataset.

• Methods based on deep reinforcement learning: Recent research suggests
that object localization can be viewed as a dynamic decision process solvable
by reinforcement learning (RL). Inspired by behavioral psychology, RL provides
a formal framework for decision-making tasks in various applications, such as
autonomous driving. Unlike supervised or unsupervised learning, RL is not
dependent on labeled datasets or predetermined rules. Instead, it uses agents that
interact with their environment to maximize cumulative rewards and learn optimal
policies through trial and error. The agent’s learning process is guided by feedback
in the form of rewards or penalties, aiming to optimize objectives over time. Unlike
supervised learning, RL provides feedback after every action, allowing models to
adjust based on experience. RL addresses several important issues, such as delayed
input, lack of a supervisor, and sequential decision-making. Deep reinforcement
learning (DRL), a combination of RL and deep learning, uses neural networks
to manage continuous states or actions. DRL includes both model-based and
model-free algorithms [140].

- Enhanced numerical computation: This approach aims to speed up the
implementation of object detectors from the bottom, achievable through three methods
[141]:

• Speed up with integral image: The integral image is a fundamental technique in
image processing that enables rapid computation of summations over image regions.
It can be applied for faster processing of more generic object features, such as gradient
histograms and color histograms. A common application involves computing integral
HOG maps to speed up HOG processing, which has been utilized in fast pedestrian
detection, despite some loss in accuracy.

• Speed up in frequency domain: In CNN-based object detection, convolution is a
basic numerical procedure that involves calculating the inner product of the model’s
weights and the feature map. By leveraging the convolution theorem from signal
processing, the Fourier transform provides a method to accelerate convolutions,
assuming that the Fourier transform of a convolution operation is equivalent to
a point-wise product in the Fourier space of the signals involved. Techniques such
as the Fast Fourier Transform (FFT) and the Inverse FFT (IFFT) can expedite this
computational process.
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• Vector quantization: Vector quantization (VQ) is a traditional signal processing
technique that approximates a large portion of a data distribution using a limited
number of prototypical data points. This method speeds up the object detector by
accelerating the inner product process.

- Multi-task, Multi-dataset training: Many existing object detectors are tailored
to specific domains and employ a single-task learning paradigm optimized for a singular
metric. This approach may overlook other relevant information, leading to limitations
in overall model performance and a lack of adaptability across different environments.
Multi-task learning involves training a model to perform multiple tasks simultaneously,
leveraging shared knowledge and computational resources. By jointly optimizing for
multiple tasks across different domains, multi-task object detection models can effectively
detect and localize new concepts by leveraging knowledge transfer across related tasks
without sacrificing performance on previous tasks (e.g. semantic segmentation and object
detection). This facilitates improved decision boundaries, enhanced data efficiency, faster
model convergence, reduced overfitting, and increased generalization ability [142].

Moreover, access to extensive datasets featuring bounding box annotations greatly
advances object detection. While merging data from various public datasets offering
annotations for diverse categories seems advantageous, the differing label spaces pose
challenges. Multi-dataset training addresses this issue by leveraging datasets with
distinct label spaces to train a unique object detector capable of making predictions
across all labels. This method enables the extraction and consolidation of relevant
categories from varied datasets, resulting in substantial useful advantages [143, 144].

- Network pruning and quantization: "Network pruning" and "network
quantization" are key techniques frequently employed to accelerate CNN models.
Network quantizers primarily focus on converting networks to binary, shifting their
encoding from floating-point to binary values (e.g., 0/1), thus enabling the use of
logical operations to quantify their activations or weights. Modern network pruning
techniques often employ an iterative training and pruning procedure, wherein the
network architecture is trimmed by repeatedly removing a small subset of weights
deemed unnecessary at each training stage [141].

- knowledge distillation: Beyond image classification, knowledge distillation (KD)
has been widely applied to object detection tasks. KD is a method aimed at lightweight
modeling, transferring knowledge learned from a more complex trained model, "the
teacher," to a smaller, lighter model, "the student," performing the same task [85].
The teacher model is initially trained to detect objects. Subsequently, the smaller
student model is trained to imitate the teacher model’s prediction behavior and achieve
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performance that is either comparable to or better than the teacher model by picking
up essential features guided by the teacher. This method uses less memory and
processing power than the teacher model, allowing efficient object detector deployment
on resource-constrained devices. Furthermore, knowledge transfer for semi-supervised
learning via unlabeled data is facilitated from a fully-supervised teacher model to a
student model [136, 85].

The knowledge, distillation algorithm, and teacher-student architecture form the
foundation of a KD system. Three main knowledge distillation learning schemes for the
concurrent update of teacher-student models: offline distillation, online distillation, and
self-distillation [145]. The knowledge distillation learning process involves incorporating
the hidden layers’ outputs of the previously trained teacher model into the loss functions
of the currently learned student model. In contrast, transfer learning involves using
acquired parameters from a pre-trained model to initialize the parameters of the model
under training [146].

- Detection with domain adaptation: Since most object detection models are
trained on independently and identically distributed (i.i.d.) data, handling non-i.i.d.
data presents challenges, especially with limited and significantly different image data in
the driving domain from the training set. In such scenarios, domain adaptation plays a
critical role in bridging the divide between domains.

As a form of transductive transfer learning, domain adaptation addresses the variation
between two distinct data distributions: the source domain (abundant labeled data),
and the target domain (lacking labels). The primary goal is to mitigate the distribution
discrepancy between these domains to ensure that object detection models generalize well
in diverse vehicular environments [85, 147].

Several techniques have been investigated to acquire domain-invariant feature
representations, including feature regularisation and adversarial training at the image,
category, or object levels. Cycle-consistent transformation techniques have also been
utilized to bridge the gap between the source and target domains. Furthermore, some
methods integrate various techniques to attain enhanced outcomes [141].

- Active learning: Active learning is a machine learning framework that offers a
more efficient alternative to traditional passive learning, where the learning algorithm
leverages model predictions and interactively queries a human expert (Oracle) for true
labels to mitigate the burden of extensive manual annotation and improve performance
with fewer labeled instances.

unlike random labeling in the passive learning scheme, active learning algorithms
interactively select the most valuable data for labeling from a large pool or stream
of unlabeled data. This process is crucial for limited or expensive labels, as it can
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maximize accuracy while minimizing labeling costs. Common criteria for selecting
data include informativeness, which quantifies model uncertainty, and representativeness,
which captures input pattern structure. Although no single strategy is universally
effective, several heuristics assist in the selection process [139].

Having explored various aspects of object detection, especially within the realm of deep
learning, the following section shifts focus to the application of DL-based object detection
in the context of autonomous driving. This aims to understand how to achieve reliable
and efficient autonomous driving solutions.

2.2 Object Detection for Autonomous Driving

Several attempts to enhance road safety, which motivate the widespread production of
AVs, address the perception task as a primary operation towards safe navigation. This is
achieved by detecting and localizing road objects, including vulnerable road users. This
section covers the intricacies of object detection systems tailored for autonomous vehicles,
highlighting the target objects, detection sensors, and datasets related to the proposed
algorithms in this context, followed by the challenges faced.

2.2.1 Commonly Detected Objects
In autonomous driving, road objects are categorized into static and dynamic types. Static
objects, such as buildings, lane markings, traffic lights, and signs, have a defined shape
and fixed, predictable positions. Conversely, dynamic objects, including animals, cyclists,
pedestrians, and vehicles, are considered vulnerable to collisions due to their movement.

Detecting dynamic objects is more challenging than detecting static ones, which
is relatively straightforward, due to several factors: object occlusion, detection of
small objects, and the need to balance accuracy with speed. These challenges are
further complicated by issues like sparse visual representation of small targets, complex
backgrounds, outdoor environments, and on-board camera calibration errors.

This subsection focuses on detecting the most studied vulnerable road users, who are
most likely to collide with the AV, as described below [11, 148]:

• Pedestrian detection: Despite the issues related to moving objects, most popular
pedestrian detection datasets present a more complicated background and contain
many small foreground objects. Additionally, pedestrian detection remains a
challenging task due to various pedestrian-specific factors, including large variations,
low resolution, and occlusion issues.

1. Large variations: Compared to generic objects, pedestrians exhibit a large
variance in scale, which is a critical issue for accurate detection due to the
difference in features and appearance between small and large instances. For

64



Chapter 2. Object Detection in Autonomous Driving 2.2. Object Detection for Autonomous Driving

instance, small-scale pedestrians are primarily delineated by their contour, while
large-scale pedestrians have a more elaborate appearance with facial and body
details. As a result, distinguishing small-scale pedestrians from background
clutter (e.g., trees) becomes difficult.

2. Low resolution and poor visibility: In low-resolution images, pedestrians
are less discriminated from backgrounds. In these cases, discrimination relies
more on the semantic contexts. Pedestrians can appear together with cluttered
backgrounds, such as traffic signs, pillar boxes, and mannequins in shopping
windows, which share similar visual features. Without extra semantic contexts,
detectors working with low-resolution inputs cannot discriminate between them,
leading to decreased recall and increased false alarms. Pedestrians often
appear in low resolution (less than 20×40 pixels) within complex backgrounds,
as shown in Figure 2.20a, frequently present as hard negative samples.
Moreover, although color cameras have difficulty capturing useful information
in low-light conditions, most current pedestrian detectors rely on color images.
Consequently, distinguishing between background and foreground under low
resolution and poor visibility at night remains a complex problem.

3. Occlusion: Detecting highly occluded pedestrians is challenging. In complex
scenes, pedestrians gather in groups and are easily obscured by other objects.
Depending on the degree of overlap between the occluding object and the
pedestrian’s pose, occlusion can arise in a wide range of configurations (inter
and intra-occlusion). Similar to scale, the detection quality is degraded as the
level of occlusion increases. As shown in Figure 2.20b, accurately locating each
pedestrian in crowded scenes requires separating feature representations—one
representing the visible pedestrian part and the other representing the occluding
region. However, detectors often fail to locate each individual accurately, leading
to multiple false positives due to inaccurate localization. This problem becomes
even worse for CNN-based detectors, where convolution and pooling layers
generate high-level semantic activation maps but blur the boundaries between
closely-spaced instances.

4. Illumination variations and other environmental factors: Detecting
pedestrians under low illumination conditions is particularly difficult. Low
illumination reduces the amount of information available about edges and other
basic low-level features in an image. Additionally, under low-level illumination,
image noise becomes more prominent, further degrading performance. Similarly,
other environmental factors, such as weather, can also negatively impact
detection performance.

5. Pedestrian modeling and representation: Compared to general objects,
pedestrians exhibit relatively non-rigid orientation and deformation. Typically,
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graphical models and part-based models are used, where a pedestrian is
represented by templates consisting of components such as body parts, legs,
and head. These templates are then used to train classifiers for various occlusion
scenarios.

6. Cross dataset generalization: Generalization performance is a well-known
and fundamental problem in machine learning. Analyzing the generalization
performance of a machine learning system involves studying its performance on
various test datasets, which may differ from the training datasets.

• Vehicle detection: On-road vehicles are generally characterized by Complex
backgrounds, varying sizes, models, and orientations, and can be detected using
different sensor technologies such as machine vision, millimeter-wave radar, lidar,
and multisensor fusion. However, vehicle detection during both day and night
vision using optical sensors is very challenging due to the significant within-class
variabilities in vehicle appearance. Figure 2.21a illustrates how vehicles may vary in
shape, size, and color, while Figure 2.21b shows that a vehicle’s appearance depends
on its pose and can be affected by nearby objects. In complex outdoor environments,
such as those with low illumination conditions (see Figure 2.21c) or at night time,
distinguishing between the foreground and background image becomes difficult
due to the camouflaging of vehicles. Additionally, the unpredictable interactions
between traffic participants and cluttered backgrounds (see Figure 2.21d) add to
the challenge. Another key issue is ensuring robustness to vehicle movements in the
presence of camera vibration, a significant challenge in vehicle detection and tracking.
The primary reason behind the shaking cameras could be environmental factors such
as strong winds, resulting in blurred and obscure video footage. Furthermore, long
shadows often accompany moving vehicles on the road, reducing the algorithm’s
ability to detect and classify vehicles during the daytime. To summarize, researchers
address three main practical problems in vehicle detection: large variation in lighting,
dense occlusion where vehicles overlap with other vehicles, and large variation
in scale. Meanwhile, vehicle detection systems should be insensitive to changes
in illumination and weather conditions and accurately and efficiently separate
vehicles from image sequences. Additionally, vehicle detection systems require faster
processing than other applications, as vehicle speed is constrained by the processing
rate [6, 149].

• Traffic sign detection: Traffic sign detection and recognition play a vital role
in the functionality of AV perception systems. These signs are essential for the
safe and efficient navigation of roads, providing a broad spectrum of guidance
about road type, prohibitions, speed limits, and height limitations, as illustrated
in Figure 2.22a. Traffic signs typically fall into the following categories: warning,
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prohibitory, and mandatory. For better visibility, they are designed with distinctive
colors and shapes. However, precise positioning and categorization are required to
accurately detect and recognize traffic signs in vehicle frame inputs. Occlusion,
deformation, and long-tailed distribution are some of the issues that greatly impair
detector performance in this task (see Figure 2.22b) [7].

(a) Positive vs negative samples regarding resolution and
visibility (b) Detection quality regarding occlusion

Figure 2.20: Illustration of different pedestrian issues [4, 5]

(a) (Shape variations) (b) Pose variations

(c) Illumination conditions (d) Cluttered background

Figure 2.21: Some vehicle detection vehicle challenges related to vehicle appearance variations [6]

(a) Traffic signs classification
(b) Imaging conditions that could affect detector
performance

Figure 2.22: Analysis of traffic signs [7]
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2.2.2 Detection Sensor Technologies
Sensor technologies installed in AVs are among the most crucial sources for providing
precise and timely data for ADS, particularly for the scene understanding required by the
perception subsystem. As shown in Figure 2.23, the most widely used vision-based sensors
for 2D and 3D object detection are outlined in Table 2.2, along with the benefits and
drawbacks of each sensor. These exteroceptive sensors can be further classified according
to the information they capture, including visual sensors (such as monocular and stereo
cameras), LiDARs, radars, ultrasonic sensors, and sensor fusion, as elaborated below[150,
19, 12, 13]:

• Camera: Widely used as passive visual sensors in automotive applications, cameras
are typically positioned behind the front mirror to capture ambient light and
generate a 2D array of colored points (pixels) for AVs. With some modern
models incorporating multiple cameras to enhance visibility, they provide critical
data for detecting and locating moving or static objects based on captured
attributes like color, shape, texture, and depth (via triangulation). However, their
performance can be influenced by weather and lighting conditions, which can impact
detection accuracy. Against this background, two main vision-based object detection
approaches have been investigated: monocular and stereo vision-based approaches.
Monocular cameras offer detailed 2D environmental data but lack depth sensing
capabilities, whereas stereo cameras use multiple lenses and sensors to extract depth
information, though they require more computational resources.

• Light Detection and Ranging (LiDAR): LiDAR is an active time-of-flight
(TOF) sensing technology that measures depth data by lighting up the surroundings
with laser pulses, capturing the reflected light, and calculating the time each pulse
takes to return. To achieve accurate localization and mapping, such as in SLAM
(Simultaneous Localization and Mapping) processes, LiDAR creates a point cloud
(PCL), a sparse three-dimensional map of the surrounding area. LiDAR’s consistent
accuracy and reliability across diverse atmospheric conditions are key advantages for
its use in AVs. Although LiDAR can withstand changing weather and light conditions
compared to cameras, it cannot effectively analyze texture and color characteristics.
Despite challenges such as data sparsity and non-uniform point distribution, its
depth-measuring accuracy and ability to generate complex 3D environmental maps
are invaluable. Given the substantial cost associated with LiDAR technology, efforts
have been made to develop less expensive alternatives, such as solid-state and
infrared LiDAR, to enable wider application.

• Radio Detection and Ranging (RADAR): Radar leverages radio wave emissions
to actively identify near and far road objects by calculating their distance, direction,
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and speed, using electromagnetic waves across several millimeter wave (MMW)
bands, including 24 GHz, 77 GHz, and 79 GHz. The use of higher frequencies
improves the system’s resolution, allowing for the distinction of multiple objects
simultaneously within its visual range. Radar sensors typically function well within
short to medium distances (50 - 100 meters), with certain variants capable of object
detection up to and beyond 150 meters. They are especially valued in the context of
autonomous driving for their robust performance under a variety of environmental
settings, serving as a practical and accessible option compared to LiDAR technology.
Essential for vehicles equipped with ADAS, radar sensors support functionalities
like cruise control and collision detection. Importantly, they can also assess the
movement dynamics of detected objects and measure depth information using only
the sensing data, similar to LiDAR, aiding in the creation of 3D point cloud maps
for navigation and obstacle avoidance.

• Ultrasonic sensors: Ultrasonic sensors are designed to actively sense the
environment, detect objects on the road, and determine their distance from the
AV. By emitting sound waves from sonic transducers at a safe frequency range of
40 kHz to 70 kHz in automotive settings, these devices measure distance based on
the ToF principle—the time it takes for the reflected sonic waves to return from an
object. Despite their low cost, ultrasonic sensors offer multiple benefits, including
effectiveness under challenging weather conditions, long-standing reliability in the
automotive industry as parking sensors, and satisfactory accuracy for applications
requiring proximity sensing. Nevertheless, their accuracy can be affected by
environmental factors like temperature and humidity, which influence sound wave
propagation. To deal with this variability, many ultrasonic sensors incorporate
algorithms that adjust measurements to reflect current ambient circumstances.

• Sensor fusion: Beyond relying on cameras, a vision-based AV perception system
requires integrating a supplemental reliable sensing technology like LiDAR, for
boosting camera functionality in detecting various on-road object classes under
challenging ambient situations. This process, known as "multi-view fusion," involves
building more powerful detectors by combining information such as point cloud maps
and pixel images from different types of sensors. The backup sensor should function
reliably, taking over in case of malfunction or failure, thereby ensuring the safety of
the AV’s occupants.

2.2.3 Datasets for Autonomous driving
This subsection summarizes publicly available autonomous driving datasets for building
2D and 3D on-road object detectors [151, 152, 153, 154].
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Table 2.2: Characteristics, advantages and disadvantages of different sensors [11, 12, 13]

Camera
(Monocular/Stereo)

LiDAR RADAR

Detection distance < 50m 200-300m 250-1000m

Detection
precision

Related to the number
of cameras

In the range of 2cm In the range of 2cm

Detection angle In the range of 30 In vertical 360; In
horizontal 40

In the range from 10
to 70

Detection
resolution ratio

< 0.1ř In vertical 360; In
horizontal 40

3-5

Wave length 905nm 1mm-10mm

Advantages Low cost; different
fields of view;
high-resolution
RGB image; texture;
provides longer range
and features data;
depth calculation;
3D-localization of
objects

Accurate depth
information; less
susceptible to
weather and
light conditions;
panoramic
observation

Large field of view;
easier to develop,
resistant to bad
weather; higher
accuracy; better
resolution; smaller
package size.

Limitations High computational
requirements;
does not provide
straightforward
distance calculations;
limited by weather and
lighting conditions;
cannot calculate object
velocity

Expensive; lacks
texture attributes;
no color information

Large package size;
shorter sensing
range; more data
losses; narrow field
of view at short
distances.
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Figure 2.23: Autonomous vehicles sensor.

• BDD100K dataset: Released in 2018 by Berkeley DeepDrive Centre, BDD100K
[155] is a well-known driving dataset consisting of 100,000 diverse videos, each
averaging 40 seconds in length. It includes a series of annotated frames collected
under particular weather and time-of-day conditions. It allows research on how
weather and illumination affect object detection and tracking, lane detection,
semantic segmentation, and multitask learning.

• Caltech Pedestrian dataset: Since 2009, the Caltech Pedestrian dataset [156] has
become a popular and challenging benchmark for pedestrian detection. It comprises
approximately 10 hours of daytime urban traffic video recorded at a resolution of
640x480 and a frame rate of 30Hz. The dataset includes around 250,000 annotated
frames, providing temporal relationships between bounding boxes and comprehensive
occlusion details, featuring a total of 350,000 bounding boxes and 2,300 distinct
pedestrians. To train a pedestrian detector, the dataset is divided into 2975 training
images, 500 validation images, and 1575 images for testing. The performance of the
detector was initially evaluated using the miss rate vs false positives per window
(FPPW) metric, which was further changed to false positives per image (FPPI).
The miss rate, calculated in terms of true positives (TP), false positives (FP), and
missed detections (FN), is given by the following equation 3.1:

Missrate = FN

TP + FN
(2.7)

As a benchmark, the commonly used comparative statistic is the miss rate at 1
FPPI.

• Cityscapes: Designed specifically for complex urban scenarios, this dataset [157]
delivers pixel-level segmentation across 30 distinct object classes, encompassing
a variety of vehicles, pedestrians, roads, and traffic signs, making it a crucial
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benchmark for semantic segmentation projects within urban landscapes. Building
upon this, the CityPersons dataset [158] focuses exclusively on person annotations
to perform pedestrian detection. The dataset consists of 2,975 training images, 500
validation images, and 1,575 testing images, split from approximately 5000 images
captured across several German cities. It includes 35,000 annotated persons, 13,000
ignored areas, and an average of 7 people per image.

• INRIA: Derived primarily from holiday shots, the INRIA dataset [159] consists
of 2,120 high-resolution pedestrian images in total. Of these, 1,832 images are
designated for training, encompassing 614 positive instances and 1,218 negative
instances. The remaining 288 images are for general use.

Most of the above-mentioned datasets are primarily used to perform 2D detection of
on-road objects based on RGB images captured by cameras. Nonetheless, the following
datasets can be useful for performing both 2D and 3D detection using various types of
data obtained by fusing RGB cameras and LiDAR measurements [117, 12, 160, 154].

• Apolloscapes dataset: The Apolloscapes dataset [161] is a comprehensive training
resource for autonomous driving technologies, enabling the building and assessment
of modular or end-to-end perception and navigation models in AV. It encompasses a
wide range of data types, including images and point clouds, to perform various tasks.
Beyond 2D detection, the dataset features frames paired with high-quality annotated
point clouds, gathered under diverse driving conditions in Beijing to capture 3D
LiDAR-based road objects in challenging traffic patterns involving vehicles, cyclists,
and pedestrians.

• KITTI dataset: Introduced in 2012 by the Karlsruhe Institute of Technology
in Germany and the Toyota Institute of Technology in the United States, The
KITTI dataset [162] is a valuable resource for addressing a range of challenging
tasks in autonomous driving scenarios. These tasks involve several data modalities,
including 2D and 3D object detection and tracking, optical flow, depth estimation,
and visual odometry. The dataset offers images reflecting 50 scenes across various
driving environments, all captured under sunny conditions. It includes 7,481 images
designated as training set and 7,518 images for testing. The training set is split
into 3,712 samples for training and 3,769 samples for validation. Approximately
200,000 bounding boxes are annotated, stretching over 15,000 frames. The dataset
includes eight classes for labeling, with categories such as car, van, truck, pedestrian,
and other types useful for 3D object detection. Despite utilizing only two RGB
cameras with 389 pairs of stereo images, the dataset supports both monocular
and stereo methods. It is supplemented by optical flow diagrams and point cloud
data. For the comparison perspective, the performance evaluation in the KITTI
benchmark is conducted using metrics like Intersection over Union (IoU), Average
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Precision (AP), and mean Average Precision (mAP). Difficulty levels are categorized
as easy, moderate, and hard based on occlusion and truncation criteria. Three
variants of AP (APBBOX , APBEV , AP3D) result from three different IoU definitions:
IoUBBOX , IoUBEV , IoU3D. These definitions pertain to 2D, bird’s eye view (BEV),
and 3D scenarios, respectively. The formula for calculating the AP is as follows
(Equation 3.2):

AP∥RN
= 1

N

∑
r∈R

Pinterpolate(r) (2.8)

where Pinterpolate(r) represents the interpolation function, which is defined as
maxr′:r′≥r P (r′).This function denotes the highest possible precision corresponding
to each recall value larger than or equal to r. The standard Interpolated AP∥R11 is
used as the primary metric to evaluate the performance in the KITTI benchmark.
Furthermore, KITTI introduces the Average Orientation Similarity (AOS). This
new metric evaluates the directional alignment between the predicted 3D bounding
box and the actual ground truth using cosine similarity to assess their orientation
consistency.

• NuScenes dataset: Inspired by the KITTI dataset, the NuScenes dataset [163]
consists of 1,000 driving scenes, each approximately 20 seconds long. These scenes
cover a variety of weather and illumination circumstances and were collected in
urban areas. More than 1.4 million camera images and additional metadata are
collected using radar, LiDAR, and cameras. The NuScenes dataset is split into
28,130 training frames, 6,019 validation frames, and 6,008 testing frames. Across
these 40,000 frames, 23 object classes are manually labeled within 1.4 million
bounding boxes. While ten of these classes are used for 3D object detection, the
annotation also includes additional information such as range, size, and visibility,
in addition to category prediction. The NuScenes benchmark employs a set of
seven distinct metrics for evaluation. One of these metrics is the AP based on
the 2D center distance on the ground plane. The remaining metrics include Average
Translation Error (ATE), Average Scale Error (ASE), Average Orientation Error
(AOE), Average Velocity Error (AVE), and Average Attribute Error (AAE). These
true positive metrics evaluate translation, scale, orientation, velocity, and attribute
errors, respectively. Each class’s unique TP metrics are calculated, and their
associated averages are denoted through mATE, mASE, mAOE, mAVE, and mAAE.
The NuScenes Detection Score (NDS) is estimated using a weighted total of AP and
TP measures.

• Waymo Open dataset: Released by the company Waymo, the Waymo Open
dataset [164] comprises 3,000 driving records, featuring 1,150 sequences containing
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600,000 frames captured in urban regions under varied weather and lighting
conditions. It includes annotations for approximately 112 million bounding boxes
across 200,000 frames divided as 122,200 train frames, 30,407 validation frames,
and 40,077 test frames. The dataset also provides around 25 million 3D bounding
boxes and 22 million 2D bounding boxes, with annotations available for training
and validation only. The evaluation metrics include the Interpolated AP∥R21 metric
and Average Precision weighted by Heading (APH), where AP is computed over 21
equally spaced recall levels. The Waymo Open dataset distinguishes two levels of
difficulty: level 1 for boxes carrying five or more LiDAR signals and level 2 for the
remaining non-empty boxes.

2.2.4 Object Detection in Autonomous Driving Environments:
State-of-the-Art

The latest advances in deep learning have led to the development of many deep models
numerous deep models for detecting both moving and static objects in autonomous
driving scenarios, including vehicles, pedestrians, animals, and traffic signs. Broadly
speaking, these algorithms fall into two major categories: probabilistic and deterministic
object detectors. This subsection examines some of the most notable examples from each
category.

- Probabilistic object detection: Unlike traditional deterministic object detectors,
probabilistic object detection aims to accurately detect objects while simultaneously
estimating the semantic (classification) and spatial (localization) uncertainties associated
with each detected object.

By extending frameworks for object detectors, either one-stage or two-stage, the
architecture of probabilistic deep object detectors consists of a backbone network, a
detection head, and post-processing components. Within the baseline network, techniques
like Deep Ensembles or MC-Dropout are commonly employed, which help model epistemic
uncertainty in the subsequent detection head. Lastly, in the post-processing stage,
standard techniques like NMS, Sample Statistics, Gaussian Mixture, and Bayesian
Inference are frequently applied. As a result, probability distributions for object categories
and bounding boxes can be predicted. [165]. The following points summarize the main
ideas mentioned above:

• Extending well-known deep detector frameworks such as Faster R-CNN, SSD, etc., to
output probability distributions instead of fixed values for categories and bounding
boxes.

• Utilizing Bayesian neural networks or variational autoencoders to model the inherent
uncertainty in object detection problems.
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• Employing techniques such as Monte Carlo Dropout, Stochastic Gradient Descent, or
other sampling strategies to estimate uncertainty in the context of object detection.

- Deterministic object detection: Most state-of-the-art 2D and 3D object
detection methods use CNN and Transformer backbones, as examined below:

• Zhang et al.[166] proposed an image-based real-time 2D object detection method
for autonomous driving. The authors combined several popular one-stage object
detectors, including YOLOR, which is one of the upgraded versions of YOLOv1.
They trained the models separately using various input approaches to improve the
detection of each category, especially small objects. They used TensorRT to enhance
the efficiency of their detection pipeline during inference for model acceleration.
Their proposed detection framework ranked 2nd place in the real-time 2D detection
track of the Waymo Open Dataset Challenges, achieving a latency of 45.8ms/frame
on an Nvidia Tesla V100 GPU. The study also explored how small objects are
statistically distributed within the Waymo Open dataset and how their scale can
be enhanced for better detection using different methods like Scale Enhancement,
Independent threshold-NMS, and Model Ensemble.

• Han et al. [167] proposed a novel real-time object detection model, Optimized
You Only Look Once Version 2 (O-YOLO-v2), specifically designed for detecting
tiny vehicle objects in Automatic Driving Systems (ADS) and Driver Assistance
Systems (DAS). They enhanced feature extraction by adding convolutional layers at
various points in the YOLO-v2 architecture and addressed the gradient vanishing
problem with residual modules. By effectively combining high-level and low-level
information, O-YOLO-v2 boosted the accuracy of micro object detection and
achieved a remarkable 94% accuracy for vehicle detection on the KITTI dataset
without compromising speed.

• Bai et al.[168] introduced TransFusion, a robust fusion model that effectively
integrates LiDAR and camera inputs for 3D object detection in autonomous
driving. The model combines a detection head built on a transformer decoder
with convolutional backbones. The first layer utilizes LiDAR point clouds to
predict bounding boxes, while the second layer combines object queries with image
features. The transformer’s attention mechanism enables the model to decide what
information should be extracted from the image and where. TransFusion is ranked
#1 in the nuScenes tracking scoreboard.

• Feng et al. [169] presented a novel 3D object detector, known as the
Structure-Embedding TransFormer (SEFormer). The primary strengths of this
architecture lie in its ability to retain and encode structural characteristics derived
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from irregular and sparse LiDAR points. Unlike traditional Transformer models,
SEFormer learns unique feature transformations for value points while accounting
for their distances and relative orientations from the query point. This approach
proves more efficient in capturing direction-distance-oriented local structures, which
are crucial for the 3D detection of road objects. Extensive experiments on the Waymo
Open dataset showed that SEFormer achieves state-of-the-art (SOTA) results, with
mAP of 79.02%, surpassing existing works by 1.2%.

• Gupta et al. [170] proposed a CNN-based model for object detection and scene
perception in connected and autonomous vehicles. The model focuses on specific
image regions, enhancing intelligent adaptive behavior. By integrating a probabilistic
attention mechanism that incorporates Transformers, the model accurately identifies
critical image areas. Validated on the Berkeley deep drive dataset, the method
achieved performance comparable to other deep learning algorithms. The model’s
performance was evaluated using mAP and speed-accuracy trade-offs.

Moreover, numerous surveys and literature reviews have been conducted to highlight
and identify the most commonly used models and architectures for addressing object
detection in autonomous vehicles.

• Single-stage object detectors: Diwan et al.[171] reviewed the single-stage object
detectors, notably YOLO. They discovered that the wide adoption of YOLO’s
architecture is due to its effective balance of detection accuracy and inference speed
compared to two-stage detectors. The comparison was based on both accuracy and
speed metrics.

• Deep generic object detectors: Liu et al.[5] presented an in-depth review of
these detectors. Their findings highlighted the critical factors influencing detection
accuracy: the baseline network, detection framework, and access to extensive
datasets. To enhance the accuracy, several methods have been explored, including
combining different models into an ensemble, leveraging context information in
feature learning, and augmenting data. The emergence of PASCAL VOC, ImageNet,
and COCO standard benchmarks has facilitated detector comparison.

• Object detection algorithms: AMJOUD et al. [115] performed an in-depth
analysis of these algorithms, sorting them into three broad types: anchor-based,
anchor-free, and transformer-based. Due to its extensive quantity and excellent
annotations, the MS-COCO database was the main focus of their investigation;
yet, they also employed the Pascal VOC 2007 to evaluate mAP results. The
analysis revealed that anchor-based detectors, particularly two-stage ones, yielded
the highest mAPs on Pascal VOC 2007, while one-stage anchor-based detectors
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also demonstrated considerable effectiveness. Notably, on the MS-COCO dataset,
the transformer-based Swin V2-G model alongside the HTC++ backbone emerged
prominently, securing mAPs above 50.0%. This success was significantly aided
by contributions from ResNets, ResNeXts, Efficient Nets, SpineNet, CSP, and
HTC++. In scenarios requiring real-time processing, one-stage anchor-based
architectures, especially YOLOv4, were recognized for their optimal balance of speed
and precision, outperforming two-stage detectors in this regard. Between 2015 and
2022, transformer-based models, particularly Swin V2-G, led the advancement in the
MS-COCO dataset, marking pivotal progress and superior performance in object
detection tasks. This progression highlights a trend where single-stage detectors
increasingly match the precision of two-stage detectors, with transformer-based
designs like Swin-L and Swin V2 pioneering new standards in object detection for
vision-based applications.

• Multi-task environment detection: Zhou et al.[172] presented a framework
for this task. Using ResNet-18 as the backbone, they employed Ultra-Fast-Lane
Detection for lane detection and PointNets-based PointPillars for 3D point cloud
object detection. The framework consists of three main components: Pillar Feature
Net for initial processing, a 2D convolutional backbone ensuring complex feature
maps transformation, and a combined output layer for predicting object categories
and calculating 3D bounding boxes. By combining both models, they achieved a
comprehensive multi-task framework.

• 3D object detection for autonomous vehicles: Qian et al.[160] conducted
a literature review, organizing studies based on data modality: image-based,
point cloud-based, and multimodal fusion. Image-based approaches were further
divided into result-level and feature-level refinement strategies, where dealing with
redundancy and the dependence on supplementary data are key challenges due to
the lack of depth information. Point cloud-based methods include voxel-based,
point-based, and point-voxel-based, with voxel-based dominating due to its ability
to meet autonomous driving application requirements. They also found that point
cloud-based methods outperformed multimodal fusion approaches due to semantic
heterogeneity between images and point clouds.

2.2.5 Main challenges
The perception of the environment is crucial for AVs, as it enables scene understanding
and safe navigation. However, addressing perception errors is essential for the
advancement of AVs. Even though DL has demonstrated success in scene understanding,
further research is needed in these areas due to the limitations and challenges facing
DL approaches for on-road object detection and the performance gap between
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2D and 3D methods. This subsection groups the main challenges as follows
[116, 173, 136, 174, 4, 5, 141, 115]:

- Object detection-specific issues:

• Accuracy-related challenges: The diverse range of object classes and variations
within and between these classes hinder effective road object detection. Intra-class
variations can be attributed to intrinsic factors such as color, texture, shape,
and size (see Figure 2.24b), as well as imaging conditions like lighting, weather,
viewpoint, and occlusion. These variations lead to significant differences in
object appearance across different instances of the same category, as depicted in
Figure 2.24a. Furthermore, inter-class variations require detectors to discern among
tiny distinctions in object categories, necessitating high discriminating power (see
Figure 2.24c). Additionally, challenges may arise from digitization artifacts, noise,
poor resolution, and filtering distortions. Addressing these challenges often involves
collecting a large dataset of properly cropped exemplars for training, which can be
costly and requires detectors capable of handling oriented and small objects.

• Efficiency and scalability related challenges: Computational complexity
and scalability are major concerns for on-road object detection algorithms. The
potentially large number of object categories and the wide range of positions and
sizes across images increase computational complexity. efficient algorithms are
needed to handle the recognition of numerous categories within high-dimensional
image representations, particularly for deployment on devices with limited processing
resources. Scalability is another challenge, particularly in obtaining training data for
detectors that must handle unknown objects, unfamiliar situations, and massive data
volumes. Although labeled image samples are useful, obtaining them can be costly,
and human annotation becomes unfeasible as the number of images and categories
increases. To speed up the learning process, approaches must balance the level of
human supervision with the effectiveness of annotation techniques.

- Deep learning-specific issues: As discussed in the previous sections, DL-based
object detection frameworks have demonstrated considerable promise in terms of safety,
robustness, and efficiency. Notwithstanding their undeniable success, critics have recently
highlighted several limitations, as examined below [111, 175, 176, 115, 177, 85]:

• Sensors limitations: Sensor limitations are one reason why the perception system
malfunctions[116]. Even though sensor fusion is a common approach to reduce the
failures of the perception system and address the limitations of multi-modal 2D and
3D object detection, the absence of standardized protocols for incorporating data
from various AV sensors such as cameras, LiDAR, radar, and ultrasonic sensors
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(a) Variations in imaging conditions of instances of the
same object “Car” category (b) Different instances of the “Car” category

(c) Small inter-class variations

Figure 2.24: Accuracy-related challenges regarding variations in appearance of instances of the same
object category [4, 5]

presents a complex issue. This fusion process requires substantial effort to minimize
information loss. Additionally, there is a lack of research addressing the fusion of
data from ultrasonic sensors, radar, or V2X communication [173, 136].

• Complex and dynamic scenes & variable weather and lighting conditions:
Real-world driving scenarios are highly dynamic, involving moving objects, varying
lighting conditions, occlusions, and complex object interactions. Variations in
environmental factors like lighting and weather conditions can degrade image quality,
presenting significant challenges. Object detection algorithms must be able to
operate effectively in such demanding environments [173]. Furthermore, many
autonomous driving datasets primarily focus on typical daytime settings and uniform
meteorological circumstances. Despite claiming to have tested several proposals in
existing circumstances, further investigation is needed to assess the impact of these
conditions on the object detection pipeline while guaranteeing a robust detector
across general driving scenarios [116].

• Generalisation: In autonomous driving scenarios, both 2D and 3D object detection
methods encounter challenges related to poor generalization and insufficient
annotations. These issues arise from training models on specific data domains that
rely heavily on human intervention and present an imbalance between diversity and
labeling. For instance, generalization across motorways, rural areas, and urban
driving environments is a significant difficulty due to their distinct characteristics.
Moreover, much 3D object detection research has prioritized enhancing benchmark
performance over a deep understanding of the performance requirements for reliable
driving applications. therefore, research on the safety-accuracy trade-off while
maintaining increased contextual awareness and dependability is essential [116].
Beyond the aforementioned generalization concerns, challenges in DL-based object
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detection include ensuring the accuracy of deep model outputs across diverse
scenarios and addressing issues like training fairness to mitigate biases from
imbalanced or scarce data. Optimizing DL models for AVs requires advanced
techniques due to potential variations in AV reactions [173]. For 3D object detection,
focusing on enhancing localization and accurately estimating object parameters is
crucial, given the small size of objects and sparsity of point clouds [174]. Additionally,
adapting training platforms to handle corner cases, out-of-distribution data, and
anomalies is essential [23].

• Uncertainty: The inability of most methodologies to provide calibrated confidence
estimates for predictions, can lead to risky outcomes in real-world applications. To
overcome this issue, further research is needed to identify and quantify uncertainty
arising from data, model output, and the behavior of road users. Additionally,
strategies for estimating and reducing this uncertainty in detection models that
maintain real-time performance must be developed [116].

• video object detection: Video-based 2D and 3D object detection for AVs is
particularly challenging. However, it offers the advantage of leveraging temporal
correlations between consecutive frames to enhance accuracy and enable real-time
operations. To improve performance, more efficient and effective methods for motion
and intention estimation, along with advanced feature extraction networks, are
required [173, 174].

• Large and open dataset: In addition to requiring large-scale datasets, many deep
object detection models can suffer from overfitting issues (see Figure 2.25) due to
limitations in universal benchmark datasets, such as a lack of diversity in captured
scenes. To address this, further publicly available datasets encompassing various
scenarios, object classes, and modalities are required to develop consistent object
detectors for AVs and guarantee resilient functioning across diverse driving scenarios.
Creating such large-scale datasets is a challenging but essential task [23, 136].

• Accuracy-efficiency trade-off : The trade-off between accuracy and efficiency
is a fundamental challenge in on-road object detection due to the small size
and imbalance of objects. Nevertheless, achieving these objectives is particularly
difficult when dealing with image dimensions and data volumes exceeding those
typical of ordinary natural images. While efficient detection methods aim to build
high-performance detectors, they often come with a large number of parameters,
making them less suitable for deployment on devices with constrained resources.
Therefore, developing new strategies that simultaneously enhance accuracy and
efficiency is an emerging critical research area.

• Speed-accuracy trade-off : Given the computational demands and processing
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constraints, accelerating the processing of object detection algorithms may
compromise their accuracy. Researchers are actively working to enhance both
the accuracy and speed of these algorithms by employing more sophisticated
architectures and training approaches. This effort is crucial for applications
requiring rapid responses and energy efficiency, particularly those navigating complex
environments with occlusions or clutter. However, human-designed networks often
fail to achieve an optimal balance between detection speed and accuracy [115].

• Data representations and quality: Within the field of 3D object detection,
transitioning from the consistent pixel distribution in images to the sparse and
uneven distribution of point clouds requires the development of specialized models for
efficient feature extraction [174]. Additionally, a major bottleneck for training both
2D and 3D object detection algorithms in autonomous driving is the poor quality of
benchmark datasets. This issue primarily stems from the methods used to collect
these datasets and a lack of variety in the backgrounds. Many current datasets
are acquired with cameras mounted on vehicles during regular driving sessions,
resulting in a shortage of scenes with crowded settings, occlusions, and overlapping
road objects. Consequently, the representation of such complex scenarios is limited.
For instance, well-known datasets such as Caltech and KITTI have an average of
less than one pedestrian per image, which significantly hampers the efficiency of
pedestrian detection algorithms trained with these resources. This highlights the
critical need for improvements in data quality to enhance algorithm performance.

• Label-efficient object detection: Given the substantial amount of manually
annotated road data required for deep object detection algorithms, extracting
valuable data from this dataset while balancing the costs and benefits of manual
annotation has become a critical challenge for academia and industry. Weakly
supervised learning shows promise in addressing this problem by employing less
expensive annotations. However, the performance gap between weakly and fully
supervised approaches remains significant. Furthermore, semi-supervised and
self-supervised learning strategies can concurrently train more resilient 2D and 3D
object detection models using a small labeled dataset and a large pool of unlabelled
data. Although attempts have been made to tailor self-supervised techniques like
contrastive learning to 2D and 3D object detection problems in autonomous driving,
the rich semantic content of multi-modal data remains underutilized [174].

• Robustness for object detection: 2D and 3D object detectors based on learning
methods are often susceptible to adversarial attacks. Perceptual models can be
deceived by adversarially introducing perturbations or objects to the sensory inputs,
leading to false detections. Addressing this challenge involves developing effective
adversarial attack and defense algorithms that are easy to implement and can be
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applied across different detection models [174].

• Real-time processing: In the autonomous driving field, object detection-based
collision avoidance systems aim to provide a real-time response to potential crashes
by analyzing the video feeds from the AV cameras. However, detecting objects
in every video frame can introduce latency issues, as most detectors are trained
on image datasets. Model latency can be mitigated by mining frames that are
most likely to contain new objects based on correlated spatial and temporal
relationships between subsequent frames, which remains an unresolved challenge
in this domain [136]. From an edge-cloud perspective, real-time object recognition
in self-driving cars can benefit from reducing communication overhead between V2V
and V2I servers by designing a deep object detection model with minimal bandwidth
requirements [23].

• Resource constraints: Efforts to enhance object detector efficiency on
physical hardware involve exploring techniques like pruning, quantization,
knowledge distillation, and reducing matrix multiplication. Additionally, hardware
optimization techniques, like resource allocation and parallel factor adjustments,
have been used in conjunction with software co-design to reduce the computational
demands and model footprint. While current research has yielded encouraging
outcomes, further investigation is required to effectively deal with these issues [136].

Figure 2.25: Overfitting against Underfitting by monitoring the loss on the training and validation sets
during the training iteration [2].
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Conclusion

This chapter has provided an overview of the object detection field, with a particular
focus on the autonomous driving domain. We began by clarifying key concepts in
this field, including principles, categories, popular architectures, and cost-reduction
methods. Subsequently, we shifted our focus to object detection methods in the context
of autonomous driving. We presented the characteristics of common road objects, the
most commonly used sensors, datasets, and evaluation metrics for object detection in
autonomous driving. we also introduced the two broad classes of deep object detection
models in this context: probabilistic and deterministic object detectors. Additionally,
we discussed the shortcomings of representative works within each category. Finlay, we
ended by outlining the challenges and issues associated with applying object detection in
an autonomous driving context.

In the next chapter, we will explore various concepts related to the active learning
paradigm, a prominent approach for reducing costs and addressing the challenges of
label-efficient and cost-effective learning in object detection. We will examine different
techniques found in the literature, highlighting how cost-effective active learning strategies
are tailored for object detection in autonomous driving. We will also discuss the
limitations of each approach, to achieve robust and cost-effective autonomous driving
solutions.
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Chapter 3
Deep Active Learning of Object Detection

Introduction

As discussed in the previous chapter, a significant challenge in applying deep learning for
object detection within safety-critical environments, like vehicular environments, comes
from passive supervised learning methods’ reliance on heavily annotated training data.
Object detection tasks particularly require highly accurate annotations, making the
manual annotation process both time-consuming and cost-sensitive in the autonomous
driving domain. Moreover, the quality of the annotation is subject to collecting and
preparing a representative dataset by domain experts.

Active learning emerges as a label-efficient learning scheme that significantly reduces
the limitations associated with supervised learning models. This paradigm effectively
reduces the need for extensive, high-cost, or challenging-to-obtain annotated datasets by
focusing on selecting a minimal yet impactful subset of data for labeling.

This chapter explores the essential principles of active learning, its synergistic
relationship with deep learning, and its application in enhancing object detection within
autonomous driving. Section 3.1 provides the theoretical background of the field as well as
the basis for designing query strategies and how active learning meets object detection.
Section 3.2 outlines the innovation of integrating DL with Al and these methods are
enhanced. Section 3.3 reviews existing works in the domain of deep active learning for
object detection in autonomous driving. Finlay, section 3.4 concluded the chapter by
discussion current obstacles and evolving trends in this field. This chapter represents a
fundamental part of the literature review, coupled with the previous chapter, which will
be used in the following chapter.

3.1 Active Learning

Generally speaking, supervised machine learning models learn from labeled or
training data that consists of labeled points. This is denoted by Uann =
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{(x1, y1), (x2, y2), . . . , (xnL
, ynL

)}, where nL is the number of labeled points, xi ∈ Rd

is the ith data point with d representing the number of features (i.e., the dimensionality
of the feature space), and yi is the label of xi [178].

Since any supervised learning system must often be “curious” to train on hundreds
(even thousands) of labeled instances for delivering better performance, faced with the
labeling bottleneck, several attempts have been proposed to overcome this issue. The
main approach aiming to perform better with less training based on the key hypothesis
of allowing the learning algorithm to choose the data from which it learns. Consider
that “random selection” (or random sampling) is the naive passive learning consisting of
training the model from a small amount of supervised training samples randomly selected
from an unlabeled dataset and labeled by a human. It is a simple scheme with less
complexity overhead due to the absence of any interaction with the model’s prediction,
but comes at the cost of lower accuracy regarding the main constraints of real-world
autonomous driving datasets. As an alternative to passive learning, active learning is
a label-efficient iterative learning scheme that maximizes model performance under a
limited labeling cost/budget, by selecting a small proportion of samples from unlabeled
data for labeling and training [8, 9, 179, 180]. This section reviews the foundations and
the main concepts of traditional active learning.

3.1.1 Core Principle
In general, active learning (also known as “query learning,” or “optimal experimental
design” in the statistics literature) is a subfield of machine learning that attempts to
improve the effectiveness of ML models constructed with a smaller number of examples
and overcome the labeling bottleneck by asking queries in the form of unlabeled instances
to be labeled by an oracle. In this way, the active learner is driven by two key ideas:
(i) the learner should be allowed to ask questions, and (ii) unlabeled data are often
readily available or easily obtained. As a human-in-the-loop machine learning (HITL-ML)
approach, active learning is highly label-centered and focuses only on the acquisition of
labels based on human feedback emphasizing labels-level human intervention.

Various problem scenarios and settings exist in which a learner can request queries.
Regardless of the specific context, active learning can be incorporated into the training
pipeline of autonomous driving ML and DL models to maximize the use of valuable data.
This process typically follows an iterative learning cycle composed of four key phases: data
acquisition, sample selection and annotation, model retraining, and, finally, the evaluation
of performance metrics and/or assessment of budget adherence. After the acquisition
of unlabeled data, a query algorithm or strategy (sometimes called “utility measures”)
suggests worthy samples in the unlabeled data and selects informative query instances
to be labeled. After that, the model is updated with a small amount of supervised
training data labeled by an oracle. Depending on the type of "oracle," which could be an
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authoritative source, an infallible guide, or a human expert, the recommended training
data can be labeled either manually or automatically to assist in the labeling process.
Figure 3.1 shows the basic process of traditional active learning.

Figure 3.1: traditional iterative active learning cycle.

Further, in most cases, labels come at little or no cost and can be provided free,
but for many other more sophisticated supervised learning tasks, labeled instances are
very difficult, time-consuming, or expensive to obtain. Against the potential of AL to
reduce the amount of instances to be annotated, it would probably not reduce the overall
annotation time. Moreover, AL can leverage passive learning in constituting unlabeled
data and also be integrated with semi-supervised and unsupervised learning techniques
whereas the empirical and theoretical evidence for how and when active learning works in
practice can be studied to analyze the active learning process [8, 9, 181, 179]. The main
aspects of the AL process, such as scenarios, annotation costs, label noise, are described
in more detail below.

- Active learning scenarios: There are several scenarios in which active learners
may pose queries. Mainly, three scenarios that have been considered in the literature,
where the differences among them is illustrated in Figure 3.2 and discussed below [8, 9]:
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Figure 3.2: main active learning scenarios difference illustration [8].

1. membership query synthesis: An early and popular scenario of active learning is
membership query learning, in which learner may query for labels for any instance in
the input space that is not yet labelled. This involves generate queries from scratch,
rather than relying on natural distribution samples. This strategy is particularly
practical and effective in finite domains and has been adapted to regression tasks.
While query synthesis is applicable and beneficial for various problems, it may pose
challenges when human annotators are involved. However, in fields where labels
are derived from experiments rather than human annotation, query synthesis offers
valuable opportunities for advancing automated scientific discovery.

2. stream-based selective sampling: Selective sampling offers a practical alternative
to query synthesis in active learning. Under this approach, the assumption is that
acquiring an unlabeled instance is inexpensive or free, allowing it to be sampled
directly from the true distribution before deciding whether to label it. This method
is often referred to as stream-based or sequential active learning, where unlabeled
instances are evaluated one by one, and the decision to query or dismiss each is
made on the spot. Selective sampling can resemble membership query learning
in scenarios where the input distribution is uniform. The decision to query an
instance in selective sampling can be approached in several ways. One method
involves using an informativeness measure or query strategy to make a biased random
choice, with more informative instances being more likely to be selected for querying.
Another strategy focuses on identifying a region of uncertainty within the instance
space, querying only those instances that reside within this ambiguous area. A more
structured approach defines a version space, which encompasses the subset of the
model class that remains consistent with the current labeled dataset, and queries
are made on instances that lie within this yet-to-be-explored region.

3. pool-based active learning: Pool-based active learning is particularly suitable for
scenarios where large sets of unlabeled data are readily available (possibly collected
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using passive learning techniques), as often found in tasks like object detection.
This approach starts with a small labeled dataset Uann and a much larger pool of
unlabeled data Uunann. The strategy involves selectively querying instances from
this pool, which is generally considered to be static. The selection of queries is
typically done in a greedy manner, based on some measure of informativeness to
assess the potential value of each instance in the pool, or a subset thereof. After
a query is picked and its label obtained, it’s added to the labeled set Uann, and
the learning model is updated or retrained with this new information. Then,
another query is selected from the pool, considering all previously labeled instances,
and the cycle continues. This method allows for the efficient expansion of the
labeled dataset by focusing resources on labeling the most informative instances,
thereby improving the learning model’s performance with fewer labeled examples.
The key distinction between pool-based and stream-based active learning lies in
their approach to data selection. Stream-based active learning processes data
sequentially, making immediate decisions about whether to query each instance as
it arrives. This approach is particularly useful in situations with limited memory or
computational resources, such as with mobile or embedded systems. On the other
hand, pool-based learning assesses the entire dataset or a significant portion of it
before selecting the most informative instances for querying, which can be more
computationally intensive but allows for a more informed selection process. This
makes pool-based active learning a preferred method in many real-world applications
where computational resources are not as constrained, and where the most efficient
use of labeling resources is a priority.

- Batch-Mode active learning: As illustrated in Figure 3.3, in most active learning
settings, queries are selected in serial, i.e., one at a time. The learner typically examines
a large pool of unlabeled data and then selects a single instance (the most informative
one) for label querying using a one-by-one, single-criterion query. This is not true in
more practical situations where the serial selection of queries can lead to inefficiencies in
terms of labeling resources use, such as the time of human annotators. This inefficiency
comes from the delay restriction, as the next label cannot be queried unless the model is
updated beforehand.

It may be more practical to acquire labels for multiple instances simultaneously.
Batch-mode active learning enables the learner to query a group of instances (batch),
suitable for distributed and parallel labeling environments. This approach is also
beneficial for methods or models that are expensive or data-intensive and have slow
training processes, such as deep learning, which necessitate selecting a batch of many
instances at each iteration. In such settings, the main idea is to select a set of
queries Q ∈ Uunann to be labeled concurrently with model re-training, or in parallel
if supported by the experiment or annotation environment. A straightforward approach
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to creating this batch is to simply use a myopic strategy by evaluating all potential query
instances and selecting the "Q-best" ranked instances based on some utility measure as
a metric. Unfortunately, this does not work well since it fails to consider both diverse
and informative "best" instances. Instead, the instances in Q need to be both informative
and non-redundant to optimize the use of labeling resources. To achieve this, the query
strategy explicitly incorporates multiple criteria to evaluate both informativeness and
representativeness, ensuring the selection of instances that are both informative and
representative for querying.

Figure 3.3: Serial vs. batch-mode active learning [9].

- Active learning with costs: Since some acquired data may be noisy and contain no
useful features that are relevant in most real-world applications, it’s crucial to note that
not all data are equally important for model construction from the perspective of labeling.
Additionally, in some learning problems, not only the cost of obtaining labeled data can
vary from one instance to another, but also the label quality. In such a context, the main
goal of active learning is to minimize the overall cost of training an accurate model by
reducing the dependency on a huge amount of labeled data. Nonetheless, reducing the
number of labeled instances does not necessarily guarantee a reduction in overall labeling
cost.

Undoubtedly, given the differential value of different data and the trade-offs between
accuracy and cost, an important question that arises in active learning is how to approach
cost-sensitive and cost-effective active learning regardless of whether annotation costs are
assumed to be fixed and known to the learner before querying or variable and not known,
e.g., when the labeling cost is a function of elapsed annotation time [8, 9].

- Noisy Oracles: From a label-centered perspective, active learning is a framework
that significantly relies on human feedback to acquire labels for improving the effectiveness
of ML models with a strong focus on the acquisition of labels. Within this framework,
a key assumption in most active learning research is that the quality of labeled data
from the oracle is high. In practice, if labels come from an empirical experiment like
biology, chemistry, or clinical studies, it is reasonable to anticipate some degree of noise to
result from the instrumentation or experimental setting. Even if labels come from human
experts, their reliability is not absolute because: (i) some instances are implicitly difficult
for both humans and machines, and (ii) human annotators are prone to distraction or
fatigue, leading to inconsistencies in the quality of their label assignments. [9].
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3.1.2 Query Strategies
The primary focus of all active learning scenarios is how to determine the "valuability"
of unlabeled instances, whether generated anew or sampled from a specific distribution.
By establishing criteria for assessment, the query strategy (also known as the acquisition
function or selection strategy) determines if a single sample (or a group of samples) merits
consideration as a candidate for labeling by the annotator, based on predefined criteria
and rating scores. Throughout the literature, these query strategies have been classified
in terms of several factors, including the number of samples asked for labeling at once,
as follows [180, 178]:

• One-by-one query: Known as a single-instance strategy in which querying only
one sample at a time leads to updating the underlying learning model whenever
a new sample is introduced. Furthermore, adding just one annotated instance is
unlikely to boost the performance of learning large-scale models in the context of
deep learning, leading to a complex, laborious, and time-consuming process.

• Batch query: This strategy is particularly well-suited for selecting multiple samples
at once, especially in the case of expensive/data-hungry methods like deep learning.
Typically, to pick a batch of K most informative samples, the straightforward
approach is to iterate a single-instance query for K times. Meanwhile, the diversity
of samples and the amount of information each provides should be investigated as
criteria during the selection process to prevent picking similar instances within the
batch.

On the other hand, query strategies are divided into the following categories based on
the quantity of information at hand [178]:

• Data-based: Strategies involving low-level knowledge, limited to raw data and its
labels, fall into this category.

• Model-based: With a focus on determining the uncertainty within a class,
strategies in this category make use of information about the data and the model
but do not take predictions into account. In the case of the well-known expected
model change strategy, which fall into this category, the updated model, using the
previously labeled instances, queries a new unlabeled instance that has expected to
clearly change the model parameters.

• Prediction-based: These strategies, such as uncertainty sampling, leverage all
available knowledge, including data, models, and predictions. They target the
uncertainty between different classes, where the most uncertain unlabeled instance
is queried based on model predictions.
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• Agnostic strategies: These methods operate only on the information drawn from
the unlabeled data pool, discarding any knowledge generated by the trained model
and any assumptions about the accuracy of its decision boundaries.

• Nonagnostic strategies: To pick and query new unlabeled instances, this method
mostly relies upon the trained model.

To select a new candidate sample for querying, the query strategy assesses the instances
in Uunann and produces utility scores/values using a utility function (⊓). These scores
determine which sample (or samples) is likely to be considered for label querying with
regard to the selection criteria, namely informativeness, representativeness, and hybrid.
This subsection provides more details.

• Information-based query strategies

Within this category, the query strategy’s selection process revolves around measuring
the informativeness criterion. For this purpose, the utility function is designed to
ascertain scores, aiming to identify the most informative samples that are likely to be
approximately the decision boundaries. Numerous instances of this approach exist within
this category, namely heterogeneity-Based and Performance-Based Models as discussed
below [181, 178]:

Heterogeneity-Based Models: These frameworks intend to identify the areas
characterised by the highest heterogeneity, whether it be in regard to classification
uncertainty, dissimilarity with the present model, or disagreement amongst a committee
of classifiers.

• Uncertainty Sampling: Based on the uncertainty heuristic, the uncertainty
sampling strategy aims to label instances where it is least certain about the correct
label (or most uncertain). For overcoming the binary classification scenario, the
simplest approach involves applying probabilistic learning algorithms on an instance
and requesting its label if the predicted probability of the most probable class is
close to 0.5. However, normalising the classifier’s estimated probabilities is necessary.
This strategy is also known as the least confident (LC) approach. For multi-class
problems, the general formula is as follows (Equation 3.1):

x∗ = arg max
x∈Uunann

(1− Ph(ŷ|x)) (3.1)

where x∗ is the least confident instance, ŷ = arg maxy Ph(y|x) is the class label
of x with the highest posterior probability using the model h, and Ph(y|x) is the
conditional class probability of the class y given the unlabeled point x.
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Margin sampling, on the other hand, takes into account the information associated
with the remaining classes in the distribution that has been overlooked. Using this
technique, the difference between the probabilities of the first and second most likely
class labels is computed as follows (Equation 3.2):

x∗ = arg min
x∈Uunann

(Ph(ŷ1|x)− Ph(ŷ2|x)) (3.2)

where yi ranges over all possible class labels, and Ph(yi|x) is the conditional class
probability of the class yi for the given unlabeled point x. The instance with the
largest entropy value is queried. This means that the learner queries the instance
for which the model has the highest output variance in its prediction.

• Query by Committee: In the query-by-committee (QBC) approach, a set of
models (or committee members) H = {h1, h2, . . . , hg} is trained on different
subsets of samples drawn from Uunann. After that, the disagreement between these
committee members is estimated, and then the most informative points are queried
where the disagreement between the committee members is the largest.
There are numerous ways to quantify the degree of disagreement among committee
members. The vote entropy approach is one such method, and it works as follows
(Equation 3.3):

x∗ = arg max
x
−

∑
i

V (yi)
m

log V (yi)
m

, (3.3)

where yi denotes all potential labels, m signifies the number of members in the
committee, and V (yi) stands for the count of votes a label garners based on
predictions from all classifiers.

• Expected Model Change: This approach focuses on selecting data points for
querying that are anticipated to cause the most significant alterations to the current
model. Specifically, it targets those points believed to have the most substantial
influence on the model, without concern for the labels these queries might yield. This
strategy is particularly relevant to models that employ gradient-based optimization
methods, such as certain probabilistic models that are discriminative in nature. The
expected change in the model, due to querying an instance X with an unknown
label, is quantified by calculating the expected change in the model’s gradients,
denoted δgi(X), for a hypothetical label i, and integrating this with the posterior
probability pi of the instance being assigned label i, given the current labeled data.
The definition of the expected model change C(X) about the instance X is as follows
(Equation 3.4):

C(X) =
k∑

i=1
pi · δgi(X). (3.4)
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The instance X with the largest value of C(X) is queried for the label. This
approach, though, requires significant computational resources, particularly for
issues featuring high dimensionality or extensive labeled datasets. Moreover, failing
to scale the features results in a significant reduction in its effectiveness.

Performance-Based Models: Occasionally, heterogeneity-based models may
discover noisy and unrepresentative portions of the data due to their attempt to find
the most unknown regions of the space (on the basis of the current labeling). Of fact, the
specific effects of employing such a strategy depend greatly on the data. There are two
classes of techniques that are based on the performance of a classifier on the remaining
unlabeled instances.

• Expected Error/Prediction Change: Using the remaining unlabeled dataset
(Uunann), active learners predict the future error of the model they learned using
Uann

⋃⟨x∗, y∗⟩. Subsequently, they then seek to query instances that are likely to
decrease the anticipated future error, such as by aiming to minimize the expected
0/1-loss, as shown below (Equation 3.5):

x∗
0/1 = arg max

x

∑
i

Ph(yi|x)
 nU∑

j=1
1− Ph+⟨x∗,y∗⟩(ŷ|x(j))

 (3.5)

where Ph+⟨x∗,y∗⟩ is the new model after retraining it with Uann
⋃⟨x∗, y∗⟩. Therefore,

a validation set is required in this category to evaluate the performance of the
learned hypotheses. Seen as an offshoot of the expected error reduction strategy,
The variance reduction method is a further variation of this approach where active
learners focus on selecting instances that lead to a decrease in the model’s variance.
This action, in turn, helps to lower the model’s future generalization error.

• Representation-based query strategies

By leveraging the organization of the unlabeled data, the query strategy attempts
to identify specific samples that capture the overall structure of the entire input
space. Consequently, To find the most representative samples in Uunann, the utility
function in this category assesses how representative each sample is. Because it targets
points in densely populated regions, the representation-based method outperforms the
information-based strategy in terms of exploration capabilities. Below is a description of
some methods used in the representation-based query strategy [181, 178]:

• Density-based approach: This strategy obtained representative points by
sampling instances from dense regions within the input space. Similarity-based
methods are the most common in this context, which involve measurements like
the distance between feature vectors. For instance, cosine similarity, KL divergence,
and Gaussian similarity have been well-studied.
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• Cluster-based approach: Cluster centers are utilized in clustering techniques to
pick representative points. The closest neighbors to the cluster centers are chosen in
this case after clustering the entire input space. The effectiveness of this approach
ultimately relies on the clustering algorithm and the parameters that are selected.

• Diversity-based approach: To address the issue of redundancy in selected points,
the query picks unlabeled data with greater diversity compared to already labeled
ones. To evaluate the diversity, the angles between the unlabeled data and all the
labeled datasets Uann are calculated. If unlabeled data differs considerably from the
others in Uann, then it is picked for querying. However, it’s important to combine
this strategy with others for better efficiency to prevent querying outliers.

• Hybrid models

Usually, either informative or representative unlabelled instances are selected in the
commonly used single-instance, single-criterion active learning approaches. Nonetheless,
several studies have explored combining various criteria for query selection, ensuring that
the selected instances will display the following characteristics:

1. Informative: The selected instance for querying will either be near the decision
boundary of the learning model, reflecting criteria such as uncertainty, or it will
be positioned far from the currently labeled instances, thereby introducing new
knowledge into the feature space.

2. Representative: Beyond representing a cluster of other unlabeled data, the picked
instance for querying ought to exhibit a lower likelihood of being an outlier.
Some research methodologies, for instance, use a min-max framework to score the
informativeness and representativeness of the unlabeled instances to perform the
query selection process.

3.1.3 Active Learning Meeting Object Detection
While active learning has has demonstrated success in image classification tasks, further
research is needed to fully explore its applicability to other tasks, such as object detection.
By picking the most informative samples from the unlabeled dataset according to a set
of criteria, active learning for object detection targets to minimize labeling costs while
boosting training efficiency for more effective detection models. This approach enables
achieving satisfactory performance with fewer labeled examples, raising the question
of how to design suitable metrics and query strategies tailored for object detection
algorithms.

In practical terms, object detection encompasses both classification and regression
tasks, with the detection model providing predictions for both classification (identifying
object classes) and regression (predicting bounding box coordinates) as explained below:
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• Classification: This component is tasked with determining object instances present in
a given image or a specific part of the image. In object detection models, classification
predicts an object’s category, which could be a vulnerable road user. As part of
the prediction, each class is given a probability score that represents the model’s
confidence in the presence of that particular class.

• Regression: The regression component focuses on the localization (spatial location)
of the object within the image. It predicts a set of bounding boxes, which are
rectangular coordinates that outline the location and size of the object. The
regression task involves determining the x and y coordinates of the box’s corners
or the center, along with its width and height.

In addition, post-processing techniques, such as NMS, can be also used.

Given the significant progress in active learning for classification tasks, the application
of active learning to regression tasks has received much less attention. Moreover, an
additional complexity to active learning strategies may be introduced when dealing with
object detection due to the potential presence of multiple objects within a single image. At
this point, a straightforward strategy might involve applying standard baseline techniques
to each prediction and then employing aggregation methods to derive heuristics for a
more comprehensive acquisition function. In light of this, methods for calculating and
estimating rating scores at several levels, such as pixel, image, box, or by combining the
aforementioned elements, are crucial.

The predominant DAL frameworks tailored for object detection rely on query
strategies that evaluate classification uncertainty as a confidence metric, typically by
leveraging the softmax layer prediction. Moreover, methods like Monte-Carlo dropout
or stochastic regularization are utilized to produce class outputs, facilitating variational
inference implementation and posterior distribution computation of network predictions.
Alternatively, multiple layers’ output from the detector network’s backbone can be used to
build a committee of classifiers, and the degree of disagreement between their predictions
indicates how informative the framework is.

However, there are certain difficulties associated with employing conventional AL
algorithms in the context of deep object detection. Below are few of them [182, 183, 184]:

• Using the softmax layer to determine the label probability distribution might lead to
inferior performance than random sampling. This is associated with the unreliability
of the final output’s softmax predictions, rendering it unsuitable for uncertainty
heuristic utilization.

• Developing sampling techniques for object detection is more challenging than
developing them for classification tasks. This is due to the presence of background
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elements, which significantly influence object detection, introduce an imbalance
factor.

• Although the prediction’s uncertainty is a suitable fit for an informativeness heuristic,
uncertainty-based methods are vulnerable to the problem of data bias, since the
picked data rarely accurately represent the entire unlabeled dataset. Furthermore,
by introducing the uncertainty of box prediction, the acquisition function’s scores
may be altered depending on how many objects are in each sample.

• Given the indication that deep object detection algorithms yield superior
performance with batch-based sampling techniques compared to conventional
one-by-one sampling techniques, there are still other training-related challenges that
need to be resolved:

– In contrast to classification annotation, the annotation for object detection tasks
is a more costly process that involves labeling each object in an image with a
bounding box and its respective category.

– Picking images that can significantly boost model performance is difficult,
especially when trying to avoid outliers and noisy instances that could
compromise the final results, as is the case with classification uncertainty.

To overcome the cost-accuracy trade-off, active learning algorithms designed for object
detection can therefore still be expanded. These improvements depend on the choice
of artificial network architecture and involve selecting the most appropriate sampling
strategy [183].

3.2 Deep Active Learning

To effectively optimize the extensive parameters inherent in DL models, there’s a
significant need for large datasets that enable the extraction of high-quality features.
Nonetheless, the challenge of obtaining enough training data persists, complicated by
issues like class imbalance, the high costs of annotation, and the dynamic nature of
datasets, making it difficult to collect a substantial amount of data for training deep
models efficiently. To overcome this challenge, AL appears as a natural solution.

However, conventional AL methods were originally designed for various machine
learning models. Yet when AL is applied to deep learning, it faces significant difficulties.
This is especially true for complex structures and high-dimensional input data while
complicating the training process. With the emergence of deep AL (DAL), a combination
of traditional AL with DL, numerous novel approaches to implementing AL have emerged
to co-exist with current applications. This section provides an overview of this context.
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3.2.1 Generic Deep Active Learning Framework
A key feature of Deep AL is its strong emphasis on batch-based sample querying, which
mitigates the problem of excessive model updating that arises with per-sample query
methods, and effectively balances the costs of sampling and training. Starting from
already-existing labeled data, the deep model is updated initially in an active learning
cycle. Subsequently, by evaluating the remaining unlabelled data, features extracted, or
the outcomes of the obtained deep model, the query strategy is used to actively select
the most informative batch from the unlabeled pool. In this way, it is anticipated that
the deep model’s performance will converge through multiple iterations of interaction
between active learning and model training. Each cycle offers the choice to update the
deep model or conduct fine-tuning using newly collected data exclusively.

Based on the pillars of Exploitation and Exploration, a general deep active learning
framework is occasionally outlined as follows [185].

Over T cycles, the two steps are iteratively interchanged to enhance a deep learning
model.

1. Exploitation step (model training): Given a labeled sample Uann = {(xi, yi)}M
i=1

and a deep model f(·; θt) with parameters θt, to be optimized in the t-th cycle, the
exploitation step consist of training the baseline f(·; θt) using Uann to minimize the
loss function L:

θt = arg min
θ

∑
{x,y}∈U t

ann

L(f(x; θ), y) (3.6)

2. Exploration step (sample selection): In the exploration step, each sample in
the unlabeled pool Uunann = {(xj)}N

j=1 is evaluated for its informativeness:

Bt = arg max
B⊂U t

unann

∑
x∈B

Score(x, θt) (3.7)

After evaluation, a batch of top-ranked samples Bt is chosen for requesting labels
from the human expert (oracle). The labeled set is then updated by adding the
labeled Bt, for retraining the model in the subsequent DAL cycle:

U t+1
ann = U t

ann ∪Bt (3.8)

Generally, DAL methods aim to address two main challenges:

1. Selecting the most valuable batch of samples for labeling.

2. Training a deep model effectively with limited labeled data.
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Additionally, these methods have been optimized in various perspectives as explained
in the following subsection.

3.2.2 Enhancing of DAL Methods
- Automatically designed query strategy: The literature points out that the success
of active learning is primarily determined by the deep model used, the nature of the data
distribution, and the suitability of the active selection strategy to these factors [178].
Within deep learning, hand-built acquisition functions have shown several drawbacks.
These approaches often adopt methods from conventional AL, designed for ML shallow
models, and thus may not align well with the complexities of deep learning models.
Moreover, their reliance on human expertise can limit their effectiveness,

To tackle the limitations of manual querying strategies, an intuitive solution is to
create strategies that can autonomously learn and adapt their acquisition functions
through interaction with unlabeled data. This shift towards automated learning strategies
is encapsulated in the idea of "learning to learn actively." Such strategies leverage
meta-learning to develop mechanisms that can decide on the most informative data
points to label. These selection strategies fall under several categories of meta-learning
techniques, including optimization- and metric-based methods.

Additionally, integrating the active learning challenge within a reinforcement
learning framework has emerged as a novel strategy. Here, the acquisition function
is treated as a policy that reinforcement learning can optimize. This combination of
reinforcement learning with Deep Active Learning enables the querying strategies to
adjust dynamically, offering a solution when the effectiveness of existing knowledge
is uncertain. In this context, both value- and policy-based methods are prevalent for
implementing reinforcement learning in Deep Active Learning scenarios [178, 186].

- Model training: Most DAL algorithms have been recently tailored for supervised
learning scenarios, neglecting the rich information embedded within the vast amounts of
available unlabeled data. Transfer learning, unsupervised learning, and semi-supervised
learning are the most likely learning schemes used today to fully exploit the utility of
abundant unlabeled data in a label-efficient manner. It is therefore logical to explore
DAL in conjunction with these approaches to enhance model performance. While DAL
emphasizes finding meaningful subsets of data with constrained annotation resources,
integrating transfer learning with DAL is an intuitive approach to align well and boost
annotation efficiency, demonstrated through applications like active fine-tuning, ADA,
and active distillation, showcasing the effectiveness of this synergy [186].

- Deep Bayesian active learning: Generally speaking, representing the uncertainty
is crucial in any active learning framework, however, deep learning methods are not
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capable of either representing or manipulating the model uncertainty. On the other
hand, from the real-world application perspective, uncertainty representation is getting
more and more attention in the machine learning community. Deep Bayesian active
learning frameworks and generally any Bayesian active learning settings, provide practical
consideration in the model which allows training with small data while representing the
model uncertainty for further efficient training [187].

3.3 Deep Active Learning for Object Detection in
Autonomous Driving: State-of-The-Art

3.3.1 Active Learning for Deep Object Detection Architectures
Regarding the deep investigation of DAL approaches for solving object detection
problems, the existing works can be systematically classified based on various criteria
as summarised in Figure 3.4.

As shown in Figure 3.4, key differences between these approaches reside in different
aspects, including learning tasks, data and embeddings distribution, deep model
predictions, query strategy design, selection criteria quantification (uncertainty, diversity,
inconsistency, and label correlation), scoring level (pixel, box, region or image) and metric
measurement, aggregation techniques, sampling granularity, labeling source, and data
accessibility.

Unlike the typical AL methods, which target shallow models like SVM, advanced
DAL-related researches are Widely explored DNN models, where CNNs are well-studied
deep learning models. In most heuristic-based DAL approaches, Uncertainty Sampling
(US) [10], [188, 189, 190, 191], Query-by-Committee (QBC) [192], mutual information
[193], and expected model change [194] are most heuristics used, as a single criterion,
throughout the query strategy to select a single instance at a time. These heuristics
can be assessed and measured using either the training model itself or a separate model.
However, several researchers have reported the limitations of applying a single-criterion,
per-instance query strategy in supporting the batch training approach inherent in DL
methods. Furthermore, in the supervised training scenario of a deep model, only labeled
data is accessible during the DAL cycles, without any assistance from the remaining
unlabeled data.

To deal with these limitations, multiple selection criteria are considered for enabling
efficient CNN-based model training across AL cycles. Therefore, hybrid-criteria,
mixture-criteria, multi-criteria [195] or batch-based sampling [196, 197] query were
proposed to select a substantial amount of samples to be labeled at a time while
attempting to find a balance between the considered strategies.

Moreover, promising research directions have been explored to extend DAL algorithms
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Figure 3.4: A taxonomy of active learning for deep object detection architectures.

regarding the integration of different annotation granularity, abundant unlabeled data,
and related supervision setting into active learning pipeline, including multi-label [198],
multi-view [199], multi-instance [189], multi-instance multi-label (M2AL)[200], multi-view
multi-instance multi-label (M3AL) [201], and unsupervised [202], [193] AL schemes.
Among them, more attention has been paid to address two aspects: the automatic
design of selection samples strategy [203] and the alleviation of various problems, namely
data-related problems such as confidence and insufficient labeled sample, model-related
problems such as generalization ability, and domain-specific problems such as domain
shift, cold-start problem, and class imbalance.

Besides, serious research has been conducted in recent years to properly design
cost-effective DAL frameworks. The main idea is to adopt both query-driven and
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data-driven cost-saving strategies. The query-driven approaches were based on gaining
support from complementary techniques to perform query improvement, such as
optimization techniques, metrics learning [204], and alternative learning paradigms
(one-shot, contrastive, federated, goal-driven, domain adaptive...) [205, 206, 207, 208,
209, 210]. On the other side, data-driven approaches were attempted to address
several data-level perspectives in terms of data labeling supervision (weak, self, semi...)
[190, 211, 212, 213], labeling setting (open-set recognition) [214, 215] and granularity
[197, 200]. For further details please refer to the survey papers [216, 180, 217].

The next subsections describe related work on the latest DAL approaches that employ
CNNs for object detection tasks in general and autonomous driving applications in
particular.

3.3.2 Active Learning for Deep Object Detection
An uncertainty-based active learning approach for object detection in remote sensing
images is presented in [188]. The authors argue that an efficient weighted combination
of classification and regression uncertainty could overcome class imbalance and object
density variation difficulties. Based on predictions (bounding box and classification
probability) of a CNN-based detector on unseen, unlabeled images, the high-ranked
image could be selected according to the image-level uncertainty score aggregated by
summing each object uncertainty within the unlabeled image. With the low granularity
level, the authors in [189] explored the instance-level for object detection. Throughout a
multiple-instance unsupervised active learning approach, the unlabeled images are treated
as instance bags and feature anchors in images as instances where the image uncertainty
is estimated using instance uncertainty learning and instance uncertainty re-weighting
modules. As a result, the high-ranked images are used to train a constructed detector
based on RetinaNet. By adopting query by committee, Roy et al. [192] formed a
committee of classifiers by leveraging extra detection head layers of the deep network
architecture (SSD). As a selection criterion, the disagreement is measured and aggregated
by introducing the ‘margin’ for each bounding box. By considering mAP improvement
and class imbalance between background and object categories, li et al. [196] proposed
WBetGS that enhances typical diversity and uncertainty-based batch sampling for batch
mode active learning in object detection. Nevertheless, inefficient training of CNN-based
detectors, redundant data selection, scalability handling, and heavy burden of convergence
time are the main shortcomings.

A review of existing research on cost-effective DAL for object detection is relatively
sparse. Most of these works are built upon mixed supervised learning methods.
Leveraging access to both labeled and unlabeled data, a supervised signal is provided
which optimizes iterative DAL cycles and reduces human annotator [190, 211, 212, 213].
Wang et al. [211] proposed an active sample mining (ASM) framework for cost-effective
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training of object detectors. Focusing on a switchable sample selection mechanism, several
unlabeled samples are selected, according to deep detector predictions, to automatically
pseudo-label via a novel self-learning process. However, the remaining samples are
manually annotated via an active learning process. For cost-effective panicle detection in
cereal crops, the authors in [190] proposed an uncertainty-based active learning approach
suitable for two-stage models. Only strong labels (tight bounding boxes) are queried
by considering high uncertainty images picked from a constructed low-cost weak labeled
(object center clicking) subset driven by the oracle labeling knowledge. Alternatively,
some works focus on exploring other metrics, such as consistency and entropy, to evaluate
model predictions between the original and augmented data [218, 219].

3.3.3 Active Learning for Deep on-road Object Detection
Architectures in Autonomous Driving

Ahead of deep active learning’s breakthrough in vision-related operations for autonomous
vehicles, numerous proposals of active learning methods, involving hand-crafted features
and shallow classifiers, have targeted vehicle [220] and pedestrian [221] detection.
Recently, few works have described deep active learning for on-road object detection.

Aghdam et al.[10] addressed pedestrian detection in images and video. Based on
CNN-based object detector predictions, pixel-level scores are computed and aggregated
as a single image-level score. Thus, a fixed number of high-ranked unlabeled images is
selected for querying. With the introduction of temporal selection rules, the selection of
highly visually similar video frames could be avoided.

Furthermore, the authors in [191] investigated LiDAR data and deep active learning
for 3D object detection tasks. For training a LiDAR-based 3D object detector, they
implemented an uncertainty-based approach that queries informative unlabeled samples
from point cloud data, with the help of 2D region proposals in RGB images. Using the
same data format, the authors in [222] explored localization-based uncertainty metrics for
selecting samples from feature space, without relying on additional 2D input information.
This proposed DAL method is built upon a specific object-matching process and is suitable
for an anchor-based object detection architecture. Besides, Liang et al. [223] tailored
the diversity metric by proposing a novel spatio-temporal diversity-based acquisition
function that selects frames from a multimodal data pool. To ensure multi-view vehicle
detection, the authors in [224] proposed an active learning algorithm to enhance the
typical deformable part model by selecting B more effective part samples for query labeling
by human annotator from multi-view vehicle images. Consequently, labeled part samples
are considered as positive samples to retrain the SVM model as a learning part model.

To overcome the problem of training a model on decentralized data, the author in
[210] explored various schemes to use uncertainty-based active learning with federated
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learning, where active learning is primarily used to label images locally, without
transmitting the data to a central location, and then federated learning is used to train
a global object detection model. Using the least confidence method for uncertainty
sampling and the "sum" aggregation method, the results demonstrate that training the
pre-trained YOLOv5 object detection model on the KITTI dataset achieves average
precision levels close to centralized learning for homogeneous data.

- Comparison between different DAL for on-road object detection: This
comparison seeks to investigate various DAL approaches aimed at improving the detection
of on-road objects, both 2D and 3D, by examining several metrics and scorning techniques.
Table 3.1 presents the reviewed works.

As seen in this table, existing works in active learning for on-road object detection
improve the efficiency of training 2D/3D object detection models. Each work chooses
specific metrics and data modalities to assess informative and representative samples by
leveraging model architecture and output uncertainty.

The main problem of object detection in autonomous driving is noisy data (redundant,
outliers) and annotation costs, which directly influence the model’s generalization and
training cost (i.e. overfitting). Achieving the desired performance requires determining
the optimal samples for labeling based on computational efficiency, minimal redundancy,
and savings in query and annotation costs.

Hence, many works have been proposed to decrease these drawbacks. Some works
neglect the selection of of sample batches and label correlation, as seen in [210, 224, 222,
191], which are important factors for efficiently supporting deep model training. Other
works neglect the variability of annotation cost, which also affects the selection/training
processes by exceeding the annotation budget limitation.

By improving the inherently more efficient and scalable batch sampling strategy
while optimizing batch selection based on cost awareness, we argue that leveraging the
uncertainty of CNN-based detector predictions, the diversity of learned representations,
and the adaptive selection strategy can help reduce the selection of redundant (noisy)
samples, handle the variable cost, speed up the annotation process, and ultimately
constitute an effective training set for building a competitive object detector while relaxing
human supervision.

3.4 Challenges and Limitations

Despite advancements in deep active learning, there are still open issues that limit its use
in practical vehicular environment scenarios [225].

• Cold-start Problem: Active learning operates in an iterative manner, choosing a
fixed number of samples in every cycle and subsequently updating the model with the

103



Chapter 3. Deep Active Learning of Object Detection 3.4. Challenges and Limitations
Ta

bl
e

3.
1:

C
om

pa
ris

on
of

D
A

L
Fr

am
ew

or
ks

fo
r

O
bj

ec
t

D
et

ec
tio

n
in

A
ut

on
om

ou
s

D
riv

in
g

W
or

k
K

ey
Fe

at
ur

es
A

nn
ot

at
io

n
C

os
t

M
od

el
M

od
el

Pe
rf

or
m

an
ce

D
at

as
et

In
te

gr
at

io
n

Se
le

ct
io

n
cr

ite
ria

U
nc

er
ta

in
ty

D
iv

er
sit

y
Sc

or
in

g
Le

ve
l

A
gg

re
ga

tio
n

Sa
m

pl
in

g
G

ra
nu

la
rit

y
Ta

rg
et

ob
je

ct
A

pp
lic

at
io

n
da

ta
m

od
al

ity
A

gh
da

m
et

al
.[1

0]
-F

oc
us

es
on

se
le

ct
in

g
in

fo
rm

at
iv

e
sa

m
pl

es
-la

be
lin

g
bu

dg
et

co
ns

id
er

at
io

n
-p

ro
po

se
a

ne
w

im
ag

e-
le

ve
l

sc
or

in
g

pr
oc

es
s

-c
om

pa
rin

g
so

ft
m

ax
sc

or
es

of
ad

ja
ce

nt
pi

xe
ls

fix
ed

la
be

lin
g

bu
dg

et

FP
N

-li
ke

ne
tw

or
k

M
od

er
at

e
(M

R
)

-C
ity

Pe
rs

on
s

-C
al

te
ch

Pe
d

-B
D

D
10

0K

Po
st

-t
ra

in
in

g
(fi

ne
-t

un
in

g)
Si

ng
le

cr
ite

rio
n

C
la

ss
ifi

ca
tio

n
Pr

ed
ic

tio
ns

/
Pi

xe
l

av
er

ag
e

of
m

ax
-p

oo
le

d
sc

or
es

B
at

ch
Pe

de
st

ria
n

2D
im

ag
es

an
d

vi
de

os

[1
91

]
-F

oc
us

es
on

se
le

ct
in

g
in

fo
rm

at
iv

e
sa

m
pl

es
,

-
Fo

cu
se

s
on

Li
D

A
R

3D
ob

je
ct

de
te

ct
or

,
-

Le
ve

ra
ge

s
2D

re
gi

on
pr

op
os

al
s

ge
ne

ra
te

d
fr

om
th

e
R

G
B

im
ag

es
,

-
Pr

op
os

e
a

ne
w

im
ag

e-
le

ve
l

sc
or

in
g

pr
oc

es
s

U
ni

fo
rm

co
st

C
on

vN
e-

lik
e

ne
tw

or
k

H
ig

h
(A

cc
,

M
SE

)
K

IT
T

I
Po

st
-t

ra
in

in
g

(fi
ne

-t
un

in
g)

Si
ng

le
cr

ite
rio

n
C

la
ss

ifi
ca

tio
n

Pr
ed

ic
tio

ns
(M

C
-d

ro
po

ut
,

D
ee

p
En

se
m

bl
e)

/
B

ox
/

In
st

an
ce

ve
hi

cl
e,

H
um

an
3D

Li
D

A
R

[2
22

]
-

Fo
cu

se
s

on
an

ch
or

-b
as

ed
ob

je
ct

de
te

ct
io

n
ar

ch
ite

ct
ur

e,
-

Fo
cu

se
s

on
Li

D
A

R
-b

as
ed

3D
ob

je
ct

de
te

ct
or

,
-

M
od

ifi
ed

ob
je

ct
m

at
ch

in
g

st
ra

te
gy

,
-

N
ov

el
ac

qu
isi

tio
n

m
et

ric
,

-c
ap

tu
re

s
va

ria
bi

lit
y

in
nu

m
be

rs
of

ob
je

ct
s

de
te

ct
ed

fo
r

th
e

sa
m

e
in

pu
t

U
ni

fo
rm

co
st

Vo
xe

lN
et

-li
ke

ne
tw

or
k

M
od

er
at

e
(m

A
P)

G
ov

er
nm

en
t

ow
ne

d
Po

st
-t

ra
in

in
g

(s
cr

at
ch

)
M

ix
tu

re
cr

ite
ria

C
la

ss
ifi

ca
tio

n
an

d
re

gr
es

sio
n

Pr
ed

ic
tio

ns

/
B

ox
av

er
ag

ed
th

e
co

nfi
de

nc
e

sc
or

es

In
st

an
ce

va
rio

us
3D

Li
D

A
R

Li
an

g
et

al
.

[2
23

]
-

Fo
cu

se
s

on
se

le
ct

in
g

in
fo

rm
at

iv
e

an
d

di
ve

rs
e

sa
m

pl
es

,
-

Ta
ke

ad
va

nt
ag

e
of

th
e

m
ul

tim
od

al
in

fo
rm

at
io

n,
-

N
ov

el
sp

at
io

-t
em

po
ra

l
di

ve
rs

ity
-b

as
ed

ac
qu

isi
tio

n
fu

nc
tio

n,
-

C
on

sid
er

in
g

co
st

s
fo

r
an

no
ta

tin
g

bo
th

a
fr

am
e

an
d

a
3D

bo
un

di
ng

bo
x

-
C

ol
d-

st
ar

t
pr

ob
le

m

C
os

t
eff

ec
tiv

e
Vo

xe
lN

et
ne

tw
or

k
hi

gh
(m

A
P)

nu
Sc

en
es

Po
st

-t
ra

in
in

g
(fi

ne
-t

un
in

g)
M

ix
tu

re
cr

ite
ria

/
di

st
an

ce
m

ea
su

re
B

ox
/

B
at

ch
va

rio
us

3D
m

ul
tim

od
al

[2
24

]
-

Fo
cu

se
s

on
se

le
ct

in
g

in
fo

rm
at

iv
e

sa
m

pl
es

,
-

Fo
cu

se
s

on
M

ul
ti-

vi
ew

D
et

ec
tio

n
ba

se
d

on
Pa

rt
M

od
el

,
-

C
ol

le
ct

pa
rt

sa
m

pl
es

U
ni

fo
rm

co
st

/
H

ig
h

(A
cc

)
C

B
C

L
st

re
et

sc
en

es

/
Si

ng
le

cr
ite

rio
n

/
/

Pi
xe

l
/

In
st

an
ce

ve
hi

cl
e

2D
im

ag
es

[2
10

]
-F

oc
us

es
on

se
le

ct
in

g
in

fo
rm

at
iv

e
sa

m
pl

es
,

-F
oc

us
es

on
fe

de
ra

te
d

le
ar

ni
ng

an
d

A
ct

iv
e

le
ar

ni
ng

fo
r

tr
ai

ni
ng

on
de

ce
nt

ra
liz

ed
da

ta
,

-
A

ch
ai

n
of

de
vi

ce
s

al
lo

w
s

fo
r

in
cr

ea
se

d
pr

ec
isi

on

U
ni

fo
rm

co
st

Y
O

LO
v5

ob
je

ct
de

te
ct

io
n

M
od

er
at

e
(m

A
P)

K
IT

T
I

Po
st

-t
ra

in
in

g
(fi

ne
-t

un
in

g)
Si

ng
le

cr
ite

rio
n

C
la

ss
ifi

ca
tio

n
Pr

ed
ic

tio
ns

(C
S)

/
B

ox
su

m
of

C
on

fid
en

ce
In

st
an

ce
ve

hi
cl

e,
H

um
an

3D
Li

D
A

R

104



Chapter 3. Deep Active Learning of Object Detection 3.4. Challenges and Limitations

annotated samples accumulated so far. Within this process, two primary challenges
arise: (1) determining the initial set of samples to train the first model and start
the iterative process, and (2) deep learning models’ tendency to produce unreliable
probability estimates when trained on sparse data. These challenges, known as the
cold-start problem, highlight the necessity for labeling a sufficiently large initial
subset to start the AL cycle. This problem is particularly pronounced for deep
learning models due to their substantial data requirements.

• Combining informativeness and representativeness: Classical acquisition
functions typically focus on optimizing informativeness or representativeness
objectives, each serving a distinct purpose in the sample selection process.
Combining the two objectives can be challenging due to the differing nature of
the selection strategies. The informativeness measure selects samples that are
likely to add missing information to the model, based on the predicted probability
distribution. The representativeness measure selects samples to well represent
the overall input patterns of unlabeled data, based on their representation in the
embedding space. The two measures convey complementary information and a few
sets of approaches have attempted to tackle their combination to select samples that
are both representative and informative. While such combinations could help in
selecting more valuable samples, joint optimization remains an open issue.

• Imbalanced learning in AL: Generally speaking, the class imbalance problem
is present in most practical datasets.Although active learning has the potential to
address class imbalance, it has been shown that, unless properly processed, a high
degree of imbalance can adversely affect the selection process, with the biased model
having a preference for selecting samples from majority classes. Active learning for
an imbalanced dataset adds another component to the selection criteria to ensure
that the imbalance in the unlabeled set is not transferred to the selected set.

• In many crowd-sourcing settings, users may be unreliable, makeing accurate
assessments of annotation quality challenging. Furthermore, once obtained, these
assessments may not be reusable, as the model lacks control over their selection.
Research on using non-experts or even unreliable experts as oracles in active learning
remains in progress.

• The difficulty with batch-mode active learning lies not only in ensuring scalability
to large datasets and high-dimensional data but also in balancing exploration and
exploitation while minimizing computational and complexity costs. This involves
correctly assembling the best query batch Q. Additionally, while it may reduce the
number of instances needing annotation, it may not necessarily decrease the overall
annotation time.
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• Noisy Labeled Data: Noisy, incorrectly labeled data may alter training data and
carry out greater harm than just having insufficient training data. Expert error or
inadequate knowledge to label new data due to restricted information are some of
the reasons for noisy points. Open research questions regarding noisy labeled data
include how to handle situations where no experts know the ground truth and how
active learners can deal with experts whose quality varies over time [178].

• Low Query Budget and Variable Labeling Costs: An important aspect of
active learning is that significant amounts of unlabelled data should be queried before
satisfactory results can be obtained. However, labeling costs and time often result in
a limited budget for querying. In practice, large starting labeled datasets and a costly
query are usually needed for deep active learners to efficiently optimize a massive
number of model parameters, particularly when dealing with high-dimensional
data. However, it becomes difficult to obtain enough data for accurate deep model
training when the query budget is constrained. Furthermore, in autonomous driving
applications, both labeling quality and cost can vary significantly between samples.
This means that reducing the querying budget may not always affect the total
labeling cost. Therefore, the problem here is how to accurately assess labeling costs
under these circumstances [178].

• AL with Outliers: Data points that significantly differ from the dataset’s average
value are referred to as outliers. Querying these outliers can result in inefficient
use of labeling resources through examination of areas that diverge significantly
from typical data, thus negatively impacting the detection model’s performance.
Therefore, the problem here is how to handle the presence of outliers [178].

• Combination inconsistency: In general, AL aims to train the detector model
by using fixed feature representations. Conversely, feature learning and detector
training are optimized together in the deep learning process. As a result, integrating
DL and AL is very challenging due to the inconsistency in their processing pipelines,
while other research either addressed them as a pair of issues or limited their
attention to updating the deep detector model throughout the AL framework.

• Domain shift: Domain shift refers to the inconsistency between the distribution of
labeled training data and unlabelled data. In the context of conventional Deep AL,
labeled and unlabelled data are typically assumed to have the same distribution.
This leads to domain shift due to performance degradation when the target data
originate from a different domain in the actual world [186].
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Conclusion

This chapter has thoroughly explored various deep active learning methods for object
detection in autonomous driving. We discussed the fundamental concepts, classification,
and comparison of these methods based on different criteria to ensure high-performance
and robust object detection. Our focus on batch-mode deep active learning demonstrated
the potential for reducing labeling costs while maintaining high accuracy. The review
highlighted the importance of efficient query strategies and the challenges posed by
noisy oracles and domain shifts. These insights set the stage for the next step in
our research—developing a cost-effective framework for training deep on-road object
detectors.

In the following chapter, we will introduce our novel contributions to this field, aiming
to enhance the efficiency and effectiveness of deep active learning in practical applications.
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Chapter 4
Methodology

Introduction

Toward reducing the training cost of a deep object detector with deep active learning,
literature review findings in the previews chapter indicated that a batch-based query
strategy within cost-effective DAL is an efficient approach to alleviate labeling and
training cost variants under given budget and desired performance constraints. This
label-efficient iterative learning algorithm is suitable for fine-tuning a deep object
detection model, considering a labeled batch as a min-batch.

Building upon concepts and methods discussed in the previous chapter, this chapter
presents the design and implementation of our cost-effective deep batch mode active
learning framework (CEDBMAL). Section 4.1 details the proposed uniform-cost
batch-based query strategy to improve deep batch mode active learning for object
detection, describing proposed active learning metrics and scores based on classification
and regression prediction uncertainty, object distribution, and diversity, allowing active
selection of fixed-size batches queried across sequences of frames. Subsequently, it presents
the cost-effective version of this strategy to handle variable labeling costs and batch
size setting issues, reviewing the basis used in this contribution, including labeling time
prediction as an annotation cost estimator and the 0-1 Knapsack algorithm as optimal
batch size selection solver. As a result, the proposed training framework integrates the
enhanced query strategy with the transfer learning scheme to build an efficient and robust
single-stage CNN-based object detector. Section 4.2 provides extensive experiments to
validate our two contributions, introducing the target dataset, the underlying CNN-based
object detector, the training scheme, and settings. It also illustrates and discusses both
quantitative and qualitative results of performance evaluation, as well as comparisons
with similar solutions.
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Figure 4.1: Overview of the proposed deep active learning framework

4.1 Overall Framework

CEDBMAL framework focuses on a pool-based setting that consists of an iterative
selection/annotation process as depicted in Figure 4.1. Given a large pool of unlabeled
images Uunann and a labeling budget, CEDBMAL initially employs the underlying
pre-trained detection model to examine each unlabeled image and then selects, using
a query strategy, batches of more valuable examples based on uncertainty as an
informativeness measure and diversity as a representativeness measure. Next, a batch
with the best size value, among the selected batches in the first step, is picked out
for manual labeling by leveraging information from the resolved 0-1 Knapsack problem,
considering low redundant instances with more objects of interest and fewer estimated
annotation time. Once labeled by an oracle (e.g., human annotator), the labeled images
pool Uann is enlarged with this labeled subset, which is retired from Uunann. These
accumulated actively-labeled images are considered a training set to fine-tune the detector
while getting an updated model in the result. The cycle of these steps continues on
the remaining unlabeled images until the labeling budget is exhausted or the required
performance is achieved cost-effectively. The next subsections describe the detection
model followed by our framework’s cost-effective active learning strategy.
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4.1.1 Detection Model
This work focuses on a single-stage CNN-based object detector as a state-of-the-art object
detector. Such a model relies on a baseline CNN model for feature learning and extra
head layers for object classification and bounding boxes regression. The overall deep
architecture is trained end-to-end, with a post-processing method obtaining the final
detection outputs. For detector prediction, the 2D map of probabilities per class and
bounding box coordinates are used to rank examples in recent uncertainty-based deep
active learning works [226]. The pre-trained object detector is fine-tuned using a transfer
learning paradigm instead of training from scratch to reduce training costs and explore
the domain-shift influence on overall performance.

4.1.2 Deep Active Learning for CNN-based Object Detector
To train the underlying detection model, the active learning method should carefully
employ a properly designed query strategy for querying labels while identifying the cost
of the selection/annotation process. Independently of the underlying detection model
architecture, our query strategies are performed as explained below.

• Uncertainty-based deep active learning

Despite the effectiveness of uncertainty-based DAL for classification tasks, it needs to
be revised for object detection. These selection strategies suffer from querying outliers.
They are less efficient in evaluating image data in autonomous driving datasets when
solely relying on the predicted class uncertainty of the CNN-based model. Therefore,
selecting more valuable unlabeled images may fail, negatively impacting detection
performance. To address these challenges, we suggest incorporating regression alongside
classification in an uncertainty sampling strategy, as explained below.

- Classification uncertainty sampling: Given an example x, a CNN-based
object detector estimates the probability distribution of the label p(c|x) over C classes
per detected bounding boxes. Such predictions are evaluated by a scoring function
to measure the uncertainty metric and form detection-level scores for each detected
object, using uncertainty sampling for this purpose. For a given bounding box Bb, its
classification uncertainty UC(Bb) is defined as UC(Bb) = 1− Pmax(Bb) where Pmax(Bb)
is the highest probability distribution among all classes.

- Regression uncertainty sampling: Since CNN-based detector predicts bounding
box coordinates, regression uncertainty can be measured by estimating distribution
probability density [188]. Adopting the Gaussian Mixture Model(GMM), each bounding
box’s distribution probability density (denoted L) is estimated in terms of calculated
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log probability. The obtained L is clipped as Lb=min(-99, L). Finally, the regression
uncertainty (Ur) is calculated using the following uncertainty formulation:

Ur =

 0.05 ∗ (Lb + 10) + 0.5, Lb ≥ −10

0.5 ∗ Lb+100
90 , Lb < −10

(4.1)

- WCR Deep Active Learning: Inspired by [188], our proposed weighted
classification-regression (WCR) uncertainty-based deep active learning algorithm uses
both classification uncertainty Uc and regression uncertainty Ur to perform the query
strategy. However, an unlabeled image is not selected for querying unless the WCR
image-level uncertainty, denoted as Us, is aggregated from detection-level scores for each
detected box (object) in it, as:

Us = agg(Uc(Bb)× Ur(Bb))

, where Bb ⊆ detected Bboxes. In our work, the aggregating methods are performed as
inspired by [226].

• Sum: Given an unlabeled image x, the aggregate score, from the detected bounding
boxes D, can be obtained as follows

vSum(x) =
∑

Bb⊆D

UC(Bb) (4.2)

• Average: With less sensitivity to the number of detections, the main idea is
averaging all detection-level scores.

vAvg(x) = 1
|D|

∑
Bb⊆D

UC(Bb) (4.3)

• Maximum: The maximum of detection-level scores is kept. Despite the robustness
of zero-valued detections (as noise), a substantial information can be lost.

vMax(x) = max
Bb⊆D

UC(Bb) (4.4)

According to the one-by-one query method, the query function can select a group of B
unlabeled images with higher WCR uncertainty while ignoring outliers. Our contribution
is highlighted in algorithm 4.1.

Despite its robustness, this solution could select redundant images, less effective in the
training process. This limits capturing the visual pattern diversity in typical urban road
scenarios. Additionally, the repetitive one-instance-at-a-time selection procedure can lead
to an inefficient and time-consuming training process, placing an expensive burden on the
annotator expert. Other issues include impractical settings of B (ranging from increasing
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Algorithm 4.1 WCR deep Active Learning Algorithm Implementation Details
Require: annotated images pool Uann, unannotated images pool Uunann, object detector OD, test set

Utest, objects’ categories C
1: Uann ← ∅
2: OD ← pre-trained object detector OD0
3: repeat
4: for each image x in Uunann do
5: Fed x into the object detector OD
6: Get bounding boxes Dx with corresponding posterior probability p(c|Bb) and coordinates after

post-processing operation (NMS)
7: for each object Bb in Dx do
8: Use objects’ information to calculate Uc and Ur

9: end for
10: Calculate WCR uncertainty Us using each x object’s Uc and Ur

11: end for
12: Sort Uunann (in descending order) using the assigned WCR uncertainty Us scores
13: Select B high-ranking images as queries for annotation by an oracle
14: Uann ← Uann + B, Uunann ← Uunann˘B
15: ODt ← ODt−1 fine-tuned on Uann

16: Test ODt using Utest

17: Evaluate the detection performance (detection loss)
18: until The required performance is reached or query budge
Ensure: detector model parameters WF and the final detector model ODF

time-to-completion to uniform sampling of images) and fixed assumptions about labeling
cost. To address these issues, incorporating our proposed uncertainty measure in a batch
sample query strategy can ensure cost-effective training and labeling tasks, where true
diversity within a group of instances is guaranteed.

• Cost-effective deep batch-mode active learning

Two critical design points, namely batch query and batch size selection, are carried
out as explained below.

- Uniform-Cost Deep Batch-mode Active Learning: Compared to one-by-one
query strategies, several deep batch mode active learning researches have shown the
efficiency of hybrid batch-based query strategies in training CNN-based object detectors
[216]. In this setting, the final score used for ranking the unlabeled images and picking
diverse samples with high uncertainty is calculated as [227]

finalScore = α× (1.0− similarityScore) + (1.0− α)× uncertaintyScore

, where the parameter α weights the impact of each factor as:

α = |Uunann|
|Uunann|+ |Uann|

In this work, we investigate the previously presented WCR uncertainty as an
informativeness criterion, while choosing Euclidean distance as a similarity measurement.
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This method favors the selection of the furthest unlabeled sample xi from its closest
labeled neighbor, where the distance between them is computed as follows [228]:

divi = minj=1,2,,,,n ||xi − xj||2, xi ⊆ Uunann, xj ⊆ Uann

However, one of the fundamental issues in using a batch-based query strategy lies in the
batch size, which might produce worse results and make the labeling effort inefficient
[227]. To relax this limitation, our contribution consists of selecting a diverse batch with
optimal size at each iteration under given budget and desired performance constraints.

- Cost-effective Deep Batch-mode Active Learning: In autonomous driving
context, the selection of an optimal batch of instances that positively impacts detection
performance is driven by determining the batch size, which ensures an adaptive response
to varying labeling time. Regardless of a particular batch size and inspired by [229],
the optimal batch size selection is reduced to the 0-1 Knapsack problem [230], which
maximizes the uncertainty, maintains the annotation costs within a given budget and
desired performance constraints and, can be solved with dynamic programming. First,
we pick a set of batches with size Qi from unlabeled images pool, where Qi ⊆ 100 . . .

| unlabeled images pool |. Given such a batch set, where each item has a weight Ti

and value Vi, a 0-1 Knapsack problem is formulated. It’s worth noting that the batch
uncertainty Vi is defined by summing the uncertainty of top-Qi images within the batch
i.e.

Vi =
Qi∑

j=1
Vij

while the labeling time is predicted as annotation cost Ti. Figure 4.2 describes this
combination.

Algorithm 4.2 depicts the overall operations of the 0-1 Knapsack algorithm using
dynamic programming.

Labeling time prediction: As cited in [190], the annotation time for baseline
methods, given a batch of queried images, is calculated using the following formula

Ti = 7.8×Qi + 34.5× bQi

where Qi is the batch size, bQi is the total objects in it and Ti < T. In our work, bQi is
the total number of the predicted BBox within the batch.

As a result, the most useful instances with low redundant information can be selected
for labeling, improving the performance at every iteration and saving immense labeling
loads given a fixed budget. The overall operations in our CEDBMAL are depicted in
algorithm 4.3.
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Figure 4.2: 0-1 Knapsack problem formulation with Ti as Weight parameter and Vi as Value parameter.

Algorithm 4.2 0-1 Knapsack Algorithm using Dynamic Programming.
Require: Array of weights w, array of values v, number of items n, maximum capacity W

1: Function Knapsack(W, n, w, v)
2: Create a 2D array K[n + 1][W + 1]
3: for i = 0→ n do
4: for w = 0→W do
5: if i == 0 or w == 0 then
6: K[i][w]← 0
7: else
8: if wi ≤ w then
9: K[i][w]← max(v[i− 1] + K[i− 1][w − w[i− 1]], K[i− 1][w])

10: else
11: K[i][w]← K[i− 1][w]
12: end if
13: end if
14: end for
15: end for
16: Return K[n][W ]
17: End Function
Ensure: Maximum value that can be obtained within capacity W
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Algorithm 4.3 CEDBM Active Learning Algorithm Implementation Details
Require: annotated images pool Uann, unannotated images pool Uunann, object detector OD, test set Utest,

objects’ categories C
1: Uann ← ∅
2: OD ← pre-trained object detector OD0
3: repeat
4: for each batch size Qi in 100 . . . |Uunann| do
5: for each image x in Uunann do
6: Fed x into the object detector OD
7: Get bounding boxes Dx with corresponding posterior probability p(c|Bb) and coordinates
8: for each object Bb in Dx do
9: Use objects’ information to calculate Uc and Ur

10: end for
11: Calculate WCR uncertainty Us, as UncertaintyScorex, using each x object’s Uc and Ur

12: Calculate similarityScorex using Euclidean distance
13: calculate scorex = α× (1.0 – similarityScorex) + (1.0 – α) ×UncertaintyScorex

14: end for
15: Sort Uunann (in descending order) using the assigned scoresx

16: Select a batch of instances BQi with largest scorex

17: bQi ← 0
18: Vi ← 0
19: for each image x in BQi do
20: bQi ← bQi + Dx

21: Vi ← Vi + UncertaintyScorex

22: end for
23: Estimate the annotation time Ti (as cost) using Qi and bQi

24: end for
25: Estimate the optimal batch size by solving a 0-1 Knapsack problem using Ti and Uncertainty Vi for each

batch size
26: Select the batch Bbest, with the best batch size, as queries for annotation by an oracle
27: Uann ← Uann + Bbest, Uunann ← Uunann˘Bbest

28: Fine-tune ODt−1 using Uann to get ODt

29: Test ODt using Utest

30: Evaluate the detection performance (detection loss)
31: until The required performance is reached or query budge
Ensure: detector model parameters WF and the final detector model ODF
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4.2 Experiments and Results

4.2.1 Experimental Setup
To study how our DAL framework could ensure a cost-effective annotation and training
processes while reducing manual annotation effort and guaranteeing expected detection
performance over an autonomous driving dataset, we use it to fine-tune a pre-trained
Tiny-YOLOv3 for detecting pedestrians (as a use case) on the Caltech Pedestrian
Detection Benchmark [156] while evaluating various setting of B. In our experiments,
we retain only training frames labeled as “person” with a height taller or equal to 20
pixels, simulating the oracle annotation and approaching safety risk assessment of the
trained model using partial specifications [22]. For evaluating the detector’s performance
(detection loss), we use the test set and Piotr’s Matlab Toolbox, providing a fair and
comprehensive comparison against two other alternatives: transfer learning and random
sampling. In this case, the “Reasonable” scenario is preferred. For validation purposes,
we split the training set by 10% as a validation set. The target dataset, the tiny version of
the detection model, and the alternative sampling methods are discussed in detail below.

• Dataset

The Caltech Pedestrian dataset [156] consists of ∼ 10 hours of 640x480 30Hz urban
driving video with 350K labeled bounding boxes whereas 2,300 unique pedestrians were
annotated. Over the 11 sessions, it resulted in 42,782 training images (set00-set05) and
4,024 test images (set06-set10) sampled every 30th video frame. The log-average miss
rate is used to evaluate the detection performance and is calculated by averaging the
miss rate on false positive per-image (FPPI) points where the relevant point is defined
as FPPI = 10−1. 4 testing scenarios which are “All”, “Reasonable”, “Scale=near”, and
“Scale=medium” are defined. The statistics of the frames with bounding boxes labeled
as “person” with a height of 20 pixels are summarized in TABLE 4.1.

Table 4.1: “person” labeled frames statistics in train and test sets

# unlabeled frames “Person” label

Train Test # labeled images # Bounding Boxes

4250 4024 2006 4987

• Tiny-YOLOv3

In this work, we focus on Tiny-YOLOv3, a simplified version of YOLOv3 [121].
Emphasizing the Darknet-53 backbone and its low-complexity architecture motivates its
suitability for constrained environments with a significant detection speed but at the
cost of some detection accuracy loss. In our experiments, we use a pre-trained version
of the Tiny-YOLOv3 on the COCO benchmark [231], containing 82 object categories.
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We also perform two training scenarios. Firstly, we freeze the Darknet backbone layers
and fine-tune the other layers while setting training parameters as follows: learning rate:
1e−3, number of iterations: 60, mini-batch size: 16. Next, we unfreeze all layers and
fine-tune them using the following training parameters: initial learning rate: 1e−4, initial
number of epochs: 60, number of epochs: 120, batch size: 16. For both scenarios, we use
Adam as the optimization algorithm while the learning rate decays by a factor of 0.1.

• Random Sampling

Random sampling, as passive learning, is a naive sampling technique that aims to
choose the frame to be labeled uniformly at random from an unlabelled pool. The selected
frames are therefore independent and not known beforehand [232].

• Transfer Learning

Generally applied in deep learning, transfer learning focuses on the transfer of
knowledge from source domains to target domains while fine-tuning a pre-trained deep
model. Thus, the performance of the deep model could be improved by exploiting
parameter sharing with low dependence on a large number of data and a tedious training
process [233]. Incorporating this paradigm into our empirical experiments can allow us
to provide a comprehensive comparison in terms of the number of training examples and
iterations.

4.2.2 Results
- Pre-trainted Tiny-YOLOv3 vs Transfer Learning

For further comparison with our method, we explore the benefit of transfer learning
in improving Tiny-YOLOv3 detection performance. Figure 4.3 shows the quantitative
results of the COCO pre-trained Tiny-YOLOYv3 versus the fine-tuned model on the
Caltech Pedestrian dataset, in terms of miss rate and false-positive per image (FPPI).

As shown in Figure 4.3, the transfer learning technique reduced the detection loss of
the pre-trained Tiny-YOLOv3 by 9%. This observation is explained by the fact that
domain adaptation was achieved by training the pre-trained model on a target fully
labeled dataset. Using the visual pattern knowledge learned from the COCO dataset as
the source domain, the output of the Tiny-YOLOv3 model was guided from the detection
of various object classes to the precise location of pedestrian objects in the Caltech
Pedestrian dataset, the target domain, with a high objectness score (from multiclass to
binary object detection). Some qualitative examples of detection results on the Caltech
test set, using the two Tiny-YOLOv3 models, are shown in Figures 4.4 and 4.5.
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Figure 4.3: Performance curves of Caltech Pedestrian fine-tuned Tiny-YOLOv3 vs COCO pre-trained
Tiny-YOLOv3

- Random Sampling

In this scenario, we investigate the random selection technique to randomly sample B
instances for query manual labeling at each cycle, while setting B = 500 as indicated in
[10]. TABLE 4.2 illustrates that starting from the 2nd cycle, the updated model performs
close to the pre-trained and fine-tuned Tiny-YOLOv3 models. However, starting from
the 6th cycle, the updated model clearly outperforms both previous models (57% against
the 69% and 60% respectively) with only 3,000 labeled frames. This is due to more
knowledge being gained from the Caltech Pedestrian dataset by the trained model as the
labeled frames in Uann increase.

Additionally, one can observe a varied number of detected bounding boxes from
one cycle to another. This is due to the model exploiting random knowledge from the
training set consisting of randomly selected informative samples.

- Experiment on WCR

To further analyze the effectiveness of our DAL algorithm, we carefully evaluated the
classification and regression uncertainty-based sampling strategy for selecting a fixed B
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Figure 4.4: Qualitative results of the pre-trained Tiny-YOLOv3 model on the Caltech Pedestrian dataset
(detect 80 object categories)

Figure 4.5: Qualitative results of the fine-tuned Tiny-YOLOv3 model on the Caltech Pedestrian
dataset(detect only pedestrian object).

value, defined as in the previous experiment, of informative samples while considering an
equal annotation cost for the overall unlabeled images.

• Experiment using classification uncertainty:

To provide a short analysis of our classification uncertainty selection strategy (Uc),
we compare its overall performance, in terms of miss rate and false-positive per image
(FPPI), to those of pre-trained and fine-tuned models, while evaluating three aggregation
methods, namely "sum", "avg" and "max", for the earliest DAL cycles. Figures 4.6 and
4.7 together provide the quantitative results.

At the 1st and 2nd Uc-DAL cycles, results demonstrate the potential of the DAL
strategy to yield the same or lower detection loss with only a few labeled frames. In
contrast to labeled frames randomly sampled or selected by sum and max aggregation
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Table 4.2: Evaluation performance results for random sampling experiment.

cyc #SI #IBx #BxC #Bx FPPI

RS
B=500

1 500 218 486 486 85%
2 1000 442 601 1087 69%
3 1500 683 655 1742 62%
4 2000 930 637 2379 62%
5 2500 1163 547 2926 61%
6 3000 1411 605 3531 57%
7 3500 1637 579 4110 57%
8 4000 1875 583 4693 55%
9 4250 2006 294 4987 53%

PTY3 69%
TLTY3 4250 2006 4987 60%

cyc:cycles ,#SI:Number-selected-images ,#IBx:Number-images-with-Bboxes ,#BxC:Number-detected-Bboxes-per-cyc
,#Bx:Number-detected-Bboxes#

methods at the 3thd cycle, the miss rate decreases to 57% when the 1500 labeled frames,
selected by the "avg" method, are involved in the detector’s training. This is primarily
due to ignoring outliers, considered noisy samples, during the sample selection process.

By selecting a subset of the most informative samples during DAL cycles, the "avg"
aggregation method can build a detector model with lower detection loss compared to
transfer learning using random samples from the fully labeled Caltech Pedestrian dataset,
and other methods, as shown in Figure 4.7, depicting the miss rate per cycle. However,
sum and max aggregation methods might achieve the same performance but at the cost of
more burden due to the outliers’ influence and visual similarity between selected frames.

Overall, we can claim that the DAL algorithm based on classification uncertainty is
effective in training a detection model that guarantees the expected performance with
less training effort and manual labeling. Yet, this comes at the cost of negative influence
from both outliers and visual similarity.

• Experiment using regression uncertainty incorporated with classification uncertainty
(WCR):

In this experiment, we analyze the exploration of model awareness about the class and
localization prediction in addressing the aforementioned issues. The high-scoring frames
are selected according to the weighted selection "WCR" (Us) criterion based on Uc and
Ur. Keeping the same fixed value of B, TABLE 4.3 to TABLE 4.5 show the results of
the miss rate obtained with respect to the number of pedestrian instances (instance-level
labels) selected by every aggregation method after completion of a WCR-DAL cycle.

Compared to "sum" and "max" aggregation methods, the fine-tuning of the underlying
detector model using the top-ranked labeled pedestrian instances according to the "avg"
aggregation method is more accurate. ∼=3195 labeled boxes, collectively contained in
1500 frames selected by the "avg" method are more accurate (with 57% of detection
loss) than ∼=3119 selected by the "max" method (with 58% of detection loss) and ∼=3088
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Table 4.3: Evaluation performance results for WCR deep active learning experiment (with “sum”
aggregation method)

cyc #SI #IBx #BxC #Bx FPPI

WCR-DAL
sum

1 500 440 1764 1764 71%
2 1000 802 862 2626 61%
3 1500 1024 462 3088 60%
4 2000 1231 415 3503 57%
5 2500 1486 437 3940 58%
6 3000 1709 518 4458 56%
7 3500 1817 183 4641 56%
8 4000 1872 98 4739 54%
9 4250 2006 248 4987 55%

cyc:cycles ,#SI:Number-selected-images ,#IBx:Number-images-with-Bboxes ,#BxC:Number-detected-Bboxes-per-cyc
,#Bx:Number-detected-Bboxes#, WCR-DAL: WCR-DAL training, agg func= "Sum" , B=500

Table 4.4: Evaluation performance results for WCR deep active learning experiment (with “avg”
aggregation method)

cyc #SI #IBx #BxC #Bx FPPI

WCR-DAL
avg

1 500 418 1405 1405 72%
2 1000 849 1337 2742 61%
3 1500 1062 453 3195 57%
4 2000 1263 428 3623 55%
5 2500 1479 347 3970 57%
6 3000 1652 265 4235 54%
7 3500 1746 152 4387 57%
8 4000 1863 245 4632 51%
9 4250 2006 355 4987 52%

cyc:cycles ,#SI:Number-selected-images ,#IBx:Number-images-with-Bboxes ,#BxC:Number-detected-Bboxes-per-cyc
,#Bx:Number-detected-Bboxes#, WCR-DAL: WCR-DAL training, agg func= "Avg" , B=500

Table 4.5: Evaluation performance results for WCR deep active learning experiment (with “max”
aggregation method)

cyc #SI #IBx #BxC #Bx FPPI

WCR-DAL
max

1 500 426 1632 1632 74%
2 1000 819 1004 2636 63%
3 1500 1049 483 3119 58%
4 2000 1282 506 3625 58%
5 2500 1502 369 3994 56%
6 3000 1631 200 4194 55%
7 3500 1733 168 4362 55%
8 4000 1874 306 4668 54%
9 4250 2006 319 4987 55%

cyc:cycles ,#SI:Number-selected-images ,#IBx:Number-images-with-Bboxes ,#BxC:Number-detected-Bboxes-per-cyc
,#Bx:Number-detected-Bboxes#, WCR-DAL: WCR-DAL training, agg func= "Max" , B=500
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Figure 4.6: Performance curves of Pre-trained Tiny-YOLOv3 vs. TL-fine-tuned Tiny-YOLOv3 vs.
random selection vs. Actively-fine-tuned Tiny-YOLOv3 (score function: Uc, aggregation method: sum,
max and avg) at different training cycles on the Caltech Pedestrian dataset.

selected by "sum" method (with 60% of detection loss). This can be explained by the
effectiveness of the "avg" method in avoiding outlier selection, which is the main issue of
the uncertainty-based sampling strategy. As a result, the selection of frames with sparse
object density can be avoided and more informative pedestrian instances can be highly
ranked in hopes of rapidly reducing detection loss.

Moreover, one can note that the Uc scoring function performs slightly close to the
WCR counterpart. Figure 4.6 and Figure ?? illustrate this observation by comparing
the miss rate of the three aggregation methods. This is primarily due to the failure of
the sampling strategy to capture the visual patterns’ similarity in subsequent frames.
- Experiment on CEDBMAL

In this experiment, we analyze the importance of involving a dynamic batch selection
to address the variable annotation cost issue and improve the performance. To this end,
a group of frames, with the best batch size B, is sampled according to the labeling time
cost of frames and the distribution of objects over them.

TABLE 4.6 shows the results of the miss rate according to the “avg” aggregation
function and the best B value selected at each CEDBMAL cycle. It is observed that the
miss rate, in the 2nd cycle, is decreased to 57% with only 783 labeled frames that contain
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Figure 4.7: Miss rate of random selection vs. variants of our UC_DAL method based on "sum", "max"
and "avg" aggregation method.

∼= 2226 pedestrians. The same miss rate is obtained using random sampling method after
6 cycles (3000 selected frames for labeling containing ∼= 3531 pedestrians as reported
in TABLE 4.2), and using WCR-DAL method in 3thd cycle, but at the cost of more
labeled frames (1062 frames which contain ∼= 3195 pedestrians) and a fixed group size
(see TABLE 4.4). Such observation is explained by two reasons: (1) the picking up, in a
cost-aware manner, of the best group with few important frames that contain relatively
diverse and fewer (but more informative) detected pedestrians. (2) The integration of
WCR uncertainty to estimate pedestrian objects amount during batch sampling and
optimal batch size selection.

- Comparisons with state-of-the-art approaches

In the following parts, we undertake a comparative analysis of the detection
performance of our proposed method with that of existing passively trained baseline
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Table 4.6: Evaluation performance results for CEDBMAL experiment (with “avg” as aggregation method)

cyc #B #IBx #BxC #Bx FPPI

CEDBMAL

0 500 218 486 486 85%
1 900 707 1507 1993 61%
2 100 783 233 2226 57%
3 500 1025 670 2896 55%
4 500 1276 632 3528 56%
5 100 1399 159 3687 57%
6 500 1501 364 4051 57%
7 100 1600 147 4198 55%
8 500 1773 385 4583 55%
9 100 1828 108 4691 55%
10 100 1909 104 4795 55%
11 350 2006 192 4987 53%

cyc:cycles ,#B:Best-batch-size ,#IBx:Number-images-with-Bboxes ,#BxC:Number-detected-Bboxes-per-cyc
,#Bx:Number-detected-Bboxes#, CEDBMAL: CEDBMAL training, agg func= "Avg"

pedestrian detectors. We then proceed to compare it with existing DAL techniques in
the related literature for training pedestrian detectors.

• Comparisons with baseline pedestrian detector :

In this part, we compare the results of using our DAL strategy versus standard
training strategies for building pedestrian detectors. The experiment is conducted
using representative shallow learning (handcrafted feature)-based and deep (feature)
learning-based pedestrian detectors whose results are published on Caltech Pedestrian
detection benchmark [234, 235]. All methods considered here were trained on fully labeled
Caltech-USA and INRIA datasets without referring to DAL algorithms.

Table 4.7: Listing of methods for pedestrian detection considered in comparison on Caltech-USA dataset

method Td Ts Fe Cl #LtD #Dp MR
ConvNet [236] INRIA Sot learning(Pixels) DeepNet 21845 - 0.77

TinyYOLOv3_WCRDAL_1avg(ours) Caltech AL + TL learning(Pixels) DeepNet 418 1405 0.72
TinyYOLOv3 COCO Pre learning(Pixels) DeepNet 165482 - 0.69

HOG [159] INRIA Scratch handcrafted LinearSVM ∼= 14658 - 0.68
MLS [237] INRIA boosting handcrafted Adaboost ∼= 14658 - 0.61

TinyYOLOv3_WCRDAL_2avg(ours) Caltech AL + TL learning(Pixels) DeepNet 849 2742 0.61
TinyYOLOv3_CEDBMAL_1(ours) Caltech AL + TL learning(Pixels) DeepNet 707 1993 0.61

TinyYOLOv3_TL Caltech TL learning(Pixels) DeepNet 2006 - 0.59
TinyYOLOv3_WCRDAL_3avg(ours) Caltech AL + TL learning(Pixels) DeepNet 1062 3195 0.57
TinyYOLOv3_CEDBMAL_2(ours) Caltech AL + TL learning(Pixels) DeepNet 783 2226 0.57
TinyYOLOv3_CEDBMAL_3(ours) Caltech AL + TL learning(Pixels) DeepNet 1025 2896 0.55

Katamari [234] Caltech scratch handcrafted - - - 0.22
TLL-TFA [238] Caltech scratch learning(Pixels) DeepNet ∼= 42782 - 0.07

Td:Training-dataset ,Ts:Training-strategy ,Fe:Features ,Cl:Classifier ,#Ltd:Number-labeled-training-data
,#Dp:Number-detected-pedestrian ,MR:Miss-Rate ,Sot:Stochastic online training ,TL:Transfer learning ,AL:Active

learning ,Pre:Pre-trained ,CEDBMAL_x: CEDBMAL training, agg func= "Avg", cycle number= "x"
,WCRDAL_xavg: WCRDAL training, agg func= "Avg", cycle number= "x"

Figure 4.8 provides quantitative results in terms of miss rate and false-positive per
image (FPPI). The results depict that the deep-learned features train a more accurate
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Figure 4.8: Pedestrian detection on the Caltech Pedestrian dataset.

pedestrian detector than handcrafted features. This is due to the fact of the model’s
sensitivity towards the training strategy and the amount of data used for knowledge
learning.

Moreover, the results report that the subset of labeled training data, actively selected
and accumulated by our proposed methods, is enough to yield the best performance and
outperforms some pedestrian detectors with more than 14% reduction in miss rate in the
early DAL cycles ( 57% MR of CEDBMAL with 2226 labeled pedestrian objects against
57% MR of WCR-DAL with 3503 labeled pedestrian objects against 77% MR of ConvNet
with fully labeled dataset).

Beyond labeling cost awareness, we can claim that using batch mode DAL in
conjunction with TL could lead to efficiently training deep learning-based approaches
with less amount of training data, less architecture complexity, and an attenuated negative
impact of outlier, redundancy data, and domain shift issues.

TABLE 4.7 reports additional details on the training data and the miss rate versus
the labeled training data as well as the number of detected pedestrians.

• Comparisons with DAL-based pedestrian detector :

In this part, we evaluate our method compared to published results of the related DAL
technique [10] for training pedestrian detectors, while performing per-cycle comparisons.
In this comparative analysis, we examine the miss rate by considering the impact of both
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the number of detected pedestrians and the batch size. Overall, the comparison settings
are summarized in TABLE 4.8. Quantitative results are reported in Figure 4.9 together
with Figure 4.10.

As shown, the results indicate that the three DAL-based methods outperform the
random sampling strategy. Since the first DAL cycle can mine hard instances, it
contributes the most in terms of reducing the miss rate compared to randomly sampled
instances (see Figure 4.9).

Table 4.8: Comparison settings of our method to Aghdam et al.[10] .

method Td OD Qs #Cyc Bs B Sf Af
Aghdam et al.[10] CP, C, BD dDNa oBo 14 Fi 500 pSf, MC-D, En dAf
WCRDAL(ours) C TYv3 oBo 9 Fi 500 Un avg, max, sum

CEDBMAL(ours) C TYv3 Bat 11 Dy Dy Un and Di avg

Td:Training-dataset ,OD:Object-detector ,QS:Query-strategy ,#Cyc:DAL-cycles-number ,Bs:Batch-size-selection
,B:Batch-size ,Sf :Scoring-functuin ,Af :Aggregation-function ,dDNa:defined-Deep-Network-architecture

,dAf :defined-Aggregation-function ,MC-D:Monte Carlo-Dropout ,Fi:fixed (static) ,pSf :pixel-level Sf ,En:entropy
,oBo:one-by-one query method ,CP:CityPerson Pedestrian ,BD:BDD100K ,Un:Uncertainty ,Di:Diversity ,Bat:batch
query method ,CP:TinyYOLOv3 ,TYv3:TinyYOLOv3 ,Dy: dynamic ,C: Caltech ,CEDBMAL: CEDBMAL training

Nevertheless, at the end of 3thd cycle, the network trained on the 1500 frames selected
by the method [10] is more accurate than the networks trained on the same number of
selected frames by our DAL methods. From Figure 4.9 and Figure 4.10, we can see a
reduction of miss rate about 15% under the cost of labeling ∼= 1900 predicted pedestrian
instances against 15% with the cost of labeling ∼= 3195 and about 20% for a labeling cost
of 2K predicted pedestrian instances. This is due to the ability of the method [10] to
query the labeling of the most useful detected pedestrian instances, providing the network
with more knowledge about the target object.

Compared to per-instance sampling strategies, our proposed adaptive batch query
strategy performs better than our WCR-DAL method and exhibits a performance close
to the method reported in [10]. This observation is emphasized by the gains in handling
the bounding box distribution, across DAL cycles, regardless of the underlying detector
architecture. Consequently, CEDBMAL’s dynamic selection of batch size based on object
amount not only helps to effectively maintain the cost of data labeling but also reduces
DAL selection cycles and naturally supports the commonly used mini-batch training
concept.

4.2.3 Discussion
As can be seen, the reported results on the Caltech Pedestrian dataset are very promising.
However, the transfer learning presented a worse performance. Such observation can be
explained by the fact that considering outliers and redundant data during the training
process degraded the detector model performance. The random sampling selection
technique, coupled with transfer learning, surpasses the transfer learning method because
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Figure 4.9: Miss rate of random selection vs. WCR_DAL_avg (ours) vs. CEDBMAL (ours) vs. Aghdam
et al.[10] .
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Figure 4.10: Number of pedestrian instances in training set at each DAL cycle

it does not suffer from these issues. Compared to previous methods, our proposed DAL
method effectively decreases the detection loss while minimizing annotation and training
costs and dealing with the negative influence of noisy training data.

Regardless of the aggregation method used, both Uc and WCR query strategies can
gradually discover more knowledge from a few frames, leading to min more informative
boxes (hard examples) that provide a good signal for fast convergence and annotation
cost reduction, while the overall performance of both strategies remains close to each
other. Even though WCR-DAL could select high uncertainty frames with more pedestrian
objects in early cycles, similar object distribution in consecutive frames does not always
yield an improvement and yet decreases the detector’s performance. Throughout the
adaptive selection of the best batch according to its size, target object distribution, and
annotation cost, it is clear that CEDBMAL cost-effectively fine-tunes a more robust
CNN-based detection model and conserves detection loss close to existing performance
results. This is due to maintaining outliers’ selection and diversity between selected
frames, which is highly expected to decrease the detection loss while saving annotation
time within a given budget. However, the success of our method is a matter of critical
factors, namely the underlying detector architecture complexity, scoring functions, and
the query strategy.

Although existing object detection algorithms have achieved good results, it remains
challenging to effectively handle the correlation between sample selection criteria,
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dynamic batch selection, and noisy data identification to minimize the cost of data
labeling.

Conclusion

This chapter has introduced and explained our Cost-Effective Deep Batch Mode Active
Learning (CEDBMAL) framework, an efficient labeling and training pipeline for building
accurate and robust deep object detection model for real-world deployment in autonomous
vehicles. We initially presented the primary components of this framework, including
the detection model and the defined DAL approach dedicated to CNN-based object
detectors. This approach consists of two contributions: uniform-cost and batch-aware
query strategies. The uniform-cost DAL approach combines various criteria in the
query strategy, such as combined classification and regression uncertainty, and diversity.
However, batch-aware DAL provides an additional boost under labeling time constraints
compared to other DAL approaches, leveraging optimization techniques to query the
label of an optimal batch with more informative, less noisy, and less redundant frames.
Subsequently, we provided experimental results comparing our contributions to random
sampling, transfer learning, and uniform-cost AL approaches using various evaluation
criteria. Finally, we concluded by discussing the findings and limitations.

The findings demonstrated that the CEDBMAL framework outperforms the most
commonly used learning schemes and efficiently addresses the visual similarity and domain
shift restrictions in public autonomous driving datasets. Additionally, it limits the number
of queries to adhere to annotation budget and training resource constraints, dynamically
adapting at the frame (instance) level while considering the number of valuable on-road
objects remaining in the unlabeled pool that the model is uncertain about.
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This chapter provides a broad summary of the thesis as well as a few suggestions for
further investigation.

4.3 Conclusion

Automated driving systems could greatly enhance safety and mobility for all travelers.
Ensuring driving safety in the open and complex environments faced by autonomous
vehicles demands highly robust detection algorithms. Current research focuses on
exploring the latest advancements in deep learning to develop high-performance object
detection models. Most existing deep object detectors in autonomous driving rely on
fully annotated public benchmarks and passive supervised learning algorithms. However,
a few employ deep active learning schemes, recognized as efficient approaches to overcome
challenges in data labeling and model training, thereby achieving significant improvements
in robust and accurate object detection within this domain.

This doctoral thesis is dedicated to developing deep active learning solutions aimed
at enhancing object detection in autonomous driving. To achieve this goal, we propose
using uncertainty heuristics as a metric for on-road object detection. Based on this
criterion, a batch-based query strategy is proposed to sequentially capture top-ranked
samples. This strategy operates within a uniform-cost Deep Active Learning (DAL)
framework. However, in autonomous driving, datasets can vary significantly in terms of
data modalities, environmental scenarios, object appearances, and labeling costs.

Our second contribution, the Cost-Effective Deep Batch Mode Active Learning
(CEDBMAL) framework, addresses these challenges. This framework ensures efficient
labeling and training processes without imposing additional burdens in terms of human
annotator intervention, DAL iterations, or exceeding annotation budget limitations.

To validate our proposals, various experiments were conducted on the Caltech
Pedestrian dataset, demonstrating that uniform-cost DAL and CEDBMAL can
significantly reduce labeling costs in autonomous driving and achieve high-performance
pedestrian detection in terms of miss rate metric and number of pedestrian detection
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at each DAL cycle. Notably, experiment findings demonstrate that uniform-cost DAL
outperforms random sampling and transfer learning in terms of miss rate with fewer
labeled images. Furthermore, experiments conducted on CEDBMAL have demonstrated
an enhancement in uniform-cost DAL’s ability to achieve a miss rate comparable to
that of a generic deep pedestrian detector trained passively. Additionally, CEDBMAL
increased the number of detected pedestrians during the early DAL cycle compared to
other uniform-cost DAL methods using a specific deep pedestrian detector.

Some future research directions and perspectives are highlighted below.

4.4 Future works

Several future directions for deep active learning research have to be considered to ensure
the successful application of object detection in autonomous vehicles. These include:

• Efficient query strategies: Develop more efficient and effective query strategies for
selecting informative samples in deep active learning. This includes exploring novel
uncertainty measures, diversity-based sampling techniques, and strategies such as
consistency for handling class imbalance and rare objects.

• Non-strongly supervised learning: To reduce strong dependency on manually
labeled data, researchers can investigate integrating non-strongly supervised learning
schemes, such as self-supervised, semi-supervised, and others, with active learning.
Self-supervised learning can generate pseudo-labels or auxiliary tasks to pre-train
models on large amounts of unlabeled data, which can then be fine-tuned with active
learning using smaller labeled datasets.

Real-time performance measurement: A promising avenue for future research
is optimizing DL-based object detection models for real-time, latency-sensitive
applications, ensuring they meet the desired performance requirements, such as low
latency balanced with accuracy. This is especially important when deploying models
over public benchmarks in resource-constrained, low-latency autonomous driving
environments. Measuring latency performance in the context of active learning
involves evaluating how quickly an object detection model can make predictions
after being trained on a new batch of labeled data and how efficiently it incorporates
newly labeled samples into its training process. This requires combining traditional
latency metrics, such as inference latency, training latency, model convergence speed,
and throughput, with specific active learning metrics, such as verification latency,
query latency, and active learning cycle efficiency, while also exploring techniques to
reduce inference time without compromising accuracy.
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