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Introduction

The stochastic optimal control problem is very important in control theory and presents
a big challenge. At the heart of this problem is the maximum principle, which is crucial for
finding the best control strategies. Over time, a lot of research has been done to understand

this principle better, greatly advancing the field.

A key contribution to this area is Peng’s work in 1990 [2]. He established the maximum
principle for forward stochastic control systems without jumps. His approach was innova-
tive because it dealt with the complex issue of non-convex control domains and included

control variables in the diffusion term using second-order variation equations.

Building on Peng’s work, Situ [3] made significant progress in 1994 by deriving the
maximum principle for systems with jumps. However, Situ’s model did not include the

control variable in the jump coefficient, indicating the need for further improvement.

Tang and Li, [4], in 1994, filled this gap by proving the maximum principle for systems
where the control variable affects both diffusion and jump coefficients. Their work provided

new insights and methods, enhancing our understanding of stochastic control.

This master’s dissertation represents another important step in the development of sto-
chastic control theory. It aims to optimize control for systems with random jumps. Unlike
previous models, it allows the integrand of stochastic integrals with respect to the com-
pensated Poisson point process to be progressively measurable rather than predictable, as

described by Tang and Li [4].

This approach offers a new perspective on the optimal control problem by eliminating
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the need for the incorrect estimate found in Tang and Li’s work, specifically the third one

in equation (2.10). This leads to more robust and efficient control strategies.

We start by giving the difference between the two definitions, Predictable Stochastic

Process and Progressive Stochastic Process.

1.

Predictable Stochastic Process :

In a predictable stochastic process, the future behavior of the process can be predicted
to some extent based on past and present information.

Formally, a stochastic process (X(t)),5, is said to be predictable if, for each t, the
value of X (t) can be predicted using information available up to time t.

Predictable stochastic processes are often encountered in situations where there is a

certain level of regularity or pattern that allows for reasonable forecasting.
Progressive Stochastic Process :

A progressive stochastic process is one where the randomness or uncertainty evolves
over time in a progressive or continuous manner.

Unlike predictable processes, the future behavior of a progressive stochastic process
may not be entirely predictable, even with complete knowledge of past and present
information.

These processes are often used to model phenomena where randomness accumulates

or changes continuously, making it difficult to precisely predict future states.

In summary, the key distinction lies in the predictability of future states : predictable

stochastic processes allow for some degree of prediction based on past and present informa-

tion, while progressive stochastic processes involve randomness that evolves continuously

over time, making future states harder to predict accurately.

The dissertation is structured as follows :

Chapter 1 : Covers basic concepts such as stochastic processes, stochastic It6 integrals,

and stochastic differential equations.
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Chapter 2 : Builds on this by introducing preliminaries on stochastic integrals with res-
pect to jumps. It also discusses stochastic differential equations with jumps and establishes

the existence and uniqueness of solutions for these equations.

Chapter 3 : Is the main part of the study. Using new spike variation techniques and
second-order variation equations, it establishes the maximum principle in a detailed ma-

thematical framework.



Chapitre 1

Introduction to Stochastic

Computation

Let’s embark on a journey through the intriguing realm of stochastic computation. This
chapter serves as our gateway, introducing foundational terms and concepts that will pave

the way for deeper exploration in subsequent sections. For more details see e.g [7, [, 1]

1.1 Stochastic Processes

Definition 1.1.1 (Stochastic Process) A stochastic process, symbolized by X = (X (t))ier,
emerges as a collection of random variables defined within a probability space (0, F,P),

with values spanning R™.

Now, let’s elucidate some key terminology,

1. The variable t typically denotes time.

2. If the index set 7 is countable, we classify X as a discrete-time stochastic process;

for a continuous index set, it’s a continuous-time stochastic process.

3. Common index sets include the half-line [0, c0) or a finite interval [0, T'], where T > 0.
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4. Each X () represents a random variable, mapping w — X (¢,w) for w € Q.

5. Fixing w € Q transforms X (w) into a function t — X (¢,w), known as a path of X.

Definition 1.1.2 (Modification of Process) We term a stochastic process (X (t))ier
a modification of another process (X (t))er if the probability P(X (t)
alteT.

X (1)) equals 1 for

Definition 1.1.3 (Indistinguishable Processes) WhenP(X (t) = X(t),Vt € T) equals

1, we refer to two stochastic processes (X (t))er and (X (t))ier as indistinguishable.

Remark 1.1.1 Indistinguishable processes are modifications of each other, but the converse

wsn’t always true.

Definition 1.1.4 (Measurable stochastic process) A stochastic process X = (X(t))ier
is measurable if the mapping X : [0, T] x Q@ — R"™ is (B([0,T]) @ F, B) measurable.

Definition 1.1.5 (Filtration) A filtration comprises a sequence of o-algebras {Fi},5,
defined over a probability space (Q, F,P), wherein Fy C Fy C F for all 0 < s < t. This
structure captures the evolving information accessible to an observer over time, with F;

representing distinguishable events up to time t.

— A filtration is right continuous if Fy+ = NesoFye = F; for all ¢ > 0.
— A filtration is complete if Fy C F;, and it’s termed to satisfy the usual conditions if

it’s both right continuous and complete.

Definition 1.1.6 (Adapted stochastic process) We say that a stochastic process X =

(X(?))ter is adapted to a filtration {Fi},, if X(t) is Fi-measurable for each t.

Definition 1.1.7 (Natural filtration) The natural filtration of a stochastic process (X (t))ier

comprises the collection of o-algebras {G(t)}1>0, where G(t) = c{X(s) : 0 < s <t} for all
t > 0. It’s the minimal augmented filtration generated by (X (t))ier, characterized by being

both right continuous and complete.
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Definition 1.1.8 (Stopping time) A stopping time T with respect to {F},-, is a ran-

dom variable T : @ — [0, +00] such that {T <t} € F; forallt € T.

Definition 1.1.9 (c-algebra of events prior to T) For a stopping time T, the o-algebra

Fr={AeF:An{r <t} € F,,Vt € T} captures events preceding T .

1.1.1 Brownian Motion

Definition 1.1.10 (Standard Brownian Motion) The Standard Brownian Motion, also
known as Wiener process, manifests as a stochastic process (B(t)),s, characterized by in-

dependent and identically distributed increments,

1. It starts at 0 almost surely, B(0) = 0.

2. For all0 < s < t, the increment B(t) — B(s) follows a normal distribution with mean

0 and variance t — s (i.e., B(t) — B(s) ~ N(0,t — s) ).

3. The sample paths of B(t) are almost surely continuous.

Definition 1.1.11 (d-dimensional Brownian Motion) A d-dimensional Brownian mo-
tion, denoted by B = (BW, B, ...  B®), is defined by considering BY) as independent
standard Brownian motions fort=1,2,...,d. The filtration {.7-}}720 generated by a Brow-
nian motion B is defined as, F; = o(B(s) : s <t), t >0, and it is called the natural

filtration of B or Brownian filtration.

1.2 Martingales
Definition 1.2.1 (Martingale) A continuous-time martingale (resp. submartingale, su-
permartingale) is a stochastic process { X (t),t > 0} satisfying the following conditions,

1. X(t) is adapted to a filtration {Fi},5, i-e., X(t) is measurable with respect to F; for

allt > 0,



Chapitre 1. Introduction to Stochastic Computation

2. X (t) is integrable for all t > 0,

3. For all0 < s <t, E(X(t)|Fs) = (resp. <,>)X(s) almost surely.

Remark 1.2.1 A process X is a martingale if it is both a submartingale and a supermar-

tingale. If X is a martingale, then E(X (t)) = E(X(0)) for allt € T.

Example 1.2.1 If B is a Brownian motion, then B(t), B*(t) —t, and exp (JB(t) — "th)

for t € T are martingales. Conversely, if X is a continuous process such that {X(t)}

and {X?(t) — t},, are martingales, then X is a Brownian motion.

Definition 1.2.2 (Local Martingale) A stochastic process { M (t)};cr+ adapted and ca-
glad (right-continuous with left limits) is a local martingale if there exists an increasing
sequence of stopping times (1,,) such that 7,, — +00 as n — oo and M (t A 7,) is a mar-

tingale for all n.

Remark 1.2.2 A positive local martingale is a supermartingale. A locally uniformly in-

tegrable martingale s a martingale.

Definition 1.2.3 (Semimartingale) A semimartingale is a cadlag adapted process X
admitting a decomposition of the form, X = A+ M, where M is a cadlag local martingale

null at 0 and A is an adapted process of finite variation and null at 0.

A continuous semimartingale is a semimartingale X such that in the decomposition
X = A+M, M and A are continuous. Such a decomposition where M and A are continuous
is unique.

1.3 Stochastic Integration and It6’s Formula
In this section, we consider a positive real number 7', and aim to define the integral

1(0) = /0 TG(t)dB(t) (1.1)

7
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Here, (6(t)):>0 represents any process, and (B(t)):>o denotes a Brownian motion. The
challenge lies in giving meaning to the differential element dB(s) since the function s —

B(s) is not differentiable.

1.3.1 Wiener Integral

The Wiener integral is an integral of the form

1(6) = /0 TH(t)dB(t) (1.2)

with 0 being a deterministic function, meaning it does not depend on the random variable

w. Define
T
L2([0,T),R) = {e 0, 7] — R such that / 18(s)Pds < oo}.
0

Suppose 0,, is a deterministic step function defined as

Pn

Qn(t) - Z ail[ﬂl tn ]<t>7

7 77i+1

where p, € N, the a; are real numbers, and {t!'} is an increasing sequence in 7 = [0, 7.

Then, the Wiener integral is defined as

1(6,) :/0 0,(s)dB(s) = Za (B (tis1) — B(t)).
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Due to the Gaussian nature of Brownian motion and the independence of its increments,

the random variable I (6,,) is a Gaussian variable with zero mean and variance

Var (1(6,)) = Zv (0 (B (ti1) — B (1))

Pn
= Za? (tiv1 — 1)

i=1
T
= / 02 (s)ds
0

Remark 1.3.1 We observe that  — 1(0) is a linear function. Moreover, if b and g are

two step functions, we have

We then refer to the isometry property of the Wiener integral. Now let 6 € L*([0, 7], R).
Therefore, there exists a sequence of step functions {6,,, n > 0} that converges in L?([0, T], R)
to 0. According to the previous paragraph, we can construct the Wiener integrals I (6,,),
which are centered Gaussians forming a Cauchy sequence by isometry. Since the space
L*([0,T],R) is complete, this sequence converges to a Gaussian random variable denoted
by I(#). It can be shown that the limit does not depend on the choice of the sequence

0r,n > 0. I(0) is called the Wiener integral of 6 with respect to (B(t)),.g-

1.3.2 The It6’s integral

Our objective now is to define the integral given by equation (1.2)). To achieve this, we
construct [(#) using discretization, similar to the approach used for the Wiener integral.

Let’s start by examining step processes represented by,

0,(t) = Z ailfy i 1 (0), (1.3)
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where p, € N, (t7) forms an increasing sequence in 7 = [0,7], and «o; € L*(Q, F;,,P) for

all i =0, -+ ,p,. We define 1(0,,) as

It can be confirmed that E (I(6,)) = 0, and

Var (1(0,)) = E (/OT eg(s)ds> :

Let H denote the space of caglad (left-continuous and right-limited), F; adapted processes

=y ) o(5)ds ) < o.

We can define () for any § € H. We approximate 6 using a sequence of step processes

6 such that

given by equation ([1.3), and the limit exists in L?*(€,[0,77]). The integral I(f) is then
defined as lim,, o I (6,,), where E (I(0)) = 0, and

Var(I(0)) = B ( /O ' 92(s>ds) |

Definition 1.3.1 (Itd6 Process) An Ito process is defined as a real-valued process (X (t)),.+

satisfying the following conditions almost surely,
t t
X(t) = X(0) +/ b(s)ds +/ o(s)dB(s), for0<t<T. (1.4)
0 0
Alternatively, it can be expressed differentially as,
dX(t) =b(t)dt + o(t)dB(t).

Here, X(0) is Fo-measurable, and b and o are two progressively measurable processes,

10
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which satisfy almost surely,

T T
/ b(s)|ds < 00, and / (o(s)|2ds < oo.
0 0

In other words, b € Ly, [0,T] and o € L%, [0,T]. The coefficient b represents the drift or

derivative, and o is the diffusion coefficient.

Definition 1.3.2 (Integration by Parts Formula) If X and X are two It6 processes,

where
X(t) = X(0) —i—/o b(s)ds+/0 o(s)dB(s),

and

t t

X(t) = X(0) +/ B(s)ds—l—/ a(s)dB(s),
0 0

then the integration by parts formula states that

t t

XHOX() =X0)X(0)+ [ X(s)dX(s)+ [ X(s)dX(s)+ (X, X),,

where

1.4 It6’s Formula

Definition 1.4.1 (Ité’s Formula) Let b € L} [0,T], 0 € L%, [0, 7], and let X be an Ito
process defined as in . Define (X (t)) = fot lo(s)|?ds. If h € CY*(T x R,R), then

dh(t, X (t)) = 8:h(t, X (£))dt + duh(t, X (£))dX (t) + %@mh(t, X (£)d(X),
— (Duh(t, X (1)) + Oh(t, X (£))b(t) + %\o(t)|28mh(t, X(1)))dt

+ O,h(t, X (£)o(t)dB(?).

11



Chapitre 2

Existence and Uniqueness of
Solutions for a Stochastic Differential

Equation with Jumps

Consider a probability space (2, F, {F:}+>0, P) equipped with a filtration {F;};>0, where
F; represents the information available up to time ¢. Within this space, we have a Brownian
motion {B;}:>o adapted to {F;}+>0 and a Poisson random measure N on R, x E, where
E' is a standard measurable space with o-field £. The mean measure of N takes the form
Leb x A\, where Leb is the Lebesgue measure on R, and A is a finite measure on FE.

Given B € £ and t € R, with A\(B) < oo, let’s define D such that N(w, [0,¢] x B) is a

martingale for every B. We assume that {F;}:>o is generated by B and N, i.e.,
Fi=0(N([0,5],A),0<s<t,A€&E)Vo(B;,0<s<t)VN,

where N denotes the collection of P-null sets, ensuring that F; satisfies the usual condi-

tions.

Let M be a Euclidean space and B(M) be the Borel o-field on M. For a given T > 0,

12
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we define the following,

Definition 2.0.2 (Progressive ( resp. Predictable) Process) A process X : [0,7T] x
Q — M is termed progressive (resp. predictable) if X is G/B(M) (resp. P/B(M)) measu-

rable, where G (resp. P) is the progressive (resp. predictable) o-field on [0,T] x Q.

Definition 2.0.3 (E-Progressive (resp. E-Predictable) Process) A process X : [0, T]x
Q x E — M is labeled E-progressive (resp. E-predictable) if X is G @ E/B(M) (resp.
P @ E/B(M)) measurable.

2.1 Stochastic Integral of Random Measure

This section introduces a broader definition of the stochastic integral that involves a
random measure. This new definition expands on the one given in [4] and is based on the
theory of stochastic integration of processes. We will use the concept of dual predictable
projection, also known as the compensator, but we won’t explain its definition here. For

more details, you can look at [g].

Consider a process X; that has cadlag trajectories, meaning it is right-continuous with
left limits. Here, Xo_ = 0 and AX; = X; — X;_ for any time ¢. We define a measure p on
F @ B(]0,T]) ® €, generated by N, as follows :

H(A) :E/OT/EIAN(ds,de).

For any integrable process X that is measurable with respect to F ® B([0,7]) ® £/B(R),
we denote E[X] as [ X du. We use E[X|P®E] to represent the Radon-Nikodym derivatives

with respect to P ® £.

Remark 2.1.1 Note that E here does not represent an expectation because | is not a

probability measure, although it behaves similarly.

13



Chapitre 2. Existence and Uniqueness of sSDE with Jumps

Consider H =45, where A € G and B € £. We define

/OT/EHN(dt,de)Z/OTI[AN(dt,B)_

For any simple F-progressive function H, given by :

H:ZaiﬂAime aiERa A26g7 BZ GEa

=1

we extend its definition by linear extension. For an E-progressive process H such that

E(/OT/EH2N(dt,de)) < 00,

there exists a sequence of simple E-progressive functions H,, of the same form such that

lim B (/OT/E(H — H,)? N(dt,de)) = 0.

We can show that {(H, - N)r}n>; is a Cauchy sequence in L?, allowing us to define

T T
/ /HN(dt,de) = lim/ /Hn N(dt,de), in L?,
o JE n—eeJo JE

Proposition 2.1.1 Let H be a positive E-progressive process such that & (fOT fE HN(dt, de)> <

0. Then, we have

(/O/EHN(d&de))j = /Ot/EE[H!P®5]A(de)ds, (2.1)

where XP denotes the dual predictable projection of X. If H = lsxp with A € G and
B e E, then

(/O/EHNWW@))? = (/O]IAN(dS,B))j = /Ot Ep[L|PIA(B)ds,

14



Chapitre 2. Existence and Uniqueness of sSDE with Jumps

where Bp represents the measure on B([0,T]) ® F generated by N([0,t] x B).

Proof. We claim that
/ BlLus|P @ EA(de) = A(B)Es[La|P).
E

Both sides of the equation are predictable processes. To prove this, we will check that the

expectations on both sides match for any C' € P. We start with the left-hand side :
E(fOT Io [, By x B|P @ E}A(de)dt) —E (fOT [ IcE[ls x BIP & E]A(de)dt)
(because I is independent of the integral over E)
:E(fOT [,Ellc x Ax BIP & E])\(de)dt)
:E( fOT JpIleNAXx BA(de)dt) , (since the indicator function I acts on A x B)
:E( fOT IeN A)\(B)dt) , (because I is independent of the integral over )
:E< fOT Ie N AN(dt, B)) , (since A(B) is a constant and can be moved outside the integral)
:E(fOT I N AN (dt, B)) .
Next, we consider the right-hand side
E( s HCA(B)EB[HAmdt) :/\(B)E< ST 0B []IA|7?]dt) :
:E< ST 1B N B|P]A(de)dt>
:E<f0T Jplcn A]IB)\(de)dt> , (since Ep is taken with respect to B)
:E( fOT JpIe NAN(dt, de)) , (since Ip is independent of the integral over t)
:E(fOT I N AN(dt, B)) .
Now, let C = {H = Iaxp|A € G,B € £}. We observe that C € H, where H is the set

of bounded and FE-progressive processes satisfying (2.1). By the linear property of dual

predictable projection, H is a linear space.

15
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If H" T H and H is bounded, then we have,

</0-/EH"N(ds,de))jﬁ (/OO/EHN(ds,de)X,

for each t in the L' sense, implying H € H. Hence, by the monotone class theorem, we
conclude that all bounded E-progressive processes satisfy the result. For E-progressive H

such that E [fOT [ HN(dt,de)| < oo, we set,
H" = H]{\H|§n} eH,

and take the limit to show that H satisfies (2.1]). m

Proposition 2.1.2 Let H be an E-progressive process such that E <fOT [z H*N(dt, de)> <

oo. Then,

//Hthde //Hthde <//Hthde)):

Proof. We first consider H = [ 44p, where A € G and B € E. By the definition of the

stochastic integral, we have

/OT/EHN(dt,de) :/OT]IAN(dt, B).

For the process I4N (dt, B), the dual predictable projection can be written as

(/O T4 N (dt, B))Z.

Therefore, we have

/OT I4N(dt,B) = /OT I4N(dt, B) — (/0 T4N (dt, B))p .

16



Chapitre 2. Existence and Uniqueness of sSDE with Jumps

This shows that for H = 4 g, the proposition holds. Next, we extend this result to any

E-progressive simple process of the form

n
H = E aila,xB;,
=1

where a; € R, A; € G, and B; € E. By linearity of the integral and the dual predictable

projection, we have

T n T
/ / HN(dt,de) = a; / Iy, N(dt, B;).
o JE i—1 0

Using the result for indicator functions, we get

Zal/ I, N(dt, B;) Zai (/OT]IAiN(dt,Bi)—(/O.HAiN(dt,Bi))i).

=1

Therefore,

//Hthde //Hthde (//Hthde))i.

Now, consider a positive E-progressive process H such that

E (/OT/EHzN(dt,de)> < 0.

We can approximate H by a sequence of positive increasing simple functions H,, of the

form above, such that

lim B (/OT /E(H — H,)*N(dt, de)) =0.

17
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This implies that

T
/ /HN(dt,de = hm/ /Hth de) in L2
0 E n—oo

Using the previous result for simple functions H,,, we get

//Hthde //Hthde <//Hthde)>:

Taking the limit as n — oo in L?, we obtain

//Hthde //Hthde <//Hthde)):

Finally, if H is not necessarily positive, we decompose H into its positive and negative
parts : H = H" — H~. Both H" and H~ are positive E-progressive processes. Applying

the result to H™ and H~ separately, we obtain

//H*thde //Hﬂ\fdtde (//H*thde))i,
//Hthde //Hthde (//Hthde)):

Subtracting these two equations, we get

//HJr dt de) //H+ T)N(dt,de)— (// N(dt, de))z,

which simplifies to

//Hthde //Hthde <//Hthde)>;

Thus, the result holds for any E-progressive process H. =

and

18
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Proposition 2.1.3 Suppose H is E-progressive and E (fOT [z H*N(dt, de)) < 00. Then,

/OT/EHN(dt,de)Z/OT/EHN(dt,de)—/OT/EE[H‘p@)g])\(de)dt_

Remark 2.1.2 Given the conditions of the previous proposition, we find that the expected

value of the stochastic integral can be expressed as

B (/OT/EHN(dt,de)> _F (/OT/EE[HW@S})\(de)dt).

In particular, if H is E-predictable, then the integral simplifies to,

B </OT/EHN(dt, de)> _R </OT/EH)\(de)dt).

Proposition 2.1.4 For a progressive process H with E (fOT I HQN(dt,de)> < 00, we

have

A(H.NY, = / HN({t}, de).

First, consider H =445 where A € G and B € E. Then,

A </Ot/EHN(ds,de))t N </Ot]IAN(ds,B)>t.

Proof. By the properties of the stochastic integral, we know that

A </Ot Iy N (ds, B))t = I,N({t}, B).

Since H = 4.5, we have

/E Tu s N({t}, de) = LuN({t}, B).
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Thus, for H =[4435,

A(/Ot/EHN(ds,de)>t:/EHN({t},de).

Next, consider a simple function H of the form

n
H — E aiI[AiXBm
=1

where a; € R, A; € G, and B; € E. For such a simple function,

A(/Ot/EHN(ds,de)>t:A</ Za]IA (ds, B;) ) .

t

By linearity of the stochastic integral and the jump operator, we get

A(/ Za]IA dsB)

From our previous result for indicator functions, this equals

n t
— ZQZA (/ ]IAiN(ds,Bi)) :
i=1 0 t

t

ZaZ]IA ({t}, By).

This is exactly

/E HN({t}, de).

Now, consider a positive E-progressive process H with E ( fOT [z H>N(dt, de)) < 0o. There

exists a sequence of positive increasing simple functions H,, such that

Jim B (/OT /E(H — H,)2N(dt, de)> — 0.
A(/Ot/EHnN(ds,de))t:/EHnN({t},de).

20
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Since H, converges to H in L%, we have

Jim A </Ot/EHnN(ds,de))t _A (/Ot[EHN(ds,de))t.

Therefore,

lim HHN({t},de):/HN({t},de).

n—oo E

A(/Ot[EHN(ds,de)>t:/EHN({t},de).

Finally, if H is not necessarily positive, we decompose H into its positive and negative

Thus,

parts : H = H" — H~. Both H" and H~ are positive E-progressive processes. Applying

the result to H™ and H~ separately, we get
By the previous results, this equals
[Ny de) [N e = [t - HONehde) = [ HN ({8}, de)
E E E E
Thus, the proposition holds for any E-progressive process H. m

Proposition 2.1.5 Suppose H is E-progressive and E (fOT [z H*N(dt, de)) < 00. Then,

the quadratic variation process [H.N, H.N]| satisfies
_ 5 t
(HN, H.N], = / / H2N(ds, de).
0o JE

Proof. The proof follows similarly to the previous one. m
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2.2 Existence and Uniqueness

Consider the following stochastic differential equation with jumps,

t t t
Xy =z + / b(s,Xs)ds+ / o (s, Xs)dBs + / / c(s,X,_,€e) N(ds, de), (2.2)
0 0 0o JE

where g € R". b : [0,7] x Q x R" — R0 : [0,7] x Q x R* — R™4 ¢ : [0,T] x Ox
R"™ x E — R", d is the dimension of the Brownian Motion, and n is the dimension of X.
Let us introduce the Banach space

S%0,T] = {X : X has cadlag paths and is adapted, and E [ sup ]Xt]2

0<t<T

<o},

with the norm

IX|? = B [ sup |Xt|2] .
o<t<T

We make the following assumptions,
Assumptions (H1)

— The function b is G® B (R") /B (R") measurable, o is G@B (R") /B (R"*?) measurable,
and cis G ® £ @ B(R™) /B (R") measurable.
— The functions b, o, and ¢ are uniformly Lipschitz continuous with respect to x, meaning

there exists a constant C', such that, for any ¢ € [0, 7],

b(t,z) —b(t,y)| < Cplz -yl
o (t,x) —o (t,y)| < Crlz -yl (2:3)

le(t,z,e) —c(t,y,e)] < Cplz -y

and

T T T
E/ |b(t, w, 0)|?dt < oo, E/ lo(t,w,0)|?dt < oo, E/ / lc(t,w,0,¢e)|*N(ds,de) < .
0 0 o JE
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Remark 2.2.1 See that the assumption implies that,

o (t,2)] < Cplz|+ o (t,0)]

e (8,2, )] < Cpla| + e (t,0)]

Theorem 2.2.1 Assuming (H1), there exists a unique solution in S*[0,T) for the equation

defined by .

Proof. To demonstrate the existence and uniqueness of solutions for the stochastic dif-
ferential equation, we start by defining a transformation. Define the operator 7 on the

space S%[0,T] by :

T : S%[0,T] — S?[0,T],

X — T(X),
such that for X € S?[0,T]
t t t B
T(Xt):a:0+/ b(s,XS)ds—i—/ U(S,Xs)st—l—/ /c(s,Xs_,e)N(ds,de).
0 0 0o JE

Step 1 : Well-definedness of 7.

We need to show that 7 maps S?[0, 7] into itself. That is, if X € S?[0,T], then 7 (X) €
S20,TY, i.e.
E {sup |X5|2} <oo=E {Sup |T(X5)|2] < 00.

0<s<t 0<s<t

For each X in S%(0, T

t t t
7(X,) =0 +/ b(s, X,)ds+ / o(s,Xs)dBs + / / c(s, X,s_,e) N(ds, de).
0 0 0o JE
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Applying the inequality (a3 + as + a3 + a4) < 4(a] + a3 + a3 + a}), we have

B | sup IT(X)F

0<s<t

s 2

=E sup a:o—l-/b(u,Xu)du—l—/ (u, X,,) dB, // (u, Xu_, €) N(du, de)

0<s<t 0
< 4|zo|* + 4E sup / b (u, X,,) du +E sup / o (u, X,) dBu

0<s<t |JO 0<s<t |Jo
2

+ 4E sup / / w, Xo_, e) N(du, de)

0<s<t

Using the Lipschitz condition, we have (see remark [2.2.1). Then, by applying Holder’s

inequality with p = 2, ¢ = 2, andi—i—é:1,Weha,ve§:p—1:2—1,

(e o) ()]

t t
<t [ (s, X ds <tCB [ (CoIX + b(s,0)) ds
0 0

t t
< 2tE/ b (s,0)[* ds + 2tC?E (/ ds sup | X )
0 0<s<t

t
< 2tE/ b (s,0)|* ds + 262C2E {Sup |XS|2] : (2.4)
0

0<s<t

/ b (u, X,) du
0

E sup

0<s<t

Applying the Burkholder-Davis-Gundy inequalty and the assumptions (H1) :

s 2 t
E sup /J(u,Xu)dBu gczE/ o (s, X,)|* ds
0<s<t |Jo 0
t
<G [ 101X+ o (s.0)| ds
0
T
< 2E/ b (s,0)[* ds + 2tC*E [sup |Xs\2] : (2.5)
0 0<s<t
With Cy = 1. Since X,_ is left-continuous, it is progressive, and c(s,w,z,e) is E-
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progressive. Thus, ¢ (s, X;_,e) is E-progressive. For any t € [0, 7], we have,
t ~ 2

E sup / /C(S,XS_,e) N(ds, de)
0o JE

0<s<t

< G [/OS/E|c(u,Xu_,e)\2N(du,de)]

IN

CE [ [[ [ (eso.0.00+ o X Nds.ao)
< 204E Uot/E|c(S’w’0’ e)|2N(ds,de)]

t
+2C,C?E [/ /N(ds,de) sup |Xs_|2]
0o JE

0<s<t
t
< 2E {/ / |c(s,w,0,e)\2N(ds,de)}
o JE
+ 202t\(E)E {Sup |Xs|2] , (2.6)
0<s<t

With C, = 1. Then,

E { sup |T(X8)\2] < 4wo|* + 4 (22CE + 2tC2 + 204N (E)) E { sup ]X3|2]

0<s<t 0<s<t

t t
+8tE/ 1b(s,0)° ds + SE [//|c(s,w,0,e)|2N(dS,de)}
0 0 FE

t
+ 8E/ b (s, 0)? ds.
0

Thus, E [SUPogsgt ]Xsﬂ < o0 then E [supogsgt \T(Xs)ﬂ < 0.

Because by hypothesis X € S2[0,T], and
t t t
8tE/ b (s, 0) ds + 8E U / ]c(s,w,0,6)|2N(ds,de)} +8E/ b (s, 0) ds.
0 o JE 0

This confirms the well-definedness of 7.
Step 2 : Contraction Mapping on a Small Interval

Next, we need to show that 7 is a contraction mapping in S%[0, T on a sufficiently small

interval [0, 7).

25



Chapitre 2. Existence and Uniqueness of sSDE with Jumps

For any X,Y € S2(0,T], consider :

T(X(s)—T(Y(s)) =x0—x0+ /08 (b (u, Xy) — b (u,Yy,)) du+ /Os (b(u, Xy) —b(u,Y,))dB,

+/ /c(u,Xu_,e)—c(u,Yu_,e)N(du,de)
0o JE

Applying the inequality (a3 + as + a3) < 3(a + a3 + a3),

2

E | sup [|[7(X(s)) — T(Y(S))||2] < 3E sup

0<s<t 0<s<t

/0 (b, X,) — b(u, Y,)) du

s 2
438 sup | [ (0(0.X,) ~ b(w Y.) dB,
o<s<t |.Jo
S ~ 2
+ 3E sup //[c(u,Xu_,e)—c(u,Yu_,e)]N(du,de)
0<s<t|Jo JE

Applying the same principles and inequalities as previously stated :

Using the same method as in equation (2.4)), we obtain :

2

/0S (b(u, X)) —b(u,Yy)) du

<tC?E [Sup | X — XS|2}

0<s<t

E sup

0<s<t

Employing the same approach as in equation ({2.5)), we find :

2

E sup
0<s<t

/(;S (b (u7 Xu) —b (u7 Yu)) dBu

<tC?E {sup | X5 — XS|21

0<s<t

Utilizing the same technique as in equation (2.6)), we get :

2

E sup
0<s<t

/08 [E c(u, Xu_,e) —c(u,Y,_,e) N(du, de)

< CHNEIE | sup I

0<s<t

Then,

E [ sup [|7(X(s)) = T(Y(s))|]’| <3C; (t+°C;+tA(E))E {sup | X — XSF}

0<s<t 0<s<t
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Thus,

0<s<t

\/E |:Os<ligt 17 (X(s)) — T(Y(S))HZ] < CLV3/(t+ 12+ t)\(E))\/E [ sup | X, — X8|2]

0<s<t :|

< OpV3V(T(1+ X ))+T2)\/E{sup X, — X,|?

0<s<t :|

g&M%@<(HA@W+%ﬂVEFWL&—&V

For T sufficiently small, the constant v/3C7v/T (\/(1 + A(E)) + ﬁ) can be made

VOV (VIFAE) +VT) <1

making 7 a contraction mapping. By the Banach fixed-point theorem, there exists a unique
fixed point X € S?[0, 7] in the interval [0, 7], i.e. there exists a point X € S2[0,T] such
that

T(X)=X € 5%0,T].

Step 3 : Extending to the Whole Interval [0, T

By partitioning the interval [0, 7] into smaller intervals [0, T], [T, 2T] , ..., we can apply
the contraction mapping argument on each subinterval with an initiale value in 0, 7T,
.., and extend the solution to the whole interval [0, T]. Thus, we have established the
existence and uniqueness of the solution to the stochastic differential equation over the

interval [0,7]. =

In a similar vein, we find a minor distinction. Presented below is the L? estimate theorem,

Theorem 2.2.2 Forp > 2, let X',i = 1,2, be solutions of the following equations,

X! =} + /Obl(st)ds—l—/ st dB, +// SX;, (dsde)
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satisfying assumption H1. Then we obtain,
T
E | sup | X} — Xfﬂ < Clag— 3"+ CE [/ o' (t, X7) — b (t,Xt1)|pdt]
0<t<T 0
S s
e (/ 0" (£, X2) - 02 (t,Xt1)|2dt> ]
0

( [ 1 xze - (t,Xt1_7€)|2N(dt’de)>§] |

where M 1s a positive real number dependent on p,T', and the Lipschitz constant C1,.

+CE

Proof. By simple calculation, we observe that

t t t
th—thzas(l)+/ b (s, X)) ds+/ o' (s,X)) st+/ /cl (s, XL, e) N(ds, de)
0 0o JE

0

t t t
—at- [ as— [y an - [ [ s x2e) Nas.do
0 0 0 E

Utilizing the inequality

we find that
8

E { sup | X/} — Xf]p} <giy I
i=1

0<t<T

With I = |x§ — 23| . Then, by Holder’s inequality with p,q > 1, and ;1,"‘% =1, we have
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§ = p — 1. Applying the Lipschitz condition, we obtain :

p

t
/ (b (5, X71) — b (5, X))ds
0<t<T |Jo

<</0T ldsy </0T (" (s, X0) = ' (s,Xf))Ipds) ;ﬂ

_ g /0 (b (s, X7) — bt (5, X2))|" ds

I} =E sup

<E

T
ng—log/ E|X!— X2|"ds
0

< T*'CYTE { sup | X} — Xf]p} :
0<t<T
= TPCYE { sup |X; — Xfﬂ :

0<t<T

Similarly, we have,

¢ P
P sup / (12 (5, X1) = 12 (s, X2))ds| < TPCPE { sup X - X277 .
o<t<T |.Jo 0<t<T
And
¢ P T
I =E sup / (0" (s, X2) = b (s, X,))ds| < Tp_lE/ b (5,X2) = b (s, X1))| ds.
0<t<T |Jo 0

Applying the Burkholder-Davis-Gundy inequality 7?7, along with Holder’s inequality with

p,q¢ > 1, and ]% +$ = 1, where p’ = £ , we have f]i; =p' —1 =% — 1. Utilizing the

29



Chapitre 2. Existence and Uniqueness of sSDE with Jumps

Lipschitz condition, we arrive at

p

t
I =E sup / (o' (s,X}) — o' (5,X2))dB,
o<t<7 |.Jo

- <(/ 04 (5. X2) =0 (s, 32 s g)
() ([ 1y o o) ) ’1

P

— 0, T"'E [(/OT (0" (5. X2) =" (. X2 ds) gl,]

_oThE ( / "ot (5, X1 — o (s, Xf))|pds)

< C, T2 'C*TE [ sup |X| — Xf‘p]

0<t<T

<C,E

= C,CPT3E [ sup |X; — Xt2|p1

0<t<T

Similarly, we get,

p

/0 (0% (5, X)) — o (s, X2))dB,

I =E sup

0<t<T

< C,C’T3E [ sup |X| — th|p:|

0<t<T

also we get

p

t
2=E sup / [0 (5, X%) — 0 (s, X)] dB,
0<t<T |Jo

T
<75 { [l (s x2) = o (S,Xsl))‘pds} ,
0
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and

p

=FE sup
0<t<T

b

// (s, X1 ,e) —c' (s, X2 ,e)] N(ds,de)
(/ /|c (s, X1 ,e) — ¢! (s,Xf_,e)|2N(ds,E))2
(/OT/E}X—Xﬁ_fN(dS,E))g

Applying the modified Burkholder-Davis-Gundy inequality we have

< C,C'E

p

=E sup
0<t<T

[ [ 1600 = (X2 0] (s, e

(/0 /E|X1—X§}2N(ds,E))g

where ép is a positive real number dependent on p.

< C,CPE

?

Similarly, we have,

p
Iy =E sup

/ / (s,XZ_,e) = (s,X,_,e)] N(ds, de)
0<t<T

(//|C (s, X2 ,e) = ¢ (S,Xsl_,e)|2N(ds,de))g]_

<C,E

31



Chapitre 2. Existence and Uniqueness of sSDE with Jumps

Then

E [ sup ‘th - Xt2|p]

0<t<T

<C }xé — x%{p + MTPE l sup |Xt1 — Xf}p]

0<t<T
. 2
(/ | X — X7 | N(dt,E))
0
- T T 5
~oE| [y (t,Xf)—bQ(t,Xt1)|pdt}+CE ( / \al(t,Xf)—UQ(t,th)\th)]
0 0

(/OT/E [ (8, X7 e) = (1, X, e) [ N(dt, de))g] 7

+ CT3E [ sup ’th - Xﬂp} +CE

0<t<T

+CE

(2.7)

where C' is a positive real number dependent on p, T,C7.

Now, we define H, =

X! - X2 > and A, = fot H,N(ds, E). Since A; is a pure jump
process, we have,

P P P
Ap=) <|A5_ + H|? - A§—> LN ({s}.,B)£0}
s<T

T P
:/ |As—+Hs|g_As§7N(d87E)
0

< C/OT (Aé + Hf) N(ds, E).

Given that A_ and H are predictable, we find,

E[47] < CE { /O ' (4 + m2) ds] < CTE[A}] +CTE L?f% pe Xf\p} .

By selecting T sufficiently small such that CT" < 1, we obtain,

0<t<T

L cT
E[4}] < ;—57E { sup | X} —Xf\”} .

Substituting (2.7) and subtracting (17 + T2 + 1955) E [supg<;<r | X} — X2["] on both
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sides yields the estimate in small time duration. For any 7', we can partition 7' into

smaller intervals to reach the desired conclusion. m

Remark 2.2.2 We can assume, without loss of generality, that

E| sup |X/ —th‘p < 00, (2.8)

0<t<T

i the earlier proof. If this condition doesn’t hold, we can introduce a sequence of stopping
times to ensure (@) and subsequently obtain the LP estimate using these stopping times.

Finally, we can take limits, allowing us to subtract that term from both sides of .
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Chapitre 3

The Maximum Principle for
Progressive Optimal Stochastic
Control Problems with Random

Jumps

3.1 Statement of the Problem

Given a time duration 7' > 0, let {Tn}nZl be the sequence of jump times defined by
T, = inf{t : N([0,t] x E) > n}, where N([0,t] x E) denotes the number of jumps up
to time ¢ in the space E. The sequence {7}, is strictly increasing. We also consider a

nonempty subset U of R.

Definition 3.1.1 We define the admissible control set U,y as the set of all controls u
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Chapitre 2. The Maximum Principle for POSC with Random Jumps

satisfying the following conditions,

Upa = {u ;w18 progressive, taking values in U, sup E[|u|"] < oo forp > 1,
0<t<T

T
and E/ lug|* N(dt, E) < oo} .
0

Definition 3.1.2 For any admissible control u € U,y and initial state xog € R, we consider

the following progressive stochastic system with jumps,

t t t
X :;co—f—/ b (s, Xs, us) ds—l—/ o (s, Xs, us) st—i—/ /c(s,Xs,uS,e) N(ds,de), (3.1)
0 0 0o JE

along with the cost functional,

Jw) = F </0Tf (£, X, ) dE + g (XT)) | (3.2)

where

b:[0,T|XxQOAXRXR—=R, 0:[0,T]xQ2xRXxR—R,
0TI XQAXRXRXE—-R, f:[0,T|xQxRxR—=R,

g:QOxR—R.

Definition 3.1.3 (Optimal control) The optimal control is to find an element u € Uyq

such that

J(u) = inf J(v).

veUyq

We aim to find necessary conditions for an optimal control in U,4. To do so, we introduce

the following assumption.

Assumption H
1. The functions b, o, f are G B(R) ® B(R)/B(R) measurable, and ¢ is GRERB(R)®
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B(R)/B(R) measurable. The function g is Fr ® B(R)/B(R) measurable.

2. The functions b, o, ¢ are twice continuously differentiable with respect to x, have

bounded first and second order derivatives, and there exists a constant C' such that
(6,0, ¢)(t, @, u)| < C(1+ [x] + [ul).

3. f and g are twice continuously differentiable with respect to z, with bounded second-

order derivatives. There exists a constant C such that
|fet,z,u)| < O+ [z + Jul), |f(tz,u)] <C A+ [z +[u]?),

and

|9:(2)] < C(L+ 1)), lg(@)| < C (1+]zf),

while satisfying
T T
E/ 1b(t,w, 0, 0)[2dt < oo, E/ ot w,0,0)Pdt < oo,
0 0

and

T
E/ / |c(t,w, e,0,0)]*N(ds,de) < oco.
o JE

Remark 3.1.1 Assuming H, we establish the existence of a unique solution to for

any admissible control, as proven in Theorem [2.2.9.

36



Chapitre 2. The Maximum Principle for POSC with Random Jumps

3.2 Spike Variation

Given that U may not be convex, we resort to spike variations. Let u € U,y denote the

optimal control. For any ¢ € [0, T, the spike variation of u is defined as follows,

v, i (s,w) € O = [[t,t+€]]\U;Z [[T]]

u, otherwise,

where

[Tn]] = {(t,w) € [0, T] x Q[T (w) =t}

represents the graph of T),, and v is a bounded F; measurable function taking values in
U. As T, is a stopping time, [[T,,]] is a progressive set. Hence, u® is progressive, and it can

be shown that it belongs to U,.

Remark 3.2.1 As known, T,, is not a predictable time, so [[T,]] is unpredictable, meaning

£

u® 1s not predictable. This underscores the necessity of the integrand of the stochastic

integral to be progressive. Indeed, T,, represents totally unpredictable times.

Let X denote the trajectory of u, and X¢ the trajectory of u°. Through the SDE estimate

and noticing (Leb x P) ([[T,.]]) = 0, we derive,

v—u, if (s,w) € O=[[t,t +e]]\U,Z [[Tnl],

0, otherwise,
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and applying the Burkholder-Davis-Gundy inequality, along with Holder’s inequality,

and assumption H. A similar way to proof [?], we get

E ( sup | X5 — Xt!p)

o0<t<T
p

T
< CE { </ b (t, Xp,us) — b (t, Xp,ug)| dt)
0

b
2

T
+ (/ lo (t, Xy, uf) — a(t,Xt,ut)|2dt)
0
T 5
+ (/ / |C(taXt—7u§7€) - C(t>Xt—aut>6)|2N(dtade)) }
0o JE
t+e p t+e % T %
< CE ((/ lu — v[dt) + (/ lu — v\zdt> + (/ Io|u — U\zN(dt,E)) > :
t t 0

As there are no jumps on O, we obtain,

E ( sup | X7 — XA”) =0 (") 4+ O(e?). (3.5)

0<t<T

This indicates that the jump term does not affect the order of variation.. We then introduce

the variation equations,

t t
o= [0 (s, Xorw) X+ 0)s 4 [ (00 (5. X ) X+ 50)dB,
0 0

¢
+/ /cgc (5, Xo_, s, €) Xo_N(ds, de) (3.6)
0o JE

and

—_

~ A

t
Y;f = / (bw (Sastus)}/s‘F_bxac (S,XS,US) Xf)ds
0

2
t . 1 . R
4 [ 02 (5. X Voot G (5, Xov) X2 4 50, X)dB,
0
t R 1 R _
+/ /(cx (s, Xs_, us, €) Y;_—i—écm (5, Xs_,us, e) X2 )N (ds, de), (3.7)
0o JE
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where

00 = ¢ (s, Xs,ul) — @ (s, Xs, us) , 00, = Oy (8, Xs,us) — ¢ (s, Xs,us),0 = b, 0.

It can be demonstrated that (3.6 and (3.7]) have unique solutions. We establish some basic

estimates about X and Y.

For p > 2, we can establish the following estimates,

Lemma 3.2.1 For p > 2, we have,

Y,

E ( sup ]Xt]p) < Ce?, and E < sup p) < CeP.

0<t<T 0<t<T

Proof. Using the Burkholder-Davis-Gundy inequality, in conjunction with Holder’s in-

equality and assumption H for X , we obtain :

e (sun ) < ([ i) ) - cn ([ ) ) oot

For f/, given the boundedness of b.., 0.4, Cor,

D T 1 N p
) <CE ((/ e (S,Xs,us)Xf|dt> )
0
T q A R Z
+ CE (/ |§am (s,XS,uS)X82+5JzXS|2dt)
0

T 1 . 5
L OE ( / / |—cm(s,Xs_,us,e)X§_|2N(dt,de))
0 E 2

=0 (eh).

Y,

E ( sup
0<t<T
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Lemma 3.2.2 We have

1 - .
lim —E ( sup | X} — X; — X —Yt\2) =0

Proof. See [9] for the proof. m

Consider the stochastic control problem with the cost functional

J(u) =B (/OT £t X0 ) dt + g(XT)> ,

where u is the control, X; is the state of the system at time ¢, and f and g are given

functions defining the cost.

Define the variation in the cost functional as :

. T . R 1 R
i E (/ (fx (t, X0 ) (X4 ) + 3 foo (t,Xt,ut)Xf—l—ch) dt)
0

+E [gx (X0) (R + ) + Lgne (0) (%02 (3.5)

where Y, represents a small variation in the state trajectory caused by a small perturba-

tion in the control.

Then we have the following lemma.

Lemma 3.2.3 We have

lim
e—0 £

where u® is a perturbation of the control u.

Express J(u) + J in terms of uf, X;, and Y;. This involves expanding the terms in
the cost functional and rearranging them appropriately. Estimate the difference J(u) —
J(u) — J using suitable inequalities and bounds. This step involves careful manipulation of

expectations, integrals, and the properties of f and g. Show that the estimated difference

40



Chapitre 2. The Maximum Principle for POSC with Random Jumps

tends to zero as e approaches zero. Utilize properties of f and g, such as boundedness
and differentiability, to simplify expressions and establish convergence. Conclude that the

limit of the expression as € tends to zero is zero, proving the lemma.

Proof. The proof involves rigorous mathematical arguments, including : Expressing the
cost functional in terms of variations in the control and state trajectories. Applying
the definition of expectations and integrals to obtain a suitable expression for J(u) + J.
Estimating the difference J(u) — J(u) — J using appropriate inequalities and bounds.
Utilizing the properties of the functions f and g, such as boundedness and differentiability,
to simplify expressions and establish convergence. This concludes the detailed derivation

and proof of the variation equation for the cost functional in stochastic control theory.

T
J(u) +J = E/ ((f ()Xo ) + fo (1, Xooug) (X0 + V5) + %fm (t, X ) X2+ 5f)) dt
0
FE(g (Xr) + g (Xr) (R 4+ ¥) + 5000 (Xr) (X))

T
= E/ (f(t, Xe + Xy + Vi, up) + H)dt + E(g(Xr + Xp + Yr) + 1),
0

where
1 ) . . N N
H = §fxz (S;X57us) X52 - 5fx (Xs + Y;) - Af(XS + }/;)2
1 1
. . N - 1 5
I = —/ / ag(XT + aﬂ(XT + YT))dOde(XT + YT)2 + §gm (XT) (XT)Q'
0 0
Then

T T 2
7 () — J(u) - J]? < CE ( X R V) = 0, X ) P+ ( / Hdt) )

0 0

+E (lg(Xr + Xr + V7) = g(X5)2 + 12)
T 2
§0E< sup \Xf—Xt—Xt—YtF) +E ((/ Hdt) +[2>
0<t<T 0

— 0 ().
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By the same method we can show that

E ((/OTHdt)erI?) =o(e?),

which proves the result. m

3.3 Adjoint Equations and the Maximum Principle.

We introduce the first order and second order adjoint equation.

1. First order,

T
Pt = Gz (XT) + / (bxps + 0.qs + fm + / E [Cx’,P X 5] ks)\(de)> ds
E

¢
T T )
—/ quBS—/ /k‘sN(ds,de). (3.9)
¢ t JE

2. Second order,

T
P = gun (X1) + / (25,P, + 20,Qs + fou + boaps + Ounts + Puc?
t

+/ E[(+2¢) [PQE| K+ Elcw|P®E ks + B[P ®E] Ps)\(de)) ds

E
T T B
_ [ qQuB, - / / KN (ds, de). (3.10)
t t E

where ¢, = ¢, (t, Xi,ut) , Puz = Guw (t, Xi, uy). To achieve the existence and uniqueness
of the two backward equations mentioned, we refer to Lemma 2.4 in [4]. Since ¢, ¢, are
bounded, there exists a unique solution to equation (3.9) (p,q, k) € S?[0,T] x M?[0,T] x
F?[0,T] and a unique solution to equation (P,Q, K) € S?[0,T|x M?[0,T]x F?[0,T).
Next, we need an Ito’s formula for processes with jumps, referring to Theorem 32 and

Theorem 33 from [4].
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Lemma 3.3.1 Let X', X2,..., X4 be semimartingales, and let F' be a C? function on RY.
Set X = (X', X?,...,X?), then

F(Xt)—F(XO):Z/ gﬁ;( ) dX'+ Z /8%8% ) d[XL X 4> na(F)

s<t

where

8F % % j
ns(F) = F(X,) — F(X,.) _Zax (X, )AX!I— = Z ax ax X, ) AXIAXY.
[ 7 J

and

AX =X - X!,

Applying It6’s formula to p;X;, p;Ys, and Pt]XtP yields the following expressions,

T T
E[pTXT] = E/ Pe—d Xy + E/ Xy_dp, + E[ 7X]T
0 0

T A
0

~

T T
ElprYr] = E/ pe—dY; + E/ Y,—dp, + E[p,Y]r
0 0
T 1
5 5o v .
= / <§bmmpt‘Xt| + §szQt|Xt’ —Yife + 0. X qs
0

+/E; [Coa| P ® E]Re X )dt (3.12)
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T T
E[PT|XT|2]:EV |X’t|2dPt+/ 2Pt_f(t_df(t}
0 0

T T
+E / Pt_d[X,X]tJr/ 2X, d[X,Pl;+ Y AP(AX,)
0 0

t<T

T
0 E

+ 2P, X,0b + 20, X,00 + 2PtoxXt50> dt. (3.13)

Remark 3.3.1 In equation , we utilize the following identity,

D ARAX) =) [E KN ({t}, de) ( /E cthN({t},de))Q

t<T t<T

-y /E K,AX2 N({t), de)

t<T
T A

_ / / K2 X2 N(dt, de).
0 E

The second equality follows from the property that for any A € £, N({t}, A) =1 or 0.

From equations ([3.11)-(3.13)), we can deduce the expressions for g,(X7)(Xr + Yr) and

Guz(X7) X2, Thus, we arrive at
. T 1
0
where o(¢) denotes
T A A A A
E [ / (5%)@% + Po,X00 + BX,0b + XtéaQt> dt] .
0
We introduce the function

H(t7 x? u7p7 q) = pb(t7 x? u) + qa—(t7 x? u) + f(t7 x? u)'
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Then, we establish the following theorem,

Theorem 3.3.1 Under the assumption that (E) satisfies and given that u represents the
optimal control and X denotes the trajectory of u, with (p,q) satisfying and P satis-

fying , we can conclude almost everywhere and almost surely that for any v € U,
1
H<t7 Xt7 U, Pt Qt> - H(tv Xta Ut, Pt Qt) + _Pt(o-(t7 Xta U) - O-(ta Xta ut))2 Z 0.

2

Proof. Observe that |J 7, [[7,,]] is negligible under P x Leb. From Equation (3.14), it

follows that,

T
J = E/o 1(E,¥+s} {(pe(b(t, X, v) = b(t, Xy, u)) + quo(t, Xy, v) — o(t, Xy, u))

(7 X0) = £(8 X)) + 5 Puo(t, X, 0) = ot Xo,w))?) i + o)
Dividing both sides by e and letting ¢ — 0, we obtain for almost every ¢,
B (. v ) = H 0. Xe ) + 5o (X5 0) = 0 7, X5 0)) 2 0
Then, for any A € F; and w € U, setting v = wly + ul zc, we have,
B (X ) = 8 0 Xo ) + 3P0 (X 0) = o 7, X5 0)*) 2 0
This inequality holds almost everywhere, which implies,
H (£, X5, w, pr, qi) — H (f, X1, u, pr, qi) + %Pt(o (t, Xi,w) — o (f, X;,u))* > 0,

for almost every ¢. m
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Conclusion

In this study, we dive into the world of stochastic processes, focusing on a new variation
method aimed at overcoming a significant hurdle : jumps. With our innovative variation
technique, we delve into the complexities of estimating Lp-norms within these processes.
The beauty of our approach lies in its scalability with the growth of pp, making our

variation equations more effective.

Surprisingly, despite the presence of jumps, our maximum principle retains a familiar
structure observed in systems without jumps. This curious similarity arises from the fact
that both principles hold almost everywhere, almost surely. The minimal influence of jumps
on our results can be attributed to their negligible measure under specific probability

measures.

Moreover, we take pride in the rigor and clarity of our derived maximum principle, laying
a robust foundation for further theoretical and practical exploration. Looking ahead, our
future research aspirations include delving deeper into optimal control strategies during

jump instances and exploring the myriad real-world applications of our findings.
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Abbreviations and Notations

The various abbreviations and notations used throughout this dissertation are explained

below :

SDE . Stochastic differential equation.
(Q, FAFi} =0 ,]P’) A complete probability space with filtration {F},.,-
N The collection of P-null sets.

CH2([0,T) x R,R) : f:[0,T] xR — R : ¢ is continuous (in t), and f;, fo, fee, exists

S20,T] : X :® xR — R: X has cadlag paths and adapted
M?[0,T) : X is predictable, and E (fOT Z,|? ds) < 00
F2[0,T] : K:[0,T]xQx E— M: K is FE — predictable,

T
and || K| = E (fo [ |K) A(de)dt)
M : A Euclidean space and B(M) the Borel o-field on M.

U, Admissible control set.
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Abstract :

This master's dissertation introduces a straightforward method for dealing with jumps in
stochastic processes. Here's an explanation of the key points : The approach we present is simple
and easy to apply, which makes it accessible for those working with Stochastic processes can
experience sudden changes or "jumps." This method specifically addresses these jumps, making
it easier to estimate values within systems that include such dis- continuities, and simplifies the
process of making estimates within these systems. This is particularly important as the values
we are dealing with become larger, where traditional methods might become more complex or
less accurate. This broad applicability ensures that it can be used in various situations without

significant limitations.
Résumé

Cette dissertation de master introduit une méthode simple pour gérer les sauts dans les
processus stochastiques. Voici une explication des points clés : L'approche que nous présentons
est simple et facile a appliquer, ce qui la rend accessible a ceux qui travaillent avec des
processus stochastiques qui peuvent connaitre des changements soudains ou des "sauts"”. Cette
méthode traite spécifiqguement ces sauts, ce qui facilite I'estimation des valeurs au sein des
systemes incluant de telles discontinuités, et simplifie le processus d'estimation dans ces
systemes. Cela est particulierement important lorsque les valeurs que nous traitons deviennent
plus grandes, car les méthodes traditionnelles peuvent devenir plus complexes ou moins
précises. Cette large applicabilité assure qu'elle peut étre utilisée dans diverses situations sans

limitations significatives.
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