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Introduction

The stochastic optimal control problem is very important in control theory and presents

a big challenge. At the heart of this problem is the maximum principle, which is crucial for

�nding the best control strategies. Over time, a lot of research has been done to understand

this principle better, greatly advancing the �eld.

A key contribution to this area is Peng�s work in 1990 [2]. He established the maximum

principle for forward stochastic control systems without jumps. His approach was innova-

tive because it dealt with the complex issue of non-convex control domains and included

control variables in the di¤usion term using second-order variation equations.

Building on Peng�s work, Situ [3] made signi�cant progress in 1994 by deriving the

maximum principle for systems with jumps. However, Situ�s model did not include the

control variable in the jump coe¢ cient, indicating the need for further improvement.

Tang and Li, [4], in 1994, �lled this gap by proving the maximum principle for systems

where the control variable a¤ects both di¤usion and jump coe¢ cients. Their work provided

new insights and methods, enhancing our understanding of stochastic control.

This master�s dissertation represents another important step in the development of sto-

chastic control theory. It aims to optimize control for systems with random jumps. Unlike

previous models, it allows the integrand of stochastic integrals with respect to the com-

pensated Poisson point process to be progressively measurable rather than predictable, as

described by Tang and Li [4].

This approach o¤ers a new perspective on the optimal control problem by eliminating
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Introduction

the need for the incorrect estimate found in Tang and Li�s work, speci�cally the third one

in equation (2.10). This leads to more robust and e¢ cient control strategies.

We start by giving the di¤erence between the two de�nitions, Predictable Stochastic

Process and Progressive Stochastic Process.

1. Predictable Stochastic Process :

� In a predictable stochastic process, the future behavior of the process can be predicted

to some extent based on past and present information.

� Formally, a stochastic process (X(t))t�0 is said to be predictable if, for each t, the

value of X(t) can be predicted using information available up to time t.

� Predictable stochastic processes are often encountered in situations where there is a

certain level of regularity or pattern that allows for reasonable forecasting.

2. Progressive Stochastic Process :

� A progressive stochastic process is one where the randomness or uncertainty evolves

over time in a progressive or continuous manner.

� Unlike predictable processes, the future behavior of a progressive stochastic process

may not be entirely predictable, even with complete knowledge of past and present

information.

� These processes are often used to model phenomena where randomness accumulates

or changes continuously, making it di¢ cult to precisely predict future states.

In summary, the key distinction lies in the predictability of future states : predictable

stochastic processes allow for some degree of prediction based on past and present informa-

tion, while progressive stochastic processes involve randomness that evolves continuously

over time, making future states harder to predict accurately.

The dissertation is structured as follows :

Chapter 1 : Covers basic concepts such as stochastic processes, stochastic Itô integrals,

and stochastic di¤erential equations.
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Introduction

Chapter 2 : Builds on this by introducing preliminaries on stochastic integrals with res-

pect to jumps. It also discusses stochastic di¤erential equations with jumps and establishes

the existence and uniqueness of solutions for these equations.

Chapter 3 : Is the main part of the study. Using new spike variation techniques and

second-order variation equations, it establishes the maximum principle in a detailed ma-

thematical framework.
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Chapitre 1

Introduction to Stochastic

Computation

Let�s embark on a journey through the intriguing realm of stochastic computation. This

chapter serves as our gateway, introducing foundational terms and concepts that will pave

the way for deeper exploration in subsequent sections. For more details see e.g [7, 5, 1]

1.1 Stochastic Processes

De�nition 1.1.1 (Stochastic Process) A stochastic process, symbolized byX = (X(t))t2T ,

emerges as a collection of random variables de�ned within a probability space (
;F ;P),

with values spanning Rn.

Now, let�s elucidate some key terminology,

1. The variable t typically denotes time.

2. If the index set T is countable, we classify X as a discrete-time stochastic process ;

for a continuous index set, it�s a continuous-time stochastic process.

3. Common index sets include the half-line [0;1) or a �nite interval [0; T ], where T > 0.
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Chapitre 1. Introduction to Stochastic Computation

4. Each X(t) represents a random variable, mapping ! �! X(t; !) for ! 2 
.

5. Fixing ! 2 
 transforms X(!) into a function t �! X(t; !), known as a path of X.

De�nition 1.1.2 (Modi�cation of Process) We term a stochastic process (X(t))t2T

a modi�cation of another process ( �X(t))t2T if the probability P(X(t) = �X(t)) equals 1 for

all t 2 T .

De�nition 1.1.3 (Indistinguishable Processes) When P(X(t) = �X(t);8t 2 T ) equals

1, we refer to two stochastic processes (X(t))t2T and ( �X(t))t2T as indistinguishable.

Remark 1.1.1 Indistinguishable processes are modi�cations of each other, but the converse

isn�t always true.

De�nition 1.1.4 (Measurable stochastic process) A stochastic processX = (X(t))t2T

is measurable if the mapping X : [0; T ]� 
! Rn is (B([0; T ])
F ;B) measurable.

De�nition 1.1.5 (Filtration) A �ltration comprises a sequence of �-algebras fFtgt�0
de�ned over a probability space (
;F ;P), wherein Fs � Ft � F for all 0 � s � t. This

structure captures the evolving information accessible to an observer over time, with Ft

representing distinguishable events up to time t.

� A �ltration is right continuous if Ft+ = \">0Ft+" = Ft for all t � 0.

� A �ltration is complete if F0 � Ft, and it�s termed to satisfy the usual conditions if

it�s both right continuous and complete.

De�nition 1.1.6 (Adapted stochastic process) We say that a stochastic process X =

(X(t))t2T is adapted to a �ltration fFtgt�0 if X(t) is Ft-measurable for each t.

De�nition 1.1.7 (Natural �ltration) The natural �ltration of a stochastic process (X(t))t2T

comprises the collection of �-algebras fG(t)gt�0, where G(t) = �fX(s) : 0 � s � tg for all

t � 0. It�s the minimal augmented �ltration generated by (X(t))t2T , characterized by being

both right continuous and complete.
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Chapitre 1. Introduction to Stochastic Computation

De�nition 1.1.8 (Stopping time) A stopping time � with respect to fFtgt�0 is a ran-

dom variable � : 
! [0;+1] such that f� � tg 2 Ft for all t 2 T .

De�nition 1.1.9 (�-algebra of events prior to T) For a stopping time � , the �-algebra

F� = fA 2 F : A \ f� � tg 2 Ft;8t 2 T g captures events preceding T .

1.1.1 Brownian Motion

De�nition 1.1.10 (Standard Brownian Motion) The Standard Brownian Motion, also

known as Wiener process, manifests as a stochastic process (B(t))t�0 characterized by in-

dependent and identically distributed increments,

1. It starts at 0 almost surely, B(0) = 0.

2. For all 0 � s < t, the increment B(t)�B(s) follows a normal distribution with mean

0 and variance t� s (i.e., B(t)�B(s) � N(0; t� s)).

3. The sample paths of B(t) are almost surely continuous.

De�nition 1.1.11 (d-dimensional Brownian Motion) A d-dimensional Brownian mo-

tion, denoted by B =
�
B(1); B(2); : : : ; B(d)

�
, is de�ned by considering B(i) as independent

standard Brownian motions for i = 1; 2; : : : ; d. The �ltration fFtgt�0 generated by a Brow-

nian motion B is de�ned as, Ft = �(B(s) : s � t); t � 0; and it is called the natural

�ltration of B or Brownian �ltration.

1.2 Martingales

De�nition 1.2.1 (Martingale) A continuous-time martingale (resp. submartingale, su-

permartingale) is a stochastic process fX(t); t � 0g satisfying the following conditions,

1. X(t) is adapted to a �ltration fFtgt�0, i.e., X(t) is measurable with respect to Ft for

all t � 0,

6



Chapitre 1. Introduction to Stochastic Computation

2. X(t) is integrable for all t � 0,

3. For all 0 � s � t, E (X(t)jFs) = (resp. �;�)X(s) almost surely.

Remark 1.2.1 A process X is a martingale if it is both a submartingale and a supermar-

tingale. If X is a martingale, then E(X(t)) = E(X(0)) for all t 2 T .

Example 1.2.1 If B is a Brownian motion, then B(t), B2(t)� t, and exp
�
�B(t)� �2t

2

�
for t 2 T are martingales. Conversely, if X is a continuous process such that fX(t)gt�0
and fX2(t)� tgt�0 are martingales, then X is a Brownian motion.

De�nition 1.2.2 (Local Martingale) A stochastic process fM(t)gt2R+ adapted and ca-

glad (right-continuous with left limits) is a local martingale if there exists an increasing

sequence of stopping times (�n) such that �n ! +1 as n ! 1 and M (t ^ �n) is a mar-

tingale for all n.

Remark 1.2.2 A positive local martingale is a supermartingale. A locally uniformly in-

tegrable martingale is a martingale.

De�nition 1.2.3 (Semimartingale) A semimartingale is a cadlag adapted process X

admitting a decomposition of the form, X = A+M , where M is a cadlag local martingale

null at 0 and A is an adapted process of �nite variation and null at 0.

A continuous semimartingale is a semimartingale X such that in the decomposition

X = A+M ,M andA are continuous. Such a decomposition whereM andA are continuous

is unique.

1.3 Stochastic Integration and Itô�s Formula

In this section, we consider a positive real number T , and aim to de�ne the integral

I(�) =
Z T

0

�(t)dB(t) (1.1)
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Chapitre 1. Introduction to Stochastic Computation

Here, (�(t))t�0 represents any process, and (B(t))t�0 denotes a Brownian motion. The

challenge lies in giving meaning to the di¤erential element dB(s) since the function s !

B(s) is not di¤erentiable.

1.3.1 Wiener Integral

The Wiener integral is an integral of the form

I(�) =
Z T

0

�(t)dB(t) (1.2)

with � being a deterministic function, meaning it does not depend on the random variable

!. De�ne

L2([0; T ];R) =
�
� : [0; T ]! R such that

Z T

0

j�(s)j2ds <1
�
:

Suppose �n is a deterministic step function de�ned as

�n(t) =

pnX
i=1

�i1[tni ;tni+1]
(t);

where pn 2 N, the �i are real numbers, and ftni g is an increasing sequence in T = [0; T ].

Then, the Wiener integral is de�ned as

I (�n) =
Z T

0

�n(s)dB(s) =

pnX
i=1

�i (B (ti+1)�B (ti)) :
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Chapitre 1. Introduction to Stochastic Computation

Due to the Gaussian nature of Brownian motion and the independence of its increments,

the random variable I (�n) is a Gaussian variable with zero mean and variance

Var (I (�n)) =
pnX
i=1

Var (�i (B (ti+1)�B (ti)))

=

pnX
i=1

�2i (ti+1 � ti)

=

Z T

0

�2n(s)ds

Remark 1.3.1 We observe that � ! I(�) is a linear function. Moreover, if b and g are

two step functions, we have

E (I(b)I(g)) =
Z T

0

b(s)g(s)ds:

We then refer to the isometry property of the Wiener integral. Now let � 2 L2([0; T ];R).

Therefore, there exists a sequence of step functions f�n; n � 0g that converges in L2([0; T ];R)

to �. According to the previous paragraph, we can construct the Wiener integrals I (�n),

which are centered Gaussians forming a Cauchy sequence by isometry. Since the space

L2([0; T ];R) is complete, this sequence converges to a Gaussian random variable denoted

by I(�). It can be shown that the limit does not depend on the choice of the sequence

�n; n � 0. I(�) is called the Wiener integral of � with respect to (B(t))t2R.

1.3.2 The Itô�s integral

Our objective now is to de�ne the integral given by equation (1.2). To achieve this, we

construct I(�) using discretization, similar to the approach used for the Wiener integral.

Let�s start by examining step processes represented by,

�n(t) =

pnX
i=0

�i1[tni ;tni+1]
(t); (1.3)
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Chapitre 1. Introduction to Stochastic Computation

where pn 2 N, (tni ) forms an increasing sequence in T = [0; T ], and �i 2 L2 (
;Fti ;P) for

all i = 0; � � � ; pn. We de�ne I (�n) as

I (�n) =
pnX
i=0

�i (B (ti+1)�B (ti)) :

It can be con�rmed that E (I (�n)) = 0, and

Var (I (�n)) = E
�Z T

0

�2n(s)ds

�
:

Let H denote the space of caglad (left-continuous and right-limited), Ft adapted processes

� such that

k�k2 = E
�Z T

0

j�(s)j2ds
�
<1:

We can de�ne I(�) for any � 2 H. We approximate � using a sequence of step processes

given by equation (1.3), and the limit exists in L2(
; [0; T ]). The integral I(�) is then

de�ned as limn!+1 I (�n), where E (I(�)) = 0, and

Var(I(�)) = E
�Z T

0

�2(s)ds

�
:

De�nition 1.3.1 (Itô Process) An Itô process is de�ned as a real-valued process (X(t))t2T

satisfying the following conditions almost surely,

X(t) = X(0) +

Z t

0

b(s)ds+

Z t

0

�(s)dB(s); for 0 � t � T: (1.4)

Alternatively, it can be expressed di¤erentially as,

dX(t) = b(t)dt+ �(t)dB(t):

Here, X(0) is F0-measurable, and b and � are two progressively measurable processes,
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Chapitre 1. Introduction to Stochastic Computation

which satisfy almost surely,

Z T

0

jb(s)jds <1; and
Z T

0

j�(s)j2ds <1:

In other words, b 2 L1Ft [0; T ] and � 2 L2Ft [0; T ]. The coe¢ cient b represents the drift or

derivative, and � is the di¤usion coe¢ cient.

De�nition 1.3.2 (Integration by Parts Formula) If X and �X are two Itô processes,

where

X(t) = X(0) +

Z t

0

b(s)ds+

Z t

0

�(s)dB(s);

and

�X(t) = �X(0) +

Z t

0

�b(s)ds+

Z t

0

��(s)dB(s);

then the integration by parts formula states that

X(t) �X(t) = X(0) �X(0) +

Z t

0

X(s)d �X(s) +

Z t

0

�X(s)dX(s) + hX; �Xit;

where

hX; �Xit =
Z t

0

�(s)��(s)ds:

1.4 Itô�s Formula

De�nition 1.4.1 (Itô�s Formula) Let b 2 L1Ft [0; T ], � 2 L2Ft [0; T ], and let X be an Itô

process de�ned as in (1.4). De�ne hX(t)i =
R t
0
j�(s)j2ds. If h 2 C1;2(T � R;R), then

dh(t;X(t)) = @th(t;X(t))dt+ @xh(t;X(t))dX(t) +
1

2
@xxh(t;X(t))dhXit

= (@th(t;X(t)) + @xh(t;X(t))b(t) +
1

2
j�(t)j2@xxh(t;X(t)))dt

+ @xh(t;X(t))�(t)dB(t):
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Chapitre 2

Existence and Uniqueness of

Solutions for a Stochastic Di¤erential

Equation with Jumps

Consider a probability space (
;F ; fFtgt�0; P ) equipped with a �ltration fFtgt�0, where

Ft represents the information available up to time t. Within this space, we have a Brownian

motion fBtgt�0 adapted to fFtgt�0 and a Poisson random measure N on R+ � E, where

E is a standard measurable space with �-�eld E . The mean measure of N takes the form

Leb� �, where Leb is the Lebesgue measure on R+ and � is a �nite measure on E.

Given B 2 E and t 2 R+, with �(B) <1, let�s de�ne D such that ~N(!; [0; t]� B) is a

martingale for every B. We assume that fFtgt�0 is generated by B and N , i.e.,

Ft = �(N([0; s]; A); 0 � s � t; A 2 E) _ �(Bs; 0 � s � t) _N ;

where N denotes the collection of P -null sets, ensuring that Ft satis�es the usual condi-

tions.

Let M be a Euclidean space and B(M) be the Borel �-�eld on M . For a given T > 0,

12



Chapitre 2. Existence and Uniqueness of sSDE with Jumps

we de�ne the following,

De�nition 2.0.2 (Progressive ( resp. Predictable) Process) A process X : [0; T ]�


!M is termed progressive (resp. predictable) if X is G=B(M) (resp. P=B(M)) measu-

rable, where G (resp. P) is the progressive (resp. predictable) �-�eld on [0; T ]� 
.

De�nition 2.0.3 (E-Progressive (resp. E-Predictable) Process) A processX : [0; T ]�


 � E ! M is labeled E-progressive (resp. E-predictable) if X is G 
 E=B(M) (resp.

P 
 E=B(M)) measurable.

2.1 Stochastic Integral of Random Measure

This section introduces a broader de�nition of the stochastic integral that involves a

random measure. This new de�nition expands on the one given in [4] and is based on the

theory of stochastic integration of processes. We will use the concept of dual predictable

projection, also known as the compensator, but we won�t explain its de�nition here. For

more details, you can look at [8].

Consider a process Xt that has càdlàg trajectories, meaning it is right-continuous with

left limits. Here, X0� = 0 and �Xt = Xt �Xt� for any time t. We de�ne a measure � on

F 
 B([0; T ])
 E , generated by N , as follows :

�(A) = E

Z T

0

Z
E

IAN(ds; de):

For any integrable process X that is measurable with respect to F 
B([0; T ])
E=B(R),

we denote E[X] as
R
X d�. We use E[XjP
E ] to represent the Radon-Nikodym derivatives

with respect to P 
 E .

Remark 2.1.1 Note that E here does not represent an expectation because � is not a

probability measure, although it behaves similarly.
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Chapitre 2. Existence and Uniqueness of sSDE with Jumps

Consider H = IA�B, where A 2 G and B 2 E . We de�ne

Z T

0

Z
E

H ~N(dt; de) =

Z T

0

IA ~N(dt; B):

For any simple E-progressive function H, given by :

H =
nX
i=1

aiIAi�Bi ; ai 2 R; Ai 2 G; Bi 2 E;

we extend its de�nition by linear extension. For an E-progressive process H such that

E
�Z T

0

Z
E

H2 ~N(dt; de)

�
<1;

there exists a sequence of simple E-progressive functions Hn of the same form such that

lim
n!1

E
�Z T

0

Z
E

(H �Hn)2 ~N(dt; de)
�
= 0:

We can show that f(Hn � ~N)Tgn�1 is a Cauchy sequence in L2, allowing us to de�ne

Z T

0

Z
E

H ~N(dt; de) = lim
n!1

Z T

0

Z
E

Hn ~N(dt; de); in L2:

Proposition 2.1.1 LetH be a positive E-progressive process such that E
�R T

0

R
E
HN(dt; de)

�
<

1. Then, we have

�Z
0

Z
E

HN(ds; de)

�p
t

=

Z t

0

Z
E

E[HjP 
 E ]�(de)ds; (2.1)

where Xp denotes the dual predictable projection of X. If H = IA�B with A 2 G and

B 2 E, then

�Z
0

Z
E

HN(ds; de)

�p
t

=

�Z
0

IAN(ds;B)
�p
t

=

Z t

0

EB[IAjP ]�(B)ds;
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Chapitre 2. Existence and Uniqueness of sSDE with Jumps

where EB represents the measure on B([0; T ])
F generated by N([0; t]�B).

Proof. We claim that

Z
E

E[IA�BjP 
 E]�(de) = �(B)EB[IAjP]:

Both sides of the equation are predictable processes. To prove this, we will check that the

expectations on both sides match for any C 2 P. We start with the left-hand side :

E
�R T

0
IC
R
E
E[IA �BjP 
 E]�(de)dt

�
= E

�R T
0

R
E
ICE[IA �BjP 
 E]�(de)dt

�
(because IC is independent of the integral over E)

=E
�R T

0

R
E
E[IC � A�BjP 
 E]�(de)dt

�
=E
�R T

0

R
E
IC \ A�B�(de)dt

�
; (since the indicator function I acts on A�B)

=E
�R T

0
IC \ A�(B)dt

�
; (because IB is independent of the integral over t)

=E
�R T

0
IC \ AN(dt; B)

�
; (since �(B) is a constant and can be moved outside the integral)

=E
�R T

0
IC \ AN(dt; B)

�
:

Next, we consider the right-hand side

E
�R T

0
IC�(B)EB[IAjP ]dt

�
=�(B)E

�R T
0
ICEB[IAjP ]dt

�
;

=E
�R T

0
ICEB[IA \BjP ]�(de)dt

�
=E
�R T

0

R
E
IC \ AIB�(de)dt

�
; (since EB is taken with respect to B)

=E
�R T

0

R
E
IC \ AN(dt; de)

�
; (since IB is independent of the integral over t)

=E
�R T

0
IC \ AN(dt; B)

�
:

Now, let C = fH = IA�BjA 2 G; B 2 Eg. We observe that C 2 H, where H is the set

of bounded and E-progressive processes satisfying (2.1). By the linear property of dual

predictable projection, H is a linear space.

15
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If Hn " H and H is bounded, then we have,

�Z �

0

Z
E

HnN(ds; de)

�p
t

!
�Z 0

0

Z
E

HN(ds; de)

�p
t

;

for each t in the L1 sense, implying H 2 H. Hence, by the monotone class theorem, we

conclude that all bounded E-progressive processes satisfy the result. For E-progressive H

such that E
hR T
0

R
E
HN(dt; de)

i
<1, we set,

Hn = HIfjHj�ng 2 H;

and take the limit to show that H satis�es (2.1).

Proposition 2.1.2 Let H be an E-progressive process such that E
�R T

0

R
E
H2N(dt; de)

�
<

1. Then,

Z T

0

Z
E

H ~N(dt; de) =

Z T

0

Z
E

HN(dt; de)�
�Z

0

Z
E

HN(dt; de)

�p
T

:

Proof. We �rst consider H = IA�B, where A 2 G and B 2 E. By the de�nition of the

stochastic integral, we have

Z T

0

Z
E

H ~N(dt; de) =

Z T

0

IA ~N(dt; B):

For the process IA ~N(dt; B), the dual predictable projection can be written as

�Z �

0

IA ~N(dt; B)
�p
T

:

Therefore, we have

Z T

0

IA ~N(dt; B) =
Z T

0

IAN(dt; B)�
�Z �

0

IAN(dt; B)
�p
T

:

16
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This shows that for H = IA�B, the proposition holds. Next, we extend this result to any

E-progressive simple process of the form

H =

nX
i=1

aiIAi�Bi ;

where ai 2 R, Ai 2 G, and Bi 2 E. By linearity of the integral and the dual predictable

projection, we have

Z T

0

Z
E

HN(dt; de) =

nX
i=1

ai

Z T

0

IAiN(dt; Bi):

Using the result for indicator functions, we get

nX
i=1

ai

Z T

0

IAi ~N(dt; Bi) =
nX
i=1

ai

�Z T

0

IAiN(dt; Bi)�
�Z �

0

IAiN(dt; Bi)
�p
T

�
:

Therefore,

Z T

0

Z
E

H ~N(dt; de) =

Z T

0

Z
E

HN(dt; de)�
�Z

0

Z
E

HN(dt; de)

�p
T

:

Now, consider a positive E-progressive process H such that

E
�Z T

0

Z
E

H2N(dt; de)

�
<1:

We can approximate H by a sequence of positive increasing simple functions Hn of the

form above, such that

lim
n!1

E
�Z T

0

Z
E

(H �Hn)2N(dt; de)
�
= 0:

17
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This implies that

Z T

0

Z
E

H ~N(dt; de) = lim
n!1

Z T

0

Z
E

Hn ~N(dt; de) in L2:

Using the previous result for simple functions Hn, we get

Z T

0

Z
E

Hn ~N(dt; de) =

Z T

0

Z
E

HnN(dt; de)�
�Z

0

Z
E

HnN(dt; de)

�p
T

:

Taking the limit as n!1 in L2, we obtain

Z T

0

Z
E

H ~N(dt; de) =

Z T

0

Z
E

HN(dt; de)�
�Z

0

Z
E

HN(dt; de)

�p
T

:

Finally, if H is not necessarily positive, we decompose H into its positive and negative

parts : H = H+ �H�. Both H+ and H� are positive E-progressive processes. Applying

the result to H+ and H� separately, we obtain

Z T

0

Z
E

H+ ~N(dt; de) =

Z T

0

Z
E

H+N(dt; de)�
�Z

0

Z
E

H+N(dt; de)

�p
T

;

and Z T

0

Z
E

H� ~N(dt; de) =

Z T

0

Z
E

H�N(dt; de)�
�Z

0

Z
E

H�N(dt; de)

�p
T

:

Subtracting these two equations, we get

Z T

0

Z
E

(H+�H�) ~N(dt; de) =

Z T

0

Z
E

(H+�H�)N(dt; de)�
�Z

0

Z
E

(H+ �H�)N(dt; de)

�p
T

;

which simpli�es to

Z T

0

Z
E

H ~N(dt; de) =

Z T

0

Z
E

HN(dt; de)�
�Z

0

Z
E

HN(dt; de)

�p
T

:

Thus, the result holds for any E-progressive process H.

18
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Proposition 2.1.3 Suppose H is E-progressive and E
�R T

0

R
E
H2N(dt; de)

�
<1. Then,

Z T

0

Z
E

H ~N(dt; de) =

Z T

0

Z
E

HN(dt; de)�
Z T

0

Z
E

E[HjP 
 E ]�(de)dt:

Remark 2.1.2 Given the conditions of the previous proposition, we �nd that the expected

value of the stochastic integral can be expressed as

E

�Z T

0

Z
E

HN(dt; de)

�
= E

�Z T

0

Z
E

E[HjP 
 E ]�(de)dt
�
:

In particular, if H is E-predictable, then the integral simpli�es to,

E

�Z T

0

Z
E

HN(dt; de)

�
= E

�Z T

0

Z
E

H�(de)dt

�
:

Proposition 2.1.4 For a progressive process H with E
�R T

0

R
E
H2N(dt; de)

�
< 1, we

have

�(H: ~N)t =

Z
E

HN(ftg; de):

First, consider H = IA�B where A 2 G and B 2 E. Then,

�

�Z t

0

Z
E

HN(ds; de)

�
t

= �

�Z t

0

IAN(ds;B)
�
t

:

Proof. By the properties of the stochastic integral, we know that

�

�Z t

0

IAN(ds;B)
�
t

= IAN(ftg; B):

Since H = IA�B, we have

Z
E

IA�BN(ftg; de) = IAN(ftg; B):

19
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Thus, for H = IA�B,

�

�Z t

0

Z
E

HN(ds; de)

�
t

=

Z
E

HN(ftg; de):

Next, consider a simple function H of the form

H =
nX
i=1

aiIAi�Bi ;

where ai 2 R; Ai 2 G; and Bi 2 E. For such a simple function,

�

�Z t

0

Z
E

HN(ds; de)

�
t

= �

 Z t

0

nX
i=1

aiIAiN(ds;Bi)

!
t

:

By linearity of the stochastic integral and the jump operator, we get

�

 Z t

0

nX
i=1

aiIAiN(ds;Bi)

!
t

=
nX
i=1

ai�

�Z t

0

IAiN(ds;Bi)
�
t

:

From our previous result for indicator functions, this equals

nX
i=1

aiIAiN(ftg; Bi):

This is exactly Z
E

HN(ftg; de):

Now, consider a positive E-progressive processH with E
�R T

0

R
E
H2N(dt; de)

�
<1. There

exists a sequence of positive increasing simple functions Hn such that

lim
n!1

E
�Z T

0

Z
E

(H �Hn)2N(dt; de)
�
= 0:

For each Hn,

�

�Z t

0

Z
E

HnN(ds; de)

�
t

=

Z
E

HnN(ftg; de):
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Since Hn converges to H in L2, we have

lim
n!1

�

�Z t

0

Z
E

HnN(ds; de)

�
t

= �

�Z t

0

Z
E

HN(ds; de)

�
t

:

Therefore,

lim
n!1

Z
E

HnN(ftg; de) =
Z
E

HN(ftg; de):

Thus,

�

�Z t

0

Z
E

HN(ds; de)

�
t

=

Z
E

HN(ftg; de):

Finally, if H is not necessarily positive, we decompose H into its positive and negative

parts : H = H+ �H�. Both H+ and H� are positive E-progressive processes. Applying

the result to H+ and H� separately, we get

�(H �N)t = �(H+ �N)t ��(H� �N)t:

By the previous results, this equals

Z
E

H+N(ftg; de)�
Z
E

H�N(ftg; de) =
Z
E

(H+ �H�)N(ftg; de) =
Z
E

HN(ftg; de):

Thus, the proposition holds for any E-progressive process H.

Proposition 2.1.5 Suppose H is E-progressive and E
�R T

0

R
E
H2N(dt; de)

�
<1. Then,

the quadratic variation process [H: ~N;H: ~N ] satis�es

[H: ~N;H: ~N ]t =

Z t

0

Z
E

H2N(ds; de):

Proof. The proof follows similarly to the previous one.
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2.2 Existence and Uniqueness

Consider the following stochastic di¤erential equation with jumps,

Xt = x0 +

Z t

0

b (s;Xs) ds+

Z t

0

� (s;Xs) dBs +

Z t

0

Z
E

c (s;Xs�; e) ~N(ds; de); (2.2)

where x0 2 Rn; b : [0; T ] � 
 � Rn ! Rn; � : [0; T ] � 
 � Rn ! Rn�d; c : [0; T ] � 
�

Rn � E ! Rn, d is the dimension of the Brownian Motion, and n is the dimension of X.

Let us introduce the Banach space

S2[0; T ] =

�
X : X has càdlàg paths and is adapted, and E

�
sup
0�t�T

jXtj2
�
<1

�
;

with the norm

kXk2 = E
�
sup
0�t�T

jXtj2
�
:

We make the following assumptions,

Assumptions (H1)

� The function b is G
B (Rn) =B (Rn)measurable, � is G
B (Rn) =B
�
Rn�d

�
measurable,

and c is G 
 E 
 B (Rn) =B (Rn) measurable.

� The functions b, �, and c are uniformly Lipschitz continuous with respect to x, meaning

there exists a constant CL such that, for any t 2 [0; T ],

8>>>><>>>>:
jb (t; x)� b (t; y)j � CL jx� yj

j� (t; x)� � (t; y)j � CL jx� yj

jc (t; x; e)� c (t; y; e)j � CL jx� yj

(2.3)

and

E

Z T

0

jb(t; !; 0)j2dt <1; E

Z T

0

j�(t; !; 0)j2dt <1; E

Z T

0

Z
E

jc(t; !; 0; e)j2N(ds; de) <1:
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Remark 2.2.1 See that the assumption (2.3) implies that,

8>>>><>>>>:
jb (t; x)j � CL jxj+ jb (t; 0)j

j� (t; x)j � CL jxj+ j� (t; 0)j

jc (t; x; e)j � CL jxj+ jc (t; 0)j

Theorem 2.2.1 Assuming (H1), there exists a unique solution in S2[0; T ] for the equation

de�ned by (2.2).

Proof. To demonstrate the existence and uniqueness of solutions for the stochastic dif-

ferential equation, we start by de�ning a transformation. De�ne the operator T on the

space S2[0; T ] by :

T : S2[0; T ] �! S2[0; T ];

X �! T (X);

such that for X 2 S2[0; T ]

T (Xt) = x0 +

Z t

0

b (s;Xs) ds+

Z t

0

� (s;Xs) dBs +

Z t

0

Z
E

c (s;Xs�; e) ~N(ds; de):

Step 1 : Well-de�nedness of T :

We need to show that T maps S2[0; T ] into itself. That is, if X 2 S2[0; T ]; then T (X) 2

S2[0; T ]; i.e.

E

�
sup
0�s�t

jXsj2
�
<1 =) E

�
sup
0�s�t

jT (Xs)j2
�
<1:

For each X in S2[0; T ]

T (Xt) = x0 +

Z t

0

b (s;Xs) ds+

Z t

0

� (s;Xs) dBs +

Z t

0

Z
E

c (s;Xs�; e) ~N(ds; de):
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Applying the inequality (a1 + a2 + a3 + a4) � 4(a21 + a22 + a23 + a24), we have

E

�
sup
0�s�t

jT (Xs)j2
�

= E sup
0�s�t

����x0 + Z s

0

b (u;Xu) du+

Z s

0

� (u;Xu) dBu +

Z s

0

Z
E

c (u;Xu�; e) ~N(du; de)

����2
� 4 jx0j2 + 4E sup

0�s�t

����Z s

0

b (u;Xu) du

����2 + E sup
0�s�t

����Z s

0

� (u;Xu) dBu

����2
+ 4E sup

0�s�t

����Z s

0

Z
E

c (u;Xu�; e) ~N(du; de)

����2 :
Using the Lipschitz condition, we have (see remark 2.2.1). Then, by applying Hölder�s

inequality with p = 2; q = 2; and 1
p
+ 1

q
= 1; we have p

q
= p� 1 = 2� 1;

E sup
0�s�t

����Z s

0

b (u;Xu) du

����2 � E
0@"� sup

0�s�t

Z t

0

12du

� 1
2
�Z t

0

jb (u;Xu)j2 du
� 1

2

#21A
� tE

Z t

0

jb (s;Xs)j2 ds � tCLE
Z t

0

(CL jXsj+ jb (s; 0)j)2 ds

� 2tE
Z t

0

jb (s; 0)j2 ds+ 2tC2LE
�Z t

0

ds sup
0�s�t

jXsj2
�

� 2tE
Z t

0

jb (s; 0)j2 ds+ 2t2C2LE
�
sup
0�s�t

jXsj2
�
: (2.4)

Applying the Burkholder-Davis-Gundy inequalty and the assumptions (H1) :

E sup
0�s�t

����Z s

0

� (u;Xu) dBu

����2 � C2E Z t

0

j� (s;Xs)j2 ds

� C2E
Z t

0

jCL jXsj+ j� (s; 0)jj2 ds

� 2E
Z T

0

jb (s; 0)j2 ds+ 2tC2LE
�
sup
0�s�t

jXsj2
�
: (2.5)

With C2 = 1: Since Xs� is left-continuous, it is progressive, and c(s; !; x; e) is E-
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progressive. Thus, c (s;Xs�; e) is E-progressive. For any t 2 [0; T ], we have,

E sup
0�s�t

����Z t

0

Z
E

c (s;Xs�; e) ~N(ds; de)

����2 � ~C2E

�Z s

0

Z
E

jc (u;Xu�; e)j2N(du; de)
�

� ~C2E

�Z t

0

Z
E

(jc(s; !; 0; e)j+ CL jXs�j)2N(ds; de)
�

� 2 ~C2E
�Z t

0

Z
E

jc(s; !; 0; e)j2N(ds; de)
�

+ 2 ~C2C
2
LE

�Z t

0

Z
E

N(ds; de) sup
0�s�t

jXs�j2
�

� 2E
�Z t

0

Z
E

jc(s; !; 0; e)j2N(ds; de)
�

+ 2C2Lt�(E)E

�
sup
0�s�t

jXsj2
�
; (2.6)

With ~C2 = 1: Then,

E

�
sup
0�s�t

jT (Xs)j2
�
� 4 jx0j2 + 4

�
2t2C2L + 2tC

2
L + 2C

2
Lt�(E)

�
E

�
sup
0�s�t

jXsj2
�

+ 8tE

Z t

0

jb (s; 0)j2 ds+ 8E
�Z t

0

Z
E

jc(s; !; 0; e)j2N(ds; de)
�

+ 8E

Z t

0

jb (s; 0)j2 ds:

Thus, E
�
sup0�s�t jXsj2

�
<1 then E

�
sup0�s�t jT (Xs)j2

�
<1:

Because by hypothesis X 2 S2[0; T ]; and

8tE

Z t

0

jb (s; 0)j2 ds+ 8E
�Z t

0

Z
E

jc(s; !; 0; e)j2N(ds; de)
�
+ 8E

Z t

0

jb (s; 0)j2 ds:

This con�rms the well-de�nedness of T .

Step 2 : Contraction Mapping on a Small Interval

Next, we need to show that T is a contraction mapping in S2[0; T ] on a su¢ ciently small

interval [0; T ].

25



Chapitre 2. Existence and Uniqueness of sSDE with Jumps

For any X; Y 2 S2[0; T ], consider :

T (X(s))� T (Y (s)) = x0 � x0 +
Z s

0

(b (u;Xu)� b (u; Yu)) du+
Z s

0

(b (u;Xu)� b (u; Yu)) dBu

+

Z s

0

Z
E

c (u;Xu�; e)� c (u; Yu�; e) ~N(du; de)

Applying the inequality (a1 + a2 + a3) � 3(a21 + a22 + a23),

E

�
sup
0�s�t

kT (X(s))� T (Y (s))k2
�
� 3E sup

0�s�t

����Z s

0

(b (u;Xu)� b (u; Yu)) du
����2

+ 3E sup
0�s�t

����Z s

0

(b (u;Xu)� b (u; Yu)) dBu
����2

+ 3E sup
0�s�t

����Z s

0

Z
E

[c (u;Xu�; e)� c (u; Yu�; e)] ~N(du; de)
����2

Applying the same principles and inequalities as previously stated :

Using the same method as in equation (2.4), we obtain :

E sup
0�s�t

����Z s

0

(b (u;Xu)� b (u; Yu)) du
����2 � tC2LE � sup

0�s�t
jXs �Xsj2

�

Employing the same approach as in equation (2.5), we �nd :

E sup
0�s�t

����Z s

0

(b (u;Xu)� b (u; Yu)) dBu
����2 � tC2LE � sup

0�s�t
jXs �Xsj2

�

Utilizing the same technique as in equation (2.6), we get :

E sup
0�s�t

����Z s

0

Z
E

c (u;Xu�; e)� c (u; Yu�; e) ~N(du; de)
����2 � C2Lt�(E)E � sup

0�s�t
jXsj2

�

Then,

E

�
sup
0�s�t

kT (X(s))� T (Y (s))k2
�
� 3C2L

�
t+ t2C2L + t�(E)

�
E

�
sup
0�s�t

jXs �Xsj2
�
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Thus,

s
E

�
sup
0�s�t

kT (X(s))� T (Y (s))k2
�
� CL

p
3
p
(t+ t2 + t�(E))

s
E

�
sup
0�s�t

jXs �Xsj2
�

� CL
p
3
p
(T (1 + �(E)) + T 2)

s
E

�
sup
0�s�t

jXs �Xsj2
�

� CL
p
3
p
T
�p

(1 + �(E)) +
p
T
�s

E

�
sup
0�s�t

jXs �Xsj2
�

For T su¢ ciently small, the constant
p
3CL

p
T
�p

(1 + �(E)) +
p
T
�
can be made

p
3CL

p
T
�p

(1 + �(E)) +
p
T
�
< 1;

making T a contraction mapping. By the Banach �xed-point theorem, there exists a unique

�xed point X 2 S2[0; T ] in the interval [0; T ]; i.e. there exists a point X 2 S2[0; T ] such

that

T (X) = X 2 S2[0; T ]:

Step 3 : Extending to the Whole Interval [0,T]

By partitioning the interval [0; T ] into smaller intervals [0; ~T ], [ ~T; 2 ~T ] , . . . , we can apply

the contraction mapping argument on each subinterval with an initiale value in 0; ~T ,

. . . , and extend the solution to the whole interval [0; T ]. Thus, we have established the

existence and uniqueness of the solution to the stochastic di¤erential equation over the

interval [0;T ]:

In a similar vein, we �nd a minor distinction. Presented below is the Lp estimate theorem,

Theorem 2.2.2 For p � 2, let X i; i = 1; 2, be solutions of the following equations,

X i
t = x

i
0 +

Z t

0

bi
�
s;X i

s

�
ds+

Z t

0

�i
�
s;X i

s

�
dBs +

Z t

0

Z
E

ci
�
s;X i

s�; e
�
~N(ds; de);
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satisfying assumption H1. Then we obtain,

E

�
sup
0�t�T

��X1
t �X2

t

��p� � C ��x10 � x20��p + CE �Z T

0

��b1 �t;X2
t

�
� b2

�
t;X1

t

���p dt�
+ CE

"�Z T

0

���1 �t;X2
t

�
� �2

�
t;X1

t

���2 dt� p
2

#

+ CE

"�Z T

0

Z
E

��c1 �t;X2
t�; e

�
� c2

�
t;X1

t�; e
���2N(dt; de)� p

2

#
;

where M is a positive real number dependent on p; T , and the Lipschitz constant CL.

Proof. By simple calculation, we observe that

X1
t �X2

t = x
1
0 +

Z t

0

b1
�
s;X1

s

�
ds+

Z t

0

�1
�
s;X1

s

�
dBs +

Z t

0

Z
E

c1
�
s;X1

s�; e
�
~N(ds; de)

� x20 �
Z t

0

b2
�
s;X2

s

�
ds�

Z t

0

�2
�
s;X2

s

�
dBs �

Z t

0

Z
E

c2
�
s;X2

s�; e
�
~N(ds; de)

Utilizing the inequality  
8X
i=1

ai
p

!p
� 8p�1

 
8X
i=1

api

!
;

we �nd that

E

�
sup
0�t�T

��X1
t �X2

t

��p� � 8p�1 8X
i=1

Ipi

With Ip1 = jx10 � x20j
p
: Then, by Hölder�s inequality with p; q > 1, and 1

p
+ 1

q
= 1, we have
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p
q
= p� 1. Applying the Lipschitz condition, we obtain :

Ip2 = E sup
0�t�T

����Z t

0

(b1
�
s;X1

s

�
� b1

�
s;X2

s

�
)ds

����p
� E

" �Z T

0

1ds

� 1
q
�Z T

0

��(b1 �s;X1
s

�
� b1

�
s;X2

s

�
)
��p ds� 1

p

!p#

= T p�1E

Z T

0

��(b1 �s;X1
s

�
� b1

�
s;X2

s

�
)
��p ds

� T p�1CpL
Z T

0

E
��X1

s �X2
s

��p ds
� T p�1CpLTE

�
sup
0�t�T

��X1
t �X2

t

��p� :
= T pCpLE

�
sup
0�t�T

��X1
t �X2

t

��p� :
Similarly, we have,

Ip3 = E sup
0�t�T

����Z t

0

(b2
�
s;X1

s

�
� b2

�
s;X2

s

�
)ds

����p � T pCpLE � sup
0�t�T

��X1
t �X2

t

��p� :
And

Ip4 = E sup
0�t�T

����Z t

0

(b1
�
s;X2

s

�
� b2

�
s;X1

s

�
)ds

����p � T p�1E Z T

0

��b1 �s;X2
s

�
� b2

�
s;X1

s

�
)
��p ds:

Applying the Burkholder-Davis-Gundy inequality ??, along with Hölder�s inequality with

p0; q0 > 1, and 1
p0 +

1
q0 = 1, where p0 = p

2
, we have p0

q0 = p0 � 1 = p
2
� 1. Utilizing the
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Lipschitz condition, we arrive at

Ip5 = E sup
0�t�T

����Z t

0

(�1
�
s;X1

s

�
� �1

�
s;X2

s

�
)dBs

����p
� CpE

 �Z T

0

��(b1 �s;X1
s

�
� b1

�
s;X2

s

�
)
��2 ds� p

2

!

� CpE

24 �Z T

0

1ds

� 1
q0
�Z T

0

��(�1 �s;X1
s

�
� �1

�
s;X2

s

�
)
��2p0 ds� 1

p0
! p

2

35
= CpT

p0�1E

"�Z T

0

��(�1 �s;X1
s

�
� �1

�
s;X2

s

�
)
��2p0 ds� p

2
1
p0
#

= CpT
p
2
�1E

�Z T

0

��(�1 �s;X1
s

�
� �1

�
s;X2

s

�
)
��p ds�

� CpT
p
2
�1CpLTE

�
sup
0�t�T

��X1
t �X2

t

��p�
= CpC

p
LT

p
2E

�
sup
0�t�T

��X1
t �X2

t

��p�

Similarly, we get,

Ip6 = E sup
0�t�T

����Z t

0

(�2
�
s;X1

s

�
� �2

�
s;X2

s

�
)dBs

����p
� CpCpLT

p
2E

�
sup
0�t�T

��X1
t �X2

t

��p�

also we get

Ip7 = E sup
0�t�T

����Z t

0

�
�1
�
s;X2

s

�
� �2

�
s;X1

s

��
dBs

����p
� CpT

p
2
�1E

�Z T

0

��(�1 �s;X1
s

�
� �2

�
s;X1

s

�
)
��p ds� ;
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and

Ip8 = E sup
0�t�T

����Z t

0

Z
E

�
c1
�
s;X1

s�; e
�
� c1

�
s;X2

s�; e
��
~N(ds; de)

����p
� ~CpE

"�Z T

0

Z
E

��c1 �s;X1
s�; e

�
� c1

�
s;X2

s�; e
���2N(ds; E)� p

2

#

� ~CpC
p
LE

"�Z T

0

Z
E

��X �X2
s�
��2N(ds; E)� p

2

#
:

Applying the modi�ed Burkholder-Davis-Gundy inequality we have

Ip9 = E sup
0�t�T

����Z t

0

Z
E

�
c2
�
s;X1

s�; e
�
� c2

�
s;X2

s�; e
��
~N(ds; de)

����p
� ~CpC

p
LE

"�Z T

0

Z
E

��X1 �X2
s�
��2N(ds; E)� p

2

#
;

where ~Cp is a positive real number dependent on p:

Similarly, we have,

Ip10 = E sup
0�t�T

����Z t

0

Z
E

�
c1
�
s;X2

s�; e
�
� c2

�
s;X1

s�; e
��
~N(ds; de)

����p
� ~CpE

"�Z t

0

Z
E

��c1 �s;X2
s�; e

�
� c2

�
s;X1

s�; e
���2N(ds; de)� p

2

#
:
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Then

E

�
sup
0�t�T

��X1
t �X2

t

��p�
� C

��x10 � x20��p +MT pE � sup
0�t�T

��X1
t �X2

t

��p�
+ CT

p
2E

�
sup
0�t�T

��X1
t �X2

t

��p�+ CE"�Z T

0

��X1
t� �X2

t�
��2N(dt; E)� p

2

#

+ CE

�Z T

0

��b1 �t;X2
t

�
� b2

�
t;X1

t

���p dt�+ CE"�Z T

0

���1 �t;X2
t

�
� �2

�
t;X1

t

���2 dt� p
2

#

+ CE

"�Z T

0

Z
E

��c1 �t;X2
t�; e

�
� c2

�
t;X1

t�; e
���2N(dt; de)� p

2

#
; (2.7)

where C is a positive real number dependent on p; T ,CL:

Now, we de�ne Ht =
��X1

t� �X2
t�
��2 and At = R t0 HsN(ds; E). Since At is a pure jump

process, we have,

A
p
2
T =

X
s�T

�
jAs� +Hsj

p
2 � A

p
2
s�

�
IfN(fsg;E) 6=0g

=

Z T

0

jAs� +Hsj
p
2 � A

p
2
s�N(ds; E)

� C
Z T

0

�
A

p
2
s� +H

p
2
s

�
N(ds; E):

Given that A� and H are predictable, we �nd,

E
h
A

p
2
T

i
� CE

�Z T

0

�
A

p
2
s +H

p
2
s

�
ds

�
� CTE

h
A

p
2
T

i
+ CTE

�
sup
0�t�T

jX1
t �X2

t jp
�
:

By selecting T su¢ ciently small such that CT < 1, we obtain,

E
h
A

p
2
T

i
� CT

1� CT E
�
sup
0�t�T

��X1
t �X2

t

��p� :
Substituting (2.7) and subtracting

�
T p + T

p
2 + CT

1�CT
�
E
�
sup0�t�T jX1

t �X2
t j
p� on both
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sides yields the estimate in small time duration. For any T , we can partition T into

smaller intervals to reach the desired conclusion.

Remark 2.2.2 We can assume, without loss of generality, that

E

�
sup
0�t�T

��X1
t �X2

t

��p� <1; (2.8)

in the earlier proof. If this condition doesn�t hold, we can introduce a sequence of stopping

times to ensure (2.8) and subsequently obtain the Lp estimate using these stopping times.

Finally, we can take limits, allowing us to subtract that term from both sides of (2.7).
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Chapitre 3

The Maximum Principle for

Progressive Optimal Stochastic

Control Problems with Random

Jumps

3.1 Statement of the Problem

Given a time duration T > 0, let fTngn�1 be the sequence of jump times de�ned by

Tn = infft : N([0; t] � E) � ng; where N([0; t] � E) denotes the number of jumps up

to time t in the space E. The sequence fTngn�1 is strictly increasing. We also consider a

nonempty subset U of R.

De�nition 3.1.1 We de�ne the admissible control set Uad as the set of all controls u
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satisfying the following conditions,

Uad =

�
u : u is progressive, taking values in U; sup

0�t�T
E [jutjp] <1 for p > 1;

and E
Z T

0

jutj2N(dt; E) <1
�
:

De�nition 3.1.2 For any admissible control u 2 Uad and initial state x0 2 R, we consider

the following progressive stochastic system with jumps,

Xt = x0+

Z t

0

b (s;Xs; us) ds+

Z t

0

� (s;Xs; us) dBs+

Z t

0

Z
E

c (s;Xs�; us; e) ~N(ds; de); (3.1)

along with the cost functional,

J(u) = E

�Z T

0

f (t;Xt; ut) dt+ g (XT )

�
; (3.2)

where

b : [0; T ]� 
� R� R! R; � : [0; T ]� 
� R� R! R;

c : [0; T ]� 
� R� R� E ! R; f : [0; T ]� 
� R� R! R;

g : 
� R! R:

De�nition 3.1.3 (Optimal control) The optimal control is to �nd an element u 2 Uad

such that

J(u) = inf
v2Uad

J(v):

We aim to �nd necessary conditions for an optimal control in Uad. To do so, we introduce

the following assumption.

Assumption H

1. The functions b, �, f are G
B(R)
B(R)=B(R) measurable, and c is G
E
B(R)
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B(R)=B(R) measurable. The function g is FT 
 B(R)=B(R) measurable.

2. The functions b, �, c are twice continuously di¤erentiable with respect to x, have

bounded �rst and second order derivatives, and there exists a constant C such that

j(b; �; c)(t; x; u)j � C(1 + jxj+ juj):

3. f and g are twice continuously di¤erentiable with respect to x, with bounded second-

order derivatives. There exists a constant C such that

jfx(t; x; u)j � C(1 + jxj+ juj); jf(t; x; u)j � C
�
1 + jxj2 + juj2

�
;

and

jgx(x)j � C(1 + jxj); jg(x)j � C
�
1 + jxj2

�
;

while satisfying

E

Z T

0

jb(t; !; 0; 0)j2dt <1; E

Z T

0

j�(t; !; 0; 0)j2dt <1;

and

E

Z T

0

Z
E

jc(t; !; e; 0; 0)j2N(ds; de) <1:

Remark 3.1.1 Assuming H, we establish the existence of a unique solution to (3.1) for

any admissible control, as proven in Theorem 2.2.2.
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3.2 Spike Variation

Given that U may not be convex, we resort to spike variations. Let u 2 Uad denote the

optimal control. For any �t 2 [0; T ], the spike variation of u is de�ned as follows,

u" =

8><>: v; if (s; !) 2 O = [[�t; �t+ "]] n
S1
n=1 [[Tn]] ;

u; otherwise;
(3.3)

where

[[Tn]] = f(t; !) 2 [0; T ]� 
jTn(!) = tg ;

represents the graph of Tn, and v is a bounded F�t measurable function taking values in

U . As Tn is a stopping time, [[Tn]] is a progressive set. Hence, u" is progressive, and it can

be shown that it belongs to Uad.

Remark 3.2.1 As known, Tn is not a predictable time, so [[Tn]] is unpredictable, meaning

u" is not predictable. This underscores the necessity of the integrand of the stochastic

integral to be progressive. Indeed, Tn represents totally unpredictable times.

Let X denote the trajectory of u, and X" the trajectory of u". Through the SDE estimate

and noticing (Leb� P ) ([[Tn]]) = 0, we derive,

u" � u =

8><>: v � u; if (s; !) 2 O = [[�t; �t+ "]] n
S1
n=1 [[Tn]] ;

0; otherwise;
(3.4)
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and applying the Burkholder-Davis-Gundy inequality, along with Hölder�s inequality,

and assumption H. A similar way to proof [?], we get

E

�
sup
0�t�T

jX"
t �Xtjp

�
� CE

��Z T

0

jb (t;Xt; u
"
t)� b (t;Xt; ut)j dt

�p
+

�Z T

0

j� (t;Xt; u
"
t)� � (t;Xt; ut)j2 dt

� p
2

+

�Z T

0

Z
E

jc (t;Xt�; u
"
t ; e)� c (t;Xt�; ut; e)j2N(dt; de)

� p
2

)

� CE
 �Z t+"

t

ju� vjdt
�p
+

�Z t+"

t

ju� vj2dt
� p

2

+

�Z T

0

IOju� vj2N(dt; E)
� p

2

!
:

As there are no jumps on O, we obtain,

E

�
sup
0�t�T

jX"
t �Xtjp

�
= O ("p) +O("

p
2 ): (3.5)

This indicates that the jump term does not a¤ect the order of variation.. We then introduce

the variation equations,

X̂t =

Z t

0

(bx (s;Xs; us) X̂s + �b)ds+

Z t

0

(�x (s;Xs; us) X̂s + ��)dBs

+

Z t

0

Z
E

cx (s;Xs�; us; e) X̂s� ~N(ds; de) (3.6)

and

Ŷt =

Z t

0

(bx (s;Xs; us) Ŷs +
1

2
bxx (s;Xs; us) X̂

2
s )ds

+

Z t

0

(�x (s;Xs; us) Ŷs +
1

2
�xx (s;Xs; us) X̂

2
s + ��xX̂s)dBs

+

Z t

0

Z
E

(cx (s;Xs�; us; e) Ŷs� +
1

2
cxx (s;Xs�; us; e) X̂

2
s�)

~N(ds; de); (3.7)
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where

�� = � (s;Xs; u
"
s)� � (s;Xs; us) ; ��x = �x (s;Xs; u

"
s)� � (s;Xs; us) ; � = b; �:

It can be demonstrated that (3.6) and (3.7) have unique solutions. We establish some basic

estimates about X̂ and Ŷ .

For p � 2, we can establish the following estimates,

Lemma 3.2.1 For p � 2, we have,

E

�
sup
0�t�T

jX̂tjp
�
� C"

p
2 ; and E

�
sup
0�t�T

���Ŷt���p� � C"p:
Proof. Using the Burkholder-Davis-Gundy inequality, in conjunction with Hölder�s in-

equality and assumption H for X̂, we obtain :

E

�
sup
0�t�T

jX̂tjp
�
� CE

��Z T

0

j�bjdt
�p�

+ CE

 �Z T

0

j��j2dt
� p

2

!
= O ("p) +O("

p
2 ):

For Ŷ , given the boundedness of bxx; �xx; cxx,

E

�
sup
0�t�T

���Ŷt���p� � CE��Z T

0

j1
2
bxx (s;Xs; us) X̂

2
s jdt

�p�
+ CE

 �Z T

0

j1
2
�xx (s;Xs; us) X̂

2
s + ��xX̂sj2dt

� p
2

!

+ CE

 �Z T

0

Z
E

j1
2
cxx (s;Xs�; us; e) X̂

2
s�j2N(dt; de)

� p
2

!

= O ("p) :
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Lemma 3.2.2 We have

lim
"!0

1

"2
E

�
sup
0�t�T

jX"
t �Xt � X̂t � Ŷtj2

�
= 0

Proof. See [9] for the proof.

Consider the stochastic control problem with the cost functional

J(u) = E
�Z T

0

f(t;Xt; ut) dt+ g(XT )

�
;

where u is the control, Xt is the state of the system at time t, and f and g are given

functions de�ning the cost.

De�ne the variation in the cost functional as :

Ĵ = E

�Z T

0

�
fx (t;Xt; ut) (X̂t + Ŷt) +

1

2
fxx (t;Xt; ut) X̂

2
t + �f

�
dt

�
+ E

�
gx (XT ) (X̂t + Ŷt) +

1

2
gxx (XT ) (X̂T )

2

�
: (3.8)

where Yt represents a small variation in the state trajectory caused by a small perturba-

tion in the control.

Then we have the following lemma.

Lemma 3.2.3 We have

lim
"!0

J (u")� J(u)� Ĵ
"

= 0:

where u� is a perturbation of the control u.

Express J(u) + J in terms of u�, Xt, and Yt. This involves expanding the terms in

the cost functional and rearranging them appropriately. Estimate the di¤erence J(u�) �

J(u)�J using suitable inequalities and bounds. This step involves careful manipulation of

expectations, integrals, and the properties of f and g. Show that the estimated di¤erence
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tends to zero as � approaches zero. Utilize properties of f and g, such as boundedness

and di¤erentiability, to simplify expressions and establish convergence. Conclude that the

limit of the expression as � tends to zero is zero, proving the lemma.

Proof. The proof involves rigorous mathematical arguments, including : Expressing the

cost functional in terms of variations in the control and state trajectories. Applying

the de�nition of expectations and integrals to obtain a suitable expression for J(u) + J .

Estimating the di¤erence J(u�) � J(u) � J using appropriate inequalities and bounds.

Utilizing the properties of the functions f and g, such as boundedness and di¤erentiability,

to simplify expressions and establish convergence. This concludes the detailed derivation

and proof of the variation equation for the cost functional in stochastic control theory.

J(u) + Ĵ = E

Z T

0

�
(f (t;Xt; ut) + fx (t;Xt; ut) (X̂t + Ŷt) +

1

2
fxx (t;Xt; ut) X̂

2
t + �f)

�
dt

+ E(g (XT ) + gx (XT ) (X̂T + ŶT ) +
1

2
gxx (XT ) (X̂T )

2)

= E

Z T

0

(f(t;Xt + X̂t + Ŷt; u
"
t) +H)dt+ E(g(XT + X̂T + ŶT ) + I);

where

H =
1

2
fxx (s;Xs; us) X̂

2
s � �fx

�
X̂s + Ŷs

�
� Af (X̂s + Ŷs)

2

I = �
Z 1

0

Z 1

0

�g(XT + ��(X̂T + ŶT ))d�d�(X̂T + ŶT )
2 +

1

2
gxx (XT ) (X̂T )

2:

Then

jJ (u")� J(u)� Ĵ j2 � CE
 Z T

0

jf(t;Xt + X̂t + Ŷt; u
"
t)� f (t;X"

t ; u
"
t) j2dt+

�Z T

0

Hdt

�2!

+ E
�
jg(XT + X̂T + ŶT )� g(X"

T )j2 + I2
�

� CE
�
sup
0�t�T

jX"
t �Xt � X̂t � Ŷtj2

�
+ E

 �Z T

0

Hdt

�2
+ I2

!

= o
�
"2
�
:
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By the same method we can show that

E

 �Z T

0

Hdt

�2
+ I2

!
= o

�
"2
�
;

which proves the result.

3.3 Adjoint Equations and the Maximum Principle.

We introduce the �rst order and second order adjoint equation.

1. First order,

pt = gx (XT ) +

Z T

t

�
bxps + �xqs + fx +

Z
E

E [cxjP 
 E ] ks�(de)
�
ds

�
Z T

t

qsdBs �
Z T

t

Z
E

ks ~N(ds; de): (3.9)

2. Second order,

Pt = gxx (XT ) +

Z T

t

�
2bxPs + 2�xQs + fxx + bxxps + �xxqs + Ps�

2
x

+

Z
E

E
��
c2x + 2cx

�
jP 
 E

�
Ks + E [cxxjP 
 E ] ks + E

�
c2xjP 
 E

�
Ps�(de)

�
ds

�
Z T

t

QsdBs �
Z T

t

Z
E

Ks
~N(ds; de): (3.10)

where �x = �x (t;Xt; ut) ; �xx = �xx (t;Xt; ut). To achieve the existence and uniqueness

of the two backward equations mentioned, we refer to Lemma 2.4 in [4]. Since �x; �xx are

bounded, there exists a unique solution to equation (3.9) (p; q; k) 2 S2[0; T ]�M2[0; T ]�

F 2[0; T ] and a unique solution to equation (3.10) (P;Q;K) 2 S2[0; T ]�M2[0; T ]�F 2[0; T ].

Next, we need an Itô�s formula for processes with jumps, referring to Theorem 32 and

Theorem 33 from [4].
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Lemma 3.3.1 Let X1; X2; : : : ; Xd be semimartingales, and let F be a C2 function on Rd.

Set X =
�
X1; X2; : : : ; Xd

�
, then

F (Xt)�F (X0) =
dX
i=1

Z t

0

@F

@xi
(Xs�) dX

i
s+
1

2

dX
i=1;j=1

Z t

0

@2F

@xi@xj
(Xs�) d

�
X i; Xj

�
s
+
X
s�t
�s(F );

where

�s(F ) = F (Xs)� F (Xs�)�
dX
i=1

@F

@xi
(Xs�)�X

i
s �

1

2

dX
i=1;j=1

@2F

@xi@xj
(Xs�)�X

i
s�X

j
s :

and

�X i
s = X

i
s �X i

s�:

Applying Itô�s formula to ptX̂t, ptŶt, and PtjX̂tj2 yields the following expressions,

1.

E[pT X̂T ] = E

Z T

0

pt�dX̂t + E

Z T

0

X̂t�dpt + E[p; X̂]T

= E

Z T

0

�
pt�b+ qt�� � X̂tfx

�
dt: (3.11)

2.

E[pT ŶT ] = E

Z T

0

pt�dŶt + E

Z T

0

Ŷt�dpt + E[p; Ŷ ]T

= E

Z T

0

�
1

2
bxxptjX̂tj2 +

1

2
�xxqtjX̂tj2 � Ŷtfx + ��xX̂tqt

+

Z
E

1

2
E[cxxjP 
 E ]ktX̂2

t

�
dt: (3.12)
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3.

E[PT jX̂T j2] = E
�Z T

0

jX̂tj2dPt +
Z T

0

2Pt�X̂t�dX̂t

�
+ E

"Z T

0

Pt�d[X̂; X̂]t +

Z T

0

2X̂t�d[X̂; P ]t +
X
t�T

�Pt(�X̂t)
2

#

= E

Z T

0

�
Pt(��)

2 � X̂2
t

�
fxx + ptbxx + qt�xx +

Z
E

ktE[cxxjP 
 E ]�(de)
�

+ 2PtX̂t�b+ 2QtX̂t�� + 2Pt�xX̂t��
�
dt: (3.13)

Remark 3.3.1 In equation (3.13), we utilize the following identity,

X
t�T

�Pt(�X̂t)
2 =

X
t�T

Z
E

KtN(ftg; de)
�Z

E

cxX̂t�N(ftg; de)
�2

=
X
t�T

Z
E

Ktc
2
xX̂

2
t�N(ftg; de)

=

Z T

0

Z
E

Ktc
2
xX̂

2
t�N(dt; de):

The second equality follows from the property that for any A 2 E, N(ftg; A) = 1 or 0.

From equations (3.11)-(3.13), we can deduce the expressions for gx(XT )(XT + YT ) and

gxx(XT )X
2
T . Thus, we arrive at

Ĵ = E

�Z T

0

�
pt�b+ qt�� + �f +

1

2
Pt(��)

2

�
dt

�
+ o(") (3.14)

where o(") denotes

E

�Z T

0

�
��xX̂tqt + Pt�xX̂t�� + PtX̂t�b+ X̂t��Qt

�
dt

�
:

We introduce the function

H(t; x; u; p; q) = pb(t; x; u) + q�(t; x; u) + f(t; x; u):

44



Chapitre 2. The Maximum Principle for POSC with Random Jumps

Then, we establish the following theorem,

Theorem 3.3.1 Under the assumption that (E) satis�es and given that u represents the

optimal control and X denotes the trajectory of u, with (p; q) satisfying (3.9) and P satis-

fying (3.10), we can conclude almost everywhere and almost surely that for any v 2 U ,

H(t;Xt; v; pt; qt)�H(t;Xt; ut; pt; qt) +
1

2
Pt(�(t;Xt; v)� �(t;Xt; ut))

2 � 0:

Proof. Observe that
S1
n=1 [[Tn]] is negligible under P � Leb. From Equation (3.14), it

follows that,

Ĵ = E

Z T

0

1(t;t+"] f(pt(b(t;Xt; v)� b(t;Xt; u)) + qt(�(t;Xt; v)� �(t;Xt; u))

+ (f(t;Xt; v)� f(t;Xt; u)) +
1

2
Pt(�(t;Xt; v)� �(t;Xt; u))

2)gdt+ o("):

Dividing both sides by " and letting "! 0, we obtain for almost every �t,

E

�
H (�t;X�t; v; p�t; q�t)�H (�t;X�t; u; p�t; q�t) +

1

2
P�t (� (�t;X�t; v)� � (�t;X�t; u))

2

�
� 0:

Then, for any A 2 F�t and w 2 U , setting v = w1A + u1Ac, we have,

E1A

�
H (�t;X�t; w; p�t; q�t)�H (�t;X�t; u; p�t; q�t) +

1

2
P�t (� (�t;X�t; w)� � (�t;X�t; u))

2

�
� 0:

This inequality holds almost everywhere, which implies,

H (�t;X�t; w; p�t; q�t)�H (�t;X�t; u; p�t; q�t) +
1

2
P�t (� (�t;X�t; w)� � (�t;X�t; u))

2 � 0;

for almost every �t.
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Conclusion

In this study, we dive into the world of stochastic processes, focusing on a new variation

method aimed at overcoming a signi�cant hurdle : jumps. With our innovative variation

technique, we delve into the complexities of estimating Lp-norms within these processes.

The beauty of our approach lies in its scalability with the growth of pp, making our

variation equations more e¤ective.

Surprisingly, despite the presence of jumps, our maximum principle retains a familiar

structure observed in systems without jumps. This curious similarity arises from the fact

that both principles hold almost everywhere, almost surely. The minimal in�uence of jumps

on our results can be attributed to their negligible measure under speci�c probability

measures.

Moreover, we take pride in the rigor and clarity of our derived maximum principle, laying

a robust foundation for further theoretical and practical exploration. Looking ahead, our

future research aspirations include delving deeper into optimal control strategies during

jump instances and exploring the myriad real-world applications of our �ndings.
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Abbreviations and Notations

The various abbreviations and notations used throughout this dissertation are explained

below :

SDE : Stochastic di¤erential equation.�

;F ; fFtgt�0 ;P

�
A complete probability space with �ltration fFtgt�0 :

N The collection of P-null sets.

C1;2([0; T ]� R;R) : f : [0; T ]� R! R : � is continuous (in t); and ft; fx, fxx; exists

S2[0; T ] : X : 
� R! R : X has càdlàg paths and adapted

and E
�
sup0�t�T jXtj2

�
<1:

M2[0; T ] : X is predictable, and E
�R T

0
jZsj2 ds

�
<1

F 2[0; T ] : K : [0; T ]� 
� E !M : K is E � predictable,

and kKk2 = E
�R T

0

R
E
jKsj2 �(de)dt

�
M : A Euclidean space and B(M) the Borel �-�eld on M .

Uad Admissible control set.
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Abstract : 

This master's dissertation introduces a straightforward method for dealing with jumps in 

stochastic processes. Here's an explanation of the key points : The approach we present is simple 

and easy to apply, which makes it accessible for those working with Stochastic processes can 

experience sudden changes or "jumps." This method specifically addresses these jumps, making 

it easier to estimate values within systems that include such dis- continuities, and simplifies the 

process of making estimates within these systems. This is particularly important as the values 

we are dealing with become larger, where traditional methods might become more complex or 

less accurate. This broad applicability ensures that it can be used in various situations without 

significant limitations. 

 Résumé  

Cette dissertation de master introduit une méthode simple pour gérer les sauts dans les 

processus stochastiques. Voici une explication des points clés : L'approche que nous présentons 

est simple et facile à appliquer, ce qui la rend accessible à ceux qui travaillent avec des 

processus stochastiques qui peuvent connaître des changements soudains ou des "sauts". Cette 

méthode traite spécifiquement ces sauts, ce qui facilite l'estimation des valeurs au sein des 

systèmes incluant de telles discontinuités, et simplifie le processus d'estimation dans ces 

systèmes. Cela est particulièrement important lorsque les valeurs que nous traitons deviennent 

plus grandes, car les méthodes traditionnelles peuvent devenir plus complexes ou moins 

précises. Cette large applicabilité assure qu'elle peut être utilisée dans diverses situations sans 

limitations significatives. 

 الملخص:

 :الرئيسية للنقاطعمليات العشوائية. فيما يلي شرح تقدم هذه الرسالة طريقة بسيطة للتعامل مع القفزات في ال

يمكن أن تتعرض هذه  .النهج الذي نقدمه بسيط وسهل التطبيق، مما يجعله متاحاً لأولئك الذين يعملون مع العمليات العشوائية

لأنظمة قيم داخل االقفزات، مما يسهل تقدير ال العمليات لتغيرات مفاجئة أو "قفزات". تتناول هذه الطريقة بشكل خاص هذه

التقديرات داخل هذه الأنظمة. هذا الأمر مهم بشكل خاص عندما  التي تتضمن مثل هذه الانقطاعات، كما تبسط عملية إجراء

ق الواسع دا أو أقل دقة. يضمن هذا النطاتعقييمكن أن تصبح الطرق التقليدية أكثر  تصبح القيم التي نتعامل معها أكبر، حيث

 .هذه الطريقة في مختلف الحالات دون قيود كبيرة . استخدام$ للتطبيق إمكانية
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