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Symbols and Acronyms

(Qaf7]F> P)
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F= {ft}ogth
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L2(0, T);R)
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1.e

BSDE

¢z (t,x,u)
bu (t,,u)
Gue(t, T, u)
Guu(t, 1)
P2 (1,7, )
SDE
P—a.s

Complete probability space

Theset of all admissible controls
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Brownian motion

The space of R-valued,F;-measurable random variables
the space of R-valued,B([0, 7"]) ® F-measurable,F-adapted processes
Almost everywhere

Almost surely

Abbreviation of Latin(id)

Backward stochastic differential equation

First order derivatives of ¢ with respect to x

First order derivatives of ¢ with respect to u

The second order derivatives of ¢ with respectto(x,x)
Second order derivatives of ¢ with respectto(u,u)
Second order derivatives of ¢ with respectto(x,u)
Stochastic differential equations

Almost surely for the probability measure



Introduction

xamining the pointwise second order maximum pricipale for singular optimal sto-

Echastic control in the classical sense is the principal objective of this thesis .The
maximum principale is one of the major approaches for discussing problems of optimisa-
tion.
One of the main issues in the theory of optimal control is determining the necessary
condition for optimal control . [I2] contains some early research on the first order necessary
condition for stochastic optimal control where the diffusion term is unrelated to the control
variable.
As for early works on the same problem but in the case of the diffusion term containing
the control variable.
There may not be enough information provided by the first order necessary condition for
stochastic optimal control to identify the stochastic optimal control.Since the first order
necessary condition for the general situation was established in [20] , it is only reasonable
to study the second order necessary condition for stochastic optimal control. Unfortunately,
to the authors’ best knowledge,there aren’t many works are available in this respect.
A little while back, [22] derived a pointwise second-order necessary condition for stochas-
tic optimal controls while [6] obtained an integral-type (rather than the more desired
pointwise type) second-order necessary condition for stochastic optimal controls with the
control variable entering into the diffusion terms, but the control region is assumed to be

convex.To the best of our knowledge ,there are just two publications that deal with the



Introduction

second order necessary condition for stochastic optimal control [6] and [22] . In Zhang
and Zhang [25] , the authors raised the pointwise second order necessary conditions for
stochastic optimal controls in the general area where the control region is allowed to be
non convex. Second order necessary conditions for singular optimal stochastic controls
with some examples have been obtained in [I1] First and second order necessary opti-
mality conditions for local minimizers of stochastic optimal control problems with state
constraints have been established in [§] .Pointwise second-order necessary conditions for
stochastic optimal control with jump diffusions have been studied by Ghoul et al [I]

The structure of this thesis is as follows.

In Chapter 1 We offer a quick reminder of stochastic calcul ,we present some concepts
and definition that allow us to prove our results, such as: Probability space, Martingales,
Stochastic integrals, Stochastic differential equations, Itd formula ....Also some inequality
such as: Holder’s inequality , Caushy schwarz’s inequality ....

In Chapter 2 we showcase Strong formulation and weak formulation , The stochastic
maximum principle (SMP) (Problem formulation ,Stochastic maximum principale ,Varia-
tion equation ) and the pontrygain type stochastic maximum principle methods to solve
optimal control problems.

In Chapter 3 we talk about Second order necessary condition in martingale terme ,the
controlled system is described by a stochastic differential equation and the control domain

is assumed to be convex. This chapter is based on the work of [24].



Chapter 1

Reminder of stochastic calculs

1.1 Probability space
Definition 1.1.1 We called probability space , all triple (Q,F,P) or (Q,F) with :
e () : Fundamental set .

e [F: tribe defined on €2 .

e P: probability over (Q,F) .Is a measurable space.

Definition 1.1.2 (Tribe):Let E be any set , we call tribe of any part of E , all sub set A

of E such that:

1. FeA.
2. Ac A= Acc A
3 A, C A= (UA,) €A .

Definition 1.1.3 (Filtration): A filtration is a growing familly of sub tribes of F , such
that :

F, C F, forall s <t
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1.2 Stochastic process

Definition 1.2.1 The following (Q,F,P) is a complet probability space either T C R, .All

the familly X = (X,) of rendom variable in R¢ is a stochastic process.
Definition 1.2.2 (Modification): We say that Yy = (Y;) s a version or modification of
the process X = (X,) . if

P(X,=Y) =1, P(X,£Y,)=0 forall ¢>0 (1.1)

Definition 1.2.3 (Indistinguability): We say that the process Y = (Y;) and X = (X,)

are indistinguability if their trajectoirs are the same( , that’s mean:
PX;=Y, t>0)=1

Proposition 1.2.1 :If X = (X,) and Y = (Y,) are indistinguability so they are mod-
ification one to other , but the recoporad is generally false.
Definition 1.2.4 (Equality of processes): XY are two processes have the same law , if
Jorall pe N* and ¢, t,, t, €T -

(thv 7ti) = <}/;517 7Ep)
or

XCY

Definition 1.2.5 (Adapted processes):A process X = (X,) is adapted (compared with the

filtration ) if Xy is F, measurable for all t.
Definition 1.2.6 (Cadlag ): A process is cadlag if :

e it’s trajectoirs who’s continuous to the left provided with limites to the right.

4
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Definition 1.2.7 (Caglad):A process is caglad if:

e it’s trajectoirs who’s continuous to the right provided with limites to the left.

1.3 Brawnian motion

Definition 1.3.1 : (Q,F,P) is a probability space, B = (By) 1sa stochastic process. By is

a Brawnian Motion standard ,if:

® B,=0-

forall 0 <s<t< 400 . B, — B, isindependent of (Bu)uelo,g -

forall s<t , B,—B,~ N(0,t—s) -

w € Q,t — By(w) > for all ¢ ¢ [0, 7] ,all the trajectoirs are continuous.

Proposition 1.3.1 : B = (B,) a stochastic process such as all the trajectoirs are con-

tinuous and By, =0 , so the following properties are equivalent:

1. process B = (By) is standard Brawnian motion.

2. process B = (B,) is Gaussian process with

E(B,) ~0

cov(Bs)) = min(t,s) =tNs

1.4 Martingal

Definition 1.4.1 :(X;) for all ¢ > (0 s a process called martingal (or sub-martingal ,

super-martingal) ,if:

¢ (X;) is measurable (that’s mean F, — adapted )-
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e (X;) is integrable (that’s mean E(X,) < +o0 )-

o Forall 0 <s<t:

E(Xi/Fs) = X is martingal
E(Xi/Fs) > X, is sub— martingal

E(Xi/Fs) <X is super —martingal

1.5 Stochastic integral

Definition 1.5.1 :We called stochastic integral all the integral of the following shape:

/b Xs(w)dB, (w)

forall ¢ bR Lo X; stochastic process and (Bs)ss0 is Brawnian motion.

Proposition 1.5.1 :

/Xsst is linair.

2. / X, dB, is continuous .

3. / XydBg is F, — adapted Process.

4. /XdB )=0, Var/XdB /X2dB
5. /Xsst I8 [, — martingale -
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Definition 1.5.2 (Ito’s process): X; is defined as Ito’s process , if it is of the following

shape:
b b

X, =z + / b(s)ds + / 5(s)dB, (1.2)

a a

b
Where /b(s)ds < 400 and d is a good local process.or it defined as:

dX, = b(t)dt + 5(1)dB,
Where:
XO =X
Where b(t) is derived of the process X and d(t) is the coefficient diffusion or volatility.

Theorem 1.5.1 (Taylor’s theorem for one variable):Let 1, > 1 and let the real valued
fonction f:R—R be h times differentiable at the point o c¢ R ( in our case it’s

Brawnian motion) . Then there is a function gn : R — R such that :

f@) = @)+ fa) (@ —a) + L9 — o)+ +50 @ — o) + gu(a)(z — o) (1.3)

And
lim gp(x) =0

Theorem 1.5.2 (Taylor’s theorem for two variables ):Let f:R2 — R is a function of

two variables  f (2,9) whose first and second partials exist at the point (a,b) .The second
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degree Taylor’s of [ for (x,y) near to the point (a,b) 1s:

f(xy) = fla,b) + fu(a,b)(x — a) + fy(a,b)(y —b)

w3 |- 228Dy 074 e - )ty - )

(1.4)

1.6 Stochastic differtential equation(SDE)

Definition 1.6.1 we say that the stochastic process (Yiep,r00) 5 @ solution of Ito’s

stochastic differential equation
dY; = b(Y, t)dt + §(Yy, t)dB,

fogt<T:

® YusF;, — adapted -
* b(t,Y;) € Ly ([0,7T]) and 4(t,Y;) € L%, ([0,T1) -

e for p, § are n—dimensional and n x m—dimensional adapted processes , we got:

t

t
Vimyt [u¥esyds+ [8(Y,s)aB. (15)
0

0

° Llft([o7 T)) = (Yo)ieo, 400 adapted real-valued process space , such as:

T
Evﬁnum<+m
0

And

T
EVWEFM<+m
0
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Theorem 1.6.1 (Ezistence and unigness) Let be b, :[0,T] xR — R .borel functions
satisfying

| b(t,x) = b(t,y) I<Sb|z—y|

| 6(t,z) —0(t,y) |[<d|x—y| Jorall z yeR, t€[0,7]

o Liptschtiz continuity : There is a constant C1 < +oo , such as:

[0t x) = blt,y) | + [ 0(t,2) = o(t,y) IS CL |z —y|

o Linear growth condition: There is a constant C2 < +oo , such as :

[ o(tz) [ + [ 6(t, 2) [[< C2(1+ [ = |)

Let Y be a random variable independent of Brownian motion (By), such as:
ElY |?<+o00
Then there ewists a unique solution Y, ¢ L%([O, T)) of the SDE:

Yo=
Definition 1.6.2 From the past definition , we define Byas m—dimensional standard

Brawnian motion and b and 6 are n—dimensional and n X m —dimensional adapted

processes respectively.the past equation @ 1s shorthand for
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1.7 Ito’s formula

Theorem 1.7.1 (Ito’s formula for 1 dimensional Ito process):Let () = to <ty < oo <t,=T

be a partition of [0,T] . B; a Brawnian motion on [0,T] and suppose f(x) is C* class on

R.So clearly:

n—

f(By) = f(0) + Z(f(Bti+1) — f(Bw)) (1.7)

=0

~

Using Taylor’s Theorem:

f(Bti+1> - f(Btz) = f,<Bti)(Bti+1 - Bti) + %f”(ﬁi)(BtiH - Bti)z (18)
o Forall p; (Bti+1 — By) substituting mto s0:
F(B) = fO)+ S F (BB — Bu) + 50 f"(B)(Buys ~ B (19)
i=0 i=0

o Ifwelet o = (tiy1 —t;) — 0 ,s0 1t s clear that the terms on the right hand-side
of (|1.7)) converge to the correspponding terms on the right hand-side of the following

equation :

t t

F(B) = 10)+ 4 [ #1(Baas+ [ 7(Byab. (1.10)
0 0
Theorem 1.7.2 (Ito’s formula for 2 dimensional Ito process)

X, 18 2-dimensional Ito process satisfying the following equation :

dXt = ,U/tdt + (StdBt

10



Reminder of stochastic calculs

o If f(t,z) 1is C? fonction and Y, = f(t, X;) then :

(t, X,)dt + 2L(t, X,)dX, + L84 (1, X,) (dX,)>

ay; = 2922

of
ot
( (t Xt) a;r (t Xt)[Lt + 282 (t Xt)(st )dt‘l‘ of (t Xt)étdBt

Remark 1.7.1 gt x dt =dt x dB, =0 also dB, x dB, = dt -

1.7.1 Inequality

Holder’s inequality

Let ;lo + % =1 with p ¢>1 Then Holder’s inequality for integrals states that :
b b b
[ 1s@g@) o < ([ 1 @) 1, dol3( [ 1 9(0) | dal’ (1.11)
For
| g(@) |=c| f(z) P~
Cauchy Schwarz’s inequality
If p=g=2 ,thisis cauchy schwarz’s inequality:
b b b
[ 1@t <[ 15 P as [ 1 gta) o (112

Burkhdélder Davis-Gundy inequality

For any there 1 < p < 0o exist positive constants c,,C,such that, for all local martingales
X with Xy = 0 and stopping times 7

the following inequality holds.

11
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RIS
RN

oB |[X]}] <BXP <GB [X]

)

Furthermore, for continuous local martingales, this statement holds for all 0 < p < oc.

with X} = sup,_, | X;| and [X] denotes the quadratic variation of a process X

Grunwall’s inequality

Let z, U and ® be real continuous functions defined in [a,b], ® > 0 for t € [a,b] . We

suppose that on|a, b] we have the inequality

Then

in [a, b]

12



Chapter 2

Stochastic optimal control problems

2.1 Strong formulation

Let T >0,t e 0,7 and (Q,F, {F;}i>0,P) We consider a complete filtered probability
space, which satisfies the usual conditions, and we define an m—dimensional standared
Brawnian motion B(-), denote by U the separable matrix space.We denote by {/,,[0, T
the set of all the admissible control.

The state of controlled diffusion is described by the SDE:

dy(t) = blt, y(t), u(t))dt + (1, y(1), u(t))dB,
y(0) =y
Where :

b:[0,T] xR xu—R" , §:[0,T] x ux R* — R™™ are given and ¢(.) is the vari-

able of state , y(.) is called control representing the action of the decision maker(controller).At

any time instant the controller knowledge about some information of what has happened
up to that moment , but not able to predict what is going to happend afterward due to
the uncertainty of the system (as a result , for any ¢ the controller can’t exercise his /

her decision u(t) before time ¢ comes) , which can be expessed in mathematical term as

13



Stochastic optimal control problems

“u(-)is{F;} 0 — adapted “, the control u is taken from the set

U0, 7] £ {u:[0,T) x Q — U{u(-)is{F; }1cjomadapted}

The cost functional has the form:

T

J(ul.)) = E[/f(t,y(t)ﬂt(t))dt +9(y(1))]

0

Definition 2.1.1 Let (O, F, {Fi}iepor), P) be given as a filtred probability space satisfying
the usual conditions and let B(t) given as m—dimensional standard {F:}iepor) Brawnian

motion . A control u(-) called an admissible control and (y(.), u(-)) an admissible pair ,if:
1. y(-) is the unique solution of the equation.
2. f(y(),u()) € Ly, (0,F,R) and g(y(t)) € L, (Q.R) -
3. wu(-) e U0,T] -

Definition 2.1.2 Stochastic control problem is to find an optimal control 4(-) for allu(-) €

U0, T] (and that’s only if it exist) , such that :

J(a(-)) = inf J (u())u(yevio

Where q(.) 1is pressenting as an optimal control and the state control pair (g(-),a(-))

are an optimal state process.

2.2 Weak formulation

Unlike in the strong formulation the filtred probability space (Q, F, {F: } ey, P) on
which we defined B(-) asa Brawnian motion but it ’s not the case in the weak formulation

;where we consider that as a part of the control.

14



Stochastic optimal control problems

Definition 2.2.1 Let (Q,F, {F:} ey, Py B(), ul)) 1s called w—admissible control and

y(+),u(-) is called w — admissible pair ,if:
L (Q,F,{Fi}ticpr,P) Isa filtered probability space satisfying the usual conditions.
2. B(.) is a m—dimensional standard Brawnian motion defined on (Q,F,{F,} te[0.1]» P) -
3. u(-) is an {F:}icjor) — adapted process on (Q,F, P) taking values in U.

4. y(+) is the unique solution of the equation ([2.1]).
5 f(.y(),u() € Lp(0, F,R) and g(y(t)) € Li(Q,R)

Definition 2.2.2 Stochastic optimal control problem under weak formulation is to find an

optimal control ¢(.) € U[0,T| (and that’s only if it exist) , such that :

J(0(-)) =ueyevo,r inf J(u(-))

2.3 Stochastic maximum principale

The stochastic maximum principle (SMP) is a fundamental result in stochastic optimal
control. Its basic idea is to derive a set of necessary and sufficient conditions that any
optimal control must satisfy. The first version of the SMP was extensively established in
the 1970s by Bismut [4] , Kushner [14] , and Haussmann [I2], under the condition that
there is no control on the diffusion coefficient. Haussmann [I1] developed a powerful form
of the Stochastic Maximum Principle for the feedback class of controls using Girsanov’s

transformation and applied it to solve some problems in stochastic control.

2.3.1 Problem formulation

Let T" be a positive real number and (Q,F, {F: }iepo P) be a probability space that

meets the standard conditions , in which a m—dimensional Brawnian motion such that

15



Stochastic optimal control problems

is a natural filtration ; {F,} =F for an arbitrarily fixed

arbitrarily fixed time horizon 7', which we denote U by the set of all admissible control
. Any element ¢ ¢ R* with the norm |y |=| 2, | + | 23 | +....4 | 2, | Will be identified
to coloumn vector with n compositions.For function h, we denote by h,(resp.h,,) the

Gradient or Jacobian(resp.Hessian).

Definition 2.3.1 An admissible control is a meassurable adapted process , 4 - 0, 7] x Q — u

such that :
T
E[/u(s)ds} < 400
0
Take into account the subsequent stochastic controlled system:

Ayt) = b(t,y(), u®)dt -+ 5(t, (), u(t))dB,
y(0) =y €R”

(2.2)

Where b:[0,T] x R* x u — R™ ; §:[0,T] x R* x u — R™™ are given.Suppose we are

gwen a performence functional J(u) as the follow cost :

J(u) = E[/(f(t, y(8), u(t)))dt + g(y(T))] (2.3)

Where — f . 0, T xR*"xu—R ; g:R*" >R . The stochastic control problem is to find

an optimal control { € U who can verifiy:

J(8) =uyev inf J(u) (2.4)

Let us make the following assumptions about the coefficients b, 6, f and g.

16



Stochastic optimal control problems

A1l The mapsb, dand f are countinuously differentiable with respect to (y,«) and g is

countinously differentiable in y.
A2 The derivatives bys bus Oy Oy fos fu and g, are countinuous in (y, ) uniformly bounded.

A3 b,o, f are bounded by C(l+|y|+|ul and ¢ is bounded by C(1+ |yl > for

all ¢>o0.

2.3.2 Optimal control and Optimal trajectory:

Definition 2.3.2 For all ; =1, N we defined the Hamiltonion:

N
H(t,y,u,p,q) = f(t,y,u) +pb(t,y,u) + Y _q'd"(t,y,u) (2.5)
=1

By H:[0,T] x R" x u x R" x R™™ — R
Where ¢'and 6¢ denote by coloumn of the matriz ¢ and §.Let i be an optimal control and
denote the corresponding optimal trajectory . Then we consider the pair (p,q) of square

integrable adapted process associated to u with value in R? x R**™ , such that :

dp(t) = —H,(t,9(t),a(t); p(t), q(t))dt + q(t)dB
p(T) = hy(9(T))

(2.6)

Theorem 2.3.1 (Necessary conditions of optimality) Let u be an optimal control
minimizing the performance functional J over U, and let i be the corresponding optimal
trajectory, then there exists an adapted processes (p, q) € L2 (([0,T]; R™))x L2 (([0, T] ;R”Xd))
which is the unique solution of the BSDE (@, such that for all v € U

H, (6,5 (). (8),p(0),q () (0 — () <0, P—aus.

In order to give the proof this tesult , it is convenient to present the following.

17



Stochastic optimal control problems

2.3.3 Estimation and linearization of the solution

Definition 2.3.3 Let (a(-),y(-),9(-),v(-)) an optimal solution of the problem such that
i+velU ,for §c0,1] the control (4 + Ov) by standard arguments for stochastic

cacul ; so it is easy to cheak the following convergence result:

Lemma 2.3.1 Under assumption (Ay) it hold that:

lim Elyciomsup | 4°(1) — 5(6)) | 2] = 0 (2.7

We define the process z(t) = 2®v(t)

(

dz(t) = {by(t, 2(2), a(t))2(t) + bu(t, §(t), a(t), v(t)) ydt
+Z{5§(ta Gt), a(t))w(t) + o4 (t, y(t), u(t), v(t) }dB (t) (2.8)
\ 2(0)0= 0

We can find a unique solution z which solves the variational equation ([2.8),and the fol-

lowing estimation holds.

Lemma 2.3.2 Under assumption (A;) we have:

lim | M —2(t) >=0 (2.9)

Proof. To prove this lemma, you can consult [3] =

18



Stochastic optimal control problems

2.3.4 Variational inequality

Let ® be the fundamental solution of the linear matrix equation, for 0 < s <t <T

d . .
dq)s,t = by (ta @\(t) ) a (t)) (I)S,tdt + ZUZJ; (t7 g//\(t) ) a (t)) (I)S,tdBJ (t) )

j=1

(I)s,s = Idu

where [; is the n x n identity matrix, this equation is linear with bounded coefficients,
then it admits a unique strong solution.
From It6’s formula we can easily check that d (®,,¥,;) =0, and @, ¥, ; = 14, where V¥ is

the solution of the following equation

¢

so U =o' if s =0 we simply write &, = &, and ¥y, = ¥,. By integrating by part
formula we can see that, the solution of (2.8)) is given by z (t) = ®,7;, where 7, is the

solution of the stochastic differential equation

(

iy =W, {bu &,y (), ut)v(t) - éai (£, (t),u(t) ol (6,7 (1), u () v (t)} dt

d
+ 2 Vo, (¢ a7, up) v () dBY (1),

Jj=1

L Mo =0.

Let us introduce the following convex perturbation of the optimal control @ by

u’ =u+ 0o, (2.10)

for any v € U, and 6 € (0,1) . Since U is an optimal control, then 67! (J (u’) — J (7)) > 0.

19
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Thus a necessary condition for optimality is that

lim6~" (J (u*) — J (@) > 0. (2.11)

6—0

The rest is devoted to the computation of the above limit. We shall see that the expression
(2.11)) leads to a precise description of the optimal control u in terms of the adjoint process.

First, it is easy to prove the following lemma

Lemma 2.3.3 Under assumptions (H1), we have

I=Tlim¢~ (J (u") = J (1)

—E {/O {f,(5,7(5),0(8)2(s) + fu(s,75(s),u(s)v(s)}ds+ g, (G (T)) z(T)| .

(2.12)

Proof. We use the same notations as in the proof of (lemma 2.2.2). First, we have

071 (J () = J (@))
- {/0 /o {fy (s, (5),u™ (5)) 2 (s) + fu (5,47 (s), "’ (5)) v (s) } dpds

+ / gy (" (T)) = (T) dps| + 8° (1),
where
5 <t>=E[ / / £y (5,47 (5) ™ ()) T (s) duds + / gy (" (1)) T (T dp|

By using the (lemma 1.4.2), and since the derivatives f,, f,, and g, are bounded, we have
éinéﬁe (t) = 0. Then, the result follows by letting 6 go to 0 in the above equality. m
Substituting by z (t) = ®;n; in (2.12)), this leads to
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Stochastic optimal control problems

I-EB { |60 6 B+ £ (5(5). T () 0 (9} ds 5, (7(T) <I>TnT] |

Consider the right continuous version of the square integrable martingale

M0 =B [ 565686 @ts 0, 1) 0117

By the representation theorem, there exist @ = (Q", .., Q") where Q7 € L?, for j = 1, ...,d,
T d t A
MW =8| [ f6.56) 3 60) 0+, GO) 2|+ Y [ 00687 (5.

We introduce some more notation, write y (t) = M (t) — fot fy (5,7 (s),u(s)) Psds. The

adjoint variable is the processes defined by
(2.13)

Theorem 2.3.2 Under assumptions (H1), we have

I-E / {fu<s,y<s>,a<s>>+p<s>bu<s,y<s>,a<s>>+iqjaus,a(s),a(s»}].

7=1

Proof. From the integration by part formula, and by using the definition of p (¢), ¢’ (¢)

for j =1, ..,d, we easily check that
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Stochastic optimal control problems

Also we have

IZE[y(T)n(TH/O fy(S@(S)ﬁ(S))‘I%de/O fu(s,y(s),u(s))v(t)dt|,
(2.15)

substituting (2.14)) in (2.15]), This completes the proof. m

By analyzing the variations in the control and the corresponding variations in the state
trajectory, one can derive important insights into the optimality of the control for more

detail we can see [3].
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Chapter 3

Second order necessary conditions for

singular stochastic optimal control

3.1 Preliminaries

Let (Q,F,{F,} 10,775 P) be filtred probability space satisfied the usal condition,and we
suppose that F = {F,} te[0.7] is the natural filtration created by 1 — dimonsional standard
Brownian motion B(.) .The controlled stochastic differential equation that being con-

sidred by:

dz(t) = b(t,x(t),u(t))dt + o(t, z(t), u(t))dB;
z(0)= =z

(3.1)

With a cost functional :

T

J(ul.)) = E[/f(tvw(t),U(t))dt +g(2(T))] (3.2)

0

Where we denote the stochastic process u(.) as the control valued in the environment

UeR™ (meN) and x(.) as the state valued in R"(n € N) and p, § : 0, T x R" x U — R"

23



Second order necessary conditions for singular stochastic optimal control

, 0, T]xR*xU —R and we regard } : R® — R as a function meeting acceptable
requirements is the state valued in our trajectory to solve the stochastic optimisation of

finding a control 7(.) € U,y , such that:

J@) = inf J(u(.) (3.3)

u(.)€Uqq

The acceptable control that accomplishes the minimum 7(.) € U, is referred to as an
optimal control.
Now, we define singular control in the classical sense for diffusion ,as inspired by [I] and

2] .

Definition 3.1.1 (singular control in the classical sense): We called the admissible con-

trol %(.) as an singular control in the classical sense if it verified:

H, (t,z(t),u(t),p(t),q(t) =0 as. ae., (3.4)

Hyo (LE@) U0, 0(1),q() 4+ P (t) (0u (6, T (), T (1) =0 a.s. a.e.,

Where adjoint processes (p(.),g(.)) and (ﬁ()7 @()) are given respectely by(3.15) and

3.16[) with @(.),u(.)) replaced by (z(.),au(.)) - If u(.) in 1} is also optimal , then

we call 7(.) as a singular optimal stochastic control in the classical sense.

It is important to remember that there is another kind of singularity in stochastic control
problem . In this case , the control variable has two components (y(.),((.)) , the first
of which is absoulutely continuous and the second of which has bounded varaition and is
non-decreasing left continuous whith the right limits and ¢(0) =0 .

We introduce a few different rendom and stochastic variable for any ¢ ¢ [0, T

° L%(Q; R) the space of R—valued , F;—measurable random variable { such that

E|([*< 400
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Second order necessary conditions for singular stochastic optimal control

° ﬁ?ﬁ ([0, T];R) the space of R—valued B([0, T])® F;—measurable , F —adapted process
v such that

T
10 W, 0= (B [ ()Pt < 400
0

We also suppose that

3.1.1 Assumptions
Assumptions(A1l)

1. The maps b and ¢ are ([0, 7])® F;—measurable and F —adapted.

2. The function b and ¢ are continuously differetiable up to the second order with

respect to (x, u) .
3. All the firdt order derivatives are continuous in (z,u) and unformly bounded.

4. There exists a constant ¢, > (0 such that for almost all (t,w) €10,T] x 0 and

forany z 7cR and y,geU

|)\<t,x,U)’ < a, for ¢: b,O’,
|)\(t,x,u)—/\(t,5,u)| <o |I—5|, fOI‘)\:b,O',

| Azt z,u) | = [ et 7,u) [<Koq(|z—Z |+ |u—u|),forA =06

Assumptions(A2)
1. The processf is 5([0,7])® F;—measurable and f —adapted.
2. The rendom variable h is F;—measurable.
3. The process f is bounded by ar(1+ |z 2+ | u |?) and h is bounded by ag(1+ |z ]) -
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Second order necessary condition for singularstochastic optimal control

4. The mapsf and h are continuously differetiable up to the second order.

5. forany 7 7eR and yueU

;

| Lotz u) [+ ] fult, 2,0) [S ap(I+ [ 2 [+ [ul) | he(2) [< co(l+ [ 2])
| fmz(t7x7u) | + | fuu(t,x,u) | + | fﬂlu(t7x7u) |< Q2

| hao () [< a2 | hao(®) + Peo(Z) [< 2| 2 — T )

| fww2 (s 2,u) = faw2(t,7,0) [ a2 =7 |+ [u—ul)

The equation (3.1)) has strong and unique solution

t

x(t) = xo + /b(s,x(s),u(s))ds + /5(s,x(s),u(s))dWs

With certain assumptions (Al)and (A2) standard arguments prove that for all ¢, > 0

E(sup | z(t) [F) < G,
te[0,7]

Where C}, is a constant that depends only on as . Moreover , the functional (3.2)) is well

defined from U, into R.

3.2 Second order necessary condition in integral form

In this part, we prove an integral type second order necessary condition for stochastic
optimal control . We assume a nonempty and bounded control region U, with a con-
vex perturbation of the optimal control described by ue(t) =(t) + O(u(t) — u(t)) for
u(.) €Uy and g c[0,1] - The convexity condition of the control domain guarantes
that 4%(.) € Uy

For simplicity , we shall use the following notations , denoted by z%(.) , Z(.) the trejoctery

of the SDE ({3.1)) corresponding to v/(.) and u(.).
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Second order necessary conditions for singular stochastic optimal control

To simplify our notation , we write for ¢ = b, 0, f :

\

We introduce the following variational equation:

dy:(t) = (bz()n (1) + bu(t)o(t))dt + (04()y1() + ou(t)o(t))dW,

(3.5)
»1(0)= 0
And:
dn(t) — {02(0)y2(t) + baa (B2 (£) + 20, (81 ()0 () + by (E)0 ()2}t
o, (Y2 (t) + 00a ()1 (1) 4 20,00 (D)in ()v(t) + ouu(t)v(t)>}dW,  (3.6)
y2(0) =0

Remark 3.2.1 Based on assumptions (Al)and (A2) we admit a strong unique solution

y1(t) and ya(t) to the variational equation and (3.64).

Then , we show the proposition in obtaining a second order necessary condition .

Proposition 3.2.1 Assumes that assumptions (A1) and (A2) varified . Then for any

K > 0 we have to follow fundimontal estimates

E[sup |2°(t) —T(t) ] < Cpo* (3.7)
te[0,T
E[sup [uyi(t) [*] <Gy (3.8)
te[0,7
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Second order necessary conditions for singular stochastic optimal control

E[sup [y(t) [*] < Ci (3.9)
t€[0,T]
E[sup | 2(t) —T(t) — Oys(t) |**] < Cpb?* (3.10)
t€[0,T]
E[sup |2%(t) —7(t) — Oy1(t) — Spn(t) [*] < Cub? (3.11)

te[0,7

Proof. Allow Z(.) and 2%(.) be the trajectory of corresponding to %(.) and u’(.)
resp.Allow y;(.) and y»(.) be the answer of first and second order adjoint equation ({3.5))
and . Nothing that estimates follows from standard arguments ,shall refer to
equation as the first order variational equation , aslo we call the process y;(.) as the
first order variational process and we call the process y,(.) as second variational process

20(t) — T(t) — Oy, (t) — %yz(t) =0(#*) as § — 0 and that the convergence is of an
appropriate order.So the estimates , and are obvious and standard . Now

we start to prove the estimate (3.11)) from (3.1]) , (3.5) and (3.6]).
We got:

| (1) = 2(t) = O (1) — Gup(t) [ = /[55(8) = [ba(8)y1(8) + bu(s)v(s)]

— G [ba(s)ya(s) + bu(s)v(s) + buu(s)y1(s)
+2b,, () Y1 (8)v(8) + byu(s)v(s)?]]ds

41 [18065) = [02(6)n(5) + ru(s)o()

_§[01(8>y2<5) + Uu(3>v(3) + Um<3)yl(3)2
+20,4(t)y1(s)v(8) + ouu(s)v(s)?]]dW s |

Straight forward calculation by appling Caushy-Schwarz inequality([1.12]) , we admit that:
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Second order necessary conditions for singular stochastic optimal control

Blsup 47(0) ~7(0) =) = o) ] < 1 (3.12)

Where:

t

szngﬂM@—mwm@+m@Mﬂ

_g[bm(3>y2(s) =+ bu(S>U(S) + bxm(‘s)yl(s)g

+2byu ()1 (5)0(s5) + buu(s)v(s)*]lds (3.13)

41 [1805) = lo2(s)unls) + u(s)o()

— G 1o(8)ya(s) + 0u(s)0(s) + Tas (8)3(5)?
+202u(t)y1(5)v(s) + ouu(s)v(s)*]dWs |

By applying the Caushy-schawrz inequality (1.12) and the Burkholder Davis-Gundy in-

equality , with Bonnans [6] , Zhang and Zhang [24] , we have :

I < G (3.14)

By combining (3.12)) , (3.13) , the desired result (3.11]) is accomplished . The proof of
prposition is finalized .

Define the Humiltonian function /& - [0,T]xRxU xR xR by

H(t7 aj’ u? p7 Q) = b(t’ x? u)p + O-(t7 x? u)q - f(t7 x? u)

Now , we present the first adjoint equation

dP(t) = —{b.(t)p(t) + 0x()q(t) — f=(t) }dt + q(t)dW (1)

(3.15)

And the second adjoint equation :
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Second order necessary conditions for singular stochastic optimal control

dP(t) = —2b,(t)P(t) + 0.(t)*Q(t) + 20,(t)Q(t) + Hou(t)dt + Q()dW (2)
P(T) = —he(Z(t))

(3.16)

It is easy to show that for assumption (A1) and (A2) , equation (3.15) and (3.16|) are
classical linear backward stochastic differential equation who have a strong and unique

solution , such as:

(p(t), q(t)) € L% ([0, T]; R) x LE, ([0, T]; R)
(P(1),Q(t) € L% ([0, T];R) x LE, ([0, T]; R)

Also , we present the functional H : [0, 7] x Rx UxRxRxR xR xR xR as

(3.17)

To make our notation easier , we set :

Lemma 3.2.1 Let (p(t),q(t)) be the solution of the adjoint equation (3.13), (P(t),Q(t))

be the solution of the adjoint equation (3.16) and v, (t),y(t) be the solution of the first

and the second vartational equation ,(@ resp. Then the following duality relation
hold:
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Second order necessary conditions for singualr stochastic optimal control

— Ep(T)u(T)] = —E / {p(8) (b (1)0(1)) + () (ou(t)o(t)) bt] — /fz() (H)dt] (3.18)
- /p - (@b (B (B0 (2) + (Bun(t)o(D)? )]
/ Q{0 a (D)1 (17 + 200 (D (D0(E) + Tou(£)0(t)? ]
5 / Fo(O)ya(t)d]
\ ’ (3.19)
And

E[P(T)y(T)?] = —2E[/{P(t)y1(t)(bu(t)v(t)) + P(t)ow(t)y(t)(ou(t)o(t)) tdt]

—2E[/T{ Q(t)o, (t)}dt] — /P (ou(t)v(t))3dt]

L / Hoo () (1)d]

0

\

(3.20)
Proof. This lemma ’s proof proceeds directly from ito’s formula to p(t)y,(t) and takes

expectation where ¢,(0) =0 , we have
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B[P Eip (t)dyn (1) E/' (t)dp(t)

0 (3.21)
E / (o (t) + ou(t)o(t)}dt

0

Where

T T

—E/MWMUPFE/MMQ@M@+Q@Mmﬁ (3.22)

0

Consequently

E [ y:(t)dp(t)

St~

T (3.23)
ZE/M®M@Mﬂ+%®Mﬂ—h@W

Substituting (3.22) , (3.23) into (3.21f) then the desired result (3.18)) is satisfied . Now ,
by using Ito’s formula in p(t)y,(t) and assuming that 4,(0) =0 , we have

(3.24)

Where

gﬁ Jdya(2) Eﬂ»w ut) + bas (B (£)? )

+2b,u (L) Y2 (£)v(t) + buu(t)v(t)? }dt

And
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T
~E [ (tdptt)
o, (3.26)
ZE/w®MWMﬂ+%®dﬂ—h@W
0
Substituting (3.25) , into ( we obtain the desired result ( -
Next applying Ito’s formula to  P(t)y,(t) , where ¢;(0) =0 , we have
t T
PO = [POw0+ [nware
0 0
(3.27)

+/Q@H%@wﬂﬂ+adﬂdﬂwt

=L +1h+ 13

Where

__ / Y1 ()26, (D) P(t) + 00 ()2P(t) + 20 (D) Q(D)

-H%@w+/mwmwmw>
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Second order necessary conditions for singular stochastic optimal control

T

kz/@@%@m@+@@%@dmﬁ

0

Then , we can write (3.27)) as follows

T

PEORD] = [IPORE0E+ Qe et

—y1 ()b (1) P(t) — y1(t)0u(t)*P(t) — y1(£)Q(t) 0 ()

—h (t)Hm (t)]dt

ﬁ/P@MAmMQ+P®mﬁw@%HM®Q®MW@)

0

Now , we applying Ito’s formula to (P(t)y,(t))y,(t) and taking expectation , we obtain

E/P () (¢) E/mwapwma»
/wx o (O HPE)oa (D () + P(Hou(t)o(t) + 1 (DQ() Y]
=Ji+ o+ J3
(3.28)
Where
<h=—E/P®m@Mw@ (3.29)
=—E/P®mﬁﬂmwwﬁHwAWﬁﬂﬁ (3.30)

34



Second order necessary conditions for singular stochastic optimal control

" / (B [POb.(0(B)dt + Q(t)ou(t)o(?) (331)

And it’s simple to show that

J3 = —E[/{yl(t)%(t) + ou(t)o(t) HP()ow(t)yr () + y1(£)Q(E) ydl]

r (3.32)
= —E[/{P(t)(yl(t)az(f))2 + 2Pty (t) o (t)u(t)ou(t) + yi(t) o (t)Q(t)

+P(t)(v(t)ou(t) + Q(E)y1(t)v(t)ou(t) bt]

Likewise , we have at last substituted (3.29) , (3.31)) , (3.32) into (3.28) and then (3.20) is

satisfied .
This complet the proof of lemma [3.2.1, m

The following technical result is required to demonstrate the main theorem

Proposition 3.2.2 Let (A1)-(A2) hold . Then , for any (.)€ U,y we have

J(w(.) = J(@(.)

) _
E / O ()0(t)} + E{Hau(t)o(1)?}
P (t)ou()? + OLH (2 (o(t) i) + 0(62), (0 — 0F)

Where
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Hyuu(t) = Hau(t, T(t), u(t), p(t), (1))

Proof. By applying Taylor’s formula , we get

I#() - Il
— B[ [ {o£())dd) + E[b(="(T) - ha(T)

= E / {£z()("(t) = 2(t) + fu®) (' () = U(t)) + 5 faa(t) (27 (2) — T(2))?

+fou(£) (@7 (1) = Z(0)) (W’ (t) — T(t)) + 5 fuu(t) (W (t) — T(t))* }dt]
+E[h, (T(T))(2"(T) = T(T)) + 5hee(@(T))(2%(T) — T(T))?] + 0(6?)

Using proposition [3.2.1] , we have

() - J(@())
_ / (0L.(0 (1) + Z Lo(B)alt) + 0L, (1)o(t)

+%(fm:(t)y1 (t)z + 2fxu(t)y1 (t)U(t) + fuu(t)v(t)z)}dt]

FE[0h, (F(T)yr(T) + Lo (F(T))a(T) + Shaa (T (T)?] + 0(62),0 — 0*

(3.33)

(3.34)

Now , by proposition [3.2.2] , we can prove the following second order necessary condition

in integral form for stochastic optimal control (3.1)) ,(3.2)

Theorem 3.2.1 Let (A1)-(A2) hold . If w(.) is asingular optimal control in the classical

sense for the control problem — , Then we have

T

E / H (£ () (ut) — (1)) dt < 0

0
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Forany u(.) € Uyy » where the Hamiltonian H is defined by(3.17) and 4, (t) is a solution

of the first order adjoint equation given by

T

T
() = [{balm(s) + buloo(s)bds + [{a.(nls) + uls)ols) W (s

0 0
Proof. The desired result (3.35) and proposition (3.2.2)) follows directly from ({3.1]).

This completes the proof of Theorem. m

3.3 Martingale terms of second order maximum prin-
ciple

In this part , by applying the martingale representation theorem and the property of
Ito’s integrals , we prove the second order necessary condition for singular optimal control
which is pointwise maximum principale in terms of the martingale with respect to the

time variable ¢t . The folowing lemma play an important role to prove our result.

Lemma 3.3.1 y,(.) is a unique strong solution of the first variational equation

which is represented by the following:

nlt) = ¢(t)[/¢(8)(bu(8) — 02(5)ou(s))v(s)ds

(3.36)
+ [e(s)au(sls)am(s)
0
Where ¢(t) 1is a defined by the following linear stochastic differential equation :
dep(t) = ba(t)p(t)dt + oo (t)o(t)dW (£) (3.37)

¢(0) =1
and P(t) s inverse
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Proof. (3.5) is a linear equation with bounded coefficients , then it admitsa strong unique

solution . Moreover , this solution is inversible and its inverse )(t) = ¢~1(¢) given by:

dip(t) = [o2 ()0 (t) — ba ()Y (8)]dt — [0, ()0 (2)]dW (1) (3.38)
$(0) =1
Applying Ito’s formula to 4)(t)y,(t) we have
d(®)pn@)] =y (t)dy(t) + o (t)dy(t)
o ()]l (D () + ou(tu(t)]dt (3.39)
=L+ L+1;
Where
I =y (t)di(t)
= [11(H) oz ()0 (1) — y1 ()b ()Y (8)]dt (3.40)
=y ()Y (t)o(t)dW (1)
—1(t)

With an easy computations ,we get

Iy =y () (t)dya ()
= [y (Db (£)1p(t) + v()bu(t)1(1)] (3.41)
(D)o (0)y(1) + v(t)ou(t)p(t)dW (t)

And

Iy = —[ou (9 (0)] 1 (Do (8) + v(B)o (D)t (3.42)

Substituting (3.37) , (3.38) and (3.39) into (3.37) , we get
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)y (t) = (0)y1(0)

(3.43)

Since ,(0) =0 and ~1(t) = ¢(t) , then from (3.43)) the desired result (3.36) is satisfied

This complets the proof of lemma (3.3.1)). m

To show the main theorem we need to use the follwing technical lemma.
Lemma 3.3.2 Let (A1)-(A2) hold . then we have

1. H(.)e Li([0,T],R)

2. YveU, 3p,(.,t) € LA([0,T],R) such that

H(t)(w —a(t)) = E[H(t)(v —a(t))] + / By (5, £)dW (3) (3.44)

a.ete[0,T],P—a.s

Proof. : (1) the proof is directly in [24].
(2) the proof of ([3.44]) follows from Tang and Li in [21] m

Now , we return to integral type of second order necessary condition and substituting the

explicit representation (3.36) of ¢, (.) into (3.35) we notice that there is a "bad" term in

the form

t

E / H(H)s() / $(s)0u()0(s)dWV ($)]o()dt (3.45)

0
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Now , in order to derive a pointwise second order necessarycondition from the integral

form in (3.36)) , for the optimal control , we must use the following needle variation . w(.)

v, t € Ay
u(t) = (3.46)
a(t), € [0,7] | Ag
Where 1 ¢ 0, 7] , velU ,and A, = [T, 7+ 0] inorderthat 9 >0 and r4+0<T
. Stand for x 1, () the characteristic function of the set Ap.
Then we have v()=ul) =) = (v—"1u(.))Xa,()

The following theorem constitutes the main contribution of the result.

Theorem 3.3.1 Let (A1), (A2) hold. If the singular optimal control in the classical

sense u(.) is for the stochastic control - then for any o e U it holds that

E(H(1)by(7)(v —u(7))?) + 0 (H(7) (v — u(7))?0u(7)) <0 a.e.T €(0,T] (3.47)

OF (H(7)(v —u(7))*ou(r))

(3.48)
=2 tim sup 5 [ [ 165,007 0(5)a(5) 0 ~a(s) s

by(.,t) is determined by(3.44) , ¢(.) s gwen by the following process

And () s given by
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—/waw<mww>

Proof. From (3.43) we have v() =u() = —ut) = (v—"1u(.))Xa,(.) and the correspond-

ing solution y,(.) to () is given by

/w ) — 04(5)0u(5)) (0 — T(5)) X, (5)ds
(3.49)

/¢ )oru(5) (0 — T(5)) X, (5) AWV (5)

Substituting v() =u() = —at) = (v—"1u(.))Xs,(.) and (3.49) into (3.35]) , we have

0 >%E/uﬂmmww—a@mﬁ
/ Q/¢ ) — 0u()uls)) (0 — (s))ds(v — a(t) ]t

(3.50)

+92E/ /¢ $)oru(s) (v — (s)) AWV (s) (v — (1)) dt

=J+J4

From [24] Lemma 4.1,we got
Tim Jf = lim E/ /w — oy (5)oa(s)) (v — T(s))ds(v — T(t))]dt
= SE(H(7)(bu(s) — 02(5)0u(s)) (v — u(s))?)

(3.51)

On the other hand | by (3.36)) , it follows that
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Y :%7ﬁ /w $)ou(s W (s)(v — (1))t
—;7; /¢ $)ou(s)(v —T($))dW (s) (v — (1) ]t
+¢7;wwfwmw@m5
X/¢®MA$@—ESDﬂV@Xv—WwWﬁ (352)
" E7Lﬂﬂ/@A@M®ﬂW$

X/@D(S)Uu(S)(v —u(s))dW(s)(v —u(t))]dt

T

= J29,1 + J29,2 + J29,3 + Jg,4

By lemma [?] , we have

: 0
lim supJ;
o—0t
T+0

:ggi?yj’ /@ $)ouls W (s) (0 — (1))
ot

= lim sup / / (7 (v —@(s))dW () E[H(t) (v — T(t))]]dt

o—0+

ot (3.53)

+1imsup92 / /gb s)ou(s)(v —u(s))dW (s /gbv s, t)]
o—0t

7'+9 t

= limsupa—Q//E{¢ (v —u(s))Py(s,t) }dsdt

0o—07F
= 30f (H()(v = (7))*0(7)), V7 € [0, T]
Because of the martingale representation theorem in Lemma [?] , it is imerative that

we only know that by(.,t) € L2([0,T],R) for every ¢ € U and consequently that the
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function

ei(s) = Elp(T)v(s)ou(s)(v —u(s))du(s, )], s € [0,T],1 € [0,T]
For each 7 ¢ 0,7 is in L]};([O, Tl,R) - For more details for the following superior limit
see [24]

] 740 t
oir%+§//¢t(s)dsdt

By simple computations , the last term in (3.52)) is in fact a process with zero expectation

Now by using the similair method in [24], we have

T+6 t
limJ§, = OEIé+9%/E{H(t)/bx(s)¢(s)ds
/ ' ' 3.54
X/@D(S)Uu(s)(v —u(s))dW (s)(v —u(s))}dt (354
=0
7460 t
lim Jg, = lim % / B{H(t) / Lo (8)(s)dW (s)
/ ) ' (3.55)

></¢(8)0u(8)(v —u(s))dW (s)(v — u(s)) pdt

E(H(7)(04(T)ou(1))(v —u(s))?)
And finally , substituting (3.50) , (3.52) , (3.53) , (8.54) , (3.55) in([3.49) we obtain

N =

E(H(7)bu(7)(v —u(7))?) + 0 (H(7)bu(7) (v — u(7))?0u(7)) <0 a.e.T € [0,T]

This complet the proof of theorem [
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Conclusion

The thesis focuses on second order necessary condition for stochastic optimal control prob-
lems in two different classes of singular optimal controls. It employs convex perturbation
techniques to derive Taylor’s expansion of the cost functional and provescnecessary condi-
tion for stochastic singular optimals controls in integral form . Assuming a convex control
region and degeneration of the first order condition , the discussion on secind order neces-
sary condition becomes crucial .The integral equation derived are vital for solving optimal
control problem , providing a foundation for finding optimal solutions and gaining impor-
tant insights and results . Overall , the derivation of these necessary conditions in integral
form plays a significant role in addressing stochastic optimal control problems , offering

essential support in dolving them effectively .
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Abstract

In this work, we establish second-order necessary conditions for singular optimal controls in
the classical sense, we consider the convex case, i.e., the control region is allowed to be
convex, and the control variable enters into both the drift and the diffusion terms of the
control systems. By introducing two vatariational equations and two adjoint equations, we
obtain the desired necessary conditions for stochastic singular optimal controls in integral
form and in martingale forms

Keywords :, Stochastic optimal control , SDE ( Stochastic Differential Equation). needle variation,
variational equation, adjoint equation.

Résumé

Dans ce travail, nous établissons des conditions nécessaires du second ordre pour les
contrOles optimaux singulier aux sens classique. Nous considérions le cas convexe, c'est-a-
dire que la région de contréle doit &tre convexe, et la variable de contréle intervient a la fois
dans les termes de diffusion des systémes de contréle. En introduisant deux équations
variationnelles et deux equations adjointes, nous obtenons les conditions nécessaires
souhaitées pour les contréles optimaux stochastiques singuliers sous forme intégrale et sous
forme de martingales.

Mots cles: contréles optimaux singulier aux sens classique , équations variationnelles ,
équations adjointes , contrdles optimaux stochastiques singuliers sous forme intégrale . et

sous forme de martingales
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