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Introduction

Examining the pointwise second order maximum pricipale for singular optimal sto-

chastic control in the classical sense is the principal objective of this thesis .The

maximum principale is one of the major approaches for discussing problems of optimisa-

tion.

One of the main issues in the theory of optimal control is determining the necessary

condition for optimal control . [12] contains some early research on the �rst order necessary

condition for stochastic optimal control where the di¤usion term is unrelated to the control

variable.

As for early works on the same problem but in the case of the di¤usion term containing

the control variable.

There may not be enough information provided by the �rst order necessary condition for

stochastic optimal control to identify the stochastic optimal control.Since the �rst order

necessary condition for the general situation was established in [20] , it is only reasonable

to study the second order necessary condition for stochastic optimal control.Unfortunately,

to the authors�best knowledge,there aren�t many works are available in this respect.

A little while back, [22] derived a pointwise second-order necessary condition for stochas-

tic optimal controls while [6] obtained an integral-type (rather than the more desired

pointwise type) second-order necessary condition for stochastic optimal controls with the

control variable entering into the di¤usion terms, but the control region is assumed to be

convex.To the best of our knowledge ,there are just two publications that deal with the

1



Introduction

second order necessary condition for stochastic optimal control [6] and [22] . In Zhang

and Zhang [25] , the authors raised the pointwise second order necessary conditions for

stochastic optimal controls in the general area where the control region is allowed to be

non convex. Second order necessary conditions for singular optimal stochastic controls

with some examples have been obtained in [11] First and second order necessary opti-

mality conditions for local minimizers of stochastic optimal control problems with state

constraints have been established in [8] .Pointwise second-order necessary conditions for

stochastic optimal control with jump di¤usions have been studied by Ghoul et al [1]

The structure of this thesis is as follows.

In Chapter 1 We o¤er a quick reminder of stochastic calcul ,we present some concepts

and de�nition that allow us to prove our results, such as : Probability space, Martingales,

Stochastic integrals, Stochastic di¤erential equations, Itô formula ....Also some inequality

such as: Holder�s inequality , Caushy schwarz�s inequality ....

In Chapter 2 we showcase Strong formulation and weak formulation , The stochastic

maximum principle (SMP) (Problem formulation ,Stochastic maximum principale ,Varia-

tion equation ) and the pontrygain type stochastic maximum principle methods to solve

optimal control problems.

In Chapter 3 we talk about Second order necessary condition in martingale terme ,the

controlled system is described by a stochastic di¤erential equation and the control domain

is assumed to be convex. This chapter is based on the work of [24].

2



Chapter 1

Reminder of stochastic calculs

1.1 Probability space

De�nition 1.1.1 We called probability space , all triple (
;F;P) or (
;F) with :

� 
 : Fundamental set .

� F: tribe de�ned on 
 .

� P: probability over (
;F) :Is a measurable space.

De�nition 1.1.2 (Tribe):Let E be any set , we call tribe of any part of E , all sub set A

of E such that:

1. E 2 A .

2. A 2 A ) Ac 2 A .

3. An � A ) ([An) 2 A .

De�nition 1.1.3 (Filtration): A �ltration is a growing familly of sub tribes of F , such

that :

Fs � Ft for all s < t

3



Introduction au calcul stochastique

1.2 Stochastic process

De�nition 1.2.1 The following (
;F;P) is a complet probability space either T � R+ :All

the familly X = (Xt) of rendom variable in Rd is a stochastic process.

De�nition 1.2.2 (Modi�cation):We say that Y = (Yt) is a version or modi�cation of

the process X = (Xt) , if:

P (Xt = Yt) = 1 ; P (Xt 6= Yt) = 0 for all t > 0 (1.1)

De�nition 1.2.3 (Indistinguability):We say that the process Y = (Yt) and X = (Xt)

are indistinguability if their trajectoirs are the same( 1.1), that�s mean:

P (Xt = Yt t > 0) = 1

Proposition 1.2.1 :If X = (Xt) and Y = (Yt) are indistinguability so they are mod-

i�cation one to other , but the recoporad is generally false.

De�nition 1.2.4 (Equality of processes): X;Y are two processes have the same law , if

for all p 2 N� and t1; t2; ; tp 2 T :

(Xt1 ; ; Xtp) = (Yt1 ; ; Ytp)

or

X � Y

De�nition 1.2.5 (Adapted processes):A process X = (Xt) is adapted (compared with the

�ltration Ft) if Xt is Ft measurable for all t.

De�nition 1.2.6 (Cadlag ): A process is cadlag if :

� it�s trajectoirs who�s continuous to the left provided with limites to the right.

4
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Introduction au calcul stochastique

De�nition 1.2.7 (Caglad):A process is caglad if:

� it�s trajectoirs who�s continuous to the right provided with limites to the left.

1.3 Brawnian motion

De�nition 1.3.1 : (
;F; P ) is a probability space , B = (Bt) is a stochastic process.Bt is

a Brawnian Motion standard ,if:

� B0 = 0 .

� for all 0 < s < t < +1 . Bt �Bs is independent of (Bu)u2[0;s] .

� for all s < t , Bt �Bs � N(0; t� s) .

� w 2 
; t �! Bt(w) , for all t 2 [0; T ] ,all the trajectoirs are continuous.

Proposition 1.3.1 : B = (Bt) a stochastic process such as all the trajectoirs are con-

tinuous and B0 = 0 , so the following properties are equivalent:

1. process B = (Bt) is standard Brawnian motion.

2. process B = (Bt) is Gaussian process with

8><>: E(Bt) = 0

cov(B(t;s)) = min(t; s) = t \ s

1.4 Martingal

De�nition 1.4.1 :(Xt) for all t > 0 is a process called martingal (or sub-martingal ,

super-martingal) ,if:

� (Xt) is measurable (that�s mean Ft � adapted ).

5
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Introduction au calcul stochastique

� (Xt) is integrable (that�s mean E(Xt) < +1 ).

� For all 0 6 s 6 t :

8>>>><>>>>:
E(Xt=zs) = Xs is martingal

E(Xt=zs) > Xs is sub�martingal

E(Xt=zs) 6 Xs is super �martingal

1.5 Stochastic integral

De�nition 1.5.1 :We called stochastic integral all the integral of the following shape:

bZ
a

Xs(w)dBs(w)

for all a; b 2 R+ , Xt stochastic process and (Bs)s�0 is Brawnian motion.

Proposition 1.5.1 :

1.

bZ
a

XsdBs is linair.

2.

bZ
a

XsdBs is continuous .

3.

bZ
a

XsdBs is Ft � adapted process.

4. E(

bZ
a

XsdBs) = 0 , V ar(

bZ
a

XsdBs) = E(

bZ
a

Xs
2dBs) .

5.

bZ
a

XsdBs is zt �martingale .

6
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Introduction au calcul stochastique

De�nition 1.5.2 (Ito�s process): Xt is de�ned as Ito�s process , if it is of the following

shape:

Xt = x0 +

bZ
a

b(s)ds+

bZ
a

�(s)dBs (1.2)

Where

bZ
a

b(s)ds < +1 and � is a good local process.or it de�ned as:

dXt = b(t)dt+ �(t)dBt

Where:

X0 = x

Where b(t) is derived of the process X and �(t) is the coe¢ cient di¤usion or volatility.

Theorem 1.5.1 (Taylor�s theorem for one variable):Let h > 1 and let the real valued

fonction f : R �! R be h times di¤erentiable at the point � 2 R ( in our case it�s

Brawnian motion) .Then there is a function gh : R �! R such that :

f(x) = f(�) + f 0(�)(x� �) + f 00(�)
2!
(x� �)

2
+ +fh(�)

h!
(x� �)h + gh(x)(x� �)h (1.3)

And

lim
x�!�

gh(x) = 0

Theorem 1.5.2 (Taylor�s theorem for two variables ):Let f : R2 �! R is a function of

two variables f(x; y) whose �rst and second partials exist at the point (a; b) .The second

7
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Introduction au calcul stochastique

degree Taylor�s of f for (x; y) near to the point (a; b) is:

f(x; y) = f(a; b) + fx(a; b)(x� a) + fy(a; b)(y � b)

+
1

2

�
fxx(a; b)

2
(x� a)2 +

fyy(a; b)

2
(y � b)2 + fxy(a; b)(x� a)(y � b)

� (1.4)

1.6 Stochastic di¤ertential equation(SDE)

De�nition 1.6.1 we say that the stochastic process (Yt)t2[0;+1] is a solution of Ito�s

stochastic di¤erential equation

dYt = b(Yt; t)dt+ �(Yt; t)dBt

If 0 6 t 6 T :

� YtisFt � adapted .

� b(t; Yt) 2 L1Ft([0; T ]) and �(t; Yt) 2 L2Ft([0; T ]) .

� for b; � are n�dimensional and n�m�dimensional adapted processes , we got:

Yt = y +

tZ
0

b(Ys; s)ds+

tZ
0

�(Ys; s)dBs : (1.5)

� L1Ft([0; T ]) : (Yt)t2[0;+1] adapted real-valued process space , such as:

E[

TZ
0

j Yt j dt] < +1

And

E[

TZ
0

j Yt j2 dt] < +1

8
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Introduction au calcul stochastique

Theorem 1.6.1 (Existence and uniqness) Let be b; � : [0; T ]� R �! R :borel functions

satisfying

j b(t; x)� b(t; y) j6 b j x� y j

j �(t; x)� �(t; y) j6 � j x� y j for all x; y 2 R ; t 2 [0; T ]

� Liptschtiz continuity : There is a constant C1 6 +1 , such as:

j b(t; x)� b(t; y) j + j �(t; x)� �(t; y) j6 C1 j x� y j

� Linear growth condition: There is a constant C2 6 +1 , such as :

jj b(t; x) j + j �(t; x) jj6 C2(1+ j x j)

Let Y be a random variable independent of Brownian motion (Bt), such as:

E j Y j 2 < +1

Then there exists a unique solution Yt 2 L2Ft([0; T ]) of the SDE:

8><>: dYt = b(t; Yt)dt+ �(t; Yt)dBt

Y0 = y
(1.6)

De�nition 1.6.2 From the past de�nition , we de�ne Btas m�dimensional standard

Brawnian motion and b and � are n�dimensional and n � m �dimensional adapted

processes respectively.the past equation (1.6) is shorthand for (1.5)

9
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Introduction au calcul stochastique

1.7 Ito�s formula

Theorem 1.7.1 (Ito�s formula for 1 dimensional Ito process):Let 0 = t0 < t1 < :::::::: < tn = T

be a partition of [0; T ] . Bt a Brawnian motion on [0; T ] and suppose f(x) is C2 class on

R:So clearly:

f(Bt) = f(0) +
n�1X
i=0

(f(Bti+1)� f(Bti)) (1.7)

Using Taylor�s Theorem(1.3):

f(Bti+1)� f(Bti) = f 0(Bti)(Bti+1 �Bti) +
1
2
f 00(�i)(Bti+1 �Bti)

2 (1.8)

� For all �i 2 (Bti+1 �Bti) substituting (1.8) into (1.7) so:

f(Bti) = f(0) +
n�1X
i=0

f 0(Bti)(Bti+1 �Bti) +
1

2

n�1X
i=0

f 00(�i)(Bti+1 �Bti)
2 (1.9)

� If we let � = (ti+1 � ti) �! 0 , so it is clear that the terms on the right hand-side

of (1.7) converge to the correspponding terms on the right hand-side of the following

equation :

f(Bt) = f(0) + 1
2

tZ
0

f 00(Bs)ds+

tZ
0

f 0(Bs)dBs (1.10)

Theorem 1.7.2 (Ito�s formula for 2 dimensional Ito process)

Xt is 2-dimensional Ito process satisfying the following equation :

dXt = �tdt+ �tdBt

10
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Introduction au calcul stochastique

� If f(t; x) is C2 fonction and Yt = f(t;Xt) , then :

dYt = @f
@t
(t;Xt)dt+

@f
@x
(t;Xt)dXt +

1
2
@2f
@2x
(t;Xt)(dXt)

2

= (@f
@t
(t;Xt) +

@f
@x
(t;Xt)�t +

1
2
@2f
@2x
(t;Xt)�t

2)dt+ @f
@x
(t;Xt)�tdBt

Remark 1.7.1 dt� dt = dt� dBt = 0 also dBt � dBt = dt :

1.7.1 Inequality

Holder�s inequality

Let 1
p
+ 1

q
= 1 with p; q > 1 Then Holder�s inequality for integrals states that :

bZ
a

j f(x)g(x) j dx 6 [
bZ
a

j f(x) jp dx]
1
p [

bZ
a

j g(x) jq dx]
1
q (1.11)

For

j g(x) j= c j f(x) jp�1

Cauchy Schwarz�s inequality

If p = q = 2 , this is cauchy schwarz�s inequality:

bZ
a

j f(x)g(x)dx j26 [
bZ
a

j f(x) j2 dx][
bZ
a

j g(x) j2 dx] (1.12)

Burkhölder Davis-Gundy inequality

For any there 1 � p <1 exist positive constants cp,Cpsuch that, for all local martingales

X with X0 = 0 and stopping times �

the following inequality holds.

11
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Introduction au calcul stochastique

cpE
h
[X]

p
2
�

i
� E [X�

� ]
p � CpE

h
[X]

p
2
�

i
Furthermore, for continuous local martingales, this statement holds for all 0 < p <1.

with X�
t = sups<t jXsj and [X] denotes the quadratic variation of a process X

Grunwall�s inequality

Let x, 	 and � be real continuous functions de�ned in [a; b], � � 0 for t 2 [a; b] . We

suppose that on[a; b] we have the inequality

x (t) � 	(t) +
Z t

a

� (s)x (s) ds

Then

x (t) � 	(t) +
Z t

a

� (s)	 (s) exp

�Z t

s

� (u) du

�
ds

in [a; b]

12
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Chapter 2

Stochastic optimal control problems

2.1 Strong formulation

Let T > 0; t 2 [0; T ] and (
;F; fFtgt�0;P) We consider a complete �ltered probability

space, which satis�es the usual conditions, and we de�ne an m�dimensional standared

Brawnian motion B(�), denote by U the separable matrix space.We denote by Uad[0; T ]

the set of all the admissible control.

The state of controlled di¤usion is described by the SDE:

8><>: dy(t) = b(t; y(t); u(t))dt+ �(t; y(t); u(t))dBt

y(0) = y
(2.1)

Where :

b : [0; T ]� Rn � u! Rn , � : [0; T ]� u� Rn ! Rn�m are given and y(�) is the vari-

able of state , u(�) is called control representing the action of the decision maker(controller).At

any time instant the controller knowledge about some information of what has happened

up to that moment , but not able to predict what is going to happend afterward due to

the uncertainty of the system (as a result , for any t the controller can�t exercise his /

her decision u(t) before time t comes) , which can be expessed in mathematical term as

13



Stochastic optimal control problems

� u(�)isfFtgt>0 � adapted �, the control u is taken from the set

U [0; T ] , fu : [0; T ]� 
! Ufu(�)isfFtgt2[0;T ]adaptedg

The cost functional has the form:

J(u(:)) = E[

TZ
0

f(t; y(t); u(t))dt+ g(y(t))]

De�nition 2.1.1 Let (
;F; fFtgt2[0;T ];P) be given as a �ltred probability space satisfying

the usual conditions and let B(t) given as m�dimensional standard fFtgt2[0;T ] Brawnian

motion . A control u(�) called an admissible control and (y(�); u(�)) an admissible pair ,if:

1. y(�) is the unique solution of the equation(2.1).

2. f(:; y(�); u(�)) 2 L1Ft(0;F;R) and g(y(t)) 2 L1Ft(
;R) .

3. u(�) 2 U [0; T ] .

De�nition 2.1.2 Stochastic control problem is to �nd an optimal control û(�) for all u(�) 2

U [0; T ] (and that�s only if it exist) , such that :

J(û(�)) = inf J(u(�))u(:)2U [0;T ]

Where û(:) is pressenting as an optimal control and the state control pair (ŷ(�); û(�))

are an optimal state process.

2.2 Weak formulation

Unlike in the strong formulation the �ltred probability space (
; F; fFtgt2[0;T ];P) on

which we de�ned B(�) as a Brawnian motion but it �s not the case in the weak formulation

;where we consider that as a part of the control.

14
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Stochastic optimal control problems

De�nition 2.2.1 Let (
;F; fFtgt2[0;T ];P ; B(�); u(�)) is called w�admissible control and

y(�); u(�) is called w � admissible pair ,if:

1. (
;F; fFtgt2[0;T ];P) is a �ltered probability space satisfying the usual conditions.

2. B(:) is am�dimensional standard Brawnian motion de�ned on (
;F; fFtgt2[0;T ];P) .

3. u(�) is an fFtgt2[0;T ] � adapted process on (
;F; P ) taking values in U .

4. y(�) is the unique solution of the equation (2.1).

5. f(:; y(�); u(�)) 2 L1F (0; F;R) and g(y(t)) 2 L1F (
;R)

De�nition 2.2.2 Stochastic optimal control problem under weak formulation is to �nd an

optimal control û(�) 2 U [0; T ] (and that�s only if it exist) , such that :

J(û(�)) =u(�)2U [0;T ] inf J(u(�))

2.3 Stochastic maximum principale

The stochastic maximum principle (SMP) is a fundamental result in stochastic optimal

control. Its basic idea is to derive a set of necessary and su¢ cient conditions that any

optimal control must satisfy. The �rst version of the SMP was extensively established in

the 1970s by Bismut [4] , Kushner [14] , and Haussmann [12], under the condition that

there is no control on the di¤usion coe¢ cient. Haussmann [11] developed a powerful form

of the Stochastic Maximum Principle for the feedback class of controls using Girsanov�s

transformation and applied it to solve some problems in stochastic control.

2.3.1 Problem formulation

Let T be a positive real number and (
;F; fFtgt2[0;T ];P) be a probability space that

meets the standard conditions , in which a m�dimensional Brawnian motion such that F

15

Stochastic optimal control problems



Stochastic optimal control problems

is a natural �ltration ; fFtg = F for an arbitrarily �xed

arbitrarily �xed time horizon T , which we denote U by the set of all admissible control

. Any element y 2 Rn with the norm j y j=j x1 j + j x2 j +::::+ j xn j will be identi�ed

to coloumn vector with n compositions.For function h, we denote by hy(resp:hyy) the

Gradient or Jacobian(resp.Hessian).

De�nition 2.3.1 An admissible control is a meassurable adapted process , u : [0; T ]� 
! u ,

such that :

E[

TZ
0

u(s)ds] < +1

Take into account the subsequent stochastic controlled system:

8><>: dy(t) = b(t; y(t); u(t))dt+ �(t; y(t); u(t))dBt

y(0) = y0 2 Rn
(2.2)

Where b : [0; T ]� Rn � u! Rn ; � : [0; T ]� Rn � u! Rn�m are given.Suppose we are

given a performence functional J(u) as the follow cost :

J(u) = E[

TZ
0

(f(t; y(t); u(t)))dt+ g(y(T ))] (2.3)

Where f : [0; T ]� Rn � u! R ; g : Rn ! R .The stochastic control problem is to �nd

an optimal control û 2 U who can veri�y:

J(û) =u(�)2U inf J(u) (2.4)

Let us make the following assumptions about the coe¢ cients b; �; f and g.
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A1 The mapsb; �and f are countinuously di¤erentiable with respect to (y; u) and g is

countinously di¤erentiable in y.

A2 The derivatives by; bu; �y; �u; fy; fu and gy are countinuous in (y; u) uniformly bounded.

A3 b; �; f are bounded by C(1+ j y j + j u j) and g is bounded by C(1+ j y j) , for

all C > 0 .

2.3.2 Optimal control and Optimal trajectory:

De�nition 2.3.2 For all i = 1; N we de�ned the Hamiltonion:

H(t; y; u; p; q) = f(t; y; u) + pb(t; y; u) +
NX
i=1

qi�i(t; y; u) (2.5)

By H : [0; T ]� Rn � u� Rn � Rn�m ! R

Where qiand �i denote by coloumn of the matrix q and �.Let û be an optimal control and ŷ

denote the corresponding optimal trajectory . Then we consider the pair (p; q) of square

integrable adapted process associated to û with value in Rn � Rn�m , such that :

8><>: dp(t) = �Hy(t; ŷ(t); û(t); p(t); q(t))dt+ q(t)dBt

p(T ) = hy(ŷ(T ))
(2.6)

Theorem 2.3.1 (Necessary conditions of optimality) Let bu be an optimal control
minimizing the performance functional J over U ; and let by be the corresponding optimal
trajectory, then there exists an adapted processes (p; q) 2 L2 (([0; T ] ;Rn))�L2

��
[0; T ] ;Rn�d

��
which is the unique solution of the BSDE (2.6); such that for all v 2 U

Hu (t; by (t) ; bu (t) ; p (t) ; q (t)) (vt � bu (t)) � 0; P� a:s:

In order to give the proof this tesult , it is convenient to present the following.
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2.3.3 Estimation and linearization of the solution

De�nition 2.3.3 Let (û(�); y(�); ŷ(�); v(�)) an optimal solution of the problem such that

û+ v 2 U , for � 2 [0; 1] the control (û+ �v) by standard arguments for stochastic

cacul ; so it is easy to cheak the following convergence result:

Lemma 2.3.1 Under assumption (A1) it hold that:

lim
�!0

E[t2[0;T ]sup j y�(t)� ŷ(t)) j 2] = 0 (2.7)

We de�ne the process z(t) = zû;v(t)

8>>>>>><>>>>>>:

dz(t) = fby(t; ẑ(t); û(t))z(t) + bu(t; ŷ(t); û(t); v(t))gdt

+
mX
j=1

f�jy(t; ŷ(t); û(t))w(t) + �ju(t; y(t); u(t); v(t)gdBj(t)

z(0) = 0

(2.8)

We can �nd a unique solution z which solves the variational equation (2.8);and the fol-

lowing estimation holds.

Lemma 2.3.2 Under assumption (A1) we have:

lim
�!0

E j y
�(t)� ŷ(t)

�
� z(t) j2= 0 (2.9)

Proof. To prove this lemma, you can consult [3]
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2.3.4 Variational inequality

Let � be the fundamental solution of the linear matrix equation, for 0 � s < t � T

8><>:
d�s;t = by (t; by (t) ; bu (t)) �s;tdt+ dP

j=1

�jy (t; by (t) ; bu (t)) �s;tdBj (t) ;

�s;s = Id;

where Id is the n � n identity matrix, this equation is linear with bounded coe¢ cients,

then it admits a unique strong solution.

From Itô�s formula we can easily check that d (�s;t	s;t) = 0; and �s;s	s;s = Id; where 	 is

the solution of the following equation

8>>>>>><>>>>>>:

d	s;t = �	s;t

(
by (t; by (t) ; bu (t))� dP

j=1

�jy (t; by (t) ; bu (t))�jy (t; by (t) ; bu (t))
)
dt

�
dP
j=1

	s;t�
j
y (t; by (t) ; bu (t)) dBj (t) ;

	s;s = Id;

so 	 = ��1, if s = 0 we simply write �0;t = �t; and 	0;t = 	t: By integrating by part

formula we can see that, the solution of (2.8) is given by z (t) = �t�t; where �t is the

solution of the stochastic di¤erential equation

8>>>>>><>>>>>>:

d�t = 	t

(
bu (t; by (t) ; bu (t)) v (t)� dP

j=1

�jy (t; by (t) ; bu (t))�ju (t; by (t) ; bu (t)) v (t)
)
dt

+
dP
j=1

	t�
j
u (t; x

?
t ; u

?
t ) v (t) dB

j (t) ;

�0 = 0:

Let us introduce the following convex perturbation of the optimal control bu by
u� = bu+ �v; (2.10)

for any v 2 U , and � 2 (0; 1) : Since bu is an optimal control, then ��1 �J �u��� J (bu)� � 0:
19
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Thus a necessary condition for optimality is that

lim
�!0

��1
�
J
�
u�
�
� J (bu)� � 0: (2.11)

The rest is devoted to the computation of the above limit. We shall see that the expression

(2.11) leads to a precise description of the optimal control bu in terms of the adjoint process:
First, it is easy to prove the following lemma

Lemma 2.3.3 Under assumptions (H1) ; we have

I = lim
�!0

��1
�
J
�
u�
�
� J (bu)�

= E
�Z T

0

ffy (s; by (s) ; bu (s)) z (s) + fu (s; by (s) ; bu (s)) v (s)g ds+ gy (by (T )) z (T )� :
(2.12)

Proof. We use the same notations as in the proof of (lemma 2.2.2). First, we have

��1
�
J
�
u�
�
� J (bu)�

= E
�Z T

0

Z 1

0

�
fy
�
s; y�;� (s) ; u�;� (s)

�
z (s) + fu

�
s; y�;� (s) ; u�;� (s)

�
v (s)

	
d�ds

+

Z 1

0

gy
�
y�;� (T )

�
z (T ) d�

�
+ �� (t) ;

where

�� (t) = E
�Z T

0

Z 1

0

fy
�
s; y�;� (s) ; u�;� (s)

�
�� (s) d�ds+

Z 1

0

gy
�
y�;� (T )

�
�� (T ) d�

�
:

By using the (lemma 1.4.2), and since the derivatives fy; fu; and gy are bounded, we have

lim
�!0

�� (t) = 0. Then, the result follows by letting � go to 0 in the above equality.

Substituting by z (t) = �t�t in (2.12); this leads to
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I = E
�Z T

0

ffy (s; by (s) ; bu (s)) �s�s + fu (s; by (s) ; bu (s)) v (s)g ds+ gy (by (T )) �T�T� :
Consider the right continuous version of the square integrable martingale

M (t) := E
�Z T

0

fy (s; by (s) ; bu (s)) �sds+ gy (by (T )) �T jFt� :
By the representation theorem, there exist Q =

�
Q1; ::; Qd

�
where Qj 2 L2; for j = 1; :::; d;

M (t) = E
�Z T

0

fy (s; by (s) ; bu (s)) �sds+ gy (by (T )) �T�+ dX
j=1

Z t

0

Qj (s) dBj (s) :

We introduce some more notation, write by (t) = M (t) �
R t
0
fy (s; by (s) ; bu (s)) �sds: The

adjoint variable is the processes de�ned by

8><>: p (t) = by (t)	t;
qj (t) = Qj (t)	t � p (t)�jy (t; by (t) ; bu (t)) ; for j = 1; :::; d: (2.13)

Theorem 2.3.2 Under assumptions (H1) ; we have

I = E

"Z T

0

(
fu (s; by (s) ; bu (s)) + p (s) bu (s; by (s) ; bu (s)) + dP

j=1

qj�ju (s; by (s) ; bu (s))
)#

:

Proof. From the integration by part formula, and by using the de�nition of p (t) ; qj (t)

for j = 1; ::; d; we easily check that

E [y (T ) � (T )] = E

"Z T

0

(
p (t) bu (s; by (s) ; bu (s)) + dP

j=1

qj (s)�ju (s; by (s) ; bu (s))
)
v (t) dt

�
Z T

0

fy (s; by (s) ; bu (s)) �t�tdt:
(2.14)
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Also we have

I = E
�
y (T ) � (T ) +

Z T

0

fy (s; by (s) ; bu (s)) �t�tdt+ Z T

0

fu (s; by (s) ; bu (s)) v (t) dt� ;
(2.15)

substituting (2.14) in (2.15), This completes the proof.

By analyzing the variations in the control and the corresponding variations in the state

trajectory, one can derive important insights into the optimality of the control for more

detail we can see [3].
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Chapter 3

Second order necessary conditions for

singular stochastic optimal control

3.1 Preliminaries

Let (
;F; fFtgt2[0;T ]; P ) be �ltred probability space satis�ed the usal condition,and we

suppose that F = fFtgt2[0;T ] is the natural �ltration created by 1� dimonsional standard

Brownian motion B(�) .The controlled stochastic di¤erential equation that being con-

sidred by:

8><>: dx(t) = b(t; x(t); u(t))dt+ �(t; x(t); u(t))dBt

x(0) = x
(3.1)

With a cost functional :

J(u(:)) = E[

TZ
0

f(t; x(t); u(t))dt+ g(x(T ))] (3.2)

Where we denote the stochastic process u(:) as the control valued in the environment

U 2 Rm (m 2 N) and x(:) as the state valued in Rn(n 2 N) and b; � : [0; T ]� Rn � U ! Rn

23
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, f : [0; T ]� Rn � U ! R and we regard h : Rn ! R as a function meeting acceptable

requirements is the state valued in our trajectory to solve the stochastic optimisation of

�nding a control u(:) 2 Uad , such that:

J(u(:)) = inf
u(:)2Uad

J(u(:)) (3.3)

The acceptable control that accomplishes the minimum u(:) 2 Uad is referred to as an

optimal control.

Now, we de�ne singular control in the classical sense for di¤usion ,as inspired by [1] and

[24] .

De�nition 3.1.1 (singular control in the classical sense): We called the admissible con-

trol u(:) as an singular control in the classical sense if it veri�ed:

8><>:
Hu (t; ex (t) ; eu (t) ; ep (t) ; eq (t)) = 0 a:s: a:e:;

Huu (t; ex (t) ; eu (t) ; ep (t) ; eq (t)) + eP (t) (�u (t; ex (t) ; eu (t)))2 = 0 a:s: a:e:;

(3.4)

Where adjoint processes (ep(:); eq(:)) and ( eP (:); eQ(:)) are given respectely by(3.15) and

(3.16) with (x(:); u(:)) replaced by (ex(:); eu(:)) . If eu(:) in (3.4) is also optimal , then

we call eu(:) as a singular optimal stochastic control in the classical sense.
It is important to remember that there is another kind of singularity in stochastic control

problem . In this case , the control variable has two components (u(:); �(:)) , the �rst

of which is absoulutely continuous and the second of which has bounded varaition and is

non-decreasing left continuous whith the right limits and �(0) = 0 :

We introduce a few di¤erent rendom and stochastic variable for any t 2 [0; T ]

� L2Ft(
;R) the space of R�valued , Ft�measurable random variable � such that

E j � j2< +1

24
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� L2Ft([0; T ];R) the space ofR�valued �([0; T ])
Ft�measurable ,z�adapted process

 such that

k  k00L2Ft ([0;T ];R):= [E(
TZ
0

( (t))2dt)]
1
2 < +1

We also suppose that

3.1.1 Assumptions

Assumptions(A1)

1. The maps b and � are �([0; T ])
 Ft�measurable and z�adapted.

2. The function b and � are continuously di¤eretiable up to the second order with

respect to (x; u) .

3. All the �rdt order derivatives are continuous in (x; u) and unformly bounded.

4. There exists a constant �1 > 0 such that for almost all (t; !) 2 [0; T ]� 
 and

for any x; ex 2 R and u; eu 2 U
j� (t; x; u)j � �1; for � = b; �;

j� (t; x; u)� � (t; ex; u)j � �1 jx� exj ; for � = b; �;

j �(x;u)2(t; x; u) j � j �(x;u)2(t; ex; eu) j6 �1(j x� ex j + j u� eu j); for� = b; �

Assumptions(A2)

1. The processf is �([0; T ])
 Ft�measurable and z�adapted.

2. The rendom variable h is Ft�measurable.

3. The process f is bounded by �2(1+ j x j2 + j u j2) and h is bounded by �2(1+ j x j) :
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4. The mapsf and h are continuously di¤eretiable up to the second order.

5. for any x; ex 2 R and u; eu 2 U
8>>>>>>><>>>>>>>:

j fx(t; x; u) j + j fu(t; x; u) j6 �2(1+ j x j + j u j) j hx(x) j6 �2(1+ j x j)

j fxx(t; x; u) j + j fuu(t; x; u) j + j fxu(t; x; u) j6 �2

j hxx(x) j6 �2 j hxx(x) + hxx(ex) j6 �2(j x� ex j)
j f(x;u)2(t; x; u)� f(x;u)2(t; ex; eu) j6 �2(j x� ex j + j u� eu j)

The equation (3.1) has strong and unique solution

x(t) = x0 +

tZ
0

b(s; x(s); u(s))ds+

tZ
0

�(s; x(s); u(s))dWs

With certain assumptions (A1)and (A2) standard arguments prove that for all Ck > 0

E(sup j x(t) jk)
t2[0;T ]

< Ck

Where Ck is a constant that depends only on �2 . Moreover , the functional (3.2) is well

de�ned from Uad into R:

3.2 Second order necessary condition in integral form

In this part, we prove an integral type second order necessary condition for stochastic

optimal control . We assume a nonempty and bounded control region U , with a con-

vex perturbation of the optimal control described by u�(t) = u(t) + �(u(t)� u(t)) for

u(:) 2 Uad and � 2 [0; 1] . The convexity condition of the control domain guarantes

that u�(:) 2 Uad .

For simplicity , we shall use the following notations , denoted by x�(:) ; x(:) the trejoctery

of the SDE (3.1) corresponding to u�(:) and u(:):
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To simplify our notation , we write for � = b; �; f :

8>>>>>>><>>>>>>>:

�� = �(t; x�(t); u�(t))� �(t; x(t); x(t))

�x = �x(t; x(t); u(t)); �u = �u(t; x(t); u(t))

�xx = �xx(t; x(t); u(t)); �uu = �uu(t; x(t); u(t))

�xu = �xu(t; x(t); u(t))

We introduce the following variational equation:

8><>: dy1(t) = (bx(t)y1(t) + bu(t)v(t))dt+ (�x(t)y1(t) + �u(t)v(t))dWt

y1(0) = 0
(3.5)

And:

8>>>><>>>>:
dy2(t) =

fbx(t)y2(t) + bxx(t)y1(t)
2 + 2bxu(t)y1(t)v(t) + buu(t)v(t)

2gdt

+f�x(t)y2(t) + �xx(t)y1(t)
2 + 2�xu(t)y1(t)v(t) + �uu(t)v(t)

2gdWt

y2(0) = 0

(3.6)

Remark 3.2.1 Based on assumptions (A1)and (A2) we admit a strong unique solution

y1(t) and y2(t) to the variational equation (3.5) and (3.6).

Then , we show the proposition in obtaining a second order necessary condition .

Proposition 3.2.1 Assumes that assumptions (A1) and (A2) vari�ed . Then for any

K > 0 we have to follow fundimontal estimates

E[ sup
t2[0;T ]

j x�(t)� x(t) j2k] 6 Ck�
k (3.7)

E[ sup
t2[0;T ]

j y1(t) j2k] 6 Ck (3.8)
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E[ sup
t2[0;T ]

j y2(t) j2k] 6 Ck (3.9)

E[ sup
t2[0;T ]

j x�(t)� x(t)� �y1(t) j2k] 6 Ck�
2k (3.10)

E[ sup
t2[0;T ]

j x�(t)� x(t)� �y1(t)� �2

2
y2(t) j2k] 6 Ck�

2k (3.11)

Proof. Allow x(:) and x�(:) be the trajectory of (3.1) corresponding to u(:) and u�(:)

resp.Allow y1(:) and y2(:) be the answer of �rst and second order adjoint equation (3.5)

and (3.6). Nothing that estimates (3.7) follows from standard arguments ,shall refer to

equation (3.5) as the �rst order variational equation , aslo we call the process y1(:) as the

�rst order variational process and we call the process y2(:) as second variational process

. x�(t)� x(t)� �y1(t)� �2

2
y2(t) = O(�2) as � �! 0 and that the convergence is of an

appropriate order.So the estimates (3.8),(3.9) and (3.10) are obvious and standard . Now

we start to prove the estimate (3.11) from (3.1) , (3.5) and (3.6).

We got:

j x�(t)� x(t)� �y1(t)� �2

2
y2(t) j2k =j

tZ
0

[�b(s)� [bx(s)y1(s) + bu(s)v(s)]

� �2

2
[bx(s)y2(s) + bu(s)v(s) + bxx(s)y1(s)

2

+2bxu(t)y1(s)v(s) + buu(s)v(s)
2]]ds

+ j
tZ
0

[��(s)� [�x(s)y1(s) + �u(s)v(s)]

� �2

2
[�x(s)y2(s) + �u(s)v(s) + �xx(s)y1(s)

2

+2�xu(t)y1(s)v(s) + �uu(s)v(s)
2]]dWs j

Straight forward calculation by appling Caushy-Schwarz inequality(1.12) , we admit that:
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E[ sup
t2[0;T ]

j x�(t)� x(t)� �y1(t)�
�2

2
y2(t) j2k] 6 I (3.12)

Where:

I = E j 2 sup
tZ
0

[�b(s)� [bx(s)y1(s) + bu(s)v(s)]

� �2

2
[bx(s)y2(s) + bu(s)v(s) + bxx(s)y1(s)

2

+2bxu(t)y1(s)v(s) + buu(s)v(s)
2]]ds

+ j
tZ
0

[��(s)� [�x(s)y1(s) + �u(s)v(s)]

� �2

2
[�x(s)y2(s) + �u(s)v(s) + �xx(s)y1(s)

2

+2�xu(t)y1(s)v(s) + �uu(s)v(s)
2k]dWs j

(3.13)

By applying the Caushy-schawrz inequality (1.12) and the Burkhölder Davis-Gundy in-

equality , with Bonnans [6] , Zhang and Zhang [24] , we have :

I 6 Ck�
2k (3.14)

By combining (3.12) , (3.13) , the desired result (3.11) is accomplished . The proof of

prposition 3.2.1 is �nalized .

De�ne the Humiltonian function H : [0; T ]� R� U � R� R by

H(t; x; u; p; q) = b(t; x; u)p+ �(t; x; u)q � f(t; x; u)

Now , we present the �rst adjoint equation

8><>: dP (t) = �fbx(t)p(t) + �x(t)q(t)� fx(t)gdt+ q(t)dW (t)

p(T ) = �hxx(x(T ))
(3.15)

And the second adjoint equation :

29

Second order necessary conditions for singular stochastic optimal control 



Second order necessary condition in integral form.

8><>: dP (t) = �2bx(t)P (t) + �x(t)
2Q(t) + 2�x(t)Q(t) +Hxx(t)dt+Q(t)dW (t)

P (T ) = �hxx(x(t))
(3.16)

Where:

Hxx(t) = bxx(t)p+ �xx(t)q � fxx(t)

It is easy to show that for assumption (A1) and (A2) , equation (3.15) and (3.16) are

classical linear backward stochastic di¤erential equation who have a strong and unique

solution , such as:

(p(t); q(t)) 2 L2Ft([0; T ];R)� L2Ft([0; T ];R)

(P (t); Q(t)) 2 L2Ft([0; T ];R)� L2Ft([0; T ];R)

Also , we present the functional H : [0; T ]� R� U � R� R� R� R� R� R as

H(t; x; u; p; q; P;Q) = Hxx(t; x; u; p; q)+bu(t; x; u)P (t)+�u(t; x; u)Q(t)+�u(t; x; u)P (t)�x(t; x; u)

(3.17)

To make our notation easier , we set :

H(t) = H(t; x(t); u(t); p(t); q(t); P (t); Q(t) ; t 2 [0; T ]

Lemma 3.2.1 Let (p(t); q(t)) be the solution of the adjoint equation (3.15) , (P (t); Q(t))

be the solution of the adjoint equation (3.16) and y1(t); y2(t) be the solution of the �rst

and the second variational equation (3.5),(3.6) resp. Then the following duality relation

hold:
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�E[p(T )y1(T )] = �E[
TZ
0

fp(t)(bu(t)v(t)) + q(t)(�u(t)v(t))gdt]�E[
TZ
0

fx(t)y1(t)dt] (3.18)

8>>>>>>>>>>>><>>>>>>>>>>>>:

�E[p(T )y2(T )] = �E[
TZ
0

p(t)f(bxx(t)y1(t)2 + (2bxu(t)y1(t)v(t) + (buu(t)v(t)2gdt]

+E[

TZ
0

q(t)f�xx(t)y1(t)2 + 2�xu(t)y1(t)v(t) + �xu(t)v(t)
2gdt]

�E[
TZ
0

fx(t)y2(t)dt]

(3.19)

And

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

E[P (T )y1(T )
2] = �2E[

TZ
0

fP (t)y1(t)(bu(t)v(t)) + P (t)�x(t)y1(t)(�u(t)v(t))gdt]

�2E[
TZ
0

fQ(t)�u(t)y1(t)v(t)gdt]� E[

TZ
0

P (t)(�u(t)v(t))
2dt]

+E[

TZ
0

Hxx(t)y1(t)
2dt]

(3.20)

Proof. This lemma �s proof proceeds directly from ito�s formula to p(t)y1(t) and takes

expectation where y1(0) = 0 , we have
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Second order necessary condition in integral form.

E[P (T )y1(T )] = �E
TZ
0

p(t)dy1(t)� E

TZ
0

y1(t)dp(t)

E

TZ
0

q(t)f�x(t)y1(t) + �u(t)v(t)gdt

(3.21)

Where

� E

TZ
0

p(t)dy1(t) = �E
TZ
0

p(t)[bx(t)y1(t) + bu(t)v(t)]dt (3.22)

Consequently

E

TZ
0

y1(t)dp(t)

= E

TZ
0

y1(t)[bx(t)p(t) + �x(t)q(t)� fx(t)]dt

(3.23)

Substituting (3.22) , (3.23) into (3.21) then the desired result (3.18) is satis�ed . Now ,

by using Ito�s formula in p(t)y2(t) and assuming that y2(0) = 0 , we have

�E[p(T )y2(T )] = �E
TZ
0

p(t)dy2(t)� E

TZ
0

y2(t)dp(t)

�E[
TZ
0

q(t)f�x(t)y2(t) + �xx(t)y1(t)
2

+2�xu(t)y1(t)v(t) + �uu(t)v(t)
2gdt]

(3.24)

Where

�E
TZ
0

p(t)dy2(t) = �E
TZ
0

p(t)fbx(t)y2(t) + bxx(t)y1(t)
2

+2bxu(t)y1(t)v(t) + buu(t)v(t)
2gdt

(3.25)

And
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Second order necessary condition in integral form.

�E
TZ
0

y2(t)dp(t)

= E

TZ
0

y2(t)[bx(t)p(t) + �x(t)q(t)� fx(t)]dt

(3.26)

Substituting (3.25) , (3.26) into (3.24) we obtain the desired result (3.19) .

Next applying Ito�s formula to P (t)y1(t) , where y1(0) = 0 , we have

[P (T )y1(T )] =

tZ
0

P (t)dy1(t) +

TZ
0

y1(t)dP (t)

+

TZ
0

Q(t)f�x(t)y1(t) + �u(t)v(t)gdt

= I1 + I2 + I3

(3.27)

Where

I1 =

TZ
0

P (t)dy1(t)

=

TZ
0

P (t)fbx(t)y1(t) + bu(t)v(t)gdt

+

TZ
0

P (t)f�x(t)y1(t) + �u(t)v(t)gdW (t)

By easy calculation , we can demonstrate

I2 =

TZ
0

y1(t)dP (t)

= �
TZ
0

y1(t)f2bx(t)P (t) + �x(t)
2P (t) + 2�x(t)Q(t)

+Hxx(t)dt+

TZ
0

y1(t)Q(t)dW (t)
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Second order necessary condition in integral form.

I3 =

TZ
0

fQ(t)�x(t)y1(t) +Q(t)�u(t)v(t)gdt

Then , we can write (3.27) as follows

[P (T )y1(T )] =

TZ
0

[P (t)bu(t)v(t)dt+Q(t)�u(t)v(t)

�y1(t)bx(t)P (t)� y1(t)�x(t)
2P (t)� y1(t)Q(t)�x(t)

�y1(t)Hxx(t)]dt

+

TZ
0

[P (t)�x(t)y1(t) + P (t)�u(t)v(t) + y1(t)Q(t)]dW (t)

Now , we applying Ito�s formula to (P (t)y1(t))y1(t) and taking expectation , we obtain

�E[P (T )y1(T )2

= �E
TZ
0

P (t)y1(t)dy1(t)� E

TZ
0

y1(t)d(P (t)y1(t))

�E[
TZ
0

f�x(t)y1(t) + P (t)�u(t)v(t)gfP (t)�x(t)y1(t) + P (t)�u(t)v(t) + y1(t)Q(t)gdt]

= J1 + J2 + J3

(3.28)

Where

J1 = �E
TZ
0

P (t)y1(t)dy1(t) (3.29)

= �E
TZ
0

P (t)y1(t)fbx(t)y1(t) + bu(t)v(t)gdt (3.30)
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Second order necessary condition in integral form.

J2 = �E
TZ
0

y1(t)d(P (t)y1(t))

= �E
TZ
0

y1(t)[P (t)bu(t)v(t)dt+Q(t)�u(t)v(t)

�y1(t)bx(t)P (t)� y1(t)�x(t)
2P (t)� y1(t)�x(t)Q(t)

�� y1(t)Hxx(t)]dt

(3.31)

And it�s simple to show that

J3 = �E[
TZ
0

fy1(t)�x(t) + �u(t)v(t)gfP (t)�x(t)y1(t) + y1(t)Q(t)gdt]

= �E[
TZ
0

fP (t)(y1(t)�x(t))2 + 2P (t)y1(t)�x(t)v(t)�u(t) + y1(t)
2�x(t)Q(t)

+P (t)(v(t)�u(t))
2 +Q(t)y1(t)v(t)�u(t)gdt]

(3.32)

Likewise , we have at last substituted (3.29) , (3.31) , (3.32) into (3.28) and then (3.20) is

satis�ed .

This complet the proof of lemma 3.2.1.

The following technical result is required to demonstrate the main theorem

Proposition 3.2.2 Let (A1)-(A2) hold . Then , for any u(:) 2 Uad we have

J(u�(:))� J(u(:))

= �E
TZ
0

[�fHu(t)v(t)g+ �2

2
fHuu(t)v(t)

2g

+ �2

2
fP (t)(v(t)�u(t))2 + �2fH(t)y1(t)v(t)gdt] + o(�2); (� �! 0+)

Where

Hu(t) = Hu(t; x(t); u(t); p(t); q(t))
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Second order necessary condition in integral form.

Huu(t) = Huu(t; x(t); u(t); p(t); q(t))

Proof. By applying Taylor�s formula , we get

J(u�(:))� J(u(:))

= E[

TZ
0

f'f(t)gdt] + E[h(x�(T )� h(x(T )]

= E[

TZ
0

ffx(t)(x�(t)� x(t)) + fu(t)(u
�(t)� u(t)) + 1

2
fxx(t)(x

�(t)� x(t))2

+fxu(t)(x
�(t)� x(t))(u�(t)� u(t)) + 1

2
fuu(t)(u

�(t)� u(t))2gdt]

+E[hx(x(T ))(x
�(T )� x(T )) + 1

2
hxx(x(T ))(x

�(T )� x(T ))2] + o(�2)

(3.33)

Using proposition 3.2.1 , we have

J(u�(:))� J(u(:))

= E[

TZ
0

f�fx(t)y1(t) + �2

2
fx(t)y2(t) + �fu(t)v(t)

+ �2

2
(fxx(t)y1(t)

2 + 2fxu(t)y1(t)v(t) + fuu(t)v(t)
2)gdt]

+E[�hx(x(T ))y1(T ) +
�2

2
hx(x(T ))y2(T ) +

�2

2
hxx(x(T ))y1(T )

2] + o(�2); � �! 0+

(3.34)

Now , by proposition 3.2.2 , we can prove the following second order necessary condition

in integral form for stochastic optimal control (3.1) ,(3.2)

Theorem 3.2.1 Let (A1)-(A2) hold . If u(:) is a singular optimal control in the classical

sense for the control problem (3.2)-(3.3) , Then we have

E

TZ
0

H(t)y1(t)(u(t)� u(t))dt 6 0 (3.35)
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Second order necessary condition in integral form.

For any u(:) 2 Uad , where the HamiltonianH is de�ned by(3.17) and y1(t) is a solution

of the �rst order adjoint equation given by

y1(t) =

TZ
0

fbx(s)y1(s) + bu(s)v(s)gds+
TZ
0

f�x(s)y1(s) + �u(s)v(s)gdW (s)

Proof. The desired result (3.35) and proposition (3.2.2) follows directly from (3.1).

This completes the proof of Theorem.

3.3 Martingale terms of second order maximum prin-

ciple

In this part , by applying the martingale representation theorem and the property of

Ito�s integrals , we prove the second order necessary condition for singular optimal control

which is pointwise maximum principale in terms of the martingale with respect to the

time variable t . The folowing lemma play an important role to prove our result.

Lemma 3.3.1 y1(:) is a unique strong solution of the �rst variational equation (3.1)

which is represented by the following:

y1(t) = �(t)[

tZ
0

 (s)(bu(s)� �x(s)�u(s))v(s)ds

+

tZ
0

 (s)�u(s)v(s)dW (s)]

(3.36)

Where �(t) is a de�ned by the following linear stochastic di¤erential equation :

8><>: d�(t) = bx(t)�(t)dt+ �x(t)�(t)dW (t)

�(0) = 1
(3.37)

and  (t) is inverse
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Second order necessary condition in integral form.

Proof. (3.5) is a linear equation with bounded coe¢ cients , then it admitsa strong unique

solution . Moreover , this solution is inversible and its inverse  (t) = ��1(t) given by:

8><>: d (t) = [�2x(t) (t)� bx(t) (t)]dt� [�x(t) (t)]dW (t)

 (0) = 1
(3.38)

Applying Ito�s formula to  (t)y1(t) we have

d[ (t)y1(t)] = y1(t)d (t) +  (t)dy1(t)

�[�x(t) (t)][�x(t)y1(t) + �u(t)v(t)]dt

= I1 + I2 + I3

(3.39)

Where

I1 = y1(t)d (t)

= [y1(t)�
2
x(t) (t)� y1(t)bx(t) (t)]dt

�y1(t) (t)�x(t)dW (t)

�y1(t)

(3.40)

With an easy computations ,we get

I2 = y1(t) (t)dy1(t)

= [y1(t)bx(t) (t) + v(t)bu(t) (t)]

+[y1(t)�x(t) (t) + v(t)�u(t) (t)]dW (t)

(3.41)

And

I3 = �[�x(t) (t)][y1(t)�x(t) + v(t)�u(t)]dt (3.42)

Substituting (3.37) , (3.38) and (3.39) into (3.37) , we get
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Second order necessary condition in integral form.

 (t)y1(t)�  (0)y1(0)

= [

tZ
0

 (s)[bu(s)� �x(s)�u(s)]v(s)ds

+

tZ
0

 (s)�u(s)v(s)ds

(3.43)

Since y1(0) = 0 and  �1(t) = �(t) , then from (3.43) the desired result (3.36) is satis�ed

.

This complets the proof of lemma (3.3.1).

To show the main theorem we need to use the follwing technical lemma.

Lemma 3.3.2 Let (A1)-(A2) hold . then we have

1. H(:) 2 L2F([0; T ];R)

2. 8v 2 U ; 9�v(:; t) 2 L2F([0; T ];R) such that

H(t)(v � u(t)) = E[H(t)(v � u(t))] +

tZ
0

�v(s; t)dW (s) (3.44)

a:e:t 2 [0; T ]; P � a:s

Proof. : (1) the proof is directly in [24].

(2) the proof of (3.44) follows from Tang and Li in [21]

Now , we return to integral type of second order necessary condition and substituting the

explicit representation (3.36) of y1(:) into (3.35) we notice that there is a "bad" term in

the form

E

TZ
0

[H(t)�(t)

tZ
0

 (s)�u(s)v(s)dW (s)]v(t)dt (3.45)
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Now , in order to derive a pointwise second order necessarycondition from the integral

form in (3.36) , for the optimal control , we must use the following needle variation . u(:)

:

u(t) =

8><>: v; t 2 A�

u(t); t 2 [0; T ] j A�
(3.46)

Where � 2 [0; T ] , v 2 U , and A� = [�; � + �] in order that � > 0 and � + � 6 T

. Stand for XA�(:) the characteristic function of the set A�:

Then we have v(:) = u(:) = u(t) = (v � u(:))XA�(:) .

The following theorem constitutes the main contribution of the result.

Theorem 3.3.1 Let (A1) , (A2) hold. If the singular optimal control in the classical

sense u(:) is for the stochastic control (3.2)-(3.3) then for any v 2 U it holds that

E(H(�)bu(�)(v � u(�))2) + @+� (H(�)(v � u(�))2�u(�)) 6 0 a:e:� 2 [0; T ] (3.47)

Where

@+� (H(�)(v � u(�))2�u(�))

:= 2 lim
o�!0+

sup 1
�2
E

�+�Z
�

tZ
�

[�v(s; t)�(�) (s)�u(s)(v(�u(s))]dsdt
(3.48)

�v(:; t) is determined by(3.44) , �(:) is given by the following process

�(t) = �(0) +

tZ
0

bx(s)�(s)ds+

tZ
0

�x(s)�(s)dW (s)

And  (:) is given by
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 (t) =  (0) +

tZ
0

[�bx(s) (s) + �x(s)
2 (s)]ds

�
tZ
0

[�x(s) (s)dW (s)

Proof. From (3.43) we have v(:) = u(:) = �u(t) = (v � u(:))XA�(:) and the correspond-

ing solution y1(:) to (3.5) is given by

y1(t) = �(t)

tZ
0

 (s)(bu(s)� �x(s)�u(s))(v � u(s))XA�(s)ds

+�(t)

tZ
0

 (s)�u(s)(v � u(s))XA�(s)dW (s)

(3.49)

Substituting v(:) = u(:) = �u(t) = (v � u(:))XA�(:) and (3.49) into (3.35) , we have

0 > 1
�2
E

�+�Z
�

[H(t)y1(t)(v � u(t))]dt

= 1
�2
E

�+�Z
�

[H(t)�(t)

tZ
�

 (s)(bu(s)� �x(s)�u(s))(v � u(s))ds(v � u(t))]dt

+ 1
�2
E

�+�Z
�

[H(t)�(t)

tZ
�

 (s)�u(s)(v � u(s))dW (s)(v � u(t))dt

= J�1 + J�2

(3.50)

From [24] Lemma 4.1,we got

lim
o�!0+

J�1 = lim
o�!0+

1
�2
E

�+�Z
�

[H(t)�(t)

tZ
�

 (s)(bu(s)� �x(s)�u(s))(v � u(s))ds(v � u(t))]dt

= 1
2
E(H(�)(bu(s)� �x(s)�u(s))(v � u(s))2)

(3.51)

On the other hand , by (3.36) , it follows that
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Second order necessary condition in integral form.

J�2 = 1
�2

�+�Z
�

E[H(t)�(t)

tZ
�

 (s)�u(s)(v � u(s))dW (s)(v � u(t))]dt

= 1
�2

�+�Z
�

E[H(t)�(t)

tZ
�

 (s)�u(s)(v � u(s))dW (s)(v � u(t))]dt

+ 1
�2

�+�Z
�

E[H(t)

tZ
�

(bx(s)�(s)ds

�
tZ

�

 (s)�u(s)(v � u(s))dW (s)(v � u(t))]dt

+ 1
�2
E

�+�Z
�

[H(t)

tZ
�

(�x(s)�(s)dW (s)

�
tZ

�

 (s)�u(s)(v � u(s))dW (s)(v � u(t))]dt

= J�2;1 + J�2;2 + J�2;3 + J�2;4

(3.52)

By lemma [?] , we have

lim sup
o�!0+

J�2;1

= lim sup
o�!0+

1
�2

�+�Z
�

E[H(t)�(�)

tZ
�

 (s)�u(s)(v � u(s))dW (s)(v � u(t))]dt

= lim sup
o�!0+

1
�2

�+�Z
�

E[

tZ
�

�(�) (s)�u(s)(v � u(s))dW (s)E[H(t)(v � u(t))]]dt

+lim sup
o�!0+

1
�2

�+�Z
�

E[

tZ
�

�(�) (s)�u(s)(v � u(s))dW (s)

tZ
0

�v(s; t)]dt

= lim sup
o�!0+

1
�2

�+�Z
�

tZ
�

Ef�(�) (s)�u(s)(v � u(s))�v(s; t)gdsdt

= 1
2
@+� (H(�)(v � u(�))2�u(�));8� 2 [0; T ]

(3.53)

Because of the martingale representation theorem in Lemma [?] , it is imerative that

we only know that �v(:; t) 2 L2F([0; T ];R) for every v 2 U and consequently that the
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function

't(s) = E[�(�) (s)�u(s)(v � u(s))�v(s; t)]; s 2 [0; T ]; t 2 [0; T ]

For each � 2 [0; T ] is in L1F([0; T ];R) . For more details for the following superior limit

see [24]

lim
o�!0+

1

�2

�+�Z
�

tZ
�

't(s)dsdt

By simple computations , the last term in (3.52) is in fact a process with zero expectation

Now by using the similair method in [24], we have

lim J�2;2 = lim
o�!0+

1
�2

�+�Z
�

EfH(t)
tZ

�

bx(s)�(s)ds

�
tZ

�

 (s)�u(s)(v � u(s))dW (s)(v � u(s))gdt

= 0

(3.54)

lim J�2;3 = lim
o�!0+

1
�2

�+�Z
�

EfH(t)
tZ

�

x�(s)�(s)dW (s)

�
tZ

�

 (s)�u(s)(v � u(s))dW (s)(v � u(s))gdt

= 1
2
E(H(�)(�x(�)�u(�))(v � u(s))2)

(3.55)

And �nally , substituting (3.50) , (3.52) , (3.53) , (3.54) , (3.55) in( 3.49) we obtain

E(H(�)bu(�)(v � u(�))2) + @+� (H(�)bu(�)(v � u(�))2�u(�)) 6 0 a:e:� 2 [0; T ]

This complet the proof of theorem 3.3.1.
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Conclusion

The thesis focuses on second order necessary condition for stochastic optimal control prob-

lems in two di¤erent classes of singular optimal controls. It employs convex perturbation

techniques to derive Taylor�s expansion of the cost functional and provescnecessary condi-

tion for stochastic singular optimals controls in integral form . Assuming a convex control

region and degeneration of the �rst order condition , the discussion on secind order neces-

sary condition becomes crucial .The integral equation derived are vital for solving optimal

control problem , providing a foundation for �nding optimal solutions and gaining impor-

tant insights and results . Overall , the derivation of these necessary conditions in integral

form plays a signi�cant role in addressing stochastic optimal control problems , o¤ering

essential support in dolving them e¤ectively .
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Abstract 

In this work, we establish second-order necessary conditions for singular optimal controls in 
the classical sense, we consider the convex case, i.e., the control region is allowed to be 
convex, and the control variable enters into both the drift and the diffusion terms of the 
control systems. By introducing two vatariational equations and two adjoint equations, we 
obtain the desired necessary conditions for stochastic singular optimal controls in integral 
form and in martingale forms 

Keywords : , Stochastic optimal control  , SDE ( Stochastic Differential Equation). needle variation, 
variational equation, adjoint equation. 

Résumé 
 

Dans ce travail, nous établissons des conditions nécessaires du second ordre pour les 
contrôles optimaux singulier aux  sens classique. Nous considérions le cas convexe, c'est-à-
dire que la région de contrôle doit être convexe, et la variable de contrôle intervient à la fois 
dans les termes de diffusion des systèmes de contrôle. En introduisant deux équations 
variationnelles et deux equations adjointes, nous obtenons les conditions nécessaires 
souhaitées pour les contrôles optimaux stochastiques singuliers sous forme intégrale et sous 
forme de martingales. 

 

Mots cles: contrôles optimaux singulier aux  sens classique , équations variationnelles , 
équations adjointes , contrôles optimaux stochastiques singuliers sous forme intégrale . et 
sous forme de martingales 

 الملخص
 

المنفردة بالمع�ى الكلاسي�ي. �عت��   �مثل للتحكم  ضرور�ة من الدرجة الثانيةالشروط ال سوف ندرس �� هذا العمل، 

طقة التحكم محدبة، وتدخل متغ�� التحكم �� �ل من مصط�حات �نتشار لأنظمة ا�حالة ا�حدبة، أي يجب أن ت�ون من

التحكم. من خلال إدخال معادلت�ن تفاضليت�ن ومعادلت�ن م��افق�ن، نحصل ع�� الشروط الضرور�ة المطلو�ة للتحكمات 

)مارتينجال (ع�� ش�ل و  ش�ل ت�امل ع�� المث�� العشوائية المنفردة  . 
 
  
  

 كلمات مفتاحیة
 

 المعادلة التفاضلیة العشوائیة, لتحكم الأمثل العشوائيل  البراونیة الحركة  , بالمعنى التقلیدي الأمثل العشوائي مالتحك
ة، التحكمات المثلى العشوائیة المنفردة في لتحكمات المثلى المنفردة بالمعنى الكلاسیكي، المعادلات التفاضلیة، المعادلات المترافقا

 (مارتینجال). وعلى شكل  شكل تكاملي
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