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Abstract

The increasing penetration of distributed energy resources and advanced metering
infrastructure in smart grids has led to the generation of vast amounts of data, cre-
ating both opportunities and challenges in terms of data privacy and computational
efficiency. This project explores a Federated Learning (FL) based solution for smart
grids, aiming to enhance the predictive accuracy of electricity theft detection while
preserving user privacy. Federated Learning, a decentralized machine learning ap-
proach, allows multiple grid entities to collaboratively train a shared model without
exchanging raw data, thus maintaining data privacy and security.

In this study, we design and implement a federated learning framework tailored
for smart grid applications, focusing on electricity detection. The proposed frame-
work leverages edge computing resources within the grid to perform local model
training, followed by an aggregation process at a central server to update the global
model. The effectiveness of the FL-based solution is evaluated through a series of
simulations and experiments using real-world smart grid datasets. Results demon-
strate that our approach achieves high predictive performance comparable to tradi-
tional centralized methods while significantly enhancing data privacy and reducing
communication overhead.

The findings indicate that Federated Learning presents a promising pathway for
future smart grid analytics, offering a scalable, secure, and privacy-preserving solu-
tion to harness the full potential of smart grid data.

Keywords :Federated Learning, Smart Grid, Data Privacy, Fault Detection, Elec-
tricity theft detection, Decentralized Machine Learning.
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Résumé

L’augmentation de la pénétration des ressources énergétiques distribuées et des in-
frastructures de comptage avancées dans les réseaux électriques intelligents a con-
duit à la génération de vastes quantités de données, créant à la fois des opportu-
nités et des défis en termes de confidentialité des données et d’efficacité compu-
tationnelle. Ce projet explore une solution basée sur l’apprentissage fédéré (FL)
pour les réseaux intelligents, visant à améliorer la précision prédictive de la dé-
tection des vols d’électricité tout en préservant la confidentialité des utilisateurs.
L’apprentissage fédéré, une approche de machine learning décentralisée, permet à
plusieurs entités du réseau de former ensemble un modèle partagé sans échanger de
données brutes, maintenant ainsi la confidentialité et la sécurité des données.

Dans cette étude, nous concevons et mettons en œuvre un cadre d’apprentissage
fédéré adapté aux applications de réseaux intelligents, en se concentrant sur la détec-
tion des vols d’électricité. Le cadre proposé exploite les ressources de l’informatique
en périphérie au sein du réseau pour effectuer la formation de modèles locaux,
suivie d’un processus d’agrégation sur un serveur central pour mettre à jour le mod-
èle global. L’efficacité de la solution basée sur l’apprentissage fédéré est évaluée à
travers une série de simulations et d’expériences utilisant des ensembles de données
réels de réseaux intelligents. Les résultats démontrent que notre approche atteint
une performance prédictive élevée comparable aux méthodes centralisées tradition-
nelles tout en améliorant significativement la confidentialité des données et en ré-
duisant les frais de communication.

Les résultats indiquent que l’apprentissage fédéré présente une voie prometteuse
pour l’analytique future des réseaux éléctriques intelligents, offrant une solution
évolutive, sécurisée et respectueuse de la vie privée pour exploiter tout le potentiel
des données des réseaux intelligents.

Mots-clés : Apprentissage fédéré, Réseau electrique intelligent, Confidentialité
des Données, Détection des Pannes, Detection du vol d’energie, Decentralized Ma-
chine Learning.
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General Introduction

In this introduction, we start by presenting the background of this thesis Then, we
focus on the motivations of this work, specify the problem, and highlight the objec-
tives. Finally, we end with the description of the manuscript organization.
Background

The integration of advanced technologies in power systems has led to the de-
velopment of smart grids, which offer enhanced efficiency, reliability, and sustain-
ability in energy distribution and consumption. Smart grids leverage a plethora of
data from various sources, such as smart meters, sensors, and distributed energy re-
sources, to optimize grid operations and support decision-making processes. How-
ever, the vast and diverse nature of this data presents significant challenges in terms
of data privacy, security, and computational efficiency.

In this context, federated learning (FL) emerges as a promising paradigm that
addresses these challenges by enabling decentralized model training across multiple
devices or entities without the need to share raw data. Unlike traditional centralized
machine learning approaches that require data aggregation at a central server, fed-
erated learning allows each participating node to train models locally using its own
data. The locally trained models are then aggregated into a global model, ensuring
data privacy and reducing the risks associated with data breaches and unauthorized
access.

This dissertation explores the application of federated learning to smart grid sys-
tems, aiming to enhance their performance, security, and scalability. By leveraging
federated learning, the proposed solution seeks to address key issues such as data
privacy, efficient resource utilization, and real-time adaptability. The research fo-
cuses on developing and evaluating federated learning algorithms tailored for smart
grid applications, including electricity theft detection.

Problematic

Electricity theft detection in smart grids is a significant and complex issue that poses
technical, economic, and security challenges. The problematic aspects can be sum-
marized as follows:

1. Economic Losses: Electricity theft leads to substantial financial losses for utility
companies, resulting in higher operational costs and ultimately higher prices
for consumers.

2. Grid Reliability and Stability: Unauthorized consumption disrupts the balance
between supply and demand, leading to potential overloading, outages, and
reduced reliability of the electricity grid.

3. Data Imbalance: Theft cases are relatively rare compared to legitimate con-
sumption, creating highly imbalanced datasets that complicate the detection
process and affect the performance of machine learning models.
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4. Complex Fraud Patterns: Thieves employ sophisticated methods to bypass
meters or manipulate consumption data, making it challenging to identify
fraudulent activities using traditional detection methods.

5. Privacy Concerns: While detecting theft, it’s crucial to protect consumer pri-
vacy and ensure that data collection and analysis comply with legal and ethical
standards.
Addressing these challenges requires advanced analytics, machine learning al-
gorithms, and robust data preprocessing techniques to accurately identify and
mitigate electricity theft in smart grids.

Motivation and Objectives

The primary objectives of this dissertation are:

1. To develop a federated learning framework suitable for smart grid environ-
ments: This includes designing algorithms that can handle the unique charac-
teristics and constraints of smart grid data, such as heterogeneity, intermittent
connectivity, and limited computational resources.

2. To ensure data privacy and security: By implementing federated learning, the
solution aims to protect sensitive data generated by smart meters and other
grid components, thereby complying with regulatory requirements and gain-
ing user trust.

3. To evaluate the performance of the proposed federated learning models: This
involves conducting extensive experiments and simulations to compare the
federated learning approach with traditional centralized methods in terms of
accuracy, efficiency, and scalability.

4. To provide insights and recommendations for practical implementation: Based
on the findings, the dissertation offers guidance on deploying federated learn-
ing in real-world smart grid scenarios, addressing potential challenges and
suggesting best practices.

Through this research, we aim to demonstrate that federated learning is not only
feasible but also advantageous for smart grid applications. The outcomes are ex-
pected to contribute to the advancement of smart grid technologies, promoting more
secure, efficient, and resilient energy systems.
Manuscript organization

The manuscript is structured into four chapters, each focusing on a specific as-
pect of the research topic. The chapter breakdown is as follows:

Chapter 1: Smart Grid concepts This chapter provides a comprehensive struc-
ture for discussing Smart Grid, it serves as an introduction to the research by citing
and explaining the main components of smart grid.

Chapter 2:Smart Grid and Artificial Intelligence In this chapter, the focus shifts
towards an in-depth exploration of the application of artificial intelligence in Smart
Grid and the integration of cutting-edge AI technologies within smart grid.

Chapter 3: Methodology Chapter 3 is dedicated to the design of our federated
learning-based model and explain the architecture and the steps of development of
our model.

Chapter 4: This chapter delves into implementation of our federated learning-
based electricity theft detection system , accompanied by the presentation of results
derived from the optimization of grid electricity theft detection.



List of Figures 3

General Conclusion: The general conclusion summarize key findings and sug-
gesting future research directions in the field.
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Chapter 1

Smart Grid concepts

1.1 Introduction

Smart Grid, also known as an intelligent electrical grid, represents an evolution of
traditional electrical grids by integrating information and communication technolo-
gies (ICT). The main objective of Smart Grids is to improve the efficiency, reliability,
sustainability, and security of the electrical system. By leveraging advanced tech-
nologies, Smart Grids enable better management of energy resources, integration of
renewable energy sources, and enhanced responsiveness to electrical demand. This
transformation is crucial for addressing the increasing complexity and challenges of
modern energy systems.

FIGURE 1.1: Smart grid

Smart Grids are designed to accommodate a diverse range of energy sources, in-
cluding traditional fossil fuels and renewable energy. They also facilitate two-way
communication between utilities and consumers, promoting more active participa-
tion in energy management. This interactive approach helps balance supply and
demand, enhances grid resilience, and supports the transition to a more sustainable
energy future.
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1.2 Smart Grid Composition

1.2.1 Bus

In Smart Grids, buses are crucial connection points where different elements of
the grid converge, such as transmission lines, generators, loads, and storage de-
vices. Buses serve as control and communication hubs, managing the flow of energy
throughout the grid. They play a pivotal role in ensuring the stability and efficiency
of energy distribution by acting as nodes for data collection, analysis, and real-time
decision-making.

Buses also facilitate the integration of distributed energy resources and support
the dynamic reconfiguration of the grid to adapt to varying load conditions and
generation capacities. Their ability to interconnect various grid components makes
them vital for the implementation of advanced grid functionalities, such as demand
response, grid resilience, and fault isolation. Buses contribute to the grid’s flexibility
by enabling seamless energy transfers and supporting the incorporation of renew-
able energy sources [7].

FIGURE 1.2: Bus.

1.2.2 Transmission lines

Transmission lines are the backbone of the electrical grid, allowing electricity to be
transported over long distances, often at high voltages. They are essential for con-
necting different regions of energy production to consumption areas. Transmission
lines are designed to minimize energy losses and ensure the efficient delivery of elec-
tricity from centralized generation facilities to substations near consumers [29].

In Smart Grids, advanced monitoring and control systems are deployed along
transmission lines to detect faults, optimize power flow, and enhance grid reliability.
These systems include sensors, phasor measurement units (PMUs), and communica-
tion networks that provide real-time data on the operational status of the lines. The
integration of these technologies helps prevent outages, improve response times,
and maintain the stability of the transmission network.
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FIGURE 1.3: Transmission lines.

1.2.3 Generator

Generators are sources of electrical energy that produce electricity from various
sources, such as nuclear power plants, thermal power plants, wind turbines, and
solar panels. They convert different forms of energy, such as mechanical, thermal,
or solar, into electrical energy. Generators can be centralized, located at large power
plants, or distributed, situated closer to the point of consumption [13].
Smart Grids facilitate the integration of diverse and decentralized generation sources,

FIGURE 1.4: Generator.

enabling better management of renewable energy inputs and enhancing grid stabil-
ity. Advanced forecasting and scheduling systems are used to predict generation
output and optimize its dispatch to meet demand efficiently. This approach sup-
ports the increased use of renewable energy by managing its variability and ensur-
ing a stable supply of electricity.

1.2.4 Load

Loads are the end-users of the electrical grid, including households, businesses, and
industries. They consume the electricity supplied by the grid and represent the de-
mand side of the energy equation. In Smart Grids, loads are equipped with smart
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meters and other devices that enable real-time monitoring and management of en-
ergy consumption [13].

Smart loads can participate in demand response programs, where consumers
adjust their energy usage in response to price signals or grid needs. This capability
helps balance supply and demand, reduce peak loads, and enhance overall grid
efficiency. Additionally, the data collected from smart meters can be used to develop
more accurate consumption forecasts and improve the planning and operation of
the grid.

FIGURE 1.5: load.

1.3 Smart Grid Levels

1.3.1 Generation level

This level includes energy production facilities such as power plants, wind farms,
and solar power plants. It involves the generation of electricity from various energy
sources, both renewable and non-renewable. The generation level is responsible for
ensuring a reliable and continuous supply of electricity to meet the demands of con-
sumers.

In Smart Grids, generation facilities are integrated with advanced control sys-
tems that optimize their operation, facilitate the integration of renewable energy,
and enhance grid stability. These systems include real-time monitoring, predictive
maintenance, and automated control mechanisms. By utilizing these technologies,
generation facilities can operate more efficiently and respond more effectively to
changes in demand and supply conditions.

FIGURE 1.6: Generation level.
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1.3.2 Transmission level

The transmission level is responsible for transporting electricity over long distances
from production facilities to distribution areas. This level includes high-voltage
transmission lines, substations, and transformers. The goal is to deliver electric-
ity efficiently and reliably while minimizing losses and maintaining power quality.
Advanced technologies in Smart Grids, such as flexible AC transmission systems

FIGURE 1.7: Transmission level.

(FACTS) and high-voltage direct current (HVDC) systems, improve the capacity and
efficiency of transmission networks. Real-time monitoring and control enable rapid
fault detection and isolation, enhancing grid resilience. These technologies also sup-
port the integration of renewable energy by managing the variability and intermit-
tency of renewable generation sources.

1.3.3 Distribution level

The distribution level is responsible for delivering electricity from substations to
end-users, such as residential consumers, businesses, and industries. This level
includes medium and low-voltage distribution lines, transformers, and distribu-
tion substations. The focus is on providing reliable and high-quality power to con-
sumers. Smart Grids at the distribution level incorporate automated meter reading

FIGURE 1.8: Distribution level.
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(AMR), advanced distribution management systems (ADMS), and fault detection
and isolation systems. These technologies improve operational efficiency, reduce
outage durations, and enhance customer service. Additionally, the distribution level
is increasingly integrating distributed energy resources, such as rooftop solar panels
and battery storage, to enhance grid flexibility and resilience.

1.3.4 Consumption level

This level represents the end-users who consume the electricity supplied by the grid.
It includes households, businesses, industries, and other entities that use electricity
for various purposes. The consumption level is crucial for understanding and man-
aging demand patterns.
In Smart Grids, consumers are equipped with smart meters and home energy man-

FIGURE 1.9: Consumption level: Smart home.

agement systems (HEMS) that provide real-time data on energy usage. These tools
enable consumers to make informed decisions about their energy consumption, par-
ticipate in demand response programs, and contribute to grid stability. The con-
sumption level also plays a key role in supporting energy efficiency initiatives and
reducing overall energy consumption.

1.4 Smart Grid Global Architecture

The global architecture of a Smart Grid includes various components such as com-
munication networks, energy management systems, smart metering devices, energy
storage systems, and control and monitoring systems. These components interact
seamlessly to ensure the efficient operation of the grid. Communication networks
facilitate real-time data exchange, enabling advanced functionalities such as auto-
mated demand response, predictive maintenance, and enhanced grid resilience [19].

Energy management systems (EMS) optimize the generation, distribution, and
consumption of electricity. Smart metering devices provide accurate and timely in-
formation on energy usage, helping consumers and utilities make better decisions.
Energy storage systems store excess energy and release it when needed, balancing
supply and demand. Control and monitoring systems ensure the safe and reliable
operation of the grid by continuously monitoring its status and responding to any
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anomalies.

The integration of these components creates a more resilient and adaptable grid
capable of meeting the demands of modern energy systems. The global architecture
also supports the development of microgrids and virtual power plants, which can
operate independently or in coordination with the main grid, enhancing overall grid
reliability and flexibility.

FIGURE 1.10: Smart Grid Global Architecture.

1.5 Control and monitoring

Control and monitoring are essential aspects of Smart Grids. They allow real-time
monitoring of the grid’s status, management of energy flows, optimization of pro-
duction and consumption, fault detection, and corrective actions. Advanced control
systems use data analytics, machine learning, and artificial intelligence to predict
and respond to grid conditions dynamically. Monitoring systems provide valuable
insights into the performance and health of grid components, enabling proactive
maintenance and reducing the risk of outages [16].
Control and monitoring systems also facilitate the integration of renewable energy

FIGURE 1.11: Control and monitoring.

sources by managing their variability and ensuring a stable supply of electricity.



12 Chapter 1. Smart Grid concepts

These systems enable utilities to implement demand response programs, optimize
energy storage utilization, and enhance overall grid efficiency. By leveraging ad-
vanced technologies, control and monitoring systems contribute to the development
of a more resilient, flexible, and sustainable energy grid.

1.6 Problem Statement: Electricity Theft

Electricity theft poses a significant challenge to electrical grids worldwide. It in-
cludes various illegal activities such as meter tampering, illegal connections, and
meter manipulation. These actions result in substantial financial losses for utili-
ties and can compromise the safety and reliability of the grid. Smart Grids employ
advanced detection systems to identify and mitigate electricity theft, ensuring fair
billing and grid integrity.

1.6.1 Electricity Theft Types

Electricity theft can take many forms, including bypassing meters, hacking smart
meters, and manipulating billing data. Each type of theft poses unique challenges
and requires tailored detection and prevention strategies. Smart Grids utilize ad-
vanced data analytics, machine learning algorithms, and real-time monitoring to
detect anomalies and identify potential cases of theft.

Meter Tampering

Meter tampering refers to altering the metering equipment to inaccurately report
lower electricity usage or completely bypass meter readings. This can be done by
physically tampering with the meter or employing illegal devices to circumvent the
metering system.

Unauthorized Connections

Unauthorized connections entail the illegal tapping of electricity directly from distri-
bution lines or transformers, bypassing the metering system. Offenders may splice
into overhead lines or underground cables to secretly obtain electricity.

Meter Hacking

With the rise of digital smart meters, hackers may try to breach metering systems to
alter data or remotely tamper with meter readings. This approach typically involves
exploiting weaknesses in metering software or communication protocols.

Fraudulent Meter Readings

In certain instances, consumers may commit fraud by submitting false meter read-
ings or inaccurate information to utility companies. This deceptive practice can re-
sult in incorrect billing and revenue losses for the utility providers.
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Meter Blockage

Meter blockage involves hindering the metering mechanism to stop accurate mea-
surement of electricity consumption. Offenders might physically block the meter
with non-conductive materials or use electronic devices to interfere with the meter-
ing function.

Load Manipulation

Load manipulation entails artificially decreasing or increasing electricity usage to
deceive metering systems. Offenders may use methods like load shedding or load
diversion to change consumption patterns and avoid detection.

1.6.2 Related Work on Electricity Theft

Combatting electricity theft has been the subject of extensive research and initia-
tives. Techniques such as data analysis, machine learning, and advanced detection
systems are used to detect and prevent electricity theft. These systems analyze con-
sumption patterns, identify anomalies, and trigger alerts for further investigation.
By leveraging smart meters and advanced analytics, utilities can reduce losses and
enhance the overall efficiency of the grid.

Research in this area has focused on developing robust detection algorithms, im-
proving the accuracy of theft detection systems, and designing effective countermea-
sures. Collaborative efforts between utilities, researchers, and technology providers
have led to the development of innovative solutions that address the complex and
evolving nature of electricity theft.

The authors of [25] present a deep learning method called ETD-ConvLSTM for
detecting electricity theft in smart grids. This approach leverages Convolutional
Long Short-Term Memory (ConvLSTM) neural networks to identify temporal cor-
relations in electricity consumption patterns. By integrating both global and local
information, the method significantly enhances detection accuracy. Simulation re-
sults indicate that ETD-ConvLSTM performs better or on par with existing detec-
tors regarding detection accuracy, false negative rates, and false positive rates. This
study introduces a novel deep learning-based approach for electricity theft detec-
tion using ConvLSTM neural networks, detailing the method’s benefits over current
techniques. However, it does not provide specific information on the network archi-
tecture, dataset, or comparisons with existing methods.

The study in [6] introduces a two-step strategy for electricity theft detection,
integrating a Convolutional Autoencoder (CAE) for identifying theft and an en-
hanced regression algorithm for predicting potentially stolen electricity (PSE). This
approach aims to maximize economic return by accurately detecting theft and esti-
mating PSE. Case studies using both simulated and real-world datasets highlight the
strategy’s effectiveness. The authors offer a comprehensive description of their two-
step approach, emphasizing its advantages. However, the study could be improved
with more detailed information on the integration of the CAE and the regression
algorithm, the evaluation metrics used, and comparisons with existing methods.

The paper in [10] introduces an electricity theft detection method utilizing it-
erative interpolation and a fusion convolutional neural network (CNN). This ap-
proach addresses the shortcomings in preprocessing electricity consumption data
and demonstrates superior performance compared to existing methods. The authors
highlight their novel method’s ability to overcome these preprocessing limitations
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and achieve enhanced results. However, the paper does not provide specific details
about the fusion CNN architecture or the evaluation metrics used for performance
comparison.

The authors in [26] propose a blockchain-based, privacy-preserving electricity
theft detection scheme that eliminates the need for a third party. The scheme com-
bines improved functional encryption, distributed storage via blockchain, and a
Long Short-Term Memory (LSTM) network to enhance the accuracy of theft detec-
tion while safeguarding consumer privacy. This study presents a novel approach to
addressing privacy issues in electricity theft detection using blockchain technology
and demonstrates its effectiveness through real-world evaluation. However, more
details on the specific blockchain implementation and the evaluation metrics used
would be beneficial.

The study in [27] presents a hybrid data-driven methodology for detecting elec-
tricity theft by combining two innovative data mining techniques: Maximum In-
formation Coefficient (MIC) and Clustering Technique by Fast Search and Find of
Density Peaks (CFSFDP). This method is designed to identify various forms of elec-
tricity theft by analyzing correlations between non-technical losses and electricity
consumption patterns, along with clustering techniques to detect anomalous users
based on their load profiles. Numerical experiments conducted on the Irish smart
meter dataset validate the effectiveness of this combined approach. The authors offer
a novel solution for electricity theft detection through the integration of these data
mining techniques, clearly outlining the proposed method and its benefits. How-
ever, the study would be enhanced by providing more details on the experimental
setup, the evaluation metrics used, and a comparison with existing methods.

The study in [8] presents a data-driven model for detecting electricity theft using
smart meter data. This model emphasizes the physical relationship between electric-
ity consumption and voltage magnitude, avoiding reliance on unreliable parameter
and topology information. By employing a modified linear regression model, the
approach accurately detects electricity theft on distribution secondaries. Validation
with real-world smart meter data demonstrates the model’s effectiveness in iden-
tifying theft cases. The authors introduce a distinctive method for electricity theft
detection, capitalizing on the correlation between electricity usage and voltage mag-
nitude. The utilization of smart meter data and a modified linear regression model
offers a practical and efficient solution for identifying theft. However, the study
would benefit from more detailed insights into the model’s performance metrics,
comparisons with existing methods, and an analysis of potential scalability issues.

1.7 Conclusion

This chapter has provided an introduction to Smart Grid concepts, focusing on their
composition, levels, global architecture, control and monitoring, and the issue of
electricity theft. Smart Grids offer significant opportunities to improve the efficiency
and sustainability of electrical grids while addressing challenges related to security
and reliability. As the energy landscape evolves, Smart Grids will play a crucial role
in enabling a more resilient, flexible, and sustainable power system.
By integrating advanced technologies and promoting active participation from all
stakeholders, Smart Grids can transform the way electricity is generated, distributed,
and consumed. This transformation is essential for meeting the growing energy de-
mands, supporting the integration of renewable energy, and ensuring the long-term
sustainability of the electrical grid.
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Chapter 2

Smart Grid and Artificial
Intelligence

2.1 Introduction

Artificial intelligence (AI) is a field of research and development aimed at creating
systems and machines capable of performing tasks generally associated with human
intelligence, such as perception, learning, problem-solving, and decision-making.
At the core of AI are several key sub-disciplines, including machine learning, deep
learning, and artificial neural networks, which play a crucial role in smart grid ap-
plications.

Artificial intelligence (AI) has increasingly integrated into various domains, rev-
olutionizing industries and enhancing everyday life [4], [22],[9]. In healthcare, AI al-
gorithms analyze vast amounts of data to diagnose diseases, personalize treatments,
and predict patient outcomes. The financial sector employs AI for fraud detection,
algorithmic trading, and customer service through chatbots. Manufacturing bene-
fits from AI through predictive maintenance, optimizing production processes, and
ensuring quality control. In the realm of transportation, AI powers autonomous
vehicles, improves traffic management, and enhances logistics. Education systems
use AI to provide personalized learning experiences and streamline administrative
tasks. Furthermore, AI’s role in entertainment and media includes content recom-
mendation systems and the creation of immersive virtual experiences [23]. Across
these sectors, AI continues to drive innovation, efficiency, and new possibilities.

This section explores these various aspects of artificial intelligence in detail, ex-
amining their underlying principles, techniques, and applications in the context of
smart grid systems. It highlights how AI, leveraging these technological advance-
ments, contributes to optimizing the management and operation of modern power
grids.

2.2 Artificial Intelligence

Artificial intelligence (AI) is a broad field that encompasses the development of sys-
tems and machines capable of performing tasks that typically require human intel-
ligence, such as learning, problem-solving, decision-making, and perception. The
field of AI has seen significant advancements in recent years, driven by the avail-
ability of large datasets, increased computational power, and the development of
more sophisticated algorithms and techniques.

Some key areas of AI research and development include:
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1. Machine Learning: This involves the development of algorithms and statisti-
cal models that allow systems to perform specific tasks without being explic-
itly programmed. Machine learning techniques, such as supervised learning,
unsupervised learning, and reinforcement learning, have been instrumental in
the development of AI systems that can learn and adapt from data.

2. Natural Language Processing (NLP): This field focuses on enabling comput-
ers to understand, interpret, and generate human language. NLP techniques
are used in applications such as text analysis, language translation, sentiment
analysis, and chatbots.

3. Computer Vision: This area of AI deals with the development of systems that
can interpret and understand digital images and videos. Computer vision
techniques are used in a wide range of applications, including object recog-
nition, image classification, and autonomous vehicles.

4. Robotics: AI is playing a crucial role in the development of advanced robotic
systems that can perform a variety of tasks, from manufacturing and logistics
to healthcare and exploration.

5. Autonomous Systems:AI is enabling the development of systems that can op-
erate independently, such as self-driving cars, drones, and intelligent personal
assistants.

The potential applications of AI are vast and diverse, spanning fields such as
healthcare, finance, transportation, education, and scientific research. As the
field of AI continues to evolve, it is expected to have a significant impact on
various aspects of our lives, both in terms of opportunities and challenges.

FIGURE 2.1: Types of Machine Learning.

2.2.1 Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on the develop-
ment of algorithms and statistical models that enable systems to perform specific
tasks without being explicitly programmed. The core idea behind machine learning
is to allow computers to learn from data and make predictions or decisions based on
that learning, rather than relying on rule-based programming.

There are several main categories of machine learning techniques:
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1. Supervised Learning: In supervised learning, the system is provided with a
set of labeled training data, which includes both the input data and the desired
output or target. The system then learns to map the input data to the output
data, and can be used to make predictions on new, unseen data. Examples of
supervised learning algorithms include linear regression, logistic regression,
decision trees, and support vector machines.

2. Unsupervised Learning: Unsupervised learning involves finding patterns and
structures in data without any labeled or pre-defined outputs. The system tries
to discover inherent patterns and groupings in the data. Examples of unsuper-
vised learning algorithms include k-means clustering, hierarchical clustering,
and principal component analysis.

3. Reinforcement Learning: Reinforcement learning is a type of machine learn-
ing where an agent learns by interacting with an environment and receiving
feedback in the form of rewards or penalties. The agent learns to take ac-
tions that maximize the cumulative reward over time. Examples of reinforce-
ment learning applications include game-playing AI systems, robotics, and au-
tonomous decision-making.

4. Transfer Learning: Transfer learning involves using knowledge gained from
solving one problem and applying it to a different but related problem. This
can be useful when the target task has limited training data available.

Machine learning has been responsible for major advancements in a wide range of
fields, including computer vision, natural language processing, speech recognition,
game-playing, and medical diagnosis. As the quantity and quality of available data
continues to grow, along with increased computing power, we can expect to see even
more impressive applications of machine learning in the years to come.

However, the development of machine learning models also raises important
considerations around issues like bias, transparency, and ethical use. Ongoing re-
search in machine learning interpretability and AI safety aims to address these con-
cerns.

FIGURE 2.2: Types of Machine Learning.
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2.2.2 Deep Learning

Deep learning is a subfield of machine learning that focuses on the development of
algorithms and models that can automatically learn and improve from experience
or data. It is inspired by the functioning of the human brain and aims to mimic
the way neurons in our brain process and analyze information. Deep learning al-
gorithms are designed to recognize patterns and features in large datasets, enabling
them to make accurate predictions and decisions. This powerful technology has
revolutionized various industries, including computer vision, natural language pro-
cessing, and speech recognition.

Deep learning has become a prominent field in artificial intelligence, revolution-
izing various industries and applications. With its ability to analyze and learn from
vast amounts of data, deep learning algorithms have paved the way for significant
advancements in image recognition, natural language processing, and speech recog-
nition. This next paragraph will delve deeper into the concepts and techniques of
deep learning, shedding light on its underlying principles and its impact on the
modern world. By exploring the intricacies of neural networks and the training
process, we can gain a deeper understanding of how deep learning models achieve
remarkable accuracy and efficiency in their predictions.

Deep learning has revolutionized the field of artificial intelligence by enabling
machines to learn from vast amounts of data and make complex decisions. It is a
subfield of machine learning that focuses on neural networks, which are inspired
by the structure and function of the human brain. In recent years, deep learning
algorithms have achieved remarkable breakthroughs in various domains, including
image recognition, speech recognition, and natural language processing. This has
led to significant advancements in areas such as autonomous driving, healthcare,
and finance.

Deep learning is a powerful branch of artificial intelligence that has revolution-
ized various industries and fields. It involves training neural networks with large
datasets to make predictions and perform complex tasks. With its ability to ana-
lyze vast amounts of data and extract meaningful insights, deep learning has trans-
formed areas such as computer vision, natural language processing, and speech
recognition. Through continuous improvement and optimization, deep learning
algorithms have achieved remarkable accuracy and efficiency, making them indis-
pensable in many applications.

Deep learning is a subfield of machine learning that focuses on algorithms and
models inspired by the structure and function of the human brain. It has gained
immense popularity and importance in recent years due to its ability to handle com-
plex tasks such as image and speech recognition, natural language processing, and
autonomous driving. In deep learning, neural networks with multiple layers are
trained on large datasets to identify patterns and make predictions. The applica-
tions of deep learning are far-reaching, spanning areas such as healthcare, finance,
and self-driving cars.

2.2.3 Artificial Neural Networks

Artificial neural networks (ANNs) are a fundamental component of deep learning
and a key concept in the field of artificial intelligence. ANNs are inspired by the
biological neural networks found in the human brain and are designed to mimic the
way biological neurons process and transmit information.
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The basic building blocks of an ANN are artificial neurons, which are inter-
connected nodes that receive inputs, perform computations, and produce outputs.
These neurons are organized into layers, with the input layer receiving the data, one
or more hidden layers processing the data, and the output layer producing the final
results.

The main types of artificial neural networks include:

2.2.4 Feedforward Neural Networks

In this architecture, the information flows in a single direction, from the input layer,
through the hidden layers, to the output layer. This is the simplest and most widely
used type of ANN.

2.2.5 Recurrent Neural Networks (RNNs)

RNNs are designed to process sequential data, such as text or speech, by maintaining
an internal state that allows them to exhibit dynamic temporal behavior. This makes
them well-suited for tasks like language modeling, machine translation, and speech
recognition.

2.2.6 Convolutional Neural Networks (CNNs)

CNNs are a specialized type of ANN that are particularly effective for processing
spatial data, such as images and videos. They use a combination of convolutional
layers, pooling layers, and fully connected layers to extract and combine features in
a hierarchical manner.

2.2.7 Modular Neural Networks

These networks consist of multiple specialized sub-networks, each focused on a par-
ticular task or function, which are then combined to solve more complex problems.

The training of artificial neural networks typically involves the use of backprop-
agation, an algorithm that adjusts the weights of the connections between neurons
based on the error between the predicted output and the desired output. As the
network is exposed to more data, it learns to improve its performance on the given
task.

ANNs have been successfully applied to a wide range of problems, including
image recognition, natural language processing, speech recognition, game-playing,
and predictive modeling. The ability of ANNs to learn complex patterns and rela-
tionships from data has made them a powerful tool in the field of artificial intelli-
gence.

2.3 Application of AI in Smart Grid

The integration of artificial intelligence (AI) technologies, particularly machine learn-
ing and deep learning, has become increasingly important in the development and
management of smart grid systems. The smart grid is an electricity distribution net-
work that uses digital and communication technologies to improve the efficiency,
reliability, and sustainability of power generation, transmission, and distribution.

Here are some key applications of AI in smart grid systems:
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FIGURE 2.3: Recurrent Neural Networks (RNNs).

1. Load Forecasting: AI-based models can accurately predict electricity demand
and load patterns, which is crucial for efficient power generation and distri-
bution planning. Machine learning algorithms can analyze historical data,
weather conditions, and other relevant factors to generate accurate short-term
and long-term load forecasts.

2. Renewable Energy Integration: AI can help optimize the integration of re-
newable energy sources, such as solar and wind, into the grid. Machine learn-
ing models can predict renewable energy generation based on weather data
and adjust the grid’s operations accordingly, ensuring a stable and reliable
power supply.

3. Fault Detection and Diagnosis: AI-powered systems can monitor the grid’s
infrastructure, detect anomalies, and identify potential faults or failures. This
allows for proactive maintenance and reduced downtime, improving the over-
all reliability of the grid.

4. Demand Response Management: AI can be used to analyze consumer be-
havior and energy usage patterns, enabling the implementation of effective
demand response programs. These programs encourage consumers to adjust
their energy consumption during peak demand periods, leading to more effi-
cient grid management.

5. Asset Management: AI-based predictive maintenance models can analyze sen-
sor data from grid infrastructure, such as transformers and transmission lines,
to predict the likelihood of failures and optimize maintenance schedules, re-
ducing costs and improving asset longevity.

6. Cybersecurity: AI and machine learning algorithms can be leveraged to detect
and respond to cyber threats in the smart grid, such as malware, network intru-
sions, and data breaches, enhancing the grid’s overall security and resilience.

7. Energy Trading and Optimization: AI can be used to develop advanced en-
ergy trading and pricing models, enabling more efficient and cost-effective en-
ergy markets, as well as optimization of energy generation and distribution.

The integration of AI in smart grid systems has the potential to significantly improve
the efficiency, reliability, and sustainability of power generation, transmission, and
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FIGURE 2.4: Conceptual graph of incorporating AI in smart grids.

distribution, ultimately leading to a more resilient and adaptive electrical grid. As
the adoption of renewable energy sources and the demand for energy-efficient so-
lutions continue to grow, the role of AI in the smart grid is expected to become
increasingly important in the coming years.

2.4 Related Work Classification

In this section, we classify the AI based studies in smart grid based on their areas as
folllows:

1. Machine Learning and Smart Grid Optimization:

• Research on the application of machine learning techniques, such as su-
pervised learning, unsupervised learning, and reinforcement learning, for
optimizing various aspects of smart grid operations, including load fore-
casting, renewable energy integration, and asset management [12].

• Studies on the development and evaluation of machine learning-based
models for improved decision-making and control in smart grid systems
[2].

2. Deep Learning and Smart Grid Applications:

• Investigations into the use of deep learning architectures, like convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs),
for tasks such as fault detection, load forecasting, and renewable energy
generation prediction in smart grids [11].

• Research on the integration of deep learning models with traditional grid
control and optimization algorithms to enhance the overall performance
and reliability of smart grid systems.

3. Intelligent Energy Management Systems:

• Studies on the design and implementation of AI-powered energy man-
agement systems that can optimize energy consumption, distribution,
and storage in smart grid environments [17].
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• Exploration of the use of multi-agent systems and game-theoretic ap-
proaches to coordinate and manage distributed energy resources in smart
grids [16].

4. Cyber-Physical Security in Smart Grids:

• Research on the application of AI and machine learning techniques for
detecting and mitigating cyber threats, such as malware, network intru-
sions, and data breaches, in smart grid infrastructures.

• Investigations into the development of AI-based anomaly detection and
response mechanisms to enhance the overall security and resilience of
smart grid systems [15].

5. Scalable and Adaptive Smart Grid Architectures:

• Studies on the design of smart grid architectures that can effectively lever-
age AI and machine learning technologies to adapt to changing energy
demands, environmental conditions, and technological advancements [18].

• Research on the integration of distributed energy resources, energy stor-
age systems, and demand-side management into smart grid frameworks,
with the aid of AI-driven decision-making and control algorithms.

This list provides a general overview of the related work in the field of AI and smart
grid systems. As this is a rapidly evolving area of research and development, the
specific topics and focus of the related work may continue to evolve over time to
address the emerging challenges and opportunities in the smart grid domain.

2.5 Conclusion

The integration of artificial intelligence and smart grid technologies has ushered in a
transformative era in the management and distribution of electrical power. By lever-
aging the advanced capabilities of machine learning, deep learning, and artificial
neural networks, smart grids are able to optimize energy generation, transmission,
and consumption in unprecedented ways.

However, to fully realize the potential of these advancements, a robust and well-
designed methodology is essential. The next chapter, Methodology, will delve into
the specific approaches, frameworks, and experimental setups that enable the effec-
tive integration of AI into smart grid systems.
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Chapter 3

Methodology

3.1 Introduction

This section presents the detailed methodology employed in this research to inves-
tigate the application of artificial intelligence (AI) techniques for optimizing and en-
hancing the performance of smart grid systems. The key aspects covered include
the system model, the mathematical formulation of the smart grid optimization
problem, the objective function, the optimization variables, and the associated con-
straints.

3.2 System Model

In order to understand the workings of smart grids and their optimization, it is cru-
cial to establish a systematic model and a mathematical formulation. This system
model provides a framework for analyzing the behavior and interactions of vari-
ous components within the smart grid network. By formulating the objectives and
constraints of the system in a mathematical context, we can develop optimization
techniques to enhance the performance and efficiency of the grid.
The system model for the smart grid under consideration is composed of the follow-
ing key components:

3.2.1 Smart Grid Mathematical Formulation

Smart grid mathematical formulation is a fundamental aspect of optimizing the op-
eration and control of smart grid systems. By utilizing advanced mathematical tech-
niques and algorithms, this formulation allows for the modeling and analysis of
diverse grid components, such as generation units, transmission lines, and load de-
mand. It enables the representation of various system constraints, including gen-
eration and load balancing, voltage and frequency control, and equipment limita-
tions.By incorporating these constraints into the optimization framework, the ob-
jective function can be designed to ensure that the grid operates in an efficient and
reliable manner.

A smart grid optimization problem aims to minimize the generation cost while
ensuring the reliability and efficiency of electricity distribution. Here’s the mathe-
matical formulation of this system [14] :

Objective Function

The objective is to minimize the total generation cost of the power grid:
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Minimize C =
N

∑
i=1

Ci(Pi)

where: - N is the number of generation units. - Ci(Pi) is the cost function of
generating unit i, which is typically a quadratic function given by Ci(Pi) = aiP

2
i +

biPi + ci. - Pi is the power generated by unit i.

Constraints

Power Balance Equation
The total power generated must equal the total power demand plus losses in the

system:

N

∑
i=1

Pi = PD + PL

where: - PD is the total power demand. - PL represents the total power losses in
the system (can be modeled as a percentage of PD or using a more detailed network
model).

Generation Limits
Each generation unit has a minimum and maximum generation limit:

Pi,min ≤ Pi ≤ Pi,max

where: - Pi,min is the minimum power generation limit of unit i. - Pi,max is the
maximum power generation limit of unit i.

Ramp Rate Limits
Generation units cannot change their output power instantaneously; they have

ramp rate limits:

−Ri,down ≤ Pi(t)− Pi(t − 1) ≤ Ri,up

where: - Ri,down is the maximum downward ramp rate limit of unit i. - Ri,up is
the maximum upward ramp rate limit of unit i. - Pi(t) and Pi(t − 1) are the power
generation at time t and t − 1 respectively.

Reserve Requirements
To ensure reliability, a certain amount of reserve power must be maintained:

N

∑
i=1

Ri ≥ Rrequired

where: - Ri is the reserve power of unit i. - Rrequired is the total reserve power
requirement.

Voltage and Frequency Stability
These constraints ensure that the voltage and frequency within the grid remain

within acceptable limits. These constraints can be complex and depend on the grid
topology and operating conditions, but a simplified version can be:

Vmin ≤ Vi ≤ Vmax
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fmin ≤ f ≤ fmax

where: - Vi is the voltage at bus i. - Vmin and Vmax are the minimum and maxi-
mum allowable voltage levels. - f is the system frequency. - fmin and fmax are the
minimum and maximum allowable frequency levels.

Combined Formulation

Putting it all together, the optimization problem can be formulated as:

Minimize
N

∑
i=1

(

aiP
2
i + biPi + ci

)

subject to
N

∑
i=1

Pi = PD + PLPi,min ≤ Pi ≤ Pi,max,

i = 1, . . . , N − Ri,down ≤ Pi(t)− Pi(t − 1) ≤ Ri,up, i = 1, . . . , N
N

∑
i=1

Ri ≥ Rrequired

Vmin ≤ Vi ≤ Vmax, i = 1, . . . , N fmin ≤ f ≤ fmax

This formulation can be further refined by including more detailed network mod-
els, renewable energy sources, demand response programs, and other smart grid
features.

3.3 Proposed Solution: Electricity Theft Detection Approach

using Federated Learning

Electricity theft is a significant issue facing utility companies globally. It leads to
substantial financial losses, impacts the reliability of the power supply, and can re-
sult in increased costs for legitimate consumers. Traditional methods for detecting
electricity theft often rely on centralized data collection and processing, which poses
privacy concerns, scalability issues, and high communication overhead. Moreover,
the diverse nature of data across different regions and consumers introduces addi-
tional challenges in building accurate and robust detection models.

The advent of smart grids, which integrate advanced metering infrastructure
(AMI) and various IoT devices, provides an opportunity to develop more sophis-
ticated methods for electricity theft detection. However, the challenge remains to
leverage this data in a manner that ensures privacy, scalability, and efficiency. Fed-
erated learning emerges as a promising approach to address these challenges by
enabling decentralized model training across distributed data sources.

Despite the potential benefits of federated learning, its application to electricity
theft detection in smart grids is underexplored. The primary issues include:

1. Data Privacy and Security: Centralized data collection methods pose signif-
icant privacy risks. Consumers’ energy usage data is sensitive and requires
robust protection to prevent misuse and breaches.
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2. Detection Accuracy: Traditional models may not perform well across differ-
ent regions due to data heterogeneity. There is a need for a model that can
generalize well despite the diverse data distributions.

3. Scalability: The smart grid encompasses a vast and growing number of de-
vices and data sources. Any effective solution must scale efficiently to handle
this growth.

4. Communication Overhead: Transmitting large volumes of data to a central
server is not only costly but also inefficient, leading to latency and bandwidth
issues.

5. Real-time Detection and Adaptability: There is a need for a system that can
quickly adapt to new patterns of electricity theft and provide timely detection
to mitigate losses.

3.3.1 Contributions

Decentralized Data Privacy:

By utilizing federated learning, our solution ensures that the sensitive data of con-
sumers remains on local devices, thus significantly enhancing privacy. This decen-
tralized approach mitigates the risks associated with centralized data storage, such
as data breaches and unauthorized access.

Improved Detection Accuracy:

Our federated learning approach allows for the aggregation of knowledge from mul-
tiple distributed datasets without sharing raw data. This collective learning ap-
proach can enhance the model’s ability to detect electricity theft more accurately
by leveraging diverse and comprehensive data patterns from various sources.

Scalability and Flexibility:

Our solution can be easily scaled across different regions and adapted to various
types of smart grid configurations. The federated learning framework supports het-
erogeneous environments, making it flexible to accommodate various grid setups
and customer demographics.

Reduced Communication Overhead:

Compared to traditional centralized learning, our solution reduces the need for con-
tinuous, large-scale data transmission to a central server. Only model updates are
shared, which significantly lowers communication costs and makes the system more
efficient.

Robustness to Data Heterogeneity:

Smart grids often encounter diverse data types and distributions. Our federated
learning based solution is well-suited to handle such heterogeneity, allowing your
model to perform well across different local conditions without requiring uniformity
in the data.
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Enhanced Real-Time Detection:

With federated learning, updates to the detection model can be made more fre-
quently and locally. This leads to quicker adaptation to new theft techniques and
faster response times in detecting anomalies, enhancing the real-time monitoring
capabilities of the smart grid.

Collaboration Without Data Sharing:

Our approach facilitates collaboration among different utility companies and stake-
holders without the need to share sensitive data. This collaborative model can lead
to improved theft detection strategies while maintaining competitive and privacy
boundaries.

Compliance with Data Regulations:

By keeping data local and minimizing the need for central data aggregation, our so-
lution is better positioned to comply with data protection regulations such as GDPR
and CCPA. This compliance is crucial for gaining trust and acceptance among users
and regulatory bodies.

Economic Benefits:

Reducing electricity theft has direct economic benefits for utility companies and con-
sumers. By implementing a more accurate and efficient detection system, our solu-
tion can help reduce losses, lower operational costs, and ultimately lead to more
stable and fair pricing for consumers.

Foundation for Future Enhancements:

Our federated learning framework can serve as a foundation for integrating other
advanced technologies and methodologies, such as reinforcement learning for dy-
namic response strategies, or the incorporation of additional IoT devices and sensors
for more granular data collection.

3.3.2 The Roadmap of applying federated learning based solution in smart
grid

Here is the roadmap for applying federated learning in smart grid for detecting elec-
tricity theft:

1. Data Sources and Collection:

(a) The key data sources include smart meter data, customer profile data,
grid topology data, and external data.

(b) The data is collected from the various stakeholders in the federated net-
work, including utility providers, smart meter manufacturers, and other
relevant parties.

2. Data Preprocessing and Feature Engineering:

(a) The raw data is cleaned, normalized, and integrated into a unified dataset.
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(b) Relevant features are engineered, such as consumption patterns, anomaly
indicators, contextual factors, customer profile features, and grid topol-
ogy features.

3. Federated Learning Model Development:

(a) The preprocessed data is used to train local theft detection models by each
participant in the federated network.

(b) Advanced machine learning algorithms are employed to build the theft
detection models.

(c) Transfer learning techniques are leveraged to enhance the performance of
the local models.

(d) The local models are aggregated to create a global theft detection model,
which is shared back with the participants.

4. Model Evaluation and Refinement:

(a) The performance of the global theft detection model is evaluated using
standard metrics.

(b) The model is further refined and optimized through iterative rounds of
training and fine-tuning.

(c) Techniques like hyperparameter tuning, feature selection, and ensemble
modeling are used to improve the model’s predictive capabilities.

5. Deployment and Continuous Improvement:

(a) The optimized theft detection model is deployed within the federated net-
work.

(b) The model continues to learn and improve over time, as new data is fed
into the system and feedback from enforcement actions is incorporated.

(c) Mechanisms for secure and transparent model updates, as well as alerts
and notifications, are implemented using blockchain technology.

(d) Ongoing collaboration and knowledge sharing among the federated net-
work participants ensure the continued effectiveness of the theft detection
solution.

3.3.3 Federated Learning Model Development

Federated Learning is a cutting-edge approach in machine learning that allows mul-
tiple devices to collaboratively train a shared model without sharing their raw data.
It addresses the challenge of data privacy by enabling training on decentralized data
sources such as mobile devices, edge servers, or IoT devices. With Federated Learn-
ing, models are trained locally on individual devices, and only model updates are
exchanged with a central server. This not only ensures user privacy but also reduces
the need for data transfer, making it an efficient and scalable solution for learning
from distributed data sources.

Here is the complete steps of Federated Learning Model Development with all
the details [18]:
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Model Initialisation

• The initial theft detection model is defined with a selected machine learning
algorithm (e.g., logistic regression, decision trees, neural networks).

• The model parameters are randomly initialized, setting the weights and biases
to small random values.

• The model architecture is designed to effectively capture the patterns and rela-
tionships in the theft detection problem, with appropriate input features, hid-
den layers, and output layers.

Local Model Training

• The initialized model is securely distributed to each participant in the feder-
ated network.

• Each participant trains the model on their local data, which includes historical
consumption patterns, customer profiles, grid topology information, and any
other relevant data sources.

• The participants use stochastic gradient descent or other optimization tech-
niques to update the model parameters, minimizing a loss function that cap-
tures the theft detection objective (e.g., minimizing false positives and false
negatives).

• The local training process is performed for a predefined number of epochs or
until the local model converges, as determined by monitoring the validation
performance.

• Participants may also apply techniques like early stopping, regularization, and
data augmentation to improve the generalization and robustness of the local
models.

Model Exchange

• After local training, the participants securely share their updated local models
with the other members of the federated network.

• Advanced cryptographic techniques, such as homomorphic encryption or se-
cure multi-party computation, are used to protect the privacy and confiden-
tiality of the shared models, ensuring that the underlying data is not accessible
to other participants.

• The model exchange process is designed to be efficient, minimizing the amount
of data transfer and computational overhead.

Model Aggregation

• The shared local models are aggregated into a global model using a federated
learning algorithm, such as FedAvg (Federated Averaging) or FedProx (Feder-
ated Proximal).

• The global model is constructed by computing a weighted average of the local
model parameters, with the weights determined by the size or quality of the
local datasets, or other factors like the performance of the local models.
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• The global model represents the collective knowledge learned from the dis-
tributed data across the federated network, capturing the diverse patterns and
experiences from the different participants.

Iterative Process

• The process of local training, model exchange, and global aggregation is re-
peated in an iterative manner, with the global model being sent back to the
participants for the next round of local training.

• This iterative process continues, allowing the global model to gradually im-
prove and converge towards an optimal theft detection solution, by contin-
uously refining the model based on the feedback and insights from the local
participants.

• The number of iterations and the stopping criteria for the iterative process are
determined based on the convergence of the global model’s performance on a
held-out validation dataset.

Convergence

• The iterative process continues until the global model converges, exhibiting
stable and optimal performance on a held-out validation dataset.

• Convergence is assessed based on metrics such as detection accuracy, preci-
sion, recall, F1-score, and other relevant performance indicators, ensuring the
global model meets the desired theft detection requirements and can be effec-
tively deployed in the real-world.

• The convergence of the global model is also evaluated in terms of its robust-
ness, stability, and generalization capabilities, to ensure its effectiveness across
diverse operating conditions and new unseen data.

This detailed federated learning process enables the collaborative training of a ro-
bust theft detection model without centralizing the sensitive data. The final global
model incorporates the knowledge from all participants, making it more effective
and trustworthy for deployment across the entire federated network.

3.3.4 Federated Learning Model Architecture

The proposed federated learning (FL) model architecture for smart grid applications
is designed to leverage the distributed nature of smart grid data while ensuring
data privacy and security. The architecture integrates multiple local models trained
on decentralized data sources, such as smart meters and sensors, across various grid
nodes. These local models are collaboratively aggregated into a global model with-
out the need to share raw data, thus preserving privacy and reducing the risks of
data breaches.

Key Components

1. Local Nodes (Smart Meters and Sensors):
- Each local node, such as a smart meter or sensor, collects and processes data
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related to electricity consumption, voltage, and other relevant metrics.
- The data remains on the local devices to maintain privacy.
- Local nodes perform initial preprocessing steps, such as data normalization,
outlier detection, and feature extraction.

2. Local Model Training:
- Each local node trains a machine learning model using its own dataset. Com-
mon models used include neural networks, decision trees, or support vector
machines, depending on the specific application within the smart grid.
- Training is performed iteratively, with updates to model parameters based
on the local data.

3. Federated Server (Aggregation Server):
- The federated server acts as the central coordinating entity that aggregates
the locally trained models.
- It receives model parameters (weights and biases) from the local nodes, not
the raw data.
- The server performs model aggregation using techniques such as Federated
Averaging (FedAvg), which computes the weighted average of the local model
updates to create a global model.

4. Global Model Update:
- After aggregation, the federated server updates the global model with the
newly averaged parameters.
- This updated global model is then sent back to the local nodes, where it is
used to initialize the next round of local training.
- The process iterates over multiple rounds until convergence or until the model
achieves satisfactory performance.

The proposed federated learning model architecture for smart grid offers a promis-
ing solution for detecting electricity theft while ensuring privacy and enhancing
model performance. By addressing key challenges and optimizing the architecture
components, the proposed solution aims to improve the efficiency, reliability, and
security of smart grid operations.

3.4 Conclusion

The proposed methodology outlined in the preceding sections has provided a com-
prehensive approach to addressing the critical challenge of electricity theft detec-
tion in smart grid systems. By leveraging the principles of federated learning, this
solution has been designed to overcome the limitations of traditional centralized
machine learning models, which often struggle with the issues of data privacy, scal-
ability, and single points of failure.

The system model and mathematical formulation presented in Section:

• have provided a solid foundation for understanding the key elements and ob-
jectives of the smart grid optimization problem.

The identification of electricity theft as a pressing concern in Section:

• has further reinforced the need for a robust and effective detection mechanism.
The federated learning-based approach detailed in Section:
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• has been meticulously outlined, encompassing the crucial steps of model ini-
tialization, local training, model exchange, aggregation, and the iterative pro-
cess.
This collaborative learning framework enables the global model to evolve and
improve over time, benefiting from the collective insights and data shared by
the diverse participants, while preserving the privacy and autonomy of their
local data sources.

The emphasis on data analysis and feature engineering in Section:

• has ensured that the federated learning model is well-equipped to capture the
complex patterns and indicators of electricity theft within the distributed grid
infrastructure.
The convergence criteria and performance evaluation metrics have been care-
fully considered to validate the effectiveness and reliability of the proposed
solution.
By successfully implementing this federated learning-based approach for elec-
tricity theft detection, the project has demonstrated the potential for scalable,
privacy-preserving, and collaborative machine learning in the energy sector.
The insights and lessons learned from this methodology can be further applied
to address other challenges in smart grid management, as well as extended to
other domains that require the integration of distributed data sources while
maintaining data privacy and security.
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Chapter 4

Implementation and Results

4.1 Introduction

This chapter presents the loading and preparation of the dataset, followed by the
installation and configuration of the TensorFlow framework. We then designed and
trained a high-performing model. The evaluation of key metrics, notably accuracy
and F1 score, demonstrated the exceptional robustness of the model in accurately
detecting theft cases. The in-depth analysis of the confusion matrix confirmed the
applicability of our tool in the energy industry. In conclusion, this study has enabled
the design of a reliable system to help providers effectively combat electricity theft.

4.2 Environment and development tools

For the implementation of the process presented in the previous chapter, we used a
set of languages, programming environments, and tools that are often used in deep
learning projects.

4.2.1 Google Colab

FIGURE 4.1:
Google Colab

logo.

Google Colaboratory, also known as "Google Colab" or just
"Colab," is an educational project for developing machine
learning models on strong computing devices like GPUs
and TPUs. It offers an interactive Jupyter Notebook en-
vironment that runs without a server for free [3]. Colab
provides researchers and developers with access to power-
ful computing resources and allows them to collaborate on
machine learning projects seamlessly [5].
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4.2.2 Python

FIGURE 4.2:
Python logo.

Python is a powerful programming lan-
guage that is easy to learn [24]. It was
established by Guido van Rossum in the
late 1980s [artima]. Reading and writing
Python code is simple, and it is brief with-
out being obscure. Python is an effective
expressive programming language, so we
can often write quite less code in Python
to create the same application than we
would in, say, C++ or Java [21].

4.2.3 TensorFlow

FIGURE 4.3:
TensorFlow

logo.

TensorFlow was released in 2015 and developed by the
Google Brain team for use in Google’s internal research
and production. TensorFlow is an open-source, completely
free artificial intelligence and machine learning software li-
brary. This tool may be used for several applications, but
it is particularly interested in the inference of deep neural
networks [1].

FIGURE 4.4:
Overleaf

logo.

Overleaf is a cloud-based, collaborative setting for sharing
and using LATEX. It speeds up and simplifies the entire pro-
cess of writing, editing, and posting scientific publications.
Overleaf shows issues and warnings inline so you can see
them as you go and detect them early [20].
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4.3 Implementation of the Federated Learning based Model

4.3.1 Dataset

In our study, we used the dataset found in [28]. The dataset includes energy con-
sumption data for 16 different consumer types, with hourly measurements taken
over a year (12 months) for several customers. The original dataset has been aug-
mented with six different types of fraud, representing various theft scenarios.

1. The first type of theft involves significantly reducing electricity consumption
during the day by multiplying the consumption by a random value between
0.1 and 0.8.

2. In the second type, electricity consumption drops to zero randomly and for an
arbitrary period.

3. The third type is similar to the first, but each hourly consumption value is
multiplied by a random number.

4. For the fourth type, a random fraction of the mean consumption is generated.

5. The fifth type simply reports the mean consumption.

6. The sixth type reverses the order of the readings.

A theft generator was developed to randomly implement these six types of theft. The
original data was sourced from the Open Energy Data Initiative (OEDI) platform, a
centralized repository of valuable energy research datasets aggregated from various
U.S. Department of Energy programs, offices, and national laboratories.

FIGURE 4.5: Dataset
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4.3.2 Tensorflow Federated (TFF)

In our study, we used Tensorflow Federated as our main federated learning frame-
work to implement our solution. TensorFlow Federated (TFF) is an open-source
framework designed for machine learning and other computations on decentralized
data. TFF was created to support open research and experimentation with Federated
Learning (FL), a machine learning approach where a shared global model is trained
across numerous clients that retain their training data locally. For instance, FL has
been utilized to train predictive models for mobile keyboards without uploading
sensitive typing data to servers.

TFF allows developers to simulate federated learning algorithms on their models
and data, and to experiment with new algorithms. Researchers can find starting
points and comprehensive examples for various types of research. The building
blocks provided by TFF can also be used for non-learning computations, such as
federated analytics. TFF’s interfaces are structured into two main layers:

• Federated Learning (FL) API: This high-level interface enables developers to
apply the provided implementations of federated training and evaluation to
their existing TensorFlow models.

• Federated Core (FC) API: This core layer consists of lower-level interfaces for
expressing novel federated algorithms by combining TensorFlow with dis-
tributed communication operators in a strongly-typed functional program-
ming environment. It also serves as the foundation for the Federated Learning
layer.

TFF allows developers to declaratively express federated computations for deploy-
ment in diverse runtime environments. It includes a performant multi-machine sim-
ulation runtime for experiments.

4.3.3 Data Preprocessing

Data preprocessing is a crucial step in preparing your unbalanced dataset for elec-
tricity theft detection. Here are the steps that we followed in our study:

1. Data Collection and Integration:
- Gather data from various sources.
- Combine data into a single dataset, ensuring consistent formatting.

2. Data Cleaning:
- Handle Missing Values: Identify and address missing data by removing in-
stances with missing values or imputing them using mean, median, mode, or
more sophisticated methods like k-nearest neighbors (KNN) imputation.
- Remove Duplicates: Identify and remove duplicate records to avoid bias.

3. Data Transformation:
- Normalization/Standardization: Scale features to a consistent range, espe-
cially if using distance-based algorithms. Normalize (min-max scaling) fea-
tures as appropriate.
- Feature Engineering: Create new features or modify existing ones to bet-
ter capture relevant information. For instance, create time-based features like
hour of the day, day of the week, etc.
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4. Feature Selection:
- Remove Irrelevant Features: Eliminate features that do not contribute to the
predictive power of the model.
- Select Important Features: Use techniques like correlation analysis, feature
importance from models, or recursive feature elimination to select the most
important features.

5. Data Splitting:
- Split the dataset into training and testing sets, typically using an 80/20 or
70/30 ratio. Ensure that the splitting method maintains the class distribution
to some extent (stratified splitting).

FIGURE 4.6: Data Preprocessing .

4.3.4 Model Training

FIGURE 4.7: Model Training .

4.3.5 Model Test

FIGURE 4.8: Making Predictions on the Test Set.

4.4 Results

This section shows the obtained results after training and testing our federated learning-
based model.

4.4.1 Performance Evaluation

Accuracy

• Test Accuracy: 0.8749

• Definition: Accuracy is the proportion of correct predictions (both true posi-
tives and true negatives) among the total number of cases examined.
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• Analysis: An accuracy of 0.8749 (or 87.49%) indicates that the model correctly
predicted the class for approximately 87.49% of the test cases. While this seems
high, accuracy alone can be misleading in the case of im balanced datasets, as
it does not differentiate between the types of errors.

Classification Report

• Class 0 (Normal):

- Precision: 1.00
- Recall: 0.42
- F1-Score: 0.60

• Class 1 (Theft):

- Precision: 0.64
- Recall: 1.00
- F1-Score: 0.78

F1 Score

The F1 score, which is the harmonic mean of precision and recall, is relatively high
(0.7780), indicating a good balance between precision and recall for the positive class
(theft).

AUC:

- The Area Under the Receiver Operating Characteristic Curve (AUC) is very high,
indicating that the model has a good ability to distinguish between the positive and
negative classes.

FIGURE 4.9: ROC Curve with Annotated Results.

Confusion Matrix:

• True Negatives (TN): 10215
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• False Positives (FP): 13849

• False Negatives (FN): 34

• True Positives (TP): 24333

RMSE

- The Root Mean Squared Error (RMSE) indicates the model’s prediction error. A
lower RMSE is better, and this value suggests reasonable predictive accuracy.

Result Analysis

• High Precision for Normal (Class 0) but Low Recall:
- The model achieves perfect precision for the normal class, meaning that all
instances predicted as normal are indeed normal.
- However, the recall for the normal class is relatively low (0.42), indicating
that many actual normal instances are being incorrectly classified as theft.

• Moderate Precision but High Recall for Theft (Class 1):
- The precision for the theft class is moderate at 0.64, meaning that 64% of the
instances predicted as theft are actually theft.
- The recall for the theft class is perfect (1.00), indicating that the model cor-
rectly identifies all actual theft instances.

• Imbalance in Predictions:
- The confusion matrix shows a high number of false positives (13849), which
means many normal instances are misclassified as theft.
- There are very few false negatives (34), meaning almost all theft instances are
correctly identified, contributing to the high recall for the theft class.

• ROC AUC:
- A high AUC (0.9362) indicates that the model is generally good at distin-
guishing between normal and theft instances across various threshold values.

The model’s performance metrics reveal the following insights:

1. Accuracy (87.49%) is high, but it is not sufficient to judge the model’s effective-
ness due to class imbalance.

2. Recall (42%) for the ’Theft’ class is relatively low, indicating a medium detec-
tion of actual thefts. F1-Score (0.78) is high, reflecting the good balance be-
tween precision and recall.

3. RMSE (0.3057) indicates a moderate prediction error in terms of probability
estimates. Precision (97%) for the ’Theft’ class is high, showing that when the
model predicts theft, it is usually correct.

4. AUC (0.8303) suggests good overall discrimination ability between ’Normal’
and ’Theft’ classes.

5. Confusion Matrix shows a high number of false negatives, indicating the model’s
difficulty in detecting theft cases.

the model needs improvement in identifying theft cases (increase recall) while
maintaining a high precision and accuracy. Balancing these metrics is crucial for a
more effective and reliable model in practical scenarios.
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4.5 Comparison with a Machine Learning Model

In our study, we compared the proposed federated learning model with Logistic re-
gression which is a supervised machine learning algorithm that accomplishes binary
classification tasks by predicting the probability of an outcome, event, or observa-
tion. The model delivers a binary or dichotomous outcome limited to two possible
outcomes: yes/no, 0/1, or true/false.

4.5.1 Model Training

Logistic regression examines the connection between one or more independent vari-
ables and categorizes data into distinct classes.

FIGURE 4.10: Model Training in The logistic regression model.

It is widely employed in predictive modeling to estimate the probability that a
given instance falls into a particular category.

4.5.2 Model Test

FIGURE 4.11: Model testing in The logistic regression model.

4.6 Results

After conducting our experiments, the obtained results are as follows:

FIGURE 4.12: ROC Curve with Annotated Results.
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4.6.1 Performance Evaluation

Accuracy

• Value: 0.8662

• Interpretation: The model correctly classifies approximately 86.62% of the in-
stances in the test set. Accuracy measures the proportion of true results (both
true positives and true negatives) among the total number of cases examined.

Recall

• Value: 0.0000

• Interpretation: Recall (also known as sensitivity or true positive rate) is 0,
which indicates that the model failed to identify any positive instances of theft.
This is a significant issue, as the model does not capture any theft cases.

F1-Score

• Value: 0.8042

• Interpretation: The F1-Score is the harmonic mean of precision and recall. De-
spite the recall being 0, the overall weighted F1-score is 0.8042, which is largely
influenced by the performance on the non-theft class.

Root Mean Squared Error (RMSE)

• Value: 0.3657

• Interpretation: RMSE measures the average magnitude of the errors between
the predicted values and the actual values. A lower RMSE indicates better
model performance, though it is not the primary metric for classification tasks.

Area Under the Curve (AUC)

• Value: 0.6611

• Interpretation: The AUC of the ROC curve is 0.6611, suggesting that the model
has a 66.11% chance of distinguishing between a randomly chosen positive
instance (theft) and a randomly chosen negative instance (normal). This value
indicates poor discrimination ability.

Confusion Matrix Components

• True Negatives (TN): 66,339

• False Positives (FP): 0

• False Negatives (FN): 10,243

• True Positives (TP): 0

Interpretation:

• TN (66,339): The model correctly predicted 66,339 non-theft cases.
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• FP (0): There were no instances where the model incorrectly predicted theft
when it was not.

• FN (10,243): The model failed to identify 10,243 theft cases.

• TP (0): The model did not correctly identify any theft cases.

The logistic regression model shows a high overall accuracy, primarily because
the dataset is imbalanced with many more non-theft cases. However, the model fails
to identify any theft instances, as evidenced by the recall and true positive rate of 0.
The high F1-Score and accuracy are misleading due to the imbalance in the dataset
and the poor performance in detecting theft.

This evaluation highlights the importance of considering multiple metrics, espe-
cially recall and AUC, when dealing with imbalanced datasets to get a complete
picture of model performance. For improving theft detection, further steps like
balancing the dataset, using different algorithms, or employing more sophisticated
techniques such as anomaly detection might be necessary.

4.7 Remark

The fedrated learning model detected thefts better and had a higher ability to dis-
tinguish between theft and normal cases but was more complex and required more
computing power. The logistic regression model was simpler and easier to under-
stand but didn’t detect any thefts and had lower performance. Choosing between
them depends on whether you need better detection and can handle the complexity,
or prefer a simpler, more straightforward model.

4.8 Conclusion

In conclusion, this study has resulted in the design of a reliable system to effectively
assist providers in combating electricity theft. The evaluation of key metrics, in-
cluding precision and F1 score, has demonstrated the exceptional robustness of the
developed model in accurately detecting cases of theft. The analysis of the confusion
matrix has confirmed the applicability of this tool within the energy industry. Over-
all, this work has culminated in the development of a reliable system for combating
electricity theft.
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General Conclusion

In conclusion, this dissertation has explored the profound integration of smart grid
concepts and artificial intelligence (AI) technologies, highlighting the pivotal role of
AI in revolutionizing the management and operation of modern power grids. The
research has delved into the fundamental components and architecture of smart grid
systems, as well as the key areas of AI research and development, including machine
learning.

The study has demonstrated how AI-powered solutions can be leveraged to en-
hance grid performance, improve efficiency, and address critical challenges such
as electricity theft. AI-powered solutions can be leveraged to enhance grid perfor-
mance, improve efficiency, and address critical challenges in several key ways:
Electricity Theft Detection:

• Federated Learning technique can be used to identify unusual consumption
patterns and potential theft activities.

• By analyzing metering data, customer profiles, and other relevant information,
Federated Learning-based solutions can flag suspicious behavior and pinpoint
areas of potential theft while preserving privacy and security of sensitive data.

Grid Performance Optimization:

• Machine learning algorithms can analyze real-time grid data to identify pat-
terns, detect anomalies, and predict system failures or outages.

• This enables proactive maintenance, improved asset management, and dy-
namic load balancing to ensure reliable and stable grid operations.

• Advanced analytics can also help optimize power generation, transmission,
and distribution, reducing energy losses and improving overall grid efficiency.

Efficiency Improvements:

• Learning models can be trained to forecast energy demand and generation
with high accuracy, allowing for better scheduling and dispatching of resources.

• AI-based control systems can dynamically adjust grid parameters, such as
voltage and frequency, to minimize energy wastage and optimize energy con-
sumption.

• Intelligent algorithms can also enable better integration of renewable energy
sources, improving the grid’s overall energy mix and sustainability.

By leveraging these AI-powered capabilities, smart grid operators can enhance
grid performance, improve energy efficiency, and effectively tackle critical challenges
like electricity theft. The integration of AI technologies into smart grid systems can
lead to significant improvements in reliability, sustainability, and customer satisfac-
tion, paving the way for a more resilient and future-ready power infrastructure.



44 Chapter 4. Implementation and Results

The findings and insights presented can serve as a valuable resource for decision-
makers, researchers, and practitioners in the energy sector, guiding them towards
the effective integration of AI-powered solutions for the betterment of power grid
operations.

As the energy landscape continues to evolve, the integration of smart grid con-
cepts and AI technologies will undoubtedly play a crucial role in shaping the future
of the power industry. This dissertation has provided a comprehensive understand-
ing of this synergistic relationship, paving the way for further advancements and in-
novations in the quest for a more efficient, reliable, and environmentally-conscious
energy future.
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