PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
Ministry of Higher Education and Scientific Research
Mohamed Khider University BISKRA

Faculty of Exact Sciences, Natural and Life Sciences
Computer Science Department

Order Number: Startup 08/RTIC/M2/2024

Thesis
Presented to obtain the academic master’s degree in
Computer Science

Option: Networks and Information and Communication Technologies

Title

A mechanism to detect and eliminate harmful
insects in smart greenhouses

Presented by: Supervised by:
-TENGOURI NADA -Dr.MERIZIG ABDELHAK
-CHENNOUFI DOUNIA -Dr.AYAD SOHEYB

Defended on June 24, 2024: In front of the jury composed of:

-TERRISSA Sadek Labib Prof President
-Merizig Abdelhak MCB Supervisor
-SAHLI Sihem MAA Examiner

Academic year : 2023/2024



Acknowledgement

First and foremost, we express our gratitude to Allah for blessing us with health,
willpower, strength, courage, and patience. These qualities have enabled us to
overcome challenges and achieve our goals, without which our project would
not have reached fruition.

We extend our sincere thanks and appreciation to our thesis supervisors,
Dr. Merizig Abdelhak and Dr. Ayad Soheyb, for their exceptional guidance,
support, and instructions.

We also wish to thank the members of the jury,Prof. TERRISSA Sadek
Labib, Dr. SAHLI Sihem, and Dr. Merizig Abdelhak , for their time, effort,
and valuable feedback in reviewing our work.

We extend our sincere gratitude to all those who supported us throughout our
academic journey, especially during this challenging year. We offer a special
thanks and gratitude to Dr. Bellaala Abir, who has been a great help to us.

We are deeply thankful to our families, the Chennoufi and Tengouri families,
for their inspiration, assistance, and the time they devoted to helping us make
our dissertation shine.

We also express our gratitude to our friends and colleagues for their moral
and intellectual support throughout our work. We hope they recognize the impact

of their support when reading these words.



Remerciements

Tout d’abord, nous exprimons notre gratitude a Allah pour nous avoir bénis
avec la santé, la volonté, la force, le courage et la patience. Ces qualités nous
ont permis de surmonter des défis et d’atteindre nos objectifs, sans lesquels notre
projet n’aurait pas abouti.

Nous adressons nos sinceres remerciements et notre appréciation a nos di-
recteurs de these, Dr Merizig Abdelhak et Dr Ayad Soheyb, pour leurs conseils,
leur soutien et leurs instructions exceptionnels.

Nous souhaitons également remercier les membres du jury, Prof. TERRISS A
Sadek Labib, Dr. SAHLI Sihem, et Dr. Merizig Abdelhak , pour leur temps,
leurs efforts et leurs précieux commentaires dans [’examen de notre travail.

Nous exprimons notre sincere gratitude a tous ceux qui nous ont soutenus
tout au long de notre parcours académique, en particulier durant cette année
difficile. Nous adressons un merci spécial et une profonde gratitude a Dr. Bel-
laala Abir, qui nous a beaucoup aidés.

Nous sommes profondément reconnaissants a nos familles, les familles
Chennoutfi et Tengouri, pour leur inspiration, leur aide et le temps qu’elles ont
consacré a nous aider a faire briller notre these.

Nous exprimons également notre gratitude a nos amis et collegues pour leur
soutien moral et intellectuel tout au long de notre travail. Nous espérons qu’ils

reconnaitront l'impact de leur soutien en lisant ces mots.



PRV IR %

R[N N R I S E TR
L] Gl Sladl ods O edly Al LY
Loy 2l a8 Lo Y, oSl 528, Sl 12

S bl G b 2l Gally sl LS e e 0f 55
lag® 2y B g 5 o coapo sl s8Iy Gl e 3
NEPREA]

od L5 5 b ) 2l liasY 21 Ll pdix (NS
e o8 o plo Jo 55Ul G e G 255
e 3 el Al el S

M ey g sE VI Loy IS5 L o B Gom SR80
e o 35S Olmaly ool K8 a gty el plal) Vs
odelos (3508 W b K é)\

do coosiby gt Gl Ll Gl Lilel e ey
Ly (ol e el 3 Uy 35030 v.@f;

é‘ LeMee s LMoy Lleaa) M\ USCE e e sty

Q‘J&Lﬁj ojﬁ d‘)b J)MYQ_;JS\ (_;;i’\j L?}JS‘ V,@,e;.)
i) OUW) 0 Jb g\Js Le f:La,J\ v.@f‘.:;yb 1S5



Abstract

Agriculture is one of the pillars of Algeria’s economy, especially tomato cultiva-
tion, which is increasingly popular due to its various uses and benefits. Agricul-
ture within plastic greenhouses is considered one of the common and important
methods to meet the growing demand, as it provides a suitable environment.
However, farmers face challenges from pests and harmful insects, especially
Tuta absoluta, which traditional methods have not shown effectiveness in com-
bating.

Tuta absoluta is considered one of the most dangerous pests affecting crops
in plastic greenhouses, especially tomatoes, causing significant damage and high
costs for farmers, leading to major economic losses.

To address this challenge, our project introduces an innovative idea propos-
ing a new approach that combines modern technologies such as artificial in-
telligence and smart agriculture. We introduce a smart device that detects and
efficiently eliminates this insect. The proposed device consists of sensors and
a camera, where the camera operates automatically when the motion sensor de-
tects the presence of this insect, transmitting real-time data to a deep learning
model that accurately determines the adult stage of Tuta absoluta. The device is
strategically placed near leds(yellow and green ) and traps to attract, capture, and
eliminate the insect. The system also includes a process to predict the emergence
of this pest using machine learning models. Additionally, the project includes a
mobile application that instantly informs farmers about detection, elimination,
and prediction events, empowering them to make quick and effective decisions
to protect their crops.

Through this innovative approach, the flexibility of artificial intelligence is
leveraged simultaneously with the Internet of Things, leading to increased ac-
curacy and effectiveness at a reasonable cost, to enhance the fight against Tuta

absoluta.

Keywords Smart Agriculture(SA), tuta Absoluta, sensors , artificial intelli-
gence (Al), machine learning(ML), deep learning(DL).



Resume

L’agriculture est ’'un des piliers de 1’économie algérienne, notamment la
culture des tomates qui bénéficie d’une popularité croissante en raison de ses
multiples utilisations et avantages. L’agriculture sous serre plastique est consi-
dérée comme une méthode courante et importante pour répondre a la demande
croissante, offrant un environnement propice. Cependant, les agriculteurs sont
confrontés a des défis posés par les ravageurs, en particulier le ravageur Tuta
absoluta, pour lequel les méthodes traditionnelles de lutte n’ont pas montré leur
efficacité.

Le Tuta absoluta est I’un des ravageurs les plus dangereux pour les cultures
sous serre plastique, en particulier les cultures de tomates, causant des dommages
graves aux récoltes et des colts tres élevés pour les agriculteurs, entrainant d’im-
portantes pertes économiques.

Pour relever ce défi, notre projet propose une idée novatrice qui propose une
nouvelle approche combinant les technologies modernes telles que I’intelligence
artificielle et I’agriculture intelligente. Nous proposons un dispositif intelligent
qui détecte et élimine efficacement ce ravageur. Le dispositif proposé¢ comprend
des capteurs et une caméra, la caméra fonctionnant automatiquement lorsque le
capteur de mouvement détecte la présence de ce ravageur, transférant ensuite les
données en temps réel a un modele d’apprentissage en profondeur qui détermine
avec précision le stade adulte de Tuta absoluta. De plus, le dispositif est straté-
giquement placé pres des LED (jaune et vert) et des pieges pour attirer le rava-
geur, le capturer et 1’¢liminer. Le systéme comprend également un processus de
prédiction de ’apparition de ce ravageur a 1’aide d’un mod¢le d’apprentissage
automatique. De plus, le projet comprend une application mobile qui informe
instantanément les agriculteurs des événements de détection, d’élimination et
de prédiction, leur permettant de prendre des décisions rapides et efficaces pour
protéger leurs cultures.

Grace a cette approche novatrice, la flexibilité de ’intelligence artificielle
est exploitée en synchronisation avec 1’Internet des objets, ce qui permet d’aug-
menter sa précision et son efficacité a un colt raisonnable, renforgant ainsi le

processus de lutte contre la Tuta absoluta.

Mots-clés Agriculture Intelligente (Al), tuta Absoluta, capteurs, intelligence

artificielle (IA), apprentissage automatique (ML), apprentissage profond (DL).
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Chapter

General Introduction

1.1 General Context

Tuta absoluta, also known as the tomato leaf miner, is a devastating pest that poses a sig-
nificant threat to tomato crops worldwide. This insect infests tomato plants, causing extensive
damage to leaves, stems, and fruits, leading to severe economic losses for farmers. Traditional
pest control methods have often proven ineffective against Tuta absoluta due to its rapid repro-
duction rate and ability to develop resistance to pesticides.

In our current situation, technology assists us in various ways. A motion sensor detects
Tuta absoluta movements and commands a camera to classify if it is an adult. Once identified, a
aspirator initiates a targeted elimination process, reducing the Tuta absoluta population and min-
imizing crop damage. The DHT11 sensor measures temperature and humidity, and a machine
learning model predicts the insect’s presence, notifying the farmer via a mobile application to
take necessary measures. All of this is achieved through artificial intelligence.

1.2 Problem statement

Regrettably, Algerian farmers continue to rely on conventional techniques for eradicating
tomato leaf miners, presenting significant challenges such as:

* Ineffectiveness and environmental harm associated with traditional pest control methods.
* Excessive pesticide use, leading to environmental pollution and health hazards.
 Challenges in early detection and targeted elimination of Tuta absoluta larvae.

* Pesticide resistance development in Tuta absoluta.

17



CHAPTER 1. GENERAL INTRODUCTION

1.3

Objectives

The goals of our project include :

1.4

Develop a model for early detection and elimination of Tuta absoluta.
Minimize environmental impact by reducing pesticide usage.
Improve crop yield and quality through effective pest control.

Ensure timely intervention to prevent widespread infestations.

Integrate modern technologies for comprehensive pest management.

Thesis Structure

The current report is structured into Five chapters:

Chapter 01:In this chapter, we will discuss general information about smart Agriculture

Chapter 02: The seconde chapter contains some artificial intelligence concepts such as
machine learning, deep learning, and image classification

Chapter 03: The third chapter includes the design of our system and a number of dia-
grams explaining the functionality of our system.

Chapter 04 :The fourth chapter presents a list of development tools and the program-
ming language used for the development of our project, along with pseudo-algorithms
illustrating the system’s operations. We concluded it with images showcasing our practi-
cal application aspec

Chapter 05 :’Conclusion and Perspectives’ This concludes the main goal of this paper
and it gives a point of view for future work

18



Chapter 2

Smart Agriculture Overview

2.1 Introduction

Smart Agriculture revolutionizes farming practices through the integration of advanced tech-
nologies. It is instrumental in tackling agricultural hurdles such as harmful insects.

This chapter provides a comprehensive overview of Smart Agriculture. Starting with its
definition and the evolutionary trajectory of agriculture. Then, it discusses the paramount sig-
nificance of Smart Agriculture in modern farming practices, highlighting the pivotal role played
by Information and Communication Technologies (ICTs). After that, it offers insights into
Greenhouse Farming, giving a succinct overview of greenhouse techniques and explaining the
challenges posed by harmful insects, along with the various management strategies for these
pests.

2.2 Definition of Smart Agriculture

Smart Farming integrates advanced Information and Communication Technologies (ICTs) like
internet of thing (IoT) and Cloud Computing into agricultural practices, enabling precision
farming. emphasizing these technologies are poised to introduce increased automation through
robotics and Al. Big Data, with its vast, diverse datasets, plays a pivotal role, enabling informed
decision-making in agriculture [13].

Precision farming has the potential to greatly enhance agricultural output in both produc-
tivity and sustainability aspects [14]. It considered a facet of smart agriculture that employs
IoT technology to analyze field data for optimizing resource usage and improving productiv-
ity. Through sensors and data analysis, Farmers carefully consider their options when it comes to
planting, fertilizing, and determining the best times for harvesting, and determining optimal har-
vest times. [oT devices aid in monitoring crop health, moisture levels, and remotely. By lever-
aging loT, farmers can proactively address agricultural challenges, such as water scarcity, harm-
ful insects detection and soil variability, leading to increased efficiency and cost-effectiveness
in farming practices [15].

19



CHAPTER 2. SMART AGRICULTURE OVERVIEW

2.3 Evolution of Agriculture

Agriculture is the primary source of food and raw materials [16]. The diagram charts agricul-
ture’s progression through four major stages:

From nothing to few From few to many From many to good From good to powerful

o EL‘ .. The era of

e ) smart agriculture
1355 characterized by
unmanned operation

The era of high-speed
development of
.l;jl | aubematic agriculture

in The era of

v- mechanized
®2®

agriculture
The traditional
agricultural era
dominated by human

and ammal resources

1784 o 1950 A 1992 i 2017

-

InefTicient operation Low utilization Lack of intelligence SEerious security 15sues

Figure 2.1: Evolution of Agriculture [1]

2.3.1 Agriculture 1.0: Traditional Farming
The Traditional Agriculture dominance was around 1784 [1].

* During this period, there was a strong emphasis on manual human labor and animal
power [17]. Its advantages rest in the sustainable production of food via methods like
horticulture, arboriculture, and vegeculture, which have been crucial for supplying food
to different communities. Conventional farming methods have also been instrumental in
shaping landscapes and contributing to the human diet by cultivating a diverse range of
crops and livestock [18].

* Limitations of this phase:

» Despite its potential, the absence of technology leaded to inefficient operations and
low yields [1].

» Low production yields due to dependence on physical exertion.

» Susceptible to variations in weather conditions and pest infestations [19].

2.3.2 Agriculture 2.0: Mechanization

The second agricultural revolution around 1950 was a pivotal shift in farming practices [17] [1].

* The introduction of machinery like tractors revolutionized farming, boosting efficiency
and crop yields, fostering food stability and economic growth [19].
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 Additionally, reducing manual labor because of the machinery to automate tasks like
plowing.

» This era saw the early use of synthetic fertilizers and pesticides.
 Limitation of this stage:
» Environmental costs: increased pesticide use, soil erosion, water depletion, and

salinization of irrigated lands, so it is waste of natural resources. [20].

» Gender disparities: women faced health risks from pesticide exposure, deforestation
for fuelwood collection, and water contamination.

» Social inequities: unequal distribution of benefits, leading to marginalization of
small-scale farmers and women.

» High initial investment costs: posing a barrier to entry for small-scale farmers [21].

2.3.3 Agriculture 3.0: Precision Farming

The Agriculture 3.0, also known as Green Revolution or Precision Agriculture, emerged around
1992, heralding a new era of farming techniques [17] [1].

» Advancements in technology, including GPS, sensors, and data analytics, reshaped farm-
ing practices [22].

* Precision farming empowered farmers to precisely targeting fertilizer and pesticide ap-
plication for enhanced yields.

* Advances in biotechnology have enabled the genetic modification of crops, boosting their
productivity and bolstering resistance to diseases.

 Limitation of this stage:
» Dependency on inputs: reliance on high-yielding varieties, chemical fertilizers, and

pesticides creates economic unsustainability and soil degradation.

» High initial investment costs: posing a barrier to entry for small-scale farmers [19].

2.3.4 Agriculture 4.0: Smart Agriculture

Agriculture 4.0 is a transformative concept that integrates precision farming principles with
modern information technologies, such as the Internet of Things and Big Data analytics, to
enhance decision-making, increase competitiveness, and create a technological value chain that
integrates all actors in agri-food production [23].

This signifies the present and future state of agriculture, commencing approximately from
2017 [17] [1]. It focuses on:

» Agriculture 4.0 emerged around the early 2010s, aligning with Industry 4.0’s innovative
strategy.

* Precision Agriculture evolves into Agriculture 4.0, emphasizing sustainability and effi-
ciency.
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It leverages cutting-edge technologies like 10T, Al, and big data for monitoring and con-
trol farming in real-time.

The integration of sensors, robots, and Al including machine learning, enables advanced
data analysis.

Agriculture 4.0 aims for global improvements in productivity, food systems, climate
adaptation, and environmental impact reduction [24].

The main challenges associated with Agriculture 4.0 implementation include:

» Small and medium enterprises operating in agriculture face difficulty in adopting In-
dustry 4.0 innovations due to rapid technological advancement, which makes mon-
itoring and implementation complex.

» Higher costs for small and medium-sized companies compared to large companies
[25].

» Technological Barriers: the need for infrastructure development in rural areas pose
significant obstacles to the adoption of Agriculture 4.0 [23].

Raises security concerns regarding data privacy and vulnerability to cyberattacks.

It’s crucial to tackle these obstacles and hurdles to unlock the full advantages of Agriculture
4.0, paving the way for a sustainable, efficient, and resilient agricultural sector.

24

Importance of Smart Agriculture in Modern Farming

Practices

Smart Agriculture plays a crucial role in human beings life due to its importance on enhancing
his profits to resolve challenges of traditional agriculture.
In this section we introduce some key reasons for the befits of SA:

Climate Resilience: smart agriculture practices help farmers adapt to and mitigate the
impacts of climate change on agricultural production.

Efficiency: by utilizing advanced technologies like IoT, drones, and data analysis sys-
tems, farmers can optimize resource use, leading to increased efficiency in farming op-
erations.

Precision Farming: smart agriculture enables precision farming techniques, allowing for
targeted application of inputs such as water, fertilizers, and pesticides based on real-time
data, leading to higher yields and reduced environmental impact.

Sustainability: smart agriculture promotes sustainable farming practices by enhancing
productivity while minimizing resource wastage and environmental degradation.

Data-Driven Decision Making: by collecting and analyzing data on soil quality, weather
conditions, and crop health, farmers can make informed decisions to improve crop man-
agement and overall performance.
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* Global Impact: smart agriculture practices contribute to reducing greenhouse gas emis-
sions and combating climate change on a global scale.

 Technological Innovation: smart agriculture drives innovation in the agricultural sector,
fostering the development of new technologies and solutions to address the challenges
faced by farmers.

» Competitiveness: sdopting smart agriculture practices enhances the competitiveness of
farmers by improving productivity, reducing costs, and ensuring sustainable agricultural
practices.

* Long-Term Sustainability: smart agriculture technologies are seen as a key factor in en-
suring the long-term sustainability of agricultural activities, both at the national and in-
ternational levels.

* Future Prospects: smart farming technologies are projected to play a crucial role in shap-
ing the future of agriculture, with a focus on sustainability, efficiency, and resilience to
climate change impacts [26] [23].

2.5 The integration of ICTs in agriculture

ICT is defined by UNESCO as “the combination of informatics technology with other, related
technologies, specifically communication technology”.

The integration of ICTs in agriculture involves adopting digital technologies like 10T, Al,
and big data analytics to enhance productivity, sustainability, and decision-making processes
in farming. This adoption is driven by the potential of smart agriculture to address agricultural
challenges, boost crop yields, and reduce costs [27]. By employing artificial intelligence, re-
search and development in smart farming are accelerated. Digital technologies such as wireless
sensor networks and cyber-physical systems are integrated into traditional agriculture systems
to improve agility, resource efficiency. While digital technologies offer strategic solutions for
increasing farm output efficiency, challenges related to technological, socioeconomic, and man-
agement aspects need to be addressed for the full realization of agricultural 4.0 [28].

Cyber-physical systems (CPSs) seamlessly blend computing with physical operations, in-
tegrating sensors, models, and actions to facilitate closed-loop setups. These systems harness
data from the physical world to inform decisions in the digital realm, carefully considering
constraints like time, energy, and safety [29]. Leveraging cutting-edge technologies such as
sensors, machine learning, and cloud computing, CPSs enable predictive analytics and opti-
mize performance for efficient operation. Interconnected through the Internet, lightweight and
portable computing devices empower CPSs to monitor and control systems in real-time, en-
suring proper operation and swift responses. By managing thousands of devices in coupled
environments, CPSs offer enhanced convenience in control and management tasks, driving ad-
vancements in various fields [30] [31].

Cyber-Physical-Social Systems (CPSS) expand CPS to include social interactions, forming
the basis for smart applications across various domains [32].
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2.6 Overview of Greenhouse Farming

Greenhouses are essential structures in modern agriculture, because they optimize plant growth
and ensure consistent yields by regulating factors like temperature and humidity.

2.6.1 Greenhouse definition

Greenhouse farming stands out as an epitome of precision and sustainability within the realm
of smart agriculture [33]. A greenhouse is a specialized structure, resembling a house, coated
with materials like plastic or glass, facilitating the year-round cultivation of crops like show-
ing in figure 2.2. It serves to manipulate plant growth conditions, ensuring increased yields
and improved quality of produce. Traditional greenhouse designs typically neglect environ-
mental factors such as temperature and humidity variations. However, modern greenhouses
adopt smart technologies and monitoring systems to regulate these variables effectively. The
functionality of a productive greenhouse relies on the implementation of environmental control
devices to manage various weather parameters. By integrating these technologies, greenhouses
can optimize plant growth and enhance agricultural productivity [11] [34].

Figure 2.2: Greenhouse [2]

2.6.2 Greenhouse farming techniques

The cultivation techniques of greenhouses play a crucial role in the productivity and efficiency
of agricultural operations. Understanding the challenges and benefits associated with each
method is essential for informed decision-making in greenhouse farming. (see Table2.1)
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Greenhouse | Knowledge about It Challenges Benefits
Farming
Method
Less - Permanent - Poor environmental - Constructed from
Developed greenhouse technique | control. readily available
Greenhouse | suitable for flowers - Fewer investment wooden materials,
(LDG) and vegetables. charges. making it affordable
- Lacks ventilation, for agriculturists with
limiting applicability limited budgets.
in hot regions. - Flexibility in
structure expansion.
Average - Constructed with - Requires initial - Improved
Developed polythene or glass investment. well-organized
Greenhouse | sheets. Ventilation - Maintenance costs environmental control
(ADG) methods can be static | may be moderate. system. - more
or movable. cost flexibility than LDG.
ranges from $30 to - Capable to
$100 per square meter. manageable in hot
regions.
- Lower power
consumption.
- Suitable for
cultivating vegetables
and high quality
plants.
Highly -Minimizes labor costs | - High maintenance - Labor cost reduction
Developed through task costs exceeding $100 | through task
Greenhouse | automation. per square meter. automation.
(HDG) - Constructed with a - Initial investment - Advanced climate

glass/iron structure.
-Internal weather is
independent of
external atmosphere.
- Climate controlled
by monitoring factors
like temperature, CO2
level, and humidity.

- suggesting using it
for cold-winter areas
and nursery
production.

may be prohibitive for
some farmers.

control.

- Suitable for
cold-winter areas and
nursery production.

- Efficient for
enhancing crop quality
and yield rates.

- Suitable for
cold-winter areas and
nursery production.

- eco-friendly

Table 2.1: Greenhouse Farming Methods [11]
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2.6.3 Insect pests in Greenhouses

In this section, we introduce some basic information about sources of Pests in Greenhouses, the
definition of plant diseases and pests, Common pests found in greenhouse environments and
the Impact of harmful insects on greenhouse, then we talk about the different control methods
for common pests found in greenhouse.

Greenhouses provide an ideal environment for plant growth, but they also attract various
harmful insects that can jeopardize crop health.

The insect pests inflict significant damage, with global annual yield losses estimated at 18—
20%, valued at over US$470 billion. In Indian agriculture, losses reach 30-35%, costing around
US$36 billion, impacting agricultural markets, food security, and farmers’ profits. Efforts in
pest management, including the use of transgenic crops, have seen a decline in losses, yet chal-
lenges persist, especially with climate change impacting pest behavior and crop yields [35].

2.6.3.1 Definition of plant diseases and pests

Plant diseases and pests constitute natural disaster and severe threats to worldwide agriculture
and forestry, disrupting the normal growth of plants from seed development to seedling growth,
often leading to plant death. These afflictions adversely impact various stages of plant devel-
opment, posing significant challenges to agricultural productivity and crop health [36] [37]. So
Knowing the location, extent and severity of the occurrence of diseases and pests is essential in
guiding plant protection procedures [38].

2.6.3.2 Different sources of pests in greenhouses

It’s crucial to understand the diverse origins of these intruders. Below, we outline the primary
sources:

 Impact of Global Warming: the shifting climate patterns wrought by global warming
can prompt alterations in pest distribution, potentially facilitating the survival of exotic
species in temperate climates.

* Cross-Contamination Among Greenhouses: in temperate greenhouse environments, ex-
otic pests often proliferate through cross-contamination among neighboring facilities,
rather than originating from surrounding vegetation. These pests may exploit outdoor
vegetation for propagation during the summer months.

* Aerial Dispersal of Indigenous Pests: indigenous pests infiltrate greenhouses via aerial
dispersal mechanisms. Certain species possess the ability to traverse considerable dis-
tances on air currents, frequently gaining entry through ventilation openings.

» Human-Mediated Introduction via Workers and Nursery Plants: human activity, particu-
larly the inadvertent transport of insects by greenhouse workers on their attire and belong-
ings, represents a significant vector for pest introduction. Additionally, the introduction
of nursery plants and associated materials can serve as a conduit for infestations within
greenhouse environments [39].
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2.6.3.3 Common pests found in greenhouse environments

In greenhouse environments, harmful insects like aphids, whiteflies, thrips, leaf miners and
more pose significant threats to crop health [40] as showing in figure 2.5. They inflict damage
by feeding on plant tissues, transmitting diseases, and weakening plant vigor and yield. Em-
ploying integrated pest management techniques such as insect nets, biological control agents,
and targeted insecticides can effectively mitigate these pests’ impact while reducing reliance on
chemical pesticides [41].

Unbalanced and excessive application of insecticides will contribute to another big issues,
because this indiscriminate use lead to the development of resistance in various pest species, un-
dermining the effectiveness of pest control measures and necessitating alternative management
strategies. [42].

Figure 2.3: The damage of spider mites Figure 2.4: The damage of Whitefly

Figure 2.5: Pests damage on crops [2]

2.6.3.4 Impact of harmful insects on greenhouse

The impact of common pests found in greenhouse environments, such as aphids, thrips, mites,
whiteflies, slugs, and leafminers, manifests in various detrimental effects:

* Aphids: feed on plant sap, causing stunted growth, distorted leaves, and transmission of
plant viruses.(Figure 2.6)

Figure 2.6: Aphids [3]

» Thrips: feed on plant tissues, leading to stippling, silvering, and distortion of leaves,
along with disease transmission.
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» Whiteflies: sap feeders causing yellowing, wilting, and inhibited growth, also promoting
sooty mold growth through honeydew secretion [40]. (Figure 2.7)

Figure 2.7: Whitefly [3]

* Mites: damage plants by feeding on cells, resulting in stippling, discoloration, and web-
bing, reducing plant vigor and yield.

+ Slugs: cause extensive damage by feeding on leaves, stems, and fruits, leading to holes,
slime trails, and reduced marketability.

* Leafminers: tunnel within leaves, creating unsightly mines, interfering with photosyn-
thesis, reducing yields, and making plants susceptible to diseases [12].

In summary, harmful insects pose a serious threat to greenhouse farming by causing di-
rect crop damage, transmitting diseases, disrupting biological control measures, necessitating
chemical control interventions, and resulting in substantial economic losses.

2.6.3.5 Control methods for common pests found in greenhouse

In this section, we talk about the various strategies for managing these pests which are: cultural,
chemical and biological control.

but before that we will mention Phytosanitation which is crucial in greenhouses to prevent
the entry and spread of plant and animal pests. It involves various measures such as installing
double access doors, using footbaths with disinfectants, setting up washing stations, removing
weeds, disposing of infested plant material properly, and avoiding conditions that promote dis-
ease development like water condensation. These practices aim to limit pest establishment and
reduce the risk of pest and pathogen movement within and across greenhouse borders [43].

2.6.3.5.1 Cultural and Chemical Control In this section,we mention cultural and chemical
methods for common harmful insect pests. (See Table 2.2)

The cultural practices are the most cost-effective options for farmers such as timely land
preparation and strategic planting to control insect pests culturally. In addition, intercropping
and soil nutrient applications (eg: planting carrots with onions reduce pest attacks such as carrot
fly) [40].

For the chemical control, we should think carefully before using the insecticides because it
involves diverse deferent types and modes of action, such as induced phytoalexins or constitu-
tive phytoanticipins...etc [44].
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Insect Cultural practices Chemical practices

pests

Aphids -Prune infested plant parts -Use water sprays to
and promote plant diversity physically remove aphids
to attract beneficial insects. from plants.

Thrips -Remove weeds and plant -Use insecticidal soaps or
debris that can harbor thrips. | oils as a last resort.

Whiteflies | -Use yellow sticky traps to -Apply insecticides if
monitor and reduce whitefly | populations exceed economic
populations. thresholds.

Slugs -Use barriers like copper tape | -Apply slug baits containing
to protect plants from slug iron phosphate.
damage.

Mites -Increase humidity levels to | -Use miticides selectively to
discourage mite infestations. | target mite populations.

Leafminers | -Remove and destroy -Use insecticides like
infested plant material to spinosad or neem oil to
reduce leafminer populations. | manage leafminers

Table 2.2: Cultural and Chemical Control for common insect pests [12]

2.6.3.5.2 Biological Control Its strategies for each pest aim to reduce their populations us-
ing natural enemies, providing an environmentally friendly alternative to chemical pesticides
in greenhouse agriculture.

* Miridae Bugs: increase predator densities near greenhouses by providing plants like
Geranium species or pot marigold, which support Zoophytophagous bugs of the family
Miridae [39].

* Aphids:

1. Parasitoids: aphid parasitoids from the families Aphidiidae and Aphelinidae are
important natural enemies used for biological control of aphids in greenhouse crops
[45].

2. Predators: predatory insects that feed on aphids, such as ladybugs and lacewings,
are beneficial for controlling aphid populations.

3. Entomopathogenic fungi: some entomopathogenic fungi have shown potential for
controlling aphids in greenhouse settings.
* Whiteflies:
1. Parasitoids: encarsia formosa and Eretmocerus spp. are parasitoids commonly used
for biological control of whiteflies in greenhouse crops.

2. Entomopathogenic organisms: certain entomopathogenic fungi can also be used to
target whiteflies in biological control programs [46].
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3. Predators: predatory insects like Macrolophus spp., Nesidiocoris tenuis, and Dicy-
phus spp. are effective in controlling whitefly populations. (See figure 2.8)

Figure 2.8: Insect predators in greenhouse tomato crops [4]

» Leafminers:

1. Parasitoids: Omnivorous predators like Zoophytophagus mirid bugs are acknowl-
edged as efficient biological control agents in diverse crops, including tomato [47].
Also, the parasitoid Dacnusa sibirica has been studied for its potential to control
leafminer pests in greenhouse crops.

2. Predators: predatory insects like Gronotoma micromorpha have been explored for
biological control of leafminers.

* Spider Mites:

1. Predators: predatory mites, such as Phytoseiulus persimilis, are commonly used for
biological control of spider mites in greenhouse crops [48].

2. Entomopathogenic fungi: certain entomopathogenic fungi can infect and kill spider
mites, contributing to their biological control.

* Thrips:

1. Predators: predatory insects like Orius spp. and Amblyseius spp. are effective
predators of thrips in greenhouse crops.

2. Entomopathogenic fungi: some entomopathogenic fungi have shown potential for
controlling thrips populations in greenhouse settings. [4]

2.7 Conclusion

In conclusion, this chapter provided a comprehensive overview of Smart Agriculture, begin-
ning with fundamental concepts such as the definition of SA and the Evolution of Agriculture.
Then, we highlighted the importance of Smart Agriculture in modern farming, emphasizing the
crucial role of ICT integration in agricultural systems. Transitioning to Greenhouse Farming,
we mentioned its techniques, Focusing on insect pests in greenhouses, where we elucided their
origins and the harmful impact they impose on greenhouse crops. In the end, we addressed the
common insect pests and various control methods employed to mitigate their effects.

In the next chapter, we will discuss Classification and deep learning Techniques for Insect
Detection.
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Chapter

Classification & DL Technique for Insect

detection

3.1 Introduction

The growth in capabilities in Al are expanding the ways that this can be used in fields to au-
tomate tasks that historically have been manual (like material site visits and mapping) or to
prevent problems altogether from happening This chapter is separated into two parts. In the
initial chapter, we would follow the fundamentals of machine learning and deep learning and
get deeper insights into it - all through our algorithms and image classification. We will start
by explaining the concept of artificial intelligence and then with an introduction to machine
learning, explaining its basic definitions and types. In the upcoming ones, we move to the deep
gray waters of deep learning, its concepts, its types and the available tools.

The second section covers this last pest of tomato: tomato leaf miner Tuta absoluta, its
analog, traits and impact. Next, we will dive into some articles on this insect and do a side by
side compare. Finally, we will conclude with a discussion.

3.2 Artificial intelligence (AI)

Artificial intelligence (Al) refers to the field of study and development of computer systems that
can perform tasks typically requiring human intelligence. These tasks include speech recogni-
tion, decision-making, and pattern identification. Al encompasses various technologies such as
machine learning, deep learning, and natural language processing (NLP) [49].
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Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 3.1: Al, ML, Deep learning [5]

3.2.1 Machine learning (ML)

Machine learning, a subset of Al, involves developing algorithms for computers to learn from
data without explicit programming, improving performance based on past experiences, and
making predictions [50]. These algorithms work on a large dataset containing examples defined
by features (nominal, binary, ordinal, or numeric). The data is used to train the algorithms,
which then build a model capable of predicting new examples based on the knowledge acquired
during training [6].

new examples

|

Machine learning classification /
algorithm prediction rule

|

predicted outputs

Training data ——————|
(labeled /unlabeled )

Figure 3.2: A typical machine learning approach [6]

3.2.1.1 Types of Machine Learning Algorithms

There are several divisions of machine learning algorithms, categorized into four groups: Super-
vised learning, Unsupervised learning, Semi-supervised learning, and Reinforcement learning,
as shown in Figure 3.3 .
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Machine learning

Supervised Unsupervised Semi-supervised Reinforcement
Learning Learning Learning Learning

Classification [  Clustering

Regression Association

Figure 3.3: Types of Machine Learning Algorithms

3.2.1.1.1 Supervised Learning Supervised learning relies on labeled datasets with input-
output pairs to teach machine algorithms, continually supplying data until the model accurately
fits it. This enables the model to forecast outputs for new, unlabeled data, making it widely used
in domains like medical diagnosis, spam detection, and image recognition for learning patterns
and making predictions [51].

+ Classification: Identifies categories or classes for input data. For example: determining
whether an email is spam or not spam based on its content

* Regression: The algorithm predicts a continuous value. For example, predicting house
prices based on factors like area, number of bedrooms, and location.

3.2.1.1.2 Unsupervised Learning Unsupervised Learning: Involves discovering hidden
patterns or structures in unlabeled data without specific guidance or predefined outcomes. It is
used when labeled data might be scarce or expensive to obtain [52].

* Clustering: Grouping similar data points together based on certain features or character-
istics. For example, clustering customers based on their purchasing behavior.

» Association: Discovers relationships and associations between variables or items in a
dataset.

3.2.1.1.3 Semi-supervised Learning Semi-supervised Learning: Operates on both labeled
and unlabeled data, bridging supervised and unsupervised methods to improve predictions. In
many real-world scenarios, obtaining labeled data can be costly or time-consuming, while unla-
beled data might be more readily available. This is where semi-supervised learning comes into

play [53].
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3.2.1.1.4 Reinforcement Learning(RL) It is a type of machine learning where an agent
learns to make decisions by interacting with an environment. The agent aims to maximize
cumulative rewards through a trial-and-error process. [51].

» Agent: The entity making decisions and taking actions within an environment.

* Environment: The external system with which the agent interacts. It could be a game, a
physical system, a simulation, or any other setup.

» Actions: Choices or decisions made by the agent that affect the state of the environment.
« State: The current situation or configuration of the environment.

» Rewards: Feedback provided by the environment to the agent based on its actions. Re-
wards indicate how good or bad the actions were in a particular state.

3.2.2 Deep learning (DL)

Deep learning (DL) is a subset of machine learning (as shown in figure 3.1) that involves the use
of artificial neural networks (ANNs) with multiple layers (hence ”deep”) to learn and understand
complex patterns in data. It is designed to mimic the way the human brain processes and learns
from information, allowing machines to recognize patterns, classify data, and make predictions
or decisions [54].

3.2.2.1 Types of Deep Learning

Deep learning (DL) encompasses various approaches to training neural networks to learn from
data. These approaches can be broadly categorized into supervised learning and unsupervised
learning, each serving different purposes and utilizing different types of data.

3.2.2.1.1 Supervised Learning: Supervised learning is a task-driven approach that uses la-
beled training data to train models to make predictions or classifications based on input data.
In DL, supervised learning involves deep networks designed for supervised or discriminative
learning. These networks typically consist of multiple layers that process information hierar-
chically to learn and extract patterns from the data [55].

3.2.2.1.2 Unsupervised Learning: Unsupervised learning is a machine learning technique
where the neural network learns to discover patterns in data without labeled target variables.
DL algorithms like autoencoders and generative models are used for unsupervised tasks such as
clustering, dimensionality reduction, and anomaly detection. Unsupervised learning falls under
the category of deep networks used for unsupervised or generative learning in DL techniques
[56].

Both types of DL utilize neural networks with multiple layers to learn complex patterns
from data. They differ primarily in the kind of data they use during training [57].
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3.2.2.2 Types of Data

3.2.2.2.1 Structured Data: Consists of tables or spreadsheets containing numerical or cat-
egorical data arranged in rows and columns. Deep learning models can learn efficiently on
tabular data and allow us to build data-driven intelligent systems. These models can handle
large datasets and complex relationships within the data, making them valuable for tasks such
as regression, classification, and recommendation systems [58].

3.2.2.2.2 Unstructured Data: Includes text, images, audio, and other formats that lack a
fixed structure. Deep learning models can process unstructured data after being trained and
reaching an acceptable level of accuracy.

3.2.2.2.3 Semi-Structured Data: Combination of structured and unstructured data, such as
JSON or XML files. Deep learning models can process semi-structured data after being trained
and adapted to the specific structure [58].

Benefits of working with different data types in deep learning include automatic feature
learning, improved accuracy, and reduced reliance on human intervention. Additionally, deep
learning models can benefit from data preprocessing techniques to ensure data quality and min-
imize human effort.

3.2.2.3 Techniques in Deep Learning

Below are several types of deep learning techniques that can eftectively and reliably solve issues
that are too difficult for the human brain to solve.
1. Classic Neural Networks:

These networks, also known as fully connected neural networks, are the simplest type.
They consist of input, hidden, and output layers, with each neuron in one layer connected
to every neuron in the next layer.

2. Convolutional Neural Networks (CNNs):

CNNs are highly effective for image processing tasks because they can automatically
learn spatial hierarchies of features. They consist of convolutional layers, pooling layers,
and fully connected layers.

3. Recurrent Neural Networks (RNNs):
RNNs excel in sequential data processing tasks like natural language processing and time
series analysis. Their unique feedback loop allows information to persist over time.

4. Generative Adversarial Networks (GANs): It consists of two neural networks that
compete against each other. One network generates fake data, while the other tries to
distinguish between real and fake data.

5. Transfer Learning:

This technique involves using a pre-trained model as a starting point for a new task. It
can save time and resources by leveraging knowledge from previous tasks.
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6. Learning Rate Decay:

Learning rate decay is used to adjust the learning rate during training to improve model
performance. It involves gradually reducing the learning rate over time [59].

. Dropout:

Dropout is a regularization technique that helps prevent overfitting in neural networks.
It works by randomly dropping out some neurons during training, forcing the network to
learn more robust features [59].

3.3 Classification Algorithms

3.3.1 Definition of Classification

Classification is a supervised machine learning method where the model tries to predict the
correct label of given input data. In classification, the model is fully trained using the training
data, and then it is evaluated on test data before being used to perform prediction on new unseen
data [60].

3.3.2 Types of Classification Algorithms for Machine Learning

1.

Logistic regression Logistic regression, akin to linear regression, is applied when the
dependent variable represents categories like yes/no.” Despite its name, it functions for
classification by categorizing the dependent variable into specific classes based on re-
gression analysis.

. K-Nearest Neighbors (KNN): The K-NN algorithm, a straightforward classification

method, categorizes new data points by identifying their proximity to existing classes.
Operating as a non-parametric, lazy learning approach, it relies on similarity measures,
such as distance functions, for classification.

. Support Vector Machines (SVM): SVMs, a supervised machine learning model, excel

in classification and regression by determining a hyperplane, the decision boundary, with
the maximum margin. Versatile, they adeptly handle both linear and non-linear input
spaces, making them valuable for high-dimensional data.

. Naive Bayes is a probabilistic classifier that assumes the presence of a certain feature is

independent of other features. It is simple, easy to implement, and performs well in many
applications, such as spam detection and sentiment analysis.

. Decision trees Decision trees construct tree-shaped models for classification or regres-

sion by iteratively splitting datasets based on the Iterative Dichotomiser 3 (ID3) algo-
rithm, resulting in decision nodes and leaf nodes [60].
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3.4 Image classification

3.4.1 Definition of image Classification

Image classification is the task of categorizing and assigning labels to groups of pixels or vectors
within an image dependent on particular rules. The categorization law can be applied through
one or multiple spectral or textural characterizations [61].

Image classification techniques are mainly divided into two categories: Supervised and
unsupervised image classification techniques.

3.4.1.1 Unsupervised classification

Unsupervised classification, a fully automated technique devoid of training data, employs ma-
chine learning algorithms to analyze and cluster unlabeled datasets. This method discerns hid-
den patterns or data groups without human intervention, systematically recognizing image char-
acterizations during processing [62].

Two popular algorithms used for unsupervised image classification are ‘K-mean’ and ‘ISO-
DATA”’

* K-MEAN clustering objects into k groups based on characteristics.

* ISODATA using iterative self-organizing data analysis techniques, allowing flexibility
in the number of clusters [63].

3.4.1.2 Supervised classification

Supervised image classification relies on labeled reference samples to train the classifier for
categorizing new data. Users visually select training samples within the image, assigning them
to predefined categories like vegetation, roads, water, and buildings. This process establishes
statistical measures applied across the entire image [62].

3.4.2 Image Classification Techniques

Image classification relies on various methods to categorize images based on their features. Two
common approaches include ”maximum likelihood” and “minimum distance” classification.
In ”maximum likelihood” classification, statistical properties like the standard deviation and
mean values of textural and spectral indices are initially analyzed. The likelihood of each pixel
belonging to specific classes is then calculated using a normal distribution for pixels within each
class. This process integrates classical statistics and probabilistic relationships to assign pixels
to the class with the highest likelihood [61].

3.4.3 The Process of Image Classification

From a computer’s perspective, an image is interpreted as an array of matrices, with pixels
related to the image’s resolution. Image classification involves algorithmic analysis of this sta-
tistical data. In digital image processing, pixels are grouped into predefined categories, referred
to as classes.” Algorithms identify and segregate prominent features, reducing the workload
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on the final classifier. This feature extraction process significantly influences subsequent cat-
egorization steps. Supervised image classification heavily relies on the input data’s quality; a
well-optimized dataset with balanced classes and high-quality images performs better than a
poorly curated dataset with imbalances and subpar annotations [61].

3.4.4 Objective in Image Classification

Transformers excel in image classification by efficiently handling variable-sized inputs and
capturing global dependencies within images. Key aspects of their application in image classi-
fication include:

* Eliminating the need for cropping or resizing: Transformers eliminate the need to crop
or resize images with varying resolutions, as they effectively handle inputs of variable
sizes.

* Modeling global dependencies: Transformers can recognize patterns that extend across
the entire image, capturing global context effectively.

+ Adaptability: Vision Transformers (ViTs) demonstrate remarkable adaptability, showing
promise in various computer vision tasks, particularly image classification.

* Pre-training: ViTs achieve state-of-the-art performance through pre-training on exten-
sive datasets, followed by fine-tuning on task-specific datasets.

» Data efficiency: Data-efficient Image Transformers (DelT) enhance the efficiency of
deep learning models by using data more judiciously [64].

3.4.5 Machine Learning in Image Classification

Machine learning for image recognition involves using algorithms to extract latent insights from
structured and unstructured datasets, primarily through supervised learning methods.

Deep learning is a prominent technique in machine learning, characterized by the incorpo-
ration of numerous hidden layers within a model, enabling the automatic discovery and repre-
sentation of complex patterns and features. This advanced approach has proven highly effective
in tasks requiring a deep hierarchical understanding of visual data [61].

3.4.6 Object Detection

Object detection, a computer vision challenge, entails the identification and localization of ob-
jects in an image using bounding boxes. While traditionally associated with natural language
processing (NLP), transformers, a category of deep learning models, have demonstrated adapt-
ability for object detection tasks as well. Their application in this context showcases the versa-
tility of transformer models beyond their conventional use in NLP. This adaptation highlights
the evolving landscape of deep learning techniques in diverse domains, extending their impact
beyond traditional applications. [65].
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3.4.6.1 Transformers Application in Object Detection

In Vision Transformer (ViT), images are separated into patches, treating each patch as a token.
These tokens are then processed by a transformer model, which works on them sequentially. The
transformer’s output consists of embeddings, with each patch represented by a corresponding
embedding.

To adjust ViT for object detection, additional learnable parameters are incorporated into
the model to predict object bounding boxes and labels within the image. This is achieved by
introducing a multi-head self-attention mechanism, enabling the model to focus on different
image regions when determining object positions.

Another approach in using transformers for object detection is exemplified by the DETR
(DEtection TRansformer) model. DETR utilizes a transformer-based architecture to directly
predict object detections without relying on anchor boxes or region proposal networks [66].

3.4.6.2 Object Detection Focus

* Transformers have shown promise in object detection applications.

* Their superiority over traditional models stems from their adaptability to varying input
sizes.

* Transformers’ self-attention mechanisms improve the ability to capture intricate spatial
relationships among objects.

* This capability is particularly beneficial in image analysis.

3.4.7 Image Segmentation

Image segmentation is a computer vision task that involves partitioning an image into multiple
segments or regions, each representing a distinct object or image part. While transformers are
predominantly known for their success in natural language processing tasks, they have also been
explored for image segmentation applications [67].

3.47.1 Image Segmentation Objective

» Transformers excel in image segmentation tasks due to their adaptability to varying input
sizes.

* Another advantage is their ability to capture global context information, enhancing over-
all segmentation accuracy.

» However, a challenge arises in balancing the trade-off between local and global informa-
tion, critical for precise segmentation.

+ Additionally, the computational burden of processing large images poses a significant
obstacle to the widespread adoption of transformers for this purpose.
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3.5 Case Study: Tuta absoluta

Tuta absoluta is a devastating pest that poses a significant threat to tomato crops worldwide. In
our work, we will focus on the concept and characteristics of Tuta absoluta, also known as the
tomato leaf miner, as well as its effects on tomato plants. We will explore the statistics regarding
the spread of Tuta absoluta and investigate various solutions aimed at eliminating this pest to

protect tomato crops.

3.5.1 Definition of Tuta absoluta

The Tuta absoluta, commonly known as the tomato leafminer, is a destructive moth species that
poses a significant threat to tomato crops. The larvae of this pest feed voraciously on tomato
plants, damaging leaves, stems, and fruits. Originating from South America, Tuta absoluta has
spread globally, causing substantial economic losses in agriculture. Effective pest management
strategies are essential to mitigate the impact of this invasive species on tomato cultivation [68].

The adult tomato leafminer (Tuta absoluta) is a small butterfly native to South America and

comes to Algeria in 2008 [69]. Its larvae enter the leaves, fruits, and branches in order to feed.

Figure 3.4: Tuta absoluta [7]

3.5.2 The phenology of Tuta absoluta

The phenology of Tuta absoluta,also known as the tomato leafminer, refers to its life cycle stages
and the associated events.

Tuta absoluta has a life cycle that consists of four main stages: egg, larvae, pupa, and adult.

3.5.2.1 Egg Stage

Eggs of Tuta absoluta are small, cylindrical, and creamy-white to yellow, measuring approxi-
mately 0.35 mm in length. They are laid by adult females on host plants, mainly on the underside

of leaves, stems, and petioles [70].
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The duration of egg development varies with temperature, ranging from 4.0 to 11 days at
different temperatures [71].

A mature female can lay up to 260 eggs during her life cycle. Egg hatching occurs 4-6 days
after being laid.

3.5.2.2 Larvae Stage

The larvae of Tuta absoluta are cream-colored with a characteristic dark head. They are the
most damaging stage to crops as they feed on plant tissues by creating mines, leading to its
damage, leaf drying, and defoliation.

Larval development consists of four instars, with pupation potentially taking place in the
soil, on leaf surfaces, or within mines [70].

The larval stage duration ranges from 6.3 to 16.0 days at different temperatures [71].

3.5.2.3 Pupal Stage

Pupation in Tuta absoluta may occur in the soil, on leaf surfaces, within mines, or in packaging
material. A cocoon is built if pupation does not occur in the soil.

The total life cycle of Tuta absoluta is completed within 30-35 days under suitable conditions
[70].

3.5.2.4 Adult Stage

Adult Tuta absoluta are small moths with a body length of 5-7 mm. They have silvery-brown
coloration and can be identified by their thread-like antennae and forewings with grey scales
and black spots.

Adults are nocturnal and hide between leaves during the daytime. They reproduce rapidly,
with a life cycle ranging from 24 to 38 days.

The moths are active during the night, and adult females lay eggs on host plants to initiate
a new generation [70].

Females mate once a day and can mate up to six times during their lifespan, with a single
mating bout lasting 4-5 hours.

Females lay eggs primarily 7 days after the first mating, with a maximum lifetime fecundity

of 260 eggs per female [71].
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Larvae

Pupa

Figure 3.5: Life cycle of T. absoluta [§]

3.5.2.5 Population Dynamics

Tuta absoluta is a multivoltine species with a high growth population rate.

The pest can complete multiple generations per year in tropical regions with temperatures
between 25 and 30 °C.

The intrinsic rate of natural increase, gross reproductive rate, and net reproductive rate are

significantly higher at temperatures between 20-25 °C [72].

3.5.3 Characteristics of tuta Absoluta

« Itis adifficult pest to control due to its ability to hide under leaves and develop resistance

to pesticides.

* Tuta absoluta is oligophagous and can survive and reproduce normally on potatoes, to-

bacco, and other Solanaceae crops.

« It has a strong preference for tomatoes among host plants, and volatile chemical signals

play important roles in its host plant preferences.

» The larvae of Tuta absoluta attack leaves, buds, stems, flowers, calyces, and tomato fruit,

causing crop losses up to 80-100% in the absence of timely control measures.

* Tuta absoluta has a high reproductive capacity and can develop multiple generations per

year.

* The use of insecticides has limited effectiveness due to the pest’s endophytic feeding

behavior, making Tuta absoluta a difficult target for insecticide sprays [73].
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3.5.4 The effect of Tuta absoluta on tomatoes

* Tuta absoluta, also called the South American tomato leafminer, presents a serious threat
to tomato cultivation, leading to substantial losses of 80% to 100% when not effectively

controlled.

» Damage to Tomato Plants: As a leafminer, Tuta absoluta inflicts damage on multiple parts
of the tomato plant, including leaves, terminal buds, flowers, and fruits. The larvae tunnel
into and consume the leaves, while also burrowing into the fruits, resulting in significant

economic losses. [74].

3.5.5 Statistics of the spread of Tuta absoluta

Tuta absoluta, also known as the South American tomato leafminer, was first identified in Peru
by Meyrick in 1917 and has been recorded in all South American countries. It was first intro-
duced into Europe in Spain in 2006, from where it is believed to have spread to other European
countries and its range has expanded.

The pest has been recorded in more than 90 countries and regions outside South America,
including several African countries such as Algeria, Angola, Botswana, Burkina Faso, Egypt,
Ethiopia, Kenya, Libya, Malawi, and Morocco,Also the continent of Europe and Asia [75].

The first outbreaks of Tuta absoluta in Algeria were identified during spring 2008 in the
protected tomato crops of Mostaganem region. Subsequently, the infestation extended to beet,

spinach, and various weeds in Biskra [76]. (See 3.6)

Figure 3.6: Global geographical distribution of the spread of Tuta absoluta [9]

Current global distribution map of Tuta absoluta (3.6 as of April 2017): Countries are

marked in two categories: (1) Confirmed presence of T. absoluta (dark gray), and (2) Potential
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presence of T. absoluta due to geographical and ecological proximity or unconfirmed presence

after an initial report (light gray) [9].

3.5.6 Solutions to eliminate Tuta absoluta

* Managing Tuta absoluta presents challenges due to its adeptness at concealing itself be-
neath leaves and developing resistance to pesticides. which requires only two applica-
tions of each pesticide. The most efficient and sustainable approach to tackle this pest
involves integrating ecologically acceptable methods, encompassing cultural, biological,

and chemical control strategies.

* While chemical control methods can be employed to address Tuta absoluta infestations,
their usage should be judicious and complemented by other control measures to mitigate
the risk of resistance development. Notable chemical options include insecticides like

Tracer and NeemAzal.

« Utilizing invertebrate biological control agents and biopesticides offers a natural and ef-
fective means of managing Tuta absoluta. Parasitic wasps such as Trichogramma and

predators like Macrolophus can be deployed to regulate the pest population.

* Timely identification of Tuta absoluta is paramount for efficient management. Imple-
menting phytosanitary measures, such as greenhouse disinfection, and closely monitoring
the population dynamics of biological control agents, proves instrumental in prevention
and control efforts [77].

3.6 Related work

In our comprehensive investigation, we thoroughly explored three scientific articles focused on
the Tuta absoluta insect, each contributing valuable insights into its characteristics and potential

control measures. These articles are as follows:

1. G.D. Arturo Cocco et al [78]:This study evaluated the effective