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Résumé

e probleme de contréle optimal partiellement observé a une variété d’applications
importantes dans de nombreux domaines et offre des solutions pratiques pour en-
lever des défis de contrdle du monde réel et des problemes de prise de décision, tels que

I'ingénierie, I’économie et la finance.

Le but de cette these est d’étudier ce type du probleme de controle optimal partiellement
observé pour les équations différentielles stochastiques progressives rétrogrades (EDSPRs)
de type McKean-Vlasov. Les coefficients du systeme et la fonction de cotlit dépendent de

I’état du processus de solution ainsi que de sa loi de probabilité et du contréle.

Nous commencgons par définir l'outil principal (la dérivée partielle par rapport a une
mesure de probabilité dans I'espace de Wasserstein) utilisé pour illustrer notre résultat
principal. Ensuite, nous prouvons les conditions nécessaires et suffisantes d’optimalité
pour les EDSPRs de type McKean-Vlasov en supposant que le domaine de contrdle est

convexe. Ce résultat est basé sur le théoreme de Girsanov.

Enfin, nous prouvons un nouveau principe du maximum stochastique pour ce type de
probleme de controle optimal partiellement observé de type McKean-Vlasov gouverné
par une mesure aléatoire de Poisson et d’un mouvement brownien indépendant. A titre
d’exemple, un probléme de controéle linéaire quadratique partiellement observé a été étudié

en termes de filtrage stochastique.

Mots-clés : Principe du maximum stochastique, Equations différentielles stochastiques
progressives rétrogrades, Processus de saut, Contrdle optimal partiellement observé, Dérivées

par rapport aux mesures de probabilité.
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Abstract

artially observed optimal control problem has a variety of important applications
in many fields and offers practical avenues for addressing real-world control chal-

lenges and decision-making problems, such as engineering, economics, and finance.

The aim of this thesis is to study this kind of partially observed optimal control problem
for forward-backward stochastic differential equations of the McKean— Vlasov type. The
coefficients of the system and the cost functional depend on the state of the solution

process as well as of its probability law and the control variable.

We start by defining the primary tool (the partial derivative with respect to the proba-
bility measure in Wasserstein space) used to illustrate our main result. Then, we prove
the necessary and sufficient conditions of optimality for FBSDEs of the McKean— Vlasov
type under the assumption that the control domain is supposed to be convex. This result

is based on Girsavov’s theorem.

Finally, we prove a stochastic maximum principle for this kind of partially observed opti-
mal control problems of McKean— Vlasov type driven by a Poisson random measure and an
independent Brownian motion. As an illustration, a partially observed linear—quadratic

control problem is studied in terms of stochastic filtering.

Key words. Stochastic maximum principle, Forward-backward stochastic differential
equations with jump processes Partially observed optimal control, McKean—Vlasov dif-

ferential equations, Derivatives with respect to probability measures.
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Symbols vii

Symbols
e (Q,F, P): probability space.
o {Fi}i>0 : filtration.
. (Q,f AFt e 115 P): filtered probability space.
« R: Real numbers.
o N: Natural numbers.

o L*(r,s;R™): the space of R"-valued deterministic function 7(t), such that
/ In(t))* dt < +oc.

o L*(F;;R™): the space of R™-valued JF,-measurable random variable ¢, such that

E |o|® < 4oo0.
o L% (r,s;R™): the space of R"-valued F;-adapted processes 9(-), such that
E/ (1)) dt < +o0.
« M?([0,T];R) : the space of R-valued F;-adapted measurable process c(-), such that
r 2
]E/ / le(t,0)[2 7 (de)dt < +oo.
0o Jeo

. L2 (.7: ; Rd) : is the Hilbert space.

e () (Rd>: the space of all probability measures p on (]Rd, B (Rd>> .

vii



Symbols viii

o Px: the law of the random variable X (-).

« E(-): Expectation.

o E(:|F;) : Conditional expectation.

o 0(A): o—algebra generated by A.

e 14 : Indicator function of the set A.

o E”: denotes expectation on (Q, F,F, P").

» k(-): be a stationary F;-Poisson point process with the characteristic measure 7(de).
e N (de,dt): the counting measure or Poisson measure induced by k(-).
e O : is a fixed nonempty subset of R.

o FX : The filtration generated by the process X.

o W(:) : Brownian motions.

« FV : the natural filtration generated by the brownian motion W (-).
e F1V Fy : denotes the o-field generated by F; U Fs.

» 0,f : the derivatives with respect to measure p.

o D¢f(po) : the Fréchet-derivative of f at pio in the direction &.
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Acronyms

ible

Acronyms

e a.e.,: almost everywhere.

e a.s.,: almost surely.

o e.g.: for example (abbreviation of Latin exempli gratia).

e i.¢,. that is (abbreviation of Latin id est).

o SDE: Stochastic differential equations.

o BSDE: Backward stochastic differential equation.

e FBSDFs: Forward-Backward stochastic differential equations.
e PDE: Partial differential equation.

e ODE: Ordinary differential equation.

. gi, fz : The derivatives with respect to x.

o P®dt : The product measure of P with the Lebesgue measure dt on [0, 7] .
o W(-) : Brownian motions.

« FV : the natural filtration generated by the brownian motion W (-).

o JF1 V F;y denotes the o-field generated by F; U F.

e 0,f : the derivatives with respect to measure p.

o D¢f(po) : the Fréchet-derivative of f at pi in the direction &.
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Introduction

his doctoral thesis is part of the framework of stochastic analysis and stochastic

optimization problems. Two major tools for studying optimal control are Bell-

man’s dynamic programming method and Pontryagin’s maximum principle. The stochas-

tic maximum principle gives some necessary conditions for optimality for a stochastic

optimal control problem. See the pioneering works on the stochastic maximum principle

were written by Kushner [27, 28]. Since then there has been a lot of work on this subject,
among them, in particular, those by Bensoussan [5], Peng [44].

The mean-field stochastic system was introduced by Kac [38] as a stochastic model
for the Vlasov-Kinetic equation of plasma and the study of which was initiated by the
McKean model [25]. Since then, the mean-field theory has found important applications
and has become a powerful tool in many fields, such as mathematical finance, economics,
optimal control and stochastic mean-field games; see for instance [38, 2, 9, 10, 45, 3, 17,
18, 19, 20, 21, 22, 23, 24, 31, 56, 47]

In this thesis, the central theme is to establish a set of necessary and sufficient condi-
tions in the form of Pontryagin’s stochastic maximum of the mean field type of optimal
control and these applications. More precisely, our objective in this work is to study par-
tially observed optimal control the problem of forward-backward stochastic differential
equations (FBSDEs for short) systems of McKean—Vlasov type, which are governed by
Poisson random measure and an independent Brownian motion. This kind of partially
observed optimal control problems have a variety of important applications in many fields

such as engineering, economics, and finance.

11



Introduction 12

It is assumed so far that the controller completely observes the state system. In many
real applications, she is only able to observe partially the state via other variables and
there is noise in the observation system. Then it is natural to study this kind of optimal
control problems under partial observation. There is rich literature on partially observed
optimal control problems, see for example [4, 13, 15] and references therein. The stochastic
maximum principle for partially observed optimal control problems of general McKean—
Vlasov equations has been proved by Lakhdari et al. [29]. Ma and Liu [33] studied the
maximum principle for partially observed risk-sensitive optimal control problems of mean-
field type. Miloudi et al. [40] established the necessary conditions of partially observed
optimal control of general McKean—Vlasov stochastic differential equations with jumps.

Partially observed stochastic optimal control of forward-backward stochastic differen-
tial equations has been studied by many authors, see for example, Wu [52] proved the
maximum principle for partially observed optimal control of forward-backward stochastic
control systems. The maximum principle for partially observed optimal control of FBS-
DEs driven by Teugels martingales and independent Brownian motion has been proved
by Bougherara and Khelfallah [48]. Shi and Wu [46] established the maximum princi-
ple for partially observed optimal control of fully coupled forward-backward stochastic
systems. Li and Fu [30] established a general maximum principle for partially observed
optimal control problems of mean-field FBSDEs under general control domains, with the
help of Ekeland’s variational principle and reduction method. Nie and Yan [42] studied
an extended mean-field control problem with partial observation, where the state and
the observation all depend on the joint distribution of the state and the control process.
Wang et al. [53] studied three versions of stochastic maximum principle for partially ob-
served optimal control problem for FBSDEs in the sense of weak solution by utilizing a
direct method, an approximation method, and a Malliavin derivative method. Xiao [55]
proved the maximum principle for partially observed optimal control of forward-backward
stochastic systems with random jumps. Partially observed optimal control problem of
the forward-backward stochastic jump-diffusion differential system has been discussed by
Wang et al. [54]. Partially observed maximum principle by using Malliavin calculus has

been studied by Zhou et al. [59]. Partially observed optimal control problem for FBSDEs

Mohamed Khider University of Biskra.



Introduction 13

driven by Lévy processes with Markov regime-switching has been investigated by Zhang
et al. [60].

In this thesis, we aim to establish a stochastic maximum principle for a class of partially
observed optimal control problems involving stochastic differential forward-backward equa-
tions of McKean-Vlasov type.

The dynamics of the controlled system in the first part of our study are governed by

the following stochastic differential equation:
dxy =b (t, z), Py, vt> dt + g (t, z), Py, vt> AW, + o (t, xy, Py, vt) th“
—dy: = f (ta$f>Px§7yfanyyzfaszazfangyvt) dt — szth - Zz)d}/;f

v o vo_ v
Ty = To, yT_90<xT7PI”T)7

W (-) represents a Brownian motion defined on a complete probability space (2, F,F, P).
TW(-) denotes a stochastic process that depends on the control variable v(-). Px represents
the probability distribution of the random variable X.

The coefficients in the problem are characterized by: b : [0,7] x R x @2 (R) x U — R,
9,0 [0, T]xRx Q3 (R)xU — R. The space (3 (Rd) corresponds to the set of probability
measures i defined on R? and is equipped with the 2-Wasserstein metric. The associated

cost function is also of the McKean-Vlasov type and is described as

T
J(U) = [E¥ [/ l(t,{[‘g,Pm?,yf,Pyzz,ZZ)7PZ;1,ZZ),ng,Ut) dt]
0

TRy [M (:EUT,PI%) +h (yg,Pyg)} ’

where E represents the expectation with respect to the probability space (2, F,F, P”) and
L]0, TIxRx Q2 (R)xRXx Q2 (R)xRXx Q2 (R)xRxQs (R)xU — R, M, h: RxQy (R) — R.
For the partially observable control problem of general Mckean-Vlasov Forward-backward
stochastic differential equations, where the coefficients depend nonlinearly on both the
state process and its law, the aim of this thesis is to establish a stochastic maximum
principle. It is assumed that the control domain is convex.

In another section of this thesis, we provide a stochastic maximum principle for a class
of Mckean-Vlasov type partially observed optimal control problems with jumps. The

stochastic system under discussion is controlled by a stochastic differential forward-backward

Mohamed Khider University of Biskra.



Introduction 14

equation with independent Brownian motion and Poisson random measure.

It is defined in the following way:

dzxi =b (t, zy, Py, vt> dt + g (t, xy, Py, vt> AW, + o (t, zy, Py, vt) th”
+ /@ c (t,xfﬁ, P vy, e) N (de, dt),
—dy; = f (t, 2}, Py, v}, Py, 20 Py, B Py, 1, Py, wy) dt — 20dW, — ZdY,
— [ ()N (de, ),

v o vo_ v
Ty = To, yT_(p(xTapx%>:

where P,,, P,,, P.,, P;, and P,, denotes the law of the random variable x¢, y;, 2, 2 and ¢
respectively. The maps b: [0, T] X R x Qs (R)xU = R, ¢,0:[0,T]xRx Qs (R)xU —
Ric:[0,T]xRxQ(R)xUx0O =R, o:RxQe(R) =R, f:[0,7] xR xQy(R) x
RxQ:(R)xRxQ:(R) xR xXxQs(R) xR x Qs (R) xU — R are given deterministic

functions.

The cost functional to be minimized over the class of admissible controls is also of McKean-

Vlasov type, which has the following form

ﬂuw:Eﬂfﬁ@ﬂ@mmmmnﬁ+wﬂ@m%m),

where, [ : [0,7] x R" x Q2 (R) x U - R, ¢ : R" x Q2 (R) — R and E? stands for the
mathematical expectation on (2, F, F;, PY).

The derivatives with respect to probability measure and the associated Ito-formula is
used in this study to prove our main results. It is worth noting that our generic McKean-
Vlasov partially observed control the problem occurs naturally in probabilistic analyses
of financial optimization problems. Our class of partially observed control problems was
motivated by the recent research of McKean-Vlasov games, which have lately played an
important role in multiple fields of economics and finance. As an example, using our
maximum approach, we consider a McKean-Vlasov-type linear quadratic control problem

with the jump, where the partially observed optimum control is achieved directly in the

feedback form.

Mohamed Khider University of Biskra.



Introduction 15

This thesis is divided into three chapters:

The first chapter is essentially a reminder, we present some concepts and results that
allow us to prove our results, such as stochastic processes, natural filtration, Lévy Pro-

cessus, admissible control, feedback controls, relaxed controls...etc.

In the second chapter, we define the primary tool used to illustrate our main result. Then,
we prove the necessary and sufficient conditions of optimality for FBSDEs of the McK-
ean— Vlasov type under the assumption that the control domain is supposed to be convex.

This result is based on Girsavov’s theorem and fundamental variational techniques.

Finally, we prove a stochastic maximum principle for this kind of partially observed opti-
mal control problems of McKean— Vlasov type driven by a Poisson random measure and an
independent Brownian motion. As an illustration, a partially observed linear—quadratic

control problem is studied in terms of stochastic fltering.

Mohamed Khider University of Biskra.
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L] CHAPTER 1 L]

Stochastic calculus

1.1 Stochastic processes and Brownian motion

Definition 1.1 (Stochastic processes)

Consider a set of indices denoted by T. Let (2, F, P) represent a probability space.
A stochastic process is a collection of variables { X (t);t € T'}, where for each t in the
set T, X, is a variable that maps from (2, F, P) to R". The function that associates

each t with X (t,w) is known as a sample path for any given w, in the set €).

Definition 1.2 (Natural filtration)
Lets consider the stochastic process X = (X¢,t > 0), on the probability space (2, F, P)

which we denote as F;* for the filtration of X. This filtration is defined as F;* =
o (Xs,0 < s <t). We also refer to it as the filtration generated by X.

Definition 1.3 (Brownian motion)

A stochastic process (W (t),t > 0) is called a standard Brownian motion if :

t — W(t,w) is continuous. P—p.s.

Vs <t, W(t) — W(s) is normally distributed; center with variation (t — s) i.e
W(t) — W(s) ~N(0,t — s).

Vn,V0<ty <t <..<t,, the variables (th - W, ., ...,th_WtO,Wm) are

independents.

17



1.1. STOCHASTIC PROCESSES AND BROWNIAN MOTION 18

Definition 1.4 (Stochastically equivalent)

Two processes X; and Y; are said to be stochastically equivalent if
Xi =Y, P—as, Vte€]0,T].

In this case, one is called a modification of the other.
If X; and Y; are stochastically equivalent, then for any t € [0, T] there exists a P -null
set N; € F such that

X, =Y, YweQ|N,.

Example: Let Q = [0,1],7 > 1, P the Lebesgue measure, X (w,t) = 0, and

0, w#t,
1, w=t.

Y (w) =

Then X, and Y} are said to be stochastically equivalent. But each sample path X (.,t) is
continuous, and none of the sample paths Y (., %) is continuous. In the present case, we

have

te[0,7)
Definition 1.5

The process at s € [0,T] if for any € > 0

PE;lP(w €0 |X; (w) — Xs(w)| >¢)=0.

Moreover, X; is said to be continuous if there exists a P -null set N € F such that
for any w € Q | N, the sample path X (-,t) is continuous. Then X; and Y; are said to
be stochastically equivalent. But each sample path X (-,t) is continuous, and none of
the sample paths Y; (-, w) is continuous. In the present case, we have

U N=[0,1]=0

t€[0,T]

Mohamed Khider University of Biskra.



1.2. STOCHASTIC INTEGRAL WITH RESPECT TO LEVY PROCESS 19

Definition 1.6
The process at s € [0,T] if for any € > 0

%i_I)I;P(w € Q| X; (w) — Xg (w)| >¢)=0.

Moreover, X, is said to be continuous if there exists a P -null set N € F such that for

any w € | N, the sample path X (-,t) is continuous.

1.2 Stochastic integral with respect to Lévy process

1.2.1. Lévy process

To capture the fluctuations, in the finance field it is only logical to incorporate jumps, in
the model as it adds a touch of realism. This type of modeling can be described using
Lévy processes, which have been widely employed in this study. The term "Lévy process'

pays tribute to the contributions made by Paul Lévy, a mathematician, from France.

Definition 1.7

A stochastic process X = (X(t))i>0 which takes values in the set of numbers R is

considered a Lévy process if it satisfies the following conditions:

2. The paths of X are P-almost surely right continuous with left limits.

3. Stationary increments, i.e., for 0 < s < t, X(t) — X (s) has the same distribution
as X(t —s).

4. Independent increments, i.e., for 0 < s < t, X(t) — X (s) is independent of X (u),

u < S.

Example. The known examples are the standard Brownian motion and the Poisson

process.

Mohamed Khider University of Biskra.



1.2. STOCHASTIC INTEGRAL WITH RESPECT TO LEVY PROCESS 20

Definition 1.8

A stochastic process denoted as W = (W (t));>o in the space R" is referred to as a
Brownian motion when it satisfies the conditions of being both a Lévy process and

meeting the flowing criteria :

1. For all t > 0, has a Gaussian distribution with mean 0 and covariance matrix

t1,.

2. There exists g € F with P(£y) = 1 such that, for every w € Qqy, W(t,w) is

continuous in t.

Definition 1.9
A stochastic process N = (N(t)):>o on R such that

P[N(t) =n]| = (/\t)ne_’\t' n=0,1,

n!

is a Poisson process with parameter \ > 0 if it is a Lévy process and for t > 0, N(t)

has a Poissson distribution with mean A\t.

Remark 1.1

« It is worth noting that when we talk about the characteristics of stationarity and
independent increments we can conclude that a Lévy process needs a Markov

process.

e Thanks to the continuity of paths it is possible to demonstrate that Lévy pro-

cesses are also considered strong Markov processes.

o Fach random variable can be characterized by its characteristic function. In the
case of a Lévy process X, this characterization for all time t gives the Lévy-

Khintchine formula and it is also called Lévy-Khintchine representation.

Mohamed Khider University of Biskra.



1.2. STOCHASTIC INTEGRAL WITH RESPECT TO LEVY PROCESS 21

Consider a probability space (2, F, P), with a o algebra (F;);>¢ generated by stochastic
processes. These processes include motion denoted as W (t) and an independent compen-

sated Poisson random measure called N, where:

N(dt,de) := N(dt,de) — m(de)dt.

For any t, let N (ds,de), e € R, s < t, augmented for all the sets of P-zero probability.
For any JF;—adapted stochastic process 6 = 6(t, e), t > 0, such that

E [/OT/R@Q(t,e)W(de)dt

we can see that the process

< 00, for some T > 0,

t —~
M, (1) = / /|| 0(s,e)N(ds,de), 0<t<T,

0 Jle|>1

is a martingale in L*(2, F, P) and its limit
T —
M(t) = lim M,(t) := / / 0(s,e)N(ds,de), 0<t<T,
n—o0 0 |e|2%

in L?(Q, F, P) is also a martingale. Moreover, we have the It6 isometry

(/OT /Roe(s,e)f\f(als,de)>2 —F K/OT [U92(t,e)7r(de)dt>] .

Such processes can be expressed by the sum of two independent parts, a continuous part

E

and a part expressible as a compensated sum of independent jumps. That is the Ito-Lévy
decomposition.

Theorem 1.2 (Ité-Lévy decomposition)

The Ito-Lévy decomposition for a Lévy process X is given by
X(t) = at + BW(t) + / eN(dt, de) + / eN(dt, de), (1.1)
e|<1 e|>1

where «, 8 € R, and N (dt,de) is the compensated Poisson random measure of X (.)
and B(t) is an independent Brownian motion with the jump measure N(dt,de). We

assume that

E[X*(t)] <00, t>0,

Mohamed Khider University of Biskra.



1.2. STOCHASTIC INTEGRAL WITH RESPECT TO LEVY PROCESS 22

then

/|e>1 le|* 7(de) < oo

We can represent (1.1) as
X@pqu+mww+/kﬁua@%
R

where X (t) = o + / w(de). If p = 0, then a Lévy process is called a pure jump
Lévy process.
Let us consider that the process X (t) admits the stochastic integral representation as

follows

—x+/1 dyg/ﬂ VAW (s +/P/ s,¢)N (ds, de) ,

where «a(t), 5(t), and 0(t,-) are predictable processes such that, for all t > 0, e € R,
t
/ {|b(s)| + o%(s) +/ 92(8,6)7T<d€)] ds <oo P —a.s.
0 R

Under this assumption, the stochastic integrals are well-defined and local martingales.

If we strengthened the conditions to

Euﬂmﬂ+#@+ém@@mmw4<m,

for all t > 0, then the corresponding stochastic integrals are martingales.
We call such a process an Ito—Lévy process. In analogy with the Brownian motion

case, we use the short-hand differential notation

dX (t) = b(t)dt + o (t)dW (t +/9te (dt, de)

X(0)=z€eR.

1.2.2 The It6’s formula and related results
We now come to the important It6 formula for It6-Lévy processes. Let X (¢) be a process

given by theorem 1.2

X(t) = a(t) + +/ (t,¢) N (dt, de), (1.2)
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1.2. STOCHASTIC INTEGRAL WITH RESPECT TO LEVY PROCESS 23

where f : R? — R is a C* function is the process Y (t) := f (t, X (t)) again an It6-Lévy
process and if so, how do we represent it in the form (1.2).

Let X“(t) be the continuous part of X(¢), i.e X¢(t) is obtained by removing the jumps
from X (¢).

Y (1) = 8f<tx<>>dt+§j:< X)X (1) + 0L 1 x(0) 5% 1)
+/ vy (te)) = f (6 X))} N (dt, de) .

It can be proved that our guess is correct. Since

dX(t) = (a(t)dt - /|F<r7(t,e)7r (de)> + B(t)dW (t),

this gives the following result;

Theorem 1.3
Let X(t) € R is an Ito-Lévy process of the form

dX(t) = a (f) + +/7 (t,e) N (dt, de) , (1.3)

where

— N (dt,de) — 7w (de) dt, if |F| <.
it ey = | V@t de) ey i I
N (dt,de) it |[F|>r,

for some r € [0,00]. Let f € C? (R2) and define Y (t) = f(¢t,X(t)). Then Y (t) is

again an It6 -Lévy process

dY (t) = g{ (t, X (1)) dt + gf (t, X(8)) (a(t)dt + BE)AW (1)) + ;gxfs (X (8) B (1) db
" IFl<r {f <t’X(t_) +7(t’€)) —/ (t’X(t_>> - gi (t, X () (2, 6)}7r(de)

[ A7 (6 X 7 00)) = 7 (1,X(0)} N (at,de),

Remark 1.4

ifr =0 then N =N every where. If r = oo then N=N every where.
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Theorem 1.5 (The multi-dimensional Ité formula)

Let X (t) € R™ be an It6-Lévy process of the form

AX (1) = o (t,w) dt + o (£, X(1w) dW (1) + [y (te,w) N (dt, de),

where o : [0,T] x Q — R", 0 : [0,T] x Q — R"™ and v : [0,T] x R x Qx — R
are adapted processes such that the integrals exist. Here W (t) is an multidimensional

Brownian motion and

N (dt, de)" = (N (dt,de) , ..., Ny (dt, de) )

= (N1 (dt, de) = Iie, <1 (der) dt, ..., Ny (dt, de) = Tigycpm (dey) dt)
where (N;(-,-)) are independent Poisson random measures with Lévy processes (1, ..., ;) -

Note that each column v*) of the n x | matrix ~ = (7ij) depends on e only through

the k" coordinate ey, i.e.,
/) (1, e, w) = 1O (t e, w)) 5 € = (e, e0) ER.

Thus the integral on the right of (1.3) is just a short-hand matrix notation. When
written out in detail component number i of X (t) in (1.3), X; (t), gets the form

AX0 (1) = s (bw) dt+ 3 o3y (1, w) dW, (8 +Z/ vii (8, e5,w) N; (dt, dey),

7j=1

1< <n.

Theorem 1.6 (The It6-Lévy isometry)
Let X (t) € R" is be as in (1.3) but with X (0) and o = 0. Then

E[X*t)| =E /oT{i_n‘iafj +§;2/ Vi (t.e;) T (dej)}dt]
— .:E /(]T{i:afj (t)+§;;An7% (t,e;)m; (dej)}dt] _
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L] CHAPTER 2

Stochastic control problem with partial observations in Wasserstein space

2.1 Partial derivative with respect to the probability
measure

We recall briefly the main tool used to prove our main result. We apply the differentiability
with respect to probability measures, which was introduced by Lions. The fundamental
concept is to find a distribution u € Qo(R™) with a random variable ¥ € L*(F,R") so
that u € Py. We suppose that the probability space (€2, F, P) is rich enough that, for
every u € Qo(R™), there is a random variable ¥ € L*(F,R") such that u = Py. (For
example, the probability space ([0, 1],B[0, 1], dx), where dz is the Borel measure, satisfy
this property). We presume there is a sub-o field Fy C F such that the Brownian motion
W (-) is independent of Fy, and Fy is rich enough, ie

Q2(R™) 2 Py - 9 € L2(Fo, R™). (2.1)

F = (Fi)ieo,1) denotes the filter produced by W (-), that has been finished and comple-
mented by Fo. Next, we construct a function f : Q2(R™) — R such that for every function

f:Q2(R™) — R, such that
2 f(Py),9 € L3(F,R"). (2.2)

It is obvious that the function F, also known as the lift of f, depends simply on the law
of ¥ € L*(F,R") and is independent to the selection of the representative 1.

25
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Definition 2.1 (Differentiable function in Qy(R?))

A function f : Qo (Rd> — R is said to be differentiable at iy € Q)2 (]Rd> if there exists
Y € L2 (.7: ; Rd) with pg = Py, such that its lift f is Fréchet differentiable at vq. More
precisely, there exists a continuous linear functional Df (o) : L? (}" ; Rd) — R such

that

F (00 +a) = F(90) = (DF (90) .a) + O (lally) = Duf (o) + O (llally) . (2.3)

where (-,-) is the dual product on L (}"; Rd> , and we will refer to D,f (p) as the

Fréchet derivative of f at pg in the direction «. In this case, we have

Daf (o) = (DF (o) o) = T (3 + )

, with g = Py,.
t=0

Note that by Riesz’s representation theorem, there is a unique random variable
Ao € L2 (.F; Rd) such that <Df(190) ,a> = (Ao, ), = E[(Ao, @),) , where e € L? (]—"; Rd> :
It was shown (see [12]). Then there exists a Borel function h [p] : R — R?, depend-
ing only on the law py = Py, but not on the particular choice of the representative v

such that Ag = h[ug] (o) . So, we can write equation (2.3) as
F(Po) = £ (Par) = (o] (90) 19— D)y + O (10— Dolly), ¥ € L2 (F;RY).

We shall denote 0,,f (Py,,x) = h|uo) (z), x € R%. Moreover, we have the following

identities:

Df (%) = Ao =h[ug] (Wo) = 9uf (Poy, o),
D.f (Pﬁo) = <auf (P1907190) ’a>7

where o = 1 — ¥y, and for each p € @y (Rd) LOuf (Py,-) = h|[Py] () is only defined in

a Py (dx) — a.e sense, where pn = Py.
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Definition 2.2
We say that the function f € (Cll,’l <Q2 (Rd>> if for all ¥ € L? (]—"; Rd) , there exists
a Py-modification of 0, f (Py,-) such that 0,f : Q2 (Rd) x R? — R? is bounded and

Lipchitz continuous. That is for some C' > 0, it holds that

1 10,f (1, 7)) < C,Vp € Q2 (R) Vo € RY;
210, f (1, %) = Ouf (i) < C (Dalps, f2) + |2 — £]), Yps, fo € Q2 (R?) ,Va, & € RY,

Remark. If f € (Cé’1 (Qg (Rd)) , the derivative 0, f (Py,-),v € L? (.7-"; Rd> indicated in
definition (2.2) is unique.
2.1.1 Hypotheses

The following established assumptions relating the coefficients will be used.

Condition(A1l) :

1. For all ¢ € [0, T, the function p(-,0,0,0) € L% (0,T,R) for p = b, 9,0 and
€(-,0,0) € L% (0,T,R), f(-,0,0,0,0,0,0,0,0,0) € L% (0,T,R)
and ¢ (0,0) € L%(Q, R).

2. For any t € [0,7T], the functions b, g, o are continuously differentiable in (x,v) and
they are bounded by C(1 + |z| + |v|). The function ¢ is continuously differentiable

n x.

3. The functions f and [ are continuously differentiable in (x,y, z, z,v), and they are
bounded by C(1+ |z|+]y|+ |2+ 2| +]v]) and C (1+ [2]* + [y[* + [z + |2]* + o[
respectively. The derivatives of f and [ with respect to (x,y, 2, z,v) are uniformly

bounded.

4. The functions ¢ and M are continuously differentiable in x, and the function h is
continuously differentiable in y. The derivatives M,, h, are bounded by C(1 + |z|)
and C(1 + |y|)respectively.

5. The derivatives b,, b,, gz, 9u, 0, 0y, & are continuous and uniformly bounded.
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Condition(A2) :
1. The functions b, g, 0, f,1,&, M, h,p € C;"' (Q2 (R)).

2. The derivatives (95%, 8519, 85’”0, 85”5, ((951‘, 85% 852, 852> (f,1) are bounded and Lip-

chitz continuous, such that, for some C' > 0, it holds that

i. For p=10,9,0,& and Y, i’ € Q2 (R) ,V,2' € R,
08 p (t,, )| < C,
04 p (.0 1) = O p (1" 1) < C (D (s ) + |2 — ']
ii. For p= M, p, and Y, ' € Q2 (R), Vo, 2’ € R,
0Fp (2, 1) < C,

08 p (2, 1) = Ol p (2!, )| < C (D (i, 1)) + | = ')

iii. For p = f,1, and Yy, pi}, pa, ph, i3, iy, i, py € Qo (R) and Va, ', y, ', 2, 2/
2,7 €R,

(007,08, 08, 0%) p (.2, j, v, pi2, 2, 15, 2, )| < €,
I

aixu 85y7 8527 852) P (tu T, Ht1,Y, U2, 2, 43, 27 M4)

— (0,0, 0070 ) p (6.2, s, o/ i, 2 i, 2, )
<Cz =2l +ly—yl+ |z =2 +12 = &) + D2 (1, 1))

+ Dy (g, pty) + Do (s, pr5) + Dy (pia, 1)) -

2.2 Notation and problem formulation

Let T be a fixed strictly positive real number and (2, F,F, P) be a complete filtered
probability space equipped with two independent standard one-dimensional Brownian
motions W and Y . Also assume that F ={F},, and F; := FY Vv F VN, where N
denotes the totality of P-null set and F}V, " denotes the P-completed natural filtration

generated by W, Y respectively. We denote by R" the n-dimensional Euclidean space,
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and by (+,-) (resp. | - |) the inner product (resp. norm). The set of the admissible control
variables is denoted by U.

Throughout what follows, we will use the following notations.

e L% (0,T,R"™) the set of all R"-valued square-integrable F;-adapted processes.

o L%(Q,R") the set of all R"-valued square-integrable Fr-measurable random vari-

ables.

. L2 (]—"; Rd) is the Hilbert space with inner product (x,y), = E[z - y],z,y € L? (.7:; Rd)
and the norm ||z, = m

o () (]Rd) the space of all probability measures p on (Rd, B (Rd)) with finite second

moment, i.e, / ) |z|® 1 (dz) < oo, endowed with the following 2-Wasserstein metric:
R

for p,v € Qs (Rd) ,
Dy (g1, o) = inf { [/Rd | — ylgp(dl’,dy)r 1p€Qx (R) p(RY) =y, p (RY,:) = Mz} -

. (Q, F.F, ﬁ) is a copy of the probability space (2, F,F, P).

. (5, 64) is an independent copy of the random variable (¢, ) defined on (Q, ]-A", IF’, ﬁ’) ,
such that
(9,8) e L? (F;R?Y) x L2 (F;RY).

. (Q X Q, F® ]?, F® ]@‘, P®]3) is the product probability space, such that
(9,8) (w, @) = (9 (@), ()) for any (w, ) € 2 x Q.

~ o~ ~ o~ =

Let (ut, e, Uy 21, zt> represent an independent replica of (u, x4, Y, 2, 2;) to ensure that

~ ~

b, =P, P,=PF,, F, = ﬁ?u and P;, = ﬁ’gt. We denote the expectation under the

probability measure PasE [], and Px = PoX ! represents the law of the random variable

denoted by X.

Now, let’s consider a nonempty convex subset U of RF. A control v : Q x [0,T] — U

Mohamed Khider University of Biskra.



2.2. NOTATION AND PROBLEM FORMULATION 30

is deemed admissible if it is F, -adapted and satisfies sup E|v|> < co. We proceed to
0<t<T

examine the stochastic control system characterized by general McKean—Vlasov FBSDEs.
dxy =b (t, xy, Py, vt) dt + g (t, xy, Py, vt) AW, + o (t, xy, Py, vt) th”
—dy, = f (t, xi, Peo,yty Py, 2, Py, 2/, Pay, vt) dt — 22 dW, — z'dY, (2.4)
58 = o, y;" =@ (Ilj)"apw%) )
where P,,, P,,, P.,, P5;, denotes the law of the random variable x,y;, 2, z; respectively.

The coefficients of the controlled system (2.4) are defined as follows

b [0,T]xRxQ(R)xU —=R, g,0:[0,T] xRxQ2(R)xU — R,
v Rx@Qy(R) =R,
f o[0T xRxQ:(R)xRXxQa(R)xRx @y (R) xR x Qs (R)xU — R.

It is worth noting that the above forward-backward stochastic differential equation
(2.4) of type McKean—Vlasov is very general, in that the dependence of the coefficients
on the probability law of the solution P,v, Py, P.v, Pz» could be genuinely nonlinear as an

element of the space of probability measures.

We assume that the state processes (z°,y”, z”, 2) cannot be observed directly, but the
controllers can observe a related noisy process Y, which is the solution of the following

equation
dY; = & (t, 2}, Pay) dt + W7,
Yo =0,

(2.5)

where € : [0, 7] x Rx Q, (R) — R and W’ is stochastic processes depending on the control
v.

Inserting (2.5) into (2.4), we have
day = [b(t,a7, Pey,vi) dt — o (£, 27, Py, vi) € (t, 27, Py )| dt + g (£, 27, Py, v0) dW,
+o (t,a7, Pey, vr) dY,
—dy! = f (t,xf,ng,yf,Pyg,zf,Pzg,Ef,Pg )dt — 20dW, — 2°dY,

vo_ v v
Ty = o, yT_SO<xT’PCC'%>

From Girsanov’s theorem, it follows that if

ds},

Zf:exp{/f(s,ﬁs,Pu dY, — = /‘5 s,xS,Pv
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where Z* is the unique ]:ty—adapted solution of the SDE of McKean—Vlasov type

de) = ng (t> ,CE;), Pxf) d}/l-fa
7l =1,

(2.7)

and if dP" = Z;/dP, then P" is a new probability and (VV, I/T/”) is a two-dimensional
standard Brownian motion under this probability.

The associated cost functional is also of McKean—Vlasov type, defined as

T
J(’U) = EU [/ l(t,x?,ng,y:,Psz,Z;}7PZ§,ZZ),Pg§,Ut) dt]
0

FE [M (a5, Py) + 1 (45, Py )] (2:8)
where EY denotes the expectation with respect to the probability space (2, F,F, P”) and

M @ RxQ(R)>R, h:RxQy(R) =R,
[ [0,T]xRxQ2(R) xRxQ2(R) xRxQy(R) xR xQy(R)xU — R.

Our partially observed optimal control problem of general McKean—Vlasov FBSDE is

to minimize the cost functional (2.8) over v € U subject to (2.4) and (2.5) ,i.e.,

minJ (v) .

veU

If an admissible control u attains the minimum, we call v an optimal control and
(z,y, z, z) an optimal state, respectively. Obviously, cost functional (2.8) can be rewritten

as
T
J(v) = EVO Zt”l(t,xf,thv,yf,ny,zZ’,Pzg,if,ng,vt)dt]
+E | ZpM (2, Py ) + 1 (45, Py )| (2.9)

Then the original problem (2.8) is equivalent to minimize (2.9) over v € U subject to

(2.4) and (2.7). Clearly, under assumptions (A1) and (A2), with the help of Theorem

(2.3) in Buckdahn et al. [6], and Lemma 2 in the work of Wang et al. [54], for each
v € U, there is a unique solution (r,y, z, 2) € L5 (0,T,R) x L% (0,T,R) x L% (0,T,R) x
L2 (0,T,R) which solves
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Ty =1z + /Ot {b (s,x;’, Py, US) —0 (5,1:;’, P, vs) 19 (s, xy, va)} ds
+/tg(s,a:§,ng,vs) dWs—i-/ta(s,xg,ng,vs) 4y,
0 0

T T T
v =y = [ F (sl Py P 2t P de [zt + [z,
t t t

The main result of this thesis is stated in the following section.

2.3 Necessary conditions for optimal control prob-

lem of Mckean—Vlasov FBSDEs

For our partially observed optimal control problem using general Mckean-Vlasov FBS-
DEs, we establish the necessary conditions of optimality in this section. The Girsanov
theorem, derivatives with respect to probability measure, and the introduction of vari-
ational equations with approximations of their solutions provide the foundation for the

proof.
Let’s define the Hamiltonian

H(t7$7 Px7y7 Py?'Z? PZ727 P27U7p7 Q7 k? E‘? Q)
=p(b(t,z, Py,v) —o(t,x, Py,v)E(tx, Py)) —qf (t,z, Py, Py, 2, Py, Z, P5,v)

+k:g (t7 x’ PLU’/U) + ];:0- (t7 I? P£U7U) + Qf (t"ZU? PZ') + l <t7x7 Px?y? Py7 z? PZ727 PZ? U) *
(2.10)

Suppose that u is an optimal control with the optimal trajectory (z, vy, z, z) of FBSDE
(2.4). For any 0 < 0 <1 and v+ u € U, we define a perturbed control u! = wu, + v,

To simplify our notations, we denote for &, and ¢ =b,qg,0

g(t) :S(t7$taprt)7 ¢(t) :w(tyxtapl‘taut)a
£x(t) = fﬂc (tvmtv th) s z/}P(t) = wp (t7xt7 tha ut) ,fOI‘ pP=,,

and the derivative processes

8525 (t) = aizg (ta fta Prt; $t) ) 85% (t) = 6511/; (tv ‘%tv wa at§ xt) )
85325 (tv :/it) = 8515 (ta T, wa'&:\t) ) afxd] (ta :/E\t) = af”ﬁ (tv I, Pacty Ut i'\t) .
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Similarly, we denote for U = f,l and p =z,y,2,2z,u
\Ij(t> = ‘If (twrta P&Utuyﬁpytu Zt7Pzt75t7P2t7ut) )
\Ilp(t) - \IJp (ta'rta th»yta Pym Zt, Pzw Eta Piﬁut) .
Finally, we denote for ( = z,y, z, 2
85C\Ij (t) = 854‘11 (tafl}hpﬂcmgta Pyta 2t7pzt7/2_\t7P§t>at; C) )
aiC\II (ta Ct) = 85<\I/ (ta Tt Prt?yta Pyt7 2t Pztv 2, me Ut Ct) :

Now, we introduce the following variational equations which is a linear FBSDESs

dat = [(ba (t) = 00 () £ () — 0 (8) & (1)) 3y + [bu (£) — 00 (£) € ()] vy
+ R (050 (t,3) 3| — B[00 (,2) 2| £ (8) — o () E |0f7¢ (8,3,) 3] | dt
+ (90 (&) 2} + B [0F7g (£, 7) 7] + go (£) v] AW,
+[ow (0 2} + B[00 (t,7) 7| + 00 (1) 0] dY,
—dy} = £ ()2} + B [0f f (1,20 2] + f, (0wl +E [0 f (£, 5:) 5
L2+ B[O F (2 2] + 02 + B[ (62) 5] + £ (1) v dt
—2ldW, — zMdY,,

ZL‘é =0, y’}“ = Pz (ITa PxT) x% + IAE [811?90 (xT’ PxT’ :/L‘\t) f%} ’
(2.11)

and a linear SDE

{ dz} = Z}€ () + 2, () 2} + ZE |00 (4, 7) 7] | dYi, (2.12)

Zy = 0.
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Next, we introduce the following adjoint equations of McKean—Vlasov type
—dp = [bo(Opr + B[00 (1) ] — 0 (1) & () pr — o (VB [9]€ (1) i
—0, (€O p— EOE (00 (1) 5] + 9.()ki + B [0 (1) ki
ok + B 0o (k] + & ()@ + B [0 () Q)
—HOa —E [0 f (1) @] + L) + E[051(1)]] dt
— ke dW, — kydW,,

dg; = [fy( )g: + E [5ny CY] [0Pyl ” dt (2.13)
+ [ a+E[97f ( )q} ~E[ox1(0)]] aw,
+ [fz ) q+E [5})2 (t)a } l5 (t) — [5’5‘2l (t)” dw,

pr =M, (xr, Pe,) + E [0} M (37, Py, xT)]
— Pz (xTa PJ:T) qt — E {GPE‘P (fTa Py, SET) At} )
do = _hy(y07Py0) - |:ap (yOaPyoayO)} .

It is clear that, under assumptions (A1) and (A2), there exists a unique (p, kok (), Q) €
L£%(0,T,R) x L% (0,T,R) x M? ([0, T];R) x L% (0, T,R) satisfying the FBSDE (2.13) of

McKean—Vlasov type.

Remark Note that the mean-field nature of FBSDE (2.13) comes from the terms involv-
ing Fréchet derivatives (35%(15) ,85“”9@) ,85”0@) ,85””5 (t) and (85 ,85 ,85 ,65 ) (f, 1),
which will reduce to a standard BSDE if the coefficients do not explicitly depend on the

law of the solution.
Now, we introduce the following BSDE involved in the stochastic maximum principle
—dP, = 1(t,xy, Py, ys, Py, 21, Pay, 21, P,y ug) dit
—QudW; — QW (2.14)
Pr = M(xr, P,,.).
Under assumptions (A1) and (A2), it is easy to prove that BSDE (2.14) admits a

unique strong solution, given by

T
P = M(xT,PxT)—/t L(5, 25, Po, s, Py, 25, P 5, oo 0y) ds

T _ T —
n / O.dW, + / Q.dV..
t t

The following theorem presents the fundamental result of this section.
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Theorem 2.1 (Partial necessary conditions of optimality)

Let assumptions (A1) and (A2) hold. Let (z,vy,z,2,u) be an optimal solution of our
partially observed optimal control problem. Then, there are (p,q,k, k) and (P,Q, Q)
of F—adapted processes that satisfy (2.13), (2.14) respectively, and that for allv € U,

we have

E* [Hv (t) (v — uy) /]-"ty} > 0,a.e,a.s, (2.15)
where the Hamiltonian function
H (t) =H (tu Tty Pry s Yt Py“ 2, Poy s 2oy Py ug, Pry Gy Kot ]_ft () 7Qt) )

is defined by (2.10).

We give some auxiliary results to present our fundamental result in Theorem 2.1.

Lemma 2.2
Let assumptions (A1) and (A2) hold. Then, we have

limE | sup |z — xtﬂ =0, (2.16)

6—0 |0<t<T

limE | sup |yf — ytr -+ /OT (‘ztg — zt’2 + ‘Zf — Et’2) ds] =0, (2.17)

6—0 |0<t<T

2
imE | sup |Z{ - Z,| ] = 0. (2.18)

6—0 |0<t<T

Proof: The proof was obtained using Ito’s Formula and Gronwall’s Theorem, moreover for

¢, = 0 the proof of lemma 3.2.1 in chapter 3 can be derived using the same method. M

Lemma 2.3

Under the assumptions (A1) and (A2), the following estimations holds
(191_I>I(1]E L?f%’xt‘ ] =0, (2.19)
lim E Liltl%\yt] +/ ( ’ +Z| ) ] (2.20)
T -2
E/ Z¢|"at =o. (2.21)
0
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Proof: The proof was established using Ito’s Formula, Taylor’s Expansion, Young’s In-
equality, and Gronwall’s Lemma. For ¢,r = 0, the proof of lemma 3.2.1 in chapter 3 may

be generated using the same method. |

Since v is an optimal control, then, we have the following lemma.

Lemma 2.4
Let assumptions (A1) and (A2) hold. Then, we have the following variational in-

equality

=1

0 < E[ZrM, (zr, Poy) vy + ZrE [0 M (7, Py, B1) 31|
B [ZEM (21, Pey) + hy (0, Poo) 5 + B [0, 1w, Py, 5o | (2.22)
+IE/OT ZH) + Zy (L) + B 0,71 (4, 5) 31 ]) + 2 (1,()y) + E [0 (4,5) 1] )
+ 2, (102 + B[00 (t.2) 2]) + Z (07 + B 051 (1.2,) 3,]) + Zulo ()] dt.

Proof: Using Lemmas 2.3 and Taylor expansion, we have

0 < % 7 (uf) = 7 (w)]
- %E |28M (2, Py ) = Z0M (wr, Puy)|
+%E [ (46) = 1 (30)]
J%E /OT [200° (1) - 2 ()] dt
= NI+ 1+ I3,

0 —
where I” (t) =1 (t, xf,chf,yf,ny,zf,sz,zf,Pzg;,uf) .
Then, from the results of (2.19), (2.20) and (2.21), we derive

L = g [Z;?M (x%an%) —ZrM (xT’PIT)}

0

be (8 - ) 1 ()

+ ZT /01 Mx (l’T + A (:L'gv - xT) ’PxTJr)\(/:E\g«*gT)) (:I:GT — :L’T) d)\:|

—i—éE |:ZT /OIIE [851]\4 (.’I}T + A (f% — fT) ’PITJr)\(?E\g«f;T)’fT) (@% — fT)} d/\:|

— E"[IrM (7, Pop)] + B (M, (w7, Pay)) o + B |05 M (o7, Poy, #1) 38|

E
1
-E
0
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Similarly, we have

E {h yg,Pyg) - h(y()vpyo)}
. Uol hy (90 4+ (46 = 90) Py agag ) (46— w0) A
1
E [ /0 E [0 h (w0 + X (3 — o) - By (3o B0) (8 — o) dA}
— B [(hy (40, Pyo)) 06 + B [0F7h(yo, Py, 50)51 )]

and

I; = %E [/OT(Zfl"(t)—Ztl(tht]

— Ev /OT (1) + Lo(t)a} + B [0571 (30 7| + 1,0y + B [051 (¢, 5) 5t
+ (02 + B[00 (4, 2) 2] + =07 + B[00 (1.2,) 3] + L(tyw] dt.
Then, the variational inequality (2.22) can be rewritten as
0 < E"[M,(wr,Pp)a (1) +E [0 M (21, Py, 37) 31|
+E" [9rM (1, Poy) + hy (90, Poo) ' (0) + B [0V h(yo, P, T0) )| (2:23)
+E" /0 § [D(t) + La(t)zf + B (0471 (t,30) 2| + L, ()} +E [9521(¢,5) 3t |
+ (02 + B[00 (4, 2) 2] + =07 + B[00 (6.2) 3] + Lo (®)]
Set ¥ = Z7 17, using It6’s formula, we have

dd, = [fz (t)z} +E {85“”5 (t,Z) ftlﬂ dw, (2.24)
Yo = 0. |

Applying It6’s formula to ptx% and qtyt1 such that,

qo = _hy(y07Py0) - ]:/E\: [afyh(@\OvaoayO)} )
pr = M, (xT, PIT) + E [8}sz (:fT,PzT,xT)]
—Px (.TT, PxT) qTr — ]E [85190 (‘/T\T7 P:BTa 'CET) Z]\T} ’

and using Fubini’s theorem, we get
T _
E [pra}] = E¥ /0 01 (b (£) — 0w (DE(0)) ve + Faoy (1) 01 + kg (1) ] di
T 1 = P, = P,
+E [ ot (100 +E [0 (@] - 10 - B o1 0] ] a

£ | L e QB al] (2.25)
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and
E [quqlﬂ} + E* [hy(yo, Pyo) + f[:‘i [85’3]1(@\0, Pyo’ yo)”
= [ a0t L0} B [of s 050 31]] a
_E / ’ vt [y () + B [9f01 1)]] dt — B / ' o[- (1) + B [0 1 )] ] at (2.26)
0 0
T
—E“/O 7] [15 (t)+E [85%@)” dt.
Now, applying It&’s formula to ¥:P; and using also Fubini’s theorem, we have
E*[9pM(zr)] = —E* /0 Lo 1) dt
+E* /0 ! Q [gx )zt +E [a}ng (t, ) %H dt. (2.27)
From Egs. (2.25), (2.26), and (2.27), we obtain
E" [M, (a1, Poy) +E [0 M (27, Py, ) |
+E* [hy(y(% Pyo) + E {aiyh(@bv Pyovyo)} + ﬁTM(xT)]
= B [ [ o () 006 0]+ Fur (001 + bug (1)
T T .
—E* / 9,1 (t) dt — E / o} [L(t) + B |91 (1)]] dt (2.28)
0 0
_E¥ /T ¥ [zy (t) {aPyz H dt — E* / 2z [zz (t) + E [aizz (t)“ dt
0
B [ 5 i)+ B o )] ar
0
thus

B [M, (o1, Poy) + B [0 M (o1, Py,

+E [y (0, Pyo) + B [051(5o, Py y0)| + 07 M (2r)]
_ [E“/DTHU (t)vt—E“/OTlv(t)vtdt—E“/OTﬁtl () dt—E“/OTxtl [1a(t) + & [01 (1)] dt
_EY / ! ui [y (1) + B [0 (1)]] dt — B / ! o [l () + B9 (1)]] dt
OT ) 0
_Ev /0 2 1)+ E [of71(1)]]

This together with the variational inequality (2.23) imply (2.15), the proof is then com-
pleted. |

Mohamed Khider University of Biskra.



2.4. SUFFICIENT CONDITIONS FOR OPTIMAL CONTROL PROBLEM OF
MCKEAN-VLASOV FBSDES 39

2.4  Sufficient conditions for optimal control problem

of Mckean—Vlasov FBSDEs

Following, we will demonstrate that the necessary condition of partially observed optimal
control in Theorem 2.1 is also sufficient under certain additional convexity conditions. A

function ¢ : R x @ (R) — R is convex if, for every (z“, PY), (z', P}) € R x Q2 (R),
6 (2", PY) = ¢ (2", PY) > 6, (2", PY) (2% — 2*) + B [0 (2", PY) (2” — a)] .

For this, we need an additional assumption condition (A3) as follows:
Assumption (A3)

1. The functions M, h are convex in (z, P;) and (y, P,) respectively.

for a.e. t € [0,T], P — a.s.

H®(t) = H"(t) > HI(t) (" — ")+ E [0 H" (t) (3" — 3")]

where

HU<t) = H(tﬂxvﬂpa?vyv7pyvazvupz”7Zvapivavapuaqu7kual;u<')7Qu)7
Hu (t) = H(t’xu’P;f’y%Pyu’Zu,PZ%Zu’qu’u’pu7qu’ku’]_§u ()7Qu) .
Now, we can prove the sufficient conditions of optimality for our control problem of

McKean—Vlasov FBSDESs, which is the third main result of this Thesis.

Theorem 2.5 (Partial sufficient conditions of optimality)

Suppose (A1),(A2) and (A3) hold. Let Z° be F) -adapted, uw € U be an admissi-
ble control, and (x,y, z,%) be the corresponding trajectories. Let (p, k. k() ,q) and
(P,Q,Q) satisfy (2.13) and (2.14), respectively. Moreover, the Hamiltonian H is
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convex in (z, Py, y, Py, , 2, P,, Z, P;,v), and

E" [H, (t) (v — ) /F| > 0,a.E,as,.

Then u is a partial observed optimal control for the problem (2.4) — (2.9) subject to
(2.7).

Proof: For any v € U, we have

K0 o) = B[ (o) 20 ()

+E [h (45, P ) — h (. Py )|

T
+E / (Z01° () — Z21 (1)) dt,
0
where

lv(t) = l(t,wf,Px};,y;)7Py§7Z;},PZ;1,5U7PEU,’l)t),

lu(t) l<t7xtu7Px%ﬂy;llvny)ziu7pzz‘72u7p2“7ut)'

By the convexity property of M and h, we get

E|[ZpM (2, Py ) — Z¢M (3%, Py )| > E[(Z} - Z9)M (2%, Py )]
FE' (M, (o, Py ) (2 —a)] (229)

~

+E"[E [0 M (24, Puy )| (2 — 2],
Similarly,

E b (v Pyy) = (v, Pg) | 2 E [hy (8 P ) 6 — )]

+E [E [85% (yg, Pyg)] (vo — yé‘)} . (2:30)
and

T T T
IE/O (Z01° () — Z01 (t))dt:IE/O Z0 (1Y () — 1 (t))dt+E/0 (Z0 = ZV 1™ (t) dt.
(2.31)
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From (2.29), (2.30) and (2.31), we can write
JW) = T(w) > E'[M, (2%, Poy ) (@} — o¥)] + EV[E [9,7 M (o}, Py 3% ) | (e} — )]
+E [hy (4 Py ) (06 — v6)] +E[B [0F7h (s, Py 58)] (w6 — )]

T T
+]E/O 70 (I (1) — 1" (t))dt+E/0 (ZY — 7)1 (1) de

+E l(z;; o (/OTl“ (t)dt + M (ﬁ%PxT)ﬂ .

Noting that
a0 = ~hy(¥0, Pu) — E |05 h(Go, Pyo, w0)|
pr = M, (21, Poy) + B |05 M (37, Poy, w7))|
—@u (7, Pop) qr — E [35“”90 (@1, Pors 1) EJ\T} ,

we have

J)=J(w) = Bl (vp — o)) + B e (27, Poy) qr (27 — 27)]

+E"E [0} ¢ (31, Pop,or) Gr (@ — 2%)] — E g8 (465 — )]

+EY /OT (1° (t) — 1" (1)) dt + E [(Z;; — 74 (/OTl“ () dt + M (xlijxT)ﬂ .
Then, we can write
Jw) =) = Elph (ko)) + g (vF — 1)
T
~E (g5 (65 — )] +E* | [0 () — 1" 1)

VE [ (28 — 72 (/OTW (t)dt + M (x%Pz;)ﬂ .

Now, applying Ito’s formula respectively to p; (zy — z}') ,q' (y; — yi') and P} (Z} — Z}'),

and by taking expectations, we get
T
Jw)—J(u) > ]E“/ (HY (t) — H"“(t))dt
0
T T
_Ev / HY (£) () — &%) dt — B / B [0 1" (1)] (af — o} dt
0 0

T T
—E* [ H,(t) (yffyl‘)dth“/o E|ofvH" (t)| (yf — i) dt
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By the convexity of the functional H in (x, Py, y, Py, 2, Ps, 2, Pz, v), we have
T
J(w)—J(w) > E* / H, (£) (vr — ) di
0
T
= E / ZUE [ H, (1) (v — w) | F) | dt.
0
Since Z;* > 0, and using condition (2.15), we have
J(w) —J(u) >0,
i.e., u is a partially observed optimal control. |
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CHAPTER 3

A Stochastic maximum principle for partially observed optimal control

problem of McKean—Vlasov FBSDEs with jump

In this chapter, we develop the necessary and sufficient conditions for partially observed
Mckean-Vlasov optimal control problems. A controlled forward-backward stochastic dif-
ferential equations driven by Poisson’s random measure and an independent Brownian
motion describes the system. The McKean-Vlasov system’s coefficients are dependent by
the state of the solution process, as well as its probability law and control variable. In

general, this may be stated as follows:
dlef) =0 (tu ‘rga Pxfa Ut) dt + g (tu ‘rga P;Efa Ut) th +o (t7.17:;), sz’)vt) thU
+ /@ c (t,xfﬁ, P vy, e) N(de, dt),
—dy; = f (t, 2}, Py, v}, Py, 20 Py, 3 Py, 1, Py, wy) dt — 20dW, — Z/dY,
— [ ()N (de, ),

v vo__ v
Ty = To, yT_(p(xTapx%>:

The cost function that must be minimized over the class of admissible controls is also of

the McKean Vlasov type, with the form:
T —
J(U) = ]EU [/0 l (t,l’?, Prfayz}7 ny,zf,Pzg, Z?,ng,?"f, P,«z},’Ut) dt]

+EY [M (:c%,Px%) +h (yS, Py@)} ;

We utilize Girsanov’s theorem, variational equations, and derivatives with respect to prob-
ability measure under convexity assumption to demonstrate our result.

This chapter will be organized as follows: Firstly, we will begin with a formulation of
the partially observed control problem of general Mckean-Vlasov FBSDs with jump pro-

cesses. Then, as our key conclusions, we prove the necessary and sufficient conditions of
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optimality. As an application, a linear quadratic control issue of this type of partially

observed control problem is provided.

3.1 Preliminaries

Let T be a fixed strictly positive real number and (2, F,F, P) be a complete filtered
probability space equipped with two independent standard one-dimensional Brownian
motions W and Y. Let n be a stationary JF;-Poisson point process with the characteristic
measure 7 (de) . We denote by N (de, dt) the counting measure or Poisson measure induced
by 1 defined on © x R, where © is a fixed nonempty subset of R with its Borel o-field
B(©) and set N (de,dt) = N (de,dt) — 7 (de) dt satisfying /(;)(1 A lel*) (de) < oo and
m(©) < +o0o. Also assume that F ={F}, and F; = FY v FY v FN v N, where N
denotes the totality of P-null set and F,", F) and F;¥ denotes the P-completed natural
filtration generated by W, Y and N respectively. We denote by R™ the n-dimensional
Euclidean space, and by (-,-) (resp. | - |) the inner product (resp. norm). The set of the
admissible control variables is denoted by U. Let (ﬁt, i, Uy 2ty 2t ﬂ) be an independent
copy of (ug, ¢, Y, 2t, 24, 7¢) SO that th:ﬁgt, Pyt:f’@, Pztzﬁ;t, Pgt:ﬁ;—\t and Prt:ﬁ;:t.

Throughout what follows, we will use the following notations.
« MZ?([0,T];R) the space of R-valued F;-adapted measurable process c(-), such that
r 2
E/ / le(t, )2 7 (de) dt < +o0.
o Je

Let U be a nonempty convex subset of R¥. A control v : Q2x[0,T] — U is called admissible
if it is ) -adapted and satisfies sup E |v]> < oco.

0<t<T
We consider the following stochastic control system with general McKean—Vlasov FB-

SDEs
day = b (t, 2}, Po,vi) dt + g (t, 27, Pay,v,) dWy + 0 (t,27, Pay, v,) dW;
+/@c (t,xfﬁ, P vy, e) N(de, dt),
—dy; = f (t, xy, Pov,yi, Py 2, Pov, 2/, Pov 1y PTg,vt) dt — z/dW; — z;dY; (3.1)
— [ )N (de,an),

v o vo__ v
Ty = Zo, yT_SO('IT7Px%)7
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where P,,, P,,, P.,, P;, and P,, denotes the law of the random variable z, y:, 2, z: and r,

respectively. The coefficients of the controlled system (3.1) are defined as follows

b @ [0,T]xRxQ:(R)xU =R, ¢g,0:[0,T] xRxQ2(R)xU — R,
¢c @ [0,T]xRx@Q:(R)xUx0 =R, ¢:RxQs(R)— R,

f o [0T]xRxQ:(R)XxRXQ(R) xR x@Qy(R) x Rx Q2(R) xR x Q2 (R)xU — R.

It is worth noting that the above forward-backward stochastic differential equation
(3.1) of type McKean—Vlasov is very general, in that the dependence of the coefficients on
the probability law of the solution Py, Pyv, P.v, P;v and P.v could be genuinely nonlinear

as an element of the space of probability measures.

We assume that the state processes (z*,y", z”, 2%, r”) cannot be observed directly, but
the controllers can observe a related noisy process Y, which is the solution of the following
equation

dY; = & (t, 2}, Poy ) dt + AW,
Yo =0,

(3.2)

where £ : [0, T] xR x Q2 (R) — R and th is stochastic processes depending on the control
v.

Inserting (3.2) into (3.1), we have
da? = [b (t, ¥, Py, vt) dt — o (t, ¥, Py, vt) ¢ (t, ! Px;})} dt + g (t, ¥, Py, vt> dw,
+o (t, ), Pro, vt> dY, + /@ c (t, zy  Pey vy, e) N(de, dt),
—dy! = f (u ¥, Poo, 4, Py, 20, P 2, Poy, 1, Py, Ut) dt — z0dW, — z'dY,
_ /@ 0 (e) N (de, dt)
Ty =To, Yp=¢ (m%,vaT) :

(3.3)
From Girsanov’s theorem, it follows that if
Zf:exp{/g(s,xS,Pv /\5 5.t Py ) ds},
0
where ZY is the unique ]-'ty—adapted solution of the SDE of McKean—Vlasov type
Az} = Z7¢ (t,x), Pp ) dY;,

Zv =1,
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and if dP" = Z/dP, then P’ is a new probability and (VV, W”) is a two-dimensional
standard Brownian motion under this probability.

The associated cost functional is also of McKean—Vlasov type, defined as

T
J(U> = EY [/ l(taxzjaPx?ayz}>ny7Z;)7szagg7szarf>Pr;’7/Ut)dt]
0

HE [M (2%, Pay ) + 1 (v, Pyg) | (3.5)
where E¥ denotes the expectation with respect to the probability space (2, F,F, P”) and

M : RxQR) >R, h:RxQ(R)—R,
I o [0,T]xRXx@Q(R)XxRXxQy(R)XxRXxQ2(R) xR xQy(R) xR xQy(R)xU — R.

Our partially observed optimal control problem of general McKean—Vlasov FBSDE is

to minimize the cost functional (3.5) over v € U subject to (3.1) and (3.2) ,i.e.,

minJ (v).

veEU

If an admissible control u attains the minimum, we call u an optimal control and
(x,y, z, Z,r) an optimal state, respectively. Obviously, cost functional (3.5) can be rewrit-

ten as
T
J(v) = E[/O Zfl(t,xf,thv,yf,Pyg,zf,Pzg,zf,ng,rf,Prg,vt)dt}
+E | ZpM (2, Py ) + 1 (45, Py) |- (3.6)

Then the original problem (3.5) is equivalent to minimize (3.6) over v € U subject to

(3.1) and (3.4).

Let us impose some assumptions on the coefficients of the state and the performance cost

functional.
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Assumption (A1)

1. Forallt € [0,7T], the function p(-,0,0,0) € L% (0,T,R) for p = b, g, and ¢ (+,0,0,0,0) €
M2 ([0,7];R), £ (+,0,0) € £5(0,T,R), £(-,0,0,0,0,0,0,0,0,0,0,0) € £% (0, T, R) and
©(0,0) € LF(Q,R).

2. For any t € [0, T], the functions b, g, o and ¢ are continuously differentiable in (z,v)
and they are bounded by C'(14|x|+|v|). The function £ is continuously differentiable

in x.

3. The functions f and [ are continuously differentiable in (x,y, z, Z, 7, v), and they are
bounded by C(1+|x]+|y|+|2| +|2|+|r|-+v]) and C (1 + [f* + [y[* + |22 + |21 + [ + v]*)
respectively. The derivatives of f and [ with respect to (x,y, z, Z, r, v) are uniformly

bounded.

4. The functions ¢ and M are continuously differentiable in x, and the function A is
continuously differentiable in y. The derivatives M,, h, are bounded by C(1 + |z|)
and C(1 + |y|) respectively.

5. The derivatives by, by, gz, Gv, Oz, 0y, & are continuous and uniformly bounded. More-
over, there exists a constants C' = C (T, 7(0)) > 0 independent to v and © such

that sup|e, (¢, x, u,v,e)| < C, and sup |c, (¢, z, p,v,e)| < C.
ecO ecO
Assumption (A2)

1. The functions b, g,0,¢, f,1,&, M, h,p € Cé’l (Q2(R)).

2. The derivatives 85”1), 85”69,85”0, 05”0, 85”5, (613” obv o= P 8P’") (f,1) are bounded

po Y oY oY oM

and Lipchitz continuous, such that, for some C' > 0, it holds that

i. For p=10,9,0,& and VY, i’ € Q2 (R),Vr, 2’ € R,

08 p (t, 2, 1)| < C,

\85% (t,x, ) — 0= p (t, 2!, )

< C(DQ (M:ﬂ/) + ’x - l’/’),
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and there exists a constants C' = C' (T, 7(0)) > 0 independent to v and © such
that,

sup‘@PZ (t,z,p, e )‘ <C,
ecO®

sup|y=c (t,x, pue) — e (o' ' e)| < O (Jw — '] + Dap, 1)) ;
ecO

ii. For p= M, p, and Y, ' € Qo (R) ,Va, 2’ € R,
07 p (2, 1) < C,

08 p (2, ) — O p (', 1)

< C (D (p, ) + |z —2'|);

iii. For p= f7l7 and vlulnulhlu%lu“é?#?nﬂ’g?“’%:uila,ufn,u/5 € QQ (R) and
vx7xlay7 ylu 2 ZI7 Z, 517T7 s R,

‘(85T785y785278527afr) (t7xaﬂlay7ﬂ27zaﬂ37 27:“’47T7 M5)’ S Ca

w oY oY oY o

‘(aPz 8Py aPz aPz aPr) (f;, T, U1, Y, o, Z, 143, 5, M4, T, M5)

P, Py, aP. qP: P /AR A A Y A A AR A A |
(aﬂ 7auy7au aau 7au> (taxa,ulaya,umz?“'?nz7:“47T7H’B)

SC(lz =2+ ly =y + 1z =2+ 2 =2+ [r = | + D (11, 1)

+ Do (2, p3) + D2 (113, p5) + D2 (pa p1y) + +D2 (s, pi5)) -
Clearly, under assumptions (A1) and (A2), with the help of 2.3 in Buckdahn et al. [6],
and Lemma 2 in the work of Wang et al. [54], for each v € U, there is a unique solution
(z,y,2,2,7) € L2(0,T,R) x L% (0,T,R) x L% (0,T,R) x £%(0,T,R) x £Z(0,T,R)

which solves

t .
—i—/ s,xS,PUUS dY —|—// s,xy , P Us,e)N(de ds),
0

yf:yv / f(S,l‘S,Pv7y57PyU,ZS,Pv,7ﬁS,Pv (% dt+/ UdW

+/ “dY+// N (de, ds),

To simplify our notations, we denote for &, c and ¢ = b, g, 0

f(t) - § (ta T, th) ) 1/)(t) - w (tu T, P:l?m ut) ’
fz(t) = 5&‘ (t7xt7 th) 3 ,lvbp(t) = ,lvbp (tv Ly, Pwmut) 3
C(tae) =c (txéj_apx}fiaut:e) v Cp (t7 6) =& (taxf_:PngUtje) ,for p=T,U,
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and the derivative processes

alleé- (t) = 8525 (twfhpwt;xt)? aPr¢( ) a ¢<taft7Px“at§xt) )
85965 (tvft) :85x§(taxtapxt;ft)a a /l/)(t xt) a w(t,J?t,th,Ut;iT\t),
afzc(t, e) = 85“50 (t,:%t_,th_,@t,e;xt> , 8P’” (t,e,zy) = 8 (t,xt_,th_,ut, e;ft) .

Similarly, we denote for U = f.l and p=z,y,2, 2,7, u
U(t) =V (t,xt, Pry, Yty Py, 2ty Poyy 2ty Py 1ty Pryu)
U, (t) =V, (t, x, Py, Y, Py 2ty Py 2ty Py 1y Pryy )
Finally, we denote for ( = x,y, 2, z,r
OFeWw (t) = 055 W (&, 21, Pay, i, Pys 21, Py 20, P2y 7, Py 03 C)
W (t,G) = 05 (t,21, Payy i, Py 200 Poyy By Py, Pry s )
Now, we introduce the following variational equations which is a linear FBSDESs
duf = [(b. (t) = 02 () E (1) =0 () & (1) 2} + [by (1) — 00 () E ()] vy
+E (00 (1, 3) 3] — B[00 (t,2,) 3] £(t) — o (O E [0f¢ (t,7) 71 || dt
+ 9. (0 2} +E [0 g (£, 2) 21| + g0 (t) vi] AWV,
+[on () 2} + B[00 (,5) 7)) + 00 (t) 0] dY,
+/ tea:t+IE[8P (t,e,T¢) T }+cv(t e)vt} (de, dt)
—dy! = [fo (&) 2} + B |0 f (6, 2) 8| + £, )yl +E [0 f (+,5,) ]
+ L)z + B[O 2) 3]+ )2 +E [0 (65) 2]
+ f O} B[00 (4 F) ] + fo (8) o] dt
S ) /@ r1(e) N (de, dt),

x(l) = 07 y’}“ = Pz (xTapr)m; + I/E [850590 (mTapra:/E\t) {L‘\%“} )

(3.7)
and a linear SDE
dz} = |2} (t) + Zi&a () 2) + ZE [0)7¢ (8, 3,) 3] | dY,, 5.
Zy = 0.
Set ¥ = Z7'Z', using 1t6’s formula, we have
_ 1, & [P ~\ ~111 157
vy = |& (t)z) + E [0f7¢ (t,7,) 3} || AW, 5.9
g = 0.
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Next, we introduce the following adjoint equations of McKean—Vlasov type

—dp, = |bo()pe +E 00 (1) p1) — o (1) & () pe — 0 () E[9,7€ (1) B
—0, (1) E (8) pr — €O B[00 () Bi| + gu(t)h + B [0] g (¢) B
Fon )k + B {a}jﬂg (t) %t] + [ [eo ttiymate) + B [ofc (t, )7 (0)] m (de)
+& (1) Qu+ B [0 (1) Q] — (g — E [0 F (1) @] + 1(6) + E [0 (1)]] dt
ke dW, — Fyd W, — /@ ng (¢) N (de, dt)

dg = [f,()q +E [0 f (8) @] — 1, () — E |90 ()] ] dt
+ [ a+E[97f ( )q] [aPz 0]] aw;
+EOa+E[OFF ()G - &) a—1: () —E [ (1) aW,
+/ o a+E [0 F(1)a] =1 (1) — B [071(1)]] N (de, di)

pr = Mx (xTu P;BT) + ]E [aixM ('%Ta P$T7 xT):|
—¢u (21, Poy) s — B [0 ¢ (37, oy 21) @)
do = _hy(y07 Pyo) - |:8P h<y07 Pym yO)} .

(3.10)
It is clear that, under assumptions (A1) and (A2), there exists a unique (p, kkon(), q) €
LZ(0,T,R) x L% (0,T,R) x £Z (0, T,R) x M2 ([0, T]; R) x L% (0, T, R) satisfying the FB-
SDE (3.10) of McKean—Vlasov type.

Remark 3.1

Note that the mean-field nature of FBSDE (3.10) comes from the terms involving
Fréchet derivatives 9,b (t),0,7g (), 0,0 (t) ,8,7€ (t) and (65”, oy, 0=, 017, 85*) (f. 1),
which will reduce to a standard BSDE if the coefficients do not explicitly depend on

law of the solution.

Now, we introduce the following BSDE involved in the stochastic maximum principle

—dPt = l (t,l‘t,Px“yt, wa Zt,PZt, Et,Pgt,T’t, P,«t,ut> dt
—QudW, — QudW, (3.11)
PT = M(iL'T,PxT).

Under assumptions (A1) and (A2), it is easy to prove that BSDE (3.11) admits a
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unique strong solution, given by
T
P = M(xT,PxT)—/ L(s, x5, Puy,Ys, Py 25, Pay, Zsy Pz, 75, Pry v5) ds
t
T _ T __
n / Q.dW, + / Q.dW,.
t t

Let us now, define the Hamiltonian H : [0, 7] x R x Q2 (R) x R x Q2 (R) x R x Q2 (R) x
Rx@Qy(R)xUXxRxRxRxRXxR — R, associated with the McKean—Vlasov stochastic
control problem (3.1)-(3.6) by

H(t7 x? PZ?y? Py? Z? PZ7§7 P27 r? P/ln’/l]?p? q? k? l_€7 n? Q)
:p(b(t’xWPﬂ??U)_0<t7$7PI’U>§<taI7P$))_Qf(thuPx7y7Py7Z)PZ7§7PE7T7PT7U)
+kg (t,x, Pp,v) + ko (t,z, P, v) —1—/ ny (e)c(t,x, Py,v,e)m(de) + Q¢ (t, z, P,)

e

+l(twrvany7Py727PZ7Z7PE7T7Prav)-
(3.12)

The main result of this thesis is stated in the following section.

3.2 Necessary and sufficient conditions of optimality

In this section, we prove the necessary and sufficient conditions of optimality for our
system of McKean—Vlasov type, satisfied by a partially observed optimal control, assuming
that the solution exists. The the proof is based on convex perturbation and some estimates

of the state processes of system and observed process.

3.2.1 Necessary conditions for optimal control problem of Mck-

ean—Vlasov FBSDEs with jump

Suppose that u is an optimal control with the optimal trajectory (z,vy, z, z,r) of FBSDE
(3.1). For any 0 < 6 <1 and v + u € U, we define a perturbed control uf = uy + Ov;.
Our first result below, is related to the estimate of trajectory (x,y, z, z,7) and the

observation Z;.
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Lemma 3.2

limE

6—0

limE

6—0

limIE
6—0

Let assumptions (A1) and (A2) hold. Then, we have

s, [af =[] =0 (3.13)
oup 2wl 4 [ (o (3.14)

+/ ‘Ttg (e) = (6)‘27T (de)) ds] =0,

sup ’Ze Zt‘ ] = 0. (3.15)

|0<t<T

Proof: We first prove (3.13). From standard estimates and by using the Burkholder-Davis-

Gundy (BDG) inequality, we get

0 2 o 2
E | sup |z, — s <IE/ ‘b ) —b(s dS—i—E/‘ (s)f(s)’ ds
0<s<t
—HE/ ’ge(s —g(s) ds+E/‘ ‘ds
—HE//‘ se—cse)‘ 7 (de) ds,
where
w(s,xs,Pau) v (s), for ¢ =b,g,0,
c (s, :Egi,ngi , ug, e> = (s,e).
Then,
0 o 2
E[sup Ty — Ts <IE/ ‘b ) —b(s ds—i—IE/‘ {(s))‘ ds
0<s<t

+IE/ £5) (" () —o ()] ds+E/0 \g"(s)—g(s)fds

+IE/ ’ 05’2d8+E/0t/®’09(5,6)c(s,e)’QW(de)ds.

From assumptions (A1) and (A2), we have

E | sup ‘xt—xt‘

0<t<T

0
xs—xs

+ |22 (Pag, P2,

t 2
SCTE/ [ ]ds
0

t
+ Cr0°E / s ? ds. (3.16)
0
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Recall that for the 2-Wasserstein metric Ds (-, ), we obtain

Dy (Pys, Py, ) = inf { [

3

From (3.16), (3.17), and Definition 2.1, we get

1

2
70 r,for all 75,7 € L? (F;R),

Ty — T

with P,y = Pz and P, = P; |,

0
Ty — T

2] : (3.17)

0
T, — Ty

2
ds + MZ6°.

2 t
E| sup ’xf — xt‘ < CrE sup
0<t<T 0 ref0,s]

Then, from Gronwall’s Lemma, the result follows immediately by letting € go to zero.

2
Next, we prove (3.15). By applying 1t6’s formula to ‘yf — yt‘ and taking expectation,

we get
E’yt—yt’ —HE/ z — 2 ds—i—E/ z —zs ) —7s( )’QW(de)ds
= Elo (% Pa) — ¢ (@r, Pey)| +2E / —y) [/ (s) - f(s)} ds,

where

f(s,:cs,Pe yg,Pe,zs,Pe,zs,Pe,rs,Pe U ) :fe(s).

For each € > 0, and from Young’s inequality, we have

2 T
d8+E/

< E’@(m%,Px%)—w(xT,PIT) + E/

) —r, (e)’2 m (de) ds

0 _
Zg — Zs

0
Zg — Zs

0 2 T
E’?/t _yt’ -HE/t

. — Us ds—l—sE/ ‘fe (s)fds.

By applying the Lipschitz conditions on the coefficients ¢, f with respect to x,y, z, 4 and

v, we obtain

E’yf—yt2+E/T zf—zSst—l—E/T 23—232 . e)’27r(de)ds
t
< fE/ Y —ys ds+C’6E/ |:y5_ys +‘D2<Py§>PyS> Q]ds
—I—C’eE/t {zﬁ—zs ‘DQ(PQ, Zs) 2} ds
roe [ [l -2+ [ (P, ) [ s

rff (e) —rs (e)‘2 + ’]D)g (Pg,PTS)

2} 7 (de) ds + a?. (3.18)

T
+C’5E/ /
t Jo
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Here a? is given by

0
xs—xs

ds+Ceb?.

o (P 22

= s ) oton 2 o5

Recall that for the 2-Wasserstein metric Dy(-, ), and by invoking (3.13) and sending 6

1
to 0, we get girr(l]af = 0. Now, we take ¢ = Yol and replacing in (3.18), we obtain
%

2 1 T
ds-l-fE/ z
2 Jt

2 T
e)’ 7 (de) ds < 2CIE/t

2
ds

— Zs

0
Zg — Zs

E‘yf—yt‘2+;E/tT

Ys — Ys s — Ys ds+af.

ds+ E/

Finally, applying Gronwall’s lemma and letting 6 goes to 0, we obtain the estimate (3.15).

2
Now, we proceed to estimate (3.15). Applying It6’s formula to ‘Zf — Zt‘ and taking

expectation, we get

2
— Zy| ds +CpY, (3.19)

E|zf - th <

where ﬁf is given by

2
ds.

ﬁt ]E“/ ’{ s,xs,Pe —&(s,xs, Py,)

Also, from assumptions (A1) and (A2), we have %in{l} Bl =o0.
ﬁ

The proof of (3.15) follows directly by using Gronwall’s lemma and sending 6 to 0. |

Lemma 3.3

Under the assumptions (A1) and (A2), the following estimations holds

lim E l sup ‘ffﬂ —0, (3.20)

6—0 0<t<T

lim E Liltl% \gff + /OT (\sz + \%ff + /@ 7! (e)’2 w (de)> dt] =0, (3.21)

T .2
E/O Z¢)" dt = 0. (3.22)
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Proof: We start by proving the first limit. For notational ease, we introduce the following

notations.
For t € [0,T], 0 > 0, we set
=0 (o —w) =l G =07 (ol —w) —ul,
=91 (zf—zt) — 2z, 5520_1 (2?—@) -z,
Z0=0" (20 - z) -z, WO =0 (0 () - () —ri ().
We denote by

7l =2+ 20 (3 +at), 50 =a+20(F +4),

=2 (o), BT =m0 (5 + 2

= (8 Pal) . 7€) =re) + 00 (7 () + 7 (0)),
First, we have

dz] = (10 — o€ — ou€) 7 + 0" — oul™ — &0t "] + of ) dt + (g7 F0dt + gf " + af ) W,

+(atx§dt+at’ +a3) dYt+/ cf (e) TYdt + ¢} ()+0é3) Ny(de, dt),
i =0,
(3.23)
where
1 pW] 1’\ A0 /).\\9 P
btm:/ ba? (t,’yt’ )d)\ bf’x—/ E 852b<t7 t7 ’Nt7 )ite] d)\’
0 0 L
1 1 20\ 5
af:/ oo (:707) A, a#"”:/ E[afxa <t,%?’9,f?’9) fﬁf] dA,
0 0.
1 1.7 20\ 5
A0 , ~ X WIS AN
éfz/o & (627 an, ft””=/0 E 6‘55(w X )f‘f?]d%
1 1 o0\ 5
S N0 N0\ <
gg:/o g (t,7,") dA gi"x=/0 E 35”9(@%3% )xf} d,
1 1T o\ 5
o = / (3 e)ar, e = [ B |ofc (tm?’e,e,f?’e) 7|
0 0 L
and

of = /01 [be (8,77 = b (£)] dAa}
& [ fow (65) ~ o] et~ [ [6o (192) - at0)] re}
/ b (142) = b0 0] e~ & [ [ou (1:22°) — outt)] dre
Ka $b< v ",3”) —afxb(t,:ﬁ)) :a}] A
—5t (a " <t A0 ~”) — o (tﬁ)) @1] A
R R B
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Oég = /01 [gx (t,’y;\’9> — Oz (t)} d)\fl',} + /1 [gv (t,’}/;\ﬁ) —9v (t)} d)\vt

1T ~
+ / E (afwg (t A ) ol g (t,ft)> @1] ),
0 L

od = [ o (mgﬁ)_%(tﬂ et + [ o (67) ~ o ()] dre

+/ I (a{j’za <t,%”,~t”> oo (t:ﬁ))ﬁ} ),

=

1’\ ~ = ~
+/0 EK@PHD (t v, e, ?0> —859”0 (t,e,:cO)x%} dA.

Noting that under assumptions (A1) and (A2), we get
pmg [ Jof| "+ o]+ [af] "+ ot <.

we have

2
Applying It6’s formula to ‘if ,

of = /0 e (.9 €) = e (8, 0)] dA:ctl+/01 e (8.7, €) — o (1 €)] do

E xﬁ = 9K / — o7& — ol 3 + [bf@’ — o€ — o] + aﬁ) dt

z~0 n,z 02
+E gtxt+gt’ +a2’ dt + E O't$t + ol +oz3‘ dt
0 0
T 2
\E / & ()] + e () + of| m(de)dr
0

< & [ |t [ R [|od] + [od "+ [adf]
0 0

Finally, estimate (3.20) now follows easily from the Gronwall inequality.

Let (g]f, 2, Ef, 7 (e)) be the solution of the following BSDE

T 1 2 z=0
dif = |3+ FI° 4 SYT + S+ ST S R A Y

AW, + 7 dY, +/ 7 (e) N(de, dt),
©

N% = 9_1 [30 (xg“’PxeT) - (xT?PCUT):| - Pz (xT’PCL‘T) li%“ - E [aiz@($T7PxT7'%T) f’}’} )

where Z¢ satisfies SDE (3.23), and
! 2,0
P = t,x;" ) dA, for p=x,y,2, 2,7
ft fp(7Xt ) 9 10 7% y~y
X;"G = <~>‘0 P~ 0 yt P~>\9 Et)\’e,P~>\ a,gﬁ’e,PEA,e,’F?’e (e) ,P;A,e(e),u?’9> ,
t
o=~ ['&ofes (t xt”,ﬁ?g) pt] d, for p=,y,% %,
0
1 — T —
- ~)\0
fr == B o (10,7 ) (@) an
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and Y7 is given by

= [ R (0) - @]t v B [(ofr (0205 - o5 (10 7)
5 (6207) - 5 >] o+ [ B[ (o (1x00.50) - ofs

+/0 £ (800) = £ (0] drsd +/ E :(fozf (t,x?’ f”) o f (txe: %)

+/ 7= (120) = £ )] d)\zt+/ B (aj}f (t x> ”)-@,fwf(t,Xt,Z)

+ / (83 €) = s ()] drrd o)+ [ (60) = £ )] dx

[ [(aPr (t o W))—aiff(t,xt,@))ﬁ(e)}dx-

X

)i
>%}1] dX
)

Due the fact that f;", I Y fE FE IR, f7 and 7 are continuous, we have
lim E ‘Tf’ =0. (3.24)
6—0
. ~ 9|2
Appying 1t6’s formula to ‘yt , we have
2 T
E’@f‘ +E/ 7Y Zg de)ds
t

2 T
= Ejf| +2E/t 7 (230 + o+ Y +f“y+f§~9‘z + 1 117 (e) + fT+ T8 ds.

By Young’s inequality, for each € > 0, we get

2 T 2 T
E 5| +E/ 3 ds—i—E/
t t

2
Te (e)‘ m(de)ds

S ZS

g2, LT
< E’yT‘ +7E/ 7l ds
3 t
T N _ 2
eE [ (S04 S0 UG+ S0V 4 ST 0 FIR  S0F 4 ST S 4 T0)| ds
t
g2, 1T w02 2 T a2
< E’yT‘ —i—g}E/ 0y ds—{—C'E/ TTy ds—{—CEE/ flye| ds
t t
T ) T ) T g2
+C’6E/ 1zl ds—i—CEIE/ 230 ds+c€n«:/ | ds—i—CEIE/ AT
t t t t
T 12 2 T 9
+C.E / F1z 7 e)’ m(de)ds + C.E / £ 2 7 (de)ds
t t
By the boundedness of f*, f}**, f?, ft Ny i ft N il ft and ft " we obtain
9|2 T2 ~
E’yt‘ —i—E/ z dS—HE/ zs de)ds
t t
1 T 2 T
< (+C€)E/ 7 ds—l—CgE/ 3 ’wded
&g t t

+E[7] +C€E/tT Pzl ! [ as.
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Hence, in view of (3.20), (3.24), the fact that f{, f{** are continuous and bounded, by

Gronwall’s inequality, we obtain (3.21).

Now, we proceed to prove (3.22). It is plain to check that Zte satisfies the following
equality
aZ{ = [Z0¢ (t.af. Pyy) + Y0| aYi + 2, |73 + %] avi,
where

1

& = / o (t,fg\’a,Pg?,o)d)\,

0
1 1\ —~
y ™ - ~\,0 ~\0\ ~
pr /OE{alfg(t,xt o, T, )ﬁ} A,

and Tf is given by
1
= A0
T = Z /0 & (6.2 ,P;?,e) ~ & ()] d}
1 —_—
- ~\,0 ~\,0 ~ = ~
—I—Zt/o E [(3515 <t7xi" ,Pgtx,e,x?’ > — @5005 (t7$t,P§ta$t)> l’%} d

Taking into account the fact that & and £* are continuous, we deduce

2

lim B[ T7|" = 0. (3.25)

0—0

~ 12
Then, applying 1t6’s formula to ‘Zt@ ‘ and taking expectation, we have
=02 T 2012 T g2 T o T g2
E|Z| gCE/ ) dt+C’IE/ 2] dt+CE/ €| dt+CE/ [
0 0 0 0

Finally, by Gronwall’s inequality, estimates (3.20) and recall to the Wasserstein metric,

the above convergence result (3.22) holds.

Since u is an optimal control, then, we have the following lemma.
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Lemma 3.4
Let assumptions (A1) and (A2) hold. Then, we have the following variational in-

equality

0 < E[ZeM, (vr, Poy) oy + ZoB [0 M (21, Py, #1) 71
+E [ZEM (w7, Pay) + By (o, Pyy) b + E [050 B0, Py, 50)5]| (3.26)
VB [ (2010 + 7, (10t + E[01 (.20 8]) + 2, (40w + B[00 2,5 3]
+ 2, (L) + B[00 1(t.2) 2 ]) + Z (102 + B [0 (1.%,) 2])
+ Zy (L) + B[00 (4, 7) 7)) + Zilo(t)ve] dt.

Proof: Using 3.3 and Taylor expansion, we have

0 < 1[J(u,‘ﬁ)—J(ut)]

0
= SE[20M (), Py ) — ZeM (e, Py )]
+%E {h (y()) —h (yo)}
1 T
+§E/o 2010 (t) — Z4d (1)) dt
= L+ 1L+ 1,

where le()—l(t xt,Pe yf,Pa zt,Pe zt,Pe rt,Pe ut>

Then, from the results of (3.20), (3.21) and (3.22), we derive

A %E |28M (2, Py ) = ZoM (wr, Puy))|
_ %E (25— 2¢) M (4. P,y )]
J%E Zy /0 A (o7 + 2 (2% = 21) , Popirr_spy) (2 — 27) d)\}
J%E Zr /0 ‘& |00 M (a1 + X (87— 31) . Py a3, 81) (25— 31) C“}

— E"[IrM (7, Pop)] + B [(M, (w7, Pay)) o + B |05 M (o7, Poy, #1) 38|

Similarly, we have
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60

b= B[Ry hw )
= %IE {/01 hy (o + A (yg - yo) ,Pyoﬂ@g,go)) (y8 - yo) dA
+1ig 1E[aPyh(y + A (5~ 0) . P ~ . 30) (98 -
0 [/0 iz 0 Yo yo)’ y0+>\@\g*yo)’y0> (?Jo
— E" [(hy (40, Pn)) 96+ E [0 Ay, Py, 50)50] |
and

I; = %E [/OT(Zfle(t)—Ztl(t))dt]

T —~ ~
— E“ / [ (t) + Lot} + B [0571 (30 7| + 1,0y + B |05 (¢, 5) 3t
0

+ (02 + B[00 (4 2) 3] + =05 + B (01 (1,2,) 3]

+ 10y + B [0 Lt 7) 7] + Lo(t)ee] dt.
Then, the variational inequality (3.26) can be rewritten as

0 < R [Mw (z7, Ppp) a' (T) + E [aﬁzM (1, Pop, Zr) flTH

+E" [9rM (a1, Por) + hy (y0, Pyo) 1(0)+E[aiyh<yo,Pyo,@o>z7éH

LR /0 [9a(t) +1 [aPzz 2| + 1y (8 + B [0 (2,5 7]
+ L)z +E[3Pzz t,5)3 } )z +E[apzl(t ) %]
—}—lr()rt —HE[@PW t, 7)) T } }

The second main result of this thesis is the following Theorem.
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Theorem 3.5 (Partial necessary conditions of optimality)

Let assumptions (A1) and (A2) hold. Let (z,y,z,2,7,u) be an optimal solution of
our partially observed optimal control problem. Then, there are (p,q,k,k,n(-)) and
(P,Q, Q) of F—adapted processes that satisfy (3.10), (3.11) respectively, and that for

all v € U, we have
B [H, (t) (v — w) /FY] > 0,a.e,a.5, (3.28)

where the Hamiltonian function
H (t) - H (ta T, me Y, wa 2ty PZ” 2157 Pita Tty P’I‘” U, Pty 4t kt; I%h Uz () ) Qt) 9

is defined by (3.12).

Proof: Applying It6’s formula to ptx,} and q,gyt1 such that,

qo = *h’y(y07 Pyo) - ]E [afyh(:/y\[)a Pyoa yO)} 5
pr = Mm (.’L’T, P:L'T) + ]E [aixM (ZU\T7P:ET7xT):|
~¢a (27, Poy) qr — E [35“”90 (@7, Poy,o7) @T} ;

and using Fubini’s theorem, we get
T _
E* [prah] = E /0 (o1 (b (£) — 0w (DE(8)) vt + Frory (1) ve + kego (1)
+ / ne (€) ¢y (t,e) m (de) Ut] dt
e
u T 1 = | aPs ~| o aP:
B [t [LMa + B (07 (1) @] - L)~ |91 (0)] ] ar
T ~ ~
- [ al [e () Qi+ B [ofe (1) Q] . (3.29)
and
u 1 u o aPyp (o
E" [qryt] + E* [hy(v0, Pyo) + E [057 150, Py, v0)]]
T .
- —E“/O @ o ®) vt fo (t) 2} + B [0 (1.30) 7] | de
T T
u 1 = P, _ Ru 1 = P,
-E /0 y |l () +E |01 (0)]] dt — B /0 2 |l () + B [9471 (1)) ] dt (3.30)
B [ 2 o+ B [ ] B [k 1)+ B [9f 0] .
0 a 0 a
Now, applying It&’s formula to ¥:P; and using also Fubini’s theorem, we have
T
E*[9pM(zr)] = —E* / 94l (1) dt
0

+Ev /0 ! Qi [& ()2t + B |05 (t,70) 71| dt. (3.31)

Mohamed Khider University of Biskra.



3.2. NECESSARY AND SUFFICIENT CONDITIONS OF OPTIMALITY 62

From Eqs. (3.29), (3.30), and (3.31), we obtain
E" [M, (x1, Poy) + B [0 M (21, Py, )|
+E [hy (v, Pyy) + B [R50, Py w0)] + 0 M (ar)]
= B [ [lbu )~ ouO) ot Fou (et kg (0 + [ (e (b6 —audo ()] i
_E* /0 ! 9,1 (t) dt — E* /0 ' ) [zx(t) +E [a}jrz (t)” dt (3.32)
_Ev /0 ! y! [zy t)+E [a}jyz (t)” dt — E* / ! 2 [zz (t)+E [a}jzl (t)“ dt

0

_E* /OT 2 [ () + B[00 1)) ] ar — B /OT ot i 0+ B 07 (1] e,

thus

EY {Mm (QZT, PacT) + E {QIFM <$T7 P:L’T)H
+Eu {hy(yo, Pyo) + E [aiyh(lyb? Pymyo)} + ﬁTM(‘TT)}

_ g /OT H, (t) vy — B /OT l,(t)vydt — E /OT 04l (t) dt — B /OT x| [zm(t) +E [a}jrl (t)H dt
_Ev /0 ' yl [zy t) +E [afyz (t)” dt — E* /0 ' 2l [lz t)+E [a}jzz (t)” dt

—E* /OT z [l,z (t) +E [a}jfzu)” dt — B /OT rk [zr (t) +E [a}}-z(t)ﬂ dt.

This together with the variational inequality (3.27) imply (3.28), the proof is then com-
pleted. |

3.2.2 Sufficient conditions for optimal control problem of Mck-

ean—Vlasov FBSDEs with jump

In what follows, we will prove that, under some additional convexity conditions, the
above necessary condition of partially observed optimal control in 3.5 is also sufficient. A

function ¢ : R x @2 (R) — R is convex if, for every (", Py), (z*, PY) € R x Q3 (R),
6 (2", PY) = ¢ (2", PY) > 6, (2", PY) (2% — 2*) + B [0f" (2", PY) (2 — a)] .

For this, we need an additional assumption condition (A3) as follows:
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Assumption (A3)

1. The functions M, h are convex in (z, P,) and (y, P,) respectively.

HY ()~ H' () > H ()"~ ") + E[9 0" () @~ )]
FH! () (" —y*") + E {afyHu ) (5 - guﬂ
HHE (1) (2 = 2) + E [85211" (t) (2" — suﬂ
O )+ E 0 (7 )
HH () (7 =)+ B [0 1 (0 7 = )]

where
H'(t) = H (t,x”,P;,y”, Pyo, 2%, P, 2%, Poo, 7" PY v, p*, g, kY, kY 0t (+) ,Q“) ,
H"(t) = H (t,x“,P;‘,y“,Pyu,z”,qu,Eu,Pgu,r“,P,f‘,u,p“,q”,k“,l;;",n“ (-),Q“) .
Now, we can prove the sufficient conditions of optimality for our control problem of
McKean—Vlasov FBSDEs with jumps, which is the third main result of this paper.

Theorem 3.6 (Partial sufficient conditions of optimality)

Suppose (A1),(A2) and (A3) hold. Let Z° be F, -adapted, u € U be an admissible

control, and (x,y, z,z,7) be the corresponding trajectories. Let (p, k. k,n(-) ,q) and
(P,Q,Q) satisfy (3.10) and (3.11), respectively. Moreover, the Hamiltonian H is

convex in (z, P,,y, Py, , 2z, P,, 2, P;,r, P,,v), and
E* [HU (t) (vy — wy) /]_—ty} >0,a.E, a.s,.

Then u is a partial observed optimal control for the problem (3.1) — (3.6) subject to
(3.4).

Proof. For any v € U, we have
J() = J(u) = E[Z}M (2%, Puy) — Z¢M (2%, Pay )|
E[h (v Pg) =k (46 P )

+E | Sz ) - 2o ) dt,
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where
() = L(taf, Py, ub, Py, 20, Py, 2, P, 1", Py
“(t) = z(t,:a;,Pﬁ,yg,Pyg,z;‘,Pzg,zu,Pgu,ru,Pru,ut).
By the convexity property of M and h, we get
E[Z§M (2, Py ) — Z4M (2, Py )| > E[(Z — Z8)M (2%, Pay )]
+E'(M, (¢, Py ) (a —2f)]  (3.33)
+E'E [0FF M (24, Puy )| (2% — 23],
Similarly,
E [h (v, Py) = b (vs P)| = E[hy (45, Poy) (05 — u))]
E[E [0k (v5, Py )| (w6 — wi)] . (3:34)
and
E/OT (2010 () — 200 (1)) dt = IE/OT 20 (1° (1) — 1" () di + IET/OT (20 — 21" (1) dr.

(3.35)
From (3.33), (3.34) and (3.35), we can write

J0) = J(u) > EUM, (2}, Poy ) (o — o)) + BB [0 M (a4, oy 7)] (28 — 23]
+E |hy (v, P) (W — )| +E [E [05h (v, P 5)| (6 — )]

HE/OT 20 (1Y (t) — v (t))dt+E/0 (20 — Z2) 1" (t) dt

+E -(Z; — 7 (/OTZ“ (t)dt + M (x;PT)ﬂ .

Noting that
G0 = —hy (Y0, Pyo) — B [0 1(Go, Pyos )] .
pr =M, (o1, Pe,) + B [0 M (37, Pry, )]
—¢u (o7, Poy) ar — B |00 (37, Py 1) G
we have
J) = J(u) = E'[pr (zp — 27)] + B [pa (21, Por) qr (27 — 27)]

+EE (07 (&1, Pop. v7) Gr (4 — :vT)] E (45 (5 — v5)]

+E“/OT(zv(t) l())dt+El <0Tzu Jdt + M (2, Pay ))]
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Then, we can write
> E'[pr (v — 27)] + E*[qr (yr — yr)]
T
—E [qf (5§ — vi)| +E* | [ () = 1" (0)] dt

+E [(Z; iy (/OT [ (t)dt + M (x”“T”PT)ﬂ .

Now, applying Ito’s formula respectively to pj' (x; — zy) , ¢ (y; — y;') and P* (Z) — Z}'),

and by taking expectations, we get

Tw) = I 2 B S ) — 1) de

u T u v n u T P, 17U v u
B [ HY () (2 — 2t dt — E /0 E [0f H" (t)] (a} — a}') dt

|
CE [ HY (1) (2 — ) dt — / CB[or e ()] (o — 2t
g [ g (t) (20 — z*) dt — B /OTIE O H" (1)] (7 — 2" dt
]

T T _.
B [HE ) (f =) de =B [ B [90H(0)] 07 - i) d.
0 0

By the convexity of the functional H in (x, Py, vy, Py, 2, P,, z, Pz, r, P,,v), we have

J) = J(u) > E /OTHv () (vy — ug) dt

T
_ E / ZVE[H, () (v, — w) /F) ] dt.
0
Since Z;' > 0, and using condition (3.28), we have
J(w) = J(u) >0,

i.e., u is a partially observed optimal control.
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3.3 Partially observed Linear-Quadratic control prob-

lem of McKean-Vlasov FBSDEs

In this section, we will consider a partially observed linear-quadratic control problem. We
find an explicit expression of the corresponding optimal control by applying the results
obtained in Sect. 3. Consider a partially observed 1-dimensional linear quadratic control
problem:

Minimize the expected quadratic cost function
Jw() = B[ [Lhat 4 L@ )P + L + I (Bl + Lef]
+E" [ M2 + My (B [or])® + by (3.36)
subject to
day = (Al + AE[a)] + Ao, — B2, dt + BLdW, + B2dY; + /@ C,N (de, dt),
—dy, = (Dtli’ft + D{E [x,] + DPy, + DE [y, + D}z + DJE [2] + D{z, + DiE[2]

+ Dyry+ DIE [r] + D{',) dt — z,dW, — zdY, - / re(e) N (de, dt) ,
(C]

x(0) = xo, yr = drar + 2 [w7],

(3.37)
and
dY; = vdt + dW,
t ="t t (3.38)
Yo =0,
where
Ajzy + ATE [x,] + Afv, = b (@I?a Px'g;?}t) ;
Btl =g (t7x2)7p$%’7vt) ’
Bt2 =0 (t,xf, P, vt) ,
Ci=c (taxg_apriyvtae) )
Vv =§ (tx;}?Pxf) )
and

f(t,x};,Pzg,yz)7ny,Zf,sz,gf,ng,T:7P,«z},’Ut> = Dtlxt—i_D?E[xt] +D§?Jt+D?E[?Jt]
+D?22 + DCE [2] + DIz, + DIE [z,]

+D!r; + D{°E [r;] + D} v;.
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Here, all the coefficients A' (-), A*(-), 4> (), B' (), B*(-),C (), (-), D" (-) are bounded
and deterministic functions for s = 1,--- ,11, L? (-) is positive function and bounded for
Jj =1,2,3,4,5,6, and M (-), M5 (:),h(-) are positive constants. Then for any v € U,

Egs. (3.37) and (3.38) have unique solutions, respectively. Now, we introduce

t 1/t
Zt:exp{/[J ’yde;_Q/o |/YS| dS},

which is the unique F -adapted solution of the SDE:

dZy = ZyvdYy,
.
and we define the probability measure P" by dP" = Z;/dP.
In this setting, the Hamiltonian function is defined as
H(t,z,y,2,2,r,0,p,qk kn,Q)
=p (Aﬁt + AFE [2] + Afv, — Bf%) —q <Dtlxt + D}E [z,] + Dy, + D,E [ys] + D}z
+ DE ] + D[z + D{E[z] + D{r, + D{°E [r,] + D}"v,) + kB! + kB}
+ /@ ne (€) Com (de) + Qs + Lia? + L2 (B [2])® + L3y2 + L2 (B [y.])? + Lov?.

(3.39)
Further due to Egs. (3.10) and (3.11), the corresponding adjoint equations will be
given by
—dP, = (Liaf + Li (B [0) + Ly + Li (B [w])” + Liv;) dt
—QdW, — Q,dW,, (3.40)
Pr = M(xT7PxT)a
and

—dp; = |Alp, + AZEp] — D{q; — DJE [q)] + 2L}z, + 2L7E [z,]] dt
ke dWs — kyd W, — /@ ne (e) N (de, dt) |
dg = (D}g + D{E ] — 2L}y — 2LJE [y]) dt + (Diq, + DJE [)]) AW,
+ [Dlg: + DIE|g]] iV + /@ (DYg: + DI°E [q1)) N (de, dt) (3.41)
pr = 2Myzp + 2MoE [x7)]
—¢1x7 — P& [HCT] )

qo = —2hyo.
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According to Theorem 3.4, the necessary condition for optimality (3.28) will be
E* {ptA? — ¢ D}t + 2L§?ut/}"ﬂ =0. a.s.a.e.

If u (+) is partial observed optimal control, then

1

Y7

(AJE" [pi/FY| = D'E" [0/ F ) (3.42)

Finally, for the sufficient conditions, let ©w € U be a candidate to be optimal control.

We suppose that (a;, U, Z, z,r) is the solution to the FBSDE (3.37) corresponding to wu,
and (P, Q,Q) ,(p,q, k,k,n(-)) are the solution corresponding to Eqs. (3.40) and (3.41)
respectively. It’s easy to verify that the functional H is convex in (x,y, z,z,7). So, if u
satisfies (3.42) and the condition (3.28). Then by applying 3.6, we can check that u is
an optimal control of our partially observed linear-quadratic control problem of McKean—

Vlasov type.
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Conclusion

hroughout this PhD dissertation, we have investigated partially observed optimal
control problem of McKean— Vlasov FBSDEs driven by Poisson random measure
and an independent Brownian motion. Using the derivatives with respect to probability
law and combining Girsanov’s theorem with the classical convex variation technique,
we have obtained the main results of this thesis which are the necessary and sufficient
conditions of optimality. As an illustration, the theoretical results are applied to partially
observed linear—quadratic control problems with jumps.
Many interesting problems remain open. For example, study the stochastic maximum

principle for these control problems for a non convex control domain.



Appendix

Proposition A1l
Lemma A1 (Integration by parts formula for jumps processes)

Suppose that the processes x1(t) and z5(t) are given by: for j = 1,2, ¢ € [s,T] :

daj(t) = f (8, 2(t), u(t)) dt + o (¢, 2;(t), u(t)) AW (t)

+ /@ g (t, z;(t7), u(t), e) N (de, dt) ,

zj(s) =0

Then we get
E(m1<T)m2(T)):EVTx1()dx2 +/ 2t dxl()]
+E/ (£, 21(1), u(t)) o (t, 2o (L), u(t)) dt
+E / /@ g (6,0 (), ut), €) g (1, 2a(t), u(t), ) w(de)dt.

See Framstad et al., ([16]) for the detailed proof of the above Lemma. Theorem (Burkholder-
Davis-Gundy inequality)

Let (X;),5obe a continuous local martingale defined on a filtered probability space

(Q, F, {}—t}tzo , P) satisfying the usual conditions. Let p > 0. So there are two constants

¢y and Cp, 0 < ¢, < C), < 400 such that

D o lIXal, < [ X et 2 | X12] < G lxal,

k
where X} = sup {|X,| / 0<s<t}and [X" X", Z( — X))

If the martingale is not continuous, inequalities 1) and 2) remains valid only if p > 1. For

more, see onat, P. [39].

Proof. See for p € (1, 00) Burkholder [7]. For p € (0, 1] Burkholder and Gundy [8], and

70
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for the case p =1 of (BDG) see Davis [14].

lemma (Gronwall’s lemma) (see Pachpatte [43])
Let X (t) and f(¢) be nonnegative continuous functions on 0 < t < T for which the
inequality

X (1) §c+/0tf(s)X(s)ds, te[0,T]

holds, where ¢ > 0 is a constant. Then

X(t)gcexp</0tf(s)ds>, tel0,7].
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