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 ملخص
   

        

 

 التي الأبحاث في الموجودة النتائج بعض تعميم إلى تطرقنا ، الأطروحة هذه في     

تراجعية ذات شرط ال العشوائية التفاضلية للمعادلات عشوائيال قىىالأ حدالب تتعلق

جملة معادلات تفاضلية تتكون من معادلتين الأولى ذات شرط ابتدائي  أو نهائي

 العشوائي التحكممشكلة  ناقشنا الثاني، الفىل في . والثانية ذات شرط نهائي

التي  المحلية يةزيبشيتذات المعاملات الل .التراجعية العشوائية التفاضلية للمعادلات

حدانية حلول المعادلة المساعدة وووجود  أثبتناعمل وهي مسعى جديد حيث تعد أول 

، تحىلنا ذلك بعد(. معادلة تفاضلية عشوائية خطية ذات معاملات محددة محليا)

 .الأمثل لتحقيقافية والك اللازمة الشروطكل من  على

القيم الحدية القىوى للتحكم الأمثل في  مبدأالفىل الثالث، قمنا بالعمل على  في     

 .اضلقابلة للتفغير  تمعاملا ذات العشوائية التفاضلية لمعادلاتاجملة 
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Résumé

L’objectif de cette thèse est de généraliser, dans deux directions différentes, cer-

tains résultats existants dans la littérature qui concernent le principe du maxi-

mum stochastique pour les équations différentielles stochastiques rétrogrades (EDSR) ou

les équations différentielles stochastiques progressives rétrogrades (EDSPR).

La première direction est dédiée au problème de contrôle stochastique pour des EDSR

ayant des générateurs localement Lipschitz, où le domaine de contrôle n’est pas néces-

sairement convexe. Nous établissons une condition nécessaire et suffisante d’optimalité

satisfaite par tous les contrôles optimaux. Ces conditions sont décrites par une EDS

linéaire localement Lipschitz et une condition maximale sur l’hamiltonien. Nous prou-

vons d’abord, sous certaines conditions convenable, l’existence d’une solution unique de

l’équation adjointe résultante. Ensuite, à l’aide d’un argument d’approximation sur les

coefficients, nous définissons une famille d’EDSRs contrôlées avec des générateurs globale-

ment lipschitzienne. Puis, nous dérivons un principe du maximum stochastique approché

de tels systèmes. Finalement, nous revenons au problème de contrôle initial en passant à

la limite.

La deuxième direction est consacrée au principe du maximum stochastique pour une

EDSPR avec des coefficients non différentiables et une diffusion peut être dégénérée. Nous

supposons que les coefficients satisfont les conditions de Lipschitz, le domaine de contrôle

est non convexe et le coefficient de diffusion n’est pas contrôlé. L’approche que nous

allons utilisé est celle de Bouleau-Hirsch. Grâce à cette propriété, nous pouvons définir

le processus adjoint en utilisant des dérivées au sens des distributions. Ensuite, nous

iv



prouvons la condition nécessaire d’optimalité sous forme d’un principe du maximum de

Pontraygin.

Mots clés: Équations différentielles stochastiques rétrograde, équations différentielles

stochastiques progressive rétrograde, Contrôle stochastique optimal, principe du maxi-

mum stochastique, coefficients localement lipschitzienne, coefficients non differentiable.



Abstract

I n this thesis, we aim to generalize some existing results in the literature that concern a

stochastic maximum principle for backward stochastic differential equations (BSDEs)

or forward-backward stochastic differential equation (FBSDEs), with two possible direc-

tions. The first direction is concerned with the stochastic control problem for BSDEs with

locally Lipschitz generators, where the domain is not necessarily convex, we establish a

necessary and sufficient condition for optimality satisfied by all optimal controls. These

conditions are described by a linear locally Lipschitz SDE and a maximum condition on

the Hamiltonian. We first prove, under some convenient conditions, the existence of a

unique solution to the resulting adjoint equation. Then, with the help of an approxima-

tion argument on the coefficients, we define a family of control problems with globally

Lipschitz coefficients whereby we derive a stochastic maximum principle for near opti-

mality to such approximated systems. Thereafter, we turn back to the original control

problem by passing to the limits.

The second direction is devoted to the stochastic maximum principle in optimal

control of possibly degenerate FBSDEs, with irregular coefficients. We assume that

the coefficients satisfy the Lipschitz conditions, the control domain is non-convex and

the control variable does not enter to the diffusion coefficient. We obtain the necessary

conditions for optimality utilizing an adjoint process, which is the unique solution of

a linear backward-forward stochastic differential equation and a maximal condition on

the Hamiltonian. Thanks to the Bouleau-Hirsch flow property, we are able to define the

adjoint process employing the derivatives of the coefficients in the sense of distributions.



Moreover, the adjoint process does not depend on the choice of the representatives of the

weak derivatives.

Keys words: Backward stochastic differential equations, forward-backward stochastic

differential equation, Optimal stochastic control, stochastic maximum principle, Locally

Lipschitz coefficients, non-smooth coefficients.
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List of Symbols and Abbreviations
The different symbols and abbreviations used in this thesis.

• a.e : almost everywhere.

• a.s : almost surely.

• R : real numbers.

• Rn : n-dimensional real Euclidean space.

• Rn×d : the set of all (n × d) real matrixes.

• Ā : the closure of the set A.

• 1IA : the indicator function of the set A.

• σ(A) : σ−algebra generated by A.

• E (x) : expectation at x.

• E (· | G) : conditional expectation.

• (Ω, F , Ft,P) : filtered probability space.

• F = {Ft}t∈[0,T ] : filtration.

• W = (Wt)t∈[0,T ] : Brownian motion.

• P ⊗ dt : the product measure of P with the Lebesgue measure dt.

• S2 ([0, T ] ,Rn) : the set of continuous and F−adapted stochastic processes

{ρ(t); t ∈ [0, T ]}, such that E
(
sup0≤t≤T |ρ (t)|2

)
< ∞.

• M2 ([0, T ] ,Rn) : the set of F−predictable and Rn−valued processes {ρ(t); t ∈ [0, T ]},

such that E
∫ T

0 |ρ (r)|2 dr < ∞.
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General Introduction

T he field of stochastic optimal control, though a relatively young branch in the realm

of mathematics, has captivated the attention of numerous researchers. Its appeal

lies not only in its theoretical intricacies but also in its diverse applications across various

domains, including mathematical finance, insurance, physics, economics, and more.

Typically, the exploration of stochastic optimal control problems involves two pivotal

methodologies. The first is rooted in Bellman’s dynamic programming principle, while

the second revolves around Pontryagin’s maximum principle, also recognized as neces-

sary optimality conditions—an area of focused investigation within this dissertation. The

primary aim of the latter is to ascertain optimal controls that minimize or maximize a

specified cost functional among the set of all admissible controls, elucidating the necessary

and sufficient conditions met by these controls. This endeavor necessitates the introduc-

tion of an adjoint process, delineated by a linear stochastic system, and a variational

inequality validated by the optimal controls.

We consider the stochastic control problem of minimizing the cost functional

J (v (·)) = E
[
γ (x(T )) +

∫ T

0
l (t, x(t), v(t)) dt

]
, (0.1)

subject to the following forward stochastic controlled system


dx(t) = b(t, x(t), v(t))dt + σ(t, x(t))dWt,
x(0) = x,

(0.2)

1



GENERAL INTRODUCTION 2

where b, σ, l and γ are given maps. W = (Wt)t∈[0,T ] is a standard Brownian motion, defined

on a filtered probability space
(
Ω, F , (Ft)t∈[0,T ] ,P

)
satisfying the usual conditions. The

control variable v = (v (t))t∈[0,T ] is an (Ft)t∈[0,T ]-adapted process with values in some

subset U of Rk. We denote by Uad the set of all admissible controls.

A control process u (·) that solves the problem {(0.1),(0.2)} is called an optimal control

that is u (·) satisfies

J (u (·)) = inf
v∈Uad

J (v (·)) . (0.3)

Under some differentiability assumptions on the data, the stochastic maximum prin-

ciple states that

H(t, x(t), u(t), P (t)) = max
v(·)∈Uad

H(t, x(t), v(t), P (t)); dt − a.e, P − a.s, (0.4)

which represents the strong form, and the weak form is given by the following equality

H(t, x(t), u(t), P (t)) = Hv(t, x(t), u(t), P (t)) (v − u(t)) ; dt − a.e, P − a.s, (0.5)

where the Hamiltonian function H(t, x, u, P ) = Pb(t, x, u) − l(t, x, u) and for each t ∈

[0, T ], the adapted process P (·) is given by

P (t) = −E
[∫ T

t
ϕ∗(r, t)lx(r, x(r), u(r))dr + ϕ∗(T, t)γx(x(T )) | Ft

]
, (0.6)

here ϕ∗(r, t) denotes the transpose of ϕ(r, t) (r ≥ t) which is the fundamental solution of

the linear equation
dϕ(t) = bx(t, x(t), u(t))ϕ(t)dt +∑

j≤d σj
x(t, x(t))ϕ(t)dWt,

ϕ(t, t) = Id.
(0.7)

The stochastic maximum principle (SMP for short) problem for forward stochastic

systems have been extensively studied since the 1970’s. According to the convexity or

non-convexity of the control domain and the diffusion depend or does not depend on the

control, we can split up the existing studies in the literature into four categories.

The first category pertains to situations where the control domain is convex, and the

diffusion coefficient σ is independent of the control variable. In this contest, Kushner

[36] obtained an SMP of the type (0.4) for a class of controlled stochastic differential

Mohamed Khider University of Biskra.



GENERAL INTRODUCTION 3

equations (SDEs) with smooth coefficients. Subsequently, Haussmann [33] developed a

robust formulation of the stochastic maximum principle for a significant class of feedback

controls. This formulation allows the control variable to depend on the current state of

the system, expressed as v = (v(x (t)))t∈[0,T ].

The second category, where the control domain is convex and the diffusion coefficient σ

depends explicitly on the control variable was derived by Arkin and Saksonov [4], Bismut

[13, 14, 15]. Their findings assert that the optimal control adheres to the stochastic

maximum principle (SMP) as indicated by (0.5). Notably, the necessary and sufficient

conditions for optimality for linear systems with random coefficients have been established

by Cadellinas-Karatzas [21].

The third category represents the cases where the diffusion coefficient σ is independent

of the control variable and has been thoroughly explored in [12]. For a comprehensive

compilation of references on the stochastic control problem, an extensive list is available

in [39, 45].

The fourth category addresses the general case where the control domain is not nec-

essarily convex and the diffusion coefficient σ may involve the control variable, which was

established by Peng [42]. He introduced two adjoint processes, the first and second-order,

to obtain the second-order variational inequality.

All the previously mentioned papers addressed the maximum principle for stochastic

systems with smooth coefficients. The natural question that arises is whether we can

derive the necessary conditions of optimality under a set of conditions on the coefficients

weaker than the differentiability condition. In this context, several attempts have been

made to relax the assumptions on the coefficients to establish a stochastic maximum

principle for a broad class of controlled stochastic differential equations (SDEs) in some

irregular cases. Specifically, in cases where the coefficients are only globally Lipschitz

(not necessarily differentiable). Based on the existing results in the literature, it can be

concluded that there are three distinct methods to address the aforementioned control

problems.

Mohamed Khider University of Biskra.



GENERAL INTRODUCTION 4

The first method relies on Clarke’s generalized gradients. Utilizing this approach,

Mezerdi in 1988 [20] addressed the control problem {(0.1),(0.2)} in instances where the

drift b is non-smooth but Lipschitz and l = 0. The author established a stochastic

maximum principle for a controlled stochastic differential equation (SDE) by employing

Clarke’s generalized gradients and the stable convergence of probability measures. This

result serves as a generalization of Kushner’s maximum principle.

The second method predominantly relies on Krylov’s inequality, necessitating the uni-

form ellipticity of the diffusion matrix. Employing this approach, Bahlali et al. [11]

have developed optimality necessary conditions for the control problem {(0.1),(0.2)} in

scenarios where the coefficients b, σ and l are Lipschitz continuous but not necessarily

differentiable and the diffusion matrix σ is non-degenerate. Utilizing Rademacher’s the-

orem (which asserts that every Lipschitz function is differentiable almost everywhere)

along with bounded Borel measurable derivatives, they derived an explicit formula for

the adjoint process and established inequalities between the Hamiltonians. Subsequently,

Ekeland’s variational principle was applied to derive the necessary conditions satisfied by

a sequence of near-optimal controls. Finally, the convergence of the scheme, aided by

Krylov’s inequality, led to necessary conditions for optimality.

The third method utilizes the renowned Bouleau–Hirsch flow property. Bahlali et al.

[8] established a stochastic maximum principle for a general class of degenerate diffusion

processes, assuming that the coefficients of the state equation b and σ are only Lipschitz

continuous and those of the cost functional γ and l are continuously differentiable with

respect to the space variables. They employed distributional derivatives of the coefficients

and a technique introduced initially by Bouleau and Hirsch [18, 19] to define the adjoint

process as the solution of a linear backward stochastic differential equation defined on an

extension of the initial probability space. Chighoub et al. [24] extended the results of [8] to

the case where the coefficients of the state equation b and σ and those of the cost functional

γ and l are not differentiable. In the stochastic maximum principle, a significant challenge

arises in the computation, particularly numerically, of the adjoint process as expressed

by the equality (0.6) which involves a conditional expectation. To address this challenge,

we leverage Ito’s formula and the martingale representation theorem, demonstrating that

Mohamed Khider University of Biskra.



GENERAL INTRODUCTION 5

the process outlined in (0.6) satisfies the following new equation −dP (t) =
[
b∗

x(t, x(t), u(t))P (t) +∑d
j=1 σj,∗

x (t, x(t))zj(t) + lx(t, x(t), u(t))
]

dt − z(t)dWt,

P (T ) = γx (x(T )) .

(0.8)

The equation (0.8), referred to as a linear backward stochastic differential equation (BSDE

for short), was introduced by Bismut see [15, 16]. Subsequently, the theory of BSDEs has

experienced rapid development at the hands of numerous academic researchers. Notably,

among these authors, Pardoux-Peng introduced the nonlinear form of BSDE. dy(t) = −f(t, y(t), z(t))dt + z(t)dWt,

y(T ) = ξ.
(0.9)

This nonlinear form of BSDE has found significant applications, particularly in the realms

of partial differential equations, optimal stochastic control problems, mathematical fi-

nance, and stochastic games. For an extensive exploration of its applications, we direct

the reader to the seminal papers [40, 41, 26, 1] . Given its widespread utility, it becomes

inherently compelling to delve into control problems associated with systems governed by

such stochastic equations.

We introduce the following backward stochastic differential equations, for any v(·) ∈

Uad  dy(t) = −f (t, y(t), z(t), v(t)) dt + z(t)dWt,

y(T ) = ξ,
(0.10)

and the expected cost has the form

J (v (·)) = E [g(y(0))] , (0.11)

where f and g are given functions with appropriate dimensions. Observing that the

system (0.10) can be coupled with a controlled stochastic differential equation (SDE)

in two distinct manners. The first is termed a fully coupled forward-backward stochastic

differential equation (FBSDE), wherein all coefficients depend on the states of the solution

processes. The second is referred to as a decoupled FBSDE, such that the forward equation

does not depend on the solutions of the backward equation.

There exists an extensive body of literature dedicated to the investigation of stochas-

tic optimal control problems for backward stochastic differential equations (BSDEs) and

Mohamed Khider University of Biskra.



GENERAL INTRODUCTION 6

forward-backward stochastic differential equations (FBSDEs) within the globally Lip-

schitz framework, coupled with the differentiability of coefficients. For a comprehen-

sive overview, the reader is encouraged to explore works such as those presented in

[2, 3, 6, 9, 10, 17, 22, 28, 32, 34, 35, 37, 30] and the associated references.

The initial breakthrough in relaxing the smoothness conditions on the coefficients

of controlled FBSDEs, assuming solely the globally Lipschitz condition for the forward

part was achieved by Xinwei Feng in [27]. To be more specific, the author established a

stochastic maximum principle for optimal control problems of FBSDEs of the following

type: 

dx(t) = b (t, x(t), v(t)) dt + σ (t, x(t)) dWt,

X(0) = x,

dy(t) = −f (t, x(t), y(t), z(t), v(t)) dt + z(t)dWt,

y(T ) = h (x(T )) .

(0.12)

In this case, the coefficients of the forward part represented by b and σ, are Lipschitz

continuous, and the domain of the controls is not necessarily convex. The author applied

a technique akin to the one developed by Bahlali et al. [11].

As opposed to the globally Lipschitz case, only a limited number of papers have

addressed the stochastic maximum principle (SMP) for stochastic differential equations

(SDEs) and backward stochastic differential equations (BSDEs) with coefficients that

satisfy conditions weaker than the globally Lipschitz condition.

Orrieri, C. in [39], proved a version of a maximum principle for the problem {(0.1),(0.2)}

where the diffusion coefficient σ depends on the control variable. In this work, he replaced

the usual Lipschitz assumption on the drift b with dissipativity conditions, allowing poly-

nomial growth.

Xu, R., & Wu, T. in [43] achieved an existence and uniqueness result for mild solutions

to mean-field backward stochastic evolution equations in Hilbert spaces, relaxing the

Lipschitz condition. Following this, they established a maximum principle for optimal

control problems governed by backward stochastic partial differential equations of mean-

field type.

More recently, Azizi, H., & Khelfallah, N in [5] studied stochastic optimal control

problems of a BSDE of the type (0.10) Where the coefficients b is a given progressively

Mohamed Khider University of Biskra.



GENERAL INTRODUCTION 7

measurable function which is supposed to be locally Lipschitz with respect to the state

variables y and z, the terminal data ξ is bounded and FT -measurable random variable.

It is worth pointing out that during this work we have encountered two major diffi-

culties. The first one is the coefficients of the following resultant locally Lipschitz linear

adjoint equation, −dx(t) = by(t, y(t), z(t), u(t))x(t)dt + bz(t, y(t), z(t), u(t))x(t)dWt,

x(0) = gy(y(0)),
(0.13)

are only locally bounded, and hence, they are locally Lipschitz on x and they do not

satisfy the linear growth condition. As a consequence, we can not confirm whether the

adjoint Eq.(0.13) admits a unique solution or not. To get around this obstacle, we propose

two suitable different sets of conditions, whereby, we can prove that SDE Eq.(0.13) has a

unique solution. The second drawback is because the generator of the controlled BSDE is

merely locally Lipschitz which makes it technically difficult to apply the standard duality

method to derive the necessary condition for optimality. To overcome this difficulty, we

propose to convert the problem into the globally Lipschitz framework, by using an ap-

proximating argument on the coefficients. Then, by using Ekeland’s variational principle

and limit argument we investigate the stochastic maximum principle of Pontraygin’s type.

Let us briefly describe the contents of this dissertation:

Chapter 1

In the first chapter, we will introduce a stochastic maximum principle for nonlinear

controlled forward-backward systems. This analysis will focus on cases where the diffu-

sion coefficient σ does not depend on the control variable and the control domain is not

necessarily convex. We formulate the problem as {(0.12),(0.11)} and outline the main as-

sumptions. We then introduce the conventional first-order variational equations and the

variational inequality to derive the maximum principle in its global form. This ground-

breaking work was initially explored by Xu, W. [44] and subsequently extended by [42] to

encompass the scenario where sigma contains the control variable and the control domain

need not be convex.

Mohamed Khider University of Biskra.



GENERAL INTRODUCTION 8

Chapter 2

The second chapter dealt with an optimal control problem for locally Lipschitz BSDE

{(0.10),(0.11)} which is described by [5]. As the first result of this chapter, we give a

new existence and uniqueness result for one type of linear SDEs with locally bounded

coefficients. Then, we obtain the necessary conditions for optimality, under two different

sets of assumptions as two separate cases. Subsequently, under some further convexity

assumptions, we prove that the necessary condition for optimality is in fact sufficient for

optimal controls. To the best of our knowledge, this is the first paper studies the stochastic

maximum principle for BSDEs under conditions weaker than globally Lipschitz one. More

precisely, it extends the stochastic optimal control theory to a large class of BSDEs.

Chapter 3

The third chapter establishes a stochastic maximum principle for the optimal con-

trol problem {(0.12),(0.11)} applied to possibly degenerate controlled forward-backward

stochastic differential equations (FBSDEs). Here, the coefficients b and σ are only Lip-

schitz continuous concerning the state variable X. Additionally, the diffusion matrix σ

does not involve the control variable, and the control domain need not be convex. The

method employed to prove the main result revolves around approximating the initial

control problem using a sequence of control problems with smooth coefficients, obtained

through regularization of the original ones. For the approximate problem, we derive

optimality necessary conditions for near optimality by employing Ekeland’s variational

principle. The adjoint process and the variational inequality between Hamiltonians are

derived by transitioning to the limits in the approximate maximum principle, utilizing the

Bouleau-Hirsch flow property. Consequently, we obtain an adjoint process that serves as

the unique solution of a linear forward-backward stochastic differential equation defined

on an extension of the initial probability space.

Mohamed Khider University of Biskra.



Chapter 1

Stochastic Maximum Principle for Optimal

Control Problem of Forward-Backward System

1.1 Introduction

In this chapter, we will give a detailed demonstration of the maximum principle

for optimal control of systems driven by forward and backward stochastic differential

equations, where the control variable appears only in the drift and the control domain

is not necessarily convex, this work was first investigated in 1995 by Xu, W.[44]. The

authors studied the maximum principle in global form.

1.2 Assumptions and Statement of the Problem

We denote (Ω, F ,P) a filtered probability space equipped with a natural filtration

Ft = σ(W (s), 0 ≤ s ≤ t), where W (·) an Rd-valued standard Wiener process. We denote

Uad the set of all admissible controls v(·), such that v(·) is a measurable Ft−adapted

process with values in a compact subset U of Rk.

We consider the stochastic control problem of minimizing the cost function

J (u(·)) = E [γ(y0)] .

Among a set of admissible controls subject to the following forward and backward stochas-

9
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tic control system 

dx(t) = b(t, x(t), v(t))dt + σ(t, x(t))dWt,

x(0) = x,

dy(t) = f(t, x(t), y(t), z(t), v(t))dt + z(t)dWt,

y(T ) = h(x(T )),

(1.1)

where b : [0, T ]×Rn ×U → Rn, σ : [0, T ]×Rn → Rn×d, f : [0, T ]×Rn ×Rm ×Rm×d ×U →

Rm, h : Rn → Rm, γ : Rm → R.

We assume that the following hypothesis holds.

(A1) b, f, σ, h and γ are continuously differentiable with respect to (x, y, z);

(A2) the derivatives of b, f and σ with respect to x, y, z are bounded.

(A3) There exists a constant C > 0, such that

|hx| ≤ C(1 + |x|), |γy| ≤ C(1 + |y|).

(A4) There exists a constant C > 0, such that

|b(t, x, v)| ≤ C(1 + |x|), |f(t, x, y, z, v)| ≤ C(1 + |x| + |y|).

1.3 Variational Equations and Variational Inequality

Let u(·) ∈ Uad be optimal, (x(·), y(·), z(·)) be the corresponding optimal trajectory of

(1.1) be is the solution to the optimal problem. We introduce the spike variational with

respect to u(·) as follows:

uϵ(t) =


v, if τ ≤ t ≤ τ + ϵ,

u(t), otherwise,

where ϵ > 0 is sufficiently small, v ∈ U is an arbitrary Fτ -measurable random variable,
t ∈ [0, T ], and supω∈Ω |v(ω)| < ∞. Let (xϵ(·), yϵ(·), zϵ(·)) is the trajectory of system (1.1)

corresponding to control uϵ(·).

For simplification, we introduce the notations

bx
∆= bx(t, x(t), u(t)), fx

∆= fx(t, x(t), y(t), z(t), u(t)),
b(uϵ) ∆= b(t, x(t), uϵ(t)), b(t) ∆= b(t, x(t), u(t)).

Mohamed Khider University of Biskra.
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Now we introduce the following variational equations

dx1(t) = [bxx1(t) + b(uϵ) − b(u)]dt + σxx1(t)dWt,

x1(0) = 0,

dy1(t) = [fxx1(t) + fyy1(t) + fzz1(t) + f(uϵ) − f(u)]dt + z1dWt,

y1(T ) = hx(x(T ))x1(T ).

(1.2)

The following lemmas are needed to establish the variational inequality which can be

obtained from the fact J (uϵ) − J (u) ≥ 0.
Lemma 1.3.1

We assume (A1) − (A4) hold. Then we have

sup
0≤t≤T

E
∣∣∣x1(t)

∣∣∣2 ≤ Cϵ2, (1.3)

sup
0≤t≤T

E
∣∣∣x1(t)

∣∣∣4 ≤ Cϵ4, (1.4)

sup
0≤t≤T

E
∣∣∣y1(t)

∣∣∣2 ≤ Cϵ2, (1.5)

sup
0≤t≤T

E
∣∣∣y1(t)

∣∣∣4 ≤ Cϵ4, (1.6)

E
(∫ T

0
(z1(r))2dr

)
≤Cϵ2, (1.7)

E
(∫ T

0
(z1(r))2dr

)2

≤Cϵ4. (1.8)

Proof : By the first equation of (1.2), we get

E
∣∣∣x1(r)

∣∣∣2
≤ 3

[
E
(∫ t

0
bxx

1(r)dr
)2

+ E
(∫ t

0
|b(uϵ(r)) − b(u(r))| dr

)2
+ E

∫ t

0
(σxx

1(r))2dr
]

,

by Hölder’s inequality and assumption (A2), we get

E
∣∣∣x1(t)

∣∣∣2
≤ 3C2TE

(∫ t

0
(x1(r))2dr

)
+ 3E

(∫ t

0
|b(uϵ(r)) − b(u(r))| dr

)2
+ 3C2TE

(∫ t

0
(x1(r))2dr

)
≤ 6C2TE

(∫ t

0
(x1(r))2dr

)
+ 3E

(∫ t

0
|b(uϵ(r)) − b(u(r))| dr

)2

≤ 6C2TE
(∫ t

0
(x1(r))2dr

)
+ 3E

(∫ τ+ϵ

τ
|b(v(r)) − b(u(r))| dr

)2

Mohamed Khider University of Biskra.
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Using the assumption (A4), we obtain

E
∣∣∣x1(t)

∣∣∣2 ≤ 6C2TE
(∫ t

0
(x1(r))2dr

)
+ 3C

(∫ τ+ϵ

τ
dr
)2

≤ 6C2TE
(∫ t

0
(x1(r))2dr

)
+ 3Cϵ2.

By Gronwall’s inequality, we have

E
∣∣∣x1(t)

∣∣∣2 ≤ Cϵ2, t ∈ [0, T ].

The proof of (1.4) can be obtained similarly.

Then we prove (1.5) and (1.7). Squaring both sides of

− y1(t) −
∫ T

t
z1(r)dWr

= −hx(x(T ))x1(T ) +
∫ T

t

[
fxx

1(r) + fyy
1(r) + fzz

1(r) + f(uϵ(r)) − f(u(r))
]

dr,

we obtain

E
(

−y1(t) −
∫ T

t
z1(r)dWr

)2

= E
∣∣∣y1(t)

∣∣∣2+E
(∫ T

t
z1(r)dWr

)2

+2E
[
y1(t)

∫ T

t
z1(r)dWr

]
,

and using the fact that

E
[
y1(t)

∫ T

t
z1(r)dWr

]
= E

[
E
(
y1(t)

∫ T

t
z1(r)dWr | Ft

)]

= E
[
y1(t)E

(∫ T

t
z1(r)dWr | Ft

)]

= E
[
y1(t)E

([∫ T

0
z1(r) −

∫ t

0
z1(r)

]
dWr | Ft

)]

= E
[
y1(t)E

(∫ T

0
z1(r)dWr | Ft

)
− y1(t)

∫ t

0
z1(r)dWr

]

= E
[
y1(t)

∫ t

0
z1(r)dWr − y1(t)

∫ t

0
z1(r)dWr

]
= 0,

we obtain

E
(

−y1(t) −
∫ T

t
z1(r)dWr

)2

= E
(

−hx(x(T ))x1(T ) +
∫ T

t

[
fxx

1(r) + fyy
1(r) + fzz

1(r) + f(uϵ(r)) − f(u(r))
]

dr
)2

≤ 5E( − hx(x(T ))x1(T ))2 + 5E
(∫ T

t
fxx

1(r)dr
)2

+ 5E
(∫ T

t
fyy

1(r)dr
)2

+ 5E
(∫ T

t
fzz

1(r)dr
)2

+ 5E
(∫ T

t
[f(uϵ(r)) − f(u(r))] dr

)2

.

Mohamed Khider University of Biskra.
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From Hölder’s inequality and (A2), we get

E
∣∣∣y1(t)

∣∣∣2 + E
(∫ T

t
(z1(r))2dr

)

≤ 5C2E
(
(x1(T ))2

)
+ 5C2TE

(∫ T

t
(x1(r))2dr

)
+ 5C2TE

(∫ T

t
(y1(r))2dr

)

+ 5C2(T − t)E
(∫ T

t
(z1(r))2dr

)
+ 5E

(∫ T

t
[f(uϵ(r)) − f(u(r))] dr

)2

,

with δ = 1
10C2 , t ∈ [T − δ, T ]

E
∣∣∣y1

t

∣∣∣2 + 1
2E
(∫ T

t
(z1

s )2dr
)

≤ 5C2E
(
(x1

T )2
)

+ 5C2TE
(∫ T

0
(x1

s)2dr
)

+ 5C2TE
(∫ T

t
(y1(r))2dr

)
+ 5E

(∫ T

t
[f(uϵ(r)) − f(u(r))] dr

)2

.

Using the assumption (A4) and Gronwall’s inequality, we obtain

E
∣∣∣y1(t)

∣∣∣2 ≤ Cϵ2, t ∈ [T − δ, T ],

E
(∫ T

t
(z1(r))2dr

)
≤ Cϵ2, t ∈ [T − δ, T ].

Similarly, we have

− y1(t) −
∫ T −δ

t
z1(r)dWr

= −y1(T − δ) +
∫ T −δ

t

[
fxx

1(r) + fyy
1(r) + fzz

1(r) + f(uϵ(r)) − f(u(r))
]

dr,

then

E
∣∣∣y1(t)

∣∣∣2 + E
(∫ T −δ

t
(z1(r))2dr

)

≤ 5E
∣∣∣y1(T − δ)

∣∣∣2 + 5C2TE
(∫ T −δ

t
(x1(r))2dr

)
+ 5C2TE

(∫ T −δ

t
(y1(r))2dr

)

+ 5C2(T − δ − t)E
(∫ T −δ

t
(z1(r))2dr

)
+ 5E

(∫ T −δ

t
[f(uϵ(r)) − f(u(r))] dr

)2

.

So

E
∣∣∣y1(t)

∣∣∣2 ≤ Cϵ2, t ∈ [T − 2δ, T ],

E
(∫ T

t
(z1(r))2dr

)
≤ Cϵ2, t ∈ [T − 2δ, T ].

Mohamed Khider University of Biskra.
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(1.5) and (1.7) are obtained after a finite number of iterations. Then, by using a similar

method and the inequality

E
(∫ T

t
z1(r)dBr

)4

≥ βE
(∫ T

t
(z1(r))2dr

)2

, β > 0,

can be proved (1.6) and (1.8).

Lemma 1.3.2
Let assumptions (A1) and (A2)hold. Then we have the following estimations:

sup
0≤t≤T

E
∣∣∣xϵ(t) − x(t) − x1(t)

∣∣∣2 ≤ Cϵϵ
2, Cϵ → 0, (1.9)

sup
0≤t≤T

E
∣∣∣yϵ(t) − y(t) − y1(t)

∣∣∣2 ≤ Cϵϵ
2, Cϵ → 0, (1.10)

sup
0≤t≤T

E
∫ T

t

∣∣∣zϵ(r) − z(r) − z1(r)
∣∣∣2 dr ≤ Cϵϵ

2, Cϵ → 0. (1.11)

Proof : Let us first prove (1.9), It can be easily checked that∫ t

0
b(x(r) + x1(r), uϵ(r))dr +

∫ t

0
σ(x(r) + x1(r))dWr

=
∫ t

0

[
b(x(r) + x1(r), uϵ(r)) − b(x(r), uϵ(r)) + b(x(r), uϵ(r))

]
dr

+
∫ t

0

[
σ(x(r) + x1(r)) − σ(x(r)) + σ(x(r))

]
dWr

=
∫ t

0

[
b(x(r), uϵ(r)) +

∫ 1

0
bx(x(r) + λx1(r), uϵ(r))x1(r)dλ

]
dr

+
∫ t

0

[
σ(x(r)) +

∫ 1

0
σx(x(r) + λx1(r))x1(r)dλ

]
dWr

=
∫ t

0

[
b(x(r), uϵ(r)) +

∫ 1

0
bx(x(r) + λx1(r), uϵ(r))x1(r)dλ

]
dr

+
∫ t

0

[
b(x(r), u(r)) − b(x(r), u(r)) + bx(x(r), u(r))x1(r) − bx(x(r), u(r))x1(r)

]
dr

+
∫ t

0

[
σ(x(r)) + σx(x(r))x1(r) − σx(x(r))x1(r) +

∫ 1

0
σx(x(r) + λx1(r))x1(r)dλ

]
dWr

Mohamed Khider University of Biskra.
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=
∫ t

0
b(x(r), u(r))dr +

∫ t

0
σ(x(r))dWr +

∫ t

0

[
bx(x(r), u(r))x1(r) + b(x(r), uϵ(r)) − b(x(r), u(r))

]
dr

+
∫ t

0

[∫ 1

0

[
bx(x(r) + λx1(r), uϵ(r)) − bx(x(r), u(r))

]
dx1(r)λ

]
dr +

∫ t

0
σ(x(r))x1(r)dWr

+
∫ t

0

[∫ 1

0

[
σx(x(r) + λx1(r)) − σx(x1(r))

]
x1(r)dλ

]
dWr

=
∫ t

0
b(x(r), u(r))dr +

∫ t

0
σ(x(r))dWr +

∫ t

0

[
bx(x(r), u(r))x1

s + b(x(r), uϵ(r)) − b(x(r), u(r))
]

dr

+
∫ t

0
σx(x(r))x1(r)dBr +

∫ t

0
Aϵ(r)dr +

∫ t

0
Bϵ(r)dWr

= x(t) − x(0) + x1(t) +
∫ t

0
Aϵ(r)dr +

∫ t

0
Bϵ(r)dWr,

where

Aϵ(r) =
∫ 1

0

[
bx(x(r) + λx1(r), uϵ(r)) − bx(x(r), u(r))

]
x1(r)dλ,

Bϵ(r) =
∫ 1

0

[
σx(x(r) + λx1(r)) − σx(x(r))

]
x1(r)dλ.

From Lemma (1.3.1) we can easily get

sup
0≤t≤T

E
[(∫ t

0
Aϵ(r)dr

)2 (∫ t

0
Bϵ(r)dWr

)2]
= o(ϵ2). (1.12)

Then by

xϵ(t) − x(0) =
∫ t

0
b(xϵ(r), uϵ(r))dr +

∫ t

0
σ(xϵ(r))dWr,

we have

xϵ(t) − x(t) − x1(t)

=
∫ t

0
b(xϵ(r), uϵ(r))dr +

∫ t

0
σ(xϵ(r))dWr −

∫ t

0
b(x(r), u(r))dr −

∫ t

0
σ(x(r))dWr

−
∫ t

0

[
bx(x(r), u(r))x1(r) + b(x(r), uϵ(r)) − b(x(r), u(r))

]
dr −

∫ t

0
σx(x(r))x1(r)dWr

=
∫ t

0
b(xϵ(r), uϵ(r))dr −

∫ t

0
b(x(r) + x1(r), uϵ(r))dr +

∫ t

0
b(x(r) + x1(r), uϵ(r))dr

+
∫ t

0
σ(xϵ(r))dWr −

∫ t

0
σ(x(r) + x1(r))dWr +

∫ t

0
σ(x(r) + x1(r))dWr

−
∫ t

0
b(x(r), u(r))dr −

∫ t

0
σ(x(r))dWr

−
∫ t

0

[
bx(x(r), u(r))x1(r) + b(x(r), uϵ(r)) − b(x(r), u(r))

]
dr −

∫ t

0
σx(x(r))x1(r)dWr

=
∫ t

0

[
b(xϵ(r), uϵ(r)) − b(x(r) + x1(r), uϵ(r))

]
dr +

∫ t

0

[
σ(xϵ(r)) − σ(x(r) + x1(r))

]
dWr

+
∫ t

0

[
b(x(r) + x1(r), uϵ(r)) − b(x(r), uϵ(r))

]
dr +

∫ t

0

[
σ(x(r) + x1(r)) − σ(x(r))

]
dWr

−
∫ t

0
bx(x(r), u(r))x1(r)dr −

∫ t

0
σx(x(r))x1(r)dWr,
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then

xϵ(r) − x(r) − x1(r)

=
∫ t

0

[∫ 1

0
bx(x(r) + x1(r) + λ(xϵ(r) − x(r) − x1(r)), uϵ(r))(xϵ(r) − x(r) − x1(r))dλ

]
dr

+
∫ t

0

[∫ 1

0
σx(x(r) + x1(r) + λ(xϵ(r) − x(r) − x1(r)))(xϵ(r) − x(r) − x1(r))dλ

]
dWr

+
∫ t

0

[∫ 1

0

[
bx(x(r) + λx1(r), uϵ(r)) − bx(x(r), u(r))

]
x1(r)dλ

]
dr

+
∫ t

0

[∫ 1

0

[
σx(x(r) + λx1(r)) − σx(x(r))

]
x1(r)dλ

]
dWr,

we obtain

xϵ(r) − x(r) − x1(r)

=
∫ t

0
Cϵ(r)(xϵ(r) − x(r) − x1(r))dr +

∫ t

0
Dϵ(r)(xϵ(r) − x(r) − x1(r))dWr

+
∫ t

0
Aϵ(r)dr +

∫ t

0
Bϵ(r)dWr,

where

Cϵ(r) =
∫ 1

0
bx(x(r) − x1(r) + λ(xϵ(r) − x(r) − x1(r)), uϵ(r))dλ,

Dϵ(r) =
∫ 1

0
σx(x(r) − x1(r) + λ(xϵ(r) − x(r) − x1(r)))dλ.

Using Gronwall’s inequality, (1.9) follows from the above relation and (1.12).
Now we prove (1.10) and (1.11). it easy to see that∫ T

t
f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r)) +

∫ T

t
(z(r) + z1(r))dWr

=
∫ T

t
f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r))dr −

∫ T

t
f(x(r), y(r), z(r), uϵ(r))dr

+
∫ T

t
f(x(r), y(r), z(r), uϵ(r))dr +

∫ T

t
(fxx

1(r) + fyy
1(r) + fzz

1(r))dr

−
∫ T

t
(fxx

1(r) + fyy
1(r) + fzz

1(r))dr +
∫ T

t
(z(r) + z1(r))dWr

+
∫ T

t
f(x(r), y(r), z(r), u(r))dr −

∫ T

t
f(x(r), y(r), z(r), u(r))dr,
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then∫ T

t
f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r))dr +

∫ T

t
(z(r) + z1(r))dWr

=
∫ T

t

[∫ 1

0

[
fx(x(r) + λx1(r), y(r) + λy1(r), z(r) + λz1(r), uϵ(r)) − fx

]
dλx1(r)

]
dr

+
∫ T

t

[∫ 1

0

[
fy(x(r) + λx1(r), y(r) + λy1(r), z(r) + λz1(r), uϵ(r)) − fy

]
dλy1(r)

]
dr∫ T

t

[∫ 1

0

[
fz(x(r) + λx1(r), y(r) + λy1(r), z(r) + λz1(r), uϵ(r)) − fz

]
dλz1(r)

]
dr

+
∫ T

t

[∫ 1

0

[
fxx

1(r) + fyy
1(r) + fzz

1(r) + f(x(r), y(r), z(r), uϵ(r)) − f(x(r), y(r), z(r), u(r))
]]

dr

+
∫ T

t
z1(r)dWr +

∫ T

t
f(x(r), y(r), z(r), u(r))dr +

∫ T

t
z(r)dWr

=
∫ T

t
Gϵ(r)dr + hx(x(T ))x1(t) − y1(t) + h(x(T )) − y(t),

where

Gϵ(r) =
∫ 1

0

[
fx(x(r) + λx1(r), y(r) + λy1(r), z(r) + λz1(r), uϵ(r)) − fx

]
dλx1(r)

+
∫ 1

0

[
fy(x(r) + λx1(r), y(r) + λy1(r), z(r) + λz1(r), uϵ(r)) − fy

]
dλy1(r)

+
∫ 1

0

[
fz(x(r) + λx1(r), y(r) + λy1(r), z(r) + λz1(r), uϵ(r)) − fz

]
dλz1(r).

So we have

− (yϵ(t) − y(t) − y1(t))

= −h(xϵ(T )) +
∫ T

t
f(xϵ(r), yϵ(r), zϵ(r), uϵ(r))dr

+
∫ T

t
zϵ(r)dWr + h(x(T )) −

∫ T

t
f(x(r), y(r), z(r), u(r))dr

−
∫ T

t
z(r)dWr + hx(x(T ))x1(T ) −

∫ T

t
z1(r)dWr

−
∫ T

t

[
fxx

1(r) + fyy
1(r) + fzz

1(r) + f(x(r), y(r), z(r), uϵ(r)) − f(x(r), y(r), z(r), u(r))
]

dr

−
∫ T

t
f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r))dr

+
∫ T

t
f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r))dr

= −(h(xϵ(T )) − h(x(T ))) + hx(x(T ))x1(T )

+
∫ T

t

[
f(xϵ(r), yϵ(r), zϵ(r), uϵ(r)) − f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r))

]
dr

+
∫ T

t
(zϵ(r) − z(r) − z1(r))dWr +

∫ T

t
Gϵ(r)dr,
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we get

E
[
−(yϵ(t) − y(t) − y1(t)) −

∫ T

t
(zϵ(r) − z(r) − z1(r))dWr

]2

= E[ − h(xϵ(T )) − h(x(T )) + hx(x(T ))x1(T ) +
∫ T

t
Gϵ(r)dr

+
∫ T

t

[
f(xϵ(r), yϵ(r), zϵ(r), uϵ(r)) − f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r))

]
dr

+ h(x(T )) − h(x(T )) + h(x1(T )) − h(x1(T ))]2,

then

E
∣∣∣(yϵ(t) − y(t) − y1(t))

∣∣∣2 + E
(∫ T

t

∣∣∣(zϵ(r) − z(r) − z1(r))
∣∣∣2 dr

)

= E[−h(xϵ(T )) − h(x(T ) + x1(T )) +
∫ T

t
Gϵ(r)dr

+
∫ T

t

[
f(xϵ(r), yϵ(r), zϵ(r), uϵ(r) − f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r))

]
dr

− [h(x(T ) + x1(T )) − h(x(T ))] + hx(x(T ))x1(T )]2,

we obtain

E
∣∣∣(yϵ(t) − y(t) − y1(t))

∣∣∣2 + E
(∫ T

t

∣∣∣(zϵ(r) − z(r) − z1(r))
∣∣∣2 dr

)

= E
{

−h(xϵ(T )) − h(x(T ) + x1(T )) +
∫ T

t
Gϵ(r)dr

+
∫ T

t

[
f(xϵ(r), yϵ(r), zϵ(r), uϵ(r)) − f(x(r) + x1(r), y(r) + y1(r), z(r) + z1(r), uϵ(r))

]
dr

−
∫ 1

0

[
hx(x(T ) + x1(T ) − hx(x(T ))

]
x1(T )dλ

}2
.

By Lemma (1.3.1) and (1.9), we have

sup
0≤t≤T

E
(∫ T

t
Gϵ(r)dr

)2

= o(ϵ2),

E[h(xϵ(T )) − φ(x(T ) + x1(T ))]2 = o(ϵ2).

We obtain (1.10) and (1.11) by using the same iteration method of Lemma (1.3.1) to the

above relation.
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Lemma 1.3.3
Under the assumptions (A1) − (A4), the following variational inequality holds

E
[
γy(y(0))y1(0)

]
≥ o(ϵ). (1.13)

Proof : From Lemma (1.3.2), we get

E
[
γ(yϵ(0)) − γ(y(0) + y1(0))

]
= o(ϵ),

therefore

0 ≤ E[γ(y(0) + y1(0)) − γ(y(0))] + o(ϵ)

= E
[
γy(y(0))y1(0)

]
+ o(ϵ).

1.4 The Maximum Principle in Global Form

In this Section, we introduce the adjoint equations. Then, we present the main result

concerning the maximum principle for optimal control problems. To this end, let us

define the Hamiltonian H from [0, T ] ×Rn ×Rm ×Rm×d × U ×Rn ×Rm ×Rn×d to Rn by

H(t, x, y, z, u, p, q, k) ∆= ⟨p, b(t, x, u)⟩ + ⟨q, f(t, x, y, z, u)⟩ + ⟨k, σ(t, x)⟩ ,

and the Hamilton function for our problem. Starting from the variational inequality

obtained in Lemma 1.3.3, the maximum principle can be proved by using Ito’s formula.

The adjoint equations are

−dp(t) = (b∗
xp(t) + f ∗

xq(t) + σ∗
xk(t))dt − k(t)dWt,

p(T ) = −h∗
x(x(T ))q(T ),

−dq(t) = f ∗
y q(t)dt + f ∗

z q(t)dWt,

q(0) = −γy(y(0)).

(1.14)

The adjoint equations (1.14) can be rewritten in terms of the derivatives of the Hamilto-
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nian as 

−dp(t) = Hxdt − k(t)dWt,

p(T ) = −h∗
x(x(T ))q(T ),

−dq(t) = Hydt + HzdWt,

q(0) = −γy(y(0)).

(1.15)

From (1.15) and Lemma 1.3.3, we have the following theorem

Theorem 1.4.1
Assume (A1) − (A4) hold. Let (x(·), y(·), z(·), u(·)) be an optimal control and its

corresponding trajectory of (1.1), (p(·), q(·), k(·)) be the corresponding solutions of

(1.14)Then the maximum principle holds, that is

H(t, x(t), y(t), z(t), v(t), p(t), q(t), k(t)) (1.16)

≥ H(t, x(t), y(t), z(t), u(t), p(t), q(t), k(t)), ∀v ∈ U, a.e, a.s. (1.17)

Proof : Using Ito’s formula to
〈
p(t), x1(t)

〉
and

〈
q(t), y1(t)

〉, and we use the fact that q(0) =

−γy(y(0)) and p(T ) = −hx(x(T )q(T ), y1(T ) = hx(x(T ))x1(T ), we obtain

E
[
−hx(x(T ))q(T )x1(T )

]
(1.18)

= −E
[∫ T

0
fx(t, x(t), y(t), z(t), u(t))q(t)x1(t)dt

]

+ E
[∫ T

0
[b(t, x(t), uϵ(t)) − b(t, x(t), u(t))]

]
p(t)dt,

and

E
[
hx(x(T ))q(T )x1(T )

]
+ E

[
γy(y(0))y1(0)

]
(1.19)

= E
[∫ T

0
fx(t, x(t), y(t), z(t), u(t))q(t)x1(t)dt

]

+ E
[∫ T

0
[f(t, x(t), y(t), z(t), uϵ(t)) − f(t, x(t), y(t), z(t), u(t))]q(t)dt

]
.

Using (1.18) and (1.19), so we get

E
[
γy(y(0))y1(0)

]
= E[

∫ T

0
(p(t)[b(t, x(t), uϵ(t)) − b(t, x(t), u(t)] (1.20)

+ q(t)[f(t, x(t), y(t), z(t), uϵ(t)) − f(t, x(t), y(t), z(t), u(t))])]dt,
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by Replacing (1.20) in (1.13), we obtain

o(ϵ) ≤ E[
∫ T

0
(p(t)[b(t, x(t), uϵ(t)) − b(t, x(t), u(t))]

+ q(t)[f(t, x(t), y(t), z(t), uϵ(t)) − f(t, x(t), y(t), z(t), u(t))])]dt,

o(ϵ) ≤ E
[∫ T

0
[p(t)b(t, x(t), uϵ(t)) + q(t)f(t, x(t), y(t), z(t), uϵ(t))]dt

]

− E
[∫ T

0
[p(t)b(t, x(t), u(t)) + q(t)f(t, x(t), y(t), z(t), u(t))]dt

]
,

o(ϵ) ≤ E
[∫ T

0
[p(t)b(t, x(t), uϵ(t)) + q(t)f(t, x(t), y(t), z(t), uϵ(t)) + k(t)σ(t, x(t))]dt

]

− E
[∫ T

0
[p(t)b(t, x(t), u(t)) + q(t)f(t, x(t), y(t), z(t), u(t)) + k(t)σ(t, x(t))]dt

]
.

Thus it follows that

E
[∫ T

0 H(t, x(t), y(t), z(t), uϵ(t), p(t), q(t), k(t))dt
]

−E
[∫ T

0 H(t, x(t), y(t), z(t), u(t), p(t), q(t), k(t))dt
]

≥ o(ϵ).

Which gives the desired result.
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Chapter 2

The Maximum Principle for Optimal Control of

BSDEs with Locally Lipschitz Coefficients

2.1 Introduction

In the second chapter, we study the Maximum Principle for Optimal Control of

BSDEs with Locally Lipschitz Coefficients. For the first time, we prove a new existence

result to one kind of linear SDEs with locally bounded coefficients. Then, we state the

control problem along with some auxiliary results. The last topic of this chapter is devoted

to the study of the necessary and sufficient conditions of optimality.

2.2 Problem Formulation and Assumptions

2.2.1 Formulation of the Control Problem

Let T be a strictly positive real number, (Ω, F , (Ft)0≤t≤T ,P) be a complete prob-

ability space equipped with a filtration satisfying the usual conditions, on which a d-

dimensional Brownian motion W = (Wt)0≤t≤T is defined. We assume that F = (Ft)0≤t≤T

is the P -augmentation of natural filtration generated by (Wt)0≤t≤T . Throughout this

chapter, we will use the following spaces:

• S2 ([0, T ] ,Rn): denotes the set of continuous and F-adapted stochastic processes

{y(t); t ∈ [0, T ]}, such that E
(
sup0≤t≤T |y (t)|2

)
< ∞.

• M2 ([0, T ] ,Rn): denotes the set of F-predictable and Rn-valued processes {z(t); t ∈ [0, T ]},

such that E
∫ T

0 |z (r)|2 dr < ∞.

22
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We consider the following controlled backward stochastic differential equation (BSDE

for short):  dy(t) = b(t, y(t), z(t), v(t))dt + z(t)dWt,

y(T ) = ξ,
(2.1)

where b : [0, T ] × Rn × Rn×d × U −→ Rn is a given measurable function which supposed

to be locally Lipschitz with respect to the state variables y and z, the terminal datum ξ

is a bounded and FT -adapted random variable. The process v (·) stands for the control

variable, which is assumed to be an F-adapted process that takes values in a given non-

empty subset U of Rn. We denote the set of all admissible controls by Uad. For a given

measurable function g : Rn → R, we introduce the cost functional of our stochastic control

problem

J (v (·)) = E [g(y(0))] . (2.2)

The controller wants to minimize the cost functional Eq(2.2) among the set of all admis-

sible controls. Now, we can formulate our control problem as the following:

Problem (A): To find u (·) ∈ Uad such that u (·) minimizes the cost functional

Eq.(2.2) subject to Eq.(2.1).

2.2.2 Assumptions

Throughout this chapter, we shall work on the following two sets of assumptions as two

separate cases that we will deal with.

Assumption 2.1

(H.1) b and g are continuously differentiable with respect to (y, z), and the derivatives by,

bz and gy are continuous in y and z.

(H.2) There exist a constant, M > 0 such that for every y and z,

⟨y, b(t, y, z, v)⟩ ≤ M(1 + |y|2 + |y| |z|); P−a.s., a.e. t ∈ [0, T ] .

(H.3) There exist two constants, M > 0 , α ∈ (0, 1) and a positive function φ : R+ → R+,

such that

|b(t, y, z, v)| ≤ M(1 + φ (|y|) + |z|α); P−a.s., a.e. t ∈ [0, T ] .
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(H.4) For every N ∈ N, there exists a constants LN > 0, such that

|b(t, y, z, v) − b(t, y′, z, v)| ≤ LN |y − y′| ; P−a.s., a.e. t ∈ [0, T ] ,

and ∀y, y′, such that |y| ≤ N, |y′| ≤ N .

(H.5) There exists a constant L > 0, such that

|b(t, y, z, u) − b(t, y, z′, u)| ≤ L(|z − z′|); P−a.s., a.e. t ∈ [0, T ] .

(H.6) There exists a constant M > 0 and a positive function φ : R+ → R+, such that,

|by((t, y, z, v))| ≤ M(1 + φ |y|); P−a.s., a.e. t ∈ [0, T ] . (2.3)

We let D1,2 denote the set of all random variables which are Malliavin differentiable;

(Dtζ)0≤t≤T the Malliavin derivative with respect to W· at time t of a given random variable

ζ ∈ D1,2. We refer the reader to [38] for more information about Malliavin’s calculus and

its applications. Now, we introduce the following Assumptions,

Assumption 2.2

(H.7) Assume that (H.1) is fulfilled. Furthermore, suppose that ξ is an element of D1,2

and there exists a constant M such that
∣∣∣Di

tξ
∣∣∣ ≤ M, ∀t ≤ T ; i = 1, p,

(H.8) There exists a constant M > 0 such that,

|b(t, y, z, v)| ≤ M(1 + |y| + |z|); P−a.s., a.e. t ∈ [0, T ] .

(H.9) bz satisfies (H.8), there exists a constant M > 0 and α ∈ ]0, 1[ such that

|by(t, y, z, v)| ≤ M (1 + ln (1 + (|y| + |z|)α)) ; P−a.s., a.e. t ∈ [0, T ] .

(H.10) For every N ∈ N, there exists a constants LN > 0, such that

|b(t, y, z, v) − b(t, y′, z′, v)| ≤ LN(|y − y′| + |z − z′|); P−a.s., a.e. t ∈ [0, T ] ,

and ∀y, y′, z, z′ such that |y| ≤ N, |y′| ≤ N , |z| ≤ N , |z′| ≤ N.
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Examples: To motivate the Assumption 2.1 and Assumption 2.2, we exhibit

some relevant examples for the coefficient b and the terminal data ξ.

1) Let g : Rd → Rn be a continuously differentiable function with bounded derivatives.

If ξ = g (WT ) then for every t ≤ T, Dtξ = ∇g (WT ) , and thus ξ satisfies (H.7).

2) Let h : R+ → R+ be a function defined by

h (x) =

 x if 0 ≤ x ≤ 1

xα if x > 1
α ∈ (0, 1) .

Obviously, h is Lipschitz and satisfies the sub-linear growth condition. Define b (t, y, z, v) :=

− (1 + y) log |1 + y| + h (z) + f (t, v) where f : [0, T ] × U → R is a bounded function, then

b satisfies the Assumption 2.1. Indeed, due to the fact that |(1 + y) log (1 + y)| ≤

1+ 1
α

|y|1+α for all α > 0 and ⟨y, −y log y⟩ ≤ 1, it is not difficult to see that the b is locally

Lipschitz on R+ and satisfies (H.1), (H.2), (H.3), (H.5) and (H.6).

3) Define the function h1 (x) := 2
√

1 + log x + log
∣∣∣√1+log x−1√

1+log x+1

∣∣∣, then b (t, y, z, v) := h1 (y) +

h1 (z) + f (t, v) satisfies Assumptions 2.2.

2.3 Some Existence and uniqueness Results

In this section, we will state some basic results related to BSDEs theory and prove

a new existence and uniqueness results for one kind of linear SDEs with locally Lipschitz

coefficients. More precisely, we prove under Assumptions 2.1 or Assumptions 2.2 that the

linear adjoint equation Eq.(0.13) has a unique solution. The following two lemmas state

some existing results in the literature which are related to BSDEs with locally Lipschitz

generators. More precisely, they provide the existence and uniqueness of solutions on top

of some estimates satisfied by their solutions.
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Lemma 2.3.1
Let ξ be a bounded random variable. Assume that Assumptions 2.1 or As-

sumptions 2.2 are satisfied. Then, for any v (·) ∈ Uad there exists a unique pair

(y(·), z(·)) ∈ S2 ([0, T ] ,Rn) × M2
(
[0, T ] ,Rn×d

)
which solves BSDE Eq.(2.1).

Proof: The proof under Assumptions 2.1 can be found in Bahlali [7, Proposition

7], and the proof under Assumptions 2.2 has been established in [31, Theorem 2.c and

Theorem 2.d (ii)].

Before we state and prove an existence and uniqueness result for SDE (0.13). We need

the following auxiliary lemmas.

Lemma 2.3.2
Let (y(·), z(·)) be the unique solutions of the BSDEs Eq.(2.1). Then, there is a positive

constant C, such that

i) Under Assumptions 2.1, we have P−a.s.

sup
0≤t≤T

|y (t)|2 ≤ C and E
∫ T

0
|z (r)|2 dr ≤ C; (2.4)

ii) Under Assumptions 2.2, we have

sup
0≤t≤T

(|y (t)| + |z (t)|) ≤ C; P−a.s. (2.5)

Proof : The proof of (i) follows by using Ito’s formula, the conditional expectation, Jensen’s

inequality and Gronwall’s Lemma. The proof of (ii) is given in [31, Proposition 2.d (i)].

Remark 2.1. Notice that for any v (·) ∈ Uad the functions by(t, ·, ·, v (t)) and

bz(t, ·, ·, v (t)) are not bounded in general. However, for any t ∈ [0, T ] , such that (y (t) , z (t))

is the unique solution of BSDE Eq.(2.1), by(t, y (t) , z (t) , v (t)) and bz(t, y (t) , z (t) , v (t))

are bounded. Indeed, under Assumption 2.1, Lemma 2.3.2 (i), shows that there exists

a positive constant such that sup0≤t≤T |y (t)| ≤
√

C. We conclude using the hypothesis

(H.6),

by(t, y (t) , z (t) , v (t)) ≤ M(1 + φ (|y (t)|)) ≤ K (M, φ) .

Besides, bz(t, y (t) , z (t) , v (t)) is bounded due to the fact that b is Lipschitz in z.

Mohamed Khider University of Biskra.



2.4. A FAMILY OF CONTROL PROBLEMS 27

On the other hand, under Assumption 2.2, by (t, y (t) , z (t) , v (t)) and bz (t, y (t) , z (t) , v (t))

evaluated at (y (t) , z (t)) are bounded, it is easy to see that, using (H.9) and Lemma

2.3.2 (ii),

bz (t, y (t) , z (t) , v (t)) ≤ M(1 + |y (t)| + |z (t)|)

≤ M(1 + sup
0≤t≤T

(|y (t)| + |z (t)|))

≤ M(1 + C).

Finally, the boundedness of by goes similarly.

Throughout the following theorem, we claim a new existence and uniqueness results

for SDE Eq.(0.13).

Theorem 2.3.1 (Existence and uniqueness of SDE)
Suppose that Assumptions 2.1 or Assumptions 2.2 holds. Then, for any v(·) ∈

Uad, SDE Eq.(0.13) has one and only one solution x(·) ∈ S2( [0, T ] ,Rn). Moreover,

there is a positive constant C such that

E
[

sup
0≤t≤T

|x(t)|4
]

≤ C. (2.6)

Proof : Under Assumption 2.1 or Assumption 2.2, Remark 2.1 shows that, for any t ∈

[0, T ] , by (t, y (t) , z (t) , v (t)) and bz (t, y (t) , z (t) , v (t)) are bounded, where (y (t) , z (t))

is the unique solution of the BSDE Eq.(2.1). This implies that the coefficients of the

Eq.(0.13) satisfy the globally Lipschitz condition on top of the linear growth propriety.

Therefore, it has a unique solution such that, for any p ≥ 1, we have

E
(

sup
0≤t≤T

|x(t)|p
)

≤ Cp.

In particular, the inequality (2.6) is satisfied. This finishes the proof.

2.4 A family of Control Problems

Since the purpose of this chapter is to deal with the control Problem (A). The

controller objective is to derive a necessary condition as well as a sufficient condition of
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optimality under the locally Lipschitz framework. Notice that, because the derivatives of

b are not bounded, the standard duality technique can not be directly applicable in our

setup. To overcome this difficulty we approximate Problem (A) by a family of perturbed

control problems with globally Lipschiz coefficients. Then we apply Ekeland’s variational

principle in order to derive the necessary and sufficient conditions for near-optimality.

Finally, the desired results are obtained by using the limit argument.

Before we state the following lemma which plays an essential role in approximating

the initial control Problem (A), we need to define the following family of semi-norms.

For any p ≥ 1, we define (ρn,p(b))n∈N by

ρn,p(b) =
(
E
∫ T

0
sup

|y|,|z|≤n

|b(r, y, z)|p dr

) 1
p

. (2.7)

Lemma 2.4.1
Let b be a function which satisfies Assumptions 2.1 or Assumptions 2.2. Then,

there exists a sequence of functions bn such that ,

(i) For each n, bn is globally Lipschitz in (y, z) P−a.s., a.e. t ∈ [0, T ]

(ii) If b satisfies (H.3), then sup
n

|bn(t, y, z, v)| ≤ M(1 + φ (|y|) + |z|α) P− a.s, a.e.

t ∈ [0, T ]

(iii) If b satisfies (H.8), then sup
n

|bn(t, y, z, v)| ≤ M(1 + |y| + |z|) P − a.s, a.e.

t ∈ [0, T ]

(iυ) For every n, ρn,p(bn − b) → 0 as n → ∞.

(υ) For every n,
∣∣∣bn

y

∣∣∣ ≤ |by| + β |b| ηn and |bn
z | ≤ |bz| + β |b| ηn, where ηn converges to 0

as n tends to +∞.

Proof : Let (ψn)n∈N be a sequence of smooth functions with support in the ball B (0, n+ 1)

and such that ψn = 1 in the ball B (0, n) . Obviously, the sequence of truncated functions,

defined by bn = bψn satisfies the assertions (i), (ii), (iii) and (iυ). We give now the proof

of (υ). By the definition of bn, we have, for any (t, y, z, v)

bn
y (t, y, z, v) = by(t, y, z, v)ψn (y, z) + b(t, y, z, v)ψn

y (y, z) .

Set β = sup
n

sup
{
ψn

y (y, z) , |y| ≤ n+ 1, |z| ≤ n+ 1
}

and ηn = 1I]−n−1,−n[∪]n,n+1[. Then,

∣∣∣bn
y (t, y, z, v)

∣∣∣ ≤ |by(t, y, z, v)| + β |b(t, y, z, v)| ηn.
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Obviously, limn→∞ ηn = 0. The proof of Lemma 2.4.1 is complete.

Let us recall Ekeland’s variational principle, which plays crucial role in proving

the necessary condition of near optimality.

Lemma 2.4.2 (Ekeland’s variational principle)
Let (V, d) be a complete metric space and f : V → R∪{+∞} be a lower-semicontinuous

function, bounded from below. If for each ε > 0 there exists u(·) ∈ V satisfies

f(u) ≤ inf {f(v) + ε; v ∈ V }. Then, there exists uε such that

1. f(uε) ≤ f(u).

2. d(u, uε) ≤ ε
1
2

3. f(v) + ε
1
2 · d(v, uε) < f(uε), ∀v ∈ V.

Our aim in the next paragraphs is to convert the initial control Problem (A) by

a family of control problems with globally Lipschitz coefficients. To this end, for any

fixed n ∈ N and v (·) ∈ Uad, we denote (ȳ (·) , z̄ (·)) the solution of the following controlled

BSDE  dȳ (t) = bn(t, ȳ (t) , z̄ (t) , v (t))dt + z̄ (t) dWt,

ȳ (T ) = ξ,
(2.8)

and

J n(v (·)) = E [g(ȳ(0))] . (2.9)

The following lemma gives some estimates that will be used to relate the control

problem {Eq.(2.8), (2.9)} with Problem (A).

Lemma 2.4.3
Let y(·) and y1(·) be respectively the solutions of BSDE Eqs.(2.1) and (2.8) corre-

sponding to the control v(·) ∈ Uad, then the following estimates hold:

(i) E
[
|ȳ(t) − y(t)|2

]
≤ Kn,N , and E

[∫ T
t |z̄(r) − z(r)|2 dr

]
≤ Kn,N ;

(ii) |J n(v) − J (v)| ≤ C · εn,N ;

where Kn,N and εn,N converge to 0 as n and N tend successively to +∞, here N stands

for the radius of the ball B (0, N).

Proof : Let us first prove, under Assumption 2.2, the two inequalities of assertion (i).

The proof under Assumption 2.1 is similar.
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Squaring both sides of

− (ȳ(t) − y(t))−
∫ T

t
(z̄(r) − z(r)) dWr =

∫ T

t
[bn(r, ȳ(r), z̄(r), u(r) − b(r, y(r), z(r), u(r)] dr,

Taking the expectation and using the fact that

E
[
(ȳ(t) − y(t))

∫ T

t
(z̄(r) − z(r)) dWr

]
= 0,

we get

E |ȳ(t) − y(t)|2+E
∫ T

t
|z̄(r) − z(r)|2 dr = E

(∫ T

t
bn(r, ȳ(r), z̄(r), u(r) − b(r, y(r), z(r), u(r)dr

)2

.

Then, the Cauchy-Schwarz inequality leads to

E |ȳ(t) − y(t)|2+E
∫ T

t
|z̄(r) − z(r)|2 dr ≤ (T−t)E

∫ T

t
|bn(r, ȳ(r), z̄(r), u(r) − b(r, y(r), z(r), u(r)|2 dr.

For a given N > 1, let LN be the Lipschitz constant of b in the ball B(0, N), we

define AN :=
{

(r, w); |z(r)|2 + |z̄(r)|2 > N2
}

and ĀN = Ω\AN , it follows by using the

Cauchy-Schwarz inequality,

E |ȳ(t) − y(t)|2 + E
∫ T

t
|z̄(r) − z(r)|2 dr ≤ (T − t) (Jn

1 + Jn
2 ) , (2.10)

where

Jn
1 = E

∫ T

t
|bn(r, ȳ(r), z̄(r), u(r) − b(r, y(r), z(r), u(r)|2 1IAN

dr,

and

Jn
2 = E

∫ T

t
|bn(r, ȳ(r), z̄(r), u(r) − b(r, y(r), z(r), u(r)|2 1IĀN

dr.

We first estimate Jn
1 . Since b satisfies (H.3) and supn |bn| ≤ |b|, we use Holder’s

inequality and the fact that 1IAN <
|z̄(r)|2 + |z(r)|2

N2(1−α) , we obtain

Jn
1 ≤ K(M, ξ)

N2(1−α) . (2.11)

Now, we proceed to estimate Jn
2 . Taking into consideration that b is Lipschitz in the ball

B(0, N), we get

Jn
2 ≤ 2ρ2

N (bn − b) + 2L2
NE

∫ T

t

(
|ȳ(r) − y(r)|2 + |z̄(r) − z(r)|2

)
dr. (2.12)

Then, we have, by replacing (2.10) and (2.11) into (2.12)

E |ȳ(t) − y(t)|2 + E
∫ T

t
|z̄(r) − z(r)|2 dr ≤ (T − t)[K(M, ξ)

N2(1−α) + 2ρ2
N (bn − b)

+ 2L2
NE

∫ T

t

(
|ȳ(r) − y(r)|2 + |z̄(r) − z(r)|2

)
dr].
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For every δ, such that T − t = δ, we obtain by choosing δ = 1
4L2

N

,

E |ȳ(t) − y(t)|2 + E
∫ T

T −δ
|z̄(r) − z(r)|2 dr ≤ K(M, ξ)

4L2
NN

2(1−α) + ρ2
N (bn − b)

2

+ 1
2E
∫ T

T −δ

(
|ȳ(r) − y(r)|2 + |z̄(r) − z(r)|2

)
dr.

From the above inequality, we derive two inequalities

E |ȳ(t) − y(t)|2 ≤ K(M, ξ)
4L2

NN
2(1−α) + ρ2

N (bn − b)
2 + 1

2E
∫ T

T −δ
|ȳ(r) − y(r)|2 dr,

and

1
2E
∫ T

T −δ
|z̄(r) − z(r)|2 dr ≤ K(M, ξ)

4L2
NN

2(1−α) + ρ2
N (bn − b)

2 + E
∫ T

T −δ
|ȳ(r) − y(r)|2 dr.

Set Kn,N := K(M,ξ)
4L2

N N2(1−α) + ρ2
N (bn−b)

2 . Obviously Kn,N tends to 0 as n and N tend succes-

sively to +∞. Consequently, by Gronwall’s lemma, the first inequality, becomes

E |ȳ(t) − y(t)|2 ≤ C1Kn,N . (2.13)

Then, by (2.13), we obtain

E
∫ T

T −δ
|z̄(r) − z(r)|2 dr ≤ C2Kn,N .

Similarly, we get

E |ȳ(t) − y(t)|2 ≤ CK1
n,N , t ∈ [T − 2δ, T − δ] .

E
∫ T

t
|z̄(r) − z(r)|2 dr ≤ CK2

n,N , t ∈ [T − 2δ, T − δ] .

After a finite number of iterations, we prove the assertion (i). Next, we prove the

assertion (ii).

Since g is Lipschitz continuous, then by using the Cauchy-Schwarz inequality and (2.13),

one can prove the following

|J n(u(·)) − J (u(·))| ≤ C · εn,N .

such that εn,N tends to 0 as n and N tend successively to +∞. The proof of Lemma

2.4.3 is complete.
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Let u(·) be an optimal control for the initial control problem, that is u(·) satisfies

J (u(·)) = inf
v(·)∈Uad

J (v(·)),

subject to Eq.(2.1). Note that u(·) is not necessarily optimal for the new perturbed control

problem, according to Lemma 2.4.3, there exists a sequence (δn) of positive real numbers

converging to 0 such that:

J n(u(·)) ≤ inf
v(·)∈Uad

J n(v(·)) + δn,N , δn,N = 2C · εn,N .

To apply Ekeland’s lemma 2.4.2, let us define a metric d on the space of admissible

controls. For u(·), v(·) ∈ Uad

d(u(·), v(·)) = P ⊗ dt {(w, t) ∈ Ω × [0, T ] : u(w, t) ̸= v(w, t)} , (2.14)

where P ⊗dt is the product measure of P with the Lebesgue measure on [0, T ] . According

to Ekeland’s lemma applied to the continuous cost functional J n(u(·)), there exists an

admissible control un(·) such that:

d(un(·), u(·)) ≤ (δn,N) 1
2 ,

and

J̃ n(un(·)) ≤ J̃ n(v(·)) for any v(·) ∈ Uad,

where

J̃ n(v(·)) = J n(v(·)) + (δn,N) 1
2 · d(v(·), un(·)). (2.15)

This means that un(·) is optimal for control problem {Eq.(2.8), (2.9)} with the new

cost function J̃ n. For each integer n, we denote by (yn(·), zn(·)) the unique solution of

the following BSDE controlled by un(·) dyn (t) = bn(t, yn (t) , zn (t) , un (t))dt + zn (t) dWt,

yn (T ) = ξ.
(2.16)

And its corresponding cost is given by

J n(v (·)) = E [g(yn(0))] . (2.17)

Then, we can formulate the following optimal control problem.
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Problem (B): For each integer n, we want to find un (·) ∈ Uad such that un (·)

minimizes the cost function Eq.(2.17) subject to Eq.(2.16).

We conclude this subsection by introducing a family of controlled SDEs called adjoint

equations. For each integer n, we introduce the following SDE −dxn(t) = bn
y (t, yn(t), zn(t), un(t))xn(t)dt + bn

z (t, yn(t), zn(t), un(t))xn(t)dWt,

xn(0) = gy(yn(0)).
(2.18)

Since bn is globally Lipschitz function, their derivatives bn
y and bn

z are bounded. Hence,

the coefficients of SDE Eq.(2.18) are globally Lipschitz and of linear growth, which means

that, for each integer n, equation Eq.(2.18) admits a unique solution.

We also define the a family of Hamiltonian functions Hn : [0, T ] × Ω × Rn × Rn×d ×

Rn × U → R by

Hn(t, yn, zn, xn, un) = xnbn(t, yn, zn, un) for each n ∈ N.

2.5 Maximum Principle for Optimality

The purpose of this section is to derive the necessary conditions of optimality for the

aforementioned control Problem (A). To this end, we need some auxiliary lemma which

will be gathered and proved in the next subsection.

2.5.1 Some Convergence Lemmas

In this subsection, we will summarize and prove some useful lemmas which will be used

in the next section to prove the main results.

Lemma 2.5.1
Let (bn) be the sequence of functions associated to b by Lemma 2.4.1 and (yn (·) , zn (·))

stands for the solution of Eq.(2.16). Then, there exists a constant C = C(M) such

that,

i) Under Assumption 2.1, we have P−a.s

sup
n

(
sup

0≤t≤T
|yn (t)|2

)
≤ C and sup

n
E
∫ T

0
|zn (t)|2 ≤ C.
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ii) Under Assumption 2.2, we have

sup
n

(
sup

0≤t≤T
(|yn (t)| + |zn (t)|)

)
≤ C; P−a.s.

Proof : The proof can be performed as the proof of Lemma 2.4.1. We omit it here.

Lemma 2.5.2
Under Assumption 2.1 or Assumption 2.2, we have

lim
n→∞

E
[

sup
t∈[0,T ]

|yn (t) − y (t)|2
]

= 0. (2.19)

lim
n→∞

E
∫ T

0
|zn (t) − z (t)|2 dt = 0. (2.20)

Proof : Noting that the coefficient bn depends explicitly on the control variable un(·) and

since d(un(·), u(·)) converges to 0 as n goes to +∞, we may replace un(·) by u(·), therefore,

the proof goes as in [7, Lemma 1].

Lemma 2.5.3
Under Assumption 2.1 or Assumption 2.2, the following estimates hold

lim
n→∞

E
∫ t

0
|bn(r, yn(r), zn(r), u(r)) − b(r, y(r), z(r), u(r))|2 dr = 0. (2.21)

lim
n→∞

E
∫ t

0

∣∣∣bn
y (r, yn(r), zn(r), u(r)) − by(r, y(r), z(r), u(r))

∣∣∣4 dr = 0. (2.22)

lim
n→∞

E
∫ t

0
|bn

z (r, yn(r), zn(r), u(r)) − bz(r, y(r), z(r), u(r))|4 dr = 0. (2.23)

Proof : We only give the proof under Assumption 2.1, the proof under Assumption

2.2 goes similarly with some suitable changes.

First, we shall prove Eq.(2.21). LetN > 1, we putAN
n :=

{
(r, w); |zn(r)|2 + |z(r)|2 > N2

}
and ĀN

n = Ω\AN
n , then we have

E
∫ t

0
|bn(r, yn(r), zn(r), u(r)) − b(r, y(r), z(r), u(r))|2 dr ≤ C(In

1 + In
2 ), (2.24)
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where

In
1 = E

∫ t

0
|bn(r, yn(r), zn(r), u(r)) − b(r, y(r), z(r), u(r))|2 1IAN

n
dr,

In
2 = E

∫ t

0
|bn(r, yn(r), zn(r), u(r)) − b(r, y(r), z(r), u(r))|2 1I −

AN
n

dr.

Since b satisfies (H.3), we obtain, using the fact that |x|α ≤ 1 + |x|,

In
1 ≤ K(M,φ)E

∫ t

0

(
(2 + |zn(r)|α)2 + (2 + |y(r)| + |z(r)|α)2

)
1IAN

n
dr.

In view of the inequality 1IAN <
|zn(r)|2 + |z(r)|2

N2 , we get, using Holder’s inequality and

(2.5),

In
1 ≤ K(M,φ)

N2(1−α) . (2.25)

On the other hand, it is not difficult to see that

In
2 ≤ E

∫ t

0
|bn(r, yn(r), zn(r), u(r)) − bn(r, y(r), z(r), u(r))|2 1I −

AN
n

dr

+ E
∫ t

0
|bn(r, y(r), z(r), u(r)) − b(r, y(r), z(r), u(r))|2 1I −

AN
n

dr.

Using the fact that bn is Lipschitz in the ball B (0, N) and the definition of the semi

norm (2.7), we get

In
2 ≤ L2

NE
∫ t

0
|yn(r) − y(r)|2 + |zn(r) − z(r)|2 dr + ρ2

N (bn − b), (2.26)

then, plugging (2.25) and (2.26) into (2.24), to obtain

E
∫ t

0
|bn(r, yn(r), zn(r), u(r)) − b(r, y(r), z(r), u(r))|2 dr

≤ C
K(M,φ)
N2(1−α) + Cρ2

N (bn − b)

+ CL2
NE

∫ t

0

(
|yn(r) − y(r)|2 + |zn(r) − z(r)|2

)
dr.

Passing to the limit, successively on n and N, we get (2.21). Next, we only give the proof

of Eq.(2.22). The proof of Eq.(2.23) can be performed similarly. A simple computation

shows that

E
∫ t

0

∣∣∣bn
y (r, yn(r), zn(r), u(r)) − by(r, y(r), z(r), u(r))

∣∣∣4 dr ≤ C(In
5 + In

6 ),

where

In
5 = E

∫ t

0

(∣∣∣bn
y (r, yn(r), zn(r), u(r))

∣∣∣4 + |by(r, y(r), z(r), u(r))|4
)

1IAN
n

dr

In
6 = E

∫ t

0

∣∣∣bn
y (r, yn(r), zn(r), u(r)) − by(r, y(r), z(r), u(r))

∣∣∣4 1I −
AN

n

dr.
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Due to the fact that 1IAN <
|zn(r)|2 + |z(r)|2

N2 , using Holder’s inequality together with

the relation (υ) in Lemma 2.4.1 and (2.5), we obtain

In
5 ≤ K(M,φ) + ηn

N2 .

On the other hand

In
6 ≤ E

∫ t

0

∣∣∣bn
y (r, yn(r), zn(r), u(r)) − by(r, yn(r), zn(r), u(r))

∣∣∣4 1I −
AN

n

dr.

+ E
∫ t

0
|by(r, yn(r), zn(r), u(r)) − by(r, y(r), z(r), u(r))|4 1I −

AN
n

dr,

which implies

In
6 ≤ ρ4

N,4(bn
y − by) + E

∫ t

0
|by(r, yn(r), zn(r), u(r)) − by(r, y(r), z(r), u(r))|4 1I −

AN
n

dr.

According to Remark 2.1, by evaluated at (y(·), z(·), u(·)) is bounded. We deduce, using

Lebesgue’s dominated convergence theorem,

lim
n→+∞

E
(∫ t

0
|by(r, yn(r), zn(r), u(r)) − by(r, y(r), z(r), u(r))|4 1I −

AN
n

dr
)

= 0,

passing to the limits successively on n and N one gets (2.22).

Lemma 2.5.4
Let x(·) and xn(·) be respectively the solution of Eqs.(0.13) and (2.18), then under

Assumption 2.1 or Assumption 2.2, we have

lim
n→∞

E
[
|xn(t) − x(t)|2

]
= 0. (2.27)

Proof : We only give the proof under Assumption 2.2, the proof under Assumption 2.1

is similar. From Eqs.(0.13) and (2.18), we obtain

E
[
|xn(t) − x(t)|2

]
≤ CE

∫ t

0

∣∣∣bn
y (r, yn(r), zn(r), un(r)) (xn(r) − x(r))

∣∣∣2 dr (2.28)

+ CE
∫ t

0
|bn

z (r, yn(r), zn(r), un(r)) (xn(r) − x(r))|2 dr

+ αn
1 (t),
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where

αn
1 (t) = E |gy(yn(0)) − gy(y(0))|2

+ E
∫ t

0

∣∣∣(bn
y (r, yn(r), zn(r), un(r)) − by(r, y(r), z(r), u(r)

)
)x(r)

∣∣∣2 dr

+ E
∫ t

0
|(bz(r, yn(r), zn(r), un(r)) − bz(r, y(r), z(r), u(r)))x(r)|2 dr.

Since by (t, ·, ·, un(t)) , bz (t, ·, ·, un(t)) and b (t, ·, ·, un(t)) evaluated at (yn(t), zn(t)) are

bounded. Then, taking into account the relation (υ) in Lemma 2.4.1, we get

E
[
|xn(t) − x(t)|2

]
≤ C (2 + ηn)E

∫ t

0
|xn(r) − x(r)|2 dr + Cαn

1 (t). (2.29)

Let us prove that lim
n→∞

αn
1 (t) = 0. Since gy is bounded and continuous, then by Eq.(2.19)

and the dominated convergence theorem, we have

lim
n→∞

E |gy(yn(0)) − gy(y(0))|2 = 0. (2.30)

Hence, using Cauchy-Schwarz inequality taking account of (2.6), we get

E
∫ t

0

∣∣∣(bn
y (r, yn(r), zn(r), un(r)) − by(r, y(r), z(r), u(r))

)
x(r)

∣∣∣2 dr

≤ C

(
E
∫ t

0

∣∣∣bn
y (r, yn(r), zn(r), un(r)) − by(r, y(r), z(r), u(r))

∣∣∣4 dr
) 1

2
.

By Eq.(2.22), we have

lim
n→∞

E
∫ t

0

∣∣∣(bn
y (r, yn(r), zn(r), un(r)) − by(r, y(r), z(r), u(r)

)
x(r)

∣∣∣2 dr = 0. (2.31)

Similarly

lim
n→∞

E
∫ t

0
|(bn

z (r, yn(r), zn(r), un(r)) − bz(r, y(r), z(r), u(r)))x(r)|2 dr = 0. (2.32)

From Eqs.(2.30), (2.31) and Eq.(2.32), it is easy to see that

lim
n→∞

αn
1 (t) = 0. (2.33)

Returning back to (2.29) and using Gronwall’s lemma taking account of Eq.(2.33), we

obtain Eq.(2.27) by passing to the limit.
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2.5.2 Necessary Condition for Optimality

To claim and prove the necessary condition of optimality we need the following

lemma. Firstly, we set

F n (r) = [Hn(r, yn(r), zn(r), xn(r), un(r)) − Hn(r, yn(r), zn(r), xn(r), v(r))] ,

and

F (r) = [H(r, y(r), z(r), x(r), u(r)) − H(r, y(r), z(r), x(r), v(r))] .

Lemma 2.5.5
Assume that Assumption 2.1 or Assumption 2.2 is in force. Then, we have

lim
n→∞

E
∫ t

0
|F n (r) − F (r)| dr = 0.

Proof : A simple computation shows that, using the definition of Hn and H

E
∫ t

0
|Fn (t) − F (t)| dr = CE

∫ t

0
|bn(r, yn(r), zn(r), un(r))xn(r) − b(r, y(r), z(r), u(r))x(r)| dr

+ CE
∫ t

0
|bn(r, yn(r), zn(r), v(r))xn(r) − b(r, y(r), z(r), v(r))x(r)| dr

≤ C (In
1 + In

2 ) ,

where

In
1 = E

∫ t

0
|bn(r, yn(r), zn(r), un(r))xn(r) − b(r, y(r), z(r), u(r))x(r)| dr

In
2 = E

∫ t

0
|bn(r, yn(r), zn(r), v(r))xn(r) − b(r, y(r), z(r), v(r))x(r)| dr.

Now, let us prove that lim
n→+∞

In
1 = 0. Applying Schwarz inequality, using the fact that

E
∫ t

0 |x(r)|2 dr ≤ C, we get

In
1 ≤

[
E
∫ t

0
|bn(r, yn(r), zn(r), un(r))|2 dr

] 1
2
[
E
∫ t

0
|xn(r) − x(r)|2 dr

] 1
2

(2.34)

+ CE
∫ t

0
|bn(r, yn(r), zn(r), un(r)) − bn(r, yn(r), zn(r), u(r))|2 1I{un(r) ̸=u(r)} (r) dr

+ C

[
E
∫ t

0
|bn(r, yn(r), zn(r), u(r)) − b(r, y(r), z(r), u(r))|2 dr

] 1
2
.

Since bn satisfies (H.3), we use Lemma 2.5.1 and the relation (ii) in Lemma 2.4.1, to

deduce that E
∫ t

0 |bn(r, yn(r), zn(r), un(r))|2 dr is bounded, then by Eq.(2.27) the first
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expression in the right-hand side converges to 0 as n → ∞. On the other hand by using

Eq.(2.21), one can confirm the convergence of the third term to 0. We proceed now to

estimate the second term, we apply Holder’s inequality to get

E
∫ t

0
|bn(r, yn(r), zn(r), un(r)) − bn(r, yn(r), zn(r), u(r))|2 1I{un(r)̸=u(r)} (r) dr

≤ 2C
[
E
∫ t

0
|zn(r)|2α 1I{un(r)̸=u(r)} (r) dr

] 1
2

≤ 2C
[
E
∫ t

0
|zn(r)|2 dr

]α [
E
∫ t

0
1I{un(r)̸=u(r)} (r) dr

]1−α

≤ 2C [d (un (·) , u (·))]1−α .

Since d(un(·), u(·)) converges to 0 as n goes to +∞, the second term in the right-hand

side of (2.34) tends to 0. On the other hand, by using similar arguments developed

above one can easily show that lim
n→+∞

In
2 = 0. This completes the proof.

Now we are in a position to state and prove the first main result in this paper.

Theorem 2.5.1 (Necessary optimality conditions for the locally Lipschitz case)
Let (u(·), y(·), z(·)) be an optimal solution of the initial control problem. Then,

there exists a unique adapted processes x(·) ∈ S2([0, T ] ,Rn), solution to the forward

stochastic differential equation Eq.(0.13) such that

H(t, y(t), z(t), x(t), u(t)) = max
v(·)∈Uad

H(t, y(t), z(t), x(t), v(t)); dt − a.e, P − a.s.

(2.35)

Proof : To make the main idea of the proof much clear, we start by giving the outlines of

the proof:

1) Firstly, since the generator b is differentiable and locally Lipschitz with respect to the

state variables, and thus, their derivatives are not bounded, we convert the Problem (A)

into Problem (B).

2) Then, we use a spike variation method to derive the necessary condition of near

optimality by handling the Problem (B).

3) We get the necessary condition of optimality (2.35), by passing to limits using Lemma

2.5.5.

Now, for each integer n, we suppose that un (·) ∈ Uad is an optimal control for Problem
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(B), in the sense that J n(un (·)) ≤ inf
v(·)∈Uad

J n(v (·)), and we denote (yn(·), zn(·)) the

solution of BSDE Eq.(2.16) corresponding to un (·) . Then, we introduce the following

spike variation

un,θ (t) =

 vt if t ∈ [t0, t0 + θ] ,

un (t) otherwise,

where 0 ≤ t0 ≤ T is fixed, θ > 0 is sufficient small, and v is an arbitrary Ft0−measurable

random variable.

The fact that

J̃ n(un (·)) ≤ J̃ n(un,θ (·)),

and

d(un,θ (·) , un (·)) ≤ θ,

imply that

J n(un,θ (·)) − J n(un (·)) ≥ −(δn,N )
1
2 θ. (2.36)

By using standard arguments (see for example [44]), it is easy to show that, the left-hand

side of the inequality (2.36) is equal to

E
∫ t0+θ

t0
[Hn(t, yn(t), zn(t), xn(t), un(t)) − Hn(t, yn(t), zn(t), xn(t), v(r))] dr + o (θ) .

Dividing the both sides of the inequality (2.36) by θ, we get

−(δn,N )
1
2 ≤ 1

θ
E
∫ t0+θ

t0
[Hn(r, yn(r), zn(r), xn(r), un(r)) − Hn(r, yn(r), zn(r), xn(r), v(r))] dr+o (θ)

θ
.

By using Lemma 2.5.5 and passing to the limits successively on n, N and θ, keeping in

mind that t0 is an arbitrary element of [0, T ] , we get

E [H(t, y(t), z(t), x(t), u(t)) − H(t, y(t), z(t), x(t), vt)] ≥ 0.

Now, let a ∈ U be a deterministic element andB be an arbitrary element of the σ−algebra

Ft, and set

ω(t) = a1IB + u(t)1IΩ|B.

It is obvious that ω (·) is an admissible control. Applying the above inequality with ω (·),

we get

E [1IB (H(t, y(t), z(t), x(t), u(t)) − H(t, y(t), z(t), x(t), a))] ≥ 0, ∀B ∈ Ft,
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which implies

EFt [H(t, y(t), z(t), x(t), u(t)) − H(t, y(t), z(t), x(t), a)] ≥ 0.

The quantity inside the conditional expectation is Ft−measurable, and thus the result

follows immediately. This proves Theorem 4.1.

2.5.3 Sufficient Condition of Optimality

In this section, we will prove that under additional hypothesis, a necessary optimality

condition Eq.(2.35) becomes sufficient condition of optimality.

Theorem 2.5.2 (Sufficient optimality conditions for the locally Lipschitz case)
Let (y(·), z(·), u(·)) be solution of Eq.(2.1), and x(·) is the solutions of the adjoint

equation Eq.(0.13), corresponding to (y(·), z(·), u(·)) . Assume further that (y, z, u) →

H (t, y, z, x, u) is convex for a.e. t ∈ [0, T ] , P − a.s., g (.) is convex. If the neces-

sary condition of optimality Eq.(2.35) is satisfied, then (y (·) , z (·) , u (·)) is an optimal

triplet for Problem (A), in the sense that

J (u (·)) ≤ inf
v(·)∈Uad

J (v (·)) .

Proof : Let u(·) ∈ Uad be candidate to be an optimal control. For any v(·) ∈ Uad, we have

J (v (·)) − J (u (·)) = E [g (yv(0)) − g (yu(0))] .

Since g is convex, then

g (yv(0)) − g (yu(0)) ≥ gy (yu(0)) (yv(0) − yu(0)) .

Thus,

J (v (·)) − J (u (·)) ≥ E [gy (yu(0)) (yv(0) − yu(0))] .

Using the fact that xu(0) = gy (yu(0)) , we have

J (v (·)) − J (u (·)) ≥ E [xu(0) (yv(0) − yu(0))] .
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By applying Ito’s formula respectively xu(·) (yv(·) − yu(·)), we obtain

E [xu(0) (yv(0) − yu(0))] =

E
∫ T

0
Hy (t, yu(t), zu(t), xu(t), u(t)) (yv(t) − yu(t)) dt

+ E
∫ T

0
pu

t [b (t, yv(t), zv(t), v(t)) − b (t, yu(t), zu(t), u(t))] dt

+ E
∫ T

0
Hz (t, yu(t), zu(t), xu(t), u(t)) (zv(t) − zu(t)) dt.

Then,

J (v (·)) − J (u (·)) (2.37)

≥ E
∫ T

0
[H (t, yv(t), zv(t), xv(t), v(t)) − H (t, yu(t), zu(t), xu(t), u(t))] dt

− E
∫ T

0
Hy (t, yu(t), zu(t), xu(t), u(t)) (yv(t) − yu(t)) dt

− E
∫ T

0
Hz (t, yu(t), zu(t), xu(t), u(t)) (zv(t) − zu(t)) dt.

Since H is convex in (y, z, u), then by using the Clarke’s generalized gradient of H

evaluated at (y(·), z(·), u(·)) and the necessary optimality conditions Eq.(2.35), it follows

by [46, Lemmas 2.2 and 2.3], that

0 ≤ H (t, yv(t), zv(t), pv(t), v(t)) − H (t, yu(t), zu(t), pu(t), u(t))

− Hy (t, yu(t), zu(t), pu(t), u(t)) (yv(t) − yu(t))

− Hz (t, yu(t), zu(t), pu(t), u(t)) (zv(t) − zu(t)) .

We conclude, by replacing the above inequality into (2.37),

J (v (·)) − J (u (·)) ≥ 0.

Theorem 2.5.2 is proved.
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Chapter 3

A Stochastic Maximum Principle in Optimal

Control of FBSDE with Irregular Coefficients

3.1 Introduction

In this chapter, we outline the necessary conditions for the optimality of a control

problem associated with a forward-backward stochastic differential equation featuring ir-

regular coefficients. Our presentation unfolds in several steps. Initially, we articulate the

problem statement and introduce our main result. Subsequently, we define a family of

smooth control problems designed to approximate the original one. Leveraging distribu-

tional derivatives of the coefficients and the Bouleau-Hirsch flow property, we then proceed

to define the adjoint process on an extension of the initial probability space. Finally, we

establish the stochastic maximum principle.

3.2 Problem Statement and the Main Result

3.2.1 Formulation of Control Problem

Let (Ω, F , (Ft)t≥0 ,P) be a filtered probability space, where Ω = C0(R+,Rn) be the

space, of continous functions ω(0) = 0, endowed with the topology of uniform convergence

on compact subsets of R+. Let F be the Borel σ−field over Ω, P be the Wiener measure

on (Ω, F).and (Ft)t≥0 the filtration of coordinate process augmented with P−null sets of

F . We define the canonical process Wt (ω) = ω(t), t ≥ 0. Thus, on (Ω, F , (Ft)t≥0 ,P),(
W̃t

)
t≥0

is a Brownian motion.

Let T be a strictly positive real number and U a non-empty set of Rk.
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We consider a stochastic control problem, where the control domain need not be

convex and the system is governed by the following controlled forward-backward stochastic

differential equation (FBSDE for short) of the type

dX(t) = b (t, X(t), v(t)) dt + σ (t, X(t)) dWt,

X(0) = X,

dY (t) = −f (t, X(t), Y (t), Z(t), v(t)) dt + Z(t)dWt,

Y (T ) = h (X(T )) ,

(3.1)

where b, σ, f, g and γ are given maps. The control variable v = (v(t)) is an Ft-adapted

process with values in some set U of Rk. We denote by Uad the set of all admissible

controls.

The expected cost on the time interval [0, T ] is

J (v (·)) = E
[
γ (X(T )) + g (y(0)) +

∫ T

0
l (t, X(t), Y (t), Z(t), v(t)) dt

]
. (3.2)

In the above statement,

b : [0, T ] × Rn × U → Rn,

σ : [0, T ] × Rn → Rn×d,

f : [0, T ] × Rn × Rm × Rm×d × U → Rm,

l : [0, T ] × Rn × Rm × Rm×d × U → R,

h : Rn → Rm, γ : Rn → R, g : Rm → R.

The optimal control problem is to minimize the cost function J (v (·)) over Uad. An

admissible control u (·) is called optimal if it satisfies

J (u (·)) = inf
v∈Uad

J (v (·)) . (3.3)

Equation (3.1) is called the state equation, the solution (X (·) , Y (·) , Z (·)) corresponding

to u (·) is called an optimal trajectory.

In what follows, we assume that the coefficients satisfy the following assumptions

(A.1) b is bounded function and Lipschitz continuous of x, v with a Lipschitz constant L

and σ is bounded functions and Lipschitz continuous in x with a Lipschitz constant

L.
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(A.2) h is continuously differentiable of x and its derivative is bounded. l is continuous

and continuously differentiable in x, y, z, v and the derivatives of l are bounded.

(A.3) γ and g are continuously differentiable and the derivatives in γ and g are bounded.

(A.4) f is continuous and continuously differentiable in x, y, z and their partial derivatives

are bounded.

Note that since the functions b (t, x, v) and σj (t, x) are Lipschitz continuous of x, then

by Rademarcher’s theorem See [23], they are differentiable almost everywhere (in the

sense of the Lebesgue measure). Let us denote by bx, σj
x any Borel measurable functions

such that
∂σj

∂x
(t, x) = σj

x (t, x) dx − a.e;

∂b

∂x
(t, x, v) = bx (t, x, v) dx − a.e.

These almost everywhere derivatives are bounded by the Lipschitz constant L. Let us as-

sume that bx is continuous in v uniformly in (t, x). Under the assumptions (A.1) and (A.2),

for every v (·) ∈ Uad, equation (3.1) admits a unique adapted solution (X (·) , Y (·) , Z (·)) ∈

S4 ([0, T ] ;Rn) × S4 ([0, T ] ;Rm) × M4 ([0, T ] ;Rm×d).

From well-known results on SDE and BSDE, we have the following lemma.

Lemma 3.2.1
for p ≥ 2,we have the following estimation

E
[
sup0≤t≤T |X(t)|p + sup0≤t≤T |Y (t)|p +

(∫ T
0 |Z(t)|2 dt

) p
2
]

≤ CE
[
1 + |x|p + E

∫ T
0 |b(t, 0, v(t))|p dt + E

∫ T
0 |σ(t, 0)|p dt +

∫ T
0 |f(t, 0, , 0, v(t))|p dt

]
.

(3.4)

Let h be a continuous positive function on Rn satisfying
∫

h(x)dx = 1 and
∫

|x|2 h(x)dx < +∞.

Define the space of functions

D : =
{

f ∈ L2(hdx); such that ∂f

∂xj

∈ L2(hdx), j = 1, ..., n

}
,
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where ∂f
∂xj

denotes the derivative of f in the sense of distributions. Equipped with the

norm

∥f∥D : =
∫ f 2hdx +

∑
1≤j≤n

∫ (
∂f

∂xj

)2

hdx

1/2

,

D is a Hilbert space, which is a classical Dirichlet space. Moreover, D is a subset of the

Sobolev space W1
loc(Rn).

Let Ω̃ : = Rn×Ω and F̃ the Borel σ-field over Ω̃ and P̃ : =hdx⊗P, W̃t(x, w) : = Wt(w)

and
(
F̃t

)
t≥0

be the natural filtration of W̃t augmented with P̃-negligible sets of F̃ . It

is clear that on
(

Ω̃, F̃ ,
(
F̃t

)
t≥0

, P̃
)

,
(
W̃t

)
t≥0

is a Brownian motion. We introduce the

process
(
X̃(t), Ỹ (t), Z̃(t)

)
defined on the enlarged space

(
Ω̃, F̃ ,

(
F̃t

)
t≥0

, P̃, W̃t

)
, solution

of the forward-backward stochastic differential equation

dX̃(t) = b
(
t, X̃(t), ṽ(t)

)
dt + σ

(
t, X̃(t)

)
dW̃t,

X̃(0) = x,

dỸ (t) = −f
(
t, X̃(t), Ỹ (t), Z̃t), ṽ(t)

)
dt + Z̃(t)dW̃t,

Ỹ (T ) = h
(
X̃(T )

)
.

(3.5)

Since the coefficients are Lipschitz continuous and grow at most linearly, FBSDE (3.5)

has a unique F̃t−adapted solution with continuous trajectories.

Equations (3.1) and (3.5) are almost the same except that uniqueness for (3.5) is

slightly weaker. One can easily prove that the uniqueness implies that for each t ≥ 0,(
X̃(t), Ỹ (t), Z̃(t)

)
= (X(t), Y (t), Z (t)) , P̃−a.s.
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Now we introduce the adjoint equations and the Hamiltonian function for our problem.

The adjoint equations are defined by

dP (t) =
[
f ∗

y (t, X(t), Y (t), Z (t) , u (t)) P (t) − ly (t, X(t), Y (t), Z (t) , u (t))
]

dt

+ [f ∗
z (t, X(t), Y (t), Z (t) , u (t)) P (t) − lz (t, X(t), Y (t), Z (t) , u (t))] dW̃t,

P (0) = −g∗
y (y (0)) ,

−dQ (t) = [−f ∗
x (t, X(t), Y (t), Z (t) , u (t)) P (t) + b∗

x (t, X(t), u (t)) Q (t)

−σ∗
x (t, X(t)) R (t) + lx (t, X(t), Y (t), Z (t) , u (t))] dt − R (t) dW̃t,

Q (T ) = γ∗
x (X (T )) − h∗

x(X (T ))P (T ) ,

(3.6)

and the Hamiltonian function is given by

H (t, x, y, z, P, Q, R, u) := Qb (t, x, u) − Pf (t, x, y, z, u)

+ Rσ (t, x) + l (t, x, y, z, u) ,

where H : [0, T ] × Rn × Rm × Rm×d × U × Rm × Rn × Rn×d → R.

Let us recall the Bouleau–Hirsch flow property which will be used in the sequel.

Lemma 3.2.2 (Bouleau–Hirsch flow property)

Let X̃ be the solution of the forward component of FBSDE (3.5) on
(

Ω̃, F̃ ,
(
F̃t

)
t≥0

, P̃, W̃t

)
.

Then, for P̃−almost every w

1) For all t ≥ 0, x → X̃t(w) is in Dn.

2) For every t ≥ 0, the image measure of P̃ through the map X̃(t) is absolutely

continuous with respect to the Lebesgue measure.

Proof : The proof is similar to the deterministic case see [25]

3.3 A Maximum Principle for a Family of Perturbed

Control Problems

Let φ be a non-negative smooth function defined on Rn, with support in the unit

ball such that, ∫
Rn

φ (x) dx = 1.
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Define the following smooth functions by convolution:

bk(t, x, v) = kn
∫
Rn

b (t, x − y, v) φ (ky) dy,

σk(t, x) = kn
∫
Rn

σ (t, x − y) φ (ky) dy.

In the next lemma, we list some properties satisfied by these functions.

Lemma 3.3.1
(a) bk(t, x, v), σj,k(t, x) are Borel measurable, bounded functions and M -Lipschitz

continuous.

(b) There exists a constant C > 0 such that ∀t ∈ [0, T ] :

∣∣∣σj,k(t, x) − σj(t, x)
∣∣∣+ ∣∣∣bk(t, x, v) − b(t, x, v)

∣∣∣ ≤ C/k = εk. (3.7)

(c) bk(t, x, v), σj,k(t, x) are C1 functions in x and ∀t ∈ [0, T ] × A :

lim
k→+∞

σj,k
x (t, x) = σj

x(t, x) dx a.e,

lim
k→+∞

bk
x(t, x, v) = bx(t, x, v) dx a.e,

(d) For every p ≥ 1 and M > 0

lim
k→+∞

∫ ∫
[0,T ]×B(0,M)

sup
a∈A

∣∣∣bk
x(t, x, v) − bx(t, x, v)

∣∣∣p dtdx = 0,

where B(0, M) denotes a ball in Rn of radius M

Proof : Statements (a), (b) and (c) are classical facts (see [29] for the proof). (d) is proved

as in [8].

Now, let us consider
(
Xk

1 (·), Y k
1 (·), Zk

1 (·)
)

the solutions of FBSDE defined on the

enlarged probability space
(

Ω̃, F̃ ,
(
F̃t

)
t≥0

, P̃, W̃t

)
by



dXk
1 (t) = bk

(
t, Xk

1 (t) , v (t)
)

dt + σk
(
t, Xk

1 (t)
)

dW̃t,

Xk
1 (0) = x,

dY k
1 (t) = −f

(
t, Xk

1 (t) , Y k
1 (t), Zk

1 (t), v (t)
)

dt + Zk
1 (t) dW̃t,

Y k
1 (T ) = h

(
Xk

1 (T )
)

.

(3.8)
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The corresponding cost is given by:

Jk (v(·)) = Ẽ
[
γ
(
Xk

1 (T )
)

+ g
(
Y k

1 (0)
)

+
∫ T

0
l
(
t, Xk

1 (t) , Y k
1 (t) , Zk

1 (t), v (t)
)

dt

]
(3.9)

where bk and σk are the regularized functions of b and σ.

Lemma 3.3.2

Let u(·) ∈ Uad, (X(·), Y (·), Z(·)) and (Xk
1

(
·), Y k

1 (·), Zk
1 (·)

)
the solutions of (3.1) and

(3.8) corresponding to the control v(·) then the following estimates hold:

Ẽ
[

sup
0≤t≤T

∣∣∣Xk
1 (t) − X (t)

∣∣∣2]+Ẽ
[

sup
0≤t≤T

∣∣∣Y k
1 (t) − Y (t)

∣∣∣2]+Ẽ
∫ T

0

∣∣∣Zk
1 (t) − Z (t)

∣∣∣2 dt ≤ C

k
,

(3.10)∣∣∣J k (v) − J (v)
∣∣∣ ≤ C

k
,

where C is a positive constant.

Proof : The proof of (i) is similar to the deterministic case see [25]. Item (ii) is proved by

using the approximation (3.7) and Lemma (3.2.1)

Let u(·) be an optimal control for the initial control problem, that is

J (u(·)) = inf
v(·)∈Uad

J (v(·)).

Note that u(·) is not necessarily optimal for the new perturbed control problem, ac-

cording to Lemma 3.3.2, there exists a sequence (δk) of positive real numbers converging

to 0 such that:

J k(u(·)) ≤ inf
v(·)∈Uad

J k(v(·)) + δk.

Let us consider the metric d defined by (2.14) in Chapter 2. Then, Ekeland’s lemma

applied to the continuous bounded functional Jk(u) shows that there exists an admissible

control uk such that:

d(uk(·), u(·)) ≤ (δk) 1
2 ,

and

J̃ k(uk(·)) ≤ J̃ k(v(·)) for any v(·) ∈ Uad,
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where

J̃ k(v(·)) = J k(v(·)) + (δk) 1
2 · d(v(·), uk(·)). (3.11)

This means that uk(·) is optimal for (3.8) with the new cost function J̃ k. For each

integer k, we denote by (Xk(·), Y k(·), Zk(·)) the unique solutions of the FBSDEs controlled

by uk(·) of the type

dXk (t) = bk
(
t, Xk (t) , uk (t)

)
dt + σk

(
t, Xk (t)

)
dW̃t,

Xk(0) = x,

dY k (t) = −f
(
t, Xk (t) , Y k (t) , Zk (t) , uk (t)

)
dt + Zk (t) dW̃t,

Y k(T ) = h
(
Xk(T )

)
,

(3.12)

and its corresponding cost is given by

J k (v (·)) = E
[
γ
(
Xk(T )

)
+ g

(
Y k(0)

)
+
∫ T

0
l
(
t, Xk(t), Y k(t), Zk (t) , uk(t)

)
dt

]
. (3.13)

Now, we introduce the following adjoint equation

dP k (t) =
[
f ∗

y

(
t, Xk(t), Y k(t), Zk (t) , uk (t)

)
P k (t) − l∗

y

(
t, Xk(t), Y k(t), Zk (t) , uk (t)

)]
dt

+
[
f ∗

z

(
t, Xk(t), Y k(t), Zk (t) , uk (t)

)
P k (t) − l∗

z

(
t, Xk(t), Y k(t), Zk (t) , uk (t)

)]
dW̃t

dQk (t) =
[
f ∗

x

(
t, Xk(t), Y k(t), Zk (t) , uk (t)

)
P k (t) − b∗,k

x

(
t, Xk (t) , uk (t)

)
Qk (t)

−σ∗,k
x

(
t, Xk (t)

)
Rk (t) + lx

(
t, Xk(t), Y k(t), Zk (t) , uk (t)

)]
dt + Rk (t) dW̃t

P k (0) = −gy

(
Y k (0)

)
, Qk (T ) = γx

(
Xk (T )

)
− h∗

x(Xk(T ))P k(T ).
(3.14)

Under the Assumptions (A.1)-(A.4) It is easy to see that the FBSDE (3.14) admits a

unique solution
(
P k (·) , Qk (·) , Rk (·)

)
∈ S4 ([0, T ] ;Rm)×S4 ([0, T ] ;Rn)×M4

(
[0, T ] ;Rn×d

)
.

We turn our attention to proving the stochastic maximum principle for control Problem

{Eq.(3.12), (3.11)}. For this end we define the following family of perturbed controls

uk,θ(·)

uk,θ (t) =

 vt0 if t ∈ [t0, t0 + θ] ,

uk (t) otherwise,
(3.15)

where t0 ∈ [0, T ) is an fixed time, θ > 0 is sufficient small, and vt0 is an arbitrary

Ft0−measurable random variable.
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Since uk is optimal for J̃ k and the functions bk, σk are smooth enough, we can prove

the following proposition by utilizing the same steps as in the proof of Theorem 1.4.1 in

chapter 1.

Proposition 3.3.1

For each k ∈ N, there exists uk(·) ∈ Uad with
(
Xk (·) , Y k (·) , Zk (·)

)
the corresponding

trajectory and
(
P k (·) , Qk (·) , Rk (·)

)
, the solution of (3.14), such that for every v (·) ∈

U

Ẽ
∫ T

0

[
Hk

(
t, Xk(t), Y k(t), Zk (t) , uk,θ (t) , P k (t) , Qk (t) , Rk (t)

)]
−Ẽ

∫ T

0

[
Hk

(
t, Xk(t), Y k(t), Zk (t) , uk (t) , P k (t) , Qk (t) , Rk (t)

)]
≥ o (θ) − θC(δk) 1

2 .

(3.16)

3.3.1 Estimation Between Two Solutions and some Technical

Results
Lemma 3.3.3

Let u(·) ∈ Uad, (X(·), Y (·), Z(·)) and (Xk(·), Y k(·), Zk(·)) the solutions of (3.1) and

(3.12), then under Assumptions (A.1)-(A.4) the following estimates hold

lim
k→∞

Ẽ
[

sup
0≤t≤T

∣∣∣Xk (t) − X (t)
∣∣∣2] = 0, (3.17)

lim
k→∞

Ẽ
[

sup
0≤t≤T

∣∣∣Y k (t) − Y (t)
∣∣∣2] = 0, (3.18)

lim
k→∞

Ẽ
∫ T

0

∣∣∣Zk (t) − Z (t)
∣∣∣2 dt = 0. (3.19)

Proof : By squaring, taking expectation and Burkholder–Davis–Gundy inequality, we ob-

tain

Ẽ
[

sup
0≤t≤T

∣∣∣Xk (t) −X (t)
∣∣∣2] ≤ C (M1 +M2 +M3) ,

where,

M1 = Ẽ
(∫ t

0

∣∣∣bk
(
r,Xk (r) , uk (r)

)
− bk

(
r,Xk (r) , u (r)

)∣∣∣2 1I{uk(r) ̸=u(r)}dr
)
,

M2 = Ẽ
(∫ t

0

∣∣∣bk
(
r,Xk (r) , u (r)

)
− bk (r,X (r) , u (r))

∣∣∣2 +
∣∣∣σk

(
r,Xk (r)

)
− σk (r,X (r))

∣∣∣2 dr
)
,
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M3 = Ẽ
(∫ t

0

∣∣∣bk (r,X (r) , u (r)) − b (r,X (r) , u (r))
∣∣∣2 +

∣∣∣σk (r,X (r)) − σ (r,X (r))
∣∣∣2 dr

)
.

By the boundedness of the derivative bk and σk and the fact that d
(
uk (·) , u(·

)
) → 0

as k → +∞, we obtain limk→∞Mk
1 = 0. Then, bk and σk are Lipschitz continuous, we

have

M2 ≤ CẼ
∫ t

0
sup

0≤r≤t

∣∣∣Xk (r) −X (r)
∣∣∣2 dr.

By (3.7), we have limk→∞M3 = 0 = 0. Then by Gronwall inequality, we obtain (3.17).

Applying Ito’s formula to
∣∣∣Y k (t) − Y (t)

∣∣∣2, we obtain by Holder inequality and Burkholder–

Davis–Gundy inequality

Ẽ
(

sup
0≤t≤T

∣∣∣Y k (t) − Y (t)
∣∣∣2)+ Ẽ

∫ T

0

∣∣∣Zk (t) − Z (t)
∣∣∣2 dt

≤ Ẽ
∣∣∣h (Xk(T )

)
− h (X(T ))

∣∣∣2 + CẼ
∫ T

0
sup

t≤r≤T

∣∣∣Y k (t) − Y (t)
∣∣∣2 dt.

By Gronwall inequality, (3.17) and dominated convergence theorem, we obtain (3.18)

and (3.19).

The following technical Lemma is needed to prove Lemma.3.3.5.

Lemma 3.3.4

(a) Ẽ
[∫ T

0

∣∣∣bk
x

(
t, Xk (t) , uk (t)

)
− bx (t, X (t) , u (t))

∣∣∣4 dt

]
→ 0 as k → +∞,

(b) For every 1 ≤ j ≤ d, Ẽ
[∫ T

0

∣∣∣σk
x

(
t, Xk (t)

)
− σx (t, X (t))

∣∣∣4 dt

]
→ 0 as k → +∞.

Proof : Let us prove the first limit, we have

Ẽ
[∫ T

0

∣∣∣bk
x

(
t,Xk (t) , uk (t)

)
− bx (t,X (t) , u (t))

∣∣∣4 dt
]

≤ C
{
Ik

1 + Ik
2 + Ik

3

}
,

where

Ik
1 = Ẽ

[∫ T

0

∣∣∣bk
x

(
t,Xk (t) , uk (t)

)
− bx

(
t,Xk (t) , u (t)

)∣∣∣4 1I{uk(t)̸=u(t)}dt
]
,

Ik
2 = Ẽ

[∫ T

0

∣∣∣bk
x

(
t,Xk (t) , u (t)

)
− bx

(
t,Xk (t) , u (t)

)∣∣∣4 dt
]
,

Ik
3 = Ẽ

[∫ T

0

∣∣∣bx

(
t,Xk (t) , u (t)

)
− bx (t,X (t) , u (t))

∣∣∣4 dt
]
.

Mohamed Khider University of Biskra.



3.3. A MAXIMUM PRINCIPLE FOR A FAMILY OF PERTURBED CONTROL
PROBLEMS 53

According to the boundedness of the derivative bk
x by the Lipschitz constant and the fact

that d(uk (·) , u(·)) converges to 0 as k goes to +∞, we obtain limk→∞ Ik
1 = 0.

Moreover, we have

Ik
2 =

∫ T

0

∫
Rd

sup
a∈U

∣∣∣bk
x (t, y (t) , a) − bx (t, y (t) , a)

∣∣∣4 ρk
t (y)dydt.

Let us show that, for all t ∈ [0, T ] ,

lim
k→∞

∫
Rd

sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 ρk
t (y)dydt = 0.

where ρk
t (y) denotes the density of Xk(t) with respect to Lebesgue measure

For each p > 0,

Ẽ
[

sup
0≤t≤T

∣∣∣xk (t)
∣∣∣p] < ∞.

Thus,

lim
R→+∞

P̃

(
sup

0≤t≤T

∣∣∣Xk (t)
∣∣∣ > R

)
= 0,

then it is enough to show that for every R > 0,

lim
k→+∞

∫
B(0,R)

sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 ρk
t (y)dy = 0.

According to Lemma (3.3.1)

sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 → 0 dy-a.e,

at least for a subsequence. Then, by Egorov’s theorem, for every δ > 0, there exists

a measurable set F with λ(F ) < δ, such that supa∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣ converges

uniformly to 0 on the set F c. Note that, since the Lebesgue measure is regular, F may

be chosen closed. This implies that

lim
k→+∞

∫
F c

sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 ρk
t (y)dy

≤ lim
k→+∞

(
sup
y∈F c

sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4) = 0.

Now, by using the boundedness of the derivatives bk
x, bx we have∫

F
sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 ρk
t (y)dy

= Ẽ
[
sup
a∈U

∣∣∣bk
x

(
t,Xk (t) , a

)
− bx

(
t,Xk (t) , a

)∣∣∣4 1I{Xk(t)∈F}

]

≤ 2M4P̃
(
Xk (t) ∈ F

)
.
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Since Xk (t) converges to X (t) in probability, then in distribution. Then, using the

Portmanteau-Alexandorv Theorem we get

lim
∫

F
sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 ρk
t (y)dy

≤ 2M4 lim sup P̃
(
Xk (t) ∈ F

)
.

≤ 2M4P̃ (X (t) ∈ F ) . = 2M4
∫

F
ρt(y)dy < ε,

where ρt(y) denotes the density of X(t) with respect to Lebesgue measure.

Now, since ∫
B(0,R)

sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 ρk
t (y)dy

=
∫

F
sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 ρk
t (y)dy

+
∫

F c
sup
a∈U

∣∣∣bk
x (t, y, a) − bx (t, y, a)

∣∣∣4 ρk
t (y)dy,

we get limk→+∞ Ik
2 = 0.

Let k0 ≥ 0 be a fixed integer, then it holds that Ik
3 ≤ C

(
Jk0

1 + Jk0
2 + Jk0

3

)
, where

Jk0
1 = Ẽ

[∫ T

0

∣∣∣bx

(
t,Xk (t) , u (t)

)
− bk0

x

(
t,Xk (t) , u (t)

)∣∣∣4 dt
]
.

Jk0
2 = Ẽ

[∫ T

0

∣∣∣bk0
x

(
t,Xk (t) , u (t)

)
− bk0

x (t,X (t) , u (t))
∣∣∣4 dt

]
.

Jk0
3 = Ẽ

[∫ T

0

∣∣∣bk0
x (t,X (t) , u (t)) − bx (t,X (t) , u (t))

∣∣∣4 dt
]
.

Applying the same arguments used in the first limit (Egorov and Portmanteau-Alexandrov

Theorems), we obtain that limk→+∞ Jk0
1 = 0. We use the continuity of bk0

x in x and the

convergence in probability of Xk (t) to X (t) to deduce that bk0
x

(
t,Xk (t) , u (t)

)
con-

verges to bk0
x (t,X (t) , u (t)) in probability as k0 → +∞, and to deduce by using the

Dominated Convergence Theorem, that limk→+∞ Jk0
2 = 0. Since bk0

x , bx are bounded

by the Lipschitz constant and by using the absolute continuity of the law of X (t) with

respect to the Lebesgue measure, the convergence of bk0
x to bx, and the dominated con-

vergence theorem, we get limk→+∞ Jk0
3 = 0. The case of the second assertions (b) can be

treated by the same technique.
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Lemma 3.3.5
Let u(·) ∈ Uad, (P (·), Q(·), R(·)) and (P k(·), Qk(·), Rk(·)) the solutions of (3.1) and

(3.12)Assume that Assumptions (A.1)-(A.4) hold. Then we have the following esti-

mates

lim
k→∞

Ẽ
[

sup
s≤t≤T

∣∣∣P k (t) − P (t)
∣∣∣2] = 0, (3.20)

lim
k→∞

Ẽ
[

sup
s≤t≤T

∣∣∣Qk (t) − Q (t)
∣∣∣2] = 0, (3.21)

lim
k→∞

Ẽ
[∫ T

0

∣∣∣Rk (t) − R (t)
∣∣∣2 dt

]
= 0. (3.22)

Proof : We first prove (3.20), using standard arguments based on Hölder inequality, we

easily get

Ẽ
[

sup
0≤t≤T

∣∣∣P k (t) − P (t)
∣∣∣2]

≤ C

(
Ẽ
∫ T

0

∣∣∣f∗
y

(
t,Xk (t) , Y k(t), Zk (t) , uk (t)

)
− f∗

y (t,X (t) , Y (t), Z (t) , u (t))
∣∣∣4 dt

) 1
2

+ C

(
Ẽ
∫ T

0

∣∣∣f∗
z

(
t,Xk (t) , Y k(t), Zk (t) , uk (t)

)
− f∗

z (t,X (t) , Y (t), Z (t) , u (t))
∣∣∣4 dt

) 1
2

+ C

(
Ẽ
∫ T

0

∣∣∣l∗y (t,Xk (t) , Y k(t), Zk (t) , uk (t)
)

− l∗y (t,X (t) , Y (t), Z (t) , u (t))
∣∣∣4 dt

) 1
2

+ C

(
Ẽ
∫ T

0

∣∣∣l∗z (t,Xk (t) , Y k(t), Zk (t) , uk (t)
)

− l∗z (t,X (t) , Y (t), Z (t) , u (t))
∣∣∣4 dt

) 1
2

: = C

((
Ik

4

) 1
2 +

(
Ik

5

) 1
2 +

(
Ik

6

) 1
2 +

(
Ik

7

) 1
2
)
.

We have

Ik
4 ≤ Ẽ

∫ T

0

∣∣∣f∗
y

(
t,Xk (t) , Y k(t), Zk (t) , uk (t)

)
− f∗

y (t,X (t) , Y (t), Z (t) , u (t))
∣∣∣4 1I{uk(r)̸=u(r)}dt

+ Ẽ
∫ T

0

∣∣∣f∗
y

(
t,Xk (t) , Y k(t), Zk (t) , u (t)

)
− f∗

y (t,X (t) , Y (t), Z (t) , u (t))
∣∣∣4 dt.

In view of the boundedness of fy, (3.17), (3.18), (3.19) and d
(
uk (·) , u(·

)
) converges

to 0 as k goes to +∞, by dominated convergence theorem, we obtain limk→∞ Ik
4 = 0.

Similarly, we have limk→∞ Ik
5 = limk→∞ Ik

6 = limk→∞ Ik
7 = 0. Therefore, (3.20) is

proved.

Mohamed Khider University of Biskra.



3.3. A MAXIMUM PRINCIPLE FOR A FAMILY OF PERTURBED CONTROL
PROBLEMS 56

Applying Ito’s formula to
∣∣∣Qk (t) −Q (t)

∣∣∣2, we obtain

∣∣∣Qk (t) −Q (t)
∣∣∣2 +

∫ T

0

∣∣∣Rk (r) −R (r)
∣∣∣2 dr

=
∣∣∣Qk (T ) −Q (T )

∣∣∣2 − 2
∫ T

t

〈
Qk (r) −Q (r) ,

(
Rk (r) −R (r)

)〉
dW (r)

+ 2
∫ T

t

〈
Qk (r) −Q (r) , bk,∗

x

(
r,Xk (r) , uk (r)

)
Qk (r) − b∗

x (r,X (r) , u (r))Q (r)
〉
dr

+ 2
∫ T

t

〈
Qk (r) −Q (r) , σk,∗

x

(
r,Xk (r)

)
Rk (r) − σ∗

x (r,X (r))R (r)
〉
dr

+ 2
∫ T

t

〈
Qk (r) −Q (r) , l∗x

(
r,Xk (r) , Y k(r), Zk (r) , uk (r)

)
− l∗x (t,X (r) , Y (r), Z (r) , u (r))

〉
dr

− 2
∫ T

t

〈
Qk (r) −Q (r) , f∗

x

(
r,Xk (r) , Y k(r), Zk (r) , uk (r)

)
P k (r) −

f∗
x (t,X (r) , Y (r), Z (r) , u (r))P (r)⟩ dr.

By standard arguments based on Hölder inequality and Burkholder-Davis-Gundy in-

equality, we easily get that

Ẽ
(

sup
0≤t≤T

∣∣∣Qk (t) −Q (t)
∣∣∣2)+ Ẽ

∫ T

0

∣∣∣Rk (r) −R (r)
∣∣∣2 dr

≤ CẼ
∫ T

0
sup

t≤s≤T

∣∣∣Qk (t) −Q (t)
∣∣∣2 dt+ CẼ

∣∣∣gx

(
Xk (T )

)
− gx (X (T ))

∣∣∣2
+ CẼ

(
sup

0≤t≤T

∣∣∣P k (t) − P (t)
∣∣∣2)

+ CẼ
∫ T

0

∣∣∣fx

(
t,Xk (t) , Y k(t), Zk (t) , uk (t)

)
− fx (t,X (t) , Y (t), Z (t) , u (t))

∣∣∣2 dt

+ CẼ
∫ T

0

∣∣∣bk
x

(
t,Xk (t) , uk (t)

)
− bx (t,X (t) , u (t))

∣∣∣2 dt

+ C

(
Ẽ
∫ T

0

∣∣∣σk
x

(
t,Xk(t

)
− σx (t,X (t))

∣∣∣ 2α
α−2 dt

)α−2
2α

+ CẼ
∫ T

0

∣∣∣lx (t,Xk (t) , Y k(t), Zk (t) , uk (t)
)

− lx (t,X (t) , Y (t), Z (t) , u (t))
∣∣∣2 dt

: = C

(
Ẽ
∫ T

0
sup

t≤s≤T

∣∣∣Qk (t) −Q (t)
∣∣∣2 dt+

∑6
i=1
Jk

i

)
.

By dominated convergence theorem and (3.17), we have limk→∞ Jk
1 = 0.

From (3.20), we have limk→∞ Jk
2 = 0. Similarly as the proof of Ik

4 , we have limk→∞ Jk
3 =

0 = limk→∞ Jk
6 = 0. Next, by assertion (a) in Lemma 3.3.4, we get limk→∞ Jk

5 = 0.

Mohamed Khider University of Biskra.



3.3. A MAXIMUM PRINCIPLE FOR A FAMILY OF PERTURBED CONTROL
PROBLEMS 57

Define

uθ (t) =

 vt0 if t ∈ [t0, t0 + θ] ,

u (t) otherwise,

where, t0 ∈ [0, T ) and we are defined vt0 in (3.15). See easily that d(uk,θ(·), uθ(·)) → 0 as

k → +∞.

3.3.2 Maximum Principle for Optimality

We need the following lemma to prove the necessary condition of optimality

Lemma 3.3.6
We assume (A.1)-(A.4). Then, we have for any θ > 0,

lim
k→+∞

Ẽ
∣∣∣∣∣
∫ T

0
Hk

(
t, Xk (t) , Y k (t) , Zk (t) , P k (t) , Qk (t) , Rk (t) , uk,θ (t)

)
dt

−
∫ T

0
H
(
t, X (t) , Y (t) , Z (t) , P (t) , Q (t) , R (t) , uθ(t)

)
dt

∣∣∣∣∣ = 0,

(3.23)

and

lim
k→+∞

Ẽ
∣∣∣∣∣
∫ T

0
Hk

(
t, Xk (t) , Y k (t) , Zk (t) , P k (t) , Qk (t) , Rk (t) , uk (t)

)
dt

−
∫ T

0
H (t, X (t) , Y (t) , Z (t) , P (t) , Q (t) , R (t) , u(t)) dt

∣∣∣∣∣ = 0.
(3.24)

Proof : For simplicity, denote by

Hk,θ (t) = Hk
(
t,Xk (t) , Y k (t) , Zk (t) , P k (t) , Qk (t) , Rk (t) , uk,θ (t)

)
Hθ (t) = H

(
t,X (t) , Y (t) , Z (t) , P (t) , Q (t) , R (t) , uθ(t)

)
.
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Therefore,

Ẽ
∣∣∣∣∣
∫ T

0
Hk,θ (t) dt−

∫ T

0
Hθ (t) dt

∣∣∣∣∣
≤ C


(
Ẽ
∫ T

0

∣∣∣P k (t) − P (t)
∣∣∣2 dt

) 1
2

+
(
Ẽ
∫ T

0

∣∣∣Qk (t) −Q(t)
∣∣∣2 dt

) 1
2

+
(
Ẽ
∫ T

0

∣∣∣Rk (t) −R(t)
∣∣∣2 dt

) 1
2

+
(
Ẽ
∫ T

0

∣∣∣f (t,Xk (t) , Y k (t) , Zk (t) , uk,θ (t)
)

− f
(
t,X (t) , Y (t) , Z (t) , uθ (t)

)∣∣∣2 dt
) 1

2

+
(
Ẽ
∫ T

0

∣∣∣l (t,Xk (t) , Y k (t) , Zk (t) , uk,θ (t)
)

− l
(
t,X (t) , Y (t) , Z (t) , uθ (t)

)∣∣∣2 dt
) 1

2

+
(
Ẽ
∫ T

0

∣∣∣bk
(
t,Xk (t) , uk,θ (t)

)
− b

(
t,X (t) , uθ (t)

)∣∣∣2 dt
) 1

2

+
(
Ẽ
∫ T

0

∣∣∣σk
(
t,Xk (t)

)
− σ (t,X (t))

∣∣∣2 dt
) 1

2


= C
(
Lk

1 + Lk
2 + Lk

3 + Lk
4 + Lk

5 + Lk
6 + Lk

7

)
.

First, by Lemma 3.3.5, we obtain that

lim
k→+∞

(
Lk

1 + Lk
2 + Lk

3

)
= 0.

Next, by Lemma 3.3.3, the Lipschitz continuity of f, l and dominated convergence theo-

rem, we have

lim
k→+∞

(
Lk

4 + Lk
5

)
= 0.

Finally,

(Lk
6)2 ≤ 3Ẽ

∫ T

0

∣∣∣bk
(
t,Xk (t) , uk,θ (t)

)
− b

(
t,X (t) , uθ (t)

)∣∣∣2 1I{uk,ε ̸=uε}dt

+ 3Ẽ
∫ T

0

∣∣∣bk
(
t,Xk (t) , uθ (t)

)
− bk

(
t,X (t) , uθ (t)

)∣∣∣2 dt

+ 3Ẽ
∫ T

0

∣∣∣bk
(
t,X (t) , uθ (t)

)
− b

(
t,X (t) , uθ (t)

)∣∣∣2 dt.

According to the boundedness of bk, b and the fact that d(uk,θ(·), uθ(·)) → 0 as k → +∞

guarantee the convergence of the first part on the right-hand side of the above inequality

to 0 as k → +∞. Moreover, by the Lipschitz continuity of bk and the fact that Xk (t) →

X (t) uniformly in probability, we get the second part tends to 0 as k → +∞. In view

of assertion (b) of Lemma (3.3.1) we have the last part tends to 0 as k → +∞.Hence

Mohamed Khider University of Biskra.



3.3. A MAXIMUM PRINCIPLE FOR A FAMILY OF PERTURBED CONTROL
PROBLEMS 59

limk→+∞ Lk
6 = 0. Similarly, we get limk→+∞ Lk

7 = 0. Therefore, (3.23) is proved. By

the same argument, we obtain (3.24).

The main result of this chapter is stated in the following theorem.

Theorem 3.3.1 (Necessary Condition for Optimality)
Let u(·) be an optimal control and (X(·), Y (·), Z(·)) be the corresponding trajectory.

Then, for any v (·) ∈ Uad, we have

H(t, X(t), Y (t), Z(t), P (t), Q(t), R(t), u(t)) − H(t, X(t), Y (t), Z(t), P (t), Q(t), R(t), v)

≥ 0, dt − a.e., P̃−a.s.,

(3.25)

where, (P (·), Q(·), R(·)) is the solution of the adjoint equation (2.13) with respect to

(X(·), Y (·), Z(·), u(·)).

Proof : From Proposition 3.3.1, we have

Ẽ
∫ T

0

[
Hk

(
t,Xk(t), Y k(t), Zk (t) , uk,θ (t) , P k (t) , Qk (t) , Rk (t)

)]
−Ẽ
∫ T

0

[
Hk

(
t,Xk(t), Y k(t), Zk (t) , uk (t) , P k (t) , Qk (t) , Rk (t)

)]
≥ o (θ) − θC(δk)

1
2 .

Letting k goes to 0 and by using Lemma 3.3.6, we obtain that for each θ > 0,

0 ≤ Ẽ
∫ T

0

[
H
(
t,X (t) , Y (t) , Z (t) , P (t) , Q (t) , R (t) , uθ (t)

)
(3.26)

−H (t,X (t) , Y (t) , Z (t) , P (t) , Q (t) , R (t) , u (t))] dr + o (θ) .

Dividing the both sides of the inequality (3.26) by θ, and passing to the limit on θ, we

get

Ẽ [H (t0, X (t0) , Y (t0) , Z (t0) , P (t0) , Q (t0) , R (t0) , vt0)

−H (t0, X (t0) , Y (t0) , Z (t0) , P (t0) , Q (t0) , R (t0) , u(t0))] ≥ 0.

Keeping in mind that t0 is an arbitrary element of [0, T ] , we get

Ẽ [H (t,X (t) , Y (t) , Z (t) , P (t) , Q (t) , R (t) , vt)

−H (t,X (t) , Y (t) , Z (t) , P (t) , Q (t) , R (t) , u(t))] ≥ 0.

Then, completing the proof as the proof of Theorem 2.5.1 given in chapter 2, thus the

result follows immediately, which achieves the proof.

Mohamed Khider University of Biskra.



3.3. A MAXIMUM PRINCIPLE FOR A FAMILY OF PERTURBED CONTROL
PROBLEMS 60

The following theorem is another result of this chapter, where the coefficients of the

Forward part b and σ are only Lipschitz ( not necessarily differentiable) and the generator

f is C1 function and hence is Locally lipschitz.

Theorem 3.3.2
Suppose (A.1)-(A.3) hold. Assume further that the function f satisfies Assump-

tion 2.1 or Assumption 2.2 of chapter 2. Let u(·) be an optimal control and

(X(·), Y (·), Z(·)) be the corresponding trajectory. Then, for any v (·) ∈ Uad, we have

H(t, X(t), Y (t), Z(t), P (t), Q(t), R(t), u(t))

−H(t, X(t), Y (t), Z(t), P (t), Q(t), R(t), v) ≥ 0, dt − a.e., P̃−a.s.,

where, (P (·), Q(·), R(·)) is the solution of the adjoint equation (2.13) with respect to

(X(·), Y (·), Z(·), u(·)).

Proof : The proof of this theorem can be performed as a combination of the proof of The-

orem (3.3.1) and the proof of Theorem (2.5.1) in Chapter 2.
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Conclusion

In this thesis, we establish a set of necessary conditions of stochastic optimal control

for different stochastic models. As the first result, we have discussed a stochastic optimal

control problem for one type of controlled BSDE with locally Lipschitz coefficient. We

strongly believe that it is the first attempt that goes in this direction and it is a new

endeavor. Pretty much all of the difficulties come from the fact the BSDE generator and

the adjoint equation are only locally Lipschitz which makes it difficult to solve the control

problem using the standard duality technique. We have firstly proved an existence and

uniqueness result to the related adjoint process which is described by a linear SDE with

locally bounded coefficients. Then, by means, of Ekeland’s variational principle along with

an approximation and limit arguments, both the necessary and the sufficient conditions

for optimality are obtained. As a second result, we have developed a stochastic maximum

principle for optimal control problems of the degenerate FBSDEs systems, where the

coefficients of the forward equation are only Lipschitz continuous with respect to the state

variable x. Using Ekeland’s variational principle to a sequence of approximated control

problems with smooth coefficients of the initial problems and applying the Bouleau-Hirsch

flow property to define an adjoint process which is the unique solution of the linear

backward-forward SDE defined on an extension of the initial probability space. Several

optimal control problems are still open problems. For example, the stochastic maximum

principle for locally Lipschitz systems driven by SDEs of Ito’s type, coupled or semi-

coupled FBSDEs, and so on. We hope that we can extend the results to the classical

non-Lipschitz framework of dissipative or one-sided Lipschitz coefficients

Another open remaining problem is the stochastic maximum principle in the case

where coefficients of the BSDE are globally Lipschitz and non-differentiable with respect

to y and z. We plan to fill the gaps by studying these open problems in our forthcoming

research papers.
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