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Abstract

Augmented Reality (AR) represents a groundbreaking technological frontier that seam-
lessly merges the digital and physical worlds. At the core of this technology lies the need
for precise and intuitive interactions, and hand pose estimation has emerged as a crucial
component in achieving this goal. Besides, it is considered more challenging than other
human part estimations due to the small size of the hand, its greater complexity, and its
important self-occlusions. In this context, we investigate the occlusion issue throughout
the interaction.

This dissertation proposes a classical method for resolving occlusion in a dynamic aug-
mented reality system by employing a close-range photogrammetry algorithm. Addition-
ally, we create realistic datasets composed of physical scenes from different viewpoint
cameras. Further, we apply depth map data that proves to be a valuable strategy for
effectively managing occlusion in augmented reality scenarios, which provides essential
information about the spatial relationships and distances between objects in the scene
and can accurately discern which objects should appear in front of or behind others. This
approach has proven instrumental in addressing the persistent challenge of occlusion, al-
lowing for seamless and contextually creating more immersive AR experiences. Then,
we extend our study in the online process. We address the problem of hand pose esti-
mation and present a new regression method from monocular RGB images, which aims
to tackle occlusion issues during hand-object interaction in real-time. With the advent
of deep learning, there has been a shift towards using deep neural networks to learn,
grasp, and manipulate objects accurately. The proposed framework, defined as the "Re-
sUnet network," provides effective capabilities in detecting and predicting both 2D and
3D hand pose. This is achieved by utilizing three primary modules: feature extraction,
which employs a transfer learning technique to extract feature maps; 2D pose regression;
and 3D hand estimate. Our regression methodology consistently outperforms the current
state-of-the-art hand pose estimation approaches, as demonstrated by the quantitative
and qualitative findings obtained from three datasets.

Keywords: Augmented Reality, Occlusion, hand pose estimation, deep learning, Human-

computer interaction, 2D pose, 3D pose



Résumé

La Reéalité Augmentée(RA) représente une frontiére technologique révolutionnaire qui fu-
sionne de maniére transparente les mondes numérique et physique. Au cceur de cette
technologie transformative réside le besoin d’interactions précises et intuitives, et 'esti-
mation de la pose de la main s’est imposée comme un composant crucial pour atteindre
cet objectif. De plus, Il est considérée comme plus complexe que d’autres estimations
de parties du corps humain en raison de la petite taille de la main, de sa plus grande
complexité et de ses auto-occultations importantes. Dans ce contexte, nous examinons la
question de l'occultation tout au long de 'interaction.

Cette thése propose une méthode classique pour résoudre le probléme de I'occultation dans
un systéme de réalité augmentée dynamique en utilisant un algorithme de photogrammé-
trie & courte portée. De plus, nous créons des ensembles de données réalistes composés
de scénes physiques prises depuis différentes perspectives de caméras. Nous utilisons des
données de cartes de profondeur qui se révélent étre une stratégie précieuse pour gérer
efficacement 'occultation dans les scénarios de réalité augmentée, fournissant des informa-
tions essentielles sur les relations spatiales et les distances entre les objets dans la scéne et
permettant de discerner avec précision quels objets doivent apparaitre devant ou derriére
d’autres. Ensuite, nous étendons notre étude dans le processus en ligne. Nous abordons
le probléme de l'estimation de la pose de la main et présentons une nouvelle méthode de
régression a partir d’'images RVB monoculaires, visant a résoudre les problémes d’occul-
tation lors de I'interaction main-objet en temps réel. Avec 'avénement de I’apprentissage
en profondeur, il y a eu un passage a l'utilisation de réseaux neuronaux profonds pour
apprendre, saisir et manipuler des objets avec précision. Le cadre proposé, défini comme le
"réseau ResUnet", offre des capacités efficaces pour détecter et prédire a la fois la pose de
la main en 2D et en 3D. Cela est réalisé en utilisant trois modules principaux : ’extraction
de caractéristiques, qui utilise une technique d’apprentissage par transfert pour extraire
des cartes de caractéristiques ; la régression de la pose en 2D ; et I’estimation de la main en
3D. Notre méthodologie de régression dans cette recherche surpasse de maniére constante
les approches actuelles de I'estimation de la pose de la main, comme le démontrent les

résultats quantitatifs et qualitatifs obtenus & partir de trois ensembles de données.

Mots Clée : Réalité augmentée, Occultation, Estimation de la pose de la main, Ap-

prentissage profond, Interaction homme-machine, 2D position, 3D position.
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Chapter 1

(zeneral introduction

1.1 Overview

The innate human desire to explore and engage with alternative and reciprocal realities
has deep roots in human beings. Figure 1.1 provides a concise overview of the history of
Augmented Reality(AR). In the late 1960s, Ivan Sutherland [38| pioneered the creation of
the first head-mounted three-dimensional display device, famously known as "The Sword
of Damocles." This groundbreaking invention laid the initial foundation for today’s AR
technology. Users of this head-mounted device could immerse themselves in an alternate
reality where computer-generated images could interact with them by tracking their head
movements.

The term "Augmented Reality" was formally introduced in the early 1990s by Tom
Caudell. Shortly after that, L. Rosenberg [1] developed the first functional AR system,
known as "Virtual Fixtures," which aimed to enhance the efficiency of operators in various
tasks.

Since the late 1990s, AR technology began to find its way into diverse applications,
including space navigation, live sports event broadcasts, and battlefield simulations [4,6].
Over time, modern AR applications have expanded into a wide array of domains. For
instance, AR has assisted surgeons during complex procedures in the medical field.

Additionally, in education, AR-~based learning materials, as advocated by I. Radu [39],
have been shown to enhance students motivation, improve content comprehension, and

promote long-term memory retention, among other benefits.
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1968

First Head Mounted Display Device First Operational AR Device
. .
. .
. ® L
®  Introduction of the term; ®  Hirokazu Kato created  ®  Introduction of ARKIr and
“Augmented Reallty the first AR ToolKit ARCore by Apple & Google
O 1992 2000 207

Figure 1.1: A Concise History of Augmented Reality(AR) [1]

Augmented reality(AR) has seen a surge in growth, benefiting from the widespread
use of the Internet and mobile devices. In 2017, Apple introduced ARKit for iOS, and
Google rolled out ARCore for Android, which greatly simplified the creation of AR ap-
plications for mobile devices. From users’ perspective, mobile phones have significantly
reduced the need for additional equipment to experience AR, making it more accessible.
Consequently, the AR industry is experiencing rapid expansion. According to a recent
projection by Goldman Sachs in 2016 [40], the AR and Virtual Reality(VR) industries
are anticipated to reach a combined market value of 95 billion by 2025 [41].

The pose estimation problem in augmented reality(AR) is crucial to creating realistic
and immersive AR experiences. Pose estimation refers to determining a physical object’s
precise position and orientation, typically a camera or a user’s device, relative to the
surrounding environment. In this thesis, we focus on on hand pose estimation that con-
sidered as a pivotal process that involves deducing the three-dimensional coordinates of
each joint in the human hand from visual inputs. While the concept of hand pose esti-
mation bears some resemblance to the task of estimating the poses of the human body,
and indeed, some hand pose algorithms draw inspiration or techniques from body pose
estimation methods, it is essential to recognize the nuanced disparities that render hand
pose estimation a more demanding endeavor. These distinctions arise from factors such
as the similarity between the fingers, the intricate dexterity exhibited by the hand, and
the frequent occurrence of self-occlusion —wherein parts of the hand obscure one another
in the visual input. These challenges underscore the complexity of hand pose estimation
and prompt the development of specialized approaches tailored to the unique intricacies
of the human hand.
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Markerless hand pose estimation is primarily attributed to two distinct approaches:
discriminative and generative approaches. The discriminative approach, characterized
as appearance-based, directly derives the hand pose from the input data. On the other
hand, the generative approach employs a hand model and tries to align this model with
the observed data to estimate the hand pose. Some exclusively use the discriminative
approach [42,43| while others solely rely on the generative approach [44,45|. In contrast,
some pipelines adopt a hybrid strategy [46], effectively combining discriminative and

generative methods elements within a single framework.

1.2 Challenges

In this section, we outline four frequently encountered challenges that arise when attempt-
ing to tackle the task of 2D-3D hand pose estimation under demanding conditions. These
challenges serve as the foundation for understanding the complexity inherent in these

issues.

e Occlusion: The occlusion challenge within hand pose estimation presents a signifi-
cant issue for computer vision systems striving to accurately estimate the positions
and orientations of a hand or fingers in images and videos. This challenge en-
compasses various scenarios, including partial occlusion, where objects, other body
parts, or the hand itself obscure portions of the hand, as well as full occlusion, where
the entire hand is concealed from view, often due to external objects or movements
out of the camera field of vision. Adding complexity to the issue, dynamic occlusion
occurs when objects or the user’s other hand intermittently obstruct parts of the
hand during motion. Some applications rely on data from multiple sensor modali-
ties, necessitating consistent depth information across different sensors. Ambiguity
arises from occlusion, as multiple plausible hand configurations may be consistent
with observed data, making distinguishing between them a complex task. In sce-
narios where hands interact with objects, such as in human-computer interaction,
occlusion poses an additional layer of intricacy. Furthermore, addressing occlusion
swiftly and accurately is essential for real-time applications like augmented and vir-
tual reality.

Researchers and developers address the occlusion challenge through various tech-
niques, including advanced neural network architectures that can learn to handle
occluded data, multi-sensor fusion to mitigate occlusion effects, and data augmenta-

tion strategies that introduce occlusion patterns into training datasets. Overcoming
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occlusion is critical to successfully deploying hand pose estimation systems in real-

world applications, where hands are often in dynamic and occluded environments.

e Self-occlusion: Self-occlusion occurs when parts of the hand obscure other parts,
such as fingers hiding behind the palm or one finger partially obstructing another.
This phenomenon introduces a high level of complexity into the hand pose esti-
mation process. Thus, this challenge not only limits the visibility of crucial hand
landmarks but also creates ambiguity in interpreting the hand configuration ac-
curately. Consequently, distinguishing between different possible hand poses be-
comes challenging when parts of the hand are hidden from view. Many studies
address the self-occlusion challenge by employing advanced algorithms and models
that can handle such occluded scenarios [26,27,47], often leveraging deep learning
techniques and multi-modal sensor data to enhance accuracy. Successfully overcom-
ing self-occlusion is crucial for various applications, from sign language recognition
to human-computer interaction, where the hand’s precise pose is integral to system
performance and user experience. Furthermore, model-based approaches address
occlusions to some extent by calculating visibility but fall short of offering a com-

prehensive solution, particularly when dealing with single-camera systems.

e Data Variability: The data variability presents a challenge in hand pose esti-
mation, where the goal is to accurately determine the positions and orientations
of a human hand or fingers in images and videos. This challenge encompasses di-
verse dimensions, including variations in hand shapes and sizes, disparities in skin
tones and lighting conditions, and differences in background and environmental set-
tings. Moreover, the dynamic nature of hand gestures and movements and variations
in viewpoint and camera distances add further complexity. Using different sensor
types and data modalities in hand pose estimation systems introduces another layer
of variability. Many researchers rely on extensive and diverse training datasets to
address this challenge effectively, employ data augmentation techniques to simulate
various conditions, and leverage robust feature extraction methods, such as deep
learning architectures. Successful hand pose estimation models must demonstrate
resilience and adaptability to the inherent variability encountered in real-world data,

ensuring accurate and reliable performance across various scenarios.

e Real-Time Processing: The real-time processing challenge in hand pose esti-
mation is a pivotal obstacle in developing systems that can swiftly and accurately
determine the positions and orientations of a person’s hand or fingers in images or

videos. It encompasses a multifaceted set of demands, including the imperative for
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extremely low latency, particularly in applications such as virtual reality, augmented
reality, and human-computer interaction, where any perceptible delay in hand pose
estimation can significantly degrade the user experience. High frame rates are es-
sential, requiring systems to process a continuous stream of images at 30 frames
per second or more, all while delivering pose estimates within the same time frame.
Achieving computational efficiency is paramount, often entailing intricate compu-
tations, such as deep learning inference or 3D model fitting, and necessitating algo-
rithmic and hardware optimizations. Coordinating data from multiple sensors and
ensuring synchronization is critical to sensor integration. Developers often employ
parallel processing techniques to meet real-time constraints, distributing the com-
putational load in various processing units. Additionally, energy efficiency is vital
for mobile or battery-powered devices, necessitating minimal power consumption.
Addressing these multifarious demands involves a blend of algorithmic refinements,
efficient hardware and software implementations, and strategic model optimizations
to ensure that hand pose estimation systems can deliver seamless and responsive

interactions in real-time applications.

To conclude, addressing the issue of hand pose estimation through computer vision
methods poses significant challenges from a technical and practical perspective. In
this thesis, we have endeavored to address certain limitations in current approaches

with two distinct contributions.

1.3 Problem statement

Augmented Reality(AR) is a groundbreaking technology that has garnered substantial
interest from researchers in diverse fields and sectors. Through its seamless fusion of
digital content with the tangible world, AR provides users with enriched encounters,
context-aware knowledge, and interactive functionalities. With the increasing number
of companies dedicated to advancing the commercial applications of Augmented Real-
ity(AR), Virtual Reality(VR), and wearable devices, the necessity for a hand-based input
mechanism has become paramount. This need arises from the pursuit of creating user
experiences that are not only technologically sophisticated but also seamlessly integrated

and genuinely immersive.

Hands are regarded as the most efficient and intuitive tools for human-computer inter-
action(HCI) among various body parts. Pose estimation can also be incorporated into the

pipeline for gestures and sign language recognition tasks. It represents a set of techniques
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designed to provide precise 3D coordinates of keypoints, facilitating the determination of
the accurate hand pose. This computational task presents a significant challenges ow-
ing to several factors. However, the accurate estimation of hand poses in the presence
of occlusions is a persistent obstacle to the seamless incorporation of augmented reality
in various applications. Firstly, the sheer diversity of potential hand poses, encompass-
ing intricate configurations and variations, adds complexity to the estimation process.
Secondly, self-occlusion, where parts of the hand obscure others, further compounds the
challenge by limiting the visibility of critical keypoints. Additionally, the resemblance
of finger appearances, especially in specific orientations, introduces ambiguity into the
estimation, making it challenging to discern between similar poses.

Hand Pose Estimation challenge can be tackled from various angles, depending on avail-
able data, project budget, required prediction precision, or any other constraints.

This dissertation uses deep learning techniques to address occlusion issues in the hand
pose estimation field. The research aims to develop novel deep-learning models and tech-
niques that can effectively manage occluded hand poses, thereby enhancing the accuracy
and dependability of augmented reality systems and creating new opportunities for nat-

ural and immersive interactions in enriched environments.

1.4 Thesis Contributions

All the above considerations lead this thesis to address the challenge of hand pose esti-
mation. The research explores two main categories of approaches: handcrafted methods
and deep learning techniques. Hence, we investigate in the first part a classical method
for handling occlusion problems by employing two technologies: AR technology and pho-
togrammetry algorithm. In the second part, we focus on hand pose estimation, a challenge
significantly benefiting from using state-of-the-art deep learning-based algorithms. It is
a crucial topic in many computer vision applications that flourish in augmented reality
and offer the possibility of engaging with virtual reality devices. Due to the complicated
anatomy and dexterous motion of human hands, estimating hand pose is a significant
academic and technical issue. A complete study of the impact of the hand pose estimator
research process will be considered. Thus, we extend the study to online dynamic hand
pose estimation, taking over the whole pipeline destined to handle occlusion during the
interaction with the virtual objects in real-time. The main contributions of this thesis

can be summarized as follows:

e Real-time handling occlusion in augmented reality based on photogram-
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metry: We propose an original framework based on a photogrammetry algorithm
and AR technology for handling occlusion that occurs during interaction in real-
time. We apply close-range photogrammetry for 3D reconstruction of real scenes
based on imagery acquisition to get a highly accurate 3D model. Additionally, we
employ markerless tracking used in AR applications to track the position and ori-
entation of objects without the need for physical or fiducial markers. This approach
enables a more natural and immersive AR experience. We validated our approach
by creating small datasets representing realistic scenes from different viewpoints.
The obtained results show the efficiency and accuracy of the proposal for solving

the occlusion challenge in AR systems.

e Hand pose estimation based on regression method from monocular RGB
cameras for handling occlusion: We propose a novel architecture based on
deep-learning-based aims to gather the previous research advances systems that
tackled the most challenges with discussing each existing research addressing its
advantages and drawbacks. Thus, we identify the numerous benchmark datasets
with their characteristics and the famous evaluation metrics used to evaluate these
methods. Further, we discuss the results of potential research direction in terms of
time speed, precision, and type of Convolutional Neural Network(CNN) architecture
in this rapidly expanding field. Additionally, the main contribution of our research is
developing a deep learning framework to learn full 2D and 3D hand pose estimation
from an egocentric image. The proposed architecture, "ResUnet network," aims to
handle occlusion challenges during hand interaction with objects through training.
Finally, both information of 2D and 3D prediction are merged to perform an accurate

estimation of hand pose.

1.5 Thesis outline

The thesis is organized as follows: Chapter 1 presents the theoretical chapter that provides
the foundations of augmented reality(AR). The reader will find the purpose of augmented
reality, its technical definition, its functional taxonomy, different applications, and the
most known devices. In Chapter 2, we lay out the issues of hand pose estimation. We
delve into a comprehensive literature review that proposes explicitly a new taxonomy
that is grouped with the recent research depending on the type of input data as well as
existing solutions in the literature. We identify the numerous benchmark datasets with
their characteristics and the popular evaluation metrics used to evaluate these methods.

Chapter 3 introduces the classical contribution of our thesis based on resolving occlusion
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in an Augmented Reality environment using a close-range photogrammetry algorithm. In
Chapter 4, we propose a deep learning framework for hand estimation by performing 2D
and 3D hand poses. Finally, we conclude the manuscript in Chapter 6 by summarizing

the contributions of the thesis and proposing several directions for future research.



Chapter 2

Augmented Reality: Definition,

Applications, Interaction

2.1 Introduction

Augmented Reality(AR) is an enhanced version of the real world, achieved through the use
of computer-generated digital information. These include visual, sound, and other sensory
elements. AR uses computer hardware and software, such as apps, consoles, screens, or
projections, to combine digital information with the real-world environment [48].

This chapter presents different definitions of Augmented Reality articulated by various
researchers within the domain. Further, we introduce Milgram’s Reality-Virtuality Con-
tinuum, which outlines a spectrum ranging from the authentic physical environment to
the entirely virtual realm. This framework provides a structured understanding of the
varying degrees of digital augmentation within reality and virtuality.

To enhance the visibility of Augmented Reality (AR), we conduct a comparative analysis
between AR and Virtual Reality (VR). The context of AR introduces virtual components
into the real world, allowing users to engage with both the digital and physical realms
concurrently. In contrast, VR creates immersive environments that disconnect users from
their physical surroundings, focusing solely on the virtual experience.

The physical world and virtual environments are seamlessly blended in the AR appli-
cation. These applications have found extensive utilization in various aspects of human
existence, encompassing work, education, training, leisure, travel, and more. This study
categorizes AR applications into four main groups: "Training & Education," "Entertain-
ment & Commerce," "Navigation & Tourism," and "Medical & Construction."

On the other hand, AR devices represent a technological revolution that has seamlessly

integrated into our daily existence. These devices include displays, computers, tracking
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systems, and input devices, among other components. Each component contributes to the
immersive AR experience, connecting the real and virtual worlds, that enables users to
interact with digital content in real-world environments, which creates novel interaction,
educational entertainment, and problem-solving opportunities. Additionally, software and
hardware frameworks are pivotal in shaping the user experience. AR software frameworks
provide the foundation for creating and deploying AR applications, offering tools and li-
braries to integrate virtual elements into the real world. On the other hand, hardware
frameworks involve the physical components that enable AR interactions, encompassing

devices such as smart glasses, smartphones, tracking sensors, and input interfaces.

2.2 Augmented Reality: Definition and Concepts

AR is Augmented Reality (en frangais: réalité augmentée) was first used in 1992 by Boe-
ing researchers Thomas Caudell and David Mizell to describe a semi-transparent helmet
used by aviation electricians that displayed virtual information overlaid on the real-world
image.

The dictionary Petit Robert serves as the following etymological definitions:

e Reality n. f. (female noun) Lower Latin: realitas ->"nothing" Refers to the nature
of what is real, that which is not merely a concept but rather an actual substance

or fact. It refers to what is genuine, factual, and presented to the mind as such.

e Enhanced (v. tr.) Latin: augmentare -> "to increase." It means to increase the

size, substance, or significance by adding something of the exact nature.

These definitions highlight the essence of "reality" and "augmented." Reality means some-
thing in the physical world, whereas augmentation refers to enhancing or adding to re-
ality. In augmented reality, virtual elements are added to the real world, resulting in an
enhanced and interactive experience that combines the physical and digital realms.

The first definitions of augmented reality (AR) were limited to using semi-transparent
Head-Mounted Displays(HMDs) for visualizing virtual information overlaid on the real
world. There are several definitions of AR [2]| are provided. Still, the most commonly
used is that offered by Paul Milgram in 1994(University of Toronto’s Department of In-
dustrial Engineering) and Fumio Kishino (Osaka University’s Department of Electronics,
Information Systems, and Energy Engineering): "Augmented Reality aims to enhance
the natural feedback of the operator with the real world using virtual cues." Milgram et
al. [2| proposed the virtuality continuum or reality-virtuality continuum concept as shown

in Figure 2.1.

10
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EXTENDED REALITY(XR)

< D

Real AUGMENTED VIRTUAL Virtual
Environment REALITY MIXED TRALITY REALITY Environment

Figure 2.1: The Virtuality Continuum (Figure from [2]).

e Real Environment (RE): consists entirely of real objects without augmentation.

e Augmented Virtuality (AV): This category includes incorporating real-world

components into a virtual environment.

e Augmented Reality(AR): AR technology integrates virtual objects into the real

world, providing users with an interactive and immersive experience.

To create effective AR. The three requirements that follow must be fulfilled:

e Combining real and virtual objects: AR technology is designed to incorporate
virtual objects into real-world environments. This requires using sensors and cam-
eras to detect and monitor the user’s surroundings, then augmenting the real world

with virtual content.

e Aligning real and virtual objects: for virtual objects to appear seamlessly
integrated with the real world. This is achieved by computer vision algorithms that

analyze the surrounding environment and adapt the virtual content accordingly.

e Providing dynamic interactions: For augmented reality to be genuinely im-
mersive, it must provide dynamic interactions between the real and virtual worlds.

Users must be able to manipulate virtual objects.

In 1997, Ronald Azuma [48] developed the concept of Augmented Reality, which is char-
acterized by the combination of real-world and virtual objects generated by computers
in a manner that gives the illusion of coexistence within the same space as the physical

reality. Thus, Azuma identifies three essential rules to define the AR system:
e Integrating virtual objects into the physical world.
e Real-time interactivity.

e Alignment (registration) of real and virtual objects.

11



CHAPTER 2. AUGMENTED REALITY: DEFINITION, APPLICATIONS, INTERACTION

This definition has faced criticism from researchers like Didier et al. [49] and Hugues
et al. [50]. According to Didier [49], it ought to be enough for a virtual object to be
semantically linked to a real-world environment, even without precise alignment, for it
to be considered an augmentation. Therefore, it suggests removing the third condition
proposed by Azuma et al. [48].

Fuchs and Moreau et al. [51] presented a broader definition of augmented reality, which
encompasses a range of techniques that involve combining the real world with the vir-
tual world, particularly through the integration of Real Images (RI) with Virtual Entities
(VE), including computer-generated images, virtual objects, texts, symbols, diagrams,
graphics, and more. Also, it mentions that other types of associations between the real
and virtual worlds are possible through sound or haptic feedback.

According to Dubois et al. [52], augmented reality (AR) is an interaction paradigm that
arose from the need for integrating computational processing capabilities with the real
world. The goal is to eliminate the gap between the computer and the real world, allow-
ing users to use computational resources while remaining connected to their environment.
AR intends to extend the use of computers beyond their conventional framework (screen,
keyboard, and mouse) and emphasize interaction with the user’s physical environment.
Otmane et al. [53] defined augmented reality(AR) depending on its purpose: "The purpose
of augmented reality is to enable one or more persons to have multisensory interactions
(audio, video, and haptic) with an environment that coexists the two worlds, the virtual
and the real."

Hugues et al. [50] defined an alternative term, "Augmented Perception." This new termi-
nology transfers the emphasis from attempting to enhance an already complete reality to
improving how individuals perceive and interact with their world. Employing the term

!

"Augmented Reality " emphasizes how technology and digital elements can supplement
and enhance human perception, as opposed to altering reality directly.

AR technology enhances and enriches human experiences by augmenting the natural en-
vironment or situations. This is made possible through computer vision, object recogni-
tion, and AR cameras inside mobile devices. These technologies make the surrounding
real world interactive and manipulative, allowing users to engage with virtual content
seamlessly and intuitively.

The association between the real and the virtual in augmented reality can vary based
on the specific implementation. It may involve a semantic connection, where the virtual
elements are meaningfully linked to the real-world context, adding valuable information
and context to the user’s experience. The fusion can also consider the precise alignment or
recalibration of the real and virtual objects, ensuring a seamless and coherent integration.

The choices made in the design and implementation of augmented reality systems pro-

12
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foundly impact user immersion in their augmented environment. A well-crafted aug-
mented reality experience can make users feel fully immersed and connected to the blended

world, elevating the overall quality of the interaction and user satisfaction.

2.3 Definition of Virtual Reality

In 1989, Jaron Lanier [54], the founder of VPL Research, coined the term "Virtual Reality"
(VR) for the first time. However, the term presents a contradiction since something cannot
exist simultaneously as real and virtual. A more suitable alternative could be "Real
Virtuality," considering the outcomes of modern technologies. Alongside VR, related
terms include "Artificial Reality" (credited to Myron Krueger in the 1970s), "Cyberspace"
(introduced by William Gibson in 1984), and more recently, "Virtual Worlds" and "Virtual
Environments" (from the 1990s). The foundations of Virtual Reality can be traced back
to the mid-1960s, attributed to the pioneering work of Van Sutherland at the University
of Utah [55]. Furthermore, Virtual Reality (VR) is a computer-generated simulation or
representation of a three-dimensional environment or experience that a person can explore
and interact with, typically through specialized electronic devices. VR aims to create
a convincing and immersive digital experience that can mimic real-world scenarios or
entirely fictional environments. The primary challenge of VR lies in creating a convincing
and realistic experience for users. This involves ensuring that virtual objects appear real in
various aspects, including their appearance, behavior, and the quality of their interaction
with the user/environment.

To accomplish this level of realism, VR uses various multimedia technologies, including
images, videos, audio, and text, which are utilized frequently in virtual reality experiences.
Nonetheless, as VR evolves, it also investigates emerging media types such as e-touch
(haptic feedback), e-taste (simulation of taste sensations), and e-smell (simulation of
olfactory sensations). By incorporating these emerging technologies, VR developers can
enhance users’ sense of presence and immersion. For that, Heim et al. [56] defined the

characteristics of VR using three key elements "I":

e Immersion: VR intends to immerse users in a digital environment, providing a
sense of presence in which users feel physically present in the virtual world, em-
ploying immersive technologies, such as Head-Mounted Displays(HMDs) and spa-
tial audio, which play a significant role in achieving this sensation of presence and

realism.

e Interactive Experience: interactivity in VR is a crucial aspect that allows users

to engage with the virtual environment actively. The computer system supporting

13
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the VR experience can rapidly update the scene and the user’s perspective based on
their physical movements and interactions. As users move or change their physical
position, the virtual scene responds accordingly, providing a seamless and respon-
sive experience. Interactivity enhances the feeling of agency, empowering users to

influence and control their virtual surroundings.

e Information Intensity: Information intensity in VR refers to the richness and
complexity of the virtual world presented to users. It encompasses the idea that
a virtual environment can offer unique qualities, such as telepresence (the feeling
of being present in a remote location) and artificial entities that exhibit a certain
degree of intelligent behavior. VR can provide vast amounts of data and sensory
inputs, enabling users to experience complex and intricate virtual scenarios that feel

remarkably authentic and engaging.

2.4 Difference between Augmented Reality and Virtual
Reality

Virtual Reality (VR) is regarded as a subset of Augmented Reality (AR), according to the
research in [57] that first introduced Augmented Reality as the antithesis of VR. Whereas
VR immerses the user in a fictional environment, AR aims to enhance the real world
by integrating information processing capabilities. AR is a system that allows users to
perceive the actual world and computer-generated data simultaneously. Unlike virtual
reality, which isolates the user from the real world, AR will enable users to maintain
their view of reality while incorporating computer-generated elements. Consequently, VR
replaces the real world with a fictional reality, while AR enhances both the virtual and
real world [58].

Table 2.1 provides an overview of the main distinctions between AR and VR technologies.
Depending on the degree of reality, AR is composed of 75% real, while VR is 75% virtual
and 25% real. Unlike VR, AR does not require a headset device. Moreover, AR enhances
both the virtual and real worlds, whereas VR replaces the real world entirely with a
fictional reality.

Virtual Reality (VR) applications encompass a wide range of uses and industries,
taking advantage of immersive technology to create simulated environments in various
domains, as on gaming [59] that allows players to immerse themselves in interactive and
lifelike virtual worlds, enhancing the gaming experience. VR also enables users to watch

movies, concerts, and other entertainment content in a more immersive way; Education
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Augmented Reality Virtual Reality
Definition overlays computer-generated creates a fully immersive and
content onto the real world simulated digital environment
Blocking out
the real world No Yes
Device Smartphones, tablets, VR headsets
laptops
Immersion 75% real-world 75% virtual-world,
25% real-world
Enhancement Improvement of actual Replaces the real world
and virtual worlds with a fictional reality
Interaction Touchscreen or Controllers or
voice commands body movements

Table 2.1: Differences between Augmented Reality(AR) and Virtual Reality(VR).

and Learning, Healthcare and Therapy [60] such as pain management, exposure ther-
apy for phobias, and cognitive rehabilitation. It can also assist medical professionals
in planning surgeries and visualizing patient data in three-dimensional space, architec-
tural design [61] to enable architects and designers to create virtual models of buildings
and spaces, allowing clients to experience and interact with designs before they are con-
structed; virtual tourism [62] due to VR that can transport users to different locations
and landmarks around the world, providing a realistic travel experience without leaving
their homes.

The work of Slater et al. [63] conducted a thorough and recent study on the primary
applications of virtual reality (VR) as well as its strengths and limitations in various
research domains. These domains include science, learning, instruction, health, social
structures, ethical conduct, and the potential for application in various disciplines. More-
over, a study offered by Freeman et al. [64] focused on using virtual reality (VR) in mental
health. This review demonstrated the effectiveness of VR as a tool for evaluating and
addressing various psychological conditions, including anxiety, schizophrenia, depression,

and eating disorders.
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2.5 Augmented Reality Applications

Augmented Reality (AR) is a technology that blends the virtual and real worlds, super-
imposing computer-generated elements onto our physical environment. This integration
has opened up many exciting and practical applications across numerous industries. AR
has evolved rapidly in recent years, driven by advancements in hardware and software ca-
pabilities, making it more accessible and practical for widespread adoption. This section
divides the AR applications into four major categories: Training & Education, Entertain-

ment & Commerce, Navigation & Tourism, and Medical & Construction.

2.5.1 Education & Training

By seamlessly blending virtual content with the real world, AR offers immersive, inter-
active, and engaging experiences that significantly enhance the learning process and skill
development. Educators and trainers can leverage AR to present complex concepts and
practical skills in a more accessible and impactful manner. One of the critical applications
of AR in education is through interactive learning materials such as textbooks, flashcards,
and other educational materials, whereby students can readily understand the detailed
concepts of physics, anatomy, astronomy, mathematics, and geometry as the work of
Kaufmann et al. [3] used the Construct3D tool for learning mathematics and geometric
concepts. This tool was built on the StudierStube framework, allowing for an interac-
tive and immersive learning experience(Figure 2.2a). In MARIE(Multimedia Augmented
Reality Interface for E-learning)(Figure. 2.2b) especially its application for engineering
education. Its primary focus is the potential of AR by superimposing Virtual Multimedia

Content (VMC) information in an AR tabletop environment [4].
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(b)

Figure 2.2: (a) using Construct3D tool [3] and (b) MARIE [4].

Students can use their smartphones or AR devices to scan textbooks and work-
sheets, unlocking additional multimedia content such as 3D models, videos, animations,
and interactive quizzes, making the learning experience dynamic and captivating. AR
Flashcards [65] serve as a valuable tool in utilizing AR technology to aid students in
comprehending fundamental concepts such as the alphabet, colors, shapes, and space.
SkyView [66] is a user-friendly stargazing application that leverages the smartphone cam-
era to identify stars, constellations, and satellites in the sky. For Arloon Geometry [14] is
an educational application that harnesses Augmented Reality (AR) to present students
with three-dimensional models of various geometric shapes. Anatomy 4D [67] utilizes
an AR system to showcase the human body, enabling students to delve into the various
systems and study human anatomy. The Elements 4D [68] encourages students to engage
in an interactive and immersive exploration of chemistry, covering topics from the basic

elements to the complexities of life.

AR-based training offers a more engaging and practical learning experience, enabling
trainees to practice real-life situations and learn from their mistakes without consequences.
AR can guide technicians through vehicle repair and maintenance processes, highlighting
critical components and providing step-by-step instructions. An AR system also provides
military and defense training for combat scenarios, tactical exercises, and equipment
operations. Soldiers can receive real-time information and situational awareness through
AR devices.

Another application of The AR-based system, Hyundai Motor Group, has unveiled a
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virtual guide [5] designed as AR technology to showcase the different components of the
car’s dashboard and engine area. With the virtual guide, users can intuitively receive
step-by-step instructions to address minor car repair issues independently. From [5], the
Volkswagen Mobile App MARTA allows users to access comprehensive information about
their car, including its components and functions. Additionally, the application provides
guidance on troubleshooting and resolving specific issues that may arise with the vehicle,
as shown in Figure 2.3, which illustrates a snapshot from the Educational and Training

AR application.

Intogumen

Lymphatic

Figure 2.3: Screenshot of training and education application: (a) Hyundai Virtual Guide;
Mathematics Arloon Geometry(b);(c) Anatomy 4D for human-body [5].

2.5.2 Entertainment & Commerce

AR utilized in the entertainment industry through the development of AR video games
and the enhancement of the visibility of crucial aspects in live sports broadcasting like
swimming pools, football fields, race tracks, and others are familiar and readily prepared,
making them ideal for incorporating video see-through augmentation using tracked cam-
era feeds. For instance, the Fox-Trax system [6] is employed in ice hockey broadcasts
to highlight the puck’s position, making it more visible to viewers as it moves swiftly
across the ice. As shown in Figure 2.4, the ball trajectory is visually emphasized in golf
broadcasts, providing viewers with a clear and dynamic understanding of each shot’s path.
Similarly, in football broadcasts, the first-down line is prominently displayed on the play-
ing field, making it easier for audiences to track the game progress and comprehend the

distance needed for a first-down conversion [69].
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Figure 2.4: AR application for sports broadcasting:(a) racing and (b) football [6]

AR games provide immersive and interactive experiences by combining virtual and
real-world elements. Recently, AR-based games have gained significant popularity, par-
ticularly with the introduction of the immensely successful "Pokémon GO" [7]| game.
Developed by Niantic in collaboration with Nintendo, "Pokémon GO" employs AR tech-
nology through smartphones, relying on GPS to track user location. Players are tasked
with capturing Pokémon characters, which are superimposed into real-world locations,

encouraging competition among players.

Figure 2.5: Pokémon GO application [7].
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Further, "Real Strike" is a 3D first-person shooting-gun game developed by Yii In-
ternational. The players experience an immersive military setting, with various sensitive
support weapons available, all seamlessly integrated into their real-world surroundings
using AR technology.

Several games have been developed specifically for controlled indoor environments, includ-
ing the action-packed "Aqua-Gauntlet" |70]; players use AR technology to interact with
the virtual aliens and engage in thrilling combat scenarios. The entertaining "Contact-
Water" is where players juggle virtual dolphins indoors. The competitive "ARHockey"
allows players to engage in virtual hockey matches indoors. The game simulates the sport,
providing a competitive and interactive hockey experience, and the immersive "2001 AR

Odyssey" [71], inspired by the classic movie "2001: A Space Odyssey".

In the case of "AR-Bowling," Matysczok et al. [72] conducted a study on the game-
play mechanics of AR bowling, which enables players to enjoy a virtual bowling experience
in an indoor environment, interacting with AR-rendered elements to knock down virtual
pins. In contrast, Henrysson et al. [8] created an AR tennis game for Nokia mobile phones
(Figure 2.6). For "AR air hockey" [73|, where players compete in a virtual air hockey

match.

(a) (b)

Figure 2.6: AR mobile tennis game where players used their phones as virtual rackets [8].
AR has become increasingly prevalent in commerce, offering various applications to

enhance customer experiences and drive business growth. For example, AR enables cus-

tomers to virtually try on products such as clothing, eyewear, makeup, and accessories,
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allowing them to see how items look on themselves before making a purchase. This tech-
nology enhances the online shopping experience and reduces the need for physical store
visits. To address the issue of furniture returns resulting from incorrect sizing for the
intended location, IKEA implemented an AR-based smartphone catalog application.
With this innovative solution, users can virtually try out selected products in their homes
using 3D virtual furniture. By using AR technology, customers can preview how the
furniture will look and fit in their living spaces before making a purchase, reducing the
likelihood of buying items that do not suit their needs.

Another AR application, EZface Inc. [74], introduced a virtual-testing platform for makeup
products, allowing users to try on a wide range of their makeup offerings virtually. This
AR-based platform enables users to see how the makeup products would look on their
faces without needing to apply the makeup physically. This technology has proven to be
a game-changer in the beauty industry, as it empowers customers to make more confident
and informed choices when purchasing makeup products.

Furthermore, "Lululemon Mirror" [75], an athletic apparel brand, designed the "Mirror"
feature in their app, enabling customers to try on different workout outfits using AR
technology virtually. AR allows businesses to create virtual showrooms, showcasing their
products in a digital space accessible from anywhere, enabling remote shopping experi-
ences.

During the Christmas holiday season, Starbucks introduced the "Starbucks Cup Magic"
[9] application, leveraging Augmented Reality (AR) technology to engage its customers
uniquely and interactively. With this AR-based smartphone, Starbucks patrons could
bring their coffee cups to life and experience an entertaining advertisement. This app
cleverly blended the real-world coffee cup with virtual elements, creating a seamless and
immersive AR experience for users. As demonstrated in Figure 2.7, there are some exam-

ples of entertainment and Commerce applications.
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(a) (b)

Figure 2.7: Screenshot of entertainment and Commerce applications: (a)Starbucks Cup Magic
[9] and (b) Into the Storm.

2.5.3 Navigation & Tourism

AR navigation applications have emerged as cutting-edge tools that blend real-world en-
vironments with virtual overlays, transforming how users navigate and explore unfamiliar
places. For drivers and travelers, new equipment has been explored to enhance the ef-
fectiveness of navigating in new areas, such as GPS technology. This integration allows
navigation apps to determine the user’s precise coordinates, enabling real-time tracking
of their movements and providing accurate location-based services. AR navigation on
smartphones offers real-time mapping capabilities, displaying interactive maps that users
can zoom in and out of, pan, and rotate. These maps provide an intuitive and dynamic
view of the surrounding area, making it easy for users to understand their location and
plan their routes.

Indeed, AR proves to be exceptionally well-suited for navigation-based services, both
indoors and outdoors. By leveraging AR technology, relevant information about user
surroundings can be seamlessly inserted into a camera image, providing an intuitive and
informative navigation experience based on user position and orientation. For indoor
navigation

Starner et al. [76] explore the potential uses and constraints of AR in wearable computing,
examining aspects such as finger tracking and facial recognition challenges. Another AR
application, Field Trip [11], offers an extensive range of information about the current
environment by displaying location-specific details on a card without requiring user inter-
action. It encompasses many interesting places and experiences, catering to a wide range
of interests. Users can explore captivating content related to architecture, historic land-

marks, significant events, local lifestyle, exclusive offers and deals, culinary delights, iconic
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movie locations, captivating outdoor art installations, and lesser-known hidden gems of
interest.

For outdoor environments and drivers, Narzt et al. [10] proposed a system that overlays
various useful information directly onto their view, enhancing their navigation experience.
Users can see routes, highway exits, follow-me cars, potential dangers, and real-time fuel
prices all superimposed on their real-world surroundings. This information-rich display
enables pedestrians to make informed decisions and navigate more efficiently, whether
they are walking through city streets or exploring unfamiliar areas, as shown in (Figure
2.8(a)). Tonnis et al. [77| delve into the effectiveness of employing Augmented Reality
(AR) warnings to draw a car driver’s attention to potential hazards (Figure 2.8(b)), which

aims to alert drivers to dangers and critical situations on the road.

(a) (b)

Figure 2.8: Navigation for pedestrians [10]and traffic alerts.

AR-based plays a significant role in ensuring a seamless and stress-free travel expe-
rience. It can provide real-time navigation guidance, helping tourists navigate complex
transportation hubs, airports, or bustling tourist areas. In this context, travel applica-
tions have become invaluable tools for modern travelers, providing convenient access to
a wealth of trip-related information at their fingertips. Travel apps provide interactive
maps with GPS functionality, helping tourists navigate unknown locations, find direc-
tions to their destinations, and discover nearby attractions. The Metro AR Pro [78] is
a mobile application that utilizes AR technology to enhance the user’s experience with
public transportation, specifically focusing on subway and metro systems. It used the
Wikitude AR SDK that supports image recognition (identifying objects or images in the

real world), tracking (tracking the user’s position and orientation), 3D-model rendering
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(displaying 3D objects in the AR view), video overlay, and geolocation-related functions.
The ARCHEOGUIDE [79], AR project is based on a cultural heritage on-site guide that is
designed to provide visitors with cultural-heritage sites with valuable archaeological infor-
mation. The project aims to enhance the visitor experience by leveraging AR technology
to offer interactive and immersive content directly on-site. The "Augmented City" [80],
an AR app, was proposed as a guide to enhance the tourist experience by providing infor-
mation sharing and filtering functionalities. Diez et al. [12] offered an AR platform based
on technology and mobile devices to provide an accessible and collaborative tourist guide.
This platform aims to improve the tourist experience by providing a more engaging and
interactive means to investigate and learn about their destination. Yelp Monocle mobile
apps leverages AR technology to display nearby businesses and their reviews based on
the direction the user points their smartphone camera. Users can see digital information
superimposed on real-world surroundings using the smartphone’s camera view. Figure

2.9 shows AR-based applications for tourism.

(b)

Figure 2.9: Some examples from AR-based tourism application:(a)Field Trip [11], and (b) Yelp
Monocle [12]

2.5.4 Medical & Construction

Medical Augmented Reality (MAR) is a rapidly developing discipline integrating AR
technology into numerous medical and healthcare domains. It provides novel methods for
enhancing medical procedures, training, visualization, and patient care. For surgical Nav-
igation, AR assists surgeons during procedures by providing real-time, 3D visualizations
of the patient’s anatomy. Surgeons can overlay important information, such as Computed
Tomography scans(CT), Magnetic Resonance Imaging(MRI scans), or ultrasound imaging
directly onto the patient’s body, enabling more precise and minimally invasive surgeries.
This would effectively give a physician an "X-ray vision" inside a patient. Consequently,

it is significant during minimally invasive surgery. While these procedures offer benefits
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like reduced trauma and faster recovery for patients, they can limit a surgeon’s visibility
inside the patient’s body due to the use of small incisions or no incisions at all. This
reduced visibility can make surgical maneuvers more challenging and increase the risk of
complications.

Sutherland et al. [81] introduced a novel human-computer interface called a "tracked
Head-Mounted Display" (HMD) that enables viewpoint-dependent visualization of vir-
tual objects, which has laid the foundation for modern virtual reality(VR) and augmented
reality(AR) technologies. Other medical AR apps, including "EyeDecide" [82], aims to
facilitate the rapid diagnosis of pathology by providing real-time, three-dimensional vi-
sualizations of medical data, such as X-rays and MRI scans overlaid onto the patient’s
anatomy. This allows medical professionals to gain a more comprehensive understanding
of the pathology, leading to faster and more accurate diagnoses potentially improving
patient outcomes.

Several projects are exploring this application area. At UNC Chapel Hill, a research group
has conducted trial runs of scanning the womb of a pregnant woman with an ultrasound
sensor, generating a 3-D representation of the fetus inside the womb and displaying that
in a see-through HMD [13| (Figure 2.10).

Figure 2.10: Virtual fetus inside womb of patient [13]

Vogt et al. [83] have employed video see-through Head-Mounted Displays (HMDs) to
integrate Magnetic Resonance (MR) scans onto patients’ heads. This advanced technology

enhances surgical planning and intraoperative guidance, improving precision and patient
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outcomes. Similarly, Merten [2| has demonstrated the overlay of MR scans on feet using
HMDs, showcasing the potential of augmented reality in podiatry and orthopedics, as
shown in Figure 2.11. Additionally, Kotranza and Lok [84] observed that augmented
patient dummies with haptic feedback elicited similar responses from medical specialists

as they would with actual patients.

Figure 2.11: AR overlay of a medical scan |2].

AR is making significant strides in the construction industry, transforming how projects
are planned, designed, and executed. It allows architects, engineers, and clients to view
3D models of buildings and infrastructure overlaid onto the physical construction site.
This real-time visualization helps stakeholders understand the design’s intended context,
facilitating more informed decision-making and refinements. AR can play a significant
role in the construction teams to identify clashes and conflicts between different building
systems and components during the design phase. By overlaying virtual models onto the
construction site, teams can detect potential issues early, leading to reduced errors and
rework [85].

AR mobile application, CityViewAR [86] aims to offer users a unique glimpse into the
pre-earthquake city of Christchurch. Also, it can explore the current cityscape while si-
multaneously witnessing the past by overlaying full-scaled 3D virtual models of buildings
that once stood but were later demolished due to seismic events. Bentley Systems [87] has
pioneered the development of a groundbreaking prototype application designed to revo-
lutionize the visualization of underground infrastructure, which enables users to measure
the distances between pipes within the underground network accurately. Furthermore,

the application empowers users to incorporate 3D pipeline data using ground-penetrating
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radar technology. In [88], an AR-based application for urban planning eliminates the need
for calibration and simplifies the AR setup process. The affine representation technique
allows for the accurate overlay of digital content onto the physical urban environment,
enabling urban planners and stakeholders to visualize proposed developments and changes
in real time. Smart Reality [14]is a cutting-edge application that uses a smartphone cam-
era and a printed target(Figure 2.12). Users can overlay 3D virtual objects onto the real
world, and it is compatible with multiple devices, including Oculus Rift, a popular virtual

reality headset, and the Epson Moverio BT-200 smart glasses.

Figure 2.12: Smart Reality apps [14].

2.6 Augmented Reality Devices

Augmented Reality (AR) devices are technological devices that blend digital information
and virtual content with the real-world environment to offer consumers an enhanced and
interactive experience. These devices seamlessly combine the virtual and real worlds by
superimposing computer-generated graphics, text, or images on the user’s view of the
physical environment. The components and primary devices for AR systems can be

categorized into four types:

2.6.1 Displays

The display is a crucial component in AR devices as it overlaps virtual content onto
the user’s view of the real-world environment. Numerous approaches exist for presenting
information to a person on the move, and a diverse range of display options can be utilized

for this objective. These include personal hand-held devices(Smartphones and tablets),
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wrist-worn (smartwatches and wristbands), and head-worn displays(HMDs). Screens and
directed loudspeakers integrated into the environment, as well as image projection on
various surfaces, are also among the available choices. Moreover, several display techniques
can be combined to create more comprehensive and immersive experiences. To present

virtual content, there are five types of display:

e Head-Mounted-Displays(HMDs): is a device designed to be worn on the head,
often in the form of a helmet or goggles, which presents a combination of real-
world images and virtual content to the user’s field of view (as depicted in Figure
2.13). It is mostly used for AR, VR, and MR applications and can be categorized
into Optical and Video see-through displays. In an optical see-through HMD, the
user looks through transparent lenses(such as Micro-Vision Nomad, TekGear Icuiti,
or EyeTop) to see the physical world directly with their eyes. Virtual content is
superimposed on the user’s view using partially reflective or partially transparent
mirrors. On the other hand, Video see-through displays with which the user wears
cameras on the front of the device that capture the real-world environment. Then,
it enhances the real-world view with virtual data and combines the altered images,
making this method more computationally intensive.

Furthermore, human factors like social acceptance and safety are also considered.
A current trend in Mobile Augmented Reality (MAR) involves combining various

display technologies with wearable computing, as noted by Hol [89].

Figure 2.13: HMD Microsoft Hololens device used for augmented reality [15].

e Spatial Augmented Reality(SAR), also known as Projection Mapping, is a
technology that enhances real-world objects and scenes by projecting digital con-
tent onto them using video-projectors [90] or through holography, as seen with

devices like the Microsoft HoloLens, creates virtual objects that appear to exist in
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the same space as the physical environment. Both methods depend on markless
tracking, which aims to detect and track real-world objects and surfaces without
needing predefined markers or fiducial points. Ridal et al. [91] presented the "Re-
vealing Flashlight" project within the Cultural Heritage (CH) domain that offered
projected displays in SAR. This project involves projection mapping to enhance the
viewer’s experience of cultural artifacts or historical spaces. On the other hand,
holographic applications can expect new and innovative use cases for holographic
AR to emerge across various industries. There are three main types of (SAR), each
of which provides a unique way to augment the real environment: video-see-through,
optical-see-through, and direct augmentation. In the video-see-through approach,
real-world scenes are captured using cameras, and the captured video feed is then
combined with virtual content. This composite view is then projected back onto
the physical environment using projectors. Users can view both the real world and
the overlaid virtual elements simultaneously. Spatial optical-see-through involves
users looking through a transparent display, such as a visor or glasses, and optical
holograms that allow them to see the real world directly.

Virtual content is superimposed onto the user view of the physical environment.
This approach often requires precise alignment of virtual elements with the user’s
line of sight, which can be achieved through sophisticated tracking systems. It is not
suitable for mobile applications because of the alignment challenges posed by spatial
optics and display technology. Direct augmentation offers a seamless integration of
virtual content with physical objects and spaces. It can be highly immersive and
attention-grabbing, but calibration and environmental lighting conditions must be

carefully managed. As mentioned in Figure 2.14.
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ITIA - CNR © 2010

Figure 2.14: Example of Spatial Augmented Reality(SAR) application from [15].

e Hand-held devices(HHD) utilize video-see-through technique to superimpose
graphical elements onto the actual surroundings. It incorporates sensors, includ-
ing digital compasses inertial and GPS units, to facilitate six-degree-of-freedom
tracking. Most AR projects in the (CH) domains employ Hand-held displays to
merge the digital content over the real world as the work of [92,93]. Addition-
ally, tracking strategies such as fiducial marker systems, including ARToolKit, and
computer vision technologies such as SLAM. There are three distinct categories of
commercially available handheld displays extensively employed for augmented real-
ity systems: smartphones, personal digital assistants (PDAs), and Tablet PCs [16].
Smartphones are highly portable and widely used, benefiting from recent techno-
logical advances that have equipped them with powerful CPUs, advanced cameras,
accelerometers, GPS capabilities, and solid-state compasses. These features make
smartphones an up-and-coming platform for augmented reality (AR). However, their
drawback lies in their small display size, which is less than ideal for rendering in-
tricate 3D user interfaces within AR experiences. (PDAs) offer many of the same
advantages and drawbacks as smartphones. It shares characteristics and advanced
features such as powerful CPUs, cameras, and accelerometers. However, PDAs have

become less prevalent compared to smartphones due to the rapid progress made in
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recent times, especially with the dominance of Android-based phones and iPhones.
These advancements have contributed to the decline in the popularity of PDAs.
Smartphones are considerably more expensive and too heavy for single-handed and
even prolonged two-handed use. Nevertheless, with the recent release of the iPad,
we believe that Tablet PCs could become a promising platform for handheld AR
displays. As demonstrated in Table 2. A comparison of different types of display
techniques for Augmented Reality.

Figure 2.15: Example of Hand-Held displays from [16].
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2.6.2 Computers

AR systems often involve real-time processing of camera input, tracking user movement,
and rendering virtual content seamlessly. This requires a powerful(CPU) and a significant
amount of random-access memory (RAM) to handle the computational load. Historically,
mobile computing setups have involved laptops integrated into backpacks. However, the
advancement of smartphone and tablet technology and devices such as iPads indicates a
potential shift from this cumbersome backpack configuration to a more sleek and sophis-
ticated system. On the other hand, stationary setups can opt for traditional workstations
equipped with powerful graphics cards to meet the computational demands of AR pro-

cessing.

2.6.3 Tracking

Tracking devices and cameras are essential components in augmented reality(AR) and
mixed reality(MR) systems to determine the user’s position and orientation about the
environment. For that, cameras have a crucial role in various applications, especially those
that rely on marker-based or markerless tracking methods. Marker-based tracking involves
detecting predefined markers in the environment, while markerless tracking uses computer
vision techniques to identify and track features without relying on specific markers. In [94],
the author outlined several tracking devices used for AR systems, mechanical, magnetic
sensing, GPS, ultrasonic, inertia, and optics. Another CH application known as "AR-
Teleport," developed by Kang et al. [93], uses the built-in inertial sensors and camera of

a smartphone to monitor the user’s location and position.

2.6.4 Input Devices

Various input devices are employed in augmented reality (AR) systems, as Reitmayr
et al. [95] presented a mobile augmented system that incorporates gloves for interaction.
Alternatively, ReachMedia [96] implements wireless wristbands. For instance, Google Sky
Map on Android phones necessitates users to orient their phones toward celestial bodies
they wish to identify, such as stars or planets. Nonetheless, selecting an input device
should be contingent upon both the application domain and the system characteristics.
The TOOTEKO AR application, as introduced by D’Agnano et al. [97], employs Near-
Field Communication (NFC) sensors affixed to a 3D-printed reproduction of an artifact as
an input mechanism. In the case of using AR systems for mobile devices, interaction and
input mechanisms can harness various features, including the touch screen, microphone,

and tracking sensors.
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2.7 Hardware and software platforms for AR

2.7.1 Hardware Platforms

An important aspect of augmented reality (AR) systems is the integration of software and
hardware platforms with the actual world, including the following devices: 1) webcam-
equipped computers, 2) smartphones, 3) head-mounted displays, 4) spectacles, and 5)
haptic devices.

The personal computer equipped with a webcam is the most extensively adopted platform
for AR applications. Given the stationary nature of computers, a marker is positioned
within the webcam’s field of view, enabling a live video feed. A pertinent illustration is the
Shiseido Makeup Mirror [98], which exemplifies the PC-based AR platform. This mirror
features a touch-sensitive screen, permitting users to select from an array of eye colors,
lip shades, and blush options. The kiosk is another example of a PC-based AR platform.
The kiosk is a physical station that provides customers with the opportunity to utilize
AR data to learn more about the products they carry with them. Personal computers are
crucial in delivering interactive and informative AR experiences that accommodate user
preferences and product exploration in these instances. The AR SandBox [99] initiative
encompassed creating an integrated real-time augmented reality(AR) system for crafting
physical topography models. These models are instantaneously scanned into a computer
as they are formed. Using a projector, these scans of the models are subsequently em-
ployed as backdrops for an assortment of graphical effects and simulations.

Smartphones or tablets are arguably the most prevalent way to access AR content today.
The two categories of smartphone usage are pervasive and continuously held. The Wiki-
tude World Browser [100], one of the most user-friendly augmented reality(AR) tools, is
illustrative of the ubiquitous category; information is displayed continuously with real-
world images using a Web plug-in. The Microsoft omniTouch [101] is a wearable computer,
depth-sensing camera, and projection system for interacting with common surfaces. For
that, smartphone and tablet-based access to AR content has become a dominant mode,

accommodating various usage contexts and preferences.

A Head-Mounted Display (HMD) integrates a screen with a headset, projecting in-
formation or images onto the user’s view with six degrees of freedom (6 DOF). This
augmentation aligns with the user’s head movements in any direction or angle. An ex-
emplary illustration is the SKULLY Helmet [102|, notable for being the first helmet in-
corporating a built-in 180°Blindspot Camera and a Heads-Up Display. This combination

delivers exceptional situational awareness and safety to users. Furthermore, the Microsoft
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HoloLens [103] introduces an immersive experience where 3D models are seamlessly visu-
alized within the real world. The HoloLens is a self-contained, holographic computer that
allows users to interact with digital content and holograms within their real environment.
It employs various sensors, advanced optics, and a dedicated holographic processing unit.
The DAQRI smart helmet [102] is designed to enhance human capabilities across indus-
tries by establishing a seamless connection between users and their work environments.
This helmet facilitates unparalleled interaction and engagement with the surroundings,
contributing to improved performance and situational awareness.

The Google Glass [104] display is the most well-known AR-glasses product, with Vuzix
[105] and other companies offering comparable products. Over time, technological ad-
vancements are likely to enhance the user experience and reduce expenses. The focus of
Meta [106] is distinct from that of Google Glass. Meta method involves superimposing AR
on the user’s reality. The system recognizes user gestures, enabling users to manipulate
3D objects with a clay-like texture. Thus, Meta users are granted an almost infinite num-
ber of displays, as video content can be incorporated seamlessly into their AR experiences.
The Icis [107] appears akin to regular eyeglasses, with no prominent component such as
a visible camera. In contrast, the Atheer One smart glasses emphasize intuitive interac-
tion, enabling users to control the device through hand gestures. This model incorporates
dual displays—one for each eye—positioned in a manner resembling the placement of a
landscape-oriented tablet measuring about 26 inches, situated immediately in front of the

user’s face.

Another AR device known as AR haptic allows users to immerse themselves in an
augmented real environment enriched with synthetic haptic interactions, including the
game-pads of Nintendo Wii U/PS4/Xbox [108|, which furnishes users with real-time tac-
tile feedback. Combining a (HMD) with the PHANTOM Stylus allows users to touch and
feel visualized objects directly. In surgical contexts, integrating the VHB (Virtual Haptic
Back) system [109] with the PHANTOM Stylus brings forth a remarkable application.
Surgeons employing this setup can visualize human organs and entire body parts dur-
ing surgery while simultaneously receiving tactile feedback through their fingers as they

perform cutting, removal, and device manipulation procedures within the body.

2.7.2 Software Platform

Several software frameworks have emerged to facilitate the development of immersive
reality applications. In this section, we present an overview of frameworks particularly

well-suited for developed AR systems. The initial differentiating factor is the selection
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of the operating system (OS). This decision holds significance as not all available frame-
works are compatible with the most commonly used operating systems. Further, the most
widely commercial software development Kit(SDK) are Metaio, Vuforia, Wikitude, and
ARToolkit, while PanicAR, DroidAR [110], and ARToolkit are available for free use.
Wikitude SDK, a commercial framework introduced in 2008, capitalizes on both location-
based and vision-based tracking techniques. It has found application in various contexts,
including a museum environment, as described by Caggianese et al. The Kudan [111]
represents an exceptional AR SDK| standing out prominently from its counterparts. It
supports highly robust single-camera Simultaneous Localization and Mapping(SLAM)
technology. This empowers the SDK to deliver adaptable tracking capabilities, enhancing
its ability to track targets in various scenarios effectively.

The Metaio SDK [112] represents a comprehensive software framework comprising compo-
nents such as the Mobile, PC, Web SDK, Design, Creator, Engineer, and the Junaio [100]
browser plugin. The fundamental vision driving the Metaio framework is seamlessly in-
corporating virtual elements into the physical world. The Vuforia SDK [112] is designed
to facilitate the development of augmented reality applications specifically tailored for
mobile devices. Vuforia is equipped to recognize a diverse array of elements, including
intricate objects, images defined by the user, cylinders, text, boxes, and frame markers,
all of which can be linked with cloud data. It is capabilities encompass an extensive spec-
trum of marker types, extending to compatibility with the Microsoft HoloLens, allowing
for AR experiences to be crafted across an expansive range of devices and contexts.
ARToolKit [112] stands as an additional software development kit (SDK) designed to
facilitate the creation of AR applications. This SDK employs square marker patterns,
which are tracked through the position and orientation of a single camera. ARToolKit
encompasses assistance for three primary tracker categories: natural feature tracking,
traditional square markers based on templates, and 2D-barcode markers. It offers multi-
camera capabilities and is compatible with the Windows Phone platform. Additionally,
it excels in providing sturdy marker tracking across various distances, ensuring reliability
and accuracy in augmented reality experiences. Layar stands as the most extensively em-
ployed option for location-centered services. Its capability to store Points of Interest(POIs)
within a distant database and fetch relevant data according to the user’s location renders
this system especially suitable for outdoor navigation encounters. Table 3 compares the

most widely used AR framework depending on appropriate characteristics.
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SDK Purpose Platforms

Graphics

Tracking Sensors

Wikitude Indoor, Outdoor  TOS, Android

Vuforia Indoor I0S, Android

Layar Outdoor I0S, Android
AR Toolkit 2D images, Markers 10OS, Android
Metaio SDK  Indoor, Outdoor  iOS, Android

PanicAR Outdoor 10S

Unity3D, 2D images,
text, 3D models

Unity3D,
OpenGL, 3D models

2D images, 3D models
Unity3D, Android
Unity3D, Web

2D images, Labels

Cameras,

GPS, IMU

Camera

GPS,IMU
GPS, IMU
GPS, IMU

GPU,IMU

Table 2.3: A Comparison of the Most Widely Adopted Augmented Reality Frameworks

2.8 Conclusion

In this chapter, we have presented the foundations of augmented reality. After discussing

the various definitions proposed in the literature and the etymology of the term, we advo-

cate for both a conceptual and technological approach to augmented reality. Firstly, we

introduced the purpose of augmented reality, based on observations of different systems,

to enable individuals to engage in sensorimotor and cognitive activities within a mixed

space that combines the real and virtual environment. Then, we define the most widely

used AR application developed in various domains by employing AR devices that include

displays, computers, tracking, and input devices. We conclude by providing the popular

software and hardware utilized during the implementation. This chapter is considered as

a comprehensive review that collects the necessary concepts overall in the AR domain.
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Chapter 3

Handling occlusion in augmented

reality: Literature review

3.1 Introduction

In this chapter, we focus on handling occlusion, which is a fundamental challenge in com-
puter vision, and it has garnered significant attention from both classical and modern
deep learning approaches. We introduce classical methods that employ object tracking,
background subtraction, optical flow, and contour analysis to address occlusion issues
by predicting object movements, segmenting foreground objects, estimating motion, and
inferring shapes from visible parts. In the second part, we present a new taxonomy
based on modern deep learning algorithms applied for hand pose estimation, particularly
Convolutional Neural Networks (CNNs), which have revolutionized occlusion handling by
enabling robust object detection and recognition. Recurrent Neural Networks (RNNs),
Gated Feedback Networks, and Generative Adversarial Networks (GANs) extend the ca-
pabilities of deep learning in addressing occlusion issues. We present related works about
hands. Benchmark datasets of depth images and 3D skeletal data collected for hand pose
estimation are then presented. Further, evaluation metrics are provided to measure the
effectiveness and robustness of the proposal methods. We review the main existing state-
of-the-art approaches, which provide a methodology to tackle the problem of hand pose
estimation.

Using bibliometric analysis, this chapter aims to define the hand pose estimation field
and its parametric to understand their contribution as passive solutions for handling oc-
clusion using the VosViewer program. Finally, we discuss the results of potential research
direction regarding time speed, precision, and type of CNN architecture in this rapidly

expanding field.
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3.2 Classical Methods for Handling Occlusion in Aug-
mented Reality

Within the realm of academic studies, numerous researchers have developed approaches to
address real-time mutual occlusion challenges in augmented reality. As defined by Yuan
Tian et al. [113], various techniques have been presented, broadly classified into three

categories: contour-based, depth-based, and based on 3D reconstruction.

3.2.1 Contour-based methods

This method represents a fundamental category within augmented reality (AR) that is
pivotal in addressing mutual occlusion issues, object recognition, and spatial interaction.
These innovative techniques capitalize on the intricate details of object boundaries to
enhance the user’s AR experience.

These approaches begin with accurately delineating real-world object boundaries, of-
ten involving image segmentation techniques. Once the contours are identified, tracking
and rendering mechanisms come into play, allowing for the dynamic superimposition of
virtual objects onto the real environment. This integration is not just about visual fi-
delity but also about preserving the correct spatial relationships between objects. Tian
et al. [113|introduced a segmentation technique to delineate the contours of actual ob-
jects. Subsequently, they tracked these contour entities in subsequent frames, enabling
the generation of augmented images through pixel redraws to faithfully represent spatial
relationships. Furthermore, they refined their initial framework by proposing an auto-
matic occlusion handling method [114], which relies on computing the disparity map of
real objects in the initial frame. It is worth noting that the efficiency of this method is
dependent on the precision of contour extraction in the initial frame.

In contrast, Fukiage et al. [115] presented an innovative solution to the occlusion
challenge that doesn’t necessitate an exact foreground-background segmentation tech-
nique. Their approach considers the characteristics of human transparency perception,
as observed in psychophysical experiments. This alternative method delivers real-time
accuracy even in complex scenes.

Separately, Sanches et al. [116] introduced a method that empowers augmented
reality environments based on fiducial markers. This approach facilitates mutual occlusion
support between a real element and multiple virtual ones by leveraging fiducial markers.

The method adjusts based on the element position(depth) within the environment.
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3.2.2 Depth-based method

In this section, we delve into the realm of depth-based methods, which primarily re-
volve around comparing pixel values of real and virtual objects to unveil unoccluded
regions of virtual objects, thus ensuring accurate occlusion representation As the re-
search of Schmidt et al. [117], focuses on calculating dense disparity maps within stereo
images. These maps are instrumental in detecting and managing mutual occlusion in
augmented reality scenarios. Conversely, Hayashi et al. [118] employ a contour-based
stereo-matching approach to acquire precise depth information of real objects, aiding in
occlusion detection. The primary motivation here is to tackle challenges posed by the
occlusion of a user’s hands by virtual objects on an AR tabletop. However, this approach
has limitations in accurately determining occlusion between real and virtual entities.

Additionally, Setohara et al. [119] propose a method aimed at detecting moving
objects in front of a predefined marker pattern, using a pattern as a background im-
age. Nevertheless, accurate occlusion resolution becomes impossible if the depth values of
moving objects in the real environment are not obtained. Addressing this issue, Kim et
al. [120] leverage stereo matching to estimate the depth of the real environment, facilitat-
ing accurate occlusion representation. This approach comes at the cost of computational
intensity, making real-time processing a challenge.

Ohta et al. [121] introduce a novel "client-server" depth sensing approach, where
clients acquire real-time depth data of the real environment from a server. While this
method provides accurate depth data, discrepancies may arise if the viewpoints of both
clients and servers do not align, affecting the quality of depth sensing from the client’s
perspective.

Furthermore, Yokoya et al. [122] utilize stereo matching for acquiring depth informa-
tion of real objects. However, the utility of stereo matching is limited to specific regions,
where virtual objects are rendered to optimize computational resources. The main chal-
lenge lies in its accuracy, as the boundary between the virtual and real environments may
not be adequately modeled.

A distinctive method proposed by Fuhrmann et al. [123] leverages 3D models of
real objects, referred to as "phantoms," to obtain models with properties similar to real
objects. This approach excels when dealing with rigid objects, effectively mitigating
occlusion-related issues.

Lastly, Lu and Smith [124] focuses on segmenting objects and calculating depths
within areas covered by virtual objects. Their approach utilizes GPU-based methods to
compute occlusion between real and virtual objects in real-time. This method becomes

particularly useful when virtual and real objects exhibit independent motion.
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Dong and Kamat [123| present a comprehensive framework that operates in two
stages. Firstly, the framework employs a Time of Flight (TOF) camera for rendering,
which yields depth and color buffers of real objects. Subsequently, the virtual object
is redrawn with depth buffer testing enabled, allowing for the handling of occlusion,

including parts hidden by other virtual objects or real-world entities.

3.2.3 3D Reconstruction-Based Approaches

This category presents a distinctive approach to resolving occlusion that revolves around
the creation of three-dimensional models of real-world objects, enabling a detailed com-
parison of depth information between these objects and their virtual counterparts.

Fuhraman et al. [123] introduce a method tailored for static scenes, where the user
is modelled as a kinematic chain of articulated solids. This unique approach simulates
the occlusion effects of virtual objects within the static environment.

Ong et al. [123] propose a user-friendly framework for deriving a 3D model of the
real scene. This is accomplished by leveraging recovered geometry information and user-
segmented object silhouettes.

On a different note, Lepetit et al. [125] developed a method that empowers users
to outline the boundaries of occluding objects in key views. The 3D occluding boundary
is subsequently obtained based on re-projection and refinement in intermediate frames,
ultimately achieving correct occlusion. This method faces challenges when handling view-
point changes, which can result in inaccurate occlusion handling.

Yuan Tian [123] introduces a two-stage approach, comprising an offline and an online
stage. In the offline stage, depth maps of the real scene are obtained using an RGB-D
camera, with noise reduction applied to depth values. The online stage involves comparing
the Z coordinates of real and virtual objects, enhancing real-time performance and yielding
synthetic images with accurate occlusion.

Portales et al. [126] employ photogrammetry and AR to create high-precision 3D
models integrated into the real world. This approach leverages close-range photogram-
metry algorithms to construct 3D models, which are then seamlessly incorporated into
the user’s augmented environment through a see-through video head-mounted display
(HMD).

Furthermore, Carrion-Ruiz et al. [127] present an architecture centred around re-
constructing the 3D model of the Queen Victoria sculpture using photogrammetry. This
model is incorporated into an AR application that allows users to observe the augmented
scene through a window.

The basic concept of depth-based methods consists of the real-time computation of
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depth information for the actual scene. However, they require multiple cameras, which
increases the cost and is best adapted for static scenes and specific perspectives. Contour-
based methods, are cost-effective but may grapple with occlusion. The 3D reconstruction-
based method offers efficient performance and effectively manages mutual occlusion, mak-

ing it ideal for wide-angle viewing scenarios.

3.3 Research Questions

The objective of the present study is to collect and analyze all robust and sophisticated
research that has investigated hand pose estimation methods. The extraction of salient
features and the most important approaches will be proposed, and their properties will
be discussed.

To accomplish the intended goals and find out the way chosen by researchers for their
research and evaluation methods, research papers for which alternative techniques are
introduced and benchmark datasets are discussed. Most researchers have examined QoS
characteristics, proposed objective functions, and areas of focus that are crucial for de-

signing these methods. These research questions (RQs) are listed as follows:

RQ1. What are the primary objectives of the researchers in the hand pose estimation

field?

RQ2. What is the proposed strategy, and what methods are employed? How did the

researchers conduct their research?

RQ3. What are the benchmarks or datasets that are used during training, and which case

studies are taken into account?
RQ4. What evaluation metrics were designed to evaluate the results in each paper?
RQ5. What other study has been viewed to compare the performance of each paper?
RQ6. What are the most used challenges that are resolved in each paper by researchers?

RQ7. What is the research study that used the real-time concept in their proposed archi-

tecture?

42



CHAPTER 3. HANDLING OCCLUSION IN AUGMENTED REALITY: LITERATURE REVIEW

3.4 Hand Recognition techniques

The human hand is an incredible tool capable of performing infinite actions. It is no
wonder that numerous scientists have been intrigued by the modeling and simulation of
human hands for various purposes. Despite the high interest and necessity, generating

and perceiving hand motions have always been challenging due to two main problems:

e Deformation of the Skin: As joints move, the skin around joints and on the
palm persists in deformation. Realistic animation requires special care to depict

these deformations in simulations accurately.

e Constrained Articulation of Joints: The articulation of the human hand in-
volves over 27 bones, resulting in roughly 27 degrees of freedom (DOF) even when
excluding the DOF of the palm. Moreover, the movements of finger joints are intri-
cately coordinated through constraints. These constraints ensure that only feasible

hand configurations are achievable within the hand’s configuration space.

Overcoming these challenges is crucial for creating accurate and lifelike simulations of
hand movements. Researchers and developers in various fields, including robotics, anima-
tion, and virtual reality, have devoted significant effort to address these issues and capture
the complexity and versatility of human hand motions. By finding innovative solutions to
these problems, they aim to enhance the capabilities of technology to mimic and interact

with human hand movements more realistically and effectively.

The bones within the skeletal structure combine to create a rigid body system, with
joints that possess one or more degrees of freedom(DoF) for rotational movement [17].
These joints are named in the following manner, progressing from the wrist towards the

fingertips:

e Carpometacarpal (CMC) Joints: joints that connect the metacarpal bones to

the wrist.

e Metacarpophalangeal (MCP) joints: These joints are located between the fin-

gers and the palm, enabling movement at the base of the fingers.

e Interphalangeal (IP) joints: joints are located between the segments of the

fingers. They can be further categorized into:

— Distal Interphalangeal (DIP) joints: These are the joints at the fingertips,

connecting the middle and distal phalanges.
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— Proximal Interphalangeal (PIP) joints: These joints are located between

the proximal and middle phalanges of the fingers [17].

Gaining a comprehensive understanding of hand anatomy assists us in accurately
representing the hand’s spatial configuration. A kinematic model of the hand can be con-
structed based on its anatomical structure to capture its kinematic characteristics. The
interphalangeal(IP) joints possess a single degree of freedom (1 DoF) for flexion and ex-
tension. In contrast, the carpometacarpal(CMC) joints are mostly treated as stationary,
though those of the little and ring fingers exhibit some limited motion associated with
palm folding. However, modeling the thumb presents challenges due to various consid-
erations concerning the metacarpophalangeal(MCP) joint of the thumb, also known as
the trapeziometacarpal(TM) joint. It can be depicted as a 2 DoF saddle joint, akin to
the other MCP joints supporting abduction/adduction and flexion/extension, or possess

solely flexion—extension capability (Figure 3.1).
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Figure 3.1: The skeletal structure of the hand observed from the palm-facing perspective [17].

By employing an analysis of degrees of freedom and the kinematic model, we can
construct a feature vector that represents the configuration of a hand. In particular, the
six degrees of freedom (DoF) frame associated with the wrist-hand joint is commonly
called the "global configuration." In addition, the angular DoF for each finger is called

n

the "local configuration," aggregated to form a feature vector, providing DoF hand pose
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estimation on a global scale. Constructing a high-resolution anatomical model can prove
excessively intricate for numerous applications. As a result, various simplifications are

proposed to maintain models at the necessary level of complexity [18].
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Figure 3.2: Common kinematic model employed for hand pose estimation. (a) A kinematic
model with 27 DoF. (b) A kinematic model with 26 DoF [18].

for that, numerous research efforts have been dedicated to exploring the field of gesture
recognition, aiming to harness the potential of human body movements as a means of
interaction with technology. Among these investigations, various classification systems
have been put forward, differentiating approaches based on the specific technology for
capturing gesture data. The proposed classification framework, presented by La Viola in
1999 [128], provides valuable insights by categorizing gesture recognition into two distinct

methodologies: sensor-based and vision-based approaches.

3.4.1 Sensor-Based Approaches

This category centers around utilizing a range of sensors to capture and interpret gestures.
It encompasses diverse technologies, including accelerometers, gyroscopes, depth sensors,
and wearable devices such as gloves or motion-tracking suits. These sensors detect and
measure aspects such as motion, orientation, and acceleration, generating data that can
be analyzed to identify specific gestures. These approaches include magnetic, acoustic,

inertial, haptic(mechanical) sensors and touch surfaces.

3.4.1.1 Magnetic Sensors

Magnetic sensors utilize the low-frequency magnetic field emitted between a transmitter

and a receiver to determine the position and orientation relative to the magnetic source.
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The main drawback is the distortion of the magnetic field caused by metals.

3.4.1.2 Acoustic Sensors

Acoustic sensors transform sound into electrical signals. These sensors are relatively
affordable, lightweight, and metal-compatible. However, their sensitivity to disturbance

is a significant issue.

3.4.1.3 Inertial Sensors

This technology enables the calculation of rotation along all three axes by utilizing Earth’s
gravity and the user’s movements. This type of sensor has recently been integrated into
most smartphones, tablets, and other gaming consoles and devices. Katzakis et al. [19]
used a smartphone with an inertial sensor to manipulate 3D objects within a virtual

reality platform. As shown in Figure 3.3

Figure 3.3: Manipulation of a 3D object on a screen using the inertial sensor of a smartphone

[19].

3.4.1.4 Haptic devices

Haptic devices enable users to engage in tactile interactions with virtual objects, adding
a sense of touch and physical feedback to digital experiences. This system provides the
user with the perception of touch, like a touchscreen, and the sensation of 3D movement
in space using a force feedback device.

Recently, Apple introduced a touchscreen that detects the degree of finger pressure. This

technology, called "3DTouch," available on the "iPhone 6S," allows for 3D interaction on
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a 2D screen (Figure 3.4). Rabbi et al. [20] outlined the characteristics of various sensors,

as presented in Table 3.1.

" LOMET Lald s

Figure 3.4: The principle of Apple 3DTouch technology [20]

Touch Senso

Fully Lamirated |1|'.!:|.|:-

Se?::;?f;ed Accuracy | DOF | Cost Advantage Drawbacks
Optical 3/6 High Precision, Complex Data Processing,
Sensor Accurate DOF Cheaper Fast Response occlusion

Magnetic Less accurate 6 Cheaper Non-Contact, Limited Sensitivity,
Sensor DOF p Cost-Effectiveness Complexity
Acoustic 3/6 Low Power, no distortion, Occlusion,
Less accurate Cheaper . )
Sensor DOF small noisy environments
Inertial 1/3 Portability, . .
Sensor Accurate DOF Cheaper Highly Responsive complex calibration
Hybrid 6 High accuracy, stable, higher power consumption,
techniques Accurate DOF Costly Quality and Calibration | expensive, high complexity.

Table 3.1: Summary of sensor-based-tracking characteristics [20]

3.4.2 Vision-based approaches

This type of approach involves determining the camera position using optical sensor data.

These optical sensors can be categorized into three types: infrared sensors, visible-light

sensors, and 3D-structure sensors. It is based on constructing a gesture’s possible ap-

pearances from different viewpoints and conditions. Several representations have been

proposed to recognize and model hand gestures. According to [21], two significant hand
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categories gesture representation exist: 3D models and appearance methods. As shown

Gesture Recognition approach
Based 3D model Based Apparence

3D Volumetric q
Geometric
Texture 3D model
Model

Figure 3.5: Hand Gesture Recognition Architecture according to [21]

in Figure 3.5.

Marker-based Geometry-Based
Model Silhouette Model

3D Model

Contour-Based Model-Based
Model Motion

silhouette

3.4.2.1 Appearance-based method

The principal idea of this approach is to identify the marked hands with readily identifiable
markers(such as gloves, colors, or coded targets) as proposed by Benbelkacem et al. [129]
to interact with the system. The colored gloves are designed to improve the recognition
of dynamic hand gestures by an RGB camera, allowing for natural interaction between

the user and the virtual environment(Figure 3.6).

Figure 3.6: The principle of Apple 3DTouch technology [20]

Bellarbi et al. [22]| introduced wearing small colored markers on the fingers of the
user’s hands (Figure 3.7) to manipulate digital documents projected onto a table. The
markers are made from colored paper to avoid being cumbersome for the user. However,
this technique enables the recognition of a limited set of static gestures for 2D interaction
and exhibits certain anomalies when the colors worn are confused with those in the scene.

On the other hand, numerous approaches have been proposed to interact naturally
with the machine using the hand without the need for the user to wear a marker or
sensor on their hand. This is achieved by processing images captured by the camera.
Some approaches have tackled the gesture recognition problem as a classification issue,

employing classification techniques. In this context, Neural networks, inspired by the
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Figure 3.7: The proposed work of Bellarbi et al. [22] based on color marker interaction technique

human brain’s architecture, have been widely adopted for gesture recognition. Most
studies such as [130-132] have leveraged neural networks to classify and recognize gestures
effectively. Hidden Markov Models(HMMs) are known as well for being able to capture
temporal relationships. Nevertheless, it is important to note that some of these techniques
may not be suitable for real-time scenarios due to computational complexity or extensive
training requirements. Chen et al. [133| proposed a Support Vector Machine algorithm
from machine learning that finds application in gesture recognition for crafting decision
boundaries that effectively separate different gesture categories in feature space.

The Representative feature descriptors have been employed to recognize hand gestures,
such as SIFT, SURF, LBP, BRIEF, and FERNs. The matching of inter-frame features is
accomplished through tree-based searching, hashing, or the full-search method. Similarly,
in the case of feature-based methods, the initial step involves identifying the matching
relationship between 2D-image features, followed by the estimation of the features’ 3D

world-frame coordinates.

3.4.2.2 3D Model-based Techniques

Several approaches have been proposed based on depth-sensing cameras, such as Mi-
crosoft Kinect and Asus’ Xtion, allowing a more accurate understanding of the spatial

relationships between objects and gestures(Figure 3.8).
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Figure 3.8: Some examples of depth-sensing Cameras: a) Creative Caméral. b) Xtion Pro. c)
Zed caméra. d) Kinect. e) Kinect V2

Wang et al. [134] introduced a 3Gear technique for gesture recognition approach that
capitalizes on the capabilities of the Kinect sensor. The core idea behind 3Gear is to
enable the recognition of user gestures by comparing them to a pre-defined database of
known gestures.

Further, Messaci et al. [23] employed a technique to interact within a virtual environment

for training technicians in the maintenance field.

Figure 3.9: Example of a user navigating within a virtual environment proposed in. [23]

Recently, most research has experienced a new level of robustness and accuracy due to

the advancement of deep learning techniques as the work of [135,136]. These techniques
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demonstrate effectiveness and robustness for 3D hand gesture recognition. However, the
captured devices require a fixed user position and do not offer complete mobility.

In October 2012, Holz et al. [24] developed the "Leap Motion," a new device for hand
gesture recognition and tracking. The device consists of software components and a
hardware controller. The controller, measuring 13 mm x 30 mm x 76 mm, is equipped
with two infrared cameras (Figure 3.10) and can detect and recognize hands within a

range of up to 50 cm.

Figure 3.10: Leap Motion devices [24].

Intel’s RealSense technology, introduced in July 2016, is a cutting-edge sensing so-
lution designed to enable depth perception, motion tracking, and gesture recognition.
The RealSense device is compact and incorporates three distinct types of sensors(RGB
camera with resolution 1080p; Infrared camera; Infrared Laser Projector) as shown in
Figure 3.11. Combining these three sensors allows the RealSense camera to capture both
the visual appearance of objects and their spatial position. This makes it particularly
well-suited for applications requiring gesture recognition, object tracking, hand tracking,

facial recognition [24].
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Figure 3.11: Intel RealSense cameras [24].

3.5 Deep learning hand pose estimation methods:

Hand pose estimation is an intriguing research topic in numerous applications, which has
progressed rapidly using deep learning. Many researchers have started to apply it to
computer vision, and hand pose estimation has been one of them.

Based on previously available statistics (around 60 surveys in the period 2015-2019
[137]) that prove the exciting topic of hand pose estimation throughout the progress of
deep learning techniques. So, we conducted a new taxonomy based on deep learning,
which is grouped into three categories depending on the input data: (a) Depth-based, (b)
Image-based, and (c¢) RGBD-based methods.

According to this taxonomy, each category contains two sub-categories; the third doesn’t
have a sub-category. The visualization of the proposed classification can be observed in

Figure 3.12.

3.5.1 Depth-based methods

As mentioned previously, this section has been divided into two sub-sections. The first one

uses 2D depth maps, and the second uses 3D representations to predict the 3D location
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Figure 3.12: The proposed taxonomy for 3D hand pose estimation
of each keypoint on the hand.

3.5.1.1 2D depth maps

They employed the depth information of the image as an input modality for predicting
the 3D hand joint locations. In one of the oldest published works, Tompson et al. [13§|
created accurate datasets of labeled ground-truth of hand gestures in an automatic pro-
cess depth image using a Linear-Blend-Skinning (LBS) hand model. Then, it used two
stages of a CNN architecture to extract dense features. This network employs heatmaps

of each joint and uses inverse kinematics (IK) to improve joint predictions.

Oberweger et al. [135] used different convolutional network structures to determine
the 3D joint location of the hand. The information is used as a prior model of hand pose
to add it to the network, which is a bottlenecking linear layer with fewer neurons that
can predict the position of the joint through depth imaging but doesn’t need an IK stage.
The same authors, in [139], improve the previous architecture by adding residual networks
(ResNet) into the network. They introduce data enhancement during the training and

hand localization by using a CNN detection refinement network to get better performance.

Zhou et al. [140] designed a novel network called the Hand Branch Ensemble Net-
work (HBE). The three branches of the network correspond to three parts of a hand:
the thumb, the index finger, and the rest of the fingers. The features of each branch are
grouped and projected to a low-dimensional layer by a similar bottleneck layer to ensure
the 3D coordinates of the hand joints.

Further, Du et al. [141] developed a pose regression network called (CrossInfoNet). The
network decomposes the hand into two main parts: palm pose estimation and finger pose

estimation. The network used heatmaps as constraints when getting structure from the
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2D depth maps to extract features. Sinha et al. [142]| presented 18 joints and 21 DOFs
of the hand using a regression method that took a cropped depth map image as input and
produced a low-dimensional activation feature that represents the global or local joint pa-
rameters of a hand pose and utilizes a matrix completion to output an activation feature
that is synchronized with the other features in a population database.

At the end, Wan et al. [143| proposed the "Crossing Nets" architecture aiming to learn
statistical relationships between 3D hand pose and corresponding depth images using two
generative deep learning GANs (Generative Adversarial Networks) and VAEs (Variation-
nal AutoEncoders) to design the latent space of depth images to the latent space of 3D
pose. The first section (VAEs) generates the latent space, resulting in the distribution of
Zy. In the second part, GANs are sampled from the distribution of the latent space of
depth images Zx. By adding a fully connected layer to map the two latent spaces. The
network matches the results of GANSs’ ability to generalize and the parts of VAEs that

are in charge of learning the pose and improving the pose estimation.

3.5.1.2 3D Representation

This sub-category groups all recent approaches used as input: 3D point clouds or 3D vox-
els, as in the work of Ge et al. [144] used an intrinsic camera to transform the 2D depth
images into 3D point clouds and project them onto three orthogonal planes to obtain
several views of each hand pose. They regressed 2D heatmaps from each projected image
using three identical CNNs to estimate the joint of each plane. All are combined to get
the final 3D hand pose.

On the other hand, Qe et al. [145] designed hierarchical PointNet that takes the point
cloud as input and extracts the hand’s main features hierarchically, allowing robust gen-
eralization. Besides, they normalized the sampled 3D points in an oriented bounding
box(OBB) by applying a Principle Component Analysis (PCA) on the voxel’s coordi-
nates and selecting the best three components. They rendered 3D shapes on those planes
to make the network more consistent and to learn 3D hand articulation easier. Ultimately,
they fed the depth maps into the network and obtained the probability for each joint in
each plane: xy, xz, and yz. Thus, they fused the probabilities by multiplying them to-
gether.

In later work, Ge el al. [146] designed a 3D CNN architecture to estimate 3D hand pose
in real-time, which takes a 3D volumetric as input to regress directly to 3D joint loca-
tions. Specifically, they defined the three 3D shapes with the Truncated Signed Distance
Function (TSDF). In TSDF, the distance of the voxel to the closest surface will be stored
in each voxel. Then, it fed into 3D CNN and three fully connected layers.
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Similarly, Moon et al. [147] developed a detection-based, voxel-to-voxel network(V2V)
that accepts as input a voxelized grid (3D voxelized depth map). Since the input and
output are in 3D, the proposed model is based on a 3D CNN encoder-decoder network
that performs all convolution and deconvolution operations in the 3D domain. The idea
is taken as input depth maps from different angles of a monocular hand with the same
3D pose. To approximate the 3D hand pose, the model must be trained from different
depth map inputs to produce the same pose. Therefore, a 3D point cloud has precisely
one feed into the network that contains three 3D CNN layers and three fully connected
layers. Also, training the network on the 3D point cloud of the hand directly to generate
the 3D pose via a 3D encoder-decoder is more accessible than massive datasets containing
all hand shapes.

After the accomplishment of residual blocks of ResNet network [148] in object classi-
fication, Moon et al. utilize ResNet blocks with a deeper network to optimize their
network performance. It outperformed previous techniques on well-known depth-based
hand datasets and was first placed in the HANDS 2017 frame-based 3D hand pose esti-
mation competition.

Likewise, Huang et al. [149] defined a structure-aware 3D hourglass network for hand
pose estimation. It takes a normalized binary voxel from a depth image as input and pro-
duces regressively 3D heatmaps for each joint. By using the hourglass as a fundamental
building block and adding additional hand skeleton constraints, the task of estimating
the hand is more accurate, and they approximate heatmaps for each bone, which serves

as an intermediary supervisor for numerous datasets.

Architecture Advantage Drawback

2 Tompson et al. [138] | Deep network, | The advantage is | Need some im-
g (LBS) model used IK as an inter- | provement: Op-
= mediate heatmap | timizing IK stage
% for a more robust | to minimize jitter
; hand estimation and use Kalman
« filter to clean up
ConvNet  feature

output.
Oberweger et al. [135] | Deep Prior Easier to imple- | Less accurate re-
ment and enhances | sults on ICVL
prediction quality dataset due to
noisy  annotation

data.
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Zhou et al. [140]

HBE network

Less  complexity,
faster, efficient for
applica-

better for

real-time
tions,
severe interactions

with objects

Learning the entire
hand with three
separate branches
may lead to inaccu-
racies and missing
data.

and missing stages,

preventing reset of

Du et al. [141] CrossInfoNet Accurate  results, | Outperforms using
won first place | depth maps com-
compared to state- | pared to 3D point-
of-the-art methods | based methods.

Sinha et al. [142] DeepHand Handles occlusion | Activation feature

estimation only ac-

curate in joint angle

the-art

settings domain.
é Ge et al. [150] Multi-view CNN Uses 3D data for | Some failures due
g real-time robust 3D | to the lack of a cali-
% coordinates, better | brated hand model,
% generalization ground truth, and
% temporal data.
Ge et al. [145] PointNet hierarchi- | Uses a normalized | Failure cases due
cal point cloud for effi- | to the absence of
cient 3D hand artic- | depth data near the
ulation learning hand joint.

Ge et al. [146] 3D CNN Achieves better info | Accuracy at
using a 3D point | 64x64x64 reso-
cloud, robust esti- | lution takes time,
mation with less er- | requires more
ror than state-of- | memory.

Moon et al. [147]

V2v-PoseNet

Uses a 3D voxelized
grid for accurate

joint prediction

Inaccuracies due
to the change from
voxel-to-voxel to

pixel-to-voxel.

Table 3.2: Summary of Depth-based hand pose estimation methods according to our proposed

taxonomy.
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3.5.2 Image based method

The image-based strategy has two sub-categories: appearance-based and model-driven. The first
aims to predict 3D key points location or heatmaps, while the second seeks to predict hand joints

such as pose and shape.

3.5.2.1 Appearance-based methods

It is a widely used approach for estimating the position of joints through RGB images. Zim-
mermann et al. [151] created a network for hand pose estimation employing four different deep
learning networks. The first used a CNN for hand segmentation to localize the hand in the image
using a lighter version of Wei et al.” s [152] human body detector trained on hand datasets. A
mask image, including the hand pixels, is predicted as the network output. The hand is clipped
and scaled to feed into "PoseNet," a detection-based network that generates score maps for each
joint. To estimate 3D coordinates, Zimmermann et al. constructed a network called PosePrior
that used a regression technique to predict 3D coordinates by transforming the canonical space
using a transformation matrix into a three-dimensional hand pose to estimate 3D coordinates.
Simon et al. [153| provided a method for estimating the hand pose. It is prone to occlusion
difficulties because it uses a multi-camera system called Multiview bootstrapping. They used
the Panoptic Studio at Carnegie Mellon University, which has over 500 cameras in a spherical
configuration (480 VGA and 30+ HD cameras). This approach used a keypoint estimator to
produce noisy labels in multiple hand views. The noisy detection is triangulated in 3D using
multiview geometry. Thus, the projected triangulation is employed in the training process to
improve the detector.

Furthermore, Spurr et al. [154] defined the cyclic concept(GAN) for generating a relationship
between RGB image and 3D hand pose, which took as input 2D keypoint data, RGB images,
and 2D depth images to evaluate the generality of the proposal method. It plans to develop a
cross-modal latent space by combining two VAE networks, one for estimating the pose latent
space and the other for generating the input data. Each VAE encodes RGB images and 3D
keypoints, respectively. Thus, the architecture contains two decoders for RGB images and 3D
joint configurations. The latent space was achieved by training the decoder of the 3D—3D and
the trained encoder of the RGB—RGB. The obtained latent space estimates 3D hand poses from
RGB images considered superior to the most advanced level under different settings.
Additionally, Theodoridis et al. [155] introduced a new cross-modal variational alignment
method comprising two variational autoencoder networks that aligned two latent spaces. Two
VAEs were trained independently during the training step to generate the RGB—3D and the
single 3D—3D latent space. The method used variational alignment to project the first network

latent space onto the single-modal VAE through an intermediary distribution.
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Most recently, Igbal et al. [30] presented a 2.5D pose representation from RGB images, sub-
sequently generating a 3D pose estimation. The proposed architecture consists of an hourglass
network that performs 2D latent space and depth maps to obtain a 2.5D representation using
a differentiable loss function. Notably, the training process was designed to teach the network
how to generate depth maps, eliminating the need for actual depth data. The experimental
results achieve a state-of-the-art 2D and 3D hand pose estimate in severe occlusion on numerous
challenging datasets.

Spurr et al. [156] based on the network mentioned above, which is deemed a robust network
due to its better quality in estimating 2.5D representation using the set of loss terms that have
been constructed. Those phrases implied biomechanical constraints (BMC) on 3D joint predic-
tions, which might be incorporated through training to produce anatomically realistic 3D hand
poses only using 2D supervision. Hence, the proposed approach results better when using the

biomechanical constraint than the state-of-the-art methods.

A closely related work in spirit to our contribution is the research conducted by Li et al. [29],
which introduced a novel and compressed latent distribution representation that directly links
and constrains the 2D and depth feature maps of each joint. This representation offers several
advantages, including addressing the channel correspondence issue and enhancing cross-dataset
accuracy. The global architecture design consists of an encoder-decoder network with two key
components. The first component estimates the 2D hand pose using a 2D latent representation.
The second component employs a Latent Distribution Representation(LDR) to jointly predict the
3D hand pose. The model is crafted to preserve feature map resolution while retaining critical
regional details. This approach aligns closely with our research objectives and demonstrates
the potential of novel representations and architectural designs in improving the accuracy and

robustness of 3D hand pose estimation.

3.5.2.2 Model-driven methods

According to this category, which included all methods that exploited the hand model parame-
ters, the work of Mueller et al. [157] proposed an architecture for estimating 3D hand tracking
for real-time using a combination of Convolutional Neural Networks (CNN) and a kinematic 3D
hand model. They built novel synthetic datasets called GeoConGan(Geometrically Consistent
CycleGAN) to convert computer-generated images to real images. The network consists of two
stages: CNN hand join regressor (RegNet) to predict a 2D hand heatmap and 3D joint locations.
RegNet output is fed into the next stage, "kinematic skeleton," to get both 2D and 3D predic-
tions while minimizing fitting energy to verify the anatomic accuracy of the obtained hand.

Guan et al. [158] defined a real-time method for estimating the 3D hand shape and pose from
a single RGB image. The MobileNetV3 network is generated to extract the main features from

an input image. It is considered one of the latest generations of efficient and lightweight CNN
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targeted for mobile devices. The output of the previous network was fed into a 3D regression
module to produce a camera, hand shape, and joint angle parameters employed by the 3D hand
model MANO to reconstruct the hand, which is projected to a 2D plane image using the camera

parameters.

In the same context, Ge et al. [159] built a Graph Convolutional Neural Network to conduct
linear regression on a full 3D mesh of the hand surface, which provides more information about the
3D hand shape and pose. Using a two-stacked hourglass network to extract global characteristics
from RGB images and 2D heatmaps. After that, a residual network was merged and encoded
as a latent feature vector. The output is fed into (GCNN), which comprises two fully connected
layers. The feature vector is translated into 80 vertices in a rough graph with 64 weak features
by applying the operations of convolving, upsampling, and assigning to a finer graph followed
by two other upsampling layers and four graphic convolutional layers. The network outputs
3D coordinates of 1280 mesh vertices. So, the 3D hand pose is linearly regressed from the 3D
hand mesh. Similarly, Taheri et al. [160] generated a large dataset containing complex 3D
objects. While "grasping" is the most common motion that is used in the collection of data.
The (GrabNet) model aims to understand how humans grasp and manipulate objects. It is
comprised of two modules: coarse prediction and refinement. The first conditional Variational
Autoencoder (cVAE) used a condition on the object shape encoded using the Basis Point Set
(BPS) to generate a 3D grasping hand and the coarse net estimate of a plausible grasp. A
refinement network improves contacts, which inputs an initial grasp and the distance D from
MANO vertices to the object mesh. By giving unknown 3D objects to the CoarseNet, it gets an
initial grasp and passes this to the refineNet to acquire the final grasp estimate.

Boukhayma et al. [161] presented ResNet50 as a deep convolutional encoder that takes as
the input RGB image and optionally a 2D joint keypoint to estimate the pose, shape, and view
parameters. It consists of the MANO hand model and a re-projection module to compute the
articulated mesh deformation hand model that predicts hand parameters. Then, they project the
estimated hand pose into the image domain and leverage 2D weak annotations as supervision.
At training time, the network used a made-up dataset and four "losses" on the encoder’s network

to reduce their size and only let the reconstruction of physically plausible hands happen.

59



CHAPTER 3. HANDLING OCCLUSION IN AUGMENTED REALITY: LITERATURE REVIEW

in moving egocen-

tric perspectives

Architecture Advantage Drawback
Zimmermann et al. [151] | CNN: Hand- | Learning 3D pose | Unavailability of
%D SegNet, A | prior permits to | annotated  huge
;3; mask, PoseNet, | predict  realistic | scale dataset with
% PosePrior and accurate pose. | realistic images.
D
g Spurr et al. [154] Variational =~ Au- | Learns a  us- | Inaccurate results
8. toencoder Net- | able hand model | on depth data.
works throughout pairs
of hand configura-
tions with many
modalities

Simon et al. [162] Multiview CNN Accurate results | Works in  most
compared to the | views, but not
depth sensor, | so well in views
offers complex | where the hand is
object interactions | obscured.

Theodoridis et al. [155] | Cross-modal Vari- | More  generality | Not specifically
ational alignment | and reproducibil- | developed to es-
ity testing two | timate 3D hand

datasets. pose.

Spurr et al. [156] Cross-modal Reduce the depth | Biomedical con-
ambiguity, en- | straints are more
abling the network | difficult to define.
to  utilize 2D
images effectively.

= Mueller et al. [157] CNN: ResNet50, | Robust to self- | Some failure cases
% kinematic ~ hand | occlusion and | occurs during in-
E’;_ model occlusion by ob- | teraction.

§D jects, particularly
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Guan et al. [158]

CNN: Mo-
bileNetV3, MANO

model

More efficient and

accurate results

for 3D hand shape

and pose.

The lack of pre-
diction on a big
dataset and the
need to optimize a
network to design

a hand model.

Ge et al. [159] Graph CNN Tested on a new | Requires Mocap
dataset and two | data to generate a
others that built | large dataset.
efficient and ap-
propriate 3D hand
mesh.

Taheri et al. [160] GrabNet: Create a Self-built | Doesn’t have

CoarseNet, Re-
fineNet, MANO

dataset
that

enough data and

(GRAB)

contains

variability to learn

human grasping of

synchronized im-
age data because
they’re focusing on

accurate MoCap.

objects
Boukhayma et al. [161] | ResNet50, MANO | Using concatena- | Adding the
model tion of encoder | MANO model
and decoder, al- | as the corrective
lows  estimating | blend shapes
pose with good | parameters for
generability on | fine-tuning to get

images in the wild

higher perfor-

marnce.

Table 3.3: Summary of Image-based methods for 3D hand pose estimation according to our
proposed taxonomy categorized by input modality.

3.5.3 RGBD-based methods

It is one of the most widely used approaches in 3D hand pose estimation due to the accurate
and robust results compared with the depth-based and image-based approaches that use RGB
images and depth values in input with different cases. As mentioned in the work of Dibra et

al. [163] defined an unsupervised system to prevent the need for the real world during training.
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Using both depth maps and RGB images to estimate the 3D hand pose. Initially, the network
extracts the background from a monocular RGB image, with the output being fed into SynthNet.
A CNN model trained explicitly on synthetic data that contains paired depth maps and RGB
images to infer joint rotation angles. Adding a depth loss component to SynthNet by combining
ground-truth paired depth maps and expected angles with a Point Cloud Sampled (PCL) from
the hand model. This helps them fine-tune the network to real monocular data.

Meuller et al. [164] designed an approach for estimating the 3D articulated hand pose from
the RGB-D sensor, separated into two sub-networks. The Hand localization network (HALNet)
is achieved using a CNN to provide the 2D image location of the center of the hand (image-level
heatmap) of the root. A 3D joint regression network (JORNet) was employed to regress root-
relative 3D joint locations from the cropped hand image. They estimated the joint angles of
the kinematic pose tracking framework based on the projected 3D joint positions and 2D joint
heatmaps to generate a spatially smooth and optimized pose.

In addition, Kazakos et al. [165] developed a framework called FuseNet that uses two distinct
deep learning streams for RGB images and depth disparity maps. The main idea is to fuse at
various levels: (a) input level, which can be generated by putting the fusion block after the
input layer; (b) feature level, which employs the fusion block after any convolution operation,
pooling, or fully-connected hidden layer; and (c) score level, which refers to the combination of
each stream’s prediction. The authors provide a learnable function termed the locally connected
fusion function. As a result, the performance of the two-stream architecture barely beats that
of the depth-based single-stream approach.

In the same context, Mofarreh et al. [166] designed an architecture based on hybrid networks
aiming to estimate 3D hand poses using RGBD images. The network consists of three convolution
layers and four fully connected layers to build the coordinates of joints. The output of the
previous network is fed into the SHNet to reduce the dimensionality of the estimated joints using
Principal Component Analysis (PCA). The second network includes popular networks such as
VGG16, DenseNet169, and MobileNet. The third one used the residual concept and referred to
RCNet.

Choi et al. [167] created a real-time technique based on local shape descriptors to retrieve
nearest neighbors from the annotated dataset to exploit RGB-D data. This data evaluates the
unknown pose parameters using a joint matrix factorization and completion (JMFC) method on

a hand pose library.
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Table 3.4: Summary of RGBD-based methods for 3D hand pose estimation according to our
proposed taxonomy categorized by input modality.

Architecture

Advantage

Drawback

poy3ow paseq-(HY

Dibra et al. [163]

CNN: SegNet,
SynthNet, PoseNet

Self-build synthetic
dataset with
realistically

rendered hand;
Strongly and
accurate results

Owing to
differences between
the ground truth
skeleton in
StereoDS and the
proposed hand
model skeleton.

Meuller et al. [164] CNN:HALNet, Perform well in Some failure cases
JORNet egocentric during hand-object-
viewpoints, interaction require
noticeable deep domain
occlusion, and scene adaptation.
clutter
Kazakos et al. [165] FuseNet Double stream FuseNet doesn’t

architecture
perform well during
training with depth
images.

improve their
results compared to
other approaches.

Mofarreh et
al. [166]

Hybrid deep
learning

More robust and
accurate to handle
occlusion problem

by incorporating

residual layers.

NYU datasets are
overfitted in the
face of more
complicated
networks, causing
the hand poses to
perform poorly.

Choi et al. [167]

Collaborative
filtering

Accurate results in
numerous cases of

hand configurations
under occlusion.

Utilizing nuclear
norm regularization
in JMFC algorithm

to achieve lower

rank factors.
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3.6 Datasets and Evaluation Measurement

In this section, we present the most available dataset in the hand pose estimation field and the

evaluation measure used to evaluate the effectiveness and robustness of the proposed method:

3.6.1 Benchmark Datasets

Many datasets have been created in hand pose estimation that played an essential role during
training. However, early datasets contain only depth data, and with the advent of accurate
methods, they need an extensive dataset. For that, most research focuses on building synthetic
and real data. For that, we present some significant datasets and discuss their characteristic in

detail:

e Stereo hand pose tracking benchmark(STB) [168]: is an RGBD dataset created us-
ing a stereo camera. It comprises 12 video sequences and 18,000 stereo image pairs (15,000
for training and 3,000 for evaluation), with 21 3D keypoint annotations and corresponding

depth maps.

e EgoDexter [169]: is RGB-D datasets obtained from egocentric viewpoints of hand in-
teraction with objects in a realistic chaotic area using an imaging device mounted to the
human body. It is made up of 4 sequences totaling 3190 frames. Because no training set

is given, EgoDexter is used for evaluation.

e Dexter+Object [170]: Like EgoDxter, this dataset concludes six test sequences with
two subjects. A static camera captures the images and contains the interaction between

the hand and a cuboid object and is primarily used for evaluation reasons.

e Rendered Hand pose Datasets(RHD) [151]: contains 43,986 hand images in to-
tal(41,258 for training and 2728 for evaluation). The RHD dataset comprises 20 par-
ticipants executing 39 actions, as well as depth maps, 2D and 3D location annotation
information, and segmentation masks. Because of the varying views, hand shapes, ob-
structed fingers, large visual variety, and noise. The dataset is ranked as one of the most

challenging difficulties.

e Freihand dataset [170]: is an RGB multiview dataset comprising 134K frames, 130K
for training, and 4K for evaluation. It is performed in ground-truth 3D locations of the

hand, 3D hand shape, hand mask, and the intrinsic camera matrix.

e ICVL Hand Pose Dataset [171]: The Imperial College Vision Lab dataset is one of

the most well-known in hand pose estimation. It is mainly composed of 332,5K depth
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images, 331K from training, and 1.5K from evaluation, and incorporates sequences from
10 different participants to take 26 distinct positions. The depth images are of excellent

quality, with clear outlines and minimal noise.

e NYU Hand Pose Dataset [165]: The dataset from New York University (NYU) has
82K images. The training sets contain 72K samples for one subject’s training, whereas the

test sets have 8.2K frames. It used ground truth to obtain the annotated images.

e BigHand 2.2M Benchmark Hand Dataset [172]: The largest hand pose dataset,
as its name suggests, contains 2.2 million depth images with annotated joint locations
generated from 10 different subjects employing kinematics and six 6D electromagnetic

SENsOors.

e MSRA15 [173]: This dataset contains around 76K RGBD images collected from 17 hand
gesture movements by Intel’s Creative Interactive Gesture Camera across 9 individuals.
The training is done on eight different subjects, and the rest is used for evaluation. The

small size of this dataset is a drawback, and the annotations have a high mistake rate.

e HandNet Dataset [173]: One of the most comprehensive datasets in the depth category.
They used kinematic sensors with ten different individuals to produce diverse hand sizes,
half male and half female and contained 202K training frames, 10K testing frames, and

2.7K validation samples.

e GANerated Hand Dataset [169]: One of the newest RGB-based datasets with inter-
action objects is built to estimate the hand pose while it is obscured. It comprises around
330k frames of synthesized hand shapes annotated in 3D using a model. The hand pose
samples were captured using kinematic electromagnetic sensors. In addition, CycleGAN
was used to make these computer-generated images look real. They used several back-
grounds behind the hand to create a realistic scene. Artificial objects were also placed on

the hand to provide occlusion.

e HANDS 2017 [174]: The dataset is generated by selecting images and sequences from
the BigHand2.2M and First-Person Hand Action (FHAD)datasets. It comprises depth im-
ages, 957K images for the training set with 5 subjects, and 295K frames for the testing set
with 5 unseen subjects. It combines various hand configurations, hand shapes, viewpoints,

and occlusions.

e SynthHand5M [169]: This dataset employs Manuel Bastion LAB to create a synthetic

hand model with 5 million depth images (4.5 million for training and 500 thousand for
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testing). It has joint angle and segmentation masks, as well as annotations of 3D joint
locations with 26 DOFs and 1193 3D hand meshes. As shown in table 5 demonstrates the

above datasets with common properties.

SynthHands GANerated EgoDexter RHD FreiHand

Figure 3.13: Example of different datasets for estimation hand pose.
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3.6.2 Evaluation Metrics

To evaluate 3D hand pose estimation methods, some metrics are viral. There are three weadly

measurements:

e The first one is End-Point-Error(EPE): It is one of the most used metrics for estimating
hand pose. It is based on the average Euclidean distance from the predicted to the ground
truth over all joints in one image. The measured unit is (in mm). The formula is mentioned
in (1).

jpred _ jgt (31)

1 J
EPE:J;

Where J is the number of estimated keypoints, and jP"¢ are the 3D coordinates of the

estimated and actual j9° keypoints, respectively.

e The second is employed for assessing the performance of 2D and 3D hand pose, which
is Pourcentage of Correct Keypoints(PCK) [176] as in equation (2): is measures
the accuracy of localization of distinct keypoints within a matching threshold. Each test
image head segment length is outperformed as the threshold, denoted as PCK@Q.5. If the
mean percentage of predicted joint positions and ground truth is less than 0.2 times the
torso diameter, PCK is called PCK@(.2. The higher the PCK value, the better model

performance is regarded.

pre gt
wj wj

J
1
PCE, ==Y 6

Where w?re represents the predicted 3D coordinates of the ;" keypoint,wjgt is its actual

< a) (3.2)

3D keypoints, and o is an indicate function.

e The last one AUC (Area Under the Curve) [177]on the pourcentage of correct key-
points(PCK) under different error thresholds. As demonstrated in equation (3)

AUCy = / PCK/ (3.3)

3.7 Bibliometric analysis of related works using Vos

Viewer analysis

3.7.1 VosViewer Overview

The investigation into methodologies for enhancing hand pose estimation encompassed an ex-
ploration of shifts in the interconnection among essential terms within research article titles,

abstracts, and keywords. To establish a reference point, particular emphasis was placed on the
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year 2010, a critical juncture marked by the widespread integration of technological advancements
in computer vision and machine learning techniques for hand pose estimation. This temporal
milestone played a pivotal role in comprehending the trajectory of these methodologies as they
evolved in the realm of hand estimation. Initially, a collection of keywords was gathered, in-
cluding those provided by the authors of each research paper within the specified time frame.
However, considering the potential variations in keyword formulation across authors, a new set
of terms was introduced to categorize these keywords. Each term in this set represents a distinct
category of keywords and is referred to as an "item" in VOSviewer terminology. The subsequent
analysis focused on assessing the strength of correlation among these items. To illustrate the
relationships among these items, the VOSviewer tool (version 1.6.19) was utilized, involving the
application of a similarity measure to quantify the level of correlation between two items.

VOSviewer offers a variety of visualization tools, such as co-occurrence maps, term maps, and
network maps, which provide researchers with valuable insights into the structure and dynam-
ics of scientific knowledge domains [178]. These visual representations help researchers identify
key research areas, visualize author collaboration networks, and track the evolution of research
themes over time. By presenting complex bibliometric data in an easily understandable manner,
VOSviewer makes it easier for researchers to gain a deep understanding of the research landscape.
Its effectiveness has led to its widespread adoption in bibliometric and scientometric studies. It
provides valuable assistance in conducting data-driven analyses, equipping researchers with vi-
tal tools to effectively explore and make sense of extensive scholarly literature. By leveraging
the insights derived from VOSviewer analyses, researchers can actively contribute to advancing

knowledge and fostering innovation within their specific domains [178].

3.7.2 The Most Cited Documents ranking

In the context of individual research papers, the extensively cited publications cover a wide range
of keywords and subject areas that are pertinent to the topic of research papers related to the
assessment and improvement of hand pose estimation. These well-referenced papers seem to
touch upon various aspects and subfields within this research domain, suggesting that they are
influential and provide valuable insights across different areas of hand pose estimation research.
Table 3.6 presents the top thirteen documents with the highest citation counts. The documents
authored by Pisharady et al.in 2015 has received the highest number of citation. The most
frequently cited article is titled "Recent methods and databases in vision-based hand gesture

recognition : A review". This article has been cited 248 times.

In the second position, the research paper by Meuller et al. in 2019, titled "Real-time pose
and shape reconstruction of two interacting hands with a single depth camera", delves into the
substantial aspects of estimation of both the pose and shape of the hand from a single depth

camera. This method stands out for its ability to simultaneously track and represent the 3D
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positions and orientations of each hand’s joints and fingers, capturing the intricate details of
hand movements and interactions. Moreover, the approach goes beyond pose reconstruction by
also focusing on accurately reconstructing the 3D shapes of the hands, including their fingers
and palms. This article leads to handling the pose estimation challenges. By emphasizing the
simultaneous tracking of interacting hands contributes significantly to improving the realism and
functionality of various interactive and immersive technologies.

In the same context, the documents published in 2019 by Li et al. titled" A survey on 3D hand
pose estimation : Cameras, methods, and datasets", surveys on 3D hand pose estimation rep-
resent a thorough and insightful examination of this dynamic field. Their review is structured
around three essential pillars: cameras, methods, and datasets. In terms of camera technologies,
the authors meticulously explore the advantages and limitations of various camera types, includ-
ing depth cameras and RGB cameras, shedding light on their roles in achieving precise hand
pose estimations. From traditional computer vision techniques to cutting-edge deep learning
approaches, Li et al. offer a comprehensive overview, highlighting the strengths and weaknesses
of each method and their adaptability to different real-world scenarios. The significance of this
paper summarizing the existing research is that the authors identify challenges and propose
future directions. They underscore the relevance of 3D hand pose estimation in practical appli-

cations, highlighting its potential to reshape user experiences and enable innovative technologies.

The bibliometric investigation aimed to delve into the scholarly influence and impact of research
articles about the domain of hand pose estimation. The quantification of citations, a pivotal
gauge of research’s importance and acknowledgment, assumed the role of the primary metric for
assessing each publication’s significance. Through an examination of citation dispersion across
these articles, valuable discernments emerged regarding the prominence of specific works. Arti-
cles with a substantial citation count reflect a robust resonance within the research community,
indicative of groundbreaking contributions or pioneering insights. On the flip side, articles with
a lower number of citations might indicate areas with limited impact or research that is still
in its nascent stages. Furthermore, our analysis went beyond just counting citations to include
temporal citation patterns. This material aspect provided a more profound understanding of the

long-term relevance and sustainability of the articles.
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Figure 3.14: A bibliometric analysis of publications related to the topic of Hand Pose estima-
tion. The size of each node (represented as circles) corresponds to the number of documents
associated with a particular author for six years(From 2018 to 2023).

3.7.3 The Most Cited Authors bibliographic analysis

Table 3.7 provides a visual representation of the top 15 authors who have exhibited exceptional
productivity in document output and the top 15 authors who have accumulated substantial ci-
tation counts. This ranking assessment was carried out using a comprehensive counting method
within VOSViewer, where each document or citation was considered equally significant, regard-
less of the total number of authors involved in a particular document. The citation analysis
was conducted without imposing a minimum threshold for the number of documents. Notably,
Pisharady et al. emerged as the most highly cited author in hand estimation from 2015 to 2023,
as evidenced by the impressive number of citations attributed to their work.

Using VOSViewer, we performed a co-authorship analysis and created clusters using the asso-
ciation strength technique. To be included, authors had to have a minimum of one document,
leading to 199 authors meeting this criterion. In addition, each author from the list is promi-
nently featured within the interconnected central clusters, using blue, red, green, yellow, and
pink colors. These clusters represent groups of authors with strong collaborative relationships,
and authors who frequently collaborate tend to be visually positioned close to each other in the

visualization.
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Table 3.6: Examples of the most cited journal paper on "hand pose estimation" based on total

citation parameter.

Document Title Authors Year Total Citation Tszz:Lgfhk
Recent methods and .
databases in vision-based Péjﬁ?eii’ %IK’ 2015 248 1176
hand gesture recognition: A review .
Real-time pose and shape reconstruction
of two interacting hands with Mueller & al. 2019 83 21771
a single depth camera
Pose guided structured region
ensemble network for Chen et al. 2020 80 10383
cascaded hand pose estimation
SHPR-Net: Deep Semantic Hand Pose
Regression From Point Clouds Chen & al. 2018 73 3586
Joint Hand Detection and
Rotation Estimation Using CNN Deng & al. 2018 70 4352
Hand sign language recognition Rastgoo & al 2020 69 1087
using multi-view hand skeleton ’
Feature Boosting Network .
for 3D Pose Estimation Liu & al 2020 69 2899
Articulated and generalized Gaussian .
kernel correlation for human pose estimation Ding & al. 2016 69 4352
A survey on 3D hand pose estimation: .
Cameras, methods, and datasets Li & al. 2019 56 2206
Real-Time 3D Hand Pose
Estimation with 3D Convolutional Neural Networks Ge & al. 2019 55 48345
Depth-Based Hand Pose S
Estimation: Methods, Data, and Challenges Supanci¢ & al. 2018 51 8427
RGB2Hands: Real-Time Tracking of
3D Hand Interactions from Wang & al. 2020 43 13408
Monocular RGB Video
72
Latent regression forest: Tang et al 2017 37 17497

Structured estimation of 3D hand poses
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Table 3.7: Top 15 most cited authors on Hand pose estimation topic from (2018-2023)

Ranking Authors Total Citations rg?ﬂizlgalk
oo PTG p
02 Rastgo r. 136 46
02 Meuller f. 83 67
3 Chen x. 80 131
4 Chen x. 73 104
) Deng x. 2018 70
6 Rastgoo & al. 70 5
7 Liu t& al. 69 25
8 Wang g.& al. 69 2
9 Gomez-denoso f. 68 1
10 Lir. 66 37
11 Ge L 2018 51
12 Supancic j.s 61 29
13 Fourure d. 26 51
14 grzejszczak.t 55 7
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3.7.4 Keywords Occurrence network for "Hand Pose estimation
Topic"

By utilizing Author Keyword analysis in VOSViewer, a total of 1678 keywords were identified.
The top 109 keywords, presented in Figure 3.16 and sorted by their overall frequency, encompass
various terms from various fields, including Engineering, Computer science, and Medical Science,
among others. Through VOSViewer co-occurrence analysis, these author keywords were visually
represented and interconnected. To simplify the visualization and focus on a more manageable
set of keywords, only terms that occurred 17 times or more were retained, resulting in a total
of 22 terms organized into four clusters (indicated by green, purple, yellow, and blue colors in
Figure 3.17). Clusters represent groups of closely connected nodes, and terms that frequently
appear together tend to be positioned closer to each other in the visualization. These clusters
were formed using the association strength method. These clusters identify thematic areas within
your dataset.

For that, co-occurrence analysis using VOSviewer is a valuable method for identifying research
themes, trends, and patterns within a dataset of scholarly publications. It can provide insights
into the relationships between keywords and help researchers discover meaningful associations

and research directions.
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3.8 Discussion

In this section, we discuss all the obtained results; Firstly, we respond to the first research
question(RQ1) and acquire a thorough comprehension of the research, it is crucial to determine
the research objective according to our classification. Table 3.4 mentions that the largest focus
of researchers has been on RQ1, RQ2, RQ3, RQ4, and RQ5. There is a significant difference
between existing research in terms of accuracy and time speed as provided in the literature.
The following are descriptions of the research objective categories corresponding to the research

questions:

1. Recently, because of the interesting topic of 3D hand pose estimation and its application
in the computer vision field. So, the main objective of most researchers is to develop meth-
ods aimed at resolving the abovementioned challenges by learning human hands during

interaction with virtual objects using deep learning algorithms.

2. Depending on Q2. Most researchers in the hand pose estimation focus on building archi-
tectures based on different convolutional neural networks or popular architectures such as
ResNet50, MobileNet, Graph CNN, or Cross-modal.

3. For QQ3, in order to increase the efficiency and reliability of the proposed method, which
is dependent on the quality and quantity of training data. Datasets have a significant
role in DNN-based hand pose estimation. The majority of researchers evaluated their
approaches on accessible synthetic datasets, which are less expensive to develop than real-

world datasets that use advanced hardware (such as depth cameras).

4. To respond to the Q4, All defined methods used three commonly popular metrics for eval-
uation quantitatively: Mean End-Point-Error(mEPE), Percentage of Correct Keypoints
(PCK) which is considered an accuracy measure and sub-metric "AUC" is the Area Under
the Curve on PCK for different thresholds, and End-Point-Error(EPE)is a common error

metric. More details are explained in section 3.6.

5. In RQ5. The other case studies that are considered to be compared with each proposed
approach are dependent on self-reliability, accuracy, effectiveness, and most challenges to

be solved in each paper.

6. To respond to RQ6, most authors aimed to resolve one of the available challenges faced by
the issue of hand estimation such as high articulation, data labeling, low resolution, hand

gesture, or occlusion. In our research question, we focus on the occlusion challenge.

7. According to RQ7, the concept of real-time requirements is necessary for hand estimation,
especially on hand-object interaction, and our research objective, we focus on this aspect

due to the lack of research to predict the human pose in real-time.
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As seen in Table 3.8 and the proposed QOS parameters, most researchers are focused on 4 or
5 primary questions while the rest have overlooked them. From the above Qos requirements
and their probability of occurrence in the literature, it is essential to identify the relevant and

valuable Qos factors and their importance percentage.

Our proposed taxonomy above highlights extant research in the field of hand estimation, which
is a topic of great interest in recent years. Hand pose systems may accurately track the move-
ments of the hand in a relatively controlled environment in real time. On the other hand, many
obstacles have been faced during the estimation of hand pose, especially in open and complicated

settings where the number of computing resources required and these issues have not yet been

resolved.
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Figure 3.16: The dispersion of End-point error using (a) CNN architecture on BigHand dataset
(above graph) and (b) Egocentric dataset (bellow graph) [25]

From the analysis above of our classification, the key to depth-based methods is to use depth
information (2D depth map or 3D representation) to estimate the position of each joint in hand.
It is generally considered a robust approach that offers simple concepts, implementation, and
high interpretability. However, the hardware requirements are too expensive, and actual use
cases are severely limited. Thus, due to the unavailability of depth data, hand pose methods
from single RGB images were developed rapidly.

RGB-based approaches are easier to implement, and a suitable generalization of the model is
used everywhere and considered a standard method using deep learning. It has the advantage of
reducing the dimensionality of input from 2.5D to 2D to produce methods dramatically simple.
Further, it does not require expensive hardware equipment and fewer instructions on implemen-
tation scenarios. The data required to train an image-based is significantly greater than that
required to train an equivalent network utilizing depth maps.

RGBD-based methods aim to associate two last categories. It is taken as input, an RGB image
and depth value is used through estimating. As a result, it achieves better results and accurate

approximation to tackle most challenges, such as occlusion, compared to others and alleviates
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Approach RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7

Zhou et al [140] HBE network v v v v v
Du et al [141] CrossInfoNet v v v v v
Oberweger et al [139] DeepPrior++4 v v v v v
Ge et al [150] MultiView CNN v v oV v
Ge et al [146) 3D CNN S ooV Y VY
Moon et al [147] V2V-PoseNet v v oV v v
Spurr et al [154] Cross-modal v v v v

Igbal et al [162] CNN v v v v v
Meuller et al [157] CNN v VR v v
Guan et al [158] MobileNetV3-Small v VR v v
Ge et al [159] Graph CNN v v oV v v
Zimmermann et al [151] CNN: HandSegNet, PoseNet v/ v v v v
Dibra et al [163] CNNs v v o v v
Mofarreh et al [166] Hybrid Deep Learning v v o v v
Wan et al [143] CrossingNets v v v v v
Theodoridis et al [155] Cross Modal v v Vv v v

Table 3.8: Desired objectives in the investigated researchers.
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Depth ambiguity.

The second issue examined in our research is the results collected in Table 9 when we compare
the methods that used either 2D CNN or 3D CNN for estimating the location of each joint. The
input data to 3D CNN is a 3D representation(Point clouds or 3D voxels). The obtained precision
in 3D CNN is more robust than in 2D CNN. Therefore, the error calculated in 3D CNN is less
than in 2D CNN. Besides, The efficiency of 3D CNN methods is superior to that of 2D CNN
due to the 3D data that has more dimensions than the 2D data. So, the calculation time is higher.

The third issue in this study concerned the estimation of 3D pose methods quantitatively
using prevalent challenges datasets: MSRA, NYU, ICVL, etc. We classify each 3D hand pose
method using a popular database during training. We obtained excellent accuracy and fewer
errors as mentioned in the work of Oberweger et al. tested their network called "PosePrior"
in the ICVL dataset(AUC is 90% and EPE is 10mm). The work of Igbal et al. gets higher
precision (99%). In [156], the authors are training on two datasets(RHD is 19.73 and STB is 8.56),
and the average 3D error is high compared to other datasets. On the other hand, the accuracy is
very high (respectively on STB is 85% and NYU is 98%). As shown in Table 3.9. The results in
accuracy using the evaluation metric Area Under the Curve(AUC) and End Point End(EPE) to
compute the mean error. Further, figure 3.17 shows the main results in two benchmark datasets
(BigHands and egocentric datasets)using CNN architecture. Figure 3.17(top) is tested on the
BigHand dataset, which has released more than 90% accuracy and less than 10mm(Threshold
error) for 3D distance error. In contrast, the results in Figure (bottom) The egocentric dataset

showed more than 30% of 3D distance errors being less than 10mm.
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Table 3.9: Results of 3D hand pose estimation approaches according to our proposed taxonomy
regarding accuracy and benchmark datasets.

Approaches Literature Evaluation Metrics CNN types Test Speed Datasets

mEPE AUC 2D 3D

Zhou et al [140] 6.24 - v 673
& Du et al [141] 7.20 - v 124.5
i Sinha et al [141] 16.35 - v 32
5 ICVL, HANDS2017
<)
10.4 0.920
E Oberweger et al [139] v 500
o 19.73  0.998
10.2
Wan et al [143] 15.5 - v 90.9
12.2
Tompson et al. [138] 4.10 - v 24.9 Self-built dataset
& 6.30 ICVL
= Ge et al [144] - - v 82
Z 7.70 MSRA15
o5}
S
= 14.1 MSRA15
5) Ge et al [146] - - v 215
- 9.58 NYU
o
0.580 EgoDexter
Moon et al [147] - 0.994 - v 3.5 STR
0.710 Dexter+Object
9.1 NYU
Moon et al [147] 6.3 - - v 41.8 ICVL
7.7 MSRA
19.73 0.849 RHD
. Spurr et al [156] v - -
E 856 0.983 STB
iy
;g Continued on the next page
=
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15.61 0.907 RHD
Theodoridis et al. [154] -
6.93 0.997 STB
13.14 0.943 RHD
0.994 STB
Igbal et al [162] 150
- 0.580 EgoDexter
- 0.710 Dexter+Object
) 5.00 - RHP
Zimmermann et al [151] -
- 0.57 Dexter+Object
- 0.965 Stereo
g
é Meuller et al [157] 0.80 - Ganerated
o5}
% - 0.54 Dexter+Object
—
3
[
0.994 STB
<& Guan et al [158] 110
- 0.741 FreiHand
6.37 0.920 STB
Ge et al [159] 50
- 0.998 RHD
45.33 0.674 EgoDext
Boukhayma et al [161] - goexter
25.53 0.763 Dexter+Object
gol 0.994 St
o Dibra ct al [163] . e
2 - 0.967 Senze3D
/M .
E.g Sridhar et al [179] 13.24 - 10 fingerwave
17.4 0.74 NYU
Deng et al [180] 30
12.1 0.96 ICVL

3.9 Conclusion

In this chapter, we address the occlusion challenges by employing classical methods that perform

numerous techniques to handle this issue. Since the invention of deep learning algorithms,
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breakthrough results have been achieved mainly in hand pose estimation. Earlier methods have
some limitations regarding hardware and smaller data used during training. Therefore, recent
approaches based on DNNs are robust, efficient, accurate, and have better generalization. Thus,
we explained the significant challenges and classified the most approaches using our proposal
taxonomy, noticing the advantages and drawbacks of each work. Then, we presented benchmark
datasets with their essential characteristics and evaluation metrics necessary to evaluate the
robustness and efficiency of methods. Finally, we listed some works and discussed the results

regarding speed(fps), metrics, datasets, and type of CNN architecture.
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Chapter 4

Real time handling occlusion in
augmented reality based on

photogrammetry

4.1 Introduction

Handling occlusion in augmented reality(AR) is a critical challenge to create realistic and immer-
sive AR experiences. Occlusion refers to the ability of virtual objects to appear behind real-world
objects, creating a sense of depth and realism in the AR scene. The traditional static vision of
AR consists of interaction and navigation through human beings using computer screens. In this
context, this chapter focuses on new technology based on photogrammetry and AR strengthen-
ing the possibilities in 3D data visualization, navigation, and interaction that address occlusion
challenges. The proposed approach falls under the category of a model-based approach, which

involves creating an accurate 3D model of real-world objects, typically performed offline.

AR primarily emphasizes real-time processing, high-speed performance, and the seamless
integration of virtual elements with rough models of the real world. On the other hand, pho-
togrammetry contributes to the visual realism of the environment in the augmented 3D world.
It serves as a powerful tool for extracting precise geometric information from digital imagery and
facilitating the rapid, efficient, and accurate alignment of 3D models with imagery data. This
synergy between AR and photogrammetry holds promise for enhancing the quality and realism

of augmented reality experiences.
Our first contribution was published in a chapter in the book of the Mediterranean Inter-

national Conference on Pattern Recognition and Artificial Intelligence (MedPRAI), 2021. The
published paper is entitled Real-Time Handling of Occlusion in Augmented Reality Based on
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Photogrammetry '. Please visit this link for more information.

4.1.1 Challenges

When striving to achieve a seamless augmented reality experience, three primary categories of

challenges emerge:

e Illumination Problems: These issues pertain to ensuring consistent lighting conditions
between the virtual and real environments. It’s essential to render both the virtual and

real objects with matching lighting conditions to maintain realism.

e Camera Parameter Estimation: When aligning the actual camera with virtual objects,
challenges arise in accurately estimating camera parameters. This involves addressing

registration problems to correctly position virtual objects within the real-world scene.

e Occlusion Management: To provide users with a natural viewing experience, occlusion
problems need to be effectively managed. Researchers have proposed various approaches
to tackle this issue, including contour-based methods, depth-based techniques, and 3D

reconstruction-based methods [181].

Addressing these challenges is crucial for creating compelling augmented reality applications that
seamlessly blend virtual and real elements.

Recently, establishing accurate relationships between virtual and real objects has gained signif-
icant importance. The issue of occlusion, particularly in AR research, has garnered consider-
able attention. The ability to correctly depict occlusion between virtual and real objects is of
paramount importance for users’ comprehension and their perception that virtual objects truly
coexist within the physical world. This aspect holds immense relevance for achieving precise
and effective augmented reality systems [182]. Consequently, an AR application must possess
the capability to autonomously assess and display occlusion between virtual and real objects to

deliver a convincing and immersive experience.

4.2 System Overview

This paper introduces an innovative approach aimed at addressing real-time occlusion challenges
by harnessing the synergy of two cutting-edge technologies: photogrammetry and Augmented
Reality(AR). The primary objective is to tackle issues related to the placement of virtual ob-
jects within the context of the real environment in AR systems. Our proposed methodology is

structured into two distinct stages:

Thttps://link.springer.com /chapter/10.1007/978-3-031-04112-9 4
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Figure 4.1: System overview of the proposed approach.

e Photogrammetric 3D Modeling: Our initial phase revolves around employing close-
range photogrammetry techniques to construct a comprehensive 3D model of the real-world
scene. This process meticulously follows the pipeline outlined by Alicevision’s Meshroom,
comprising a structured sequence of 12 nodes. This meticulous modeling approach forms

the foundational framework upon which our occlusion-handling solution is built.

e AR Application Development with Occlusion Handling: The core of our approach
relies on a marker-less tracking system that enables the extraction of key feature points
from the real-time, real-world environment, all meticulously registered within the physical
space. To facilitate this, we leverage the capabilities of the Vuforia Software Development
Kit(SDK), which is instrumental in tracking our model target, obtained through the pho-

togrammetry process for ensuring accurate disparity and accommodating high complexity.

4.2.1 Photogrammertic 3D modeling

Photogrammetry, often hailed as the art and science of deriving precise measurements from pho-
tographs, serves as the cornerstone of our approach. It operates on the fundamental principle

of extracting the spatial geometry of a scene from an assortment of unordered photographs or
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videos. While traditional photography reduces the complexity of a three-dimensional scene into
a two-dimensional plane, the photogrammetry technique reconstructs three-dimensional mod-
els from a collection of images. Our focus lies on the meticulous application of Close-Range
Photogrammetry, a specialized branch predominantly employed in industrial contexts where
non-contact measurements are required with a high degree of precision, typically ranging from
(1 em? to 1 mm?).

Photogrammetry is the science of making measurements from photographs. It infers the
geometry of a scene from a set of unordered photographs or videos. Photography is the projection
of a 3D scene into a 2D plane, losing depth information. It aims to create three-dimensional
models from a set of images using a known pipeline of photogrammetry. It is classified into three

categories: far-range, close-range, and very close-range. As shown in Figure 4.2.

PHOTOGRAMMETRY
‘ FAR-RANGE ‘ ‘ CLOSE-RANGE ‘ ‘ VERY CLOSE-RANGE
‘ Aerial ‘ ‘ Terrestrial ‘

Figure 4.2: Types of photogrammetry pipeline

In this paper, we are interested in Close-range photogrammetry generally applied for indus-
trial applications where non-contact measurements have to be done with a range varying between
(1 em? to 1 mm?). The essence of Close-Range Photogrammetry lies in capturing photographs
using digital cameras or even cell phones from relative proximity, typically within a range of 300
meters from the subject. Within this framework, we involve a well-established photogrammetric
pipeline, a structured sequence of default nodes that collectively contribute to the creation of

precise 3D models.
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Figure 4.3: The flow diagram of photogrammetric.
Cameralnit

represents the essential starting point within the default photogrammetric pipeline. At this initial
stage, the process ingests a series of photographs, each captured from distinct viewpoints, serving
as the raw data source for subsequent analysis. The outcome of this phase is the generation of

" which encapsulate critical information vital for

(.sfm) files, denoting "Structure from Motion,'
the photogrammetric reconstruction process.
One of the key tasks undertaken during Camera Initialization is the meticulous characteri-
zation of each camera associated with the input photographs. These cameras are defined by a
comprehensive set of parameters, including image size (specifying image dimensions in pixels), fo-
cal length (determining optical characteristics), intrinsic and extrinsic parameters (encompassing
internal properties and external positioning), bundle point coordinates (optimized for accuracy),
distortion coefficients (used for distortion correction), and camera/sensor type (indicating the
specific camera model) [183].
Feature extraction
Feature Extraction plays a pivotal role in the photogrammetric pipeline, with its primary ob-
jective being the extraction of feature sets from pixels that remain relatively invariant despite
variations in camera viewpoints during image capture. This ensures that the image scene’s char-
acteristics contain consistent features across all images, a crucial aspect of the photogrammetric
process. To achieve this, the SIFT (Scale-Invariant Feature Transform) system emerges as a
highly effective and widely adopted method for feature detection [183].
The SIFT algorithm can be distilled into four key steps, each contributing to the extraction of

robust and scale-invariant features:

1. Scale Space Generation: This step involves producing a scale space for an image by
convolving it with a Gaussian kernel at different scales, a process known as blurring. The
application of the Difference of Gaussian (DoG) technique further refines this process,

generating a set of images from the initially blurred ones.
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2. Accurate Keypoint Localization: Once the scale space is established, the algorithm
proceeds to pinpoint the precise locations of keypoints within the images. These keypoints

represent distinctive and robust features within the scene.

3. Orientation Assignment: After locating keypoints, an orientation is assigned to each
of them. This step enriches the feature description, ensuring that keypoints possess not

only location and scale information but also orientation information.

4. Descriptor Computation: The final critical step involves computing a descriptor for the
local image region surrounding each keypoint. These descriptors are meticulously designed
to be highly distinctive and invariant, making them resistant to variations such as changes
in viewpoint and illumination. Notably, these descriptors are stored in a compact 128-bit

format.

Image matching
This node represents a crucial stage within the photogrammetric process, with the primary objec-
tive of identifying and pairing images that share similar portions of the scene. This task doesn’t
involve a detailed feature-by-feature resolution but rather relies on image retrieval methods to
find pairs of images that contain comparable information. The overarching aim is to construct a
dense image descriptor, facilitating the calculation of distances between all such descriptors.

To achieve this, the approach employs a tree-based vocabulary method, widely recognized

for its efficacy in image matching. The process unfolds as follows:

1. Dense Image Descriptor Generation: Initially, the focus is on generating dense image
descriptors. These descriptors encapsulate the salient characteristics of the images and are

crucial for facilitating efficient image matching.

2. Vocabulary of Tree Approach: The process proceeds by employing a vocabulary of
tree structures. These trees serve as a structured representation of the descriptors. Each
node within these trees corresponds to a specific feature descriptor, and the leaves of the

trees are associated with individual feature descriptors.

3. Descriptor Decomposition: After feature descriptors are extracted and compared, their
descriptors are decomposed to the nodes of the vocabulary trees. This step is instrumental
in identifying and categorizing descriptors based on their structural attributes within the
trees [183].

Feature Matching
This stage offers a pivotal stage in the photogrammetric process, focused on establishing robust
correspondences between features in pairs of images that are both accurate and well-suited for
this purpose. This critical phase unfolds in a sequence of steps to ensure the reliability of feature

matches:
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1. Photometric Matching: Initially, Feature Matching sets out to achieve photometric
matches between sets of feature descriptors within two input images. For each feature
detected in the first image, a list of potential matching candidates in the second image
is generated. This step aims to identify feature correspondences purely based on visual

appearance.

2. Refinement through Candidate Filtering: To enhance the accuracy of feature match-
ing, a rigorous filtering process is applied to the candidate matches. Each feature in the
first image is cross-referenced with a list of rival features in the second image. Poor match-
ing candidates are systematically eliminated, ensuring that only strong and reliable feature
matches persist. This step is underpinned by the assumption that there is one suitable

feature match in the second image for each feature in the first image.

3. Brute Force Descriptor Identification: Feature Matching leverages the brute force
method to identify the two closest descriptors in the second image for every feature in
the first image. This meticulous matching approach contributes to the precision of feature

correspondences.

4. Geometric Filtering with Epipolar Geometry: Beyond photometric criteria, Feature
Matching introduces geometric filtering into the process. Leveraging epipolar geometry,
this stage further refines feature matches by considering the spatial positions of features
within the images. An outlier detection framework called RANSAC (RANdom SAmple

Consensus) is employed to robustly identify and discard erroneous matches.

Structure from Motion (SfM) This node is a pivotal stage in the photogrammetric pipeline,
tasked with unraveling the intricate relationships between various observations obtained from
input images. This multifaceted process culminates in the extraction of the structural scene’s
essential elements: 3D points, their precise positions in space, the orientation of these points,
and the internal parameters of each camera involved.

The SfM pipeline is orchestrated in a deliberate manner to ensure an efficient and accurate

reconstruction of objects within the scene. Here’s a breakdown of its core steps:

1. Initial Image Pair Selection: The SfM process starts by selecting the most suitable
initial image pair. This choice is critical as it sets the foundation for the entire reconstruc-
tion endeavor. The selected pair should offer robust matches of initial features, forming a

solid basis for subsequent reconstruction steps.

2. Iterative Process: Following the selection of the initial image pair, an iterative approach
is adopted to progressively introduce additional views. This incremental strategy allows
for the gradual expansion of the reconstruction and the incorporation of more images into

the scene.
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3. Track Creation: The process of creating tracks consolidates all feature matches between
pairs of images. Each track represents a point in space observed from multiple camera
perspectives, often containing some outliers. Throughout the SfM process, disjoined tracks

are systematically eliminated to maintain data quality.

4. Essential Matrix Estimation: The estimation of the essential matrix between two
images is a pivotal step. Typically, the first image serves as the origin of the coordinate
system. The process involves registering the position and orientation of the second image

while triangulating corresponding 2D features into 3D points.

5. Camera Pose Estimation: Resectioning comes into play for each new camera introduced
into the scene. The Perspective-n-Point (PnP) algorithm is employed within a RANSAC
framework to accurately determine the position and orientation of each camera device.

This stage significantly validates feature relationships.

6. Group Adjustment: After these individual steps, a group adjustment phase is initiated
to refine the extrinsic and intrinsic parameters of all cameras, as well as the positions of
all points within the scene. This global optimization step ensures that all elements align

cohesively.

7. Triangulation and Candidate Point Selection: Triangulation processes are conducted
to establish new 3D points. This results in an expanded pool of candidate points to be

considered for further selection, enriching the reconstruction.

Prepare dense scene
The primary objective of the Prepare Dense Scene node within the photogrammetric pipeline
is to achieve several key outcomes essential for subsequent stages of scene reconstruction. It is

critical for obtaining accurate and high-quality results in the photogrammetry process.

1. Undistorted Images: One of the primary goals of this node is to produce undistorted im-
ages. Camera lenses often introduce distortions, such as radial and tangential distortions,
to captured images. These distortions can affect the accuracy of subsequent processing
steps. To mitigate these distortions, the node applies correction techniques to generate
undistorted images. These corrected images serve as a foundation for precise depth calcu-

lations and feature matching in the subsequent stages.

2. Elimination of Re-projection Errors: In the pursuit of accurate 3D reconstruction, it
is crucial to eliminate re-projection errors. Re-projection errors occur when points in the
3D scene are projected back into the 2D images. These errors can be caused by various
factors, including lens distortions, calibration inaccuracies, or imprecise camera poses. It
aims to minimize or eliminate these errors, ensuring that the 3D points align accurately

with their corresponding 2D projections in the images.
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3.

Depth Computation: Another key task of this node is to compute depth information
from distortion functions. Depth information is essential for creating a complete 3D repre-
sentation of the scene. By analyzing the distortions in the images and the known camera
parameters, the node calculates depth values for different points in the scene. This depth
information is crucial for generating accurate 3D models and understanding the spatial

relationships between objects in the scene.

Depth map estimation The Depth Map Estimation node represents a critical phase within

the photogrammetry pipeline, tasked with the computation of depth values for each pixel in the

images. This depth information is essential for creating accurate 3D representations of the scene.

Several methods are employed for depth map estimation, including Block Matching, Semi-Global

Matching, and ADCensus. In the context of the Alice Vision Meshroom pipeline, Semi-Global

Matching is utilized.

The following are the steps involved in Depth map estimation using Semi-Global Matching:

1.

Camera Selection: The node begins by selecting the N-best or closest neighboring cam-
eras for each image. This selection is based on front-parallel planes obtained by intersecting
the optical axis with pixel selections from neighboring cameras. These neighboring cameras

are crucial for computing depth data.

Depth Volume Generation: A volume (W, H, Z) is generated, representing the depths
of each pixel in the image. This volume is populated with depth contenders for each pixel.
To estimate the similarity between contenders, a Zero Mean Normalized Cross-Correlation
(ZNCC) is applied to each pixel pair. This similarity assessment helps identify the most
depth values.

Cost Volume Filtering: The depth estimation process often introduces noise. To miti-
gate this, the node applies filtering along the X and Y axes, which groups local cost values.
This filtering step reduces the impact of outlier values, enhancing the overall accuracy of

the depth map.

Depth Refinement: After filtering, the node identifies local minima within the cost
volume. These minima correspond to potential depth values. The plane index is replaced
with the actual depth value from the depth map volume. A refining step is applied to

achieve sub-pixel accuracy in-depth calculations.

Parallel Processing: Depth maps are computed independently for each image, and
parallel processing is employed. This approach allows for more efficient computation,

although it may require more time overall.

Uniformity Enhancement: Filtering is applied to the depth maps to improve uniformity
across multiple cameras. This step helps ensure that depth values are consistent and

accurate throughout the scene [184].
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Depth map filter

This node plays a crucial role in refining the depth maps obtained from the previous processing
stages, addressing issues related to inconsistencies and occlusions. Its primary purpose is to
enhance the overall quality and accuracy of the depth information, particularly in areas that
may be affected by occlusions.

The following are the main functions and objectives of the Depth Map Filter node:

1. Inconsistency Mitigation: Depth maps generated from different views or images may
exhibit inconsistencies or discrepancies in certain regions. These inconsistencies can result
from various factors, including variations in lighting conditions, occlusions, or errors in the
depth estimation process. This Filter node identifies and mitigates these inconsistencies

to create a more coherent and uniform depth map.

2. Occlusion Handling: Occlusions occur when certain objects or surfaces in the scene
block or obscure others from the perspective of the camera. As a result, depth maps may
contain erroneous depth values in occluded areas. This Filter node employs techniques to
identify and correct depth values in occluded regions, ensuring that the depth information

accurately reflects the scene’s geometry, even in occluded areas.

3. Depth Map Fusion: In multi-view or multi-camera photogrammetry setups, the Depth
Map Filter may involve fusing or merging depth maps from different viewpoints. This
fusion process aims to create a unified and consistent depth map that incorporates in-
formation from multiple sources. This can help improve the overall accuracy of the 3D

reconstruction.

4. Noise Reduction: Depth maps may also contain noise or outliers that can adversely affect
the quality of the 3D model. This node applies noise reduction techniques to minimize the
impact of noisy depth values, resulting in a smoother and more accurate representation of

the scene.

Meshing

The Meshing node serves as a pivotal stage within the photogrammetry pipeline, aiming to
create a detailed and dense geometric representation of the image scene in three dimensions.
This process involves several intricate steps designed to achieve an accurate and comprehensive
3D mesh. Here’s an overview of the core objectives and methodologies employed by the Meshing

node:

1. Octree Fusion: At the outset, this node combines each depth map value into an octree
structure. Octrees are hierarchical data structures that divide space into progressively
smaller regions. By incorporating depth information into this structure, the node prepares

the data for subsequent processing.
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2. 3D Delaunay Tetrahedralization: The Meshing node undertakes a 3D Delaunay tetra-
hedralization process. This mathematical technique divides 3D space into non-overlapping
tetrahedral cells, forming a mesh that adheres to the Delaunay criterion. This criterion
ensures that no tetrahedron’s circumsphere contains another point from the dataset, con-

tributing to mesh quality and precision.

3. Weight Calculation: Within the tetrahedralized volume, the node calculates weights for
cells and facets. This involves employing a complex voting method to assign weights that
reflect the significance of each element within the mesh. Accurate weight assignment is

essential for subsequent steps in the pipeline.

4. Graph Cut Max-Flow: To optimize the mesh construction, the Meshing node employs
a Graph Cut Max-Flow algorithm to determine the most efficient way to cut the volume,
ensuring that the resulting mesh faithfully captures the scene’s intricate geometry. Graph

cut techniques play a critical role in achieving a precise and detailed mesh.

5. Mesh Simplification: Following the initial mesh construction, this node may apply filter-
ing to eliminate sub-optimal or problematic cells on the mesh’s surface. This simplification
process reduces redundancy among vertices and streamlines the final mesh, resulting in
a more efficient representation of the scene. It serves as a pivotal stage within the pho-
togrammetry pipeline, aiming to create a detailed and dense geometric representation of
the image scene in three dimensions. This process involves several intricate steps designed

to achieve an accurate and comprehensive 3D mesh [184].

Mesh filtering

This node represents a crucial post-processing step following the meshing stage in the photogram-
metry pipeline. Its primary purpose is to refine and enhance the quality of the generated 3D
mesh by applying various filtering operations. These operations serve to optimize the mesh,
improve its visual appeal, and streamline its structure for further analysis and visualization. As

following are the key filtering operations typically performed by the Mesh Filtering node:

1. Smoothing the Mesh: One of the primary filtering operations involves smoothing the
mesh’s surface. Smoothing algorithms are applied to reduce irregularities and noise in
the mesh, resulting in a more aesthetically pleasing and visually coherent representation.
Smoothing helps create a polished and refined mesh that closely resembles the true scene

geometry.

2. Eliminating Large Triangles: In some cases, the initial mesh may contain overly large
or irregular triangles that can affect the mesh’s quality and computational efficiency. The
Mesh Filtering node identifies and eliminates such large triangles, leading to a more bal-

anced and evenly distributed mesh topology.
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3. Maintaining the Largest Mesh: While filtering out unwanted elements, it’s essential
to preserve the core structure of the mesh. The node ensures that the largest and most
significant portions of the mesh are retained, allowing for the preservation of critical details

and overall scene fidelity.

4. Removing Small Mesh Components: Conversely, small and insignificant mesh com-
ponents that do not contribute substantially to the scene’s representation are removed.
This step helps simplify the mesh and reduce computational complexity while maintaining

the essential features of the scene [184].

4.2.2 AR application development with handling occlusion

Computer vision is responsible for generating 3D virtual objects that align with the same per-
spective as the real-world images captured by tracking cameras. When it comes to augmented
reality image registration, a different computer vision approach, mainly related to video tracking,
is employed. Typically, these methods involve two distinct stages: tracking and reconstruct-
ing /recognizing. This paper focuses on Vuforia, an augmented reality software development
kit(SDK) designed for mobile devices, which plays a pivotal role in facilitating augmented reality
applications. Vuforia specializes in the real-time recognition and tracking of planar images and
3D objects. With this capability, developers can accurately position and align virtual objects, in-
cluding 3D models and multimedia content, concerning real-world objects when viewed through
the camera of a mobile device. The virtual object continually tracks the image’s real-time posi-
tion and orientation, ensuring that the viewer perceives the virtual element as an integral part
of the actual physical environment. This synchronization creates the illusion that the virtual
object seamlessly blends into the real-world scene.

In this context, the Vuforia SDK is utilized to create a model with distinctive features that
enable us to determine the precise location of a similar shape within the real environment. Our
approach involves crafting a virtual environment that faithfully replicates the real scene down
to its minutest details. To explore the concept of occlusion, we introduce virtual objects that
seamlessly blend with this environment. Within this virtual environment, we incorporate a vir-
tual camera capable of traversing in multiple directions to comprehensively capture all facets of
the scene.

Consequently, we obtain real-time video recordings captured by the physical camera within
the actual scene. For each frame of this video feed, we employ coordinate transformation calcu-
lations facilitated by Vuforia software to project our 3D model onto the 2D frame. This process
allows us to seamlessly integrate the virtual elements into the real-world view.

Additionally, we determine the precise pose of the physical camera by aligning its real-world
coordinates with those of the virtual camera. This alignment ensures that the virtual objects
are perceived as though they exist at the forefront of the physical environment.

In theory, achieving the correct occlusion relationship between real and virtual objects in-
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volves comparing their respective Z coordinates. This comparison allows us to determine which
objects should appear in front and which should be hidden behind others, creating a realistic
visual effect. One essential component in creating this illusion is the utilization of an occlusion
mask. This mask plays a pivotal role in producing the perception of looking through a screen or
surface, similar to how our eyes naturally perceive depth and occlusion in the real world.

In our paper, a Depth Mask material provided by Unity3D was employed to effectively man-
age the occlusion between objects. This material aids in defining which parts of the virtual scene
should be obscured by other objects, ensuring that the virtual elements interact convincingly
with the real-world environment. Ultimately, the use of such occlusion techniques enhances the
overall realism of the augmented reality experience, making it more immersive and engaging for

users.

4.3 Results and Discussion

we provide an in-depth exploration of the implementation of our proposed architecture and

showcase some of the achieved results.

4.3.1 Experimental results

Data acquisition

We utilized a Canon camera to capture multiple images of the study scene. The scene we have
designed for our study comprises three small objects: a refrigerator, an electric oven, and a
cooking pot. It is important to emphasize that in close-range photogrammetry, a key aspect of
success lies in precisely defining what needs to be measured and reconstructed when acquiring
images. To achieve accurate results, it is recommended that the triangulation of surface points
should fall within a specific range, typically between 60 to 110°. In practical terms, this means
that consecutive photos should ideally have an angular difference of 20 to 30°between them [185].
In the process of capturing images around an object, it is crucial to maintain a systematic
approach to ensure the completeness and accuracy of the data. This typically involves adhering
to a clockwise orientation when positioning the camera around the object and capturing images
from different heights and viewing angles at each image acquisition position.

To define the location of a camera in this context, two key parameters are utilized:

1. Tilt Angle (¥): This parameter represents the tilt of the camera relative to the XY
plane of the object. It essentially defines the angle at which the camera is inclined or

tilted concerning the surface of the object.

2. Step Angle (0©): The step angle refers to the rotating phase of the turning table or
platform on which the object is placed. It determines the angular increment or step by

which the camera or the object itself is rotated during the image capture process.
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These parameters are essential for achieving accurate and comprehensive photogrammetric

data for subsequent reconstruction and analysis [183].

(a) Tilt angle (¥) (h) step angle (&)

Figure 4.4: Camera Positions Strategy.

Photogrammetry Algorithm
We employ a photogrammetry algorithm, specifically close-range photogrammetry, utilizing the
Meshroom software program, as discussed in Section 3.1. This methodology enables us to create

a 3D model of the real scene, as depicted in the figure below:

Figure 4.5: The results of photogrammetry pipeline on Meshroom.

AR application
After successfully reconstructing the 3D model of our real scene, we proceed with a crucial post-
processing step by utilizing Meshlab. Following this, we employ the Model Target Generator
(MTG), a valuable tool that enables us to convert the existing 3D model into a Vuforia Engine
database. This database is then utilized by the Vuforia Engine for Model Target tracking.

The Model Target Generator serves several essential functions in this context. It ensures that

the spatial features of our model are well-prepared for tracking, establishes the initial snapping
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positions by defining angles covering 360°from all sides of the objects, and finally, exports the
refined model target.

We have developed our AR application using Unity3D software. This application augments
the real scene with virtual elements that closely resemble the actual environment. The primary

focus of this AR application is to handle mutual occlusion in real-time, ensuring that virtual

objects interact convincingly with real-world objects.

Figure 4.6: (a) AR image. (b) AR occlusion (¢) AR handling occlusion

The issue of occlusion in augmented reality is a critical research area, which occurs when
objects in the real world block the view of objects located behind them from a specific viewpoint.
This phenomenon can lead to user confusion, as real objects may be positioned differently from
virtual objects in the augmented reality scene.

From Figure 4.6, we demonstrate the outcomes of our augmented reality application for
image tracking as shown in Figure 4.6(a), which is the successful result of our application.
However, in Figure 4.6(b), we illustrate incorrect relative relationships between real and virtual
objects, highlighting the absence of occlusion handling. Here, it appears that the virtual object
is erroneously positioned in front of the real-world objects. After applying our method (Figure
4.6(c)), the occlusion problem is resolved, and the virtual objects are correctly positioned about
the real-world objects. This demonstrates that using an occlusion mask is essential, particularly
when parts of our model target are obscured by virtual object components. In such cases,
occlusion masks effectively solve the occlusion problem in real-time, leading to a more realistic

and coherent augmented reality experience.
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Figure 4.7: Resolving occlusion using Shader dapthMap material provided in Unity3D

Figure 4.8: Handling occlusion in Augmented reality app with different point views in real-time
using Unity3D

4.3.2 Discussion

In this section, we will validate the results obtained through our approach, which combines two
primary objectives: photogrammetry and augmented reality, with a specific focus on managing
augmented reality occlusion in real time. To achieve this, we employed the Meshroom software
to implement a photogrammetry pipeline composed of 12 nodes. This comprehensive algorithm
was designed to ensure high-performance output for the 3D model. Through our validation, we
aim to showcase the success of our photogrammetric approach in creating a detailed and visually
accurate representation of the scene.

Numerous interconnected parameters play a pivotal role in enhancing the quality of the pho-

togrammetric process. Initially, we achieved remarkable measurement precision through the
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strategic placement of a single camera, carefully selected to ensure a comprehensive view, result-
ing in accuracy as fine as bum. This positioning not only bolstered the model’s efficiency but
also expedited the extraction of detailed feature data from data points in a notably brief time
frame. Furthermore, during testing across diverse scenarios, we consistently attained reliable
performance.

The camera’s resolution emerged as a critical factor, profoundly influencing the calibration of
images utilized within our software and, consequently, yielding superior outcomes. Additionally,
the dimensions of objects within the scene were tailored to generate a highly refined reconstructed
model. The quality of the photogrammetric mesh hinged on an array of parameters, including
the number of images, the default settings inherent to the photogrammetry methodology, camera
calibration, and an image acquisition protocol.

Notably, one pivotal parameter involved capturing sequential photographs at angles no less
than 60 °, with an ideal intersection angle of 90°, thereby heightening recognition accuracy.

As previously discussed, we employ Vuforia for tracking real-world objects and determining
the camera position, facilitating the development of an augmented reality application aimed at
mitigating occlusion issues. The visualization of the 3D model through augmented reality yields
highly accurate and visually appealing results. Our primary goal is to advance the notion of
image-based 3D modeling by leveraging close-range photogrammetry to effectively address oc-
clusion challenges, enabling the creation of realistic real-time visual experiences.

To evaluate the outcomes of our approach, we conducted a comparative analysis based on five
crucial criteria to demonstrate the superior efficiency of our system compared to previous meth-
ods. Firstly, we consider the applicability of the scene. In practical scenarios, the methods
proposed by Sanches et al. [116] and Lu and Smith [124] involve dynamic objects, while
Lepetit et al. [125] approach cannot accommodate such scenarios. Secondly, we evaluate the
criteria related to the versatility of handling occlusion across a wide range of viewing angles
and volumes. Lepetit et al. [162] method imposes restrictions on the viewpoint, significantly
limiting its practicality. In contrast, our system, along with Sanches et al. [116] and Lu and
Smith [124] approaches, offers flexibility in choosing viewpoints. Thirdly, we consider the equip-
ment necessary for implementing the application. Sanches et al. [116] employ Fiducial markers,
efficiently addressing the registration problem in AR using optical tracking and overlaying virtual
objects onto markers to align them with the real environment. In our work, we utilize a DSLR
camera to capture sets of photographs and the Vuforia SDK for real-time recognition, tracking
of planar images and 3D objects, and camera pose estimation. Lastly, real-time performance is

a critical requirement for all these methods. Additional details are provided in Table 4.1
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Method Scene Viewpoint Equipment Handling occlusion | Real-time
Sanches et al. [116] | Dynamic | Arbitrary | Fiducial markers Yes Yes
Lu and Smith [124] | Dynamic | Arbitrary No No Yes
Lepetit et al. [125] Static | Restricted No No Yes

Our method Static | Arbitrary | Vuforia SDK Yes Yes

Table 4.1: A comparison between the proposed method and the previous methods.

4.4 Conclusion

Through the exploration of outcomes, this chapter has effectively showcased the potential of
employing a photogrammetry algorithm for an efficient occlusion handling approach centered
around 3D reconstruction for augmented reality applications. The fundamental idea revolves
around addressing mutual occlusion using two distinct technologies: augmented reality and pho-
togrammetry. Additionally, we have developed an AR application using the popular SDK soft-
ware, Vuforia, enabling us to extract key scene features and estimate camera poses for precise
alignment within our AR systems. Consequently, we have effectively managed occlusion by real-
time comparison of the third coordinate between real and virtual objects through the use of
masks. In the experiment, we created a small dataset composed of different viewpoints of the
real scene involving small objects The results demonstrate its capability to meet the demands of
accuracy, efficiency, and real-time performance in augmented reality applications with resolving

occlusion in the major scenario.
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Chapter 5

Hand pose estimation based on
regression method from monocular

RGB cameras for handling occlusion

5.1 Introduction

The human hand plays a fundamental and instinctive role in enabling our interaction with the
physical world. In this chapter, we propose our original contribution for hand pose regression
architecture, specifically designed to learn how hands interact with objects and overcome oc-
clusion challenges. Our overall pipeline comprises three primary stages: In the first stage, we
employ a ResNet34 network as the backbone to extract feature maps from the cropped RGB
image. This initial step is crucial for capturing essential information from the input image. In
the second stage, the network is trained to produce non-normalized 2D heatmaps representing
the locations of hand joints. To ensure that these heatmaps reflect the probability map of each
joint accurately. Additionally, we introduce a novel approach called Latent Heatmap Represen-
tation(LHR) to regress the 2D coordinates of hand joints by converting feature maps output
into 2D coordinates. In the third stage, we incorporate convolutional layers into the network
to process the generated heatmaps further. By concatenating the intermediate feature maps
obtained in this stage, we can estimate the global 3D pose of the hand. Finally, we regress a
hierarchical tree structure representing the hand as a tree to predict the configuration of hand
bones within the cropped hand. Our proposed architecture is designed to effectively handle oc-
clusion challenges and improve the accuracy of hand pose estimation, particularly in scenarios

involving hand-object interactions.

We conducted an extensive evaluation of our proposed method using three benchmark datasets

[26,27,37]. Our analysis included both quantitative and qualitative evaluation, and the results
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improved the competitive performance of our approach when compared to numerous state-of-the-
art methods. Importantly, our method achieves this high level of performance while maintaining
optimal execution times. It demonstrates its ability to accurately predict the 2D locations of
hand joints and the 3D hand bones, even in challenging scenarios characterized by self-occlusion
and object occlusion. These findings underscore the robustness and efficiency of our proposal in

handling complex real-world situations.

This contribution was published in a Multimedia Tools and Applications Journal 2023. The
published article is entitled Hand pose estimation based on regression method from monocular

RGB cameras for handling occlusion *. Please visit this link for more information.

5.2 Methodology

Our main objective is to propose a novel deep-learning architecture to estimate 2D and 3D poses
from a single RGB image destined to resolve the occlusion problem. The 3D hand pose is rep-

3D = (¢} | € T3p where Tsp is 3-dimensional

resented by a sequence of 3D joint coordinates,
hand joint location, with K= 21. The 2D hand pose estimation is depicted by a two-dimensional
array joint coordinated, where ®2P = {¢}sz1 € Syp is the K-dimensional hand joint space with

K= 21.

The proposed "ResUnet" framework combines ResNet-34 layers with Unet as its foundational
network. This combination is particularly effective for tasks where the input and output have
similar dimensions. The Unet network consists of two primary pathways. The first path utilizes a
pre-trained ResNet-34, which is a 34-layer ResNet network, to extract key features from an RGB
cropped hand image denoted as I € +R!28X128X3 a5 indicated in Table 4.1. The second path
of Unet, known as the Expansive path, includes four consecutive multi-feature blocks combined
with upsample Blocks referred to as Unet-Blocks, as illustrated in Figure 5.1. The initial Unet-
Block takes two features, denoted as F, = F4,F3, fuses them as input, and produces grouped
features denoted as Fout. We employ bilinear upsampling to enhance the quality of the input
images and obtain multi-scale features. Subsequently, these features are used for estimating 2D

heatmaps before being passed on to the next Unet-Block.

The following Unet-Blocks follow a similar structure but use distinct input features. For
each block, the upsampling layer is concatenated with the corresponding feature vector, denoted
as Fgr;p. These concatenated features are later fed into the convolutional layers for further

processing.

Thttps://link.springer.com/article/10.1007 /s11042-023-16384-9
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Figure 5.1: The overall pipeline of our architecture for estimating 2D and 3D pose regression.

The output of the last block has a size of 64. Furthermore, we add an upsample layer with

bilinear mode and two convolution layers separate with RELU as an activation function to obtain
nonlinear transformation and enhance our architecture ability to fit data. The output is a tensor
of size(21, 64). We get the 2D feature heatmaps from the Unet blocks, including pose data from
intermediate outputs.
During the training process, we generate 2D heatmaps at each stage produced by each of the
Unet-Blocks. However, during the inference phase, we exclusively utilize the final output results
and normalize them using the Softmax function. This normalization step converts the feature
maps into normalized heatmaps, which is essential for predicting 2D hand joint locations, and
this prediction is achieved using a Latent Heatmaps Representation (LHR).

Specifically, we employ two convolutional layers followed by the Rectified Linear Unit (ReLU)
activation function and Max pooling. This processing is aimed at further refining the feature
heatmaps and preparing them for concatenation with intermediate features, ultimately resulting
in the generation of 3D features. As mentioned in Equation 1. This combination of processing
steps enhances the accuracy and robustness of predicting the 2D hand joint locations using the

Latent Heatmaps Representation.

output = concat([featuresioeqr, UnetBlock3],dim = 1) (5.1)
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Figure 5.2: The sequential flow of our architecture.

To make our proposal more comprehensible, we have devised a sequential flow that outlines
the key stages from the input image to the desired outputs. It is essential to mention that Figure
2 offers further insights and detailed explanations of these steps, providing a visual aid to enhance
understanding.

To further estimate 3D hand pose coordinates, we introduce two additional convolutional
layers with dimensions (128, 64) and (64, 32), respectively. A flattening operation follows these
layers, and two fully connected layers process the resulting tensor. This process ultimately
produces a tensor with a size of (3, 21), which represents the estimated 3D hand pose coordinates.

To compute the bone lengths of the hand, we employ a tree structure that defines the rela-
tionships between different hand joints. We calculate the length of each bone as the difference

between two adjacent joints. This method allows us to predict the lengths of 20 bones in the

104



CHAPTER 5. HAND POSE ESTIMATION BASED ON REGRESSION METHOD FROM MONOCULAR
RGB CAMERAS FOR HANDLING OCCLUSION

hand, providing valuable information about 3D hand pose.

5.2.0.1 Image Feature Extractor

We utilize the ResNet-34 layer network, as introduced in the research by He et al. [148], to
extract key features from cropped images. This choice is motivated by several factors. Firstly,
ResNet-34 represents a more recent iteration within the family of Deep Residual networks and
is recognized for its lightweight nature in convolutional neural networks. Moreover, the 34-
layer ResNet architecture notably reduces training errors and performs well on validation data.
It offers faster training compared to ResNet-50 and consumes less memory. This underscores
the effective handling of the degradation issue in this context and highlights the potential for
enhanced precision through increased network depth. As depicted in Table 4.1, we can find a

comprehensive overview of the backbone architecture of ResNet-34.

Layer Feature size Output kernel Stride Padding
Conv2D 128 64 3x3 2 1
BN 64 64 - - -
RELU 64 64 - - -
Max-pool 64 64 3 2 1
ResNet-Blockl 64 64 3x3 1 1
ResNet-Block2 64 128 3x3 2 1
ResNet-Block3 128 256 3x3 2 1
ResNet-Block4d 256 512 3x3 2 1

Table 5.1: The network architecture of ResNet-34

5.2.0.2 2D Pose Regression Network

The most effective method identified for estimating 2D hand poses involves a novel concept known
as Latent Heatmap Representation(LHR). This approach surpasses others in performance and
is considered the most dependable means of predicting 2D pose coordinates by generating 2D

heatmaps. LHR offers several notable advantages over alternative methods:

e Addressing Occlusions: LHR excels in handling occluded hand poses, a challenge that
can be problematic for alternative techniques. It maintains accuracy even when parts of

the hand are obscured.
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e Continuous Location Estimation: This representation enables the continuous esti-
mation of joint locations, providing more precise and fine-grained pose predictions than

discrete methods.

e Utilizing multiple training data sources: LHR allows for learning from various train-
ing data sources, enhancing the model ability to generalize and adapt to different hand

poses and variations.

In this approach, the hand pose is depicted as a 2D latent heatmap, where the value assigned to
each pixel indicates the likelihood of the corresponding joint presence at that particular location.
To tackle this challenge effectively, we developed a deep-learning architecture that takes a
single RGB image as input and generates a set of K-low-resolution 2D heatmaps as output.
Typically, this network is trained using three benchmark datasets along with their corresponding
hand pose annotations, allowing it to learn how to construct a 2D latent heatmap accurately.

According to the foundation laid by Igbal et al. [30], introduced a heatmap representation

involving the generation of 2.5D heatmaps, which include 2D heatmaps for 2D keypoint localiza-
tion and depth maps for each joint to predict depth values, our innovation lies in the development
of a novel architecture that combines ResNet-34 with UnetBlocks to generate 2D heatmaps di-
rectly from single images, eliminating the need for depth values for each hand image. However,
the approach presented in [30] was based on a CNN architecture that learned 2.5D heatmaps
in a latent manner using the softmax function. This function converts the heatmaps into 2.5D
coordinates in a distinct way.
Subsequently, a constrained normalization approach was employed to reconstruct the scale-
normalized absolute 3D pose directly. The global structure of the Latent Heatmap Representa-
tion(LHR) is presented in Figure 5.3. In this context, a single image is the input, as previously
described. Once the network processes the input image, it employs a technique known as the
UnetBlock with a skip connection to generate a 2D heatmap. The essential advantage of us-
ing LHR is that it achieves a higher output resolution, significantly enhancing the precision of
locating each hand joint.

The network output saves the learned model features as latent variables denoted as FkQD ,
which are used to approximate 2D latent heatmaps.

After the 2D heatmap is generated, the values in each channel of the heatmap, corresponding
to different keypoints on the hand, are normalized using a spatial softmax function. This function
transforms the tensor values into a probability distribution, ensuring that the sum of values in
each channel equals one. This normalization guarantees that the probabilities assigned to each
hand keypoint are consistent and can be interpreted as a 2D probability map. The model enables

2D coordinates of the hand joints with a high degree of accuracy, following the formula:

eap(B;1 2°P)
Y yeaeap(Bif 70

PM;(p) = (5.2)
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Where p represents a point on the probability map, €2 is the sequence of all pixels on the
2D feature map F ?D of the i*" joint and B; is a learnable factor that controls the spread of the
probability map.

The 2D coordinates of the k** keypoint are then computed as the weighted mean for the x
and y coordinates, where the weights come from the normalized heatmaps, and the generated x,

y coordinates fall within the range |0, image width|, as shown in the formula:

pk =Y _ PM(p)p (5.3)
peEN

In essence, this process allows for precise estimation of the 2D joint coordinates of the hand

keypoints using the information encoded in the heatmaps.

'y

2D pose regressor

-~ ResU-Net -

RGB image

}
Softmax(.)

Figure 5.3: The ResU-Net architecture used to estimate the 2D pose regression via the Latent
Heatmaps Representation(LHR). PM represents a probability map after applying a Softmax()
function.

5.2.0.3 3D pose Estimation Network

The third branch within our comprehensive framework is focused on regressing 3D hand pose.
This task follows the previous stage, where we obtain 2D joint locations as latent heatmaps. In
this phase, we adopt a representation based on a tree structure of the hand, illustrated in Figure
5.4. This representation aims to predict the bones of the hand rather than individual joints, as

it offers greater accuracy and stability.

To maintain consistency in notation, we define each bone as S = {fklk = 1,...... k}. This
notation helps us establish a clear and consistent framework for describing and predicting the
3D pose by focusing on the relationships and lengths of the bones, which can provide a more

robust and precise characterization of the hand.
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Figure 5.4: The proposed hand bones representation.

For each joint denoted as J*, we define its associated bone as a direct vector pointing from

that bone to its origin. This relationship can be expressed through the following equation:
B =J; — Jparent(i) (5'4)

Here, J; represents the position of the current joint J;, and Jparent(s) is determined by a predefined
function that returns the index of the parent joint for the current joint J;. In Figure 4.5, we can
observe the representation of the hand skeleton, consisting of 21 joints.

The bones, denoted as [, are calculated as the difference between the positions of the
keypoints that make up each bone. This computation is based on the geometric structure of
the hand, allowing us to derive the bone vectors from the joint positions, thereby providing a
detailed skeletal hand structure.

The backbone structure of this branch consists of two convolutional layers, with each layer,
followed by a Rectified Linear Unit (ReLU) activation function to generate 3D feature maps.
Max-pooling layers are placed after every pair of convolutional layers. Then, we concatenate
the resulting 3D features with intermediate features. The final step involves flattening the data
using two fully connected layers. The output is a tensor with dimensions (20, 3) representing
the 3D coordinates of K=20 bones.

To compute the global coordinate system of a specific joint, we sum the local coordinates of
all bones along the path that connects to that joint.

In the learning process, we supervise the bones. We introduce the bones loss Lg, which is

determined by the following equation:

J

1
Lﬁziz

J=1

2

grred _ gt (5.5)

Where Lg represents the bone loss, [Pred is the predicted bone, B9t is the ground truth bone,

and J represents the number of joints. This loss function quantifies the difference between the
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predicted and ground truth bones, serving as a crucial supervision signal during training to refine

the 3D pose estimation of the hand.

Figure 5.5: Illustration of hand Skeleton and joints index. 1 indicates the wrist joint; 2-4
indicates the thumb finger joints; 7-9 indicates the joints of the Index finger; 11-13 indicates the
joints of the middle finger; 15-17 indicates the joints of the ring finger; 19-21 indicates the little
finger.

5.3 Implementation Details

In our method, we conducted experiments on station computers using various software and

hardware components. Specifically, we implemented our approach using the following:

e Deep Learning Library: we utilized PyTorch version 1.8 as our deep learning framework
[186]. PyTorch is well-known for its flexibility and ease of use in developing neural network

models.

e GPU Acceleration: To accelerate training and inference processes, we used CUDA
version 10.1 and cuDNN version 7.6.4. These technologies are designed to leverage the
computational power745 of NVIDIA GPUs.

e Graphics Card: We employed the NVIDIA GeForce GTX 1070 graphics card, a 64-bit

GPU, to enhance the speed and efficiency of our model training.

e System Configuration: Our overall training process was conducted on a system equipped
with an AMD Ryzen 5 3600 6-Core CPU and 16GB of system memory(RAM).
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This combination of hardware and software components allowed us to conduct experiments suc-
cessfully and train our model effectively, leveraging the power of GPUs to expedite the training

process.

5.3.1 Data pre-processing

An essential step in the data preparation involves splitting the entire dataset into training and
validation sets. The validation set is crucial in monitoring validation loss and deciding when
to stop the model training process. On the other hand, the test set is reserved for the final
evaluation of the trained model performance. Before feeding the images into the network, we
applied some preprocessing steps. We employed a squared crop technique, calculating the pixel
distances between the leftmost and rightmost keypoints and the distances between the lowest
and highest keypoints in each image. We then selected the maximum of these distances. This
approach ensures that we obtain a square region of interest that encompasses the entire hand.
After cropping, we used bilinear interpolation to resize the input images to a consistent size
that helps maintain the quality and information content of the images while resizing them to a
standardized format.

These preprocessing steps prepare the data for training and ensure that the model receives

input images in a consistent and suitable format for accurate learning and inference.
We incorporated data augmentation into an available dataset, a common strategy in deep learning
and computer vision tasks. This technique is precious when the labeled data available for training
is limited or insufficient to create a robust and accurate model. Additionally, data augmentation
helps mitigate overfitting, a phenomenon where a model becomes overly specialized in memorizing
the training data instead of generalizing to new and unseen data.

By artificially expanding the size and diversity of the training data through data augmenta-
tion, we can prevent the model from memorizing specific examples and, instead, encourage it to
learn more robust and generalizable features. This results in a model better equipped to handle
a variety of data inputs and perform well on unseen examples, ultimately improving its overall
performance and reliability. We implement various augmentation techniques for each image in
the GANerated and SynthHands datasets as described below:

e We extensively utilize ColorJittern, which introduces random adjustments to an image’s

brightness, contrast, and saturation, falling within a range of -25% to +25%.

e Gaussian Blur, a commonly employed image processing technique, induces blurriness in
the images. This is achieved by convolving the image with a Gaussian filter, where pixel
weights are determined based on their proximity to the filter center. We apply a range of
Gaussian filter radius, from 0 to 0.8, to control the degree of blurriness. A radius of 0.8

corresponds to a substantial blur effect of 800 pixels.

o We standardize the pixel values, ensuring they have a mean of zero and a standard deviation
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of one. This standardization facilitates the model data processing. We specify the mean
as [0.485, 0.456, 0.406] and the standard deviation as [0.229, 0.224, 0.225], scaling them to
the range 0.0, 1.0].

Furthermore, we incorporate specific transformations into the SynthHands dataset, including
random scaling that alters the image and 2D coordinates. To ensure consistency in the order of
hand keypoints across datasets, it is essential to estimate 2D joint locations as 2D vectors. In
our work, we adopt the same keypoint order as presented in the SynthHand dataset by Miieller
et al. [26]. After applying the scaling operation, the 2D keypoint coordinates (x and y) change
based on the following formulas (Equations 6 and 7), with x ranging from 0 to the image width

and y ranging from 0 to the image height:

Tnew = (Torg * scale _factor) — (crop _width/2) (5.6)

Ynew = (Yoiq * scale_factor) — (crop _height/2) (5.7)

In these equations, x,q and y,;q represent the original pixel coordinates of the keypoint, while
scale_ factor denotes the randomly applied scaling percentage to the image. Additionally,
crop_width and crop _height represent the dimensions of the center-cropped image.

The initial part of the formula scales the pixel coordinates based on the scaling factor, while
the subsequent part adjusts the pixel coordinates to align them with the center of the cropped
image. This dual operation ensures that the keypoint locations are accurately updated to account
for both the scaling and cropping of the image.

Moreover, we introduce rotations for color images and incorporate 3D coordinates into the
SynthHands dataset. The 2D coordinates are generated by projecting the 3D keypoints onto the

image plane using an intrinsic matrix.

5.3.2 Dataset

We evaluate quantitatively our proposed framework using three available datasets:

1. GANerated dataset [27] stands as a prominent RGB-based dataset that captures hand
poses during interactions with objects, even when the hand is partially obscured. This
dataset comprises approximately 330,000 synthetic images depicting hand poses, each

meticulously annotated with three-dimensional information, with 21 distinct joints.

The creation of these synthetic images was facilitated by employing a CycleGAN network,
which not only generated the images but also provided corresponding annotations. These
annotations were generated using sophisticated artificial intelligence techniques, ensuring

the accuracy and utility for hand pose estimation research.
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2. SynthHands [26] represents a robust RGBD dataset for hand pose estimation. This
extensive dataset boasts an impressive collection of 63,500 images, each comprising color
and depth information and boasting a high resolution of 640x480 pixels. These images
were captured using an Intel RealSense scene camera from five egocentric viewpoints.
This dataset encompasses various variations, including skin color, hand shape, background
complexity, and challenging scenarios involving wrist and arm rotations. SynthHands
introduced intricate hand-object interactions, featuring seven distinct object shapes and

145 textures.

One of the key strengths of this dataset lies in its provision of precise and reliable ground
truth data. It annotates each image with accurate 3D position data for 21 distinct key-
points, essential for training and evaluating hand pose estimation algorithms. This dataset
is a valuable resource for researchers, enabling the exploration and advancement of hand
pose estimation, gesture recognition, and related computer vision applications in various

real-world contexts.

3. Stereo Hand Pose Tracking Benchmark(STB) [37] is a widely utilized resource for
training and validating RGB-based 3D hand pose estimation methods. This dataset com-
prises a substantial collection of 18,000 images, split into 15,000 for training and 3,000 for

testing. It includes stereo and depth images with a resolution of 640x480 pixels.

The stereo images were captured using a Point Grey Bumblebee2 stereo camera, which
allows for capturing images from two slightly different viewpoints, enabling depth percep-
tion. Further, depth images were obtained using an Intel RealSense F200 depth camera,
providing further depth information for accurate hand pose estimation. It is composed of

12 sequences with six distinct background settings.

For accuracy and precision, the STB dataset provides annotations for the 3D positions
of 21 key hand joints. These annotations serve as ground truth data, facilitating the
training and evaluation of hand pose estimation algorithms. As illustrated in Figure 5.6,

we represent some images from the three available datasets.
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SynthHands Dataset Stereo Dataset GANerated Dataset

Figure 5.6: Some sample images from the GANerated, Stereo Hand Pose Tracking Bench-
mark(STB), and SynthHands datasets.

5.3.3 Metrics Evaluation

To evaluate the precision of our proposal and to make a meaningful comparison with state-of-
the-art methods, we employ the three most commonly used metrics in the realm of hand pose

estimation:

e End-Point-Error(EPE): The EPE metric quantifies the mean 3D Euclidean distance
error between the calculated joint positions and the ground truth. In 3D hand pose
estimation, these distances are typically expressed in millimeters(mm), while in 2D, they

are measured in pixels(px). Mathematically, EPE is defined as:

: (5.8)

J
1
EPE = j Zl jp'red _jgt
]:

Where J represents the number of estimated keypoints, and j77°? and j9 denote the 3D

coordinates of the estimated and actual keypoints, respectively.

e Percentage of Correct Keypoints (PCK): PCK is a widely used error metric for 3D
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hand pose estimation. It assesses the accuracy of localizing individual keypoints within a
specified matching threshold. The threshold is typically determined as a fraction of the
head segment length for each test image and is denoted as PCK@Q.5. Higher PCK values

indicate better model performance. Mathematically, PCK is computed as:

J
1
PCK, = i ;5 (Hwéyre _ w;-]t < U) (5.9)

where w?re represents the estimated 3D coordinates of the ;™ joints,w?t corresponds to

the actual 3D keypoint, and o is an indicate function.

e Area Under the Curve (AUC): AUC is considered a comprehensive criterion for eval-
uating the performance and correctness of the model. It estimates the proportion of true
keypoints(PCK) under various error thresholds, providing a holistic assessment of model

performance. Mathematically, AUC for a specific joint is calculated as:

AUCy = / PCK! (5.10)

5.4 Experimental and Results

We have conducted quantitative and qualitative evaluations of our technique to address the
challenge of learning 2D and 3D hand pose regression, explicitly targeting the issue of occlusion.
Additionally, we have demonstrated the generalization capabilities of our approach by producing
accurate predictions even on single-hand datasets. Our results underscore the efficiency in pre-
dicting hand poses, whether for single-hand scenarios or interactions involving multiple fingers.

Furthermore, we have performed a comparative study with recent methods closely related to
ours, using three benchmark datasets as the testing grounds. These comparisons highlight the
strengths and advantages of our approach in the context of hand pose estimation, shedding light

on its potential contributions to the field.

5.4.1 Quantitative Evaluation

To quantitatively validate our results and enhance the robustness of our strategy, we have em-
ployed various metrics for quality assessment. Our efforts have led to significant performance
improvements, surpassing previous methods by a considerable margin across three datasets: the
GANerated dataset (as depicted in Figure 5.7), the Stereo dataset (shown in Figures 5.13,5.14,5.15),
and the SynthHands dataset (illustrated in Figure 5.11, 5.12).

In particular, we have utilized the Mean Square Error(MSE) as a pivotal metric to assess errors

during the training and validation stages on the GANerated dataset. This metric has proven
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highly effective in producing superior outcomes when combined with the correct hyperparame-
ters and data augmentation techniques, as detailed in Section 4.1.

Our comprehensive training approach involved 200 epochs, utilizing 100 batches with 64 batches
per epoch. We employed a stochastic gradient descent optimizer with a momentum value of 0.9
and a learning rate of 0.005. Additionally, the weights in the ResNet network were kept frozen
throughout the training process. These experimental settings yielded notable improvements in

loss, as depicted in Figure 5.7(b).

GANerated dataset
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Figure 5.7: Quantitative Evaluation of our proposed approach on GANerated dataset.

During the data augmentation process, we provide the same hyperparameters as those em-
ployed during the training. Our investigations have revealed intriguing disparities in the impact
of augmentation on 2D and 3D training errors when applied to the GANerated and SynthHands
datasets, which we have noted in Table 2.

In the case of the GANerated dataset, we observed that before augmentation, both 2D and
3D errors were comparatively higher. However, after augmentation, these errors decreased by
approximately 0.058 and 0.063, respectively. Furthermore, when assessed using the same hyper-
parameters, the 2D and 3D AUC percentages exhibited remarkable increases of approximately
94% and 84%, respectively. These results underscore the beneficial impact of incorporating aug-
mentation techniques in the GANerated dataset, leading to improved performance compared to
models trained without augmentation.

However, the SynthHands dataset consists of hand images with a green screen background, al-
lowing for straightforward separation of the hand from the background. When applied to these
images, the green background can affect the data augmentation procedure. In particular, while
rotating or translating the image, the green backdrop may become apparent in regions where it
was previously obscured, resulting in an unnatural augmentation of the hand region.

Despite this potential concern, our investigations on the SynthHands dataset revealed that data
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augmentation improved metric-based results. This suggests that the advantages of data aug-
mentation, such as increased data variability and improved generalization to new data, outweigh

the limitations posed by the green background.

Metrics
2D mEPE | 3D mEPE | 2D AUC | 3D AUC
GANerated
Before Augmentation dataset 0063 oA o e
SynthHands 0.034 0.134 0.960 0.860
datasets
GANerated
After Augmentation dataset 0008 — o e
SycrllthHands 0.041 0.1842 0.953 0.811
atasets

Table 5.2: The effect of data augmentation on the GANerated and SynthHands datasets using
evaluation metrics: 2D and 3D mean End Point Error(mEPE) and 2D and 3D AUC.

Our work stands out for its close alignment with the research conducted by Mueller et al. [27],
particularly in its utilization of the GANerated dataset. Figure 5.8 showcases the performance
curves, with distinctive approaches highlighted: synthetic images (represented in blue) with color
augmentation (depicted in orange), a combination of synthetic and GANerated data (indicated
in green), and the integration of Projlayer (highlighted in red).

Our approach has achieved a remarkable AUC value of 0.945, proving a significant advancement
compared to the work of Mueller et al. This superior performance underscores the efficacy and

innovation embedded in our method compared to prior research.
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GANerated dataset
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Figure 5.8: 3D PCK on GANerated datasets. Comparison with the work of Meuller et al. [26]
in a different manner.

In Figure 5.9, we can observe the 2D Mean End-Point-Error(mEPE) for the complete set of
hand joints. The total average mEPE of approximately 4.94 mm demonstrates the successful
distribution of errors for each joint during the training process. This outcome signifies the robust
learning capability of our model in accurately estimating hand poses.

A low mEPE indicates that our approach has effectively learned to predict the positions
of hand joints with precision, showcasing its ability to handle the complexities of hand pose
estimation. This distribution of errors across all joints further emphasizes the reliability and

accuracy of predictions, which is crucial for various computer vision applications and tasks.
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Figure 5.9: The Mean End-Point-Error of each joint of a full hand on GANerated dataset [27].

=]
=

B,

5,

=]
=

4,

Mean End-Point-Error{mm)
=]
=]

3

=]
=

2,

=]
=

=]
=

L

0,

=]

The comparison of the 2D and 3D Percentage of Correct Keypoints(PCK) curves, as depicted
in Figure 5.10, clearly highlights the superiority of our predictions. These curves demonstrate
our efficiency in estimating 2D and 3D hand poses, particularly when evaluated on the extensive

SynthHands dataset.

Remarkably, it is essential to note that very few previous works have compared their perfor-
mance specifically on the SynthHands dataset. Our comparison only finds a counterpart in the
work of Li et al. [28]. This unique evaluation setting further underscores its exceptional nature,

showcasing its dominance in hand pose estimation on the SynthHands dataset.
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Figure 5.10: 3D PCK on SynthHands datasets compared with Li et al. [28] and their differents
training options and architectures.

Table 3 provides a comprehensive comparison of four distinct training datasets, each com-
prising various proportions of hand-object interaction instances using the SynthHands training

samples. We explain each splitting dataset using interacting hands as follows:

e A. In the first scenario, represented as 100% clean data, it is observed that the error for
interacting hand images increases during the training and test phases, with an error of
approximately 19.13 mm. This suggests that training solely on clean data may not be

sufficient to handle the complexities of hand-object interactions effectively.

e B. The second scenario involves using 75% clean data and 25% interacting hand data. The
interacting samples were used without augmentation. This approach led to a decrease in
joint error, down to approximately 14.16 mm compared to scenario A. This improvement
is attributed to combining clean data with a smaller proportion of accurate interacting

data, which aids in capturing the nuances of hand-object interactions.

e C. In the third scenario, a balanced mix of 50% clean and 50% interacting data was em-
ployed. The results indicate significantly lower errors during training. This outcome could
be attributed to the more balanced dataset, which likely requires less data augmentation

and, in turn, results in improved training outcomes.
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e D. Scenario D involves a dataset with 25% clean data and 75% interacting data. The
results show that this approach yields less favorable outcomes, suggesting that the clean
data augmentation employed by Li et al. [28] may have limitations in generalizing to unseen

images during the training process.

e E. Finally, our experiment(E) focuses solely on utilizing interacting hands from the Syn-
thHands dataset. This approach leads to a notably lower error of approximately 6.33 mm.
This result highlights the robustness of our approach, which outperforms other scenarios

in handling occlusion cases associated with hand-object interactions.

Mean End-Point-Error on Test Dataset(mm)

Training Dataset interacting hand
A 19.13
14.16
14.35
15.99

B0 a ®

6.33 Ours

Table 5.3: Comparison with the work of Li et al. [28] under different option training on Synth-
Hands.

Our results demonstrate that the best performance is achieved when utilizing interacting hand
data with augmentation, as outlined in Section 4.1. This approach leads to robust performance
across various metrics and scenarios.

We introduced a novel metric, 3D Percentage of Correct Keypoints (PCK), calculated over
different thresholds ranging from 0 to 100 mm, and compared it with the work of Li et al. [28].
The evaluation encompassed two training options: one focused on clean data and the other on
interacting hand data. The results, as depicted in Figure 5.11, showcase the robustness of our
model, with a 3D AUC of approximately 87% and a 2D AUC of around 97%. These metrics
highlight the ability of a model to accurately estimate hand poses across various thresholds,
underscoring its efficacy.

Furthermore, regarding loss, Figure 5.11(b) illustrates the Mean Square Error(MSE) through-
out the training and validation phases. The plot indicates an optimized value as the number of
training epochs increases, reflecting the learning process’s effectiveness.

In addition to these metrics, we used the 3D Mean End-Point Error to compare our model
with the work of Li et al. [28] across various testing scenarios. As shown in Figure 5.12, our

model consistently outperforms the competition, with a mean Euclidean distance error of 6.33
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mm. This result underscores the model’s proficiency in estimating hand poses across various

joints, further validating its effectiveness.
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Figure 5.11: Quantitative evaluation of our proposal on SynthHands datasets.
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To validate the improvement achieved by our method, we conducted tests on a third bench-
mark dataset, Stereo DS, using the same metric evaluations employed in previous experiments.
Here are the key findings:

In Figure 5.13(a), we present the 2D Percentage of Correct Keypoints (PCK) curve, which spans
thresholds ranging from 0 to 100 mm. The curve illustrates excellent results, with an Area Under
the Curve(AUC) of approximately 0.943. This high AUC value underscores the efficiency model
in accurately estimating 2D hand poses on the Stereo DS.

Figure 5.13(b) outlines the training configuration used for this dataset. We employed appropriate
hyperparameters, including 100 batches per epoch, a batch size 64, and training for 200 epochs
without augmentation. Stochastic gradient descent optimization was performed with a learning
rate of 0.005. The weights were defined in the range of [10,1], and the output model produced 2D
and 3D vectors with latent heatmaps. Importantly, the ResNet34 model used to extract features
remained unfrozen throughout training.

The results indicate lower error rates during the training process, with an error of approximately
0.948, and during validation, with an error of around 0.977. These outcomes highlight the effec-
tiveness of our model in accurately estimating hand poses on the Stereo DS, further validating
its performance across different benchmark datasets.

In conclusion, our model consistently achieves impressive results across various datasets, includ-
ing Stereo DS, as demonstrated by high AUC values and low error rates, reaffirming its capability

to handle different hand pose estimation challenges.
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Figure 5.13: Quantitative evaluation on the STB dataset.

However, we conducted a comparative analysis with recently proposed methods, utilizing
the 3D Percentage of Correct Keypoints (PCK), as depicted in Figure 5.14. These methods,
including [26,27,33,35,36], have garnered significant attention for their promising results on the

STB dataset. Our analysis revealed that our model achieved a remarkable AUC within the range

122



CHAPTER 5. HAND POSE ESTIMATION BASED ON REGRESSION METHOD FROM MONOCULAR
RGB CAMERAS FOR HANDLING OCCLUSION

of 20-50 mm, approximately 0.999, surpassing the performance of all recent approaches.

Stereo dataset
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Figure 5.14: Comparison with the SOTA methods [28-32] on the STB dataset using 3D PCK.
The X-axis is the threshold values(i.e., the maximum permitted distance between estimated and
ground truth), and the Y-axis is the 3D PCK over the perspective threshold. The "AUC" shown
in this curve is between 20 and 50[mm].

Additionally, the experimental results presented in Table 5.4 demonstrate superior perfor-
mance, achieving an AUC metric of 98% within the threshold range of [0-50] mm when compared
to the works of [33,187]. Notably, our model reports the lowest error rate, approximately 2.96,
in comparison to [28,188], even though some methods, such as [28,189], do not provide AUC
metrics. These results underscore the generalization capability of our models, particularly on
the STB dataset, which features greater challenges regarding occluded fingers and complex back-
grounds.

To illustrate the effectiveness of our approach, we conducted a comparison with state-of-the-art
works [28-32| on the STB dataset, as depicted in Figure 5.15. This comparison demonstrates
that our model is capable of robustly estimating hand poses across a range of hand interactions
and intricate pose articulations. Further, our results indicate a high level of performance, par-
ticularly in terms of the AUC metric within the range of 20-50 mm, achieving approximately
0.942. Furthermore, by the works of Igbal et al. [30] and Li et al. [28], which are closely related
to our approach, we conducted a comprehensive comparison, as presented in Table 5.5.

Li et al. [28] employed a latent distributed heatmap (LDH) to predict 3D hand poses from RGBD
images and achieved an AUC of 0.94 on the STB dataset. Igbal et al. [30] provided a 2.5D repre-
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Method 2D mEPE(mm)(in pixel) | | AUC of 2D PCKy_59
Li et al. [29] 13.58 ;
Zimmermann et al. [33] 5.522 0.817
kourbane et al. [187] 6.21 0.796

Gao et al. [188] 5.059 0.831

Yuan et al. [189] 5.801 -

Ours 2.96 0.942

Table 5.4: 2D comparison with the existing methods on STB dataset utilizing Mean
EPE[mm)](pixels) and 2D AUC. "]" indicates that lower is good, "1": higher is better

sentation heatmap from RGBD images for hand pose estimation and obtained an AUC of about
0.94, evaluated in 2D. In contrast, our approach surpasses these results with an AUC of approxi-
mately 0.986, signifying superior performance than existing methods that reported lower results.
Thus, we evaluated the Mean End-Point Error(mEPE) metric, which measures the average Eu-
clidean distance error for keypoint predictions. Li et al. and Igbal et al. achieved mEPE values
of about 3.57 mm and 3.54 mm, respectively, while our model achieved a lower mEPE of 2.96
mm, highlighting its enhanced accuracy in predicting hand keypoints.

Furthermore, we introduced a 3D mEPE metric to assess the performance of our approach
and conducted a comparison with the works of Li et al. [28] and Igbal et al. [30]. Our model
achieved a 3D mEPE of approximately 6.86 mm, outperforming the competition, with Li et al.
reporting a 3D mEPE of 15.77 mm and Igbal et al. achieving 9.43 mm. These results emphasize

superior accuracy and precision in our estimating 3D hand poses approach.
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Figure 5.15: Comparison with the state-of-the-art work [31,33-36]on the STB dataset utilizing
3D PCK. The X-axis is the threshold values, and Y-axis is the 3D PCK over the perspective
threshold. The Area Under the Curve in this curve is AUC(1-100)[mm].

Method Igbal et al. [30] | Li et al. [29] | Ours
2D Mean EPE | 3.57 3.40 2.96
3D Mean EPE | 15.77 9.43 6.86
AUC(0-30) 1 0.89 0.94 0.942

Table 5.5: Comparison with the current work in the same context as ours [29,30] on STB
dataset utilizing 2D and 3D Mean EPE[mm]| and 2D AUC. "|" indicates that lower is good,
"1": higher is better Mean EPE[mm]|(pixels) and 2D AUC. "|" indicates that lower is good, "1":
higher is better

5.4.2 Qualitative Evaluation

In addition to the quantitative assessments, we conducted a qualitative evaluation on three avail-
able datasets: GANerated, SynthHands, and STB dataset. This qualitative analysis serves to
visually demonstrate the effectiveness of our approach in accurately predicting hand poses from

diverse viewpoints, encompassing 2D and 3D keypoints, as well as 2D skeletons.
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To further emphasize the viability and robustness of our approach, we extended our evaluation
to include several unseen images, particularly in challenging scenarios marked by severe occlusion.
The results of this evaluation are showcased in Figures 5.16, 5.17, and 5.18, highlighting the
capability to deliver accurate predictions even in situations of significant occlusion.

This qualitative assessment underscores the practical utility and reliability of our proposal

across various real-world scenarios, reaffirming its effectiveness in hand pose estimation.

2D pose 2D keypoint Input Image 3D pose

Figure 5.16: Qualitative results on SynthHANDS dataset [26]. The first and the second row
are images estimated from the proposed approach with 2D keypoints and a 2D skeleton. The
third one represents some images from a dataset, and the following row shows the estimated 3D
joints of the hand.
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2D Pose 2D keypoint Input Image 3D Pose

Figure 5.17: Qualitative results on GANerated dataset [27]. The initial and the second columns
are images estimated from the proposed approach with 2D keypoints and 2D skeleton. The third

one represents some hand images, and the following column shows the estimated 3D joints of the
hand.
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2D keypoint Input Image

Figure 5.18: Qualitative results on STB dataset [37]. The initial and the second columns are
some images estimated from our proposed approach with 2D keypoints and a 2D skeleton. The
third one represents the hand image, and the following column shows the estimated 3D joints of
the hand.

5.5 Conclusion

In this chapter, we have addressed the challenge of accurately estimating both 2D and 3D hand
poses from a single RGB image while dealing with the complexities of hand occlusion during

interactions.
To achieve precise and robust hand pose estimation under these conditions, we developed a

deep learning model called "ResUnet," which combines the ResNet and Unet architectures as its

foundation. We introduced a 2D regression pose using a Latent Heatmap Representation(LHR)
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generated from RGB inputs to estimate 2D hand poses. To regress the 3D hand pose, adding
layers to concatenate with intermediate features of the ResUnet architecture. To enhance the
stability and accuracy of our predictions, we employed a tree structure of the Hand to estimate
bones, which proved to be a more robust approach than estimating joints alone. Quantitative and
qualitative results demonstrate that our proposed framework significantly outperforms existing
methods in assessing hand poses from different viewpoints and challenging occlusion scenarios.

Further, our model can accurately predict joint angles, highlighting its effectiveness.
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Chapter 6
(General conclusion

Augmented reality(AR) has witnessed a remarkable evolution and growing popularity in re-
cent years, as indicated by the latest statistics. AR has transcended its initial novelty phase
and has firmly established itself as one of the most sought-after forms of immersive technology.
As AR technology continues to advance, it promises to redefine the way we interact with the
digital and physical worlds, making it more intuitive and seamless. With companies committing
to this technological frontier, we can anticipate a future where AR not only enhances our daily
lives but also drives innovation and unlocks new opportunities for businesses and consumers
alike. The latest findings from industry experts, such as Market Research Future, reveal that
the augmented reality sector is thriving and expanding more rapidly than almost any other in-
novative technology. Currently, the AR industry is on track to achieve an impressive compound
annual growth rate(CAGR) of approximately 41.5%, with a projected value of $461.25 billion
by the year 2030 [190]. In Chapter 1, we introduce the Augmented Reality foundations, dis-
cussing their definitions and advocating both conceptual and technological approaches. It covers
AR’s purpose, widely used applications, and key devices, concluding with popular software and

hardware used in its implementation, serving as a comprehensive review of essential AR concepts.

In this dissertation, we investigate the occlusion issues, a long-standing challenge in AR that
has been an active research topic in the literature for almost 30 years. We have presented two
contributions to resolving occlusion in real-time by employing two solutions: handcraft methods

and deep learning.

Handling occlusion in Augmented Reality based on photogrammetry: One of the
earliest and most challenging in Augmented Reality is solving occlusion because it is crucial
to establishing precise relationships between the virtual and real world. This facet holds great
importance in creating accurate and efficient augmented reality systems. Occlusion refers to the
ability to realistically depict how virtual objects interact with and are obscured by real-world

objects within the user’s field of view. To deal with these issues, in Chapter 3, we present model-
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based methods based on close-range photogrammetry algorithms using software to construct a
3D model of the real environment. In addition, we perform marker-less tracking that aims to
determine the location and movement of objects in the scene based on their visual features using
Vuforia tools. Further, we create a dataset including captured images from different viewpoints
incorporating virtual objects to explore the occlusion. To realize the precise occlusion after the
alignment between virtual and physical scenes, we employ an occlusion mask that compares
their respective depth in the scene. This depth mask is provided to achieve a more realistic
and visually appealing scene by controlling which parts of objects are visible and which are not,
depending on their position in 3D space relative to other objects.

Hand pose estimation based on regression method from monocular RGB cameras
for handling occlusion:

The second contribution of this dissertation is how to resolve the occlusion that occurs during
the interaction with external objects. In Chapter 2, in the theoretical parts, we specify the use
case of our work, and we focus on the hand pose estimation field, which is considered almost
recent topic due to the challenges faced like hand parsing, data labeling techniques, hand mo-
tion, fingertip detection, hand localization, and self-occlusion. Additionally, we perform a novel
taxonomy rooted in deep learning approaches encompassing the recent research depending on
the input modality into depth-based, image-based, and RGBD-based categories. These diverse
approaches reflect the dynamic landscape of research aimed at enhancing our ability to accu-
rately and robustly estimate hand poses in various contexts. Thus, we discuss the highlighting
method by its advantages and limitations. We provide benchmark datasets for estimating hand
pose, their characteristics, and the commonly employed evaluation metrics for assessing these
methodologies. Finally, we deliberate on potential avenues for future research, including consid-
erations of speed, precision, and the selection of CNN architectures within this swiftly evolving
field.

Recently, deep neural networks have demonstrated remarkable effectiveness across various re-
search domains. The surge in interest in deep learning, which began around 2010, can be largely
attributed to the increasing digitization of society, leading to exponential growth in the volume of
available data. Deep learning algorithms thrive on substantial datasets, and as people continue
to upload vast amounts of data, such as texts, images, and videos each year, the Computer Vision
community can leverage this wealth of information to enhance the efficiency of their systems.
Nevertheless, certain types of naturally digitized data, such as sequences of hand gestures or
depth images, remain challenging to capture. To harness the capabilities of deep learning algo-
rithms with a smaller dataset, a prudent approach involves employing transfer learning strategies.
In a second time, we aimed to go further in handling occlusion in hand pose estimation. First,
we proposed to perform online learning, which allows the system to detect the human hand from
cropped images and interact with the different objects in real-time, an essential capacity for real
applications. Second, we have taken over the whole pipeline process to estimate the 2D and

3D pose under the occlusion issue and used the power of deep learning models to increase our
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system’s efficiency and robustness.

Our framework is mainly composed of three steps. First, we used a deep learning model that

can take RGB images as input called a ResNet34 layer network to extract both hand posture
and shape descriptors. The network is trained using a Three benchmark hand pose estimation
dataset, and we transferred its knowledge to extract relevant features. Thus, as the second
pathway, we used four multi-feature blocks called "Unet-Blocks" to generate non-normalized 2D
heatmaps that represent the presence of the location of each joint. Thus, we apply a Latent
Heatmap representation (LHR) method to regress the 2D pose coordinates. As the third step,
we add convolutional blocks to process heatmaps and concatenate the first part’s intermediate
features to obtain 3D features. Finally, to perform a 3D hand pose, we defined the bones of
the hand instead of joints by presenting the hand as a tree structure. While implementing our
proposal, we employ data augmentation techniques to provide more reliable and highest results
compared with the state-of-the-art method. We learn the human hand to grasp objects while
tackling occlusion problems accurately.
The experimental outcomes validated the effectiveness of our method in not only estimating
hand pose but also surpassing current best practices. Furthermore, the tests indicated that our
system can identify a gesture well before completion, rendering it highly suitable for real-time
applications. Employing the transfer learning strategy enabled us to outperform existing deep
learning models with fewer parameters.

As a future perspective, our experiments demonstrated that the proposed approach ensures
successful dynamic hand pose estimation, although they do not surpass human performance.
Initially, it is essential to note that hand pose estimation remains an ongoing area of research, and
the model created for extracting features in our framework has room for improvement. In 2017,
Yuan et al. [191] introduced the extensive Big-Hand2.2M hand pose dataset, which is expected
to facilitate researchers in enhancing the performance of their hand pose estimation algorithms.
For that, we plan to see more accurate, diverse, and much bigger datasets in this field with
well-annotated data, which helps to relieve the assumptions about hand pose. However, with the
impressive progress of hand pose estimation methods related to the depth advanced cameras and
using VR/AR devices as one of the crucial techniques in human-computer interaction technology.
Hand pose estimation will be quietly developed and gain more interest with available applications
for human beings.

Furthermore, we intend to improve our proposal by implementing kinematic fitting techniques
to ensure physically plausible hand poses, capturing absolute hand motion, and enhancing our
model’s robustness for real-time fingertip refinement. Thus, we aim to explore advanced applica-
tions such as Augmented Reality, Virtual Reality, and human-computer interaction to enhance
the practicality of our proposal. This will pave the way for natural interactions between human

hands and the virtual world, ultimately delivering an exceptional user experience.
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Finally, tracking both hands for hand pose estimation introduces many complex challenges.
One of the primary issues is handling occlusion, as the hands are in constant motion and can fre-
quently obstruct each other, resulting in data loss and potential estimation errors. The obtained
findings in this dissertation tackled the occlusion from a single image. This task also significantly
burdens computational resources due to the increased load, particularly in real-time applications
where low latency is critical. Moreover, collecting and annotating datasets for two-hand tracking
is more labor-intensive, necessitating precise labeling of hand poses for both hands. The dynamic
interactions between the two hands add another layer of complexity, and accurately tracking two
hands in 3D environments involves addressing depth information and occlusions in 3D space.
Edge cases, user variability, and real-time performance are additional factors that require careful
consideration. These challenges collectively underline the need for proposing robust algorithms

and sensors to realize the potential of hand pose estimation in various interactive scenarios.
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