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 ملخص

تقدم هذه الأطروحة التحقق من صحة العناصر المحدودة عالية الترتيب المطورة حديثاً لتحليل الهياكل والسلوكيات المادية 

( SFRلياف الفضائية )المختلفة في كل من الأنظمة الخطية وغير الخطية. وتعتمد هذه العناصر على مفهوم دوران الأ

للألياف الافتراضية ثلاثية الأبعاد داخل العنصر، مما يوفر ست درجات  في الفضاءالدوران  SFRالمعروف بفعاليته. يتيح 

(، مما يعزز تقريب مجال الإزاحة الكلاسيكي. تشتمل للدورانوثلاث  ازاحات( لكل عقدة )ثلاث DOFsمن الحرية )

(. يتم استخدام SFR20I( وغير مطابقة )SFR20عقدة مطابقة ) 20ية السطوح ذات العناصر الجديدة على عناصر سداس

أسلوب الأوضاع غير المتوافقة في صياغة العناصر غير المطابقة لتجنب أوجه القصور العددية المرتبطة بقفل نسبة 

الترتيب المنخفض ومشكلات الشبكة للعناصر ذات  تهذيبتم اختيار العناصر عالية الترتيب لمعالجة متطلبات بواسون. 

وتقييم الأداء من خلال اختبارات التشويه ونسبة  منخفض تكاملالتحقق الخطي مع تشويه الشبكة. تتضمن عملية التحقق من 

مختلفة. بالإضافة إلى ذلك، يتم إجراء التحقق غير الخطي من خلال تنفيذ هياكل  العرض إلى الارتفاع والتقارب عبر

( وروتين UELعنصر محدد من قبل المستخدم )ك فرعي روتين في شكل Abaqusر ونموذج اللدونة في برنامج العناص

. وبشكل عام، تظُهر العناصر المقترحة أداءً فائقًا، خاصة في التعامل مع (UMAT) من قبل المستخدم للمادة فرعي محدد

 .تشويه الشبكة

 

، دوران الألياف في الفضاء، درجات الحرية الدورانية، تحليل هعنصر متناهي سداسي الأوج الكلمات المفتاحية:

، المواد المعرفة من المستخدم  (UEL)الايلاستوبلاستيكي، التحليل غير الخطي، أبيكوس، عنصر معرف من مستخدم 

(UMAT) 



Abstract

  This thesis presents the validation of newly developed high-order finite elements for 
analyzing various structures and material behavior in both linear and nonlinear regimes.
These elements are based on the Space Fiber Rotation (SFR) concept, known for its ef-
fectiveness. SFR enables a spatial rotation of a three-dimensional virtual fiber within the 
element, introducing six Degrees of Freedom (DOFs) per node (Three translation and three 
rotation), which enhances the approximation of the classical displacement field. The novel 
elements include conforming (SFR20) and non-conforming (SFR20I) Hexahedral 20-node 
elements. The incompatible modes approach is utilized in the non-conforming element 
formulation to avoid numerical deficiencies related to Poisson’s ratio locking. High-order 
elements are chosen to address mesh refinement requirements for low-order elements and 
mesh distortion issues. The validation process involves linear validation with reduced in-
tegration and performance assessment through distortion, aspect ratio, and convergence 
tests across various structures. Additionally, nonlinear validation is conducted by imple-
menting the elements and the plasticity model in Abaqus software in the form of User 
defined ELement (UEL) and User defined MATerial subroutine, respectively. Overall,
the proposed elements demonstrate superior performance, particularly in handling mesh 
distortion.

  Keywords: Hexahedral finite element ; Space Fiber Rotation ; Rotation degrees of 
freedom ; Elastoplastic analysis ; nonlinear analysis ; Abaqus ; User defined ELement 
(UEL) ; User defined MATerial (UMAT)



Résumé

Cette thèse présente la validation de nouveaux éléments finis d’ordre supérieur dévelop-
pés pour analyser diverses structures et comportements des matériaux dans des régimes 
linéaires et non linéaires. Ces éléments sont basés sur le concept dite Space Fiber Rota-
tion (SFR), reconnu pour son efficacité. Le SFR permet une rotation spatiale d’une fibre 
virtuelle tridimensionnelle à l’intérieur de l’élément, introduisant six Degrés de Liberté 
(DDL) par noeud (trois translations et trois rotations), ce qui améliore l’approxima-
tion du champ de déplacement classique. Les nouveaux éléments incluent des éléments 
hexaédriques conformes (SFR20) et non conformes (SFR20I) à 20 noeuds. L’approche 
des modes incompatibles est utilisée dans la formulation des éléments non conformes 
pour éviter les déficiences numériques liées au verrouillage du coefficient de Poisson. Les 
éléments d’ordre supérieur sont choisis pour répondre aux exigences de raffinement du 
maillage pour les éléments de faible ordre et aux problèmes de distorsion du maillage.
Le processus de validation comprend une validation linéaire avec une intégration réduite 
et une évaluation des performances à travers des tests de distorsion, de rapport d’aspect 
et de convergence sur diverses structures. De plus, la validation non linéaire est réalisée 
en mettant en oeuvre les éléments et le modèle de plasticité dans le logiciel Abaqus sous 
forme de subroutine User Defined ELement (UEL) et User Defined MATerial, respective-
ment. Dans l’ensemble, les éléments proposés démontrent une performance supérieure, en 
particulier dans la gestion de la distorsion du maillage.

  Mots clés : Élément fini hexaédrique ; Rotation spatiale des fibres ; Degrés de libert 
de rotation ; Analyse élastoplastique ; analyse non linéaire ; Abaqus ; Élément défini par 
l’utilisateur (UEL) ; Matériel défini par l’utilisateur (UMAT)
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1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Review of special 3D finite elements in elasticity . . . . . . . . . . . 4
1.2.2 Review of the related work for 3D finite element in elastoplasticity . 6

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Structure of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Introduction

The Finite Element Method (FEM) stands out as a highly powerful tool in numerical
simulation, renowned for its reliability, robustness, and efficiency. Ever since the initial
mathematical validations of its formulation Babuska and Aziz , the FEM has established
itself as a formidable platform for addressing Partial Differential Equations (PDEs) across
diverse domains, encompassing heat transfer, fluid mechanics, electromagnetic potential,
and the advancement of efficient nanoscale systems [1]. In solid mechanics, there has
been a notable surge of interest in 3D modeling, particularly in response to the significant
expansion of computational resources [2].

One of the main advantages of the FEM is its ability to handle complex geometries
and boundary conditions Zienkiewicz et al. [3]. It also allows for the incorporation of
material properties, which makes it a powerful tool for analyzing the behavior of different
materials. Additionally, the FEM can provide accurate and detailed results that are
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difficult or impossible to obtain through experimental testing [4]. However, the FEM
also has some limitations and drawbacks. One of the main challenges is the requirement
for accurate modeling of the geometry, material properties, and boundary conditions [5].
Inaccuracies in these areas can lead to errors in the results. Additionally, the FEM
requires significant computational resources and time, especially for complex geometries
and high-fidelity models [6]. Finally, the FEM can be sensitive to the choice of mesh size
and shape, which can affect the accuracy and convergence of the solution Oden et al. [7].

There are various approaches and methods used to enhance the performance and accu-
racy of the finite elements for solving complex engineering problems. One such approach
is the use of adaptive mesh refinement, which involves refining or coarsening the mesh
based on the solution’s local error estimates Babuška and Rheinboldt [8]. This approach
can reduce the computational cost of the FEM while maintaining high accuracy. Another
method used to enhance the performance of the FEM is the use of higher-order basis
functions, such as the B-spline and NURBS (Non-Uniform Rational B-Splines) functions
Piegl and Tiller [9]. These basis functions can provide more accurate solutions than tradi-
tional linear basis functions and can handle complex geometries more efficiently. Another
special type of finite element used in the FEM is the isogeometric analysis (IGA) method,
which utilizes the same basis functions as those used in computer-aided design (CAD)
software Hughes et al. [10]. This method can simplify the mesh generation process and
provide accurate solutions for problems involving curved geometries. In recent years, ma-
chine learning techniques have been applied to enhance the performance of the FEM, such
as using neural networks for solution approximation and optimization Ling et al. [11].
This approach can provide a more efficient and accurate solution for high-dimensional and
nonlinear problems. Finally, the FEM can be coupled with other numerical methods to
provide a more comprehensive solution for complex problems, such as the FEM-Boundary
Element Method (BEM) coupling for fluid-structure interaction problems Brebbia and
Wrobel [12]. This approach can provide an efficient and accurate solution for problems
involving complex domains and material interfaces.

One effective approach to enhance the performance of the FEM is the use of high-order
finite elements. Unlike traditional linear elements, high-order elements use higher-degree
polynomials to approximate the solution, which can lead to more accurate and efficient
results Zienkiewicz and Taylor [3]. High-order elements also offer the advantage of re-
ducing the number of elements required to discretize a domain, which can lead to a
reduction in the computational cost of the FEM. There are several types of high-order
finite elements used in the FEM, including quadratic, cubic, and higher-order elements.
Quadratic elements use second-degree polynomials to approximate the solution, while cu-
bic and higher-order elements use even higher-degree polynomials. The use of higher-order
elements can provide more accurate solutions for problems involving complex geometries
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and material properties Cottrell et al. [13]. However, the use of high-order elements can
also pose some challenges. One major challenge is the increased computational cost due
to the larger number of degrees of freedom required to represent the higher-degree poly-
nomials accurately. Another challenge is the difficulty of generating high-quality meshes
that can accurately capture the high-order solution behavior. Despite these challenges,
the use of high-order finite elements is becoming increasingly popular in the FEM due to
their ability to provide more accurate and efficient solutions for complex engineering prob-
lems. This approach has been successfully applied in various fields, including structural
mechanics, fluid dynamics, and electromagnetics Arnold et al. [14].

Computation cost is a significant concern in the Finite Element Method since it can
have a direct impact on the accuracy and efficiency of the solution. One of the main con-
tributors to the computational cost in the FEM is the number of degrees of freedom (DOF)
required to represent the problem accurately. In general, the larger the number of DOF,
the longer the computational time required to obtain a solution. Various strategies have
been proposed to address the issue of computation cost in the FEM. One approach is to
use efficient algorithms and data structures that can minimize the memory requirements
and improve the computational efficiency. Another approach is to use parallel comput-
ing techniques to distribute the computation across multiple processors and reduce the
computational time Saad [15]. Moreover, the use of adaptive mesh refinement can sig-
nificantly reduce the computational cost by refining the mesh only in regions where the
solution requires high accuracy Babuska et al. [16]. Additionally, the use of reduced-order
modeling techniques, such as model order reduction, can provide a significant reduction
in the computational cost while maintaining acceptable accuracy levels Benner et al. [17].
However, it is important to note that reducing the computation cost may also come at
the expense of reduced accuracy. Therefore, it is essential to strike a balance between
computational cost and accuracy when using the FEM. In summary, computation cost
is an important consideration in the FEM, and various strategies have been proposed to
address this issue. By using efficient algorithms, parallel computing techniques, adap-
tive mesh refinement, reduced-order modeling techniques, and special finite elements, it is
possible to reduce the computational cost while maintaining acceptable levels of accuracy.

In this context the presented work aims to provide new high-order and special fi-
nite elements. These elements are based on the Space Fiber Rotation (SFR) concept
for the analysis of linear and nonlinear problems including (solids and structures). The
SFR considers the spatial rotation of a virtual fiber within the element resulting in an
enhancement in the displacement vector approximation. The developed elements are a
conforming and a nonconforming element named SFR20 and SFR20I, respectively. The
nonconforming version is mainly proposed to avoid numerical difficulties related to the
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Poisson’s ration locking phenomena. Thus, the performance of the elements is valida-
tion through linear and elastoplastic problems. The validation of the proposed elements
SFR20 and SFR20I in linearity is done through the implementation of the elements in
the form of subroutines in "Reflex" which is a pre-developed code developed by Batoz
and Dhatt [18]. The accuracy and efficiency of elements is assessed through a series of
Three-dimensional linear elastic benchmarks including beams, plates and shell structures.
The elements are investigated by different type of tests as; distortion tests, aspect ratio
and convergence tests. In order to investigate the performance of the SFR20 element to
analyze the elastoplastic behavior of structures, the presented element was implemented
as a User defined ELement (UEL) subroutine in the Commercial Finite Element Soft-
ware Abaqus. This was motivated by the need for a powerful and accurate envirement
to handle the nonlinear analysis of structures, add to that the fact that Abaqus provides
a general interface for the visualisation purposes. Moreover, the elastoplastic model was
also implemented as User MATerial (UMAT) subroutine in combination with th (UEL)
subroutine.

1.2 State of the art

1.2.1 Review of special 3D finite elements in elasticity

The elemental formulation’s significance in Finite Element Analysis (FEA) has prompted
numerous endeavors aiming to refine the accuracy, efficiency, and versatility of these ele-
ments since their inception. These efforts have yielded a plethora of models and method-
ologies, with many pioneering works eventually integrated into commercial finite element
software. The development of high-performance, low-order solid elements has gained
considerable traction, particularly in meeting the demands of 3D modeling. Although
standard low-order hexahedral elements offer cost efficiency, they suffer from well-known
deficiencies, notably the occurrence of locking when shape functions inaccurately interpo-
late a field [19], potentially leading to erroneous results. Researchers such as Hughes et
al. [20] and Zienkiewcs et al. [21] have effectively addressed locking phenomena through
the introduction of reduced and selective reduced integration techniques, respectively.
Moreover, Wilson et al. [22] introduced incompatible displacement modes to improve
the element’s displacement field. This initial approach being confined to parallelograms,
Taylor et al. [23] rectified the flawed terms and conducted a patch test to refine this
formulation. Similarly, Simo and Rifai [24] pioneered a family of three elements rooted in
the Enhanced Assumed Strain (EAS) approach, augmenting the strain field by incorpo-
rating an additional field of variables to accommodate linear problems. Correspondingly,
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Andelfinger and Ramm [25] utilized the EAS concept to develop membrane, plate, and
shell finite elements, discussing their equivalence with Hellinger-Reissner (HR) elements.
The EAS technique, aligned with the Hu-Washizu principle, was applied to address the
nonlinear regime in the works of Simo and Armero [26] and Simo et al. [27]. Further-
more, several 3D finite elements emerged based on this approach, including Fredriksson
and Ottosen’s [28] presentation of a stabilized hexahedral element evaluated through 3D
elasticity problems. Similarly, Sousa et al. [29] introduced a set of solid finite elements
demonstrating minimal sensitivity to mesh distortion, resulting in heightened accuracy for
3D and thin shell applications. Another proposed method in the academic literature to
create precise finite elements is through hybrid/mixed formulations [30]. Hybrid elements
primarily rely on enforcing constraint conditions to guarantee interelement compatibility
by introducing Lagrange multipliers [31], while Mixed elements are derived from a multi-
field variational functional. Numerous other innovative works have been suggested in this
domain for both linear and nonlinear analyses [32, 33, 34, 35, 36], to highlight a few.

Additionally, finite elements with rotational degrees of freedom have demonstrated sig-
nificant efficiency in addressing both linear and nonlinear structural problems. Following
the groundbreaking work of Allman [37], several successful methods integrating rotational
DOF in 2D and 3D finite elements have been introduced [38, 39, 40, 41]. Utilizing the
Hybrid formulation, Yunus et al. [38] developed hexahedral, quadrilateral, and triangular
finite elements for resolving 3D and 2D elasticity problems. Similarly, Yunus et al. [39]
and Pawlak et al. [40] introduced a hexahedron and a tetrahedron finite element, respec-
tively. The inclusion of rotational DOFs in these elements stemmed from transforming
the mid-side translational DOF of the standard 20-node hexahedron and 10-node tetra-
hedron, respectively. Shang et al. [42] recently introduced an 8-node hexahedral element
designed for addressing size-dependent problems. This 48-DOF element originates from
an earlier formulation by Shang et al. [43], which is essentially based on the modified
couple stress theory.

The Space Fiber Rotation (SFR) concept stands as another pioneering effort to develop
highly accurate finite elements with rotational DOF. Initially introduced by Ayad [41],
this concept revolves around considering the rotation of a spatial virtual fiber within the
element, resulting in additional rotational DOFs. Several authors [44, 45, 46, 47, 48, 49, 50]
adopted this assumption to create a series of efficient 2D and 3D finite elements. In their
innovative work, Ayad et al. [45] presented two 8-node hexahedrons: a conforming (SFR8)
and a nonconforming (SFR8I) finite element. The latter includes three incompatible
modes and was primarily proposed to resolve the Poison’s ratio locking problem present
within the SFR8 element. These elements were utilized in the research of Meftah et al. [46]
to address geometric nonlinear problems. In a similar vein, Meftah et al. [47] introduced
a multilayer version of the SFR8 element, labeled SFR8M, to model composite laminated
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structures. Meftah and Sedira [48] suggested a linear four-node tetrahedral finite element,
SFR4, for modeling solid structures. Ayadi et al. [49] recently adopted the SFR approach
to analyze 3D nonlinear elastoplastic problems.

The massive development of computational resources has sparked renewed interest in
high-order finite elements, driven by their rapid convergence and superior accuracy. In
recent years, a multitude of 2D finite elements have been introduced within this domain
[51, 52, 53], just to mention a few. Conversely, specific high-order solid finite elements have
been proposed for 3D modeling. Ooi et al. [54] proposed a 20-node hexahedron based
on an asymmetry that exploits intrinsic properties of different sets of shape functions,
resulting in an efficient finite element with a notable tolerance to mesh distortion. This
approach was subsequently expanded to encompass geometric nonlinearities [55]. Li et
al. [56] introduced a 21-node hexahedral spline element incorporating an internal node,
achieving second-order completeness in Cartesian coordinates. This element demonstrated
superior performance compared to standard 20-node serendipity elements, particularly in
terms of sensitivity to mesh distortion.

1.2.2 Review of the related work for 3D finite element in elasto-

plasticity

The development of plasticity theory has been shaped by numerous significant contri-
butions from researchers across the years, where it can be traced back to the work of
Tresca (1864) [57], whose led to the development of his well known Tresca criterion where
he stated that metals yielded plasticaly when the maximum shear stress reach a critical
value. Another notable contribution to the development of plastic theory were made by
Saint-Venant (1870) [58] and Lévy (1870) [59]. Otto Mohr’s introduction of the yield
surface concept in 1900 was also a key contribution, providing a fundamental framework
for understanding plastic deformation [60]. Richard Von Mises made a profound impact
on plasticity theory with his proposal of the Von Mises yield criterion in 1913, which
remains a cornerstone of plasticity modeling [61]. Additionally, eminent researchers like
Hencky (1924) [62] and Prandtl (1924) [63] amongst others made significant strides in un-
derstanding the theory of plasticity . Furthermore, the development of numerical methods
and computational techniques, such as the Finite Element Method (FEM), greatly ad-
vanced the computational modeling of plastic deformation [3]. Indeed, the finite element
method is regarded as the most suitable and reliable method for the analysis of nonlinear
behavior involving elastoplastic materials. Elastoplastic analysis is of utmost importance
in engineering and material science as it enables the understanding and prediction of ma-
terial behavior beyond the elastic limit. It plays a crucial role in designing structures and
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components that are subject to complex loading conditions, such as those encountered in
manufacturing processes, structural engineering, and geomechanics. By considering the
plastic deformation of materials, elastoplastic analysis provides insights into the response
of structures under realistic conditions, where permanent deformations and energy dissi-
pation occur. Elastoplastic analysis by the finite element method has gained huge interest
from scientists since the first contributions in the mid-1960s [64, 65, 66].

The use of high-order finite elements or special methods and aproaches offers im-
proved accuracy and efficiency compared to the classical formulation with low-order ele-
ments. Several works provide valuable insights into the utilization of such elements and
approaches in elastoplastic analysis. May et al. [67] presents a comprehensive study on
the elastoplastic behavior of beams under pure and warping torsion. The work focuses
on the development and application of a 20-noded isoparametric brick finite element to
accurately simulate the complex mechanical response of materials under torsional defor-
mations. Where we find in the work of Weber et al. [68] aims to improve the accu-
racy, stability, and robustness of numerical simulations in analyzing the complex behavior
of materials undergoing plastic deformations, by presenting a novel and objective time-
integration method to efficiently solve isotropic elastic-plastic constitutive equations, both
rate-independent and rate-dependent, under various loading conditions. Armero et al.
[69] investigate the phenomenon of strain localization in solids, to understand and ana-
lyze the factors influencing strain localization and its numerical simulation using finite
element methods. Another specialized technique for elastoplastic fracture analysis using
finite elements with minimal remeshing was presented by Belytschko et al. [70], enabling
efficient and accurate modeling of crack growth under plastic conditions. Cao et al. [71]
presents a novel brick element formulation to overcome the limitations of conventional fi-
nite element methods by introducing a three-field variational principle that enhances the
representation of complex material deformations and stress states. Several shell elements
were developed for nonlinear problems involving elastoplastic analysis, Rank et al. [72]
investigate the benefits and challenges of using high-order elements for accurately model-
ing the complex behavior of shell structures, such as thin-walled components and curved
surfaces, in various engineering applications. Recently, Artioli et al. [73] developed and
implemented a new linear hexahedral element based on Nodally Integrated Continuum
Element (NICE) formulation to efficiently capture complex material behaviors and stress
distributions in elastoplastic simulations. Moreover, a novel mixed finite element method
for the analysis of elastoplastic materials addresses the challenges associated with accu-
rately simulating the complex behavior of materials undergoing plastic deformations using
highly anisotropic volume elements by Nagler et al. [74]. Another approache is the Space
Fiber Rotation (SFR) concept which was successfully adopted for the analysis of different

7



1.3 Motivation

type of problems including (Linear, nonlinear and composite materials analysis), it con-
siders the rotaion of a virtual fiber within the element, the 3D rotaion of the fiber results
in additional degrees of freedom (DOFs) that enhance the displacement field. Meftah
et al. [46] adopted an 8-node hexahedral element for the analysis of geometric nonlin-
earity, the implementation of SFR8 element was to improve the representation of large
displacements and rotations in engineering simulations. In the work of Meftah et al. [47]
the same element was extanded to a new multilayered element denoted SFR8M to model
composite laminate structures. Moreover, The hexahedral element SFR8 was assessed to
analyse material nonlinearities for elastoplastic materials and to enhance material defor-
mations and stress states Ayadi et al. [49]. Add to that, a plane adaptation (Plane Fiber
Rotation) of the SFR concept was considered for the development of a quadrilateral finite
element denoted PFR8 to analyse the behavior of plane structures, such as plates and
membranes, under the influence of elastoplastic deformations [50].

1.3 Motivation

One way to enhance the performance and the accuracy of the finite elements is by using
high order formulation elements. Despite, the good behavior of such elements still were
not given the value in developement unlike the linear approximation elements. The use of
high order elements in this work is motivated by the good performance of such elements to
aviod the requirements to use the mesh refinement for low order elements and overcome
mesh distortion phenomenon. Another motivation comes with need to investigate the
performance of elements to analyse the elastoplastic behavior of structures, where these
elements are a reduced integration scheme element SFR20 with 3×3×3 Gauss points and a
complet or full integration scheme element with 4×4×4 Gauss points denoted as SFR20F.
Finale motivation is the necessity to complete the family of volumetric finite elements
based on the Space Fiber Rotation (SFR) concept; by investigating the behavior and
performance of high order elements, especially, after the successful performance showed
by the low order elements in the work of Ayad et al. [45], Meftah et al. [46] and Ayadi et
al. [49], to mention but a few.

1.4 Scope of the thesis

This work is a contribution to develop new high order finite elements in the family based on
the Space Fiber Rotation concept (SFR). This concept has proved its efficiencies through
the literature for the analysis of different structures in linearity and non linearity. High
order elements represent good rate of convergence and the high order approximation field
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gives the ability to model complex shape of structures. For this purpose, the aim of this
thesis is to introduce improvements and novel elements, this elements are based on the
Space Fiber Rotation concept (SFR); the elements are hexahedrals with 20-nodes and
denoted as SFR20 and SFR20I.

The formulation, implementation and validation of the proposed elements is carried
out through two parts of the work. The first part of the work is related to the validation
of elements in linear analysis for different type of structures by :

• Implementing these elements in a pre-coded environment "Reflex".

• In order to overcome the fact that the new elements uses high number of DOFs, an
investigation must be conducted through applying different type of analysis as; rate
of convergence and aspect ration tests.

• The proposed elements are exposed to several distortion test to investigate their
sensitivity for mesh distortion on the behavior of elements.

• Since the developed elements use high number of Degrees of Freedom DOFs; they
need to be assessed for time efficiency tests to evaluate the run time cost with respect
to other elements from the literature.

The second part of the work is to investigate the performance of the conforming ele-
ment SFR20 with a reduced and full integration schemes. for the analysis of elastoplastic
behavior for different type of structures, to achieve this objective:

• The proposed element is implemented as a User defined ELement subroutine in the
commercial finite element software "Abaqus".

• Implementing the constitutive plasticity model through the User defined MATerial
subroutine which is called for each integration point within one element in UEL.

• Simple tests need to be conducted to verify the correctness of the computation im-
plementation for the UEL element and the constitutive model in UMAT subroutine.

• Exposing the SFR20 for different series of typical structural problems to evaluate
the element’s performance to analyse the elastoplastic behavior.

• Validation of the proposed element with other reference solution and developed
elements from the literature.

9



1.5 Structure of the work

1.5 Structure of the work

In order to address the research objective, this thesis is organized into six distinct chapters
that covers key themes and methodologies. The thesis began with a general introduction
that gives a general review for the related work. The general introduction was followed
by the second chapter which addresses a general overview of the continuum mechanics
and essential basics in the finite element method. As long as, the presented work is about
the development of new special finite element based on an original technique; the third
chapter presents a theoretical formulation of the developed elements SFR20 and SFR20I.
This chapter was followed by the validation of the proposed elements in linearity for
different type of structures and tests. The theory of plasticity and numerical modelling
of the elastoplastic behavior are presented in chapter five. The validation of the SFR20
element for the analysis of elastoplastic behavior is adopted in chapter six. Finally, the
thesis ends with a general conclusion summarizing the work done.

General introduction covers state of the art related to the development and vali-
dation of solid finite elements in linear and nonlinear analysis. Chapter 2 presents the
mathematical tools to describe any kinematics of bodies. Also, the description for defor-
mation of a body, add to that, it gives the fundamentals to touch in the Finite Element
Method. The second part of this chapter give a general overview of the finite element
method in three dimensions. The Space Fiber Rotation (SFR) concept was introduced in
Chapter 3, where it presents a detailed formulation of two high order hexahedral finite
elements, a conforming and non-conforming elements, denoted as SFR20 and SFR20I,
respectively. The element matrices of both elements were expressed with the appropri-
ate Gaussian integration schemes. Chapter 4 is concerned about the validation of the
developed elements in the previous chapter, where these elements are implemented in a
pre-programmed code in the form of a subroutines and exposed to various type of tests
and structures as; distortion sensitivity test, convergence tests and aspect ratio tests. The
structures are including; beams, shells and plates. Also, the elements are investigated for
computational cost by determine the required time to calculate the element stiffness ma-
trices. Chapter 5 is devoted to provide a general framework for numerical modelling of
the elastoplastic behavior. Furthermore, it addresses an overview on the plasticity the-
ory, followed by the computation of the elastoplastic constitutive equations. This chapter
is concluded with the process to solve the nonlinear equations with the finite element
method. In Chapter 6 the validation of the developed SFR20 element to analyse the
elastoplastic behavior is presented. Where the element is exposed to several well know
tests in the literature. The thesis ends with a General conclusion, where it summarizes
the major findings, achieved from the proposed elements. Future research work are also
discussed in this chapter.
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1.5 Structure of the work

In Appendix A, the shape functions and their derivatives for the classical 20 nodes
hexahedral element are presented. General tutorial on the implementation of the pre-
sented SFR20 element with the constitutive plasticity model in a form of subroutine in
the commercial finite element program Abaqus by Simulia Dassault Systems is given in
Appendix B.

The structure of this thesis ensures a comprehensive analysis of the research topic,
covering key themes such as Continuum mechanics, Finite element method, Space fiber
rotation concept formulation, Plasticity theory and validation of the presented elements
SFR20 and SFR20I in linearity and for the SFR20 element for the analysis of the elasto-
plastic behavior with two integration schemes by implementation of the SFR20 element
via UEL subroutine and the constitutive plasticity model via UMAT subroutine.
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2.1 Introduction

2.1 Introduction

Problems in engineering and mathematical physics are described in a form of differential
equations, and it is generally not possible to obtain an analytical solution for these equa-
tions, especially, in case of complicated geometries, boundary conditions and material
properties. The favourable way to obtain an acceptable solution is to rely on numerical
methods such as the finite element method. The finite element method is a numerical
method that allows to solve differential equations that describe engineering and mathe-
matical physics problems. These problems include; structural analysis, heat transfer, fluid
dynamics, electromagnetic potential.
In order to understand the finite element method it is better to touch basics on contin-
uum mechanics. The continuum mechanics is introduced to present the mathematical
tools to describe any kinematics of bodies. add to that, continuum mechanics makes it
possible to take into account the deformations of a body and the temperature variations
that accompany these deformations.
The main objective of this chapter is to give a general overview of the continuum me-
chanics and the finite element method. This chapter is divided into two parts; the first
part addresses principles on continuum mechanics; for a detailed treatment on the contin-
uum mechanics which is presented in this chapter the reader is refered to the textbooks
[75, 76, 77]. The second part will give a general overview on the formulation of the FEM
in three dimensions; Regarding the finite element method the reader is refered to the
standard textbooks to mention but a few [78, 79, 80, 81].

2.2 Kinematics of continuum mechanics

2.2.1 Description of motion

Figure 2.1 presents a deformable solid body D with closed boundary Ω, and t0 is the
time where we begin to monitor its motion and deformation. We consider the body
D0 with bounded boundary Ω0 at time t0 as the initial or reference configuration. Let
B = (O, ~X1, ~X2, ~X3) a fixed cartisian coordinate system and the origin of this coordinate
system is located outside of the body. M0 is a material point in the initial reference at
time t0 with the coordinates (x0, y0, z0). At time t0 the body D0 is disturbed by any type
of forces (concentrated, surface or volumetric) its material particles experience motion and
as a result at current time t > t0 the body D0 occupies a different configuration Dt with
closed boundary Ωt. We refer to the new configuration as the current configuration. The
point M0 from the initial configuration occupies position Mt with coordinates (xt, yt, zt)

in the current configuration with respect to the same fixed orthogonal coordinate system
13



2.2 Kinematics of continuum mechanics

B. The motion or trajectory of the particles or the undeformed and deformed bodies
between initial and current configurations can be described by a mapping Υ over time t
as:

x = Υ(X, t) (2.1)
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Figure 2.1: Description of motion of a deformable body.

2.2.1.1 Material and spatial description

The motion of the deforming body can be described in two possible ways. Choosing the
appropriate coordinate system that describe the motion of the body is an important step.
Where it can be described in terms of where the body was before deformation or where it is
during deformation; The former is a material or Lagrangian description where it refers to
the behavior of a material particle, whereas the latter is a spacial or Eulerian description
refers to the behavior at a spacial position [75]. Let ρ be a simple scalar quantity as the
current density of the material ; we define Lagrangian and Eulerian description as :

Material or Lagrangian description: The state of body in the current configuration
requires initial position coordinates of the material points this leads to the variation
of ρ over the body is described with respect to the original (or initial) coordinate X
used to label a material particle (identified by a point M0).

ρ = ρ (X, t) (2.2)
14



2.2 Kinematics of continuum mechanics

Spatial or Eulerian description: Eulerian description is radically different from that
of Lagrange. We do not consider initial instance, and we do not even try to follow a
particle in its movement. We are interested in a fixed point M0, whose coordinates
are indicated by the x position vector. The variation of ρ is described with respect
to the position in space.

ρ = ρ (x, t) (2.3)

2.2.2 Deformation gradiant

Consider a material domainD during the deformation of continuum, and more particularly
to the comparison between its initial D0 and current Dt states. Since it is a material
domain, each particle located at a point M0 of the initial configuration is still present in
the current configuration at a point Mt.

In typical Lagrangian notation, we can note the following location vectors:{ −−→
OM0 =

−→
X

−−→
OM t = −→x

⇒ −→x =
−→
X +

−→
U (2.4)

The Equation (2.4) can be written in a vectorial form as:
x1

x2

x3

 =


X1

X2

X3

+


u
v
w

 (2.5)

Let P and Q be a material particles in the neighbourhood of a material particle M0

Figure 2.1. After deformation, the material particles P , Q and M0 have deformed to
current configuration as p, q and Mt. A fundamental tool to compare the initial and
final position of the particles of a material domain subjected to a transformation is the
deformation gradient tensor, with components:

Fij =
∂xi
∂Xj

= xi,j (2.6)

This two order tensor give the ability to connect the relative position of two adjacent
particles before and after deformation. Based on this notation we can write:

−→
dx = F.

−→
dX (2.7)

The elements of the matrix F are the partial differential of the actual coordinates with
respect to the initial coordinates. Hence:
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2.2 Kinematics of continuum mechanics

[F] =

 ∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 (2.8)

The matrix F is the Jacobian Matrix, and its determinant is called the Jacobian,who
is written as follow:

−→
dx = J.

−→
dX (2.9)

Hence, the deformation gradient F can be expressed in the global reference B =

(O, ~X1, ~X2, ~X3) by: 
dx1

dx2

dx3

 =

 ∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3


dX1

dX2

dX3

 (2.10)

If we differentiate the values inside F, we get:
dx1

dx2

dx3

 =

 1 + u,X1 u,X2 u,X3

v,X1 1 + v,X2 v,X3

w,X1 w,X2 1 + w,X3


dX1

dX2

dX3

 (2.11)

This lead us to:

F = I + L (2.12)

with:

L =

 u,X1 u,X2 u,X3

v,X1 v,X2 v,X3

w,X1 w,X2 w,X3

 (2.13)

Because L is an unsymmetrical tensor, it can be decomposed into an antisymmetric
[W ] and a symmetric [D] tensors, where:

[L] = [W ] + [D] (2.14)

The linearized deformation tensor in small deformation is:

[D] =
1

2
[D +DT ] =

 u,X1

1
2
(u,X2 + v,X1)

1
2
(u,X3 + w,X1)

v,X2

1
2
(v,X3 + w,X2)

sym. w,X3

 (2.15)
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2.2 Kinematics of continuum mechanics

2.2.3 Displacement

We defined previously
−→
U as the displacement vector of a particle M0 for initial configu-

ration Mt, the vector
−→
U relates two points M0 and Mt by this relation:

−→
U =

−−−→
M0Mt = −→x −

−→
X (2.16)

The displacement gradient tensor is defined as follow:

H = grad
−→
U (2.17)

Or we can write:

Hij =
∂Ui
∂Xj

(2.18)

As like all the second tensors, H can be defined or decomposed into tow parts, a
symetric and unsymetric part:

H = ε+ ω (2.19)

We define the symmetric and the unsymmetrical parts as follows:{
ε = 1

2

(
H + HT

)
ω = 1

2

(
H−HT

) (2.20)

By replacing Equation (2.18) in Equation (2.20), we can define the tensors in a matrix
notation:  εij = 1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
ωij = 1

2

(
∂Ui
∂Xj
− ∂Uj

∂Xi

) (2.21)

where ε and ω are the linearized deformation and rotation tensors, respectively.

2.2.4 Linearized deformation tensor (Strain tensor)

In the classical linear theory of elasticity, the displacement gradient is supposed to be
very small. We consider the Small Perturbation Hypothesis (SPH) that takes its origins
from the Lagrangian description because it compares the state of two references. The
hypothesis states that the displacement between the initial to the actual configuration
are very small and displacements gradient are also very small. It is well known that the
Green-Lagrange deformation depends in a nonlinear way with displacements. Based on
the definition of the Green-Lagrange tensor:
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2.2 Kinematics of continuum mechanics

E =
1

2

(
FT · F − I

)
(2.22)

The deformation gradient can be expressed in function of the displacement gradient
using:

F =
∂−→x
∂
−→
X

=
∂
(−→
X +

−→
U
)

∂
−→
X

= I +
∂
−→
U

∂
−→
X

(2.23)

We write E in the following form:

E =
1

2

∂−→U
∂
−→
X

+

(
∂
−→
U

∂
−→
X

)T

+

(
∂
−→
U

∂
−→
X

)T

· ∂
−→
U

∂
−→
X

 (2.24)

Based on the definition of the SPH, the expression above will be reformulated by
neglecting the quadratic or the nonlinear terms, the result is:

E ' 1

2

∂−→U
∂
−→
X

+

(
∂
−→
U

∂
−→
X

)T
 (2.25)

The quantity in the right side of the expression above is called the right Green-
Lagrange deformation tensor, denoted as ε. The relation between deformation-displacement
wrote as follow:

ε =
1

2

∂−→U
∂
−→
X

+

(
∂
−→
U

∂
−→
X

)T
 =

1

2

(
F + FT

)
− I (2.26)

We define the deformation tensor in one point by the classical formula of the linear
mechanics, as follow:

εij =
1

2

∂
−→
U i

∂
−→
X j

+
∂
−→
U j

∂
−→
X i

T
 (2.27)

The deformations are symmetric based on the Kronecker delta δij rule as:

δij =

{
1 i = j
0 i 6= j

; εij = εji (2.28)

This leads to:

[ε] =

 εxx εxy εxz
εyy εyz

Sym εzz

 (2.29)
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Figure 2.2: Stress tensor description in a deformable body.

The deformation tensor can be determined by knowing six components out of nine,
which can be present in vectorial form by:

{ε} = {εxx εyy εzz γxy γxz γyz}T (2.30)

Where γxy, γxz and γyz are the angular deformation that represent the variation in the
angle between i and j. 

γxy = 2εxy
γxz = 2εxz
γyz = 2εyz

(2.31)

2.2.5 Stress tensor

Calling V a deformed body in equilibrium bounded by boundary ∂V at any time t Figure
2.2. The body V is cut into two volumes V1 and V2 by a hypothetical diaphragm or cut
plane S and bounded by ∂V1 and ∂V2, respectively. The body V is subjected to surface
q and volume f forces; these forces are acting on the cut area ∆A and the forces exerted
by volumes V1 and V2 on both sides of the diaphragm S are maintaining the equilibrium
of the body V . In order to maintain the equilibrium of the body V after the cut, a
virtual forces ∆F are defined that are equal and opposite in direction and exercise on the
diaphragm S on the area ∆A.

In the neighbourhood of special point Q, Let −→n be unite normal to the area ∆A and
∆F is the resultant force on this area. Stress tensor T (n) at point Q associated to the
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Figure 2.3: Cauchy’s Stress tensors components.

plane whose normal to −→n , is define as:

T(n) = lim
∆A→0

∆F

∆A
=
dF

dA
(2.32)

Thus, there is an infinity of vectors of the stresses T at point Q depending on the
orientation of the vector −→n . The tensor T can be decomposed to T (e1), T (e2) and T (e3)

based on the directions of the axes on the orthogonal Cartesian base B(e1, e2, e3), see
Figure 2.3: 

T(e1) = σxxe1 + σxye2 + σxze3

T(e2) = σyxe1 + σyye2 + σyze3

T(e3) = σzxe1 + σzye2 + σzze3

(2.33)

The Cauchy stress tensor at point Q is defined as follows:

T(ei) = σijej (2.34)

Where [σ] is the stress matrix at point Q, and it is symmetric (σij = σji), and we can
write:

[σ] =

 σxx σxy σxz
σyy σyz

Sym σzz

 (2.35)

The stress matrix [σ] can be determined by six components, that can be defined in
vectorial representation:

{σ} = {σxx σyy σzz τxy τxz τyz}T (2.36)
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2.2 Kinematics of continuum mechanics

Where the diagonal terms are normal or principal stresses in the directions e1, e2 and
e3. The non-diagonal terms are the tangential or shear stresses, which we often noted as
τij. Finally, the matrix of the Cauchy tensor is most often written as follows:

[σ] =

 σ11 τ12 τ13

σ22 τ23

Sym σ33

 (2.37)

2.2.6 Stress-strain relationship

In elasticity the behaviour of the material is characterized by two hypothesises, where
the first relationship between the stress and strain is linear, second, the material has the
property for complete recovery to the initial (natural) shape on the removal of loads and
there is no loss of energy. With these hypothesises we write the constitutive equation for
elastic behaviour that present the relation between the stress and the strain, as follows:

{σ} = [C] {ε}+ {σ0} (2.38)

For linear elastic materials, the stress is a linear function of the strain. Constitutive
Equation (2.38) for infinitesimal deformation is referred to as the Generalized Hook’s Law.

Where C is the behaviour elasticity matrix with a dimension of 6 × 6 that has 36

components. Because of the symmetry of both the stress and strain tensors, we write:

Cijkl = Cjikl = Cijlk (2.39)

These will reduce the 36 components to 21 distinct coefficients at most which is the
case for a fully anisotropic material. However, in the case of isotropic linear elasticity,
Hook’s law is now written in a matrix form, involving all the terms of stress and strain
tensors, as follows:

σ11

σ22

σ33

σ12

σ13

σ23


=


2G+ λ λ λ 0 0 0
λ 2G+ λ λ 0 0 0
λ λ 2G+ λ 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G





ε11

ε22

ε33

ε12

ε13

ε23


(2.40)

in which G and λ are the shear modulus and Lamé’s coefficient, respectively, and they
are expressed in terms of Young’s modulus E and Poisson’s ratio ν:


G = E

2(1+ν)

λ = Eν
(1+ν)(1−2ν)

(2.41)
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2.2 Kinematics of continuum mechanics

2.2.7 Equilibrium

Figure 2.4 shows a continuous domain Ω bounded by boundary Γ. The body S is at the
current configuration and subjected to solicitation such as surface forces

−→
T applied at the

region Γσ, imposed displacements
−→
U at the region ΓU , and volumetric forces

−→
f v. The

boundary Ω is split into Γσ and ΓU , so that Γ = Γσ ∪ ΓU and Γσ ∩ ΓU = ∅. Based on
these notations the boundary conditions are expressed as:{

Ui = U∗i in ΓU
σijnj = Ti in Γσ

(2.42)
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Figure 2.4: Equilibrium of an elastic domain.

Where Ti and U∗i are the prescribed boundary values of traction and displacement,
respectively, and nj is the ith component of the normal vector, and Ui is the displacement
vector of Ω. The translational equilibrium implies that the sum of all forces acting on the
body vanishes. The equilibrium of the solid body depicted in Figure 2.4 can be defined
as: ∫∫

S

−→
T dS +

∫∫∫
V

−→
fvdV = 0 (2.43)

Equation (2.43) can be expressed in terms of the Cauchy stresses as:

div (σ) + f v = 0 (2.44)

Where σ and fv are respectively the mechanical stress and the body forces. The
equilibrium of the system is written as:
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2.3 General overview of the Finite Element Method


div (σ) + f v = 0 in Ω

Ui = U∗i in ΓU
σijnj = Ti in Γσ

(2.45)

2.3 General overview of the Finite Element Method

The same continuous domain Ω bounded by boundary Γ presented in Section 2.2.7 is
considered in Figure (2.5). The body is subjected to external loads. The external load
acting onto the body are surface traction

−→
T and body forces

−→
f .

One of the most used methods to solve the Equation (2.43) is the Finite Element
Methods (FEM) that replaces the continuous system S with a discrete system. The solid
is divided into a number of sub-domains Ωe called elements, where the assembly of all sub-
domains allows the reconstitution of the initial geometry Equation (2.46). Each element
is connected to its neighbours by nodes and the solution is sought at these points.

Ω ≈
ne

A
e=1

Ωe (2.46)

where ne is the number of sub-domains or elements, and A (•) is denoted the assembly
process.
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Figure 2.5: Discretisation of an elastic domain with finite elements.

Considering a cinematically admissible displacement field on the element Ω, In order
to formulate the equations for the elements, it is advantageous to define local coordinate
system (ξ, η and ζ) that is defined for an element in reference to the global coordinate
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2.3 General overview of the Finite Element Method

system (x, y and z) that is usually defined for the entire structure as shown in Figure
(2.6).

The displacement field within the element can be assumed by polynomial interpolation
using the displacements at its nodes, as:

X (x, y, z) =

Nnode∑
i=1

Ni (x, y, z) ·Xi (2.47)

Where Nnode is the number of nodes forming the element, Ni are the interpolation or
shape functions and Xi is the nodal displacement at the ith node where the unknowns
rises.

The transformation Te makes it possible to calculate the coordinates of point P (x, y, z)

of the reel element from those of the corresponding point P (ξ, η, ζ) of the reference ele-
ment, so we have:

Te : ξ, η, ζ →


x (ξ, η, ζ)
y (ξ, η, ζ)
z (ξ, η, ζ)

(2.48)
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Figure 2.6: 20 node hexahedral element: local reference (Left), global reference (right).

In each element Ωe, the position of all points is defined by:

X (ξ, η, ζ) =

Nnode∑
i=1

Ni (ξ, η, ζ) ·Xi (2.49)

The displacement field within the element can be assumed by polynomial interpolation
using the displacement at its nodes, as:

U (ξ, η, ζ) =

Nnode∑
i=1

Ni (ξ, η, ζ) · Ui (2.50)
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2.3 General overview of the Finite Element Method

Where {U} = {u v w}T and the parameters of the nodal displacement {Ui} = {ui vi wi}T .
u (ξ, η, ζ) =

∑Nnode
i=1 Ni (ξ, η, ζ) · ui

v (ξ, η, ζ) =
∑Nnode

i=1 Ni (ξ, η, ζ) · vi
w (ξ, η, ζ) =

∑Nnode
i=1 Ni (ξ, η, ζ) · wi

(2.51)

Where Nnode is the number of nodes in element and the shape functions matrix Ni is
defined with the following form:

Ni =

 N1 0 0 N2 0 0 · · · NNnode 0 0
0 N1 0 0 N2 0 · · · 0 NNnode 0
0 0 N1 0 0 N2 · · · 0 0 NNnode

 (2.52)

2.3.1 Solution of the equilibrium

In engineering most, practical problems are governed by differential equations as the one
developed in section 2.2.7 Equation (2.44). These equation is the Strong form of the
governing system of equation for solids. In case of complex geometries and loading an
exact solution of the governing equations are rarely possible. Indeed, the FEM is an
approximate technique for solving differential equations. However, it is based on several
other techniques. In contrast to strong form, the weak form is often an integral form an
requires a weaker continuity on the field variables. Using the weak form usually produces a
set of discretized well-behaved algebraic system of equations that give much more accurate
results.

Principle of virtual work [82] and Weighted residual method [83] are the most widely
used methods for creating the weak form of the system equations.

2.3.2 Principle of virtual work

Principle of Virtual Work (PVW) is the basis of many energy principles, such as the
principle of minimum potential energy. The PVW postulates a power balance in virtual
movement, and it stated as follows:

"If a deformable body is in equilibrium, the sum of the efforts is zero. By
applying a fictitious (virtual) displacement δU to the body; the sum of the
efforts remains zero."

The weak form W of the equilibrium Equation (2.44) can be obtained by subjecting
the body to an arbitrary virtual displacement δU , then the PVW requires that:

W =
∫
Ω
δU (div (σ) + f v) dΩ = 0 ; ∀δU (2.53)
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2.3 General overview of the Finite Element Method

By substituting the boundary conditions in Equation (2.45), into Equation (2.53), and
by rearranging the terms

W =

∫
Ω

σijδεijdΩ −
[∫

Ω

f vi δUidΩ +

∫
Γσ

TiδUidΓ

]
= 0 (2.54)

Finally, we obtain the weak form of the equilibrium of the system at the actual con-
figuration Ω: 

W = Wint −Wext = 0 ∀δU
Wint =

∫
Ω
σijδεijdΩ

Wext =
∫
Ω
f vi δUidΩ +

∫
Γσ
TiδUidΓ

(2.55)

{
U = U∗ on ΓU
δU = 0 on ΓU

(2.56)

Where δWint and δWext are respectively the internal and external mechanical virtual
works. The virtual linearized strain tensor δε is related to the virtual displacement δU
by the following expression:

δε =
1

2

(
grad (δU) + grad(δU)T

)
(2.57)

The weak form Equation (2.54) can be rewritten in a vectorial notation as:

W =

∫
Ω

{δε}T {σ} dΩ −
[∫

Ω

{δU}T {f v} dΩ +

∫
Γσ

{δU}T {T} dΓ

]
= 0 (2.58)

With:


{δU} = {δU δV δW}
{δε} = {δU,x δV,y δW,z δU,y + δV,x δU,z + δW,x δV,z + δW,y}
{σ} = {σxx σyy σzz σxy σxz σyz}
{f v} =

{
f vx f

v
y f

v
z

}
{T} = {Tx Ty Tz}

(2.59)

2.3.3 Linear finite element analysis

The Finite element method is based on the discretization of the domain Ω, and the
approximation of the solution functions consists on the transformation of the variational
form in Equation (2.58) which is an integral on the whole region Ω and boundary Γ; to
the sum of sub-domains (elements) and sub-boundaries of all elements, as follows:

26



2.3 General overview of the Finite Element Method

W =
∑

eW
e = 0 ∀δU (2.60)

Where

W =
∑
e

We =
∑
e

∫
Ωe
{δε}T {σ} dΩe −

∑
e

∫
Ωe
{δU}T {f v} dΩe

−
∑
e

∫
Γeσ

{δU}T {T} dΓe = 0 (2.61)

By replacing the displacement field Equation (2.50) in the deformation tensor Equation
(2.27), we get the strain distribution within the element:

{ε} = [B] {Un} (2.62)

Equation (2.62) presents the strain-displacement relationship. Where the matrix [B]

contains the derivatives of the shape functions.

[B] =



∂Ni
∂x

0 0
0 ∂Ni

∂y
0

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x

0
∂Ni
∂z

0 ∂Ni
∂x

0 ∂Ni
∂z

∂Ni
∂y


(2.63)

The shape function Ni(ξ, η, ζ) are defined in local system, and the geometric transfor-
mation Te allows as to transport from the local to the global system of coordinates and
vice versa. This transformation is possible by introducing the Jacobian matrix :

∂Ni
∂ξ
∂Ni
∂η
∂Ni
∂ζ

 =


∂x
∂ξ
∂x
∂η
∂x
∂ζ

∂y
∂ξ
∂y
∂η
∂y
∂ζ

∂z
∂ξ
∂z
∂η
∂z
∂ζ

 ·


∂Ni
∂x
∂Ni
∂y
∂Ni
∂z

 = [J ]


∂Ni
∂x
∂Ni
∂y
∂Ni
∂z

 (2.64)

The stresses within the element are related to the element strain by:

{σe} = [C] {εe} (2.65)

Where {σe} are the element stresses, and [C] is the three dimensional elastic ma-
trix written for a homogeneous and isotropic material presented in Equation (2.40). By
substituting Equation (2.50), (2.62) and (2.65) into (2.61), we get:
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2.3 General overview of the Finite Element Method

{δU}T
[∑

e

∫
Ωe

[B]T [C] [B] dΩ e

]
{U}

− {δU}T
[∑

e

∫
Ωe

[N ]T {f v} dΩ e +
∑
e

∫
Γeσ

[N ]T {T} dΓe

]
= 0 (2.66)

Equation (2.66) can be expressed by the following form:

[Ke] {Un} − {F e} = 0 (2.67)

Where [N ] are the shape function matrix that connects the displacement vector with
the vector of the unknown DOFs, [Ke] is the element stiffness matrix, {Un} is the element
displacement field variable and {F e} the element force vectors, respectively. All with
respect to element e indicated by •e.

According to the Equation (2.46), the global stiffness matrix is giving by:

[K] =
∑
e

[Ke] =
∑
e

∫
Ωe

[B]T [C] [B] dΩ e (2.68)

Where

[Ke] =

∫
Ωe

[B]T [C] [B] dΩ e (2.69)

The applied load vector {F e} is:

{F e} =

∫
Ωe

[N ]T {f v} dΩ e +

∫
Γeσ

[N ]T {T} dΓe (2.70)
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Chapter 3

High order finite elements based on the

Space Fiber Rotation Concept

Summary
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3.4 Formulation of the Incompatible SFR20I element . . . . . . . . . . . . . . 35
3.5 Numerical integration over SFR20 and SFR20I elements . . . . . . . . . . 36

3.1 Introduction

Since the birth of the finite element method until nowadays and the researchers seek to
develop new robust and efficient finite elements. Despite, the good behavior and perfor-
mance of the high order elements and the intensive research done, these elements still
were not given the value in development unlike the linear approximation elements.
This Chapter present the kinematic of the Space Fiber Rotation (SFR) concept, a detailed
formulation of new two high order finite elements belonging to the family of SFR Con-
cept; a conforming and nonconforming 20-node hexahedral elements denoted as SFR20
and SFR20I, respectively. The proposed elements are based on the Space Fiber Rota-
tion (SFR) concept. An appropriate Gaussian integration schemes were applied on the
elements to evaluate the element matrices and vectors. Finally, the formulation of the
incompatible element is presented in the last section.
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3.2 Kinematics of the Space Fiber Rotation Concept

3.2 Kinematics of the Space Fiber Rotation Concept

This section describes the kinematics of the proposed finite elements. All the elements
presented in this work are developed based on the SFR concept. As depicted in Figure 3.1
this approach considers 3D rotation of a virtual fiber iq. The fiber rotation represented
by the vector θ results in an additional displacement vector f which contribute to the
definition of the final displacement field which is expressed as:

U q =

Nnode∑
i=1

[ NiU i + f(θi, iq) ] (3.1)

where Nnode represent the number of nodes of the element (20-nodes for hexaheral),
{U i} = {UiViWi}T are the parameters of the nodal displacement and Ni are the shape
functions associated with the serendipity elements, further detail on the shape functions
of the presented elements are presented in Annexes A.
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Figure 3.1: Application of the SFR concept on a 20-node hexahedral element: (a) Kinemat-
ics of the Space Fiber Rotation Concept and nodal variables, (b) Geometry and kinematic
of SFR20 hexahedral element.

The additional displacement vector resulted from the rotation of the virtual fiber is
given by:

f
(
θi, iq

)
= Ni(θi ∧ iq) (3.2)
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3.2 Kinematics of the Space Fiber Rotation Concept

where:

{iq} = {xq − xi} =


x− xi
y − yi
z − zi

 ; {θi} =


θxi
θyi
θzi

 (3.3)

The global coordinates x, y and z are expressed in terms of nodal coordinates and
shape function as :

x =

Nnode∑
i=1

Ni xi ; y =

Nnode∑
i=1

Ni yi ; z =

Nnode∑
i=1

Ni zi (3.4)

Replacing Equation (3.2) in Equation (3.1) leads to the following improved expression of
the displacement field U q of q:

U(ξ, η, ζ) =

Nnode∑
i=1

Ni(ξ, η, ζ)
(
U i + θi ∧ iq

)
; U q ≡ U (3.5)

The SFR approximation adopted in Equation (3.5) does not affect in anyway the inter-
element continuity condition of the displacement vector in case where iq vanishes when q
coincides with the node i. By performing the vector product between the rotation vector
θi and the virtual fiber iq, we obtain the following approximation of the displacement
vector U (the Einstein summation convention on i is used):

{Uq} =


U
V
W

 =


Ni Ui + Ni (z − zi) θyi − Ni(y − yi)θzi
Ni Vi + Ni (x− xi) θzi − Ni(z − zi)θxi
Ni Wi + Ni (y − yi) θxi − Ni(x− xi)θyi

 (3.6)

The approximation (3.6) can be expressed in a matrix form:

{Uq} = [Nq] {Un} ; [Nq] =

 {Nui}T
· · · {Nvi}T · · · i = 1, Nnode

{Nwi}T

 =

 {Nu}T
{Nv}T
{Nw}T

 (3.7)

where

{Nui} = { Ni 0 0 0 Ni(z − zi) −Ni(y − yi) }T
{Nvi} = { 0 Ni 0 −Ni(z − zi) 0 Ni(x− xi) }T
{Nwi} = { 0 0 Ni Ni(y − yi) −Ni(x− xi) 0 }T

(3.8)

and {Un} is the nodal DOFs vector containing 6 DOFs (three translations and three
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3.2 Kinematics of the Space Fiber Rotation Concept

rotations) per node.

{Un} = {· · · | Ui Vi Wi
... θxi θyi θzi | · · · i = 1, Nnode}T (3.9)

From the standard displacement-based finite element functions, the strains of the element
can be written as:

{ε} =



εx
εy
εz
εxy
εxz
εyz


=



∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y


= [B]{Un} (3.10)

Where [B] is the strain matrix that connects both the displacement and the strain;
and it can be obtained by deriving the shape functions expressed in (3.8).

[B] = [∂]{Nq} (3.11)

Where the matrix [∂] is the differential operator for 3D solids, given by:

[∂] =

 ∂
∂x

0 0 ∂
∂y

∂
∂z

0

0 ∂
∂y

0 ∂
∂x

0 ∂
∂z

0 0 ∂
∂z

0 ∂
∂x

∂
∂y

T (3.12)

The displacement-strain matrix became in the following form:

[B]︸︷︷︸
6×DOFs

=


〈Nu,x〉
〈Nv,y〉
〈Nw,z〉

〈Nu,y〉+ 〈Nv,x〉
〈Nu,z〉+ 〈Nw,x〉
〈Nv,z〉+ 〈Nw,y〉

 (3.13)

The dimension of the [B] matrix is six rows and the columns are equal to the number
of DOFs, all the derivatives of the shape functions defining the strain matrix for the
presented elements will be discussed in detail in the following sections.

{Nα,x} = j11{Nα,ξ}+ j12{Nα,η}+ j13{Nα,ζ}
{Nα,y} = j21{Nα,ξ}+ j22{Nα,η}+ j23{Nα,ζ} α ≡ u, v, w
{Nα,z} = j31{Nα,ξ}+ j32{Nα,η}+ j33{Nα,ζ}

(3.14)

and jlk are the Jacobian inverse matrix components
(
[j] = [J ]−1), so the Jacobian matrix
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3.3 Linear modelling of the SFR20 element

takes the following form:

[J ] =

 x,ξ y,ξ z,ξ
x,η y,η z,η
x,ζ y,ζ z,ζ

 (3.15)

3.3 Linear modelling of the SFR20 element

The SFR20 represent the quadratic version of the hexahedral element SFR8 Ayad et
al.[45], unlike the SFR8 the SFR20 has 20-node and they are located at the vertices and in
the middle of the edges. The additional node in the middle of the edges gives the advantage
to the element to simulate curved boundaries, and the higher order element are usually well
behaved. The element was developed based on the Space Fiber Rotation (SFR) concept
as depicted in Figure 3.2. This approach as stated before; considers the 3D rotation
of a virtual fiber iq. The fiber roation represented by vector θ results in an additional
displacement vector f which contributes to the definition of the final displacement field
as follows:

U(ξ, η, ζ) =
20∑
i=1

Ni(ξ, η, ζ)
(
U i + θi ∧ iq

)
; U q ≡ U (3.16)

where {U i} = {UiViWi}T are the parameters of the nodal displacement and Ni are the
shape functions associated with the serendipity 20-node hexahedral element, which can
be expressed as:

Ni = 1
8
(−2 + ξiξ + ηiη + ζiζ)(1 + ξiξ)(1 + ηiη)(1 + ζiζ) with i = 1, 3, 5, 7, 13, 15, 17, 19

Ni = 1
4
(1− ξ2)(1 + ηiη)(1 + ζiζ) with i = 2, 6, 14, 18

Ni = 1
4
(1 + ξiξ)(1− η2)(1 + ζiζ) with i = 4, 8, 16, 20

Ni = 1
4
(1 + ξiξ)(1 + ηiη)(1− ζ2) with i = 9, 10, 11, 12

where − 1 ≤ ξ, η, ζ ≤ +1
(3.17)

Further detailes on the shape function, their derivatives and node coordinates are
presented in Appendix A.

The global coordinates x, y and z of the SFR20 element are expressed in terms of
nodal coordinates and shape function as :

x =
20∑
i=1

Ni (ξ, η, ζ) xi ; y =
20∑
i=1

Ni (ξ, η, ζ) yi ; z =
20∑
i=1

Ni (ξ, η, ζ) zi (3.18)

Using Eqs (3.7), (3.10), (3.11) and (3.17). The strain matrix for the SFR20 hexahedral
element can be easily obtained to have the following form:
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Figure 3.2: Geometry and kinematics of the SFR20 element.

[B] =

 ...

Ni,x 0 0 0 Ni,x(z − zi) −Ni,x(y − yi)
0 Ni,y 0 −Ni,y(z − zi) 0 Ni,y(x− xi)
0 0 Ni,z Ni,z(y − yi) Ni,x(x− xi) 0
Ni,y Ni,x 0 −Ni,x(z − zi) Ni,y(z − zi) B4,i

Ni,z 0 Ni,x Ni,x(y − yi) B5,i −Ni,z(y − yi)
0 Ni,z Ni,y B6,i −Ni,y(x− xi) −Ni,z(x− xi)

...i = 1, 20

 (3.19)

Where 
B4,i = Ni,x(x− xi)−Ni,y(y − yi)
B5,i = Ni,z(z − zi)−Ni,x(x− xi)
B6,i = Ni,y(y − yi)−Ni,z(z − zi)

i = 1, 20 (3.20)

The strain matrix [B] is of a dimension 6 × 120 for the SFR20 element and the
derivatives of the shape functions can be obtained using the following operation:


∂Ni
∂x
∂Ni
∂y
∂Ni
∂z

 =

 ∂ξ
∂x
∂ξ
∂y
∂ξ
∂z

∂η
∂x
∂η
∂y
∂η
∂z

∂ζ
∂x
∂ζ
∂y
∂ζ
∂z

 ·


∂Ni
∂ξ
∂Ni
∂η
∂Ni
∂ζ

 = [J ]−1


∂Ni
∂ξ
∂Ni
∂η
∂Ni
∂ζ

 (3.21)
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3.4 Formulation of the Incompatible SFR20I element

3.4 Formulation of the Incompatible SFR20I element

In this section we present the nonconforming version of the SFR20 element denoted as
SFR20I. The element uses a similar approach as given by Yunus et al. [39] and Ayad et
al. [45] to avoid some shortcomings related to the Poisson locking phenomena. In this
regard, three incompatible displacement modes at the element level are introduced in the
natural space. The natural space extra modes are given as follows:

UNC = (1− ξ2) au
V NC = (1− η2) av
WNC = (1− ζ2) aw

(3.22)

where NC stands for Non-Conforming, au, av and aw are the scale factors.
Natural or covariant non-conforming strains are determined by:

εNCξξ =
∂ UNC

∂ ξ
; εNCηη =

∂ V NC

∂ η
; εNCζζ =

∂ WNC

∂ ζ
; γNCξη = γNCξζ = γNCηζ = 0

(3.23)
The vector of natural strains is related to the scale factors au , av and aw through a matrix
[M ] as:

εNCξ = [M ] {a} (3.24)

εNCξξ
εNCηη
εNCζζ
γNCξη
γNCξζ
γNCηζ


=


−2 ξ 0 0

0 −2 η 0
0 0 −2 ζ
0 0 0
0 0 0
0 0 0




au
av
aw

 (3.25)

In order to verify the orthogonality condition between constant stress and non-conforming
strain vectors (ensuring the satisfaction of the patch test); we consider the following
relationship between Cartesian and natural non-conforming strains:

{εNCX } =
detJ0

detJ
[T0] {εNCξ } =

detJ0

detJ
[T0] [M ] {a} (3.26)

[
MNC

]
=

det J0

det J
[T0] [M ] (3.27)

where [T0] is the matrix relating Cartesian and covariant strain vectors evaluated at the
element center and detJ is the determinant of the Jacobian (detJ0 is evaluated at the
center of the element). The introduction of incompatible modes conduces to an enhanced
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3.5 Numerical integration over SFR20 and SFR20I elements

strain vector :
{εE} = {ε}+ {εNC} = [B] {Un}+ [MNC ] {a} (3.28)

By replacing the new incompatible strain vector
{
εE
}
in the equilibrium weak form Equa-

tion (2.61), we obtain the following system of Equations:

[
[Ke

uu] [Ke
ua]

[Ke
au] [Ke

aa]

] {
{Un}
{a}

}
=

{
{f eext}

0

}
(3.29)

[Ke]NC {Un}NC = {F e
ext}

NC (3.30)

where the stiffness matrix [Ke]NC is defined by the following matrices:

[Ke
uu] =

∫
V e

[B]T [C] [B] dV e (3.31)

[Ke
ua] =

∫
V e

[B]T [C]
[
MNC

]
dV e (3.32)

[Ke
au] = [Ke

ua]
T (3.33)

[Ke
aa] =

∫
V e

[
MNC

]T
[C]
[
MNC

]
dV e (3.34)

Static condensation of the tangent matrix is performed to eliminate the unknown
enhanced parameters a at element level and thus the final element stiffness matrix of
SFR20I is given as :

[Ke]NC = [Ke
uu]− [Ke

ua] [Ke
aa]
−1 [Ke

au] (3.35)

3.5 Numerical integration over SFR20 and SFR20I el-

ements

The analytical integration of Equation (2.69) and (2.70) frequently are not feasible to
solve where large number of elements. Hence, huge number of integrations are required.
Instead, we often use a numerical integration techniques, and the most used one is the
Guassian Integration schema or Gaussian Quadrature. Guassian quadrature states that
the integral is evaluated simply by a summation of the integrand evaluated at Guass
points multiplied by corresponding Wieght Coefficients as follows:
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3.5 Numerical integration over SFR20 and SFR20I elements

∫
Ωe
f (x, y, z)dxdydz =

∫
Ω local

f (ξ, η, ζ)DetJdξdηdζ (3.36)

The Gauss integration is sampled in three dimensions by a series of linear functions
at specific location, as follows:

∫
Ωe
f (ξ, η, ζ)DetJdξdηdζ =

m∑
i=1

m∑
j=1

m∑
k=1

f (ξi, ηj, ζk)DetJ (ξi, ηj, ζk)wiwjwk (3.37)

Where DetJ is the Jacobian determinant, GP is the number of Gauss points in the
element, where GP = m3 and m is the number of Gauss points in the direction of ξ, η and
ζ. ξi, ηj and ζk are the parametric coefficients. wi, wj and wk are the Wieght Coefficients.

The Gaussian integration on the reference element is necessary to obtain the element
stiffness matrix. Different numerical integration scheme for hexahedral elements are indi-
cated in Table 3.1. A reduced integration scheme with 3×3×3 Gauss points is needed to
determine the stiffness matrix part of the SFR20 element corresponding to the displace-
ment DOFs. The stabilisation method used for both elements is the same that was used
in the work of Ayad et al. [45].
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Figure 3.3: The SFR20 element in local reference with 3× 3× 3 integration points.

Once the shape functions [Ni] and the strain matrix [B] are defined, add to that the
appropriate numerical integration scheme for the proposed element is chosen we proceed
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3.5 Numerical integration over SFR20 and SFR20I elements

to evaluate the element matrices and vectors; the element stiffness matrix [Ke] and the
external nodal force vector {F e

ext}. By applying the numerical integration on Equations
(2.69) and (2.70), the element stiffness matrix [Ke] and the external force vector {F e

ext}
of the SFR20 element are expressed as follows:

Table 3.1: Location of the integration points in hexahedral elements.

Orders Integration
scheme Coordinates (ξi, ηi, ζi)

Number
of points

Weight
coefficients wi

Linear 1× 1× 1 (0, 0, 0) 1 8

Quadratic 2× 2× 2
(
± 1√

3
,± 1√

3
,± 1√

3

)
8 1(

±
√

3
5
,±
√

3
5
,±
√

3
5

)
8

(
5
9

)3(
0,±

√
3
5
,±
√

3
5

)
Cubic 3× 3× 3

(
±
√

3
5
, 0,±

√
3
5

)
12

(
8
9

) (
5
9

)2(
±
√

3
5
,±
√

3
5
, 0
)

(
0, 0,±

√
3
5

)
6

(
8
9

)2 (5
9

)
(0, 0, 0) 1 (8

9
)3

Quartic 4× 4× 4 ±

√
3

7
+

2

7

√
6

5
32

18−
√

30

36

±

√
3

7
− 2

7

√
6

5
32

18 +
√

30
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[Ke] =

∫
V e

[B]T [C] [B] dV e =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
[B]T [C] [B]DetJ

)
ξ,η,ζ

dξdηdζ

=
3∑
i=1

3∑
j=1

3∑
k=1

wiwjwk

(
[B]T [C] [B]DetJ

)
ξi,ηi,ζi

(3.38)

{F e
ext} =

3∑
i=1

3∑
j=1

3∑
k=1

wiwjwk

(
[Nq]

T {fv}DetJ
)
ξi,ηi,ζi

+
3∑
i=1

3∑
j=1

wiwj

(
[Nq]

T {T}DetJ
)
ξi,ηi

(3.39)
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3.5 Numerical integration over SFR20 and SFR20I elements

The numerical integration scheme used to define the stiffness matrix [Ke]NC of the
SFR20I element is a 3 × 3 × 3 integration points; Integration points and weights are
presented in Table 3.1. The stiffness matrix of the SFR20I requires to define all the
matrices [Ke

uu], [Ke
ua], [Ke

au] and [Ke
aa] in the following manner:

[Ke
uu] =

∫
V e

[B]T [C] [B] dV e =
3∑
i=1

3∑
j=1

3∑
k=1

wiwjwk

(
[B]T [C] [B]DetJ

)
ξi,ηi,ζi

(3.40)

[Ke
ua] =

∫
V e

[B]T [C]
[
MNC

]
dV e =

3∑
i=1

3∑
j=1

3∑
k=1

wiwjwk

(
[B]T [C]

[
MNC

]
DetJ

)
ξi,ηi,ζi

(3.41)

[Ke
aa] =

∫
V e

[
MNC

]T
[C]
[
MNC

]
dV e =

3∑
i=1

3∑
j=1

3∑
k=1

wiwjwk

([
MNC

]T
[C]
[
MNC

]
DetJ

)
ξi,ηi,ζi

(3.42)

39



Chapter 4

Numerical validation of the SFR

elements for 3D elasticity problems

Summary

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Distortion tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Mid-node distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Plane distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Curved face distortion . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Warping test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.5 Cheung and Chen tests . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Maximum aspect ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 In-plane bending of a cantilever beam . . . . . . . . . . . . . . . . . . . . . 48
4.5 Straight cantilever beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Square clamped plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Circular plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7.1 Run-time efficiency test . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Pinched spherical shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.9 Pinched cylindrical shell with end diaphragms . . . . . . . . . . . . . . . . 56

40



4.1 Introduction

4.1 Introduction

In this chapter, the performance and efficiency of the proposed elements is evaluated
through a series of 3D benchmarks. In this context, the obtained results are compared
with the analytical solution on the one hand and with those of other reference elements
on the other hand Table 4.1. Computations are performed using the finite element code
Reflex developed by Batoz and Dhatt [18] where the proposed elements are implemented
in the form of subroutines; that calculates the element stiffness matrix. The proposed
elements are exposed to a range of different type of structures (beams, plates and shells)
and tests; distortion tests, aspect ratio test and convergence tests. Finally, in order
to investigate the computational time coast of the proposed elements; the elapsed time
required to calculate the element stiffness matrices is performed and compared with other
reference elements.

Table 4.1: Listing of abbreviations to denote the element types.

Name Description

HEX20 20-node hexahedral standard element tested by MacNeal and
Harder [19];

HEX20(R) 20-node hexahedral standard element with reduced order integration
tested by MacNeal and Harder in [19];

SHB20 20-node solid-shell element [84];

C3D20 20-node second-order classical hexahedral Abaqus element with an
exact numerical integration scheme (3× 3× 3 Gauss points) [85];

C3D20R 20-node second-order classical hexahedral Abaqus element with reduced
numerical integration scheme (2× 2× 2 Gauss points) [85];

SOLID95 20-node element of ANSYS 5.4 [86];

HEXA20 20-node isoparametric hexahedron classical symmetric element [54];

US-HEXA20 20-node Unsymmetric hexahedral element [54];

H27 27-node Lagrange element [5, 87];

HS21 21-node hexahedral spline element [56];

SFR20 Presented 20-node hexahedral element based upon the "Space Fiber
Rotation" concept;

SFR20I Presented 20-node hexahedral element based upon the "Space Fiber
Rotation" concept with incompatible modes.
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4.2 Distortion tests

4.2 Distortion tests

In the next four tests the presented elements and other elements from the litirature are
tested for their sensitivity to mesh distortion. A straight cantilever beam is considered
with the following dimensions; Length L = 10, width b = 1 and thickness t = 0.1. The
mechanical properties are; Young Modulus E = 107 and Poisson’s ration ν = 0.0. The
beam is fixed in one end and a tip moment with an amplitude M = 1 is applied at the
free end. The displasment of the free end tip is investigated. Following these four tests a
well known benchmark test proposed by Cheung and Chen [88] is assessed to investigate
the performance of the proposed elements for their sensitivity to mesh distortion.

4.2.1 Mid-node distortion

The beam is modeled using one single element as shown in Figure 4.1. The presented
elements are tested for their sensitivity to mid-node distortion as described by Nagarayana
and Prathap [89]. The mid-nodes are displaced by a distance along the length of the
cantilever beam in the range ∆m = 0.0− 2.5. The normalized deflection of the mid-nodes
are tabulated in Table 4.2.
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Figure 4.1: Cantilever beam modeled with one element for Mid-node distortion test. The
mid-nodes are displaced with the parameter ∆m.

Table 4.2: Normalized displacements of the free end for mid-node distortion sensitivity
test.

WRef = 0.4 [89]

Element ∆m = 0.0 ∆m = 0.1 ∆m = 0.5 ∆m = 1.0 ∆m = 2.5

HEX20 [19] 0.750300 0.688250 0.428025 0.176990 0.000308
C3D20 [85] 0.750304 0.688259 0.428016 0.176991 0.000308
SFR20 1.00005 0.999825 0.994075 0.976075 0.850075
SFR20I 1.00005 0.999825 0.994075 0.976075 0.850075
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4.2 Distortion tests

As can be seen in Table 4.2, the performance of the presented elements exhibits
favourable results with very slight sensitivity to distortion unlike the isoparametric el-
ements which appear their performance deteriorate fast with increase in distortion pa-
rameter ∆m.

4.2.2 Plane distortion

This test was proposed by Nagarayana and Prathap [89] to test the elements for their
sensitivity for plan distortion. The cantilever beam is modelled using two hexhadral
elements along the length. The parameter ∆p represent the tilt of the plane Figure 4.2,
and it varies in the range ∆p = 0.0 − 2.5. Normalized deflection of the free end are
summarized in Table 4.3. The results indicates that the elements SFR20 and SFR20I
are the most resistant to plan distortion, while the other elements deteriorates fast with
increase of the parameter ∆p.

 

𝛥𝑝 

Clamped end 
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Free end 

Figure 4.2: Cantilever beam modelled with two hexahedral elements for Plane distortion
test. The corner mid-face nodes are displaced with the parameter ∆p.

Table 4.3: Normalized displacements of the free end for plane-node distortion sensitivity
test.

WRef = 0.4 [89]

Element ∆p = 0.0 ∆p = 0.1 ∆p = 0.5 ∆p = 1.0 ∆p = 2.5

HEX20 0.937800 0.691925 0.009081 0.001359 0.000791
C3D20 0.937807 0.691915 0.009081 0.001358 0.000791
SFR20 1.000075 0.982700 0.816050 0.770425 0.752750
SFR20I 1.000075 1.027225 0.827900 0.774275 0.752975

4.2.3 Curved face distortion

The cantilever beam shown in Figure (4.3) is modelled with two hexahedral elements. This
test was conducted by Ooi et al. [54] to measure the curved face distortion of the elements.
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4.2 Distortion tests

The parameter ∆b express the displacement of two mid-side nodes at the element interface
over a range of ∆b = 0.0− 2.5. Table 4.4 summarize the normalized deflection of the free
end of the cantilever beam and it shows the sensitivity of the elements to warping test. The
present elements present favourable behaviour with a slight sensitivity to mesh distortion
unlike the other elements.
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Figure 4.3: Cantilever beam modelled with two hexahedral elements for Curved face dis-
tortion test. The nodes 18 and 19 are displaced with the parameter ∆b.

Table 4.4: Normalized displacements of the free end for curved face distortion sensitivity
test.

WRef = 0.4 [54]

Element ∆p = 0.0 ∆p = 0.1 ∆p = 0.5 ∆p = 1.0 ∆p = 2.5

HEX20 0.937800 0.624325 0.064475 0.014793 0.001774
C3D20 0.937807 0.624321 0.064474 0.014793 0.001774
SFR20 1.000075 0.998900 0.969850 0.912800 0.831275
SFR20I 1.000075 0.998900 0.969850 0.912800 0.831275

4.2.4 Warping test

The cantilever beam is modelled with two hexahedral elements Figure (4.4), this test was
also conducted by Ooi et al. [54] to test the elements performance for their sensitivity for
warping. The parameter ∆w represent the variation of the warping concentration in the
range ∆w = 0.0− 2.5. The performance of the proposed elements is observed in Table 4.5
where it summarizes the normalised results for the warping test. It can be noted that the
elements SFR20 and SFR20I are not effected by the warping unlike the other elements
which show notable sensitivity.
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4.2 Distortion tests
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Figure 4.4: Cantilever beam modelled with two hexahedral elements for Warping test. The
node 3 is displaced with the parameter ∆w.

Table 4.5: Normalized displacements of the free end for warping distortion sensitivity test.

WRef = 0.4 [54]

Element ∆p = 0.0 ∆p = 0.1 ∆p = 0.5 ∆p = 1.0 ∆p = 2.5

HEX20 0.937800 0.901625 0.278775 0.027735 0.0017089
C3D20 0.937807 0.901625 0.278763 0.027728 0.001706
SFR20 1.000075 0.995975 0.933275 0.862375 0.780125
SFR20I 1.000075 1.023825 0.958100 0.872775 0.782750

4.2.5 Cheung and Chen tests

The test was introduced to study the effect of geometric distortions on the accuracy
of results and to observe the stress fields distribution Cheung and Chen [88]. Figure 4.5
demonstrate the geometry, mechanical properties and boundary condition of the problem.
The beam is discretized with five different sets of distorted mesh.
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Figure 4.5: Geometry, mechanical properties, load distribution and five different mesh sets
for Cheung and Chen tests.
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4.3 Maximum aspect ratio test

All sets are clamped and subjected to two case of loading in the free end; a pure bending
case A and transverse/shear force case B. The reference transverse displacements of the
free end tip for caseA and B areWRef

C = 100,WRef
C = 102.6, respectively. We summarize

in Tables 4.6 the normalized transverse displacement.

Table 4.6: Normalised transverse displacement at tip for different Sets.

Mesh SOLID95 USHEXA20 C3D20 SFR20 SFR20I

Load case A WRef
C = 100 [88]

A1 1.000000 1.000000 0.953272 0.98707 1.00510
A2 1.000000 1.000000 0.964689 0.97592 0.99612
A3 0.999858 1.000000 0.962730 0.98088 0.99991
A4 0.665333 1.000000 0.515490 0.97888 0.98292
A5 0.997209 1.000000 0.972750 0.99533 1.01250

Load case B WRef
C = 102.6 [88]

A1 0.839201 0.839038 0,792997 0.960964 0.989474
A2 0.983236 0.982114 0.931034 0.967914 0.992105
A3 0.978002 0.977721 0.924849 0.967583 0.991618
A4 0.618807 0.541773 0.488958 0.924395 0.968479
A5 1.005029 1.004382 0.972462 0.990351 1.006628

We notice for all sets the presented elements exhibits favourable results, however, the
element SFR20 results are less accurate than the other elements except for the element
C3D20. It is clear that the SFR20I converge faster than the SFR20 and its results are
the most accurate beside the element US-HEXA20.

4.3 Maximum aspect ratio test

This test was examined in the works of Legay and Combescure [90] and Abed Meraim
et al. [84] to evaluate the aspect ratio limits of elements in beam bending problems. It
consists of a clamped beam subjected to a bending load at its free edge as depicted in
Figure 4.6. The analytical solution of this problem can be obtained using the Timoshenko
beam theory [91] Equation (4.1):

Y Ref = PL3/3EI ; I = bt3/12 (4.1)

The length and the width of the beam were constant and equal to L = 100 and
b = 10, respectively. The beam was modeled with one element through the thickness and

46



4.3 Maximum aspect ratio test

the width, in the length of the beam 10 elements were used in both regular and irregular
meshes, the aspect ratio between the width and the thickness is r = b/t. The mechanical
properties of the beam are: E = 68.25×106 and ν = 0.3. A bending load P = 4 is applied
at the free end of the beam.

 

Figure 4.6: Cantilever beam geometry and mesh description.

Table 4.7: Normalized displacement at point A for the regular mesh.

r = b/t Analytical Solutions HEX20 SHB20 SFR20 SFR20I

1 2.344× 10−5 1.005 1.009 0.993 1.005
10 2.344× 10−4 0.984 0.998 0.999 1.009
100 2.344× 10−3 0.951 0.997 1.001 1.010
200 4.689× 10−3 0.959 0.996 1.001 1.010
333 7.814× 10−3 NA 0.998 1.001 1.010
500 1.172× 10−2 NA 1.004 1.001 1.010

Tables 4.7 and 4.8 present the displacement results at point A for various elements, en-
compassing both regular and irregular (distorted) meshes. The outcomes of the proposed
elements and the solid-shell element SHB20 consistently align well with the analytical
solution, even as the thickness diminishes. However, the standard hexahedron HEX20 ex-
hibits a decline in accuracy as the aspect ratio increases, particularly evident in the case
of the distorted mesh. Visual representations of the normalized displacement concerning
the evolution of aspect ratio for both regular and irregular meshes are depicted in Figures
4.7 and 4.8, respectively.
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4.4 In-plane bending of a cantilever beam

Table 4.8: Normalized displacement at point A for the irregular (distorted) mesh.

r = b/t Analytical Solutions HEX20 SHB20 SFR20 SFR20I

1 2.344× 10−5 0.981 1.010 0.982 0.994
10 2.344× 10−4 0.682 0.997 0.988 0.998
100 2.344× 10−3 0.345 0.995 0.989 0.999
200 4.689× 10−3 0.294 1.002 0.989 0.999
333 7.814× 10−3 0.251 0.984 0.989 0.999
500 1.172× 10−2 NA NA 0.989 0.999
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Figure 4.7: Convergence of normalized displacement at point A as a function of the aspect
ration for regular mesh.

4.4 In-plane bending of a cantilever beam

As shown in Figure 4.9, the second numerical example considers a cantilever beam sub-
jected to in plane bending load Py = 1.0×104. The beam is supposed to have the following
physical properties: E = 1.0 × 107, ν = 0.3. This cantilever beam is modeled with six
meshes: three regular meshes : M1, M2 and M3 and three distorted ones : M4, M5 and,
M6 as shown in Figure 4.10. The reference solution of the transverse displacement at
point C can be obtained using the Timoshenko beam theory [91] Equation (4.2):

VC =
PL3

3EI
+

6PL

5GA
= 4 + 0.03 = 4.03 (4.2)

The outcomes of various solutions are presented in Table 4.9. This table contrasts
the normalized displacement at point C for the proposed elements with the outcomes
of Abaqus C3D20; a quadratic hexahedral element. Both SFR20 and SFR20I exhibit
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4.4 In-plane bending of a cantilever beam

0 100 200 300 400 500

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t a
t p

oi
nt

 A
 fo

r t
he

 ir
re

gu
la

r (
di

st
or

te
d)

 m
es

h

Aspect ratio (r=b/t)

HEX20  
SHB20  
SFR20  
SFR20I 

Figure 4.8: Convergence of normalized displacement at point A as a function of the aspect
ration for irregular (distorted) mesh.
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Figure 4.9: Geometry and mechanical properties of a thin cantilever beam under plane
bending.
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Figure 4.10: Mesh types of the thin cantilever beam.

favourable behaviour and a commendable rate of convergence. Notably, this is observed
in the case of the distorted mesh, distinguishing them from the performance of the C3D20
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4.5 Straight cantilever beam

element.

Table 4.9: In-plane bending of a cantilever beam. Normalized transverse displacement of
point C (the quantity inside parentheses indicates the total number of variables in the model:
DOFs plus internal variables).

VC = 4.03

Mesh Shape M1 M2 M3 M4 M5 M6

C3D20 0.735 0.899 0.972 0.146 0.424 0.859
(60) (96) (132) (96) (132) (240)

SFR20 0.966 0.977 0.981 0.887 0.948 0.988
(120) (192) (264) (192) (264) (480)

SFR20I 0.998 0.999 0.999 0.907 0.957 1.012
(123) (198) (273) (198) (273) (498)

4.5 Straight cantilever beam

To evaluate the proposed elements’ performance in terms of sensitivity to mesh distortion,
a straight cantilever beam is considered. This example was examined in the work of
MacNeal and Harder [19] to test the combination of different shapes with linearly varying
strains.

 

Figure 4.11: Straight cantilever beam with three types of meshes: rectangular (A); paral-
lelogram (B) and trapezoidal (C).

In this respect, The beam is meshed with six elements with different shapes (regular
bricks, trapezoidal and parallelogram-shaped) and subjected to an in-plane and out-of-
plane unit-shear force at the free end as shown in Figure 4.11. The dimensions of the
problem and the physical properties are: Length = 6.0; width = 0.2; depth = 0.1;
mesh = 6× 1× 1; E = 1.0× 107; ν = 0.3. The theoretical solutions for the problem are
URef = 0.1081 and WRef = 0.4321 for the in-plane and out-of-plane load, respectively.
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4.6 Square clamped plate

Table 4.10: Normalized tip deflection of the straight cantilever beam. In-plane loading
case.

URef = 0.1081 [19]

Element shape Regular Trapezoidal Parallelogram

HEX20 0.970 0.886 0.967
HEX20(R) 0.984 0.964 0.994
SOLID95 0.994 0.966 0.988
USHEXA20 0.994 0.985 0.989
SFR20 0.990 0.989 0.985
SFR20I 0.998 0.995 0.991

Comparison of the normalized tip deflection for the proposed elements with other
reference elements is presented in Tables 4.10 and 4.11. Notably, the SFR20 and SFR20I
elements demonstrate accurate performance when subjected to trapezoidal shapes for both
in-plane and out-of-plane loads. Conversely, a slight decrease in accuracy is observed when
parallelograms are employed, particularly under out-of-plane loads.

Table 4.11: Normalized tip deflection of the straight cantilever beam. Out-of-plane loading
case.

WRef = 0.4321 [19]

Element shape Regular Trapezoidal Parallelogram

HEX20 0.961 0.920 0.941
HEX20(R) 0.972 0.964 0.961
SOLID95 0.992 0.987 0.987
USHEXA20 0.992 0.987 0.987
SFR20 0.986 0.975 0.946
SFR20I 0.996 0.986 0.964

4.6 Square clamped plate

This example is a popular benchmark to evaluate the performance and accuracy of finite
elements [19, 54, 92]. Figure 4.12 shows a square plate with clamped supports subjected
to a point load of P = 4 × 10−4 at the center. The square plate of dimension L = 2.0

with uniform thickness h = 0.01 and material properties E = 1.7472 × 107, ν = 0.3.
Because of the symmetry only a quarter of the plate is studied. The convergence of the
proposed elements was studied by modelling the square plate using one element through
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4.7 Circular plate

the thickness and N = 2, 4, 6, 8 and 10 elements on each side. The analytical solution for
square clamped plate under a concentrated load is WRef = 5.6 × 10−6. The normalized
values of the deflection at the central point are given in Table 4.12.

 

Figure 4.12: Square plate subjected to a concentrated load in the center with 6 × 6 × 1
mesh.

From the observation of Figure 4.13, it is evident that the presented elements yield
the most favourable overall results, exhibiting rapid convergence to the exact solution.
The noteworthy rate of convergence is particularly notable even for a very coarse mesh
(N = 2), distinguishing them from other quadratic hexahedral elements.

Table 4.12: Normalized transverse displacement at the center. Square plate with clamped
supports subjected to a concentrated load.

WRef = 5.6× 10−6 [19]

Mesh C3D20 C3D20R SOLID95 HEXA20 USHEXA20 SFR20 SFR20I

2 × 2 × 1 NA 0.434 0.313 0.310 0.191 0.847 0.864
4 × 4 × 1 0.822 0.943 0.868 0.868 0.912 0.978 0.990
6 × 6 × 1 0.931 0.979 0.870 0.943 0.952 0.990 0.998
8 × 8 × 1 0.960 0.987 0.959 0.970 0.973 0.994 1.000
10 × 10 × 1 0.973 0.991 0.982 0.982 0.984 0.996 1.001

4.7 Circular plate

The test considers a circular plate clamped along the circumference and it is loaded with
a concentrated force at the center. Because of the symmetry of the problem, only a
quarter of the plate is discretized and the appropriate boundary conditions are applied
on the symmetry plans. This quarter is modeled with one element through the thickness
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4.7 Circular plate
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Figure 4.13: Convergence of normalized transverse displacement at the center. Square
plate subjected to a concentrated load.

and N = 2, 4, 6, 8, 10 and 12 elements on each side. Geometry, mechanical properies and
boundary conditions of the problem are indicated in Figure 4.14. The analytical solution
of the transverse displacement at the center is given by Kirchhoff plate theory [93] Eq.
(4.3):

W =
3(1− ν2)FR2

4πEt3
= 2.1725× 10−3 (4.3)
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Figure 4.14: Problem statement of clamped circular plate under concentrated load.

Normalized values for various elements are displayed in Table 4.13. It is evident that
SFR20 and SFR20I yield highly accurate results in comparison to the classical hexahedral
element HEX20, as well as both Abaqus elements C3D20 and C3D20R. Moreover, the
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4.7 Circular plate

presented elements exhibit a rapid convergence to the analytical solution, even with a
coarse mesh, as illustrated in Figure 4.15. Therefore, the SFR approach made adding
another layer of elements across the thickness unnecessary.

Table 4.13: Normalized transverse displacement at the center. Circular plate with clamped
supports subjected to a concentrated load.

W = 2.1725× 10−3 [93]

Mesh HEX20 C3D20 C3D20R SFR20 SFR20I

2 × 2 × 1 0.151 0.151 0.465 0.907 0.931
4 × 4 × 1 0.688 0.688 0.863 0.977 0.990
6 × 6 × 1 0.895 0.895 0.956 0.988 0.997
8 × 8 × 1 0.947 0.947 0.979 0.992 0.999
10 × 10 × 1 0.968 0.968 0.987 0.994 1.000
12 × 12 × 1 0.989 0.978 0.991 0.996 1.000
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Figure 4.15: Convergence of Nomalized transverse displacement at the center for circular
plate problem.

4.7.1 Run-time efficiency test

To evaluate the run-time efficiency of the proposed elements, the computational time
is assessed for the aforementioned circular plate problem. The computational cost for
establishing the global stiffness matrix and solving the algebraic equations is depicted in
Figure 4.16. From the plots, it can be inferred that, for equivalent displacement results,
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4.8 Pinched spherical shell

the run-time required for both SFR20 and SFR20I elements employing the Space Fiber
Rotation concept presented here appears to asymptotically lower than that of the classical
hexahedral element HEX20.

Figure 4.16: Computational cost for establishing the global stiffness matrix and the solving
system equations of the circular plate problem.

4.8 Pinched spherical shell

The following example deals with a hollow sphere with two radially opposed point loads
as shown in Figure 4.17. This example is usually used to check the absence of shear and
membrane locking in structures exhibiting bending behavior. Dimensions, mechanical
properties, and boundary conditions are shown in Table 4.14. Due to symmetry, only an
eighth of the structure is discretized into N × N × 1 regular elements (N = 2, 4, 8 and
10 per side). The analytical solution of the problem is given in the work of MacNeal and
Harder [19]:

UA = − VB = 0.094

Findings of displacements at point A across various solutions are summarized in Table
4.15. For assessing the rate of convergence, the normalized displacements at point A are
graphed against the number of elements in Figure 4.18. It is evident from the outcomes
that the accuracy and rate of convergence of the SFR20 and SFR20I elements surpass
those of all reference elements.
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4.9 Pinched cylindrical shell with end diaphragms

 

Figure 4.17: Hemisphere under diametrically opposite charges.

Table 4.14: Mechanical properties, geometry, boundary and symmetry conditions of shell
tests.

Spherical shell Cylindrical shell

Mechanical
properties and geometry

R = 10, h = 0.04, R/h = 250, L = 6, R = 3, h = 0.03,
E = 6.825× 107, ν = 0.3 E = 3× 1010, ν = 0.3

Boundary condition
W = 0 on E U = W = θY = 0 on AD

Symmetry conditions
V = θX = θZ = 0 on AC W = θX = θY = 0 on AB
U = θY = θZ = 0 on BD V = θX = θZ = 0 on BC

U = θY = θZ = 0 on CD
Load

P = 2 PZ = −0.25

4.9 Pinched cylindrical shell with end diaphragms

This last example considers a cylinder with rigid end diaphragms subjected to radially
point load at point C, as shown in Figure 4.19. This problem evaluates the performance
of finite elements in both inextensional bending and complex membrane states of stress
[94]. A reference solution of the present problem is given by Flügge [95] as:
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4.9 Pinched cylindrical shell with end diaphragms

WRef
C = −WCEh

P
= 164.24 (4.4)
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Figure 4.18: Convergence of normalized tip displacement of the pinched spherical shell.

Table 4.15: Normalized tip displacement in the force direction for pinched spherical shell
problem.

UA = − VB = 0.094 [19]

Mesh C3D20 C3D20R SOLID95 HEXA20 USHEXA20 SFR20 SFR20I

2 × 2 × 1 NA 0.203 NA NA NA 0.759 0.792
4 × 4 × 1 0.683 0.685 0.021 0.021 0.014 0.994 1.015
8 × 8 × 1 0.984 0.988 0.258 0.258 0.612 1.010 1.047
10 × 10 × 1 0.989 0.994 0.457 0.457 0.779 1.010 1.052

Dimensions, mechanical properties as well as applied boundary conditions are exposed
in Table 4.14. Due to symmetry, only a segment of 90o of the cylinder is examined with
the appropriate boundary conditions along the symmetry plans. The cylinder is modeled
using a regular mesh of N = 2, 4 and 6 elements per side. The displacements at point C
of different element solutions are presented in Table 4.16.

SFR20 yields superior results compared to the classical hexahedral element HEX20
and C3D20. A slight difference is observed between the proposed element SFR20 and the
elements C3D20R and SHB20. Conversely, the outcomes of the non-conforming element
SFR20I surpass those of all other counterparts.
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4.9 Pinched cylindrical shell with end diaphragms

 

Figure 4.19: Pinched cylindrical shell with end diaphragms geometry, boundary and sym-
metry conditions; example of a cylindrical shell mesh.

Table 4.16: Normalised displacement for the pinched cylinder with diaphragms.

WRef
C = 164.24 [95]

Mesh HEX20 C3D20 C3D20R SHB20 SFR20 SFR20I

2 × 2 × 1 NA 0.043 0.630 NA 0.468 0.551
4 × 4 × 1 0.140 0.140 0.872 0.883 0.823 0.932
6 × 6 × 1 0.328 0.328 0.952 0.961 0.929 1.057
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5.1 Introduction

5.1 Introduction

The following chapter provides a general framwork of the continuum constitutive descrip-
tion of the behaviour of elastoplastic materials. The theory behained the description
called the theory of plasticity, and it can be traced back to the middle of the nineteenth
to the first half of the twentieth century. Basically, the theory of plasticity is concerned
to the materials or solids in general that after being subjected to a loading, the solid
exhibites a permanant deformation when completely unloading. Materials that exhibites
elastoplastic behaviour are called plastic materials, such as metals, concrete, rocks, clays
and soils. For more additional details on the theory of plasticity the reader is reffered
to the standard textbooks [96, 97, 98, 99, 100, 101]. The chapter is structured as fol-
lows: Firstly, section 5.2 gives a brief description of different types of nonlinearity in solid
mechanics. After that, section 5.3 addresses a detailed overview on the elastoplastic be-
haviour. Moreover, the numerical implementation of stresses and tangent moduli which
are needed for the computation of the elastoplastic constitutive equations are presented
in section 5.4. The last section 5.6 shows the computation process to solve the non-linear
equation by using iterative methods and the finite element method.

5.2 Nonlinearity in solid mechanics

nonlinearity in solid mechanics refers to the phenomenon where the relationship between
the stress and strain in a material is not linear. In linear mechanics, the relationship be-
tween stress and strain is described by Hooke’s law, which states that stress is proportional
to strain. However, for many materials, this relationship is only valid within a certain
range of stresses and strains, beyond which the material exhibits non-linear behaviour.

Non-linear behaviour in solid mechanics can be caused by various factors, such as
material composition, loading conditions, and geometry. Some examples of non-linear
behaviour include plastic deformation, creep, fatigue, and fracture. This behaviour can be
analyzed using numerical methods such as finite element analysis, which involve dividing
the material into small elements and solving the equations of motion for each element.

5.2.1 Geometric nonlinearity

This type of nonlinearity arises when the deformation of a structure or material is large
enough to cause a change in the geometry of the structure. As a result, the relation-
ship between stress and strain becomes nonlinear, and the response of the structure to
external loads can be highly dependent on the magnitude and direction of the applied
loads. Examples of geometric nonlinearity include large deflection of beams, buckling
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5.3 Elastoplastic behaviour description

of columns, and instability of plates. Add to that, geometric nonlinearity can lead to
complex deformation patterns, such as bifurcations, snap-through, and limit points [102].

5.2.2 Boundary nonlinearity

Boundary nonlinearity occures when the boundary conditions of a problem are nonlinear.
For example, if the boundary of a structure is not rigid, but instead undergoes deforma-
tion, this can cause nonlinear behaviour in the structure itself. Examples of boundary
nonlinearity include a curved beam with a nonlinearly varying radius and a structure
with a nonlinearly varying stiffness along its length. A detailed explanation of various
analytical and numerical methods for analyzing thin-walled structures under nonlinear
boundary conditions can be found in [103].

5.2.3 Contact nonlinearity

Contact nonlinearity can be found when two or more bodies come into contact, causing
changes in the deformation and stress distribution in the bodies. This can lead to non-
linear behaviour, such as stick-slip behaviour, in which the contact surfaces alternate
between sticking and sliding. Examples of contact nonlinearity include frictional contact
between two surfaces, indentation of a material by a rigid object, and impact of two
objects. Contact nonlinearity can be found in various engineering applications, including
automotive, aerospace, and biomedical engineering.

5.2.4 Material nonlinearity

Material nonlinearity arises from the nonlinear behaviour of the material itself. For exam-
ple, many materials exhibit nonlinear stress-strain behaviour due to phenomena such as
plastic deformation, creep, and damage. The stress-strain relationship may also depend
on the rate of loading, temperature, and other factors. Examples of material nonlinear-
ity include elasto-plastic deformation of metals, viscoelastic behaviour of polymers, and
damage accumulation in composites.

5.3 Elastoplastic behaviour description

The major objective of the mathematical theory of plasticity is to provide a continuum
constitutive mathematical model capable of describing the relationship between the stress
and strain of materials that posses an elastoplastic behaviour sufficiently. One way to form
the basis of the mathematical theory of plasticity is by performing a uniaxial tension
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5.3 Elastoplastic behaviour description

experiment with a metallic bar, this test with ductile metals produces a stress-strain
curve that is shown in Figure 5.1. The path (O0Y0Y1Z1) is normally defined as the virgin
curve and it can be described in the following. In this path; the segment O0Y0 is linear,
and the behaviour of the material is regarded as linear elastic. Thus, in case of loading
and unloading the material remains with the original state. After loading from the initial
unstressed state to the stress level σ0, it can be noted a dramatic changing in the stress-
strain curve. After reaching the stress level σ0 and unloading, the bar returns to a new
state via the path Y1O1 and a permanent (plastic) change in the shape of the bar is
observed; that can be seen in the graph by the strain εp. At this state the behaviour of
the bar between O1 and Y1 is considered to be linear elastic, with constant strain εp and
yield limit σ0. At this stage the total strain ε is split up into the sum of two components;
an elastic (or reversible) component εe and a plastic (or irreversible) component εp, that
gives:

ε = εe + εp (5.1)

where we can define the elastic strain as:

εe = ε− εp (5.2)
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Figure 5.1: A nonlinear stress-strain curve for a metallic bar under uniaxial tension.

Before the plastic yielding, the relation between the uniaxial stress and strain is given
by the standard linear elastic expression:

σ = Ceεe (5.3)
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5.3 Elastoplastic behaviour description

By substituting Equation (5.2) in Equation (5.3) we define the uniaxial stress with
respect to the total strain:

σ = Ce (ε− εp) (5.4)

The formulation of the elastoplastic constitutive mathematical model requires four
fundamental phenomenological properties:

• The formulation of stress-strain relation that describe the material behaviour before
the plastic yielding zone.

• A yield function that indicates the beginning of the plastic yielding. The yield
function describe the transition from elasticity to plasticity, a flow rule appears
after further loading on the yield stress; which describe the evolution of plastic
strain.

• Hardening law which governs the evolution of yield stress with respect to plastic
strain.

• The decomposition of the total strain increment into, an elastic reversible part dεe

and an irreversible plastic part dεp.

5.3.1 The yield function and the yield surface

The yield function or yield criterion evaluates the stress limits to yielding point where
the plastic strain occurs, and it can be written in the general form as:

φ (σ,H) = 0 (5.5)

Where φ is the yield function; which is a function of the stress tensor and a set H of
Hardening thermodynamical forces. The yield function can be depicted by a hypersurface
(or yield surface) in the space of stresses, where it can be found to satisfies three states:

φ (σ,H) < 0 elastic, σ lies in the elastic domain

φ (σ,H) = 0 plastic, σ lies at the boundary

φ (σ,H) > 0 inadmissible, σ lies outside of the domain

• The yield function defines the elastic domain, where the stress states lying in the
yield surface and the material behave elastically:

Del = {σ | φ (σ,H) < 0} (5.6)
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• The yield function defines the plastic domain, where the stress states reaches the
yield limit or in the boundary of the elastic domain. Hence:

Dpl = {σ | φ (σ,H) = 0} (5.7)

• The stress lying outside the yield surface are in the inadmissible domain, where:

D = {σ | φ (σ,H) > 0} (5.8)

5.3.1.1 Three dimensional principal stress space

Consider three dimension space with perpendicular principal stress axes in Figure 5.2. The
stress states at any arbitrary point on the yield surface as point A with the components
(σ1, σ2, σ3); it may be represented by a vector from the origin O (ie.

−→
OA = σ). A space

diagonal Oh defined by point σ1 = σ2 = σ3 with equal angles to all three principal stress
axes; that its cosines equal

(
1/
√

3, 1/
√

3, 1/
√

3
)
.
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Figure 5.2: Yield locus/surface in three dimensional stress-space.

Where P and S are the Hydrostatic and Diviatoric stress vectors, respectively. Both
vectors are defined as follows:

P =
1√
3

(σ1 + σ2 + σ3) (5.9)

S =
1

3

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (5.10)
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It is worth noting that the deviatoric stress vector lies in the plane passing through
O. This plane is known as the deviatoric plane (or the π-plane) with the Equation
σ1 + σ2 + σ3 = 0 in the principle stress space. Since the hydrostatic stress does not affect
on yielding. Hence, any other arbitrary point will also be on the yield surface and the
yielding will be depending only on the deviatoric stress. The yield surface can be obtained
by sliding the yield locus up and down along the space diagonal.

5.3.2 Plastic dissipation function

An important step in the derivation of the model that proves a constitutive formulation
is the formulation of general dissipative model by the free energy potential, where the free
energy ψ is described as:

ψ (ε, εp, α) (5.11)

Where ψ is a function of the total strain, the plastic strain and a set α of inter-
nal variables describing the Hardening phenomenon. The free energy is assumed to be
decomposed of two components as:

ψ (ε, εp, α) = ψe (ε, εp) + ψp (α) = ψe (εe) + ψp (α) (5.12)

Where the first part is related to elastic contribution and the scond is a contribution
due to hardening. By applaying the CLAUSIUS-DUHEM inequality [98] the free energy
function can be written as:(

σ − ρ∂ψ
e

∂εe

)
: εe + σ : εp − A ∗ α̇ > 0 (5.13)

Where A is the hardening thermodynamical force:

A ≡ ρ
∂ψp

∂α
(5.14)

By deriving the stress tensor we get:

σ = ρ
∂φe

∂εe
(5.15)

The plastic dissipation function takes the form:

Dp (σ,A, εp, α̇) ≡ σ : ε̇p − A ∗ α̇ (5.16)
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5.3.3 Plastic flow rule and hardening law

The plastic dissipation function in Equation (5.16) is associated with two internal vari-
ables; the plastic tensor and the set α of hardening variables. The definition of the
evolution laws are required to complete the elastoplastic model. The plastic flow rule
determines the evolution of the plastic strain εp, and the hardening law describe an evo-
lution of the yield stress accompanies the evolution of the plastic strain. The plastic flow
rule and the hardening law can be expressed as:

ε̇p = γ̇N (σ,A) (5.17)

α̇p = γ̇H (σ,A) (5.18)

Where N(σ,A) is the flow vector, H(σ,A) describe the evolution of hardening. Both
variables can be derived by the plastic flow potential Ψ = Ψ(σ,A) as following:

N (σ,A) ≡ ∂Ψ

∂σ
(5.19)

H (σ,A) ≡ −∂Ψ

∂A
(5.20)

Lastly, γ̇ is the plastic multiplier in which it describe the magnitude of plastic flow.
These two Equation (5.19) and (5.20) are completed by the KUHN-TUKER optimality

conditions or loading/unloading condition when plastic flow may occur [98] and can be
written as:

φ (σ,A) 6 0 , γ̇ > 0 , γ̇φ (σ,A) = 0 (5.21)

The above KUHN-TUCKER condition satisfies all possible states of materials; in case
of the material behave elastically where (φ 6= 0) it becomes:

φ (σ,A) < 0 , γ̇ = 0 , γ̇φ (σ,A) = 0 (5.22)

When the stress is on the yield surface which means the material behave plastically
(φ = 0), three cases the plastic multiplier can be distinguished:

φ̇ < 0 ⇒ γ̇ = 0 elastic unloading,

φ̇ = 0 ⇒ γ̇ = 0 neutral loading,

φ̇ = 0 ⇒ γ̇ > 0 plastic flow.

(5.23)
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5.3.4 Plastic multiplier

During plastic flow (γ̇ > 0), the current stress is required to remain on the yield surface.
Thus, yield function remains constant during the plastic loading state (φ = 0). Therefore,
additional complementary condition can be established:

φ̇γ̇ = 0 (5.24)

Where φ̇ is the rate of the yield function and it vanishes whenever plastic yielding
occurs (γ̇ 6= 0). Hence:

φ̇ = 0 (5.25)

Where Equation (5.25) is the consistency condition. The plastic multiplier can be
determined initially by differentiating the yield function with respect to time, one can
obtain:

φ̇ =
∂φ

∂σ
: σ̇ +

∂φ

∂A
∗ Ȧ (5.26)

The rate of the stress tensor can be obtain with respect to Equation (5.4) by the
following expression:

σ̇ = Ce (ε̇− ε̇p) (5.27)

Where Ce denotes, the elasticity tensor with respect to HOOK’s Law. By substitut-
ing the plastic flow rule Equation (5.19) in Equation (5.27), the rate form of the stress
becomes:

σ̇ = Ce (ε̇− γ̇N) (5.28)

Using the definition of A stated in Equation (5.14), the evolution law Equation (5.20)
and the stress rate in Equation (5.28) in Equation (5.26) gives:

φ̇ =
∂φ

∂σ
: Ce : (ε̇− γ̇N) + γ̇

∂φ

∂A
∗ ρ∂

2Ψ

∂α2
∗H (5.29)

The plastic multiplier is obtained from the Equation above, by applying the consistency
condition, where φ̇ = 0, this leads to:

γ̇ =

∂φ

∂σ
: Ce : ε̇

∂φ

∂σ
: Ce : N (σ,A)− ∂φ

∂A
∗ ρ∂

2Ψp

∂α2
∗H (σ,A)

(5.30)
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Or we can write:

γ̇ =
φ,σ : Ce : ε̇

φ,σ : Ce : N− φ,A ∗ ρΨp2
,α ∗H

(5.31)

5.3.5 The continuum elastoplatic tangent stiffness modulus

Back to Equation (5.28) the rate of stress tensor is defined with the definition of the
plastic multiplier, by substituting the plastic multiplier in Equation (5.31), this gives:

σ̇ = Ce

(
ε̇− φ,σ : Ce : ε̇

φ,σ : Ce : N− φ,A ∗ ρΨp2
,α ∗H

N

)
(5.32)

Equation (5.32) can be rearranged to express the elastoplastic stress-strain rates, as:

σ̇ =

[
Ce − (Ce : N) (Ce : φ,σ)

φ,σ : Ce : N− φ,A ∗ ρΨp2
,α ∗H

]
: ε̇ ≡ Cep : ε̇ (5.33)

Where Cep is the continuum elastoplastic tangent modulus and it can be expressed as
a combination of an elastic and plastic component:

Cep = Ce + Cp (5.34)

Where Ce and Cp are the elastic and plastic stress-strain matrices, respectively. Ce is
already defined in Equation (2.40) and Cp is expressed as follows:

Cp =
(Ce : N) (Ce : φ,σ)

φ,σ : Ce : N− φ,A ∗ ρΨp2
,α ∗H

(5.35)

5.3.6 Yield criterion

A general form of the yield function has been introduced in Section (5.3.1), and it found
that it can be expressed by a yield surface; where the yield surface is an hypothesis
concerning the limit of elasticity under any kind or combination of stresses, where as in
engineering the yield criteria found through the literature with different kinds; the most
used yield criterion are Tresca, Von-Mises, Mohr-Coulomb and Drucker-Prager. Each
criteria has its advantages with respect to the type of material; for pressure-insensitive
materials like metals the Tresca and Von-Mises criterion are the most adequate. In the
other hand, the Mohr-Coulomb and Drucker-Prager criterion are more suitable to model
soil, rocks or concretes or pressure-sensitive materials. A condition have to be considred is
that the yield criteria should be independent of the orientation of the coordinates system
used, and the yield function φ should be expressed by the three stress invariants as [96]:
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φ (J1, J2, J3,A) = 0 or φ (J1, J2, J3) = A (5.36)

Where the stress invariants are defined by the following expressions:
J1 = σij = tr (σ)

J2 =
1

2
σijσij =

1

2
(S : S)

J3 =
1

3
σijσjkσki =

1

3
tr (S)3

(5.37)

Where S is the deviatoric stress tensor is given by:

S = σ − 1

3
(trσ) (5.38)

Bridgeman [104] states by experimental observation, that the plastic deformation of
metal is independent of the hydrostatic pressure. Therefore, the yield function can be
expressed in terms of the deviatoric stress tensors as:

φ (J2, J3,A) = 0 (5.39)

5.3.6.1 Tresca yield criterion

The criterion was proposed following the works of Tresca on metal plasticity in 1986.
The Tresca criterion states that plastic yielding begins when the maximum shear stress
reaches a critical value.

τmax = Max

(
|σ1 − σ2

2
|, |σ2 − σ3

2
|, |σ1 − σ3

2
|
)

(5.40)

Whereas the stress tensor is defined by the principle stresses σ1, σ2 and σ3 and the
condition σ1 > σ2 > σ3.

The onset of the Tresca criterion can be reached by performing a simple experiments.
The yield stress in tensile test is σy; where: σ1 = σy, σ2 = 0, σ3 = 0. In shear test,
σ1 = τy, σ2 = 0, σ3 = −τy, where τy is the yield stress of a material in pure shear. This
leads to the following expression:

1

2
(σmax − σmin) = σy = τy (α) (5.41)

Where σmax, σmin are the maximum and minimum principle stresses, respectively. τy
is the shear yield stress which is assumed to be a function of a hardening internal variable
α. The Tresca yield function is defined in case of φ = 0 as:
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φ (σ) = (σmax − σmin)− σy (α) (5.42)

Where σy is the uniaxial yield stress. Thus, the Tresca yield criterion may be written
as:

σy = 2τy (5.43)

Figure (5.3) show a representation of the yield surface for the Tresca criterion in
the space of principal stress by an infinitely long regular hexagonal cylinder with radius√

2/3σy, where the cylinder axes coincides with the Hydrostatic or space diagonal with the
Equation (σ1 = σ2 = σ3). Figure (5.4) illustrate the Tresca yield surface by its projection
on the π-plane with zero hydrostatic pressure component. The Tresca yield criterion can
also be described in term of stress invariant, where the yield function is expressed as:

φ = 2
√
J2 cos θ − σy (5.44)

Where J2 is the invariant of the stress deviator stated early in Equation (5.37), and θ
is the Load angle which is a function of the deviatoric stress defined as:

θ =
1

3
sin−1

(
−3
√

3J3

2J
3/2
2

)
; −π

6
< θ <

π

6
(5.45)
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Figure 5.3: Geometrical representation of the Tresca and Von Mises yield surfaces in
principal stress space.
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Figure 5.4: Two-dimensional representations of the Tresca and Von Mises yield criteria.
(a) Octahedral plane representation, (b) Conventional engineering representation or biaxial
state of stress.

5.3.6.2 Von-Mises yield criterion

While Tresca uses the maximum shear stress τmax as an equivalent stress σe, the Von-
Mises uses the distortion energy theory ; by stating that yielding occurs when the equivalent
stress reaches critical value (the yield stress σy) of the material in case of uniaxial tension,
then the equivalent stress is expressed as follows:

σe ≡
√

3

2
S : S ≡ σy ≡

√
3J2 (5.46)

Where J2 is the second deviatoric stress invariant, which can be explicitly expresses
in term of stress components as:

J2 =
1

6

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2]+ τ 2

xy + τ 2
yz + τ 2

xz (5.47)

The Von-Mises yield function is expressed using the equivalent stress by:

φ (σ) = σe − σy =
√

3J2 − σy = 0 (5.48)

Where σy is the uniaxial yield stress. The Von-Mises yield surface in which φ = 0

is graphically represented in Figure (5.3) to be a circular cylinder in the principal stress
space, where the cylinder axis coincides with the hydrostatic axis. The plastic behaviour
of a material can be described by the diviator of a tensor that preserves the volumetric
components. Thus, the deviatoric stress can be written as:

J2 =
1

2
S : S (5.49)
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By the definition of Equation (5.47) one can observe that the Von-Mises yield surface
is an ellipse which is ploted in Figure (5.4.b). Any point reside inside the ellipse where
φ < 0 it represent an elastic stress state. Points on the yield surface φ = 0 represents
the stress state where the material yielded. This leads to the definition of the Von-Mises
yield criterion, to be written as:

φ (σ) = ‖S‖ −
√

2

3
σy = 0 (5.50)

Where ‖S‖ is the norm of the deviatoric stress, which can be expressed by:

‖S‖ = (S : S)1/2 (5.51)

The projection of the Von-Mises yield surface on the π-plane gives a smooth circle with
a radius

√
2/3σy in deviatoric stress space Figure (5.4.a). The Von-Mises circle apears to

intersect with the vertices of the Tresca hexagon. In state of pure shear, the yield function
for the Von-Mises criterion can be defined as:

φ (σ) =
√

2τ −
√

2

3
σy = 0 (5.52)

Hence, the yield and shear stresses for the Von-Mises criterion are related by the
following relation:

σy =
√

3τ (5.53)

5.3.6.3 Mohr-Coulomb yield criterion

As mentioned before in Paragraph 5.3.6, the Tresca and Von-Mises are pressure-independent
criteria and are suitable for modelling of plasticity in metals. However, the Mohr-Coulomb
and Drucker-Prager criteria poses strong dependencies on hydrostatic pressure and they
are adequate for modelling material such as soil, rocks and concrete. The Mohr-Coulomb
criteria stems its notion from the generalisation of the Coulomb’s 1773 Friction failure
law by the following expression:

τ = c− σn tanϕ (5.54)

Where τ is the magnitude of shearing stress, c is the cohesion, ϕ is the internal friction
or frictional angle and σn is the normal stress. The Mohr-Coulomb states that yielding
occurs when the shearing stress τ and normal stress σn reach the critical combination.
The Mohr-Coulomb criteria can be represent using the Mohr plane as shown in Figure
(5.5). Given the condition σ1 > σ2 > σ3, τ = ±c and ± tanϕ. Yield occurs when the
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largest Mohr circle touches the critical line defined by the Equation (5.54) as depicted in
Figure (5.5). Thus, one has:

 

𝜎𝑛 

𝜏 

𝜑 

𝜑 

𝜎1 − 𝜎3 

𝜏 = 𝑐 − 𝜎𝑛𝑡𝑎𝑛𝜑 

Critical line 

𝑐  𝑐𝑜𝑡𝜑 

𝑐 

𝜎1 𝜎3 𝜎𝑖𝑛𝑡 0 

Figure 5.5: Representation of the Mohr-Coulomb criterion by the Mohr’s circle.

τ =
σ1 − σ3

2
cosϕ (5.55)

σn =
σ1 + σ2

2
+
σ1 − σ3

2
sinϕ (5.56)

The Mohr-Coulomb criterion in terms of the principal stresses can be defined by the
following form:

(σ1 − σ3) = 2c cosϕ− (σ1 + σ3) sinϕ (5.57)

The yield function for the Mohr-Coulomb criteria in terms of the principal stresses
attains the form:

φ (σ, c) = (σ1 − σ3) + (σ1 + σ3) sinϕ− 2c cosϕ (5.58)

Figure (5.6) shows the Mohr-Coulomb yield surface in the principal stress space in
which is an irregular hexagonal pyramid aligned with the hydrostatic axis, and whose
Apex is located at P = c cotϕ. The projection of the yield surface in the π-plane represent
an irregular hexagon as depicted in Figure (5.6.b). The Apex of the pyramid defines the
limit of resistance to tensile pressure for a given material such as rock, soil or concrete.

From Figures (5.3) and (5.6.a), one can note that the Mohr-Coulomb criterion can
be considered a reduced version of the Tresca criterion. Hence, both criteria tends to
coincide when c = τy and ϕ = 0.
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Figure 5.6: (a) Geometrical representation of the Mohr-Coulomb and Drucker-Prager yield
surfaces in principal stress space, (b) Octahedral plane representation, projection of the
Mohr-Coulomb and Drucker-Prager yield criteria on the π-plane.

5.3.6.4 Drucker-Prager yield criterion

The Drucker-Prager yield criterion was presented in 1952 as a smooth approximation
to the Mohr-Coulomb yield criterion, In a similar way as the Von-Mises to the Tresca
criterion. The Drucker-Prager yield criteria states that the yielding occurs when the
second invariant J2 of the deviatoric stress and the hydrostatic stress reach a critical
combination. Hence, the The Drucker-Prager yield criteria is defined by:

αJ1 +
√
J2(S) = c (5.59)

The Drucker-Prager yield function can be defined in which the yield surface is approx-
imated, where φ = 0:

φ (σ, c) =
√
J2 (s (σ)) + ιJ1 − k = 0 (5.60)

Where J1 is the hydrostatic-dependent first invariant, ι and k are material parameters
defined as follows:

ι =
6 sinϕ

3− sinϕ
(5.61)

k =
6c sinϕ

3− sinϕ
(5.62)

The representation of the The Drucker-Prager yield surface in the principal stress space
is a circular cone with a radius

√
2k and it has the same Apex of the Mohr-Coulomb yield
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surface Figure (5.5). The circular cone is aligned with the hydrostatic axis. The projection
of the yield surface on the π-plane shows that the yield locus is a circle Figure (5.6.b).

5.3.7 Hardening law

Earlier in Section 5.3.3 it has been stated that the evolution of the plastic strain ac-
companies an evolution of the yield stress, and this phenomenon is called Hardening or
strain-hardening ; where it is represented by changes in the hardening thermodynamical
forces during plastic yielding. As the material is loaded beyond the first yield point; the
yield surface get effected and changes where it can be characterized by its shape, size
and orientation in the stress space. In this section the strain hardening of materials is
regarded and four hardening models are considered namely; perfect plasticity, isotropic,
kinematic and combined hardening.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial 

yield surface 

𝐹 = 𝑘2 

 

The subsequent 

yield surface 

𝐹 > 𝑘2 

𝜎1 

 
𝜎2 

 𝑂 

(b) Isotropic Hardening 

 𝜎1 

 𝜎2 

 𝑂 

(a) Perfect plasticity 

 

 

𝜎1 

𝜎2 

𝜎1 

𝜎2 

 

 
𝑂 

 

 𝑂 

 𝑂
′ 

 
 

The initial 

yield surface 

𝐹 = 𝑘2 

 

 

The subsequent 

yield surface 

𝐹 > 𝑘2 

 
 

The initial 

yield surface 

𝐹 = 𝑘2 

Translational 

displacement 

and expanding 

𝐹 > 𝑘2 

 

 Only translational 

displacement 

(c) Kinematic hardening 

 

(d) Combined hardening 

𝜎2 

𝜎1 

Figure 5.7: Strain hardening model (a) perfect plasticity (b) isotropic strain hardening (c)
kinematic strain hardening, and (d) combined strain hardening.
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5.3.7.1 Perfect plasticity

A representation of the perfect plasticity in materials is shown in Figure (5.7.a), where
one can note that the yield stress σy level remains constant and does not depend on the
evolution of the plastic strain, this means no hardening is allowed. Moreover, the yield
surface φ is independent of the degree of plasticity.

5.3.7.2 Isotropic hardening

The evolution of the yield surface is said to be isotropic; if the evolution of the yield
surface of the subsequent expands uniformly of the original yield surface Figure (5.7.b).
In the isotropic hardening, the yielding depends on the accumulated effective plastic strain
ep, as:

σy = σ0
y +Hep (5.63)

where H is the plastic modulus obtained from the uniaxial stress-strain relationship
by the following expression:

H =
δσ

δep
(5.64)

5.3.7.3 Kinematic hardening

If kinematic hardening model is considered, one can note that the yield surface preserves
its shape and orientation. However, the center of the yield surface translates in the stress
space as shown in Figure (5.7.c). The evolution of the yield surface for the Von-Mises
criterion for the kinematic hardening model is given by:

φ (σ, β) =
√

3J2 (η (α, β))− σy (5.65)

where η (α, β) = S (σ)−β is the relative shifted stress tensor; it represent the distance
from the center of yield surface to the yield surface, S (σ) is the stress deviator and α is
known as the Back-stress tensor.

5.3.7.4 Combined hardening

The last hardening model is the closest model that approves the reel-life material be-
haviour. This model can be obtained by combining both the isotropic and kinematic
hardening Figure (5.7.d). Under plastic straining, the combined hardening model allows
the yield surface to shrink/expand and change its position simultaneously in stress space,
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while preserving its shape. A general form of the combined hardening model is defined
as:

‖η‖ −
√

2

3

[
σ0
y + (1− β)Hep

]
= 0 (5.66)

And the back stress increment is determined by the following expression:

∆α =

√
2

3
βH∆ep

η

‖η‖
(5.67)

where β is a parameter, equals 1 for kinematic H and 0 for isotropic hardening,
respectively.

5.4 Numerical implementation of elastoplasticity model

This section addresses the numerical implementation of the elastoplastic behaviour with
the Von-Mises criterion and linear isotropic hardening model that will be adopted for the
presented SFR20 element. Small strains are considered in the following study. The nu-
merical implementation of the stress update and the stiffness tangent moduli are essential
part to determine the elastoplastic constitutive equations. Back to the assumption of the
decomposition of the total strain rate tensor into an elastic ε̇e and plastic ε̇p strain rate
is giving as follows:

ε̇ = ε̇e + ε̇p (5.68)

Introducing Hook’s law to predict the elastic behaviour, the stresses are split into a
deviatoric S and hydrostatic p part as:

S = 2µε̇e = 2µ (ε̇− ε̇p) (5.69)

P = k tr (ε̇e) (5.70)

where µ and k are denoted the shear and bulk modulus, respectively. The yield
function for the Von-Mises criterion with isotropic hardening is given by:

φ (η, α) = ‖η‖ −
√

2

3
(σy +Hisoα) 6 0 (5.71)

In which ‖η‖ is already mentioned. The evolution equations for the plastic strain for
the hardening variables are defined as:
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ε̇p = λ̇
∂φ

∂S
(5.72)

α̇ =

√
2

3
λ̇ (5.73)

β̇ = −2

3
Hkinλ̇

∂φ

∂S
(5.74)

In the following study an implicite integration method such as the Backward Euler
Method is used to solve the elastoplastic differential equations. Since, they are stiff in
the mathematical sense [97]. The method consist to find the solution by solving an
equation in the current state of the system tn and the later one tn+1, corresponding to a
typical (pseudo-) time increment [tn, tn+1]. After applying the Backward Euler method,
the evolution equations for the variables (5.72, 5.73, 5.74) are reformulated as:

εpn+1 = εpn + ∆λnn+1 (5.75)

αn+1 = αn +

√
2

3
∆λ (5.76)

βn+1 = βn −
2

3
Hkin∆λnn+1 (5.77)

where ∆λ = λn+1 − λn and n ≡ N (σ,A). The deviatoric stresses at time step tn+1

are expressed by:

Sn+1 = 2µ
(
εn+1 − εpn+1

)
(5.78)

By substituting Equation (5.72) into Equation (5.78) leads to:

Sn+1 = 2µ
(
εn+1 − εpn+1

)
− 2µ∆λnn+1 (5.79)

At this stage the solution of Equations (5.72, 5.73, 5.74) and (5.79) are not an easy
task since the inequality constrain φ (ηn+1, αn+1) 6 0 should be fullfiled. An effective
and robust algorithm called the radial return-mapping [105] is used to formulate the
constitutive equations. The method is subdivided into two steps. First step, is called the
elastic-predictor or an elastic prediction of the stresses. At this stage the plastic variables
at the beginning of a time step from tn to tn+1 are assumed as fixed. This assumption
results in the trial state in which the evolution Equations (5.78, 5.73, 5.74) are updated
as follows:
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5.4 Numerical implementation of elastoplasticity model

Strailn+1 = 2µ
(
εtrailn+1 − εpn

)
(5.80)

ηtrailn+1 = Strailn+1 − βn (5.81)

αtrailn+1 = αn (5.82)

where the subscript (•)trail stands for trail quantities which is being fixed for a moment.
The relations (5.80, 5.81, 5.82) can be used to check the behaviour status is an elastic or
plastic. For this, a trail state is inserted into the yield function:

φ
(
ηtrailn+1 , α

trail
n+1

)
= ‖ηtrailn+1 ‖ −

√
2

3
(σy +Hisoαn)

{
6 0 ⇒ elastic
> 0 ⇒ plastic

(5.83)

In the case where the deviatoric stress Strailn+1 fulfils the yield condition within the time
interval [tn, tn+1], i.e. φ (ηn+1, αn+1) 6 0, the material behaviour is purely elastic and the
constitutive variables are updated as:

Sn+1 = Strailn+1 (5.84)

εpn+1 = εpn (5.85)

βtrailn+1 = βn (5.86)

αn+1 = αn (5.87)

Otherwise, if φ (ηn+1, αn+1) > 0, the material shows an elastoplastic behaviour within
the time step tn+1 and the stress state has to be corrected to satisfies the yield condition,
this second step is called plastic-corrector ; if the predicted stress exceeds the yield surface,
a correction of the stresses has to be applied. This leads to the definition of the trial and
the adapted deviatoric part of the relative stresses, as following:

Sn+1 − βn+1 = ηtrailn+1 −
(

2

3
Hkin + 2µ

)
∆ληn+1 (5.88)

‖ηn+1‖ = ‖ηtrailn+1 ‖ −
(

2

3
Hkin + 2µ

)
∆λ (5.89)

By inserting Equation (5.89) into the yield condition Equation (5.71) gives:
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5.5 Elastoplastic Consistent Tangent Operator

φn+1 = ‖ηtrailn+1 ‖ −
(

2

3
Hkin + 2µ

)
∆λ−

√
2

3

[
σy +Hiso

(
αn +

√
2

3
∆λ

)]
= 0 (5.90)

The plastic multiplier within the current time step tn+1 can be calculated by rearrang-
ing the previous equation of the yield condition to have the following form:

∆λ =

√
2

3
σy +Hisoαn

2µ

(
1 +

Hiso +Hkin

3µ

) (5.91)

At this stage since the plastic flow is known, one can determine the stresses, the plastic
strain and the internal variables can be computed from (5.72, 5.73, 5.74). Then, the actual
stresses are given by:

σn+1 = k tr (ε) + 2µ (εn+1 − εpn)− 2µ∆λntrailn+1 (5.92)

After, determining the actual stresses, the expression for the elastoplastic Consistent
Tangent Operator with the Von-Mises model and isotropic hardening is expressed as:

Cep =
∂σn+1

∂εn+1

= Ce
n+1 − 2µntrailn+1 ⊗

∂∆λ

∂εn+1

− 2µ∆λ
∂ntrailn+1

∂εn+1

(5.93)

where Ce is the elasticity tensor with the explicit definition:

Ce
n+1 = k 1⊗ 1 + 2µ

(
I− 1

3
1⊗ 1

)
(5.94)

where I is the identity matrix. More details on the derivation of
∂∆λ

∂εn+1

and
∂ntrailn+1

∂εn+1

are given in the following section.

5.5 Elastoplastic Consistent Tangent Operator

The following section presents the explicit derivation of the following
∂∆λ

∂εn+1

and
∂ntrailn+1

∂εn+1

components of the elastic-plastic tangent modulus which have been introduced in Equation
(5.93), by applying the chain rule on both derivatives we get:
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5.5 Elastoplastic Consistent Tangent Operator

∂∆λ

∂εn+1

=
∂∆λ

∂f trialn+1

∂f trialn+1

∂ηtrialn+1

∂ηtrialn+1

∂εn+1

(5.95)

a1 =
∂∆λ

∂f trialn+1

=

(
2µ

(
1 +

Hiso +Hkin

3µ

))−1

(5.96)

a2 =
∂f trialn+1

∂ηtrialn+1

=
∂‖ηtrialn+1 ‖
∂ηtrialn+1

=
1

2

(
Σn
i=1

(
ηtrialn+1,i

)2
)− 1

2
2ηtrialn+1,i = ntrialn+1 (5.97)

a3 =
∂ηtrialn+1

∂εn+1

= 2µ (5.98)

The first derivative became:

∂∆λ

∂εn+1

=

(
1 +

Hiso +Hkin

3µ

)−1

ntrialn+1 (5.99)

Calculating the last derivation part;

∂ntrailn+1

∂εn+1

=
∂ntrailn+1

∂Sn+1

∂Sn+1

∂εn+1

=
2µ

‖ηtrailn+1 ‖
[
I− ntrailn+1 ⊗ ntrailn+1

] (5.100)

By substituting the derivatives in Equations (5.99) and (5.100). Add to that, the
explicit form of the elasticity matrix in Equation (5.94) into Equation (5.93), we get
the algorithmic Consistent Tangent Modulus for the J2-elastic-plastic material for the
presented SFR20 element, as:

Cep
n+1 = k1⊗ 1 + 2µAn+1

(
I− 1

3
1⊗ 1

)
− 2µBn+1ntrialn+1 ⊗ ntrialn+1 (5.101)

where

An+1 = 1− 2µ∆λ

‖ηtrailn+1 ‖
(5.102)

and

Bn+1 =

(
1 +

Hkin +Hiso

3µ

)−1

− 2µ∆λ

‖ηtrailn+1 ‖
(5.103)
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5.6 Computational implementation of elastoplasticity by the Finite element
method

5.6 Computational implementation of elastoplasticity

by the Finite element method

The computation of elastoplastic behaviour of materials by the Finite Element Method
is generally carried out by means of an increment-iterative solution procedure. In which
the load and/or imposed displacements are gradually applied in increments. Where the
equilibrium is sought at each load level by minimising the force residual, i.e. the differ-
ence between the external and internal forces. An iterative process is carried out until
the residual is smaller than a prescribed number. The Newton-Raphson algorithm is an
efficient method for establishing equilibrium, and it has been adopted for all the finite ele-
ment calculation in this part of the work for nonlinear analysis. The incremental method
consist on dividing the applied external charge in terms of a certain number of increments
in which they are small enough to consider a nonlinear problem to an approximated linear
problem. A simple way to manage incremental analysis is to introduce the pseudo-time
parameter noted t, which is used to describe a particular loading program. In the follow-
ing work deformations are assumed as infinitesimal. Thus, the total displacements and
strains at load increment tn+1 after adding all incremental displacements and strains, are
given by:

Un+1 = Un + ∆U (5.104)

and

{εn+1} = {εn}+ ∆ε (5.105)

Since the increment equilibrium is examine by minimising the force residual, that is
the difference between the external and internal forces, we define the residual (or out-of-
balance force) vector as:

{r (∆U)} ≡
e

A
i=1

∫ e

Vn+1

[B]Tn+1 {σ}n+1 dV
e − {F}extn+1 = 0 (5.106)

where {σ}n+1 is the internal force vector which is a nonlinear function of the vector
of nodal unknowns ∆U .

Incremental analysis tends to provide the value of the displacement increment ∆U

corresponding to the chosen load increment ∆F ext. This is accomplished by building and
solving the linear problem equivalent to each load step:

KT (Un) ∆Un+1 = ∆F ext
n+1 (5.107)
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method

where KT is the tangent stiffness at configuration Un.
The Newton-Raphson method is used to find the roots of the nonlinear Equation

(5.107) by iteratively improving an initial guess. The method is based on the idea of
linearizing the nonlinear equation at the current guess and solving the resulting linear
equation to obtain a better guess. The method can be expressed mathematically as
follows:

Let f(x) be a nonlinear function, and let xi be an initial guess for the root. The
Newton-Raphson method seeks to find a better guess xi+1 by solving the linearized equa-
tion:

f(xi) + f ′(xi)(xi+1 − xi) = 0 ; i = 1, 2, ... (5.108)

where f ′(xi) is the derivative of f(x) evaluated at xi. Solving for xi+1 yields:

xi+1 = xi − f(xi)
f ′(xi)

; i = 1, 2, ... (5.109)

Figure 5.8 demonstrate that the method can give quadratic convergence f(x̄) = 0 to
the solution, if three conditions are satisfied: the tangent of the function must not equal
zero f ′(x) 6= 0 and it must be continues in same interval of the increment. In addition,
the initial guess should be close to the root x = x̄.

 

𝑓ሺ𝑥3ሻ 

𝑓ሺ𝑥2ሻ 

𝑓ሺ𝑥1ሻ 

𝑓′ሺ𝑥1ሻ 

𝒙 

𝑓ሺ𝑥ሻ 

Figure 5.8: Representation of the Newton-Raphson iteration in one variable.

The discrete version of solving the nonlinear equilibrium model by the Newton-Raphson
scheme by typical iteration (k), gives:

KT∆Uk = −r(k−1) (5.110)
83



5.6 Computational implementation of elastoplasticity by the Finite element
method

where the residual can be written by:

r(k−1) ≡ F int(Uk−1
n+1)− F ext

n+1 (5.111)

and

KT ≡
∫
V

BTCepBdV =
∂r

∂Un+1

|Uk−1
n+1

(5.112)

The global displacement in term of displacement increments is expressed as:

Uk
n+1 = Un + ∆Uk (5.113)

where ∆Uk is the incremental displacement vector:

∆Uk = ∆Uk−1 + δUk (5.114)

The process as illustrated in Figure 5.9 is repeated until a desired level of accuracy
is achieved. Thus, the iterations are repeated until the residual r is less than a specified
convergence tolerance or equilibrium convergence tolerance ε, which is expressed by:

| riter |
| F ext

n+1 |
6 εtol (5.115)

where iter is the number of iteration for each increment, and εtol should be sufficiently
small.

The method can converge very quickly if the initial guess is close to the root and if
the function is well-behaved. However, if the function is not well-behaved, the method
may fail to converge.
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Figure 5.9: Incremental-iterative Newton-Raphson method.
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Chapter 6

Validation of high order SFR elements

in elastoplasticity

Summary

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 One element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Bending of clamped beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Perforated plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 Introduction

This chapter presents the validation of the performance of the conforming SFR20 element
for the analysis of elastoplastic behavior of structures. These element uses a reduced
integration schemes with 3 × 3 × 3 Gauss points and it was previously developed and
validated for the analysis of linear problems and it showed good performance through
a series of benchmark tests. In the following chapter the presented element SFR20 is
tend to be validated by using two integration schemes; the reduced integration and a full
integration scheme with 4× 4× 4 Guass points where this element is denoted as SFR20F.
The presented element is implemented in the commercial finite element software Abaqus
as user subroutine (see Appendix B for more details on Abaqus implementation tutorial);
this software provide the facility for users to specify their own elements and material
models. The correctness of the implementation and performance of the presented element
was assessed by examining different type of analysis with respect to the Abaqus C3D20
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6.2 One element analysis

element. The constitutive model adopted for all analysis in this chapter is the Von-Mises
plasticity criterion with isotropic hardening.

6.2 One element analysis

The purpose of performing the one element test is to validate the computational imple-
mentation of the UEL and UMAT subroutine with the proposed elements SFR20 and
SFR20F, and to investigate their performance in coarse meshes. The problem represent
a block of material an it is modelled with one element. This single element tested in
the case of simple uniaxial tension and compression using both displacement and force
control. The main reason for applying these series of tests is that there is a variety of
problems uses displacement and force control. Therefore, it is reasonable to confirm that
the implementation works properly in these type of problems.

Figure 6.1 shows the boundary conditions and the geometry of the structure where
a = 100 mm. The properties of the material are : Young modulus E = 216 GPa and
Poisson’s ration ν = 0.3. For all the analysis performed we use a von Mises elastoplastic
material with linear isotropic hardening whose parameters are defined in the Table 6.1,
these parameters are generated by the following expression σy (εp) = 0.243+0.2εp (GPa).

 Y, V 

X, U 

Z, W 

a 

a 

a 

X 

Y 

(b) (a) 

Figure 6.1: One element test: (a) 3D view with geometry definition, (b) XY plan view
with boundary conditions.

Figure 6.2 shows the uniaxial tension case, a displacement and force control was applied
on the upper surface of the element subjecting the element into uniaxial tension. Figure
6.2.a and Figure 6.2.b represent uniaxial tension with displacement control and force
control, respectively. Both Figures shows the undeformed and deformed configurations
along with the boundary conditions that used in the analysis. The evolution of the Von-
Mises stress with respect to the Logarithmic strain is traced in Figure 6.2.
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6.2 One element analysis

Uniaxial compression results are presented in Figure 6.3. As like the tension test a
displacement and force control was applied on the upper surface of the element subjecting
the element into uniaxial compression. The undeformed and deformed configurations are
shown in Figure 6.3.a and Figure 6.3.b. In addition to that, The evolution of the Von-Mises
stress with respect to the Logarithmic strain for uniaxial compression with displacement
and force control are traced in the same Figures, respectively. In the case of compression
with force control, the results of the SFR20F element are very close to SFR20 element,
for the sake of brevity they were not presented.

Table 6.1: Elastoplastic material data for one element test.

ε σ (GPa)

0.0 0.243
0.1 0.263
0.4 0.323
0.8 0.403
1.3 0.503
1.9 0.623

    
(b) (a) 

Figure 6.2: The stress (Von Mises) - strain (equivalent Logarithmic strain) curve for uni-
axial tension case : (a) displacement control, (b) force control.

Figures 6.2 and 6.3 shows that the presented elements and Abaqus C3D20 element
are in good agreement verifying that the presented elements are implemented correctly
within the subroutines. Concerning the performance of the SFR20 and SFR20F, for
the displacement and force control configurations for both tests (Uniaxial tension and
compression) and for the same displacement field and force magnitude, we find that the
presented elements gives good results comparing to the reference Abaqus C3D20 element.
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6.3 Bending of clamped beam

   
(b) (a) 

Figure 6.3: The stress (Von Mises) - strain (equivalent Logarithmic strain) curve for uni-
axial compression case : (a) displacement control, (b) force control.

6.3 Bending of clamped beam

In the following test, a straight beam is studied and modelled to assess the performance of
the proposed elements. The beam is clamped from one end and subjected to vertical shear
force at its free edge as depicted in Figure 6.4. The beam has the following geometric
values: The length L = 1000 mm, the width h = 100 mm and a thickness b = 50 mm.
The mechanical properties are: Young Modulus E = 210 GPa, Poisson’s ration ν = 0.3

and yielding point σy = 0.24 GPa. The material was assumed as elastic-perfectly plastic.
The beam is modeled with a regular mesh (50× 2× 1) elements, this test is conducted to
investigate the performance of the proposed elements SFR20 and SFR20F with respect
to the 20-node hexahedral C3D20 Abaqus element. The beam is subjected and tested for
two different loading cases :

 

 

Clamped 

F/2 
F/2 

A 
X, U 

h 

Y, V 

Z, W 

b

L 

Figure 6.4: Clamped cantilever beam geometry, modelled with 50× 2× 1 elements.
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6.3 Bending of clamped beam

• First case: The plate is loaded at its free end with concentrated force where the
analytical limit load is given by [98] :

Flim =
σybh

2

4L
(6.1)

• Second case: The beam is subjected to cyclic loading, where the free end is imposed
to concentrated force, the evolution with time of the proportional load coefficient
amplifies the imposed concentrated force according to the graph illustrated in Figure
6.5. Simulating five cycle loading program in bending of the structure.
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Figure 6.5: Clamped cantilever beam: cycle loading program for concentrated force.

Figure 6.6 shows the results for the first case of the analysis, where it represent the
vertical displacement of point A with respect to the applied load. One can note that
the results of the presented elements are identical with the results of the Abaqus C3D20
element. The load level for all element at the end of the last increment is F ≈ 32.4985 KN .
At this stage of load the cantilever beam is effectively collapsing and equilibrium can no
longer be found. The evolution of the Von Mises stress and the equivalent plastic strain
are demonstrated in Figure 6.7 for the presented elements and for the C3D20 Abaqus
element for different loading increments, respectively.

The presented elements gives almost the same results in capturing the Von Mises stress
and plastic strain evolution, for the sake of brevity, the results of the SFR20F are not
presented. Overall, the presented element SFR20 shows good performance in capturing
the plastic deformation.
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Figure 6.6: Clamped cantilever beam: displacement at point A of the beam versus applied
force.

 

 

 

 

 

 

 

 

 

 

 

   

F= 80  

F= 90  

F= 100  

F= 70  

𝜀𝑝: (0.0156 , 0.0843) 𝜎𝑣𝑚: (0.0406 , 0.465) 

(a) (b) (c) 

𝜀𝑝: (0.003 , 0.0355) 

Figure 6.7: Clamped cantilever beam: (a) Von-Mises stress with SFR20 element (b) evolu-
tion of equivalent plastic strain for SFR20 element (c) evolution of equivalent plastic strain
for C3D20 element. Post-processing of results was made by UMAT implementation for the
presented elements. 100% Averaging of results.
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6.4 Perforated plate

The initial yield surface locus with respect to the yield locus for the presented SFR20
element is demonstrated in Figure 6.8. We note that the principle stresses move on the
yield surface when the material is assumed to be perfectly plastic. However, for isotropic
hardening, the principal stresses exceed the yield surface where the yield surface itself
expands.

The results for the second case of the analysis, where the beam is subjected to cyclic
loading are illustrated in Figure 6.9. It can be say that the best rate of displacement is
obtained by the presented elements SFR20 and SFR20F comparing to the C3D20 element
for the same cyclic loading.

Figure 6.8: Clamped cantilever beam: Von Mises yield locus with evolution of principal
stresses.

6.4 Perforated plate

Figure 6.10 shows a perforated plate considered as made from a homogeneous, isotropic
elastic-perfectly plastic material. The test is a popular benchmark to assess the developed
element for its precision and effectiveness, and it was conducted by many authors such
as [66, 73, 98] and exprementally [106]. The geometry of the structure is considered as:
W = 10 mm, L = 18 mm, the plate thickness T = 1 mm and circular hole with a
radius r = 5 mm. The given material properties for the plate are: Young’s modulus
E = 7000 GPa, Poisson’s ratio ν = 0.2 and yielding point σy = 24.3 GPa. Because of
the symmetry only a quarter of the structure is modelled, where the mesh and boundary
conditions are depicted in Figure 6.10. The perforated plate problem is studied with two
loading cases :
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Figure 6.9: Clamped cantilever beam subjected to cyclic loading: cyclic response for
isotropic hardening.
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Figure 6.10: Perforated plate: geometry, boundary conditions with non uniform mesh.

• First case: The plate is subjected to stretching along its longitudinal axes with
a uniform displacement control on the upper boundary where the displacement
magnitude is v = 0.1;

• Second case: The plate is subjected to cyclic loading, where the upper boundary
is stretched with imposed displacement v̂ = 0.1, the evolution with time of the
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6.4 Perforated plate

proportional load coefficient amplifies the imposed displacement according to the
graph illustrated in Figure 6.11. Simulating one-cycle loading program in tension
and compression of the structure.
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Figure 6.11: Perforated plate: One cycle loading program.

Figures 6.12 and 6.13 illustrate the evolution of the Von-Mises stress for the SFR20
element and the plastic strains for different time increments starting from the first ap-
pearance of the plastic deformation for both element SFR20 and C3D20, respectively.
The results are indicated in Gauss points for different time increment.

  

     

V= 0.08 V= 0.1 V= 0.06 V= 0.03 

Figure 6.12: Perforated plate : Evolution of the Von-Mises stress with SFR20 element.
Post-processing of results was made by UMAT implementation for SFR20 element. 100%
Averaging of results.
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6.4 Perforated plate

For the purpose of brevity the results of the SFR20F are not illustrated and plotted,
because they are almost identical to the reduced integration SFR20 element. Both el-
ements SFR20 and C3D20 captures a value of σvm = 24.3 for the Von-Mises stress in
the last increment. In the other hand, the plastic deformation for the presented element
SFR20 was captured when the displacement reaches 30% of the total displacement with
a value of εp = 0.0027, and in the last increment the plastic strain became εp = 0.0912.
The C3D20 element captures the plastic deformation when the displacement reaches 30%

of the total displacement with a value of εp = 0.0028, and it get increased until the last
increment with a value of εp = 0.0898.

  

    

 

    

V= 0.08 V= 0.1 V= 0.06 V= 0.03 

𝜀𝑝: (0.0001 , 0.0027) 𝜀𝑝: (0.0173 , 0.0282) 𝜀𝑝: (0.0323 , 0.0601) 𝜀𝑝: (0.0469 , 0.0912) 

𝜀𝑝: (0.0002 , 0.0028) 𝜀𝑝: (0.0173 , 0.0295) 𝜀𝑝: (0.0319 , 0.0601) 𝜀𝑝: (0.046 , 0.0898) 

Figure 6.13: Perforated plate : Evolution of the plastic strain upper row with SFR20
element, plastic strain lower row with C3D20 element. Post-processing of results was made
by UMAT implementation for SFR20 element. 100% Averaging of results.

The results obtained from the displacement of the upper edge versus the nodal re-
actions are traced in Figure 6.14.a and the true distance calculated in the center of the
plate along the length with respect to the upper edge displacement is illustrated in Figure
6.14.b. As it can be noted from the Figures, the results obtained from the presented
SFR20 element are identical with the C3D20 Abaqus element. The cyclic response for
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6.4 Perforated plate

   

(a) (b) 

Figure 6.14: Perforated plate: (a) displacement-force curves, (b) True distance in plate
center along the length versus upper edge displacement.

isotropic hardening with perfect plasticity is shown in Figure 6.15. It is clear that both
elements SFR20 and C3D20 are in good agreement in results for the cyclic loading case.
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Figure 6.15: Perforated plate subjected to cyclic loading: cyclic response for isotropic
hardening.

95



Chapter 7

General conclusion

This research aimed to formulate and assess the effectiveness of two novel 20-node hexa-
hedral solid finite elements: a conforming element SFR20 and a non-conforming element
SFR20I. Both elements are part of the family grounded in the Space Fiber Rotation
concept. This conceptual framework involves a fundamental 3D rotation of a virtual
fiber within the element, enhancing the definition of the displacement field approxima-
tion. Consequently, this methodology introduces additional rotational degrees of freedom
per node. To address Poisson’s locking deficiency, the incompatible modes approach was
incorporated into the non-conforming element SFR20I.

This thesis covers key themes of the research topic. In this context, in the first chapter
a bibliographic synthesis was established at the start of this work in order to present the
different formulations proposed in finite elements developments. Basic notions on the
continuum mechanics and the finite element method was addressed in the second chapter.
The third chapter present the Space Fiber Rotation concept formulation and the process
of developing the presented elements. In order to evaluate the performance of the SFR20
and SFR20I elements, a series of standard linear test cases in the literature was conducted
in chapter four. The theory of plasticity and the formulation of the elastoplastic model
is addressed in chapter five. this chapter was followed by an evaluation of the SFR20
element performance which carried out by a series of typical structural problems.

The validation of the proposed elements is carried out through two parts of the work.
Firstly, the performance of the SFR20 and SFR20I elements is examined through popular
benchmarks in which the efficiency is assessed by comparing the findings with analytical
and numerical reference solutions. Both elements uses a reduced integration scheme with
3×3×3 Gauss points, the reduced numerical integration is used to save calculation time.
The presented elements exhibit good performance in terms of accuracy, rate of conver-
gence, and sensitivity to mesh distortion. They are shown to be significantly better than
the standard 20-node hexahedron. In particular, the SFR20I element showed excellent
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accuracy even for very coarse meshes. The second part of the work was related to the
validation of the SFR20 element to analyse the elastoplastic behavior of structures. In
this part of the work the element was assessed by adopting two integration schemes; the
SFR20 usesd a reduced integration scheme and a full integration scheme element denoted
as SFR20F which it uses 4× 4× 4 Gauss points.

Due to the difficulty of elastoplastic analysis of structures and the clear need for a pow-
erful computing environment in order to perform these analyzes robustly and efficiently.
In addition to that, there is a need to examine the results accurately and clearly. The
SFR20 element and the elastoplastic constitutive model were implemented as customiz-
able feature called user subroutines in the commercial finite element package Abaqus ;
which is an environment where it offers to the users to implement new finite elements
and material models. This results in the development of two subroutines called UEL and
UMAT for solving and visualization of the results respectively. The performance of the
SFR20 and SFR20F to analyse the elastoplastic behavior of structures was assessed by
examining different series of typical structural problems. Overall, the proposed element
with both integration schemes give identical response comparing to the C3D20 element.
The displacement field for the present element against other counterpart are presented.
Add to that, the evolution of the Von-Mises stresses and equivalent plastic strain were
illustrated and investigated. The post-processing of the equivalent plastic deformation
was done by exploiting the properties of UMAT subroutine which give the possibility to
follow the propagation of plasticity in different structures studied.

In conclusion, according to the series of standard linear and non-linear test cases in
this work, it showed that these elements are in general efficient and robust. They have no
locking and converge well towards the reference solutions. Add to that, they appear to
capture the stresses and strains rapidly as like the C3D20 element. Lastly, the potential of
these elements can therefore be exploited to treat other linear and nonlinear phenomena
for isotropic and composite materials.

Perspectives

In perspective, this elements are planned to be integrated for the analysis of thermome-
chanical behavior of structures, where the influence of the thermal loading effect on the
structure and the role of the presented elements to capture the displacement field, stresses
and strains are investigated.

Another perspective is the implementation of these elements to deal with the prob-
lems of large displacements and large deformations by combining geometric nonlinearities
effects with material nonlinearities.
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Finally, Extend the the use of this elements based on the Space Fiber Rotation concept
for the analysis of elastoplastic behavior with damage models.
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Appendix A

Shape functions

The shape functions and their derivitives for the 20 node hexahedral element are as follows:

– Vertices nodes:

node 1 2 3 4 5 6 7 8

ξ -1 1 1 -1 -1 1 1 -1
η -1 -1 1 1 -1 -1 1 1
ζ -1 -1 -1 -1 1 1 1 1

The shape functions and their derivatives of the vertices nodes:

Ni = 1
8
(−2 + ξξi + ηηi + ζζi)(1 + ξξi)(1 + ηiη)(1 + ζζi)

∂Ni
∂ξ

= 1
8
ξi(1 + ηηi)(1 + ζζi)(−1 + 2ξξi + ηηi + ζζi)

∂Ni
∂η

= 1
8
ηi(1 + ξξi)(1 + ζζi)(−1 + ξξi + 2ηηi + ζζi)

∂Ni
∂ζ

= 1
8
ζi(1 + ξξi)(1 + ηηi)(−1 + ξξi + ηηi + 2ζζi)

(A.1)

– Coordinates of the perpendicular plane nodes with ξ axis:

node 9 11 13 15

ξ 0 0 0 0
η -1 1 -1 1
ζ -1 -1 1 1
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The shape functions and their derivatives of nodes 9, 11, 13, 15:

Ni = 1
4
(1− ξ2)(1 + ηηi)(1 + ζζi)

∂Ni
∂ξ

= −1
2
ξ(1 + ηηi)(1 + ζζi)

∂Ni
∂η

= 1
4
ηi(1− ξ2)(1 + ζζi)

∂Ni
∂ζ

= 1
4
ζi(1− ξ2)(1 + ηηi)

(A.2)

– Coordinates of the perpendicular plane nodes with η axis:

node 10 12 14 16

ξ 1 -1 1 -1
η 0 0 0 0
ζ -1 -1 1 1

The shape functions and their derivatives of nodes 10, 12, 14, 16:

Ni = 1
4
(1 + ξξi)(1− η2)(1 + ζζi)

∂Ni
∂ξ

= 1
4
ξi(1− η2)(1 + ζζi)

∂Ni
∂η

= −1
2
η(1 + ξξi)(1 + ζζi)

∂Ni
∂ζ

= 1
4
ζi(1 + ξξi)(1− η2)

(A.3)

– Coordinates of the perpendicular plane nodes with ζ axis:

node 17 18 19 20

ξ -1 1 1 -1
η -1 -1 1 1
ζ 0 0 0 0
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The shape functions and their derivatives of nodes 17, 18, 19, 20:

Ni = 1
4
(1 + ξξi)(1 + ηηi)(1− ζ2)

∂Ni
∂ξ

= 1
4
ξi(1 + ηηi)(1− ζ2)

∂Ni
∂η

= 1
4
ηi(1 + ξξi)(1− ζ2)

∂Ni
∂ζ

= −1
2
ζ(1 + ξξi)(1 + ηηi)

(A.4)
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Appendix B

Abaqus implementation tutorial

B.1 Implementation aspects of elastoplasticity model

in Abaqus

Figure B.1 demonstrate a basic flowchart with data flow and actions for an Abaqus/-
Standard analysis and the levels of application of different Abaqus subroutines. These
subroutines are used in conjuction with Abaqus allowing the user to perform a variety
of common tasks (eg: Structural Engineering Analysis, Computational Fluid Dynamics,
Heat Transfer). The implimentation of subroutines such UEL and UMAT requires ba-
sically two files; an Input file with the extension (*.inp) ; this file contains all the data
about the model (ie. node, connectivity, material properties, ...etc). The second is the
source code file written in Fortran language with the extension (*.for), this file possess
the user’s coding for the computation model.

B.1.1 The Input file

The ABAQUS Input file contains all the commands (keywords) defining the model to
generate the simulation. The keywords are pre-define functions address instructions,
commands or values to Abaqus to be performed. There are three types of lines in the
Input file; The lines that start with double asterisk signify that this line is a comment.
Hence, Abaqus passes it without reading what it contains. The command lines start with
one asterisk and they contains keywords to be performed by Abaqus. The last type is the
Data lines and they are statements and they have a specific format (ex: numerical value,
words). The following are descriptions of the main keywords of the input file:

• ∗Heading: This keyword defines the title of the analysis.
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B.1 Implementation aspects of elastoplasticity model in Abaqus

 

 

UMAT Subroutine 

 

UEL Subroutine 

Analysis start 

Define the mesh and 

initial/boundary conditions 

Start of step 

Start of increment 

Start of iteration 

Update element stiffness matrix [𝐴𝑀𝐴𝑇𝑅𝑋] 

Define loads and update {𝑅𝐻𝑆} 

Solve [𝐴𝑀𝐴𝑇𝑅𝑋]{𝑈} = {𝑅𝐻𝑆} 

Converged 

Write output  

End of step 

Calculate Δ𝜀 Calculate and update 𝜎, 
∂Δ𝜎

𝜕Δ𝜀
 

- Material properties 

- Strain tensor 

- Strain increment 

UMAT Inputs 

Calculate and update elastic and 

plastic strains 

Calculate and update 

Jacobian matrix 
∂Δ𝜎

𝜕Δ𝜀
 

- Jacobian matrix 

- Stress tensor 

- Elastic strain tensor 

- Plastic strain tensor 

UMAT Output 

Yes 

No 

Yes 

No 

Figure B.1: Standard Abaqus analysis flowchart with implementation of UEL and UMAT
subroutines.

• ∗Preprint: Print data from the input file to Data file with the extension (∗.data
in order to verify weather Abaqus read and understood the input file correctly.

• ∗Part: Start the defintion of the problem geometry.

• ∗Node, input=X:\...dir\nodes.txt: Indicates the start of node coordinates defi-
nition. Node coordinates are imported using the input attribute from the (nodes.txt)
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B.1 Implementation aspects of elastoplasticity model in Abaqus

file containing the coordinates data.

• ∗Element, input=X:\...dir\connec.txt: Indicates the start of element connec-
tivity definition. element connectivity are imported using the input attribute from
the (connec.txt) file containing the element connectivity data.

• ∗Elset, ∗Nset: Set/Group of elements and nodes respectively.

• ∗Step: Define the analysis type of the simulation (i.e. static, dynamic, viscoelas-
tic, ...etc). The user can define one or more of analysis steps, step sequence is a
convenient way to capture changes in the loading and boundary conditions of the
model.

– ∗Static: Type of the analysis, the data line after this keyword defines the
number of load increments, minimum and maximum amount of load for au-
tomatic time stepping, the user can customize general solution and solver
controls.

– ∗Boundary: Define the boundary conditions of the model, the values could be
all basic solution variables (displacements, rotations, or temperature). Bound-
aries are defined with node/element sets.

– ∗Load: Define external loading to the model, as like the boudary the loads are
defined by node/element sets.

– ∗Node Output, ∗element output: Output request defines which variables
will be output during the analysis step, these output could be nodal or element
outputs.

B.1.2 Source code file

Abaqus subroutines are typically follow Fortran77 or C languages conventions.Each sub-
routine is provided with pre-defined set of Subroutine arguments ; these arguments should
not be violated otherwise the Abaqus will give an error leading to abord the analysis.

B.1.2.1 Description of the UEL subroutine

User-defined ELement (UEL) is a subroutine that allows the user to implement linear or
nonlinear finite elements. A user element is defined by the following typical interface:
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B.1 Implementation aspects of elastoplasticity model in Abaqus

1 SUBROUTINE UEL(RHS ,AMATRX ,SVARS ,ENERGY ,NDOFEL ,NRHS ,NSVARS ,

2 1 PROPS ,NPROPS ,COORDS ,MCRD ,NNODE ,U,DU,V,A,JTYPE ,TIME ,DTIME ,

3 2 KSTEP ,KINC ,JELEM ,PARAMS ,NDLOAD ,JDLTYP ,ADLMAG ,PREDEF ,NPREDF ,

4 3 LFLAGS ,MLVARX ,DDLMAG ,MDLOAD ,PNEWDT ,JPROPS ,NJPROP ,PERIOD)

5 C

6 INCLUDE ’ABA_PARAM.INC’

7 C

8 DIMENSION RHS(MLVARX ,*), AMATRX(NDOFEL ,NDOFEL),PROPS(*),

9 1 SVARS(*), ENERGY (8), COORDS(MCRD ,NNODE),U(NDOFEL),

10 2 DU(MLVARX ,*),V(NDOFEL),A(NDOFEL),TIME(2), PARAMS (*),

11 3 JDLTYP(MDLOAD ,*), ADLMAG(MDLOAD ,*), DDLMAG(MDLOAD ,*),

12 4 PREDEF(2,NPREDF ,NNODE),LFLAGS (*), JPROPS (*)

13

14 ’user coding to define RHS , AMATRX , SVARS , ENERGY , and PNEWDT ’

15

16 RETURN

17 END

Listing B.1: Typical UEL subroutine interface

UEL subroutine arguments are described as:

• RHS: Stands for Right Hand Sided, an array containing the residual vector corre-
sponding to a single element, the size of this array is (NDOFEL × NRHS).

• NDOFEL: Number of degrees of freedom in the element.

• NRHS: Number of load vectors.

• AMATRX: An array containing the Jacobian stiffness matrix, the size of this array is
(NDOFEL × NDOFEL).

• SVARS: An array containing the values of the solution-dependent state variables
associated with the element, the size of this array is (NSVARS × 1)

• NSVARS: Number of solution-dependent state variables (SDVs), defined by the user.

• PROPS: An array containing real property values defined for use with element, the
size of this array is (NPROPS × 1).

• NPROPS: Number of property values.

• COORDS: An array containing the real node coordinates of the element, the size of
this array is (MCRD × NNODE).
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B.1 Implementation aspects of elastoplasticity model in Abaqus

• MCRD: Maximum of the user-defined number of coordinates.

• NNODE: User-defined number of nodes on the element.

• U: Array containing the current estimates of the basic solution variables (displace-
ments, rotations, temperatures, ...etc).

• JELEM: User-assigned element number.

In this subroutine Abaqus expects from the user to define the elemental stiffness matrix
AMATRX and the residual force vector RHS according to the constitutive relation ??. Abaqus
calls the UEL for each element independently and within UEL we have a loop over Gauss
integration points where the shape functions [N ] and their derivitives [∂N ], the Jacobian
determinant detJ , the element stiffness matrix [Ke] and load vector {F e

ext} are calculated
in order to estimate the basic solution variables U. At the end of looping over all the
elements Abaqus performs the assembly of the system automatically to obtain the global
stiffness matrix to solve the constitutive model.
Before the user proceed the simulation using the UEL subroutine, few changes have to be
made in the original input file to incorporate a successful implementation. The SFR20
element must be declare using the ∗USER ELEMENT command, this command must appear
before the user element is invoked with the ∗ELEMENT option, Table B.1 explaine the
following lines:

1 *USER ELEMENT , TYPE=Un , NODES=NNODE , COORDINATES=MCRD ,

2 PROPERTIES=NPROPS , I PROPERTIES=NPROPS , VARIABLES=NSVARS , UNSYMM

3 Data line(s)

Next, the SFR element connectivity must be declared by the typical ∗ELEMENT coomand.
The type parameter should be defined by the same name as the one given when the UEL
was defined (ie. Un). Then the element connectivities are liste in standard manner:

1 *ELEMENT ,TYPE=Un, ELSET=UEL

2 Data line(s)

The user can specifie a name for the element set to wich these elements are assigned
by the command ELSET.

Property values of the model are given by the ∗UEL PROPERTY option by the following
command lines:

1 *UEL PROPERTY , ELSET=UEL

2 Data line(s)
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B.1 Implementation aspects of elastoplasticity model in Abaqus

Data line for the UEL property could be any parameter, coefficient or value. Note
that the ELSET name for the ∗UEL PROPERTY option must be the same as the one defined
in the ∗ELEMENT.

The following Table B.1 explains the definition of each parameter and what argument
passes to the UEL from this entries.

Table B.1: Syntax definition for interfacing UEL.

Parameter Argument Definition

TYPE Un Element type defined by the user, where n is an
integer number n = 1, 2, ..., 99

NODES NNODE Number of nodes on the element
COORDINATES MCRD Maximum number of coordinates in nodes (x, y, z)
PROPERTIES NPROPS Number of floating point properties
I PROPERTIES NPROPS Number of integer properties
VARIABLES NSVARS Number of state dependent solution variables SDVs
UNSYMM - Unsymmetric Jacobian Flag
ELSET NAME Element set name
UEL PROPERTY Data line(s) Invoke the UEL subroutine

B.1.2.2 Description of the UMAT subroutine

User-definedMATerial (UMAT) is a subroutine that allows the user to implement general
constitutive linear or nonlinear equations. It is worth noting that UMAT subroutine is
used with ABAQUS/STANDARD only, in the other hand, VUMAT subroutine is used
with ABAQUS/EXPLICITE. A typical interface of the UMAT subroutine is given below:

1 SUBROUTINE UMAT(STRESS ,STATEV ,DDSDDE ,SSE ,SPD ,SCD ,

2 1 RPL ,DDSDDT ,DRPLDE ,DRPLDT ,STRAN ,DSTRAN ,TIME ,DTIME ,TEMP ,

3 2 DTEMP ,PREDEF ,DPRED ,CMNAME ,NDI ,NSHR ,NTENS ,NSTATV ,PROPS ,

4 3 NPROPS ,COORDS ,DROT ,PNEWDT ,CELENT ,DFGRD0 ,DFGRD1 ,NOEL ,

5 4 NPT ,LAYER ,KSPT ,KSTEP ,KINC)

6 C

7 INCLUDE ’ABA_PARAM.INC’

8 C

9 CHARACTER *80 CMNAME

10 DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS ,NTENS),

11 1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS),

12 2 TIME(2), PREDEF (1),DPRED(1), PROPS(NPROPS),COORDS (3),

13 3 DROT(3,3), DFGRD0 (3,3), DFGRD1 (3,3)

14
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15 ’user coding to define DDSDDE , STRESS , STATEV , SSE , SPD , SCD

16 and , if necessary , RPL , DDSDDT , DRPLDE , DRPLDT , PNEWDT ’

17

18 RETURN

19 END

Listing B.2: Typical UMAT subroutine interface

UMAT subrooutine arguments are described as follows:

• STRESS: The stress tensor, the size of this array is (NTENS).

• NTENS: Size of arrays equals to the sum of Number of direct stress components NDI
and number of engineering shear stress components NSHR.

• STATEV: An array containing the solution-dependent state variables, the size of this
array is (NSTATV).

• NSTATV: Number of solution-dependent state variables SDVs.

• DDSDDE: Array of the Jacobian matrix of the constitutive model, the size of this
array is (NTENS,NTENS).

• SSE: Specific elastic strain energy.

• SPD: plastic dissipation.

• STRAN: An array containing the total strains, the size of this array is (NTENS).

• DSTRAN: Array of strain increments, the size of this array is (NTENS).

• COORDS: An array containing the original coordinates.

• DROT: Rotation increment matrix.

The user has to provide all the calculations to determine the tangent stiffness matrix
DDSDDE and to update the stress tensor as well as to store the SDVs in the UMAT array
STATEV whose values are needed for post-processing usage.

As like the UEL subroutine, before conducting any simulation by the UMAT, few
changes must be made in the input file. the following lines act as the interface of the
UMAT:

108



B.1 Implementation aspects of elastoplasticity model in Abaqus

1 *MATERIAL , NAME=STEEL

2 *USER MATERIAL , CONSTANTS=NPROPS , (UNSYMM)

3 Data line(s)

4 *DEPVAR

5 NSTATV

The option that invoke the UMAT usage is ∗USER MATERIAL; this option must be
located after the original command ∗MATERIAL, the user can give a name to define material
with the NAME command. The CONSTANTS command specifies the number of property
values that can be used in the UMAT subroutine. If the unsymetric equation solution
technique will be used the user should add the command UNSYMM at the last of the line.
The option ∗DEPVAR stands for solution dependent variables and NSTATV is the number of
SDVs used to allocate space at each material point.

B.1.3 Implementation of the SFR20 element in Abaqus

The presented SFR20 element was implemented in the Abaqus by the UEL subroutine,
while the elastoplastic constitutive model is implemented in the form of UMAT subroutine.
In order to insure the exchange of information between both subroutines in cases involving
coupled systems such as elastoplasticity; two approaches are generally used through the
literature [107]:

• Figure B.2 demonstrate the flow of the first approach, the process is through a FOR-
TRAN construct called COMMON Block; this built-in function allows the exchange of
the Jacobian matrix DDSDDE from the UMAT to UEL subroutine for every integra-
tion point; which will be incorporated to build the element stiffness matrix Equation
(5.112) and to obtain the nodal variables U. The stress tensor, the elastic and plas-
tic strain tensors will be determined inside the UMAT subroutine and stored in the
STATEV array for the visualisation of results.

• The second approach consists on the development of the elastoplastic behavior cal-
culation code in the UEL Suboutine it self; that means all the calculation supposed
to be done in the UMAT should be incorporated in the UEL without using the User
MATerial subroutine, this leads to the definition of the Jacobian matrix, the stress
tensor, the elastic and plastic strain tensor. All the mentioned arguments need to
be defined inside the UEL and stored in the SVARS array.

The elastoplastic behavior was investigated by implementing the presented SFR20
element with UEL-UMAT subroutines using the second approach, this is due to being
straightforward and easy to be implemented. Add to that, to aviod the COMMON
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ABAQUS COMMAND 

OUTPUT: 
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Figure B.2: SFR elements implementation with a UEL and UMAT subroutines using the
COMMON block construct for the exchange of data.

block storage problems where large amounts of data are passed between program units.
The elastoplastic model was combined with UEL subroutine; where the finite element
is developed and the UMAT was used to store the SDVs (i.e. Stresses, elastic strain,
Von-Mises Stress and the effective plastic strain).

B.1.4 Running and visualisation

After moving the input file and source code in one directory, The user can submit an
Abaqus analysis using subroutines after navigating to the mentioned directory through
the Abaqus Command and insert the following line to be excuted:

1 abaqus job=job -name user={source -file | object -file} Other -Commands

The word abaqus will start the Abaqus compiler in the background, the job command
defines the input file as the job name, the source code is defined by the command user
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where the user can insert a (∗.for) or (∗.obj) file, the last command Other-Command is
allocated for other useful commands as like:

1 cpus={number -of -cpus} parallel ={ domain | loop} gpu={ NVIDIA | OFF}

Abaqus create several files in the same directory after the analysis is finished, the
important files are log file (∗.log), data file (∗.dat), message file (∗.msg), status file
(∗.sta) and output database file (∗.odb). Each file stores important information that can
be used for restarting, postprocessing or other options. The log file gives a report about
the start and end times for modules run by the current ABAQUS execution procedure,
it also contains syntax errors encountered during the analysis. The data file print out
summary of the input file, the problem size (ie. number of elements, nodes, ...etc), status
of the analysis (completed, aborted, ...etc) and job time summary. The convergence of the
analysis and incrementation time is reported in the message file, the time stepping and
incrementation size are summariesed in the status file. Finaly, the results are investigated
and viewed in the visualization module in ABAQUS/CAE by openning the generated file
output database file.

When User defined subroutines the investigation of the results using the standard
post-processing tool Abaqus/Viewer became not possible, to overcome this drawback two
approacher are used to treat the output database file for contour plots:

• The first approach is by using special python scripting to simulate the topology of
the standard Abaqus finite element, this approach is a complex task and it requires
more additional user defined information concerning the topology of the developed
element [108].

• The most used approach is the Layer structure and it was used in the work of [107],
to mention but a few. The layer structure approach consiste on attaching each
element UEL and UMAT to a layer; where the first and second layer are related to
the UMAT and UEL element, respectively. The first layer for UEL elemnt is related
to the calculation of the stiffness matrix and the residual vector, whereis, the second
layer or the UMAT element is related to the calculation of the elastoplastic behavior
and for post-proccessing porposes. It is worth noting that the user must take into
account these points:

– The chosen UMAT element should be a standard Abaqus element and have
the same number of nodes as the UEL element does;

– Both layers share the same nodes. However, they contribute to different ele-
ment matrices.
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B.2 Input file for UEL-UMAT visualisation

The UEL and UMAT elements can be visualized as stacked one over other when
post-processing the output data base file in the Abaqus/Viewer module. An example
of the input file is illustrated in Appendix B.2, it demonstrates the process of creating
two layers; where the SFR20 element is implemented in UEL subroutine and the Abaqus
C3D20 element was implemented in the UMAT subroutine for the visualisation purposes.

B.2 Input file for UEL-UMAT visualisation

The following Listing B.2 is an example of the input file for the one element analysis test.
This file contains all the details to perform a successful analysis and the implementation
of both UEL and UMAT for post-proccesing porposes.

1 *Heading

2 *Preprint , echo=NO, model=NO ,

3 history=NO, contact=NO

4 **

5 *Node

6 1, 100., 100.0 , 100.

7 2, 100., 0., 100.

8 3, 100., 100.0 , 0.

9 .

10 .

11 .

12 19, 50., 0., 0.

13 20, 50., 100.0, 0.

14 ****************************

15 ** Creating the first layer

16 ** UEL (SFR) finite elements

17 ****************************

18 *USER ELEMENT , TYPE=U1 , NODES =20,

19 COORDINATES =3, PROPERTIES =14,

20 VARIABLES =378

21 *ELEMENT , TYPE=U1, ELSET=SOLID

22 1, 5, 6, 8, 7, 1, 2, 4, 3,

23 12, 11, 10, 9, 13, 14, 15,

24 16, 18, 17, 19, 20

25 *UEL PROPERTY , ELSET=SOLID

26 **E , nu , Sy

27 70.0, 0.2, 0.0, 0.243, . . .,

28 1.9, 0.623

29 **

30 ****************************

31 ** Creating the second layer

32 ** DUMMY finite elements

33 ****************************

34 *ELEMENT , TYPE=C3D20 , ELSET=output

35 2, 5, 6, 8, 7, 1, 2, 4, 3,

36 12, 11, 10, 9, 13, 14, 15,

37 16, 18, 17, 19, 20

38 *Nset , nset=Set -1

39 1, 20, 1

40 *Elset , elset=Set -1

41 1,

42 *Solid Section , elset=output ,

43 material=USER

44 ,

45 *Nset , nset=XSYM

46 5, 6, 7, 8, 9, 10, 11, 12

47 *Nset , nset=YSYM

48 2, 4, 6, 8, 11, 14, 17, 19

49 *Nset , nset=DISP

50 1, 3, 5, 7, 9, 16, 18, 20

51 *Nset , nset=CORNER

52 1, 3, 5, 7
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B.2 Input file for UEL-UMAT visualisation

53 *Nset , nset=MIDLE

54 9, 16, 18, 20

55 ****************************

56 *Material , name=USER

57 *Depvar

58 14

59 1, S11 , S11

60 2, S22 , S22

61 3, S33 , S33

62 4, S12 , S12

63 5, S23 , S23

64 6, S13 , S13

65 7, E11 , E11

66 8, E22 , E22

67 9, EE33 , EE33

68 10, EE12 , EE12

69 11, EE23 , EE23

70 12, EE13 , EE13

71 13, EQPLS , EQPLS

72 14, MIS , MIS

73 *User Material , constants =1

74 1.,

75 ****************************

76 ** STEP

77 *Step ,EXTRAPOLATION=NO, nlgeom=NO,

78 inc =10000

79 *Static

80 0.05, 1., ,0.05

81 *Boundary

82 XSYM , XSYMM

83 *Boundary

84 YSYM , YSYMM

85 ****************************

86 ** Boundary

87 **LOAD , 2, 2, -1.5

88 *Cload

89 CORNER , 2, -105.00

90 *Cload

91 MIDLE , 2, -445.00

92 ****************************

93 *Output , field

94 *Node Output

95 U, RF

96 *Element Output

97 SDV ,

98 *node print

99 U

100 *END STEP

Listing B.3: Input file example for the

one element analysis test.
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