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Abstract

The topic of research is concerned with modelling and simulation of high temperature long
wavelength infrared quantum photodetectors using advanced finite element methods. The aim
is to devise novel designs based on quantum well structures to improve quantum efficiency,
and operating temperature. These new designs rely on quantum confinement of electrons and
holes inside a mixture of materials within which the energies of the carriers become discrete
and differ from those observed in bulk materials. Type II InAs / GaSb superlattices is one of
these meta–materials which offer a large flexibility in the design of infrared photodetectors,
including the possibility to adjust the detected wavelength over a very wide range and to
realize a suitable absobers’ unipolar barriers to suppress dark current while maintaining a
significant portion of photocurrent at high temperatures. In order to validate this interest, A
set of rigorous modelling tools based on multi-band k· p band structure theory and Boltzmann
transport theory has been developed, which provide a better understanding of the electronic
structure and transport in these heterostructures. The framework takes into account in particular
the effect of the intrinsic strained property of the unintentional interfaces on the electronic
structure and the optical properties. First, the finite element method is used to solve 8×8 k ·p
Hamiltonians for InAs/GaSb superlattices with type II alignment to compute the optical and
materials’ characteristics. For InAs and AlAsSb and alloys based detectors, An optical material
library has been developed to generate all the needed bulk material properties. Secondly, the
transfer matrix method or the Beer-Lambert law is used to compute the optical generation
profiles in the device. Finally, the the finite volume method has been employed to solve the
transport equations to compute the dark- and photo- currents, quantum efficiency among other
device properties. Using this tools, new structures based on nBn and nBp architectures have
been designed, with optimized design, which contribute to the realization of mid- and long-
wave infrared photodetector based on Type-II superlattices InAs / GaSb material system as well
as InAs/AlAsSb alloy mterial system. The developed model allows to study the underlying
physics of these devices and to explain the factors limiting the device performances.

Based on the simulation results, detectors involving absorbers with period composed of 14
Mono-Layer (ML) of InAs and 7 ML of GaSb was found to have a band gap wavelength close



v

to 11 µm and exhibit a lower dark current than those with period mainly composed of GaSb.
The designed LWIR barrier device consists of a 4 µm thick p-type InAs-rich 14 ML InAs / 7ML

GaSb LWIR T2SL absorber, a 200 nm thick p-type InAs/AlSb SL barrier and an n-type InAs-rich
14 ML InAs / 7ML GaSb LWIR T2SL contact layer. The 16.5ML InAs / 4ML AlSb superlattice
of the BL is designed to give a smooth conduction band alignment and a large VBO of nearly
400 meV with the AL. The optimum doping level of absorber, barrier and contact layer are
found to be 1×1016cm3, 5×1015cm3 and 1×1016cm3 respectively. This nBp detector design
exhibits at 77 K a diffusion limited dark-current down to -300 mV with a dark-current level
plateau as low as 8.5×10−5A/cm2 which is more than one order of magnitude lower compared
to a similar PIN photodiode. Furthermore, this value is near the level of the MCT ‘rule 07’
demonstrating that InAs/GaSb SL detectors may provide new opportunities to replace the MCT
technology in the LWIR spectral window given the MCT material instability problem at longer
wavelengths. Moreover, we have demonstrated that the presence of the majority carriers’ barrier
improves the current performances and the operating temperature over the standard PIN device.
A temperature improvement of 20 K was found for a given current density of 2x10−4 A/cm−2

compared to a similar LWIR PIN device working at 60 K.

Keywords : Superlattice, Infrared, Photodetector, T2SL, nBn, nBp, Barrier, InAs/GaSb,
LWIR



ملخص
الحرارة درجة عالᘭة الᝣمᘭة الطᗫᖔلة الحمراء تحت الأشعة كشف أجهزة ومحاᝏاة بنمذجة الᘘحث موضᖔع يهتم
الᝣمᘭة الآᗷار هᘭاᝏل ᣠإ ᘻسᙬند جدᘌدة تصمᘭمات ابتᜓار هو الهدف المتقدمة. العناᣅالمحدودة طرق ᗷاستخدام
ونات ᡨᣂ᜻للإل ᢝᣥᝣالᣆالح ᣢع الجدᘌدة التصمᘭمات هذە تعتمد الᙬشغᘭل. حرارة ودرجة الᝣمᘭة ال᜻فاءة ᡧ ᢕᣌلتحس
ᢝ ᡨᣎال تلك عن ومختلفة منفصلة الحاملات طاقات تصبح حᘭث ، المواد من خلᘭط داخل الموجودة والثقوب
ᢝ ᡨᣎال الفوقᘭة المواد هذە إحدى ᢝ

ᡧᣍالثا النᖔع من InAsͭGaSb الفائقة الشᘘᜓات ᢔᣂتعت السائᘘة. المواد ᢝ
ᡧᣚ لوحظت

الطول ضᘘط إمᜓانᘭة ذلك ᢝ
ᡧᣚ ᗷما الحمراء، تحت ᗷالأشعة ᢝ

᡽ᣍالضو ال᜻شف أجهزة تصمᘭم ᢝ
ᡧᣚ ة ᢕᣂكب مرونة توفر

الحفاظ مع الظلام تᘭار لقمع مناسᘘة القطبᘭة أحادᘌة حواجز وتحقيق جد᠍ا واسع نطاق ᣢع المكᙬشف ᢝ ᢔᣐالمو
تطᗫᖔر تم ، الاهتمام هذا صحة من التحقق أجل من عالᘭة. حرارة درجات عند ᢝ

᡽ᣍالضو التᘭار من ᢕᣂكب جزء ᣢع
أفضل فهم᠍ا توفر ᢝ ᡨᣎوال مان ᡧ

ᡨᣂلᘘل النقل ونظᗫᖁة k · p المتعدد العصاᗷات ب ᘭة نظᗫᖁة ᣢع بناءً دقᘭقة محاᝏاة أدوات
ᢕᣂتأث الخصوص وجه ᣢع الاعتᘘار ᢝ

ᡧᣚ النموذج ᘌأخذ المتجاᙏسة. ᢕᣂغ الهᘭاᝏل هذە ᢝ
ᡧᣚ والنقل ونᘭة ᡨᣂ᜻الإل للب ᘭة

ᗷداᘌة، الᗫᣆᘘة. والخصائص ونᘭة ᡨᣂ᜻الإل الب ᘭة ᣢع المقصودة ᢕᣂغ البᚏنᘭة للسطᖔح الذاتᘭة الاجهادات خاصᘭة
توفر ᢝ ᡨᣎال InAsͭGaSb الفائقة للشᘘᜓات 8 × 8 k · p الهاملتون لحل المحدودة ᣅالعنا طᗫᖁقة استخدمت
القائمة ال᜻شف لأجهزة ᗷال سᘘة والمادᘌة. الᗫᣆᘘة الخصائص لحساب ᢝ

ᡧᣍالثا النᖔع من العصاᗷات لحواف محاذاة
المطلᗖᖔة. السائᘘة المواد خصائص جميع لتولᘭد ᗫᣆᗷة مواد مكتᘘة تطᗫᖔر تم ، AlAsSb و InAs سᘘائك ᣢع
الᣆᘘي التولᘭد تعᗫᖁف ملفات لحساب Beer-Lambert قانون أو الانتقال مصفوفة طᗫᖁقة استخدام يتم ، ثانᘭ᠍ا
والضوئᘭة المظلمة التᘭارات لحساب النقل معادلات لحل المحدود الحجوم أستخدمتطᗫᖁقة ، ا ᠍ ᢕᣂأخ الجهاز. ᢝ

ᡧᣚ
هᘭاᝏل تصمᘭم تم ، الأدوات هذە ᗷاستخدام الجهاز. اداء ᣢع للحᜓم اخرى لᝣمᘭات ᗷالاضافة الᝣمᘭة وال᜻فاءة ،
الحمراء تحت ᗷالأشعة ضوئᘭة كواشف تحقيق ᢝ

ᡧᣚ ᛒساهم مما ، محسّن تصمᘭم مع ، nBn ب ᘭة ᣢع بناءً جدᘌدة
وكذا ، InAsͭGaSb المواد لنظام ᢝ

ᡧᣍالثا النᖔع من الفائقة الشᘘᜓات أساس ᣢع والمتوسطة الطᗫᖔلة للموجات
ح ᡫᣃو الأجهزة لهذە الأساسᘭة ᗫاء ᡧ ᢕᣂالف ᗷدراسة المطور النموذج ᛒسمح . InAsͭAlAsSb المواد نظام سᘘائك
ادوار ذات ممتصات ᣢع ᘻشتمل ᢝ ᡨᣎال ال᜻واشف أن وجد ، المحاᝏاة نتائج ᣠإ اسᙬناد᠍ا أدائها. من تحد ᢝ ᡨᣎال العوامل
تᘭار᠍ا وتظهر µm 11 من قᘘᗫᖁة نطاق فجوة موجة طول لها GaSb من ML 7 و InAs من ML 14 من مؤلفة
الطᗫᖔلة الحمراء الاشعة ᛿اشف يتكون .GaSb من أساس᠍ا تتكون ادوار ᣢع تحتوي ᢝ ᡨᣎال اتها ᢕᣂنظ من أقل مظلما
ML 14 من وᗖدور 4 µm سمكها InAs ᗷمادة غنᘭة ممتصة ᢝ

ᡧᣍالثا النᖔع من فائقة شᘘكة من الحاجز ذو المصمم
ͭ InAs ML 14 InAs-rich من nm 200 ᚽسماᜧة p بتطعᘭم وحاجز ، p بتطعᘭم T2SL GaSb ML 7 ͭ InAs
4 ͭ InAs ML 16.5 الفائقة الشᘘكة تصمᘭم تم .n تطعᘭمها الممتص مادة نفس من تلامس طᘘقة و SL ML 7
التᜓافؤ عصاᗷة حافة ᢝ

ᡧᣚ ᢕᣂكب VBO وحاجز النقل عصاᗷة لحافة سلسة محاذاة لإعطاء الحاجز لطᘘقة AlSb ML
والحاجز الماصة للطᘘقة الأمثل التطعᘭم مستوى ᣢع العثور تم الممتص. طᘘقة مع meV 400 ᢝᣠحوا يᘘلغ
هذا nBp الᝣاشف تصمᘭم ᘌعرض . ᢝᣠالتوا ᣢع 1 × 1016cm3 و 5 × 1015cm3 و 1 × 1016cm3 ᗷـ والتلامس
او ᗷمقدار اقل وهو 8.5 × 10−5A/cm2 ᣠإ اقᘌᣕصل ᗷحد mV 300- غاᘌة ᣠا انᙬشاري ظلام تᘭار K 77 عند
MCT "07 "القاعدة مستوى من قᘘᗫᖁة القᘭمة هذە ، ذلك ᣢع علاوة مماثل. PIN ᢝ

᡽ᣍضو ᢝ
᡽ᣍثنا ᢝ

ᡧᣚ ە ᢕᣂنظ عن يᗫᖂد
تقنᘭة لاسᘘᙬدال جدᘌدة فرص᠍ا توفر قد InAsͭGaSb الفوقᘭة الشᘘᜓات ᣢع المعتمدة ال᜻واشف أن ᣢع ᘌدل مما



كذلك، الطᗫᖔلة. الموجᘭة الاطوال عند MCT مادة استقرار عدم لمشᜓلة نظر᠍ا LWIR الطᘭفᘭة النافذة ᢝ
ᡧᣚ MCT

PIN ᗷجهاز مقارنة الᙬشغᘭل حرارة ودرجة ᢝᣠالحا الأداء ᘌحسن الاغلبᘭة الشحنة لحوامل حاجز وجود أن أثᘘات تم
2 · 10−4A/cm−2 تᘘلغ معينة تᘭار ل᜻ثافة K 20 ᗷمقدار الᙬشغᘭل حرارة درجة ᢝ

ᡧᣚ تحسن ᘻسجᘭل تم . ᢝᣒاᘭالق
. K 60 عند ᘌعمل مماثل PIN LWIR ᗷجهاز مقارنة

LWIR ، InAsͭGaSb ،حاجز، nBp، nBn، T2SL، ᢝ
᡽ᣍاشفضو᛿ تحتحمراء، فائقة، ᡧᣎب كلماتمفتاحية:

.



Résumé
Le sujet de recherche concerne la modélisation et la simulation de photodétecteurs quantiques in-
frarouges à haute température et à longue longueur d'onde à l'aide de méthodes avancées d'éléments
finis. L'objectif est de concevoir de nouvelles conceptions basées sur des structures de puits quan-
tiques pour améliorer l'efficacité quantique et la température de fonctionnement. Ces nouvelles
conceptions reposent sur le confinement quantique des électrons et des trous à l'intérieur d'un
mélange de matériaux dans lequel les énergies des porteurs deviennent discrètes et différentes de
celles observées dans les matériaux massifs. Les super-réseaux GaSb/InAs de type II sont l'un de
ces méta-matériaux qui offrent une grande flexibilité dans la conception des photodétecteurs in-
frarouges, y compris la possibilité d'ajuster la longueur d'onde détectée sur une très large gamme
et de réaliser des barrières uniplairs appropriées pour supprimer le courant d'obscurité tout en
maintenant une partie importante du photocourant à des températures élevées. Afin de valider cet
intérêt, Un ensemble d'outils de modélisation rigoureux basés sur la théorie de la structure des
bandes k · p multi-bandes et la théorie du transport de Boltzmann a été développé, qui permettent
de mieux comprendre la structure électronique et le transport dans ces hétérostructures. Le model
prend en compte en particulier l'effet de la propriété de contrainte intrinsèque des interfaces non
intentionnelles sur la structure électronique et les propriétés optiques. Premièrement, la méthode
des éléments finis est utilisée pour résoudre les hamiltoniens k · p 8 × 8 pour les super-réseaux
InAs/GaSb avec un alignement de type II pour calculer les caractéristiques optiques et maté-
rielles. Pour les détecteurs à base d'InAs et AlAsSb et d'alliages, une bibliothèque de matériaux
optiques a été développée pour générer toutes les propriétés de matériaux massifs nécessaires.
Deuxièmement, la méthode de la matrice de transfert ou la loi de Beer-Lambert est utilisée pour
calculer les profils de génération optique dans le dispositif. Enfin, la méthode des volumes finis
a été utilisé pour résoudre les équations de transport afin de calculer les courants d'obscurité et
photo-courants, l'efficacité quantique entre autres propriétés du dispositif. En utilisant ces outils,
des nouvelles structures basées sur l'architecture nBn et nBp, ont été conçues avec une concep-
tion optimisée, qui contribuent à la réalisation de photodétecteurs infrarouges à ondes moyennes
et longues basées sur les super-réseaux de Type II du système de matériaux GaSb/InAs ainsi que
sur le système de l'alliage InAs/AlAsSb. Le modèle développé permet d'étudier la physique sous-
jacente de ces dispositifs et d'expliquer les facteurs limitant leurs performances. Sur la base des
résultats de la simulation, les détecteurs impliquant des absorbeurs avec une période composée de
14 Mono-Couche (ML) d'InAs et de 7 ML de GaSb se sont avérés avoir une longueur d'onde de
bande interdite proche de 11 µm et présenter un courant d'obscurité plus faible que ceux avec une



période principalement composé de GaSb. Le dispositif de barrière LWIR conçu se compose d'un
absorbeur de type p de 4 µm d'épaisseur riche en InAs du 14 ML InAs / 7ML GaSb LWIR T2SL,
d'une barrière InAs / AlSb SL de type p de 200 nm d'épaisseur et d'une couche de contact de type
n riche en InAs du 14 ML InAs / 7ML GaSb LWIR T2SL. Le super-réseau 16.5 ML InAs / 4 ML
AlSb de la couche de barrière est conçu pour donner un alignement de bande de conduction lisse
et une grande discontinuité de bande de valence VBO de près de 400 meV avec l'absorbeur. On
trouve que le niveau de dopage optimal de l'absorbeur, de la barrière et de la couche de contact est
de 1 × 1016cm3, 5 × 1015cm3 et 1 × 1016cm3 respectivement. Cette conception de détecteur nBp
présente à 77 K un courant d'obscurité limité en diffusion jusqu'à -300 mV avec un plateau de ni-
veau de courant d'obscurité aussi bas que 8.5×10−5A/cm2, ce qui est plus d'un ordre de grandeur
inférieur à une photodiode PIN similaire. En outre, cette valeur est proche du niveau de la « règle
07» MCT démontrant que les détecteurs InAs / GaSb SL peuvent offrir de nouvelles opportuni-
tés pour remplacer la technologie MCT dans la fenêtre spectrale LWIR étant donné le problème
d’instabilité du matériau MCT à des longueurs d’onde plus longues. De plus, il a été démontré
que la présence de la barrière des porteurs majoritaires améliore les performances actuelles et
la température de fonctionnement par rapport au dispositif PIN standard. Une amélioration de la
température de 20 K a été trouvée pour une densité de courant donnée de 2x10−4 A/cm−2 par
rapport à un dispositif LWIR PIN similaire fonctionnant à 60 K.

Mots-clés : Super-réseau, Infrarouge, Photodétecteur, T2SL, nBn, nBp, Barrière, InAs/GaSb,
LWIR
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Introduction

Nowadays, our smartphones have one or more built-in digital cameras which are able to
capture photographs and often record video in visible light [6]. The development of these
technologies has been made possible thanks to advances in microelectronics. In fact, these
devices are built around a sensor - which is also called the Focal Plane Array (FPA) – made
from a semiconductor material: silicon. The photons impinging on each diode of the focal
plane are absorbed by exciting an electron from the valence band to the silicon conduction band.
Similarly, it is possible to manufacture cameras that detect infrared radiation. This requires
using a semiconductor material whose energy difference between the valence band and the
conduction band (i.e. the gap) corresponds to the infrared spectral range. Examples of bulk
materials meeting these requirements such as InSb or HgxCd1−xTe are commonly used. It is
well known that these low band gap materials are more difficult to grow and process than large
band gap semiconductors such as GaAs. These difficulties have motivated the exploration of
utilizing the Inter-SubBand Transitions (ISB) in Mullti Quantum Wel (MQW) structures made
of large band gap semiconductors. In fact, advances in growth techniques have allowed us
to produce different forms of semiconductor nanostructures (wells, wires and quantum dots)
so as to confine the carriers in one, two or three directions in space. These has led to clear
illustrations of some concepts of quantum mechanics such as quantization of energy levels.
The Inter-SubBand Transitions (ISB) in quantum wells are transitions between states created by
quantum confinement in ultra-thin layers of semiconductors. Their unique physical properties,
such as an atomic-like density of states, as well as the fact that they can be manufactured in
a highly uniform and pure crystal layers on large substrate wafers, with a precise control of
each layer thickness, makes them an attractive building block for mid-infrared optoelectronics.
The GaAs/AlxGa1−xAs material system appears to be the material of choice and an excellent
candidate for ISB applications since the quantum well shape can be adjusted over a range wide
enough to enable theoretically light detection at any narrow wavelength range within 6−20 µm.
Indeed, Quantum Well Infrared Photodetectors (QWIPs), and Quantum Well Laserss (QWLs) and
Quantum Cascade Laserss (QCLs) and modulators were all demonstrated using this technology,
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and are becoming mainstream devices for a new generation of optoelectronics for sensing and
telecommunication applications.
However, many civil and military applications, such as space infrared detection, molecular
spectroscopy of air pollutants and control of industrial processes, require the development of
detectors and lasers operating at longer wavelengths, especially in the atmospheric transparency
windows (3−5µm and 8−13µm). In addition, quantum well detectors based on intersubband
transitions of GaAs/AlxGa1−xAs material system , are restricted to the absorption of normal
incident radiation due to the selection rules. Hence, these detectors require 45o coupling or a
corrugated surface (for grating coupling). Furthermore, quantum efficiency is greatly reduced
due to the selection rule allowing only one polarization mode of the incident light. Moreover,
they exhibit a low Longitudinal-Optical (LO)-phonon energy (33meV in GaAs) or equivalently
inherently short lifetimes (about 1011 s), resulting in low quantum efficiency and relatively
poor performance at temperatures above 50K. At these higher temperatures, the dark current
dominates the photo-current, leading to a low signal-to-noise ratio. At longer wavelengths
(small energy gap) the situation becomes worse since thermally stimulated carriers blind the
photocurrent signal. For all those reasons, uncooled infrared detectors at different wavelengths
are important owing to the necessity of such detectors in a wide range of applications: civil,
industry, medicine, astronomy, and military. Attempts to use cryogenic cooling or high-power-
consuming Thermo-Electric Coolers (TECs) would not be practical for most applications.

Since the 1990s, a strong research activity has been developing to explore new technologies
using superlattice material systems such as antimonide/arsenide heterostructures. Type-II
superlattices (T2SLs), based on III-V semiconductors, have emerged as a strong competitor of
HgxCd1−xTe alloys, with the possibility of extending the detection/emission spectral ranges
with performance comparable to Mercury Cadmium Telluride (HgCdTe). In addition, they
allow the creation of non-cryogenic infrared detectors. In fact, the current performance of
InSb detectors for detection in the 3-5 µm band deteriorates with the temperature due to the
thermal activation of the carriers [3]. This property prevents the use of this material for thermal
imaging at room temperature. It is however possible by using Type-II superlattices with and
an optimized device design to significantly improve the detection properties at non-cryogenic
temperature.

Type II GaSb/InAs superlattices have a large flexibility in their design, which first, allows
in principle to obtain interband transitions over a very wide range of wavelengths (from 3 to 30
µm) by changing only the thickness of the wells, and secondly reducing Auger recombinations.
However, several difficulties are associated with the epitaxial growth of these material system:
a significant lattice mismatch exist between different materials, the control of mixed As/Sb
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interfaces is particularly sensitive and difficulty to master the mechanisms by which different V
elements are incorporated.

This work aims to contribute to the realization of mid- and long-wave infrared photodetector
based on Type-II superlattices (T2SLs) material system such as the GaSb/InAs superlattices as
well as InAs/AlASSb alloys. For this end, an important modeling work of band structure and
transport in T2SLs material system is then carried out. The development of this model is the
core of this thesis. This work has allowed us to improve our understanding of the electronic
transitions and transport phenomena which led to the development of a quantum transport
simulation tool. This tool has been then used to develop optimized structures responding to the
application needs mentioned above.

It is worth mentioning that despite the development of numerous research works, and
despite the deep knowledge of quantum well physics even today„ the modelling of transport
of multiple quantum well structures remains difficult and it is a targeted research goal for the
theoretical physicist.

Within this thesis we shall concentrate on the theory and modeling of electronic band
structure and transport in GaSb/InAs T2SLs-based infrared photodetectors.

Outline of the Thesis

This thesis is divided into five chapters:
Chapter one, recalls the basic concepts of infrared detection and imaging. The definitions

of black body, emissivity and atmospheric transmission windows will be detailed. Then, the
various quantum infrared detectors are described, before presenting in more detail the operating
principle of infrared photodetectors based on quantum wells and superlattices.

Chapter two, will present the state of the art of quantum infrared detectors in general and
a more detail focus will be given for Type-II superlattices based devices in LWIR and MWIR
windows. The main properties of GaSb/InAs superlattices technology and it’s current needs,
such as improving the intrinsic performance, increasing operating temperature and increasing
the size of FPAs are presented.

Chapter three, presents in detail the modelling results of energy bands in different nano-
structures configurations leading to the creation of complex coupled quantum wells. The
nano-structures are mainly antimonide Type-II superlattices. The calculations are carried out
by the modelling tools developed during this thesis work. Information about finite elements as
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well as k ·p method and 8x8 k ·p Hamiltonian adapted to the particularities of superlattices
with type II alignment are described. This chapter includes a discussion on the miniband
dispersion. The calculation of absorption coefficient for LongWave InfraRed (LWIR) and
MidWave InfraRed (MWIR) Type-II SLs samples will be presented. The effects of unintentional
interface formation on optical properties of type II superlattices will be investigated. A study
of the sensitivity of the energy bandgap as a function of various physical parameters will be
presented and discussed. The calculated electronic parameters can then be used to design
new superlattice structures with better performance, especially in LWIR, where InAs/GaSb
SR could bring improvements to actual arrays of detectors in terms of sensitivity and uniformity.

Chapter four focuses on the transport modelling of IR detectors of different designs based on
Type-2 SLs as well as on InAs/AlASSb alloys. In this chapter, the simulation is carried out
using our second simulation tool devoted specifically to transport modelling. The main input for
this tools comes from our first simulation tool presented in chapter 3. It is subdivided into three
parts. The first describes the main theoretical platform of the physical transport model and its
numerical counter part. This includes the Boltzman transport equation for electrons and holes
and it’s adaptation to super-lattices based devices. The second validates and then investigates
in detail a bulk InAs/AlAsSb nBn detector photodetector. The investigations includes the
influence of the doping profile, conduction and valance band offsets on the level of dark current.
The rest of this chapter shows how this simulation tool can be used in more complex design
than the bulk design. Specifically, detectors based on InAs-rich InAs/GaSb LWIR T2SL material
will be designed and optimized in terms of composition, doping, thickness and dark-current.
The simulation tools allowed me to draw optimized structures.

Finally, chapter five summarizes the work of this thesis and provides an outlook for future
endeavours.



Chapter 1

Infrared Photodetectors

This chapter introduces our notation and the fundamental concepts underlying infrared detection
and imaging. Famous monograph of Antoni Rogalski [7] on the topic covers extensively many
of the concepts in details.

1.1 Infrared Radiation Fundamentals

Every body above absolute zero temperature (273° C or 0K) emits heat in the form of radiations,
depending on its temperature. This energy is due to the vibration of all charged particles such as
molecules and atoms, which depends on the temperature of the body. The motion of molecules
is synonymous with motion of accelerated charges, which generate electromagnetic radiation
(photons). These photons move at the speed of light and obey the established and known optical
laws in the visible domain. It can be directed, focused with lenses, or reflected with mirrors.
For medium and low temperatures, the spectrum of this radiation is located over a wavelength
range between 0.7 and 1000 µm; it is therefore not normally visible to the human eye. This
spectrum is located below (in energy) the red zone of visible light, hence the Latin nomination
infra for the term infrared.

1.1.1 Planck’s Model of Thermal Emission

Thermal emission emerges from every body above absolute zero temperature in the form of
electromagnetic waves; likewise, every body also absorbs part of electromagnetic waves, which
falls on it. The first correct description of this observation is given by Planck in 1900 [33],
following the unsuccessful work of Wien, Rayleigh and Jeans based on a classical approach in
studying the radiation of a blackbody. A blackbody is an idealised radiator which can absorb
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and emit all radiation frequencies. Planck’s law describes the distribution of electromagnetic
energy (or the distribution of photon density) radiated by a black body at a given temperature,
as a function of wavelength (or correspondingly any spectral variable such as frequency or
wavenumber or their angular equivalents). Planck’s law is presented in different variants, which
use quantities such as intensity, flux density or spectral distribution. The flux of photons emitted
by the surface of a blackbody at a given wavelength λ , per unit projected area of emitting
surface, per unit solid angle, per unit wavelength, also called spectral photon Luminance or
spectral photon radiance is given by Planck’s radiation law:

LΩ,λ (λ ,T ) =
2c
λ 4 ·

1
exp hc

λkBT −1
[photons.s−1.m−2.m−1st−1] (1.1)

By integrating this spectral photon luminance in all directions of the hemisphere in which
the studied surface element dA radiates, a spectral photon emittance or spectral phtoton
exitance denoted Mλ (λ ,T ) is obtained:

Mλ (λ ,T )dA dλ =
∫

hemisphere
LΩ,λ (λ ,T )cos(β )dA dλdΩ

=
∫ 2π

φ=0

∫ π

2

β=0
LΩ,λ (λ ,T )cos(β )dA dλ sin(β )dφdβ

= 2πLΩ,λ (λ ,T )dA dλ

∫ π

2

β=0
cos(β )sin(β )dβ

= πLΩ,λ (λ ,T )dA dλ

Thus
Mλ (λ ,T ) =

2πc
λ 4 · 1

exp hc
λkBT −1

[photons.s−1.m−2.m−1] (1.2)

where, h represents Planck’s constant, c the velocity of light in a vacuum, kB Boltzmann’s
constant, λ the wavelength in a vacuum, T the absolute temperature of the blackbody. The
infinitesimal solid angle dΩ is bounded by the azimuthal angles φ and φ +dφ as well as the
polar ascent angles β and β +dβ .

The energy counterpart of the spectral photon exitance is called spectral energy exitance
or spectral radiant exitance and is given by:

M̃λ (λ ,T ) =
2πhc2

λ 5 · 1
exp hc

λkBT −1
[W.m−2.m−1] (1.3)
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Spectral phtoton exitance for a number of blackbody temperatures (150K, 298K, 311K
and 1273K) are shown in Figure 1.1. These different curves are plotted from Planck’s law
Equation 1.2.

Figure. 1.1 Blackbody’s spectral phtoton exitance for different temperatures.

Several observations can be drawn from Figure 1.1. Any body of non-zero temperature
therefore emits electromagnetic radiation shifting towards short wavelengths as it heats up. This
is indeed what can be observed every day when heating an object, red at the beginning and then
white at high temperature, the white color being due to the superposition of all the wavelengths
already emitted. This explains why the human eye can see very hot objects (temperatures above
900 K). This is the case for the sun, whose apparent temperature is around 5750K. At room
temperature (i.e. 300K), the maximum radiation is located in the infrared and is therefore not
visible to the naked eye. The invisible part of the spectrum, however, contains up to 100,000
times more energy (i.e. area under the curve). As the temperature increases, the amount of
energy emitted at any wavelength increases while the wavelength of peak emission decreases.

Furthermore, Figure 1.1 shows two important things. First, because at each wavelength spec-
tral phtoton exitance is an increasing function of temperature, curves at different temperatures
never intersect. This point is important because it allows, from the spectral energy exitance of a
blackbody at a given wavelength, to determine the apparent temperature of this body. In fact, as
the temperature of the blackbody increases, the maximum of energy distribution moves towards
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increasingly shorter wavelengths according to the law of displacement of Wien, obtained by
derivation of the Equation 1.2:

λmax =
2898

T
, [µm] (1.4)

On the other hand, the importance of the blackbody radiation comes from the fact that
objects of terrestrial temperature have a maximum emission in the infrared range. For example
Figure 1.1 shows that an object at room temperature (∼25◦C) has its maximum emission
located at 9.7µm, a human body (∼38◦C): 9.3µm, a wood fire (∼1000◦C): 2.9µm, the sun (
5750K): 504nm. Also, from a detection point of view, lower temperature require measurement
to longer wavelengths. In addition, vertical distance between the curves at a given wavelength
is greater at short wavelengths (2µm) than longer wavelengths (12µm). This means radiation
changes much more for a given temperature change at shorter wavelengths, making detectors
that operate at such wavelengths more sensitive.

Finally, the total power emitted by a blackbody P(T ) or equivalently the radian flux
density (i.e. integrated with respect to λ of Equation 1.3 ) only depends on its temperature and
increases as the fourth power of the latter.

P(T )dA =
∫

∞

λ=0
Mλ (λ ,T )dA dλ

= σT 4dA

Thus P(T ) reads:

P(T ) = σT 4, [W.m−2] (1.5)

where, σ =
2π5k4

B
15h3c2 ≈ 5.670400 · 10−8 [W.m−2.K−4] is the Stefan-Boltzman constant.

This relationship was discovered by Stefan and Boltzmann in 1879 and allows to determine the
exact temperature based on the emitted signal.

1.1.2 Grey-Bodies and Emissivity

Objects that resemble perfectly the behaviour of black bodies are seldom to be found in reality.
The ability to emit or absorb photons in a specific proportions depends on the intrinsic properties
of each body. Objects that are not blackbodies i.e. greybodies emit only a fraction of blackbody
radiation, and the remaining fraction is either transmitted or, for opaque objects, reflected.
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For a blackbody the absorptance equals one. At a given wavelength the ratio of infrared
energy radiated by an object at a given temperature to that emitted by a blackbody at the same
temperature is termed as emissivity. This characteristic often depends on the wavelength. Gray
bodies are object for which the emissivity does not depend on the wavelength.

1.1.3 Atmospheric Transmission and Absorption

An essential requirement for all infrared radiation terrestrial application is transmission through
air. However, the processes of scattering and absorption attenuates the radiation. The absorption
of an electromagnetic wave by the atmosphere is determined by various factors such as the
wavelength, the constituents of the atmosphere (CO2, H2O in particular), the length of the path
or even the climatic conditions. To illustrate this absorption phenomenon, Figure 1.2 shows the
spectral transmission through 6000 ft of air (US Standard conditions).

Figure. 1.2 Spectral transmission of the atmosphere under US Standard conditions.

Specific absorption bands of H2O, CO2 and O2 appear clearly in this figure. Water vapor
(H2O) gives the highest infrared absorption. Carbon dioxide (CO2) is also active, at λ = 4µm,
but with less intensity. These atmospheric elements restricts atmospheric transmission mainly
to two main windows at 3−5µm and 8−14µm. Ozone, nitrous oxide, carbon monoxide and
methane do absorb radiation but with less important strength. Between these absorption bands,
there are spectral bands called atmospheric transmission windows (Figure 1.2). These bands
directly specify the infrared detection domains as defined in Table 1.1.

These definitions are not standards, we can find slightly different nominations. In fact,
the NearWave InfraRed (NIR) and the ShortWave InfraRed (SWIR) can be combined into one
detection band, band I. MWIR (MidWave InfraRed) and LongWave InfraRed (LWIR) can be
called band II and band III respectively. Among the different spectral infrared detection domains,
the 8-12 µm window is particularly interesting because it covers the maximum emission of
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Table 1.1 Spectral infrared detection windows.

Infrared Window Wavelength [µm]

NearWave InfraRed (NIR) 0.7-1.5
ShortWave InfraRed (SWIR) 1.5-2.5
MidWave InfraRed (MWIR) 3-5
LongWave InfraRed (LWIR) 8-12
Very LongWave InfraRed (VLWIR) 13-20

blackbodies at room temperature (Figure 1.1). In addition, atmospheric transmission in this part
of the spectrum is very important (Figure 1.2). This spectral detection range is thus optimal for
imaging a scene at 293 K (room temperature). However, in the presence of fog, the atmospheric
transmission could be weak at 10µm than at 4µm, thus a 3−5µm detector is then possible.
According to the blackbody law, this 3−5µm band is also interesting and more appropriate
for detection of hotter objects (emission of carbon dioxide). Regarding Very LongWave
InfraRed (VLWIR) band, from Figure 1.1, we can clearly see that the infrared detection at long
wavelengths reveals cold bodies whereas, Figure 1.2 indicates poor transmission through the
atmosphere for this range of λ . However, this observation is no longer true if we measure the
exo-atmospheric transmission (i.e.: altitude> 20 km) of the radiation. VLWIR detection is then
performed above the infrared radiation absorption layer. Applications such as astronomy or
defence are then targeted.

For each application, it is therefore necessary to know the optimal wavelengths’ range for
detection. We notice from Figure 1.1 that the infrared detector should be adjusted over a spectral
band as wide as possible in order to collect the maximum flux emitted by a given blackbody.
However, to determine the temperature of a blackbody, it may instead require measurements at
particular wavelengths. The flux received by the detector is also highly dependent on many
factors such as weather which led to the use of very different detectors. Today, a new need for
infrared detection has also emerged: the ability to detect several wavelengths simultaneously
to perform "discrimination", i.e., to distinguish two objects by avoiding imaging them at a
single wavelength, which can be confusing. We have thus seen in recent years the emergence
of bi-spectral or multispectral detectors which make it possible to associate several spectral
detection bands with the same detector [112, 101]. This fundamental information on infrared
radiation together width atmospheric transmission requirements, led to the need for detectors
sensitive to this radiation, namely infrared detectors.
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1.1.4 Infrared Detection Applications

In this section, some applications of infrared detection will be given. Infrared is often limited
to night vision, which allows many applications including military (aerial reconnaissance and
piloting) and Civil (astronomy, meteorology, automation surveillance and agriculture) fields.
However, it should not be forgotten that this spectral range has many other interests: thermal
imaging (medical thermography and thermal insulation of housing, ect).

Medical Thermography

Medical thermography involves taking images of body at infrared wavelengths, thus recording
thermal emission from the body and facilitating the detection of abnormalities and correlations
with health issues (see Figure. 1.4) [bio]. The possibility of imaging minute differences
in temperature (relative deviations of the order of one ten thousandth) of a scene makes it
possible to clearly distinguish the vascularization of the body (see Figure. 1.4a), opening the
way to research on blood flow (see Figure. 1.4c), arterial blockages in legs, some thyroid
conditions (see Figure. 1.4b), diagnosis of severe burns or screening for early stage breast
cancer (Figure 1.3). It is a non-invasive test that does not involve any harmful radiation [86].

(a) Thermal image of healthy
breasts

(b) Thermal image showing ab-
normalities in the left breast

Figure. 1.3 Benefits of Thermography for Breast Screening

Fire detection

Fires can cause damage to or lose of buildings, forests or facilities in an extremely short time.
The value of property damaged in a fire can be considerable, while the death of a person
represents an incalculable loss. With their contact-less temperature measurement method,
thermography can help prevent fires by detecting early hot spots before they cause ignition.
Thermal cameras with aid of a tracking and recognition software system can locate hot spots
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(a) Atrophy, right calf muscle (b) Thyroid Nodule (c) Vasculitis

Figure. 1.4 Some potential application of Clinical Thermography

and then initiate an automated firefighting response, including activating an extinguishing
system or closing a system.

Thermal Balance

Infrared images are also a practical means of detecting heat leaks from buildings from a distance
and can therefore contribute to their energy recovery. The infrared image reveals substantial,
widespread heat loss due to inefficient insulation.

Figure. 1.5 Building Thermography and heat loss surveys.

Vision in foggy weather

Scattering by gas molecules is negligibly small for wavelengths longer than 2µm. In addition,
water does not absorb LWIR window which makes infrared vision possible through the foggy
weather. This advantage can be exploited, among other things, to make landing aid devices for
aviation known as Enhanced Vision System (EVS). EVS systems use an Infrared Radiation (IR)
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camera mounted in the aircraft’s nose to project a raster image on the head-up display (HUD)
(see Fig. 1.6).

(a) Without Enhanced Vision
System

(b) With Enhanced Vision Sys-
tem

Figure. 1.6 Enhanced Vision System turns night into day and help piltos see through smoke,
haze and foggy weather. The suspended water droplets that cause diffusion in the visible are
transparent in the infrared.

1.2 Infrared Detector Fundamentals

Infrared detectors are transducers of infrared radiant energy emitted by objects into a measurable
electrical signal. By detecting the infrared energy they offer the possibility of seeing in dark
or through obscured conditions. The detected energy for each infrared wavelength is then
converted to a digital image representing the energy differences between objects of the same
scene. Hidden details under regular visible light reveals to the world through infrared lighting.
Hot objects appears in a bright view from the typically cooler backgrounds. The visibility is
improved in adverse weather conditions.

1.2.1 Classes of Infrared Detectors

The infrared detectors falls into two main classes which correspond to two different detection
principles but with identical aim: convert the incident optical flux into a measurable form. The
first class called thermal detectors, exploits the dependence of one of the physical properties
of a material system on its temperature. Their operating principle is quite intuitive; upon
heated by infrared flux their temperature changes which is then measured by any temperature-
dependent properties, such as thermoelectric voltage, resistance, or pyroelectric voltage. This
class of detectors were the first developed because of its simple principle. The second class is
based on electronic transitions caused by the absorption of a photon, and are therefore called
quantum detectors or photon detectors. This detector technology is based on the physics of
semiconductors and therefore developed since the 1960s.

Thermal Detectors: Thermal detectors converts the infrared flux into heat by absorption.
Measuring the thermal variation of a material parameter delivers the output signal.
Examples mainly includes: microbolometers, pyroelectric detectors and thermoelectric



1.2 Infrared Detector Fundamentals 10

detectors. Microbolometers are thermal detectors in which the output signal is linked to
the variation in the resistivity of the material as a function of its temperature. Usually,
amorphous silicon (a-Si) and vanadium oxide (VOx) are the two most commonly used
materials for microbolometers. Since the operation of such detectors involves a change in
temperature which is relatively slow process, they have an inherently slow response time
(5 à 15 ms) and a relatively low sensitivity compared to quantum detectors. In addition,
the output signal does not have a spectral dependence as it does on the incident radian
power. These detectors do not need to be cooled, unlike quantum detectors, which gives
them a number of advantages due to the absence of a cryogenic coolers: they are lighter,
less bulky, less expensive and have a longer service lifetime. The reader interested in a
detailed presentation of these class of detectors can refer to the well known monograph
of Antoni Rogalski [7]. For applications requiring very short response times, quantum
detectors are the first choice.

Quantum Detectors: In this class of detectors, the semiconductor materials respond to in-
frared radiation by photoexciting electrons between two groups of quantum levels; one
conducting and the other non-conducting. The conducting group is usually the conduc-
tion band of a semiconductor whereas the later can be a full valence band, a blocking
potential barrier (e.g. Schottky barrier) or a quantum bound states (e.g. levels of impurity
atoms or artificial quantum well). The observed electrical output signal results from a
change in conductivity, voltage or current. The spectral response of quantum detectors
exhibit a selective wavelength dependence as well as a very fast response. However
they require to be cooled down to cryogenic temperatures to lower thermal generation of
charge carriers which compete with their optical counterpart. If the absorbing zone of
a quantum detector is unintentionally doped, we speak of an intrinsic detector. On the
contrary, if this zone is doped we speak of an extrinsic detector. We go more precisely
into the details of the physics of these detectors in the following section.

1.2.2 Quantum Infrared Detectors

1.2.2.1 Different Operating Principles

Quantum detectors are generally classified into two distinct subgroups depending on the
electrical measurement to be performed. These are photovoltaic and photoconductive detectors.

a) Photovoltaic Detectors: A photovoltaic (PV) detector relies on the working principle of a
pn junction inside an inhomogeneous semiconductor, which generates a potential barrier
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where a strong electric field is generated and from which the charge carriers are depleted.
If the detector is reverse biased, it operates as a photodiode. When photons of sufficient
energy propagate through the semiconductor, they can create excess photocarriers in the
material (electron-hole pairs). The electron-hole pairs created results in the circulation
in the external circuit of a photocurrent. An alternative to the pn junction is the pin
structure shown in Figure. 1.7a. If the reverse bias of the structure is sufficient, a strong
electric field exists throughout the intrinsic region, the photocarriers quickly reach their
speed limit. This results in very fast photodiodes. In addition, the electric field in the
depletion region prevents recombination of carriers, which makes the photodiode very
sensitive.

(a) (b)

Figure. 1.7 a) Typical configuration of a photovoltaic detector. b) Current-voltage characteristic
of a photovoltaic detector under light and dark conditions.

Figure. 1.7b shows the current-voltage characteristic of a photovoltaic detector (pho-
tocurrent operation). This changes when the detector is subjected to a photon flux. We
then observe an increase in the current with an excess ∆I representing the photocurrent
Iph.

b) Photoconductive Detectors: The photoconductive detector is essentially a homogeneous
semiconductor slab either doped or not, with two electrodes attached to the ends. These
electrodes are used to apply an electric field across the slab, to collect electrons from one
side and to re-inject as much on the other side to ensure the electrical neutrality of the
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material. If a photon of energy hν greater than the gap energy is absorbed, then a electron-
hole pairs are created, thereby increasing the conductivity of the material: this is the
photoconduction mechanism. A photoconductive detector is in fact a radiation-sensitive
resistor which varies under illumination. An external bias is required to measures
this resistance change. So, if the photoconductive detector is biased, the variation in
conductivity induced by the illumination results in a current variation ∆I = Iph, see
Figure. 1.8. For example, the detectors using Si:Ga are p-type extrinsic photoconductive
detectors because of the acceptor type Ga atoms for silicon; i.e. the electronic transition
takes place between the valence band and an energy level of an impurity and not over the
band gap of the host material. Detectors using multiple quantum wells states are classified
under photoconductive detectors in the sense that it is necessary to apply a voltage bias
across the sample to extract a signal, in contrast to photovoltaic detectors which have an
internal electric field which deliver a current for a zero voltage bias. However, unlike
photoconductive detectors, the active layer of a multiple quantum wells detector is made
of semiconductors heterostructures.

(a) (1) intrinsic (2) extrinsic (3) free. (b)

(c)

Figure. 1.8 a) Fundamental optical absorption process in semiconductors. b) Principle of
operation of a photoconductive detector. c) Current-voltage characteristic.
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1.2.3 Operating temperature problem

The most glaring difference between thermal and quantum infrared detectors is the temperature
at which they operate. Unlike quantum detectors, thermal detectors are not sensitive to thermally
activated processes such as generation-recombination of carriers. This is the reason why they
can operate at room temperature. Their sensitivity therefore depends on the capacity of the
absorbent material to modify one of its properties like resistivity under the effect of a photonic
flux.

On the other hand, for a quantum detector at room temperature, thermal fluctuation offers
the electrons present in the material sufficient energy to cross the gap energy by themselves.
Therefore, when it is not exposed to a photonic flux, the detector still presents an output
signal known as dark current. This current and the associated dark noise limits the operating
temperature by degrading the signal-to-noise ratio (SNR). This implies in other words that a
detector operating at room temperature "dazzles" itself. The higher the cut-off wavelength λC,
the lower this temperature must be. The orders of magnitude are between 200K and 300K for
the SWIR, 80K to 150K for the MWIR and below 80K for the LWIR. It is therefore necessary
to cool the quantum detectors to cryogenic temperatures (< 150K) in order to address the
longest wavelengths in MWIR and LWIR. Cooling mechanism is either a cryogen or refrigerant.
Cooling the detector requires encapsulation within a vacuum tight enclosure that serves the
twin purposes of avoiding condensation and solidification on the detector and prevents cryogen
from boiling off too rapidly by convection.

The outside wall of the detector block adds other constraints: being at room temperature, it
therefore also emits infrared radiation according to Planck’s law (Equation 1.1). In Figure 1.1,
we notice that a wall at 300K will thus emit in both the MWIR and the LWIR while a wall at
200K will emit only in the LWIR but not the MWIR. It is thus clear that there is also a need
to cool the environment of the detector to a temperature which depends on the addressed
detection window. This is why in cooled detectors, a cold screen is implemented in order to
limit extraneous radiation coming from elsewhere rather than the scene. Figure 1.9 shows the
interior of a detector block (which becomes a camera when an optic is added in front of it),
evacuated in order to optimize the cooling of the FPA and the cold screen.
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Figure. 1.9 Diagram of a detector block. Elements in direct contact with the cold finger are the
FPA and the cold screen.

1.2.4 Quntum Infrared Detectors’ Material systems

Various materials and their compositions have been used for infrared detection. The most
commonly used material systems are:

1. Direct bandgap semiconductors

• Binary alloys: InSb, InAs

• Ternary alloys: HgCdTe, InGaAs

• Type II, III superlattices: InAs/GaSb, InAs/GaInSb, HgTe/CdTe

2. Extrinsic semiconductors

• Si:As, Si:Ga, Si:Sb

• Ge:Hg, Ge:Ga

3. Type I superlattices

• GaAs/AlGaAs quantum well detectors

4. Silicon Schottky barrier

• PtSi, IrSi
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InSb, GaAs/AlGaAs, HgCdTe and type II superlattices (InAs/GaSb) are amongst the most
frequently used material for such systems. For all the material systems mentioned above except
the fist, the majority carriers are usually involved by detection. Detectors based on the direct
band gap semiconductors list exploit minority carriers.

The manufacturing of optoelectronic components is based on the growth of these semicon-
ductor materials. The main growth techniques used for the fabrication of infrared detectors are
chemical vapor deposition from metal-organic compounds (MOCVD: Metal Organic Chemical
Vapor Deposition) and epitaxy. The latter involves growing a monocrystalline material on the
surface of another monocrystalline material with the same crystal structure and typically the
same lattice constant. There are several types of epitaxy such as Liquid Phase Epitaxy (LPE) or
Molecular Beam Epitaxy (MBE). In order to be able to grow one semiconductor over another,
the materials must have similar lattice constants. If this condition is not fulfilled, growth is
accompanied by the development of strain (tensile or compressive), which is usually one of the
reasons for poor crystal quality. Figure. 1.10 shows the lattice constant and the corresponding
band gap energy for column IV semiconductors and for III-V and II-VI compounds. We note
immediately that some materials have similar lattice constants, while having very different elec-
tronic properties; this is the case for example with the group (Ga, Al, As), or even (Cd, Te, Hg).
The crystalline property is particularly interesting since it ensures the possibility of epitaxially
growing ternary alloys (AlGaAs or HgCdTe) on GaAs or CdTe substrate respectively.

For the heterostructure AlxGa1−xAs we note a difference of 0.16 % in lattice constant
between GaAs (a = 5.653 ) and AlAs (a = 5.662 ). This crystallographic similarity ensures
the growth of alternating layers (superlattice) of GaAs and AlxGa1−xAs with no structural
defects and regardless of the Al composition x. A closer look at the electronic properties of
GaAs and AlAs materials, reveals a clear difference in the value of Eg. The gap of AlxGa1−xAs
then varies between the gap of GaAs (1.42 eV) and that of AlAs (2.3 eV) in proportion to the
concentration x of aluminum (for x < 0.45).

The ternary material system Hg1−xCdxTe (Mercury,Cadmium Tellurium) is an alloy between
CdTe and HgTe. These two binary compounds crystallize in a face-centred cubic structure with
very similar lattices constants (6.4815 and 6.46152 respectively). In fact, the difference in
lattice constants between these two binary materials is very small, of the order of 0.3%. By
controlling the proportions x of cadmium and 1− x of mercury, we obtain the semiconductor
material Hg1−xCdxTe with the possibility of changing the band gap between the two binary
original materials. This alloy allowed the band gap and hence the spectral response range to be
tailored for specific applications.
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Figure. 1.10 Band gap plot of common semiconductor materials versus crystal lattice constant.

Type II Superlattice (T2SL: Type-II Superlattice) are metamaterials, whose valence and
conduction bands are artificially created by the stacking of thin layers of InxGa1−xAsySb1−y,
on GaSb substrates. The hybridization of the electronic states of the heterostructure is such that
mini-bands are created for the holes and the electrons. The engineering of the bands allows
the variation of the gap of the metamaterial. Importantly, The Hg1−xCdxTe, AlxGa1−xAs and
InxGa1−xAsySb1−y heterostructures are of particular interest because they demonstrated the
most successful realization of infrared quantum detectors during the last two decades.

1.2.5 Detection Arrays and Readout Circuit

Thermal image is a temperature-difference representation of the scene obtained by scanning
an optically focused image of the later over a number of infrared detectors: single element
detectors, linear arrays or two dimensional (2D) focal plane arrays (FPAs). This scan is made
either mechanically or electronically and then the output of detectors is converted into a visual
image. The resolution of the thermal image is mainly determined by the size of the detector
array (the number of picture elements -pixels-). Currently, the infrared FPAs are designed
according to a hybrid architecture of the type presented in Figure. 1.11. They are composed of
two main parts, namely the NxM detector array which absorbs and converts the photons flux
into electrons and the Silicon readout integrated circuits (ROIC) which reads and processes the
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signal from each detector to convert it into an electronic measurable form (by amplification
or digital filtering). Hybrid architecture means that the detector array and the ROIC are not
technologically compatible. This architecture provides two advantages. First, it allows use
of the material best suited for the detection while benefiting from the maturity of silicon
technology in the field of signal processing (CMOS technology). Secondly, it allows us to
reach optical fill factors as high as hundred percent (fraction of the detector’s surface effectively
dedicated to detecting IR photons).

.

Figure. 1.11 Schematic representation of a hybrid array detector. (a) Indium bump technique,
(b) SEM micrograph shows mesa photodiode array with Indium bumps after adaptation from
[110]

The most common technique used to connect each detector-array element to its respective
signal path on the ROIC uses indium bumps interconnections. This technique is known as
the flip chip technology which is the most used architecture in the hybrid array technology.
A high optical fill factor is easily obtained with this technique [97]. Note that the ROIC is
an essential element of the FPA which strongly influences its performance. Thus, to meet the
increasing demanding needs in term of uniformity, sensitivity and reliability , circuit designers’
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imagination have led to a more sophisticated ROICs. In fact, ROICs have been loaded with
functions comprising noise reduction or with analog-digital conversion functions [85].

Different technological steps required for manufacturing of detector arrays are shown in
Figure. 1.12. Building FPAs with hybrid architecture is part of a long cycle ranging typically
from several months to a year.

Figure. 1.12 Schematic representation of the main fabrication steps of an infrared FPA detector.

1.2.6 Quantum Infrared Detector Figures of Merits

We have mentioned in Section 1.1.3 that each object has its own thermal "identity" or thermal
signature, not only due to infrared radiation it emits, but also to the phenomena of reflection
and scattering on its surface. In addition, informations on how to choose a spectral band
for detection as a function of the observed scene has been given. The differences in thermal
signatures of objects has led to the development of different kind of quantum detectors targeted
to specific application. Bearing this in mind, we consider how to determine the most suitable
detector for a particular application. This choice is often difficult because it depends on a
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large number of parameters often referred to as Figures of merit. The latter have been defined
which allow to characterize the performance of quantum detectors. The manufacturers usually
describe the performance of their detectors in these terms. In the following, the most used
figures of merit will be presented in brief.

1.2.6.1 Dark Current

The dark current corresponds to the current flowing in a biased detector in the absence of a
light source: it is an offset which is added to the signal current (this being linked to the flux
coming from the scene).

Jdark =
Idark

S
(
A/cm2) (1.6)

Where Idark is the dark current and S is the surface area of the detector. The dark current
density is generally measured as a function of the bias voltage applied to the detector, and as a
function of its operating temperature, for a given detector size. The analysis of these current
measurements allow us to identify the volume and / or surface origins of the dark current. This
gives valuable information to manufactures to improve the various stages of production from
epitaxial growth of layers up to the detector final product.

The infrared community often uses Rule07 [129, 130, 94] presented in Figure. 1.13 and
Figure. 1.14 to compare, in terms of dark current, the performance of the technological design
of detectors to that of the MCT empirical benchmark. This is an empirical law (established
in 2007) extracted from Idark measurements of MCT photodiodes. Its range of validity is for
Idet > 77K and the product λcIdet between 400 and 1700 µm K. There are two common ways
to represent the Rule07. The first, shown in Figure. 1.13, compares dark current densities as
a function of wavelength at a given operating temperature. The second represents this same
current density as a function of the inverse of the product of the operating temperature and the
cut-off wavelength of the detector ( as can be seen in Figure. 1.14 ). The advantage of this
representation is that it allows more detectors to be incorporated for inter-design comparison,
with different choices of operating temperatures (which impacts the dark current density).

1.2.6.2 R0A

In addition, since the dark current density is dependent on the voltage applied to the diode, it is
possible to use another widely used figure of merit known as R0A, defined as follows:
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Figure. 1.13 Dark-current density of T2SL detectors compared with Rule 07 [102]. Abbrevia-
tions for the different institution working on T2SL detectors: FIA, JPL, NRL, NWU, RVS, UCSB,
Columbia, UIUC, and UNM.

Figure. 1.14 Dark current density as a function of the inverse of the product of the operating
temperature and the cut-off wavelength of the detector from a given technology and design
[63]. This compares to MCT’s state of the art in terms of dark current density.
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R0A =

(
∂ Jdark

∂V

)−1

V=0

(
Ω/cm2) (1.7)

Where V is the applied potential. So we look to maximize R0A. This figure of merit allows
us to account for the detector noise in dark conditions.

1.2.6.3 Quantum efficiency

Another common figure of merit for optical detectors is the quantum efficiency. Quantum
efficiency is the ratio between the number of hole-electron pairs collected and the number of
photons received by the structure, quantifying the ability of the detector to convert a photon into
an hole-electron pair. If, over a period of time, 100,000 photons are incident on the detector
and 10,000 hole-electron pairs are produced, the quantum efficiency is 10%. A low Quantum
efficiency can be due to a low absorption in the material, or poor collection of photogenerated
carriers. The experimental study of the spectral quantum efficiency thus allows to optimize the
absorption zone and the overall structure of the detector. For example, by changing the doping
type (N or P), we change the nature of the minority carriers which contribute to the quantum
efficiency. The quantum efficiency η may be related to the responsivity R by the equation:

R(λ ) = η(λ )× qλ

hc
. (1.8)

with q the elementary charge, h the Planck constant, c the speed of light in a vacuum. This
corresponds to the detector output per unit of input power. The units of responsivity are either
Amperes/Watt (alternatively milliamperes/milliwatt or microamperes/microwatt, which are
numerically the same) or Volts/Watt, depending on whether the output is an electric current or a
voltage. The responsivity is an important parameter that is usually specified by the manufacturer.
Knowledge of the responsivity allows the user to determine how much detector signal will be
available for a specific application.

1.2.6.4 Specific Detectivity

Specific detectivity is the figure of merit which explains the signal-to-noise ratio and which is
therefore used for IR detectors.

D∗(λ ) =
qλ

hc
η

√
Adet

∆ f
σtot

(1.9)
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with λ the wavelength, η the quantum efficiency, σtot the total noise, f the bandwidth of the
amplifier (which is part of the reading circuit), Adet the detector surface, h the Planck constant,
c the speed of light in a vacuum. The unit of specific detectivity is the Jones (cmHz1/2W−1).
The more efficient the detector, the higher this merit function.

1.2.6.5 Noise Equivalent Temperature Difference: NETD

Finally, a figure of merit generally used to characterize cameras (FPAs), is employed which is
sometimes used by extension for single detectors. It corresponds to the smallest temperature
difference ∆T (expressed in Kelvin) that the detector is able to detect. The NETD, in other
words is the difference in temperature of the black body used as the incident signal in such a
way that the signal to noise ratio is equal to 1. The lower the NEDT the greater the sensitivity
of the detector, but carries the disadvantage of being very dependent on the measurement
conditions (opening of the cold screen, integration time, etc.).

In summary, if the detector shows higher performance as measured in terms of the above
figures of merit as a single element, we switch to focal plane arrays. It is then necessary to
undertake again the work carried out in single element in order to make sure that the properties
highlighted previously remain valid where the FPAs are concerned.



Chapter 2

Quantum Infrared Detectors: A literature
survey

In the present chapter we review the state of the art of most successful quantum infrared
detectors technologies namely HgCdTe, GaAs/AlGaAs Multiple Quantum Wells and Type-II
superlattices (T2SLs) Photodetectors. The limiting performances’ factors are addresed and
discussed.

2.1 Inroduction

The history of the infrared detection probably begins with the discovery of infrared radiation
by Herschel in 1800. Since then, many detectors have been designed and investigated in
order to observe and exploit infrared radiations. Figure. 2.1 shows the developmental his-
tory of the technology of infrared detectors over four generations: first generation (scanning
systems which does not include multiplexing functions), second generation (staring systems-
electronically scanned), third generation (staring systems with large numbers of pixels and
two-color functionality), and fourth generation (staring systems with a very large number
of pixels, multi-color functionality and other on-chip functions, e.g. better radiation/pixel
coupling, avalanche multiplication in pixels, polarization/phase sensitivity) [113].

At present three main detectors’ technologies are competing: Mercury Cadmium Tel-
luride (HgCdTe) or (Mercury Cadmium Telluride (MCT)) Photodetectors, GaAs/AlGaAs based
Multiple Quantum Well Infrared Photodetectors (QWIPs) and the relatively new emerging
Type-II superlattices (T2SLs) Photodetectors based on III-V semiconductors. However, there
are other quantum detectors worth mentioning such as Quantum Cascade Detectors (QCD),
Quantum Dot Infrared Photodetector (QDIP) and Dot-in-a-Well (DWELL).
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Figure. 2.1 Developmental history of the technology of infrared photodetector: first generation
(scanning systems), second generation (staring systems, electronically scanned), third gener-
ation (staring systems with large numbers of pixels and two color functionality), and fourth
generation (staring systems with a very large number of pixels, multi-color functionality and
other on-chip functions).

2.2 HgCdTe Technology

The MCT quantum detectors belong to the class of photovoltaic detectors whose operating
principle is described in Section 1.2.2.1. The electronic transition within this detector takes
place between valence band and conduction bands (Figure. 2.2). The absorbed photons give rise
to electron-hole pairs in a Space Charge Zone (SCZ). This technology offers many advantages;
mainly wavelength tunability and multicolor capabilities. In in particular, one can tune the cut-
off wavelength as a function of the mercury composition. In addition, it has a high absorption
coefficient and low recombination rates, making it a very good detector.

In fact, the MCT stands out from other technologies through its presence in SWIR, MWIR

and LWIR (80% for T = 210K in SWIR [28], 70% for T = 150K in MWIR [128] and 70%
for T = 81K in LWIR [3]) at a competitive quantum efficiency. Therefore, this technology
covers a wide range of applications including multi–spectral detection needs, as far as efforts
are made to increase its operating temperature. However, the main motivations to replace
MCT detector are technological problems of HgCdTe material. One of them is a weak Hg-Te
bond, which results in bulk, surface and interface instabilities. Moreover, uniformity and yield
are still issues, especially in the VLWIR window. Finally, surface passivation must be well
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Figure. 2.2 Principle of operation of an HgCdTe quantum detector. SCZ : Space Charge Zone;
EF : Fermi level; φ(x): photon flux crossing the material ; ∆V : potential difference applied to
the detector.
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controlled in order to limit leakage currents. There is a wide variety of FPAs formats and
pixels pitchs, with a trend to increase the size formats while decreasing the pixel pitch length.
The state of the art corresponds to FPAs of: 4096× 4096 size with pitchs of 18µm in the
SWIR (λc = 2.5µm, T = 80K) [127], 2096× 2096 size with pitchs of 10µm in the MWIR
(λc = 5.3µm, T = 37K) [Teledyne] and 1024× 768 size with pitchs of 16µm in the LWIR
(λc = 10m, T = 90K) [Leonardocompany].

2.3 QWIPs Technology

Quantum Wells based Infrared Photodetectors relay on Inter-SubBand Transitions (ISB) in
quantum wells or intersublevel in quantum dots are considered extrinsic in the sense that
quantum wells replace impurity atoms in conventional extrinsic photoconductor. In such
photodetectors, free carriers excited from doped quantum wells by infrared light provide the
output signal. These free carriers are initially brought to the quantum wells by adding dopants
to the active layer. Among the intersubband detectors, the QWIP: Quantum Well Infrared
Photodetector, is the most widespread technology. The absorption takes place between two
sub-bands of a quantum well: i.e between the fundamental sub-band and an exited sub-band
most often in resonance with the barrier hight of the well (resonant absorption Figure. 2.3).

Figure. 2.3 Band diagram of a quantum well. Intersubband transitions between the energy
levels of the conduction band or the valence band.

This unlike bulk detectors, makes QWIPs unipolar devices in which electronic transitions
involve only a single type of charge carrier, electron or hole within the conduction or valence
band. Another fundamental difference is that they allow for transitions with photon energies
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lower than the band gap energy of the well material. Therefore, detection of long wavelengths
is possible. The quantum well is created by surrounding on both sides a thin layer of lower
band gap material by a material of a larger band gap (the barrier). When the width of the well is
sufficiently small, the motion of the electrons in the well is restricted and thus quantized in the
direction of growth of the materials. On the other hand, the transversal motion of the electrons
remain free in the two other directions. The absorption will then be possible if and only if the
incident electromagnetic electric field has a none null component in this direction. The QWIPs

detectors consist of a number of identical quantum wells, each with a well of width d and a
barrier of width b larger than the well width. To create a photocurrent, the excited electron must
cross the absorption zone toward ohmic contacts placed on both sides of the structure. This
transport is carried out by drift above the potential barrier using an applied bias on the contacts.
The structure of quantum well detectors is shown in Figure. 2.4. Increasing the number of
quantum wells serves to increases the total absorption and quantum efficiency of the device.

An important property of the QWIPs is the ability to vary the binding energy of electrons to
match the desired IR response by changing quantum well depth and width. Therefore, they are
naturally adapted to multi-color applications from MWIR to VLWIR windows. QWIPs based on
GaAs/ AIGaAs material system also benefit from the mature III-V semiconductor technology
which offer high quality, excellent uniformity, large formats, high yield and thus low cost,
more thermal stability, and extrinsic radiation hardness [69]. Another feature of these detectors
are their narrow spectral response. It then becomes preferable to compare QWIPs in terms
of peak wavelength pic (commercially adjustable up to 11 µm [Irnova]) and spectral width
∆λ . However, QWIP detectors have low quantum efficiency and low operating temperature.
Quantum efficiency is limited by a number of factors. Because the dopant concentrations of
each well are limited by the epitaxial growth processes, then each well contains few electrons
which results in a weak absorption cross-sections. In addition, the Quantum efficiency of
QWIPs is limited by the fact that free carriers are recaptured before travelling the full width
of the stack due to inherently short intersubband lifetimes of carriers τ 10−11s. The minority
carrier lifetime in HgCdTe materials is much longer, typically τ 10−6s. Quantum mechanical
selection rules limit infrared absorption to radiation with electric field polarized perpendicular
to the quantum well. QWIPs use an optical coupling structure (in general, a 2D diffraction
grating) to allow absorption at normal incidence. Despite this, their quantum efficiency remains
poor compared to other technologies operating in the same spectral band [70]. Compared
to intrinsic photo conductors and bolometers, QWIPs have a higher thermionic emission rate
(thermally stimulated carriers from the QW), which results in high dark currents. Therefore,
their operating temperature are lower then 60k. The largest FPA format was produced by the
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JPL [120]. It is a bispectral QWIP (4−5µm and 8−9µm windows) in 1024×1024 format
with 30µm pitchs operating at 60K. However, the largest FPA commercially available is in
640×512 format with a 15µm pitch [48] (λC = 8.5µm, ∆λ = 1µm, T = 70K).

Figure. 2.4 Schematic representation the conduction band edge of a QWIPs under an applied
bias. The absorbed photons promotes electrons to the excited level (conduction band), where
they are swept away by an applied electric field to produce the photocurrent.

2.4 Type-II SuperLattice Technology

Finally, the InAs/GaSb superlattice technology, also known as Type-II superlattices (T2SLs).
This is a relatively new emerging technology which aims to compete with the MCT, both in
terms of performance and spectral ranges. The work in this these is mainly focuced on Type-II
superlattice (T2SL) detector technology. Type-II superlattices (T2SLs) infrared photodetectors,
based on III-V semiconductors, are grown by mature growth and fabrication technologies
and favorable spatial uniformity over large areas. In addition, they have great potential for
LWIR/VLWIR spectral ranges with performance comparable to HgCdTe with the same cutoff
wavelength. Section 2.5 review T2SL technology in more detail. The current formats are
640x512 pixels with 15 µm pitchs in MWIR (λc = 5.2µm, T = 140K) [38] and 640× 512
pixels with 15 µm pitch in LWIR(λc = 9.5µm, T = 77K) [57].
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2.5 Type-II Superlattices

Proposed in 1980s [117, 25, 121], the InAs/Ga1−xInxSb (InAs/GaInSb) T2SL are still gain-
ing a lot of interest regarding infrared (IR) detection applications. InAs/AlSb superlattices,
GaSb/AlSb superlattices or any combination of these compounds are other examples of such
classes of superlattices. This kind of superlattices are made using a periodic stack of hetero-
junctions between InAs layers and one of the two antimonides layers GaSb and AlSb or the
ternary strained compound GaInSb. The stacking of a large number of these heterojunctions
allows the creation of as many coupled quantum wells on account of different band alignment
among the constituent materials. All the three binary semiconductors InAs, GaSb and AlSb are
approximately lattice-matched around 6.1 Å. Their heterostructures offers band alignment
that are drastically different from those of the more widely studied GaAs/AlGaAs material
system. Figure. 2.5 shows the three possible types of band alignment: Type-I nested, Type-II
staggered and Type-II broken gap (also known as type-III). In type-I nested superlattices such
as GaSb/AlSb or GaAs/AlGaAs (not shown in Figure) superlattices, the electrons and holes
are both confined within the same layers. In Type-II staggered superlattices like InAs/AlSb
superlattices, the conduction band of InAs is slightly above the valence band of AlSb.

Figure. 2.5 Schematic representation of the band alignments in the nearly matched InAs/GaS-
b/AlSb material system. The solid rectangles indicate the relative position of energy gaps and
band edges of the different materials among each other.

The most exotic alignment is that of InAs/GaSb heterojunctions with a broken gap type
II alignment in which the conduction band edge of InAs lines up at a lower energy than
the top of the valence band of GaSb. In such a heterostructure, the wave function of lowest
InAs conduction subband and the highest GaSb valence subband are spatially delocalized in
two different quantum wells formed on both sides of the heterointerface. Furthermore, these
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wave functions are overlapping since there is either only a very small energy gap between the
electrons in one layer and the holes in another layer or none at all. This overlap of electron
(hole) wave functions between adjacent InAs (GaSb) layers leads to the formation of an electron
(hole) minibands in the conduction (valence) band shown in Figure. 2.6 . This results in an
unusual tunnelling-assisted radiative recombination transitions and novel transport properties.
Optical transition in InAs/GaInSb T2SLs based detectors, takes place between the highest hole
(heavy-hole) and the lowest conduction minibands.

Figure. 2.6 Shematic energy band diagram of broken gap InAs/GaInSb T2SL. The effective
gap of the structure is defined between the top of the first heavy holes (HH1) miniband and the
bottom of the electrons miniband. The vertical arrow indicate the infrared transition.

Owing to many optical and electronic properties, InAs/GaInSb T2SL are being investigated
as an alternative to the HgCdTe IR material systems. In this system, the effective band gap
can be varied continuously by varying the thickness of one or two T2SL constituent layers.
Therefore, the corresponding detection wavelength of the T2SLs can be tuned between 3 µm to
32 µm. Figure. 2.7 shows an example of the wide tunability of the T2SL.
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Figure. 2.7 Experimental cutoff wavelengths of InAs/GaInSb T2SL as a function of InAs
thickness while GaSb is fixed at 40 Å. [111]

The electron effective mass for a 12 µm cutoff InAs/GaInSb T2SL is within the range
(0.02–0.03) m0 which is larger compared to 0.009 m0 in HgCdTe alloy with comparable cutoff
wavelength. This effective mass is large enough to reduce band-to-band tunnelling currents
(being inversely proportional to the effective mass) in the T2SL and still small enough to
ensure good mobility. Since the SL effective mass depends on the layers’ material properties,
sequences and thicknesses, a compromise is therefore to be found in the SL design according
to the target application. Despite the small Oscillator strength of InAs/GaInSb T2SL, its
absorption coefficient is comparable to that of MCT due to the higher joint density of states.

In addition, InGaSb layers of InAs/GaInSb T2SL are subjected to biaxial compression
strain causing splitting of heavy-hole (HH) and light-hole (LH) minibands which with the
effective mass being enhanced, reduces the Auger recombination rate and thereby enhances
carriers lifetime which in turn reduces dark current (being inversely proportional to carriers
lifetime) [131, 133]. It is worth mentioning that both InAs/GaSb and InAs/GaInSb superlattices
are sometimes referred to them as strained superlattices in literature. This is true, because
for InAs/GaSb SLs, the slight lattice mismatch (0.7%) between InAs and GaSb can lead to
sufficient strain build-up to affect material quality in thick SLs. For InAs/GaSb SLs grown
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on GaSb substrate, an InSb-like interfaces can be formed intentionally or unintentionally to
provide strain balance. The InAs/GaInSb SLs which uses the ternary material GaInSb is
intentionally strained for the purpose of increasing the Oscillator strength. The InAs/GaSb SLs
minimally strained may have material quality advantages compared to its strained counterpart
InAs/GaInSb SLs.

Indeed, all these properties including lower leakage currents and greater uniformity make
InAs/GaInSb superlattices an attractive material system for infrared detection. However, they
have not yet exceeded the performance of HgCdTe detectors because of a high level of dark
current. Figure. 2.8 compares the darkcurrent in different infrared photodetectors with various
absorber materials.

Figure. 2.8 Experimental dark current density of InAs/GaInSb T2SL MWIR detectors at (a) 80
and (b) 150 K. The Rule07, MCT dark current density is shown with solid black lines [49].

The high dark current exhibited by InAs/GaInSb T2SL is attributed to short carrier lifetimes
limited by Shockley-Read-Hall (SRH) centers. At present, the measured carrier lifetime is
below 150 ns in both MWIR and LWIR designs [131, 125]. It has been suggested that native
defects associated with GaSb are responsible for the SRH-limited minority carrier lifetimes
observed in InAs/GaSb T2SLs [123]. The promise of Auger suppression has not yet been
observed in practical device material. These drawbacks are attributed to problems in material
growth, processing, substrate preparation, and device passivation.

More recently, the InAs/InAs1xSbx (T2SL) also known as “Ga-free” InAs/InAsSb T2SL
has been shown to be a potential alternative comparable to the InAs/GaInSb T2SL for infrared
photodetectors due to their much enhanced recombination lifetimes in both the MWIR and
LWIR spectral range [122, 90]. It is clear that the minority carrier lifetime is a crucial factor
for the IR detector performance which reflects the quality of the infrared absorbing material
and improves the device performances. Therefore, an understanding of the link between
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material properties, device properties, and device performance opens up potential avenues
for improving T2SL performance. Some of the fundamental investigations that are important
for the development of this technology includes the theoretical calculation of InAs/GaSb
superlattice optical properties via realistic band structure modelling, effect of interface types
and the cross-sectional scanning electron imaging. Such investigations are still in continuous
development and are the subject of many studies including the work presented in this thesis.

2.6 Detector Designs based on type II Superlattices

Despite the enormous efforts devoted to improve infrared photodetectors performances in
terms of the absorber fundamental material properties, their performances remains relatively
modest. The operating temperatures of photodetectors based on the traditional homojunction
designs is still much lower than 300 K [80, 132]. During the last two decades, there has been
considerable progress towards detector design innovations for further performance enhancement.
In particular, developed unipolar barrier device architecture such as the nBn [78, 93], the XBn
[56], and CBIRD the Complementary Barrier Infrared Detector [135, 137, 133] have provided
an effective means for addressing low operating temperature problems. In the following we
briefly review high-performance unipolar barrier infrared detectors based on T2SL absorbers.

2.6.1 Uniplor Barrier Detector Architecture

Historically, the idea of barrier detector was first proposed by Anthony White in a patent in
1983 as a high impedance HgCdTe photoconductor [2]. Later on, Gary Wicks and Shimon
Maimon in 2006, proposed AlAsSb unipolar barrier of type nBn for bulk InAs absorber [78]. It
has been demonstrated in InAs, InAsSb, InAs/GaSb typeII superlattices (T2SLs) [136] and in
HgCdTe ternary alloy [43]. The “unipolar barriers” are designed to block the motion of one
carrier type but allows the unimpeded flow of the other by incorporating a large bandgap thin
layer(see Figure. 2.9). In general, the barrier detector architectures serves to suppress SRH
generation-recombination and surface leakage dark currents [78, 93, 135, 137, 133], which
are the two main dark current mechanisms that have plagued III-V semiconductor infrared
detectors. Among different types of barrier detectors, the nBn type is the most famous one
which serves to blocks majority but not minority carriers without impending photocurrent. The
band edge structure of a detector implemented with nBn barrier is shown in Figure. 2.9b.

The nBn detector is composed of an ntype narrow bandgap absorption zone, separated
from the n-type contact layer by a material with a bandgap energy much higher than that of
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(a) Electron blocking barrier (b) nBn barrier detector

(c) Hole blocking barrier (d) pn photodiode

Figure. 2.9 Schematic illustrations of (a) electron blocking barrier,(c) hole blocking barrier, (b)
band edge diagram of nBn barrier detector and (d) band edge diagram of pn photodiode. All
the band offsets are explicitly shown.
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the absorption zone which serves as a barrier for electrons. In this structure configuration the
nBn detector is a hybrid device between photoconductor and photodiode. In this respect, it
resembles a photoconductor with unity gain, due to the absence of majority carrier flow, while
it is similar to a p-n photodiode in which the space charge region is replaced by an electron
blocking unipolar barrier, and the pcontact is replaced by an ncontact. Implementing unipolar
barriers for detectors is not readily achievable because of the lattice matching requirements for
both the absorbers and barriers with the available substrates. In addition, a proper Valence Band
Offset (VBO) and Conduction Band Offset (CBO) must exit between the absorber and the barrier.
Ideally, one of the band offsets is required to be zeros between the absorber and the barrier
to allow for an unimpeded flow of minority carriers. The nearly lattice matched 6.1 ÅIII-V
material system InAs, GaSb and AlSb which can be grown on GaSb and InAs substrates is well
suited for implementing unipolar barriers. It offers a high flexibility in forming different alloys
and superlattices in building absorber/unipolar barriers for photodetectors. Importantly, type-II
broken gap InAs/GaInSb SLs absorbors can be implemented with unipolar barriers to design
high performance infrared detectors due to the ability to tune the positions of the conduction
and valence band edges independently. Other barriers based designs improvements, includes
absorber/barrier doping profile and barrier position within the design. Properly chosen doping
profile near the unipolar barrier/absorber heterojunction can be used to reduce G-R dark current
[137], for instance, the same doping type in the barrier and absorber is a key to maintaining low,
diffusion limited dark current. The barrier should be placed near the minority carrier collector
and away from the region of optical absorption.

In order to determine whether the diffusion mechanism or the generation-recombination
mechanism is the dominant source of dark current in a particular device, it is a common
practice to plot the dark current density as a function of inverse temperature. The diffusion dark
current component typically varies as T 3exp(−Eg/kBT ) whereas generationrecombination
component varies as T 3/2exp(−Eg/2kBT ) and is dominant by SRH process in the depletion
region. A fit to the last formulas is carried to determine the dominant regime. Figure. 2.10
shows a typical plots of the logarithm of the dark current vs. the reciprocal of the temperature
in a conventional diode and in nBn detector. The steeper part of curve is Diffusion limited
dark current and the less steep part is generationrecombination limited. The absence of a
depletion region in nBn detector, leads to a total suppression of the generationrecombination
dark current contribution from the photonabsorbing region. The red dashed line (nBn) curve
is an extension of the high temperature diffusion limited region to temperatures below TC. TC

is the crossover temperature at which the diffusion and generationrecombination currents are
equal. In a lowtemperature region, nBn detector offers two important advantages. First, it
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should exhibit a higher signaltonoise ratio than a conventional diode operating at the same
temperature. Second, it will operate at a higher temperature than a conventional diode with the
same dark current. This is depicted by a horizontal green dashed line in Figure. 2.10.

Figure. 2.10 Schematic Arrhenius plot of the dark current in a standard diode and in nBn device.
The diffusion and G–R limited portions of curves are labeled.

Wide variation of barrier detector design has been considered in the literature including nBn,
pBn and pBn, are shown in Figure. 2.11. The pBn or nBp design variants are a photovoltaic
devices with a built-in voltage between the p and n region that falls across the barrier layer
[56, 54]. The operation principle of pBn device is different from other two variations, nBn and
pBp. In the latter, the operation is similar to a photoconductor that requires an applied bias
whereas a device based pBn design is an actual photodiode with a built-in potential that can
operate with zero applied bias. In the pBn structure, a wide band gap layer is inserted between
the p+ contact layer and the lightly doped n-type absorber region. This facilitates a drop of the
electric field mostly across the wide band gap layer, rather than across the narrow-gap absorber
region, and hence reducing SRH dark currents and tunneling currents. The barrier layer also
prevents the diffusion of minority carrier electrons from the p+ contact layer into the absorber
region and hence further reducing the dark current.
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Figure. 2.11 Schematic band edges of barrier structures: (a) nBn, (b) pBn, and (c) nBp.

The CBIRD detector is an other important design that implements a pair of complementary
barriers, namely, an electron barrier and a hole barrier formed at different depths in the growth
sequence. Such structure is known as complementary barrier infrared device (CBIRD) and was
invented by Ting et al at JPL [135]. This device consists of a lightly ptype InAs/GaSb SL ab-
sorber sandwiched between an ntype InAs/AlSb hole Barrier (hB) SL and wider gap InAs/GaSb
electron Barrier (eB). The barriers are designed in such a way as to have approximately zero
conduction and valence band offset with respect to SL absorber. A heavily doped ntype InAsSb
layer adjacent to the eB SL acts as the bottom contact layer. The np junction between the hB

InAs/AlSb SL and the absorber SL reduces SRHrelated dark current and trapassisted tunnelling.
The LWIR CBIRD superlattice detector performance is closer to the “Rule 07” trend line.

Moreover, the M-structure superlattice [89] is an alternative design based on the 6.1 Å
semiconductor material’s family. It is obtained by the sequence: AlSb/GaSb/InAs/GaSb/AlSb,
as shown in Figure 2.12, with color region indicating the prohibited band gap of each ma-
terial. The structure is named by the letter M reflecting the shape of the band alignment of
the constituent materials. This design shows potential advantages including higher carrier
effective mass, tunable valence energies, and compatible growth conditions with standard type
II InAs/GaSb superlattice. The AlSb layer in one period of the M design, having a wider
energy gap, which blocks the interaction between electrons in the two adjacent InAs wells,
thus, reducing the tunneling probability and increasing the electron effective mass. At the same
time, the AlSb layer also acts as a barrier for holes and reshapes the GaSb hole-quantum well
into a double quantum well. The effective well width is reduced, and the hole’s energy level
becomes sensitive to the well dimension.
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Figure. 2.12 (a) Schematic diagram of a p- π -M- n superlattice photodiode design, (b) The
band alignments of M–superlattice design; the dash line shows the letter M shape of the band
alignment, (c) Band alignment of standard type II superlattice.

Tables 2.1, Table 2.2 and Table 2.3, list the demonstrated performance levels of different
detectors design based on InAs/GaSb T2SLs across different wavelength regimes. Presently,
commercially available MWIR detectors and focal plane arrays (FPAs) are predominantly
based on pin design. The best results are obtained by the CQD group (Center for Quantum
Devices) which uses the M structure design. They notably produce 320 × 256 InAs/GaSb
T2SL matrices operating at high temperatures ( 150 K) with a quantum efficiency of 67%.
For LWIR window, ultimately, a megapixel arrays have been produced by the CQD and JPL
groups with a quantum efficiency as high as 78% and with an NETD of 23.6 mK. However, this
high reported result, given the lack of any precise indication, it may be presumed that, unlike
the other measurements shown in Tables 2.1, 2.2 and 2.3, the measurements to obtain this
result were carried out on an array with an anti-reflective treatment and in double pass, which
undoubtedly explains the record. The VLWIR spectral window is also addressed by InAs/GaSb
T2SL. Results on a photodiode (single element) based on InAs/InAsSb for detection in VLWIR
has been reported by the CQD group [37]. No results have yet been published for VLWIR
InAs/GaSb T2SL arrays. However, reservations have been expressed regarding the use of this
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type of SLs structure due to low recovery of wave functions [57] and the use of InAs/InAsSb
T2SLs is still the subject of debate.
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Table 2.1 Demonstrated performance metrics for MWIR detector based on InAs/GaSb T2SL. SE
stands for Single Element detector.

Groupe ref Structure Design
λc T QE R0A D∗ NETD

(µ m) (K) (%) (Ω cm2) (Jones) (mK)

CQD [144] InAs/GaSb 8/11 pin 5 300 25 1.5·102 109 –
SE on GaSb

CQD [95] InAs/GaSb pMp 4.2 150 60 5·102 1.05 ·1012 –
SE and FPA on GaSb

CQD [17] InAs/GaSb pMp 4.9 150 67 – 1.2 ·1012 11
320 × 256 FPA

on GaSb
FIA [142] InAs/GaSb 9.5/12 pin 5.4 77 30 4·105 – –

SE on GaSb
FIA [116] InAs/GaSb pin 3-4 77 – – – 17.9

384 × 288
bispectrale FPA 4-5 77 9.9

on GaSb
CHTM [108, 53] InAs/GaSb 8/8 nBn 4.2 300 18 – 1 ·109 –

SE,FPA on GaSb
SCD [58] InAs/GaSb 8.6/13.5 nBn 4.4 80 – – – –

SE on GaSb
IES [32] InAs/GaSb 7/4 pin 5 80 82 – – –

320x256 FPA

SE on GaSb
CQD [87] InAs/GaSb 8.6/13.5 pMp 4.4 150 44 – – 8 ·1011

SE on GaSb
CHTM [118] InAs/InAsSb pin 5 80 24.1 – – –

SE on GaSb
AFRL [10] InAs/InAsSb pin 3.4 180 27 – – –

SE on GaSb
CHTM [119] InAs/InAsSb pin 5.4 77 20 – – –

SE on GaSb
SCD [59] InAsSb/AlSbAs XBn 4.2 150 – – – –

640 × 512 FPA

on GaSb
CHTM [19] InAs/InAsSb nBn 5.5 200 25.6 – – 1.5 ·1010

SE on Si
AFRL [8] InAs/InAsSb nBn 5.5 160 56 – – 10 @80K

320×256 FPA

SE on GaSb
NARL, MPI [64] InAs/GaSb pin 3.7 80 – – 4.7 ·1010 –

SE on GaSb
NARL, MPI [64] InAs/GaSb pin 3.7 80 – – 2.34 ·1010 –

SE on GaAs
CQD [145] InAs/InAsSb pBn 4.7 300 39 – 2 ·109 –

SE on GaSb
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Table 2.2 Demonstrated performance metrics for LWIR detector based on InAs/GaSb T2SL. SE
stands for Single Element detector.

Groupe ref Structure Design
λc T QE R0A D∗ NETD

(µ m) (K) (%) (Ω cm2) (Jones) (mK)

CQD [88] InAs/GaSb 13/7 pMp 11 77 54 100 2.2 ·1011 –

SE on GaSb

CQD [18] InAs/GaSb 13/7 pin 12 150 31 13 2 ·1011 340

320 ×256FPAonGaSb

CQD [79] InAs/GaSb 13/7 M 11 77 78 166 6 ·1011 23.6

320×256FPAonGaSb

JPL [79] InAs/GaSb 14.5/7 CBIRD 11.5 80 21 – – 53

1024 ×1024FPAonGaSb

SCD [60] InAs/GaSb XBp 9.3 77 50 – – 15

640 ×512FPAonGaSb

Table 2.3 Demonstrated performance metrics for VLWIR detector based on InAs/GaSb T2SL.
SE stands for Single Element detector.

Groupe ref Structure Design
λc T QE R0A D∗ NETD

(µ m) (K) (%) (Ω cm2) (Jones) (mK)

CQD [143] InAs/GaSb 17/7 pin 18.8 80 40 0.55 4.5 ·1010 –

SE on GaSb

CQD [40] InAs/GaSb 14/5 pin 17 77 30 0.08 7.63 ·109 –

SE on GaSb

CQD [37] InAs/InAsSb pin 14.6 77 46 – 1.4 ·1010 –

SE on GaSb

The group abbreviations in Table 2.1, Table 2.2 and 2.3 stands fort:

• CQD: Center for Quantum Devices, Northwestern University, Evanston, Illinois, USA.

• CHTM: Center for High Technology Materials New Mexico, Albuquerque, USA.

• AFRL: Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA.

• NARL: Nanoboyut Research Laboratory, Anadolu University, Department of Physics,
Eskisehir, Turkey.
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• MPI: Max Planck Institute for Solid State Research, Stuttgart, Germany.

• FIA: Fraunhofer-Institute for Applied Solid State Physics, Germany.

• JPL: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California,
USA.

• IES: Institut d’Electronique du Sud, UMR-CNRS 5214, Universite Montpellier 2, Mont-
pellier, France.

• SCD: SemiConductor Devices, Haifa.

In summary, although, the IR detection technology based on InAs/GaSb T2SL has now
reached a certain technological maturity in various American laboratories, allowing for indus-
trial development, the performance of these detectors is still below theoretical limits. This led
several groups to develop modelling tools to understand the physics limits of InAs/GaSb T2SL
detectors.



Chapter 3

Modeling Electronic and Optical
Properties of Type II Superlattices

3.1 Introduction

In recent years, developments in crystal growth techniques and in semiconductor device tech-
nology has resulted in the fabrication of complicated nano-heterostructures with interesting
physical phenomena and promising device applications. Thus, new methods and tools are
required for the simulation and analysis of such nanostructures [4]. Among these nanostruc-
tures, Antimony-based type-II superlattices (T2SLs) have gained a lot of attention in the field
of infrared detectors and lasers due to their high operating temperature. T2SLs combined
with unipolar barrier architectures [133, 78] have been recently demonstrated to operate at
room temperature in infrared photodetectors [72] and interband cascade lasers [51]. Another
interesting property of T2SLs is the ability to tune an effective band gap over a wide range by
varying layer thicknesses instead of mole compositions [114, 96].

However, they have not yet achieved their predicted functionality in practice, due to
their low lifetime and high level of dark current attributed to the presence of generation-
recombination (G-R) centers, which is associated with native defects and residual impurities[13].
The physical information of all of these effects can be found in the band structure and the band
topologies of superlattices. Therefore, precise knowledge of the electronic properties of narrow
band gap T2SLs is necessary for a proper device analysis.

This chapter deals with calculation of band structure and the optical properties of type II
InAs/GaSb superlattice using 8 × 8 k· p theory. The Luttinger–Kohn Hamiltonian is chosen
and its formulation is presented using k· p theory taking into account strain effects and the
coupling between conduction and valence bands. This formulation is adapted to heterostructures
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by using the envelope function approximation (EFA). Then, the finite element discretization
scheme for the k· p Hamiltonian is presented by applying the variational principle [147] to
the multiband Hamiltonian, which leads to an equivalent eigenvalue matrix representation of
the problem. Moreover our simulation tool is presented and its accuracy is validated using
energy-dependent effective mass non-parabolic model on a structure of a single quantum wells
using Finite Element Method (FEM), Finite Difference Method (FDM), and the Transfer Matrix
Method (TMM). Furthermore, the tools are applied to calculate the bulk dispersion of InAs
material under compressive strain. The main focus is devoted to the calculation of miniband
dispersions and absorption coefficients of the active region of an infrared photodetector based
on type-II InAs/GaSb superlattices operating at room temperature.

3.2 Band Structure Theory

Band structure or equivalently electronic structure express the arrangement of energy states of
crystal’s electrons into allowed and forbidden bands. This emerges as a direct consequences of
the lattice periodicity and symmetry of crystalline solids. The band structure has a particular
importance for semiconductors as many properties of semiconductors are obtained by only
a limited number of these bands. The optical properties of semiconductors and their nano-
structures are intimately connected to the electronic states and hence to the structure of the
bands. The bulk semiconductors bands structure varies continuously within each band n relating
the crystal momentum k of an electron to its energy En(k). In nano-structures being combining
different materials, the translational symmetry of the crystal is broken which leads to a change
in the electronic properties from their bulk properties. These alteration have a pronounced
impact on the electronic and optical properties of nanostructures.

3.2.1 Crystal structure and Brillouin zone

Semiconductors are crystalline solids. The III-V binary compound semiconductors composed
of elements from the group III (Al, Ga, In, . . . ) and the group V (N, P, As, Sb . . . ) of the periodic
table of elements shows great technological potentials. In their bulk, arsenides, phosphides and
antiminides are arranged in a Zinc-Blend ZB crystal structure with cubic symmetry, where the
atoms of group III -cations (Ga or In) and V -anions (As or P) are located at the nodes of two
face centred cubic lattice shifted to each other by a quarter of the diagonal. Figure 3.1 shows
the conventional and primitive unit cell of ZB crystal structure with a constant lattice a0 . The
First Brillouin Zone (FBZ) is shown in Figure 3.1.
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Figure. 3.1 ZB Conventional unit cell (a), ZB primitive unit cell and (c) the corresponding First
Brillouin Zone (FBZ). The atoms are numbered using Roman and Arabic to help differentiate
between different atoms. In the FBZ, the nominated points are the poits of hight symmetry.

3.2.2 Crystal Schrödinger Hamiltonian

In order to find the bands structures and related quantities one should start ideally from the
whole Crystal Hamiltonian Equation including all the interaction among all the involved
particles: electrons i, j and atoms cores I, J of the system. This equation in the absence of any
external electro-magnetic fields dreads:

H =∑
i

p2
i

2m0︸ ︷︷ ︸
Te

+∑
I

p2
I

2mI︸ ︷︷ ︸
Ta

+
1
2 ∑

i, j

e2

4πε0
∣∣xi −x j

∣∣︸ ︷︷ ︸
Vee

+
1
2 ∑

I,J

e2zIzJ

4πε0 |xI −xJ|︸ ︷︷ ︸
Vaa

− 1
2 ∑

i,J

e2zJ

4πε0 |xi −xJ|︸ ︷︷ ︸
Vae

(3.1)

Where e is the elementary charge, z the charge of the particle, p is the momentum and
x the position of the particle. This is a complex problem that, in reality, is impossible to be
solved directly because of the huge number of particles involved

(
1022 −1023 atoms /cm3)

and, therefore, approximations are required. Under the Born-Openheimer approximation
[148, 23] the motion of electrons and atoms cores can be separated due to the much higher
mass of the latter than the former. The light-mass electrons respond instantaneously to the
motion of atoms’ cores. This leads to the following crystal electron Hamiltonian in which the
electrons feel an average potential U(xi):
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H = ∑
i

(
p2

i
2m0

+U(xi)

)
+

1
2 ∑

i, j

e2

4πε0
∣∣xi −x j

∣∣︸ ︷︷ ︸
Vee

(3.2)

Moreover, a single electron approximation also known as mean field approximation is performed
by assuming that the electron-electron interaction Vee with the core- and valence electrons can
also be cast into an additional effective potential. Then, the lest equation reduces to a single
electron Hamiltonian equation, in which an electron experiences a global effective potential
U(x):

H =
p2

2m0
+U(x) (3.3)

In the last two equations we have already made the assumption that electrons interact with
a frozen atomic cores lattice. Switching on this interaction again can be made using phonons
theory[30], however this is out the scope of the thesis.

3.3 Computational Methods

The accurate determination of the overall band structure and wave functions of nanostructures
is very complicated to tackle analytically except for a few special cases. Therefore, numerical
calculations are required to handle complex designs. Among the difficulties of calculating the
full band structure for heterostructures is the sensitivity of modeling tools and techniques to the
input parameters, namely effective masses, band gap energies, and Valence Band Offset (VBO),
especially for structures made of narrow gap materials such as InAs and InSb [96]. Importantly,
the exact VBO values are crucial for modeling heterostructures, yet they are very sensitive to the
heterointerface imperfections and even a small shift leads to erroneous results. The choice of
the modeling technique often comprises a trade-off between accuracy and computational load.

Generally, the approaches used for the overall band structure calculation fall into two
categories: first principle calculations (i.e., ab initio) [92, 44] and empirical methods [148, 50,
23]. Ab initio calculations such as density functional theory and the quantum Monte Carlo
start from atomistic values where information about atomic orbitals and atoms’ positions are
required without the need of any fitting and/or empirical parameters [92, 44]. Although these
methods yield highly accurate results, they require considerably long execution time and hence
they are limited to systems of a small number of atoms. In contrast, empirical methods are
usually used for band structures calculation of large semiconductor heterostructures where some
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properties are approximated using experimentally fitted parameters. These fitting parameters
give a tremendous reduction to the computational cost. One of the most used empirical methods
for the band structure calculation is the k· p method, which treats heterostructures as a stack
of bulk materials. The method is convenient to model large complex designs due to its highly
computational efficiency and good accuracy, despite the hidden atomic scene. The aim of this
work is to develop rigorous modeling tools for calculating the band structure of nanostructures
using the k· p approach. Since this method is sensitive to variations of input parameters across
the heterointerface, the Finite Element Method (FEM) is chosen as a numerical technique
to discretize the k· p Hamiltonians. The finite element method has been applied to many
quantum mechanical problems ranging from simple isolated systems such as the hydrogen
atom [11, 99, 34] and the single quantum well [83, 98] to more complex problems such as
the periodic potential [27] and shown to give very precise numerical results in calculating
the energies of the system. However, due to the complexity of the FEM and the complicated
formulation of the variational functional for a given multiband k· p Hamiltonian, Finite
Difference Method (FDM) is usually favored over FEM. Despite FEM accuracy, its application or
use remains limited. In FEM, a non-uniform mesh as well as high order Lagrange/Hermit basis
functions can be utilized [91], hence the band structure and wavefunctions for heterostructures
with layers of arbitrary thicknesses can be calculated accurately with a smoothed mesh the near
heterointerface edges.

In the following two sections, we address the formalism of the k· p method for bulk
materials and nano–structures.

3.4 k.p Method for Bulk Materials

A pure bulk material is characterized by an invariant properties throughout its space. These
properties are described by a periodic replication of unit cells in all space using the lattice
translation vector R. To develop the k· p method for such materials, let’s start with the time
independent single electron Schrödinger equation assuming no external field:

H0ϕ =

(
− h̄2

2m0
∇

2 +U(x)
)

ϕ = Eϕ (3.4)

The potential U(x) is periodic within the lattice and obeys its translational symmetry so
that, the translational invariance:

U(x+R) =U(x) (3.5)
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holds for all lattice vectors R mapping the infinite crystal lattice to itself. As a consequence,
the wavefunction ϕnk obey Bloch’s theorem which states that the wavefunction soultion to
Equation 3.4 can be expressed as the product of a plane wave exp(ik ·x) and a Bloch factor
unk:

ϕnk(x) = unk(x)eik·x (3.6)

Here, the unk(x) denotes the lattice periodic part with

unk(x+R) = unk(x) (3.7)

and the plane wave is the slowly modulating envelope. The nk are the quantum numbers
indexing the solutions.

The spin-orbit interaction quite generally have a notable effects on the band structure, and
therefore should be included in the Hamiltonian:

H = H0 +
h̄

4m2
0c2 (σ ×∇U) ·p. (3.8)

where c is the speed of light in vacuum and σ denotes the Pauli spin matrix vector σ =

(σ1,σ2,σ3)
T :

σx =

(
0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (3.9)

By inserting Equation 3.6 into Equation 3.4 and then applying the differential operators to
the plane wave and multiplying the equation on both sides from the left with exp(−ik ·x) the
following equation for the periodic part of the Bloch function unk is obtained:

 p2

2m0
+U(x)︸ ︷︷ ︸
H0

+
h̄

4m2
0c2 (σ ×∇U) ·p︸ ︷︷ ︸

HSO

+
h̄

4m2
0c2 (σ ×∇U) ·k︸ ︷︷ ︸

HkSO

+
h̄2k2

2m0︸︷︷︸
Hk2

+
h̄

m0
k ·p︸ ︷︷ ︸

Hkp

unk(x)

= En(k)unk(x)
(3.10)

with the different terms indicated to further reference.
It has the form of the Schrödinger equation, but contains k-dependent terms. Because of the

k· p term, it is called the k· p equation. The kHSO term is often neglected, because the velocity
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of the electron in its atomic orbit is very much greater than the velocity of a wave packet made
up of wave vectors in the neighborhood of k [47]. An important consequence of the Bloch
theorem is the fact that wavefunctions with different k values are not coupled together (due
to the slowly varying plane wave) and therefore Equation 3.10 has a parametric dependence
on the crystal momentum k. For each integer band index n, the eigenenergies En(k) depend
continuously on the vector k in reciprocal space.

The main idea behind the k· p theory used to solve Equation 3.10, is based on expanding
unk(x) around a point in the reciprocal space with high symmetry of the band structure, usually
the Γ point at k0 = 0:

umk(x) = ∑
n′

amk,n′un′0(x) (3.11)

where the solutions un0(x) known as zone-center functions obey the Equation 3.10 at k = 0:(
− h̄2

2m0
∇

2 +U(x)
)

un0 = En(0)un0(x) (3.12)

To obtain the coefficients amk,n′ , the Equation 3.11 is substituted in Equation 3.10 multiplied
from the left by un0(x) and integrated over the crystal cell leads to the matrix eigenvalue problem
for the expansion coefficients amk,n′:

Em(k)amk,n = ∑
n′

Hnn′(k)amk,n′ (3.13)

and the Hamiltonian is represented by the following infinite dimensional matrix

Hnn′ =

{
En′(0)+

h̄2k2

2m0

}
δnn′ +

h̄
m0

k ·pnn′ +HSOnn′ +HkSOnn′ (3.14)

that couples all energy bands by means of the matrix elements pnn′ , HSOnn′ and HkSOnn′

between the respective Bloch factors at the zone centre,

pnn′ =
∫

u∗n0(x)pun′0(x)dx. (3.15)

HSOnn′ =
∫

u∗n0(x)HSOun′0(x)dx. (3.16)

HkSOnn′ =
∫

u∗n0(x)HkSOun′0(x)dx. (3.17)
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The first and last matrix elements can be cast into one generalized matrix element using the
the notation,

π = p+
h̄

4m0c2 (σ ×∇U) . (3.18)

therefore Equation 3.14 becomes,

Hnn′ =

{
En′(0)+

h̄2k2

2m0

}
δnn′ +

h̄
m0

k ·πnn′ +HSOnn′. (3.19)

The diagonalization of the k dependent, infinite matrix would lead to the exact coefficients
and energies Em(k). As the matrix is continuous in k, it is clear that the dispersion Em(k)
will also be continuous as we have already mentioned. However, diagonalizing an infinite
matrix is not possible, instead extracting and diagonalizing a finite size Hamiltonian matrix
from Equation 3.14 using Löwdin’s perturbation method [74] is possible. This is justified for
many optoelectronic devices as only a small number of energy bands are important, namely the
lowest conduction and highest valence bands around the Γ point. Other bands can be regarded
as being remote, so the interaction in–between these important bands can be considered to
dominate for the band structure of interest.

In Löwdin perturbation approach the energy bands are classified in two classes S and R.
Bands in class S are the bands we want to describe and consequently their number defines the
size of the finite Hamiltonian matrix. The bands R are considered being remote and include all
the other energy bands of the system. It is desirable that class S bands to be close in energy and
interact strongly with each other but weakly with bands in class R. Furthermore, the interaction
among energy bands of class R is neglected and their effect on the class S bands are accounted
for perturbativally. Away from the expansion point, the energy bands in class S and R can
happen to interact more strongly which means that the k· p method is reaching it’s limits. When
this happens we either modify the class S by including more important bands of class R or
simply discard the calculation before this interacting region.

The expansion of the periodic functions into classes S and R is written as:

umk(x) =
S

∑
n′

amk,n′un′0(x)+
R

∑
n

amk,nun0(x) (3.20)

again with the assumption that the periodic functions un0(x) are the solutions for the
unperturbed Hamiltonian term H0 in Equation 3.10. Therefore the perturbed Hamiltonian term
∆H
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∆H = Hkp +Hk2 +HSO +HkSO (3.21)

within Löwdin approch we can calculate several order of perturbation for the different
Hamiltonian terms in equation Equation 3.21. To include the effects of the energy bands in class
R we must consider at least the second order contribution. Usually, perturbation corrections up
to second order terms are considered where the first order matrix elements are given by

∆H(1)
f ,g

(
s,s′
)
=
〈
s |Hf|s′

〉
(3.22)

while the second matrix elements reads

∆H(2)
f ,g

(
s,s′
)
=

R

∑
s

⟨s |Hf|r⟩
〈
r
∣∣Hg
∣∣s′〉

Ess′ −Er
, (3.23)

where f and g being any of the terms identified in the Hamiltonian Equation 3.21 and the
Dirac notation has been used for periodic functions: ⟨x|α⟩= uα0(x) with α = {s,s′} in class
S and α = {r} in class R.

Applying Löwdin theory reduces the infinite dimensional Hamiltonian matrix in Equa-
tion 3.14 to the following finite dimensional k· p Hamiltonian matrix:

Hnn′ =

{
En′(0)+

h̄2k2

2m0

}
δnn′ +

h̄
m0

k ·πnn′ +HSOnn′ + ∑
α∈R

Hnα(k)Hαn′(k)
En (0)−Eα (0)

(3.24)

where now the indices n and n′ run only over the number of bands in class S.
However, how can we proceed with the construction of this matrix without knowing neither

the effective potential nor the zone centre functions?. In fact Equation 3.12 is not solved
explicitly and no closed expression for un0(x) is needed. Instead, the matrix Equation 3.14 is
constructed by using group theory to derive symmetry properties of the zone center functions
un0(x). Using these symmetry properties, similarities and equivalences for the momentum
matrix elements pnn′ can be deduced. The topic of the group theory is beyond the current
scope. It can be found in [148] and [14]. Therefore, within the framework of group theory it is
possible to calculate non zero matrix elements used in Equations 3.22 and 3.23 and construct
the sub matrix that when diagonalized provide the energy band structure. The momentum
matrix elements pnn′ are usually used as fitting parameters to match experimentally obtained
results. In addition, many of the momentum matrix elements vanish due to symmetry. By
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increasing the number of bands in class S more accurate results can be obtained, but with a
trade off of more complex modelling.

Depending on the number of bands in class S different k· p models have been developed
and the resulting Hamiltonians are given specific names based on the their size. This also
includes the effective mass approximation where only a single band is considered. Common
multi band k· p models are the 4 band and 6 band Luttinger − Kohn Hamiltonians models
that includes only valence bands, and the 8 band and 14 band models that include valence as
well as conduction bands. In the following, we will present the details of the effective mass
approximation model, the 6 band, and the 8 band model used in this work. All these models
are for the zinc blend crystal structure and are implemented in our tools.

3.4.1 The single band effective mass model

The Effective Mass Model (EMM) is the simplest model that can be derived from the k· p
theory in which only a single band in class S weakly interacting with all other bands R is
considered. In this case the perturbation theory and Lowdin’s method give the same results.
Thus Equation 3.24 for the k· p Hamiltonian matrix becomes a simple scalar function

En(k) = En(0)+
h̄2k2

2m0
+

h̄
m0

k · ⟨n|p|n⟩+ h̄2

m2
0
∑
l ̸=n

|k · ⟨n|π|l⟩|2

En(0)−El(0)
(3.25)

Note here that we have neglected the spin orbit terms. Since the energy band has an
extremum at k = 0, the term linear in k is zero because of pnn′ = 0.

Rewriting the last equation by introducing the Cartesian indices α ,β
= x, y, z, and assume Einstein’s summation convention for these indices we obtain,

En(k) = En(0)+
h̄2k2

2m0
+

h̄2

m2
0

kαkβ ∑
l ̸=n

⟨n|pα |l⟩
〈
l|pβ |n

〉
En(0)−El(0)

. (3.26)

= En(0)+
h̄2

2
kαkβ

(
1

m∗
n

)
α,β

. (3.27)

= En(0)+
h̄2

2
kT 1

m∗
n

k. (3.28)

where the symmetric 3×3 matrix m∗
n called the effective mass tensor is given by,(

1
m∗

n

)
α,β

=

(
1

m0

)
δα,β +

2
m2

0
∑
l ̸=n

⟨n|pα |l⟩
〈
l|pβ |n

〉
En(0)−El(0)

. (3.29)
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The single band effective mass model is usually adopted to compute the conduction band
dispersion in direct semiconductors. The accuracy of the model depends on the difference
between the actual band edge and other zone centre energies; ie the denominators in Equa-
tion 3.25. The higher this difference as it is the case for wide bandgap materials the higher the
accuracy of the model. This accuracy could be increased by adjusting the effective mass tensor
elements from experiment measurements. This is useful because the zone centre functions are
not well known as well as the matrix elements based on these states.

Let’s estimate the conduction band electron effective m∗
c from Equation 3.29. Symmetry

arguments from group theory indicate that the main contribution for the last term stem from
the matrix elements between the lowest zone center conduction band state Γ1c with symmetry
|s⟩ and the highest valence band state Γ4v consisted of three degenerate states with symmetry
|px⟩,|py⟩ and |pz⟩. The separation between these two energy states is just the direct band gap
Eg, therefore the effective mass m∗

c can be approximated by

1
m∗

c
=

1
m0

+
2

m2
0

⟨1c|pα |4v⟩
〈
4v|pβ |1c

〉
Eg

. (3.30)

Using symmetry arguments it can be shown that
〈

pα |pβ |s
〉
= Pδα,β , thus Equation 3.30

reduces to:

m0

m∗
c
= 1+

2P2

m0Eg
. (3.31)

The last approximation in Equation 3.31 comes from the fact that 2P2/m0Eg ≫ 1 where a
rough estimate using nearly free electron wave functions indicate that 2P2/m0 ≈ 20eV . Table
3.1 compares the values of m∗

c estimated from Equation 3.31 with their experimental values
[148] for different semiconductors in zinc blende structure.

Table 3.1 Theoretical estimation of conduction band effective masses for zinc blende semicon-
dutors and compared with experimental values. The values of Eg are obtained from experiment.

Material Ge GaN GaAs GaSb InP InAs ZnS ZnSe ZnTe CdTe

Eg[eV] 0.89 3.44 1.55 0.81 1.34 0.45 3.80 2.82 2.39 1.59

m∗
c/m0 0.04 0.17 0.078 0.04 0.067 0.023 0.16 0.14 0.12 0.08

m∗
c/m0 (Exp ) 0.041 0.17 0.067 0.047 0.073 0.026 0.20 0.134 0.124 0.093
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The conduction band has multiple local minima at specific points in the Brillouin zone. For
zinc blende crystal structure, these are the Γ point (k0 = 0), the X point (k0 = {100 }), and the
L point (k0 = {111 } /

√
3).

The minima at the X point are 3 fold, the ones at the L point are 4 fold degenerate, as each
is shared by two neighboring Brillouin zones. In silicon, there are no minima at the X point
but along ∆, which is the connecting line between Γ and X . These minima are therefore 6 fold
degenerate. At the Γ point of the bulk Brillouin zone the tensor m∗

n is isotropic

m∗
n = m∗

n13×3 (3.32)

due to symmetry reasons. The effective mass tensors at the X point, the Γ point and along
∆ are characterized by a longitudinal effective mass m∗

nl and a transversal effective m∗
nt ,

m∗
n = (m∗

nl −m∗
nt) k̂0k̂T

0 +m∗
nt13×3 (3.33)

and describe ellipsoids of revolution with the axis of symmetry pointing in the direction of
k0.

3.4.2 The 3 x 3 Dresselhaus-Kip-Kittel valence band model

This was the first k· p model developed by Dresselhaus, Kip, and Kittel (DKK) [21] to describe
the valence band structure without including spin orbit interaction HSO. The valence bands
wave functions being created by p− like orbitals in most semiconductors they are thus threefold
degenerate with energy En(0) = Ev. Therefore, the degenerate perturbation theory should be
adopted in the k· p approach. In the DKK model, the zone center states in the valence band,
are denoted by ε+s , s = 1,2,3 and belong to class S. These states being originated from the px,
py, and pz atomic orbitals they are also denoted respectively by |yz⟩, |zx⟩, and |xy⟩, to refer to
the directions along which they are even.

The first order contributions from degenerate perturbation theory are zero,

〈
ε
+
s |pα |ε+r

〉
= 0, s,r ∈ {1,2,3},α ∈ {x,y,z} (3.34)

because of equal parities of the zone center states. The second order contributions from
degenerate perturbation theory are due to the matrix elements,

Hrs =
h̄2

m2
0
∑
l∈R

⟨r|k ·p|l⟩⟨l|k ·p|s⟩
En(0)−El(0)

=
h̄2

m2
0

kαkβ ∑
l∈R

⟨r |pα | l⟩
〈
l
∣∣pβ

∣∣s〉
En(0)−El(0)

(3.35)
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where again the Einstein’s summation convention over α and β is assumed. Equation 3.35
can be simplified by taking into account the particular symmetry of the zone center states. In
fact, the following matrix elements hold,

⟨xy |pz|n⟩= ⟨yz |px|n⟩=
〈
zx
∣∣py
∣∣n〉

⟨xy |px|n⟩=
〈
yz
∣∣py
∣∣n〉= ⟨zx |pz|n⟩=

〈
xy
∣∣py
∣∣n〉= ⟨yz |pz|n⟩= ⟨zx |px|n⟩

(3.36)

because of symmetry. The final result of applying degenerate perturbation theory leads to
the following k· p Hamiltonian which when diagonalized give band structure dispersion:

H3×3
DKK(k) =

(
Ev +

h̄2

2m0
k2
)

13×3 +NkkT +(L−N)diag
(
k2

x ,k
2
y ,k

2
z
)

+M diag
(
k2

y + k2
z ,k

2
x + k2

z ,k
2
x + k2

y
)

=

(
Ev +

h̄2

2m0
k2
)

13×3 +HDKK

(3.37)

where the Dresselhaus−Kip−Kittel Hamiltonian [21] is given by:

HDKK =

 Lk2
x +M

(
k2

y + k2
z
)

Nkxky Nkxkz

Nkxky Lk2
y +M

(
k2

x + k2
z
)

Nkykz

Nkxkz Nkykz Lk2
z +M

(
k2

x + k2
y
)
 (3.38)

The parameters L, M, N are called the Dresselhaus parameters [21] and depend on the momen-
tum matrix elements pnl ,

L =
h̄2

m2
0
∑
l∈R

|⟨xy |pz| l⟩|2

En(0)−El(0)
(3.39)

M =
h̄2

m2
0
∑
l∈R

|⟨xy |px| l⟩|2

En(0)−El(0)
(3.40)

N =
h̄2

m2
0
∑
l∈R

⟨xy |px| l⟩⟨l |pz|yz⟩+ ⟨xy |pz| l⟩⟨l |px|xy⟩
En(0)−El(0)

(3.41)

3.4.3 The 6 x 6 Luttinger-Kohn valence band model

The DKK model was subsequently extended by Luttinger and Kohn (LK), by including spin
orbit interaction as in Equation 3.10. The spin−orbit interaction is a relativistic effect which
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scales with the atomic number of the atom. Thus for semiconductors containing heavier
elements, such as Ge, Ga, As, and Sb, one expects the spin−orbit coupling to be significant.
By taking into account the spin-orbit interaction, the solutions of Equation 3.10 should be
understood as a two component spinor. The three zone center valence band states are now
doubly degenerate with their spin counterparts: ε

+
1 | ↑⟩, ε

+
2 | ↑⟩, ε

+
3 | ↑⟩, ε

+
1 | ↓⟩, ε

+
2 | ↓⟩, ε

+
3 | ↓⟩.

However, Luttinger and Kohn changed the notation of these basis respectively to |X ↑⟩, |Y ↑⟩,
|Z ↑⟩, |X ↓⟩, |Y ↓⟩, |Z ↓⟩, thereby referring to their symmetry axis. Furthermore, it was found
convenient to choose the basis

|1⟩=
∣∣∣∣32 , 3

2

〉
=

−1√
2
|(X + iY ) ↑⟩

|2⟩=
∣∣∣∣32 , 1

2

〉
=

−1√
6
|(X + iY ) ↓⟩+

√
2
3
|Z ↑⟩

|3⟩=
∣∣∣∣32 ,−1

2

〉
=

1√
6
|(X − iY ) ↑⟩+

√
2
3
|Z ↓⟩

|4⟩=
∣∣∣∣32 ,−3

2

〉
=

1√
2
|(X − iY ) ↓⟩

|5⟩=
∣∣∣∣12 , 1

2

〉
=

1√
3
|(X + iY ) ↓⟩+ 1√

3
|Z ↑⟩

|6⟩=
∣∣∣∣12 ,−1

2

〉
=

1√
3
|(X − iY ) ↑⟩− 1√

3
|Z ↓⟩

(3.42)

These basis functions have the symmetry of the atomic | j,m j⟩ states, where j and m j

denote the quantum numbers of the total angular momentum J and its projection on the z axis Jz.
Moreover, these basis exactly diagonalizes the HSO Hamiltonian term and are used to classify
the valence bands into heavy hole (HH), light hole (LH), and split-off hole (SO). Using these
states with Lowdin’s method, the finite sub Hamiltonian matrix in Equation 3.14 takes the form,

Hnn′ =

{
En′(0)+

h̄2k2

2m0

}
δnn′ +

h̄
m0

+
h̄2

m2
0

kαkβ ∑
l∈R

⟨n |pα | l⟩
〈
l
∣∣pβ

∣∣n〉
En(0)−El(0)

(3.43)

where we note that πnn′ = 0, for n,n′ ∈ S and πnn′α ≈ ⟨n |pα | l⟩, for n,∈ S and l ∈ R.
The explicit expression for the 6 ×6LKk· p Hamiltonian in the JMJ basis 3.42 reads:
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H6×6
LK =−



P+Q −S R 0 − 1√
2
S

√
2R

−S† P−Q 0 R −
√

2Q
√

3
2S

R† 0 P−Q S
√

3
2S†

√
2Q

0 R† S† P+Q −
√

2R† − 1√
2
S†

− 1√
2
S† −

√
2Q

√
3
2S −

√
2R P+∆ 0

√
2R†

√
3
2S†

√
2Q − 1√

2
S 0 P+∆



∣∣3
2 ,

3
2

〉∣∣3
2 ,

1
2

〉∣∣3
2 ,−

1
2

〉∣∣3
2 ,−

3
2

〉∣∣1
2 ,

1
2

〉∣∣1
2 ,−

1
2

〉
(3.44)

where

P = Ev +

(
h̄2

2m0

)
γ1
(
k2

x + k2
y + k2

z
)

Q =

(
h̄2

2m0

)
γ2
(
k2

x + k2
y −2k2

z
)

R =

(
h̄2

2m0

)√
3
[
−γ2

(
k2

x − k2
y
)
+2iγ3kxky

]
S =

(
h̄2

2m0

)
2
√

3γ3 (kx − iky)kz

(3.45)

The Hamiltonian in Equation 3.44 is known as 6 band Luttinger−Kohn Hamiltonian. The
parameters γ1, γ2, and γ3 are called the Luttinger parameters and are related to the effective
masses of the valence-band electrons along certain directions. ∆ is spin-orbit split-off energy.

3.4.4 The 4 x 4 Luttinger-Kohn valence band model

For some semiconductors, the split-off bands are several hundred meV below the heavy and
light hole bands. If the energy range of interest is restricted to several tens of meV , it is usual
to assume that the split off bands can be safely ignored. In other words, the band structure of
the heavy and light hole bands is approximately described by the 4 x 4 Hamiltonian obtained
by eliminating the fifth and sixth columns and the corresponding rows from the 6 ×6HLK

Hamiltonian matrix,

H4×4
LK =−


P+Q −S R 0
−S† P−Q 0 R

R† 0 P−Q S

0 R† S† P+Q


∣∣ 3

2 ,
3
2

〉∣∣ 3
2 ,

1
2

〉∣∣ 3
2 ,−

1
2

〉∣∣ 3
2 ,−

3
2

〉 (3.46)
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The 4-band Luttinger-Kohn model could have limited accuracy when the spin-orbit split-off
energy ∆ is small. The entries remains the same as for the 6 ×6HLK Hamiltonian matrix.

3.4.5 The 8 x 8 Luttinger-Kohn conduction-valence band model

An even more accurate results are obtained when also the conduction bands at the Γ− point are
included in the class S. Including the spin orbit effect, an appropriate basis to construct the zinc
blende 8×8k· p Hamiltonian are:

|1⟩= |iS ↑⟩

|2⟩= −1√
2
|(X + iY ) ↑⟩= |3

2
,
3
2
⟩

|3⟩= 1√
6
|− (X + iY ) ↓+2Z ↑⟩= |3

2
,
1
2
⟩

|4⟩= 1√
3
|(X + iY ) ↓+Z ↑⟩= |1

2
,
1
2
⟩

|5⟩= |iS ↓⟩

|6⟩= 1√
2
|(X − iY ) ↓⟩= |3

2
,−3

2
⟩

|7⟩= 1√
6
|(X − iY ) ↓+2Z ↓⟩= |3

2
,−1

2
⟩

|8⟩= 1√
3
|(X − iY ) ↓ −Z ↓⟩= |1

2
,−1

2
⟩ (3.47)

The resulting 8×8 k· p Hamiltonian model then reads,

H8×8
LK =

Ec +A −
√

3V
√

2U U 0 0 V ∗ √
2V ∗

−
√

3V ∗ Ev −P−Q S 1/
√

2S 0 0 −R −
√

2R√
2U S∗ Eν −P+Q

√
2Q −V ∗ −R 0 −

√
3/2S

U 1/
√

2S∗
√

2Q Eν −P−∆
√

2V ∗ √
2R −

√
3/2S 0

0 0 −V
√

2V Ec +A
√

3V ∗ √
2U −U

0 0 −R∗ √
2R∗ √

3V Eν −P−Q −S∗ 1/
√

2S∗

V −R∗ 0 −
√

3/2S∗
√

2U −S Eν −P+Q −
√

2Q√
2V −

√
2R∗ −

√
3/2S∗ 0 −U 1/

√
2S −

√
2Q Eν −P−∆



|1⟩
|2⟩
|3⟩
|4⟩
|5⟩
|6⟩
|7⟩
|8⟩

(3.48)
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where

A =

(
h̄2

2m∗
e

)(
k2

t + k2
z
)

P =

(
h̄2

2m0

)
γ1
(
k2

t + k2
z
)

Q =

(
h̄2

2m0

)
γ2
(
k2

t −2k2
z
)

R =

(
h̄2

2m0

)√
3
[
−γ2

(
k2

x − k2
y
)
+2iγ3kxky

]
S =

(
h̄2

2m0
2
)√

3γ3 (kx − iky)kz

V =
1√
6

Pcv (kx + iky)

U =
1√
3

Pcvkz

Pcv =
h̄

m0
⟨iS| h̄

i
∂

∂x
|X⟩=

√(
h̄2

2m0

)
Ep

(3.49)

The shape of the Hamiltonian usually depends on the states and on the order of the basis
states used for the construction.

3.5 k.p Method for Nanostructures

Within the previous sections, we showed the k· p formulation based on the translational
invariance property of the Bravais lattice, in other words, the crystal was assumed to be
homogeneous and infinitely extended. In nanostructures, this assumption is no longer valid and
the translational symmetry is broken in certain directions. The broken symmetry may arise due
to variations in material compositions, impurities or even from external applied electric field,
magnetic field, or mechanical stress. In the case of a quantum well, the symmetry is broken
by the atoms of the other species in one direction Figure() and the electrons find themselves
confined within a lower-bandgap material, but still free to propagate within the translational
invariant direction. The electrons in such systems are now subjected to an additional non-
uniform perturbing potential V (x). As a result, the Hamiltonian describing such systems is not
translational invariant an the Bloch function is no longer valid and need to be revised according
to:

ϕmkt (rt ,z) = ∑
µ

uµ0(rt ,z)eikt ·rt Fm
µ (kt ,z) (3.50)
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and the Schrödinger equation need to be solved now reads,

Hϕmkt (rt ,z) =
(

H0 +
h̄

4m2
0c2 (σ ×∇U) ·p+V (x)

)
ϕmkt (rt ,z) = Emkt ϕmkt (rt ,z). (3.51)

Here, rt denotes the coordinate of translational invariant direction(s), z is the coordinate of
the direction(s) where the crystal symmetry is broken and uµ0 is a lattice–periodic function.
The crystal momentum k is only defined within the translational invariant direction. The
expression Fm

µ (kt ,z) is referred to as slowly–varying envelope and denotes at every position in
the symmetry broken direction z, how the lattice–periodic functions are mixed together. In the
bulk crystal, the plane wave term decouples the wavefunctions with different crystal momenta
k. In a nanostructure, this decoupling is only true for the translational invariant direction, while
in the symmetry broken direction, the states are now mixed together. As a consequence of
the symmetry breaking, the energy bands are split into energy subbands, depending on the
transversal crystal momentum kt .

The next step is to use the envelope function approximation (EFA) [100] and derive a proper
equation to determine the envelope functions Fm

µ (kt ,z). The role of EFA aims to adapt the
Hamiltonian to be applied to heterostructures. In the EFA approach, the perturbing potential is
assumed to be a slowly varying function on the scale of the lattice constant. To show the result
of using the EFA, it is convenient to decompose the bulk Hamiltonians in Equations 3.25, 3.37,
3.44, 3.46 and 3.48 into six terms, each one being the coefficient of k2

x , k2
y , k2

z , kxky, kxkz, and
kykz terms:

H =
z

∑
α=x

z

∑
β=α

Hαβ kαkβ (3.52)

where the indices run over the coordinates x,y, and z. Then, if we consider the z-axis to be the
quantization axis (along which crystal symmetry is broken), the adaption of the Hamiltonians

includes replacing the wave vector component kz by the corresponding operator −i
∂

∂ z
where

i =
√
−1 , thus the Hamiltonian takes the form:

H = Hzzk2
z +Hxxk2

x +Hyyk2
y

+(Hxzkx +Hyzky)kz +Hxykxky

≡ HAk2
z +HBkz +HC

=−HA
∂ 2

∂ z2 − iHB
∂

∂ z
+HC. (3.53)
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This, as shown shortly, turns the problem of solving the Schrödinger Equation 3.51 for
band structure into a set of simultaneous differential equations for the eigen envelope functions
and eigen energies. This formulation can be further extended to any size of Hamiltonian. In
our case study, the size 8 × 8 is of main concern. To preserve hermiticity of the Hamiltonian,
the resulting derivative operators in Equation 3.53 are ordered as follows:

H =− ∂

∂ z
HA

∂

∂ z
− i

1
2

(
HB

∂

∂ z
+

∂

∂ z
HB

)
+HC. (3.54)

This reordering is known as the symmetrization rules [82] given by:

H(x)kα → 1
2
(H(x)kα + kαH(x))

H(x)kαkβ → 1
2
(

kαH(x)kβ + kβ H(x)kα)
)

(3.55)

α,β ∈ {x,y,z} .

which ensure hermiticity of the Hamiltonian as well as the flux continuity across the
heterointerface and is equivalent to the Ben–Daniel–Duke boundary conditions in the case of
single band model. Within the context of EFA, the wave functions for 8 × 8 Hamiltonian are
approximated in terms of 8 envelope functions Fµ and 8 basis states |µ⟩:

|Ψnkt (x)⟩=
1√
S

8

∑
µ=1

Fn
µ (kt ,z)eikt ·rt |µ⟩. (3.56)

where kt = kxex + kxey and rt = xex + yey. S is a normalization area of the heterostructures.
Thus, the final result of EFA is to solve the following multiband effective mass equation in
which the Hamiltonian in Equation (3.54) acts on an eight-component envelop function vector
called spinor F:

F = [F1,F2,F3,F4,F5,F6,F7,F8]
T (3.57)

[H8×8 −Ekt I]F = 0 (3.58)

Here, I is the identity matrix. Ekt are the eigen energies of the multiband effective mass
equation at in-plane vector kt . It is worth mentioning that, to reduce the size of the problem
to be solved, the 8 × 8 Hamiltonian can be block–diagonalized into two 4 × 4 Hamiltonians
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and the 6 × 6 into a 3 × 3 by choosing an appropriate transformation matrix based on a new
set of basis states. More details can be found in [46]. However, the block–diagonalization is
restricted to a single direction in the transversal k–space, while arbitrary directions require
modifications of the basis used for the block-diagonalization.

3.6 Strained Nanostructures

Quite general, semiconductor’s nanostructures materials are subjected to strain during the
epitaxial growth of different materials on top of each other. The lattice constants mismatch,
between the grown materials if exists, results in a displacement of the crystal’s atoms from
their original positions producing strain. Thereby the crystal bonds are stretched or compressed
out of their equilibrium length, leading to strong forces seeking for a restoration of the initial
configuration. Under the action of the strain, the periodic crystal is deformed, which certainly
affects the electronic band structure. In the presence of an arbitrary strain, the periodicity of the
crystal is lost and Bloch’s theorem can not be applied. Therefore, the application of the k· p
theory in an arbitrary strain field is questionable. However, in the presence of a uniform strain,
i.e. a strain which is constant within the space, the crystal may preserve the periodic property
with a new deformed elementary cell such that k· p theory can be applied to the strained crystal
using the Bir–Pikus strain theory [14].

A precise description of deformation of the crystal bonds requires atomistic details, but
the huge number of atoms favors the application of continuum–mechanical elasticity model to
calculate these strain and its effect on band structure. The deformation of a solid exhibits in the
formation of stresses σ (forces per unit area). Using Hooke’s law, the relation between a small
strain ε and the stress σ can then be expressed in terms of a fourth-rank tensor Ci jkl:

σi j =Ci jklεi jεkl (3.59)

where Einstein’s summation conventions are assumed. In literature, the normal stress
components are usually denoted as σxx, σyy and σzz and the shear stress components as σxy, σyx,
σxz etc. The diagonal elements of the stress tensor are of special importance in applications. If
only σxx is a non-zero stress component then the stress is said to be uniaxial, while if both σxx

and σyy are not equal to zero the stress is defined as biaxial. The fourth rank tensor elements are
called elastic constants or the elastic stiffness constants. Using general symmetry arguments,
the 81 tensor elements Ci jkl can be reduced to 21 distinct values which in turn can further be
reduced, depending on the symmetry of the given crystal structure.
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Within the context of elasticity theory, a notation due to Voigt has been introduced to avoid
dealing with the cumbersome second-rank εi j strain tensor and the fourth-rank Ci jkl tensor.
Therefore, in Voigt’s notation the strain tensor is represented as an independent six components
vector

ε = (εxx,εyy,εzz,εyz,εxz,εxy) (3.60)

and Ci jkl as a second rank tensor Ci j:

Ci j, i, j = 1, . . .6 (3.61)

Using these notation, strain energy can simply be expressed as

W =
1
2

Ci jεiε j. (3.62)

Using Voigt’s notation, the relation between stress and strain for zinc–blende cubic crystals
is given by: 

σxx

σyy

σzz

σyz

σxz

σxy


=



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44





εxx

εyy

εzz

2εyz

2εxz

2εxy


(3.63)

To model the strain in a nanostructure, one assumes that there exists a bulk host substrate
material with a given lattice constant. If a thin layer with different lattice constant is epitaxially
grown on the top of this substrate, then the thin layer is forced to acquire the in-plane lattice
constant of the substrate, while the perpendicular lattice constant is able to relax freely along
the growth direction. As a result, the thin layer crystal lattice is under biaxial stress along the
layer plan with only two diagonal components σxx and σyy while σzz and the shear components
are zero. The biaxial stress is accompanied by an in-plane strain. If the lattice constant of
strained epitaxial layer reaches the substrate lattice constant then the used growth is said to be
pseudomorphic. In such cases, the in-plane strain can be easily calculated as:

ε∥ = εxx = εyy =
asub −a

a
(3.64)
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where asub and a are the lattice constant of the substrate and of any layer material within
the heterostructures, respectively. The in-plane strain magnitude is usually of the order of 1%
in quantum well systems e.g. for an AlN layer grown on a GaN substrate |ε∥|= 2%. However,
materials with |ε∥| ≤ 0.1% such as the GaAs/AlGaAs system are considered as unstrained.

Depending on the sign of ε∥, one can define a compressive (ε∥ < 0) or a tensile (ε∥ > 0)
strain, respectively. A compressive strain will therefore force the lattice constant in the plane to
shrink while conversely tensile strain will force it to expand. It is also reasonable to assume that
the strain in the thin semiconductor layers is homogeneous and therefore constant throughout
the layer.

Moreover, if the epitaxial layer width is larger than some critical thickness the layer have
enough energy to resist the substrate force tending to unify its lattice constant. This reluctance
for change results in a large number of defects and imperfections (cracks) in the growth surface.
In terms of elastic energy, if for a specific layer width the strain energy of the strained layer
exceeds the energy required for the generation of defects, then the layer system will tend
to relax to a new state with lower strain energy forming imperfections in the growth plane.
Therefore, pseudomorphic growth is a necessary condition for the fabrication of good quality
layers with a small number of crystal defects.

Furthermore, despite σzz = 0, the vertical lattice constant is also exhibiting a strain εzz due
to Poisson’s effect. The so called Poisson’s ratio ν is used to measures the strain in the vertical
direction as function of in–plain strain: εzz =−νεxx.

The biaxial strain covers most of the important strained systems, namely a bulk semicon-
ductor under an external uniaxial stress and a semiconductor strained-layer pseudomorphically
grown on a (001) oriented substrate. For the commonly used zinc–blende semiconductor
materials and assuming biaxial strain, the strains in the epitaxial layers are given as:

εxx = εyy =
asub −a

a

εzz =−2C12

C11
εxx (3.65)

where C11 and C12 are the elastic stiffness constants and the factor ν =−2C12
C11

represents
Poisson’s ratio for zinc–blende semiconductors in the [001] direction. Its also possible to
generate extrinsic strain as opposed to intrinsic strain mentioned above using an applied stress.
For the case of an external uniaxial stress T along the directions [100], [110], and [001], the
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generated strain contributes by [62]:

[100] : εxx = S11T, εyy = εzz = S12T.

[110] : εxx = εyy =
1
2
(S11 +S12)T, εzz = S12T, εxy =

1
4

S44T. (3.66)

[001] : εxx = εyyS12T, εzz = S11T.

where S11, S12, and S44 are compliance constants related to the elastic stiffness constants.

3.6.1 Strained Hamiltonian

Strain has a noticeable effect on the electronic band structure. The presence of strain induces
shifts in the band edges via the deformation potentials as described by Bir–Pikus strain theory.
The idea behind this theory is to restore the crystal periodicity using a deformed coordinate
transformation. The actual form of the deformation potential can be deduced using symmetry
arguments. For the conduction band the strain results in a hydrostatic strain energy shift given
by:

∆Ec = ac (εxx + εyy + εzz) (3.67)

The term hydrostatic reflects the fact that (εxx + εyy + εzz) represents the volume change of
the crystal. For the valence bands, strain contribute by an additional term to the k· p Hamilton,

S̃(ε) =
√

3dε +(av +2b−
√

3d)diag(εxx, εyy, εzz)

+(av −b)diag(εyy + εzz, εxx + εzz, εxx + εyy) (3.68)

The the parameters ac,av and b, d define the Bir–Pikus hydrostatic and shear deformation
potentials, respectively. The effect of strain in our tools is included in all the zinc–blende k· p
models.

3.6.1.1 Strained 8 x 8 Luttinger-Kohn conduction-valence band model

Taking into account the strain effect the 8×8Luttinger−KohnHamiltonianmodelinEquation 3.48reads,
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H8×8
LK =

Ec +A −
√

3V
√

2U U 0 0 V ∗ √
2V ∗

−
√

3V ∗ Ev −P −Q S 1/
√

2S 0 0 −R −
√

2R√
2U S ∗ Eν −P +Q

√
2Q −V ∗ −R 0 −

√
3/2S

U 1/
√

2S ∗ √
2Q Eν −P −∆

√
2V ∗ √

2R −
√

3/2S 0
0 0 −V

√
2V Ec +A

√
3V ∗ √

2U −U

0 0 −R∗ √
2R∗ √

3V Eν −P −Q −S ∗ 1/
√

2S ∗

V −R∗ 0 −
√

3/2S ∗ √
2U −S Eν −P +Q −

√
2Q√

2V −
√

2R∗ −
√

3/2S ∗ 0 −U 1/
√

2S −
√

2Q Eν −P −∆



|1⟩
|2⟩
|3⟩
|4⟩
|5⟩
|6⟩
|7⟩
|8⟩

(3.69)

where the entries in Equation 3.69 now reads,

A = Ak +Aε

P = Pk +Pε

Q = Qk +Qε

Ak =

(
h̄2

2m∗
e

)(
k2

t + k2
z
)

Pk =

(
h̄2

2m0

)
γ1
(
k2

t + k2
z
)

Qk =

(
h̄2

2m0

)
γ2
(
k2

t −2k2
z
)

R =

(
h̄2

2m0

)√
3
[
−γ2

(
k2

x − k2
y
)
+2iγ3kxky

]
S =

(
h̄2

2m0

)
2
√

3γ3 (kx − iky)kz

V =
1√
6

Pcv (kx + iky)

U =
1√
3

Pcvkz

Pcv =
h̄

m0

〈
iS
∣∣∣∣ h̄i ∂

∂x

∣∣∣∣X〉=
√(

h̄2/2m0
)

Ep

Aε = ac (εxx + εyy + εzz)

Pε =−av (εxx + εyy + εzz)

Qε =−b
2
(εxx + εyy −2εzz)

(3.70)



3.7 Finite Element Discretization of a k.p Hamiltonian 67

3.6.1.2 Non-Parabolic Single Band k.p Model

This model is a simplified version of the multiband model where only a single band is concerned.
If one ignores the interaction between the conduction band and the valance bands, which is
the case for most III–V direct gap semiconductors, then the conduction band can be described
using the following single band parabolic Hamiltonian model [16]:

H(k) =
h̄2

2

(
k2

x + k2
y

m∗
t

+
k2

z

m∗
e

)
+Ec +ac (εxx + εyy + εzz) (3.71)

where m∗
e is the electron effective mass along the growth direction and m∗

t the transverse one.
Ec is the unstrained conduction band edge. The fact of using two different effective masses
is to account for the anisotropy of the energy band. To increase the accuracy of this model
Hamiltonian, the effect of non-parabolicity has to be accounted for, which includes the effect
of remote bands in an indirect way without the need to solve the full multi–band Hamiltonian.
To this end, an energy-dependent effective mass model has been proposed [84]:

m∗
e(E) = m∗

e ·
(

1+
E −Ec

Eg

)
(3.72)

where Eg is an effective energy gap and does not necessarily match with real energy gap.
With this energy dependence, and under the effective mass approximation [12], the eigenvalue
problem corresponding to the Hamiltonian in Equation 3.71 is quadratic and a nonlinear one in
terms of energy [105]. To solve such a problem, an iterative algorithm should be invoked to
avoid dealing with a fourth-order derivative when ensuring the continuity of probability current
across heterointerfaces, which involves only the first derivative of the envelop function.

3.7 Finite Element Discretization of a k.p Hamiltonian

For bulk Hamiltonian, all its terms are position independent such as Ec and Ev. In addition, the
wave vector components kx, ky, and kz are input parameters and no space discretization is needed
to calculate bulk dispersion. For bulk semiconductor, the overall band structure is determined
by solving the following Schrodinger equation with a Hamiltonian using Equation 3.25, 3.37,
3.44, 3.46 or 3.48 in a compact form as:

H(k)|ϕ⟩= E(k)|ϕ⟩ (3.73)
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where |ϕ⟩ is a column vector for the basis used for the construction of the Hamiltonian and
k is the wave vector. This gives the energy E versus k in different directions, namely kx, ky,
and kz.

With heterostructures, the band edges become position dependent, i.e. Ec(x) and Ec(x),
and thus constitute the potential profile V (x) of the heterostructure. Using the presented
EMA theory in Section 3.5, the final form of the multiband effective mass equation for the
eigen envelope functions Fnkt = [F1,F2, . . . ,FM]T is given by the second order coupled partial
differential equations:

Hk·p
M×MFnkt (z) = EFnkt (z) (3.74)

where the k· p differential operator is given by:

Hk·p
M×M =− ∂

∂ z
HA(kt ,z)

∂

∂ z
− i

1
2

(
HB(kt ,z)

∂

∂ z
+

∂

∂ z
HB(kt ,z)

)
+HC(kt ,z). (3.75)

The equation (3.74) is applicable to all k· p models and forms an eigenvalue problem. z

represents the quantized coordinates, while kt denotes the transversal crystal momentum. The
matrices HA, HB and HC are parametrized in terms of the transversal kt and are determined via
Equations 3.25, 3.37, 3.44, 3.46 or 3.48 using the decomposition (3.53).

To use FEM analysis to solve the multiband effective mass in Equation (3.74), it is instructive
to use either the Galerkin or variational approach, as both lead to the same final expression.
In this work, the variational approach is adopted and briefly discussed, and more details can
be found in [147]. The variational approach is based on seeking a variational expression
corresponding to the set of differential equations to be solved. Following the steps in [147], we
end up with the following variational expression:

Vexp =
∫ {(

∂

∂ z
F†
)

HA

(
∂

∂ z
F
)}

dz

+ i
1
2

∫ {(
∂

∂ z
F†
)

HBF −F†HB

(
∂

∂ z
F
)}

dz

+
∫ {

F† (HC −E)F
}

dz. (3.76)

The next step is to minimize this functional using FEM to get the solution of the original
problem in Equation (3.74). To achieve this, the envelop functions are approximated over
each finite element as F = N(z) · F̃ = NiF̃i, where N is an interpolation shape function and F̃
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is a nodal column vector with elements representing the values of the envelope function at
the element nodal mesh points [83, 91]. Substituting F into Equation (3.74), we obtain the
following matrix form to be minimized:

Vexp = F̃†
[∫ {

∂NT

∂ z
HA

∂N
∂ z

}
dz
]

F̃

+ i
1
2

F̃†
[∫ {

∂NT

∂ z
HBN −NT HB

∂N
∂ z

}
dz
]

F̃

+ F̃†
[∫

NT HCN dz
]

F̃

−EF̃†
[∫

NT N dz
]

F̃ . (3.77)

which can be cast into a compact form as:

Vexp = F̃†H̃F̃ −EF̃†D̃F̃ . (3.78)

where H̃ is a matrix arising from the first and the second terms, and D̃ is a matrix from the last
term. Both matrices are of size M ·ns ×M ·ns where ns is the number of degrees of freedom
used in the system. The minimization procedure with respect to the unknown nodal values of F̃

requires
∂Vexp

∂F† = 0, which yields:

H̃F̃ = ED̃F̃ . (3.79)

This is a generalized eigen value problem for the energies E and the representative nodal
values of the envelope functions at the mesh points. In constructing the global matrix H and D,
an element matrix overlay approach is usually used, which requires considerable care since we
are dealing with up to eight simultaneous equations. The problem in Equation (3.79) can be
efficiently solved using well-established algorithms devoted for large eigenvalue problem.

3.8 Simulation Results and Discussion

In this section, the electronic structure of semiconductor will be investigated using three
applications: (1) the bound energies of a finite quantum well using the energy-dependent
effective mass non-parabolic model; (2) the InAs bulk band structure; and (3) the electronic band
structure for the absorber region of photodetectors based on a type-II InAs/GaSb superlattice at
room temperature.
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3.8.1 Electronic Structure of Finite Quantum Well

First, a case study was solved to validate the accuracy of the simulations to published results
using an energy-dependent effective mass non-parabolic model on a structure of a single
quantum well [105]. This is a 100 Å GaAs thin well layer surrounded by AlGaAs barrier
layers. The barrier height was set to 0.276 eV and the effective masses of electrons at the band
edges were taken to be mw/m0 = 0.067 in the well and mb/m0 = 0.09 in the barrier. Here, the
subscripts w and b denote the well and barrier, respectively, and m0 is the electron free mass.
The in-plane wavevector components kx and ky were set to zero for the purpose of comparison.
Using this model, Equations (3.71) and (3.72) under the EFA were solved repeatedly by
updating the effective masses and eigen energies until their convergence. The results of the
second-order Lagrange finite element method are shown in Table 3.2 along with the results
of two other numerical methods, namely the Finite Difference Method (FDM) [13] and the
Transfer Matrix Method (TMM) [45], which are also included in the simulation tools developed.

Table 3.2 Eigen energies of a single GaAs/AlGaAs quantum well (in meV). ∆E is the shift due
to nonparabolicity. The FEM results are compared to the results from [105].

Well
Parabolic Nonparabolic ∆E

Width FDM FEM TMM [? ] FDM FEM TMM [? ] FDM FEM TMM [? ]

5 Å 267.48 267.48 265.40 267.51 267.51 267.51 265.42 267.53 +0.03 +0.03 +0.02 +0.02

20 Å 179.95 179.95 179.93 179.93 180.96 180.96 180.95 180.99 +1.01 +1.02 +1.01 +1.07

50 Å
79.56 79.58 79.58 79.54 81.03 81.05 81.05 81.07 +1.48 +1.47 +1.47 +1.53

270.16 270.17 268.20 270.19 254.67 254.69 254.13 254.70 −15.49 −15.48 −14.08 −15.49

100 Å
31.48 31.49 31.49 31.48 32.18 32.19 32.19 32.20 +0.70 +0.70 +0.70 +0.72

123.84 123.89 123.89 123.87 119.01 119.05 119.05 119.06 −4.83 −4.84 −4.84 −4.81
258.34 258.40 257.83 258.42 234.89 234.95 234.84 234.96 −23.46 −23.45 −22.99 −23.46

200 Å

10.31 10.31 10.31 10.30 10.49 10.50 10.50 10.50 +0.18 +0.19 +0.19 +0.20
41.13 41.15 41.15 41.14 40.88 40.90 40.90 40.91 −0.25 −0.25 −0.25 −0.23
92.08 92.14 92.14 92.13 88.29 88.35 88.35 88.36 −3.79 −3.79 −3.79 −3.77

161.91 162.08 162.08 162.07 148.78 148.92 148.92 148.93 −13.13 −13.16 −13.16 −13.14
245.78 246.08 245.93 246.09 217.49 217.76 217.74 217.77 −28.29 −28.31 −28.19 −28.32

The calculation was carried for both the parabolic and non-parabolic case and the results
are compared with Samir et al. [105]. Table 3.2 lists the confined eigen energies in quantum
wells of different widths ranging from 5 Å to 200 Å. The results are in excellent agreement
with the reported data. The results also clearly show that the single-band parabolic model leads
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to energies slightly over estimated for higher lying states. Therefore, our results confirm the
effects of including non-parabolicity, which shrinks the confined energy gaps with a noticeable
shift in the higher energies.

An illustrative example for such effect is given in Figure 3.2, where the probability density
of the first five states of a 100 Å GaAs quantum well embedded in AlGaAs is shown for the
parabolic and non-parabolic case. In both panels, the energies En are indicated by the thin
horizontal lines, and the probability densities |ϕ(z)|2 by the shaded colored areas. There are
only three confined states for electrons. The tunneling of the eigenfunctions through the barriers
is larger for states with high energies and decreases from the parabolic to non-parabolic.

Figure. 3.2 The conduction band edge profile (red), first five electron eigenstates, and the
corresponding probability densities for kt = 0 in 100 Å GaAs/AlxGal−xAs quantum well for
x = 0.3: (Right) calculated using a parabolic single band model; and (Left) calculated using a
non-parabolic single band model.

3.8.2 Bulk Band Structure of Strained InAs material

The second application that is investigated in this work deals with the calculation of the bulk
band structure of InAs material strained by a GaAs substrate of 5.6533 Å lattice constant.
Due to the lattice mismatch between these two material, the grown bulk layer experiences an
intrinsic compressive strain of −7.09%. The value of strain used in this case is calculated using
the formula (asub −a)/a×100% where asub and a are the lattice constant of the substrate and
of InAs material. The overall conduction band and valence bands dispersion using the 8 × 8 k·
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p Hamiltonian in Equation (3.69) is obtained by diagonalizing Equation (3.69) or equivalently
by solving the following secular equation at each wavevector k ≡

{
kx,ky,kz

}
:

det
[
H8×8

αβ
(k)−δαβ E(k)

]
= 0. (3.80)

In Figure 3.3, the overall band structure curves of strained bulk InAs and unstrained
standalone bulk InAs are shown along the kx and kz directions, respectively. These curves are
dispersions for the conduction band (CB), Heavy Hole (HH), Light Hole (LH), and spin–orbit
split-off (SO) valance bands. In Figure 3.3 (right), the 6 × 6 k· p Hamiltonian curves are
shown. This 6 × 6 Hamiltonian couples only the three valance bands and ignores the coupling
with conduction band, which is justified only in wide energy gap materials. Within this 6 ×
6 Hamiltonian, the conduction-band states, which are not shown in this figure, can be treated
separately using single-band model. In narrow energy gap materials such as InAs, the 6 × 6
Hamiltonian results show a discrepancy for higher in-plane wave vectors. Figure 3.4 shows
the band structures of unstrained bulk InA along crystallographic directions pointing to high
symmetry points. The Hamiltonian used is the 14 × 14 one from [104], which extends the
interaction to more higher bands. The results confirm that including the conduction band into
the Hamiltonian increases the conduction band for higher kx values while pushing down LH
and SO bands. This effect is negligible on HH band. In Figure 3.4 (left), the conduction band
is parabolic in both directions kx and kz while the valence bands exhibit a non-parabolicity
due to mixing effects. The strain lifts the HH and LH bands degeneracy at the zone center.
The parabolic isotropy is in fact a reflection of the s-like character of conduction-band states in
a bulk semiconductor. Table 3.3 lists the k· p band parameters used for the calculation [73, 96].
The script used to generate the dispersion curves is given in Figure 3.5. It should be noted that
the k· p method results are sensitive to the input parameters.

Moreover, the k· p solutions are subject to a well-known problem of unphysical “spuri-
ous” solutions, especially with Hamiltonians that include more remote bands or when band
parameters have large difference across layers’ interfaces [46].
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Table 3.3 k· p parameters used for the calculation [96, 73, 139].

Parameter Unit InAs GaSb GaAs InSb

a Å 6.0522 6.0854 5.6535 6.4794
C11 1011 dyn/cm2 8.33 8.842 12.21 6.67
C12 1011 dyn/cm2 4.526 4.026 5.66 3.65
ac eV −5.08 −7.5 −7.17 −5.1
av eV 1 0.8 −1.16 2.1
b eV −1.8 −2 −2 −2.0

Eg at 0K eV 0.42 0.81 1.519 0.235
Eg at 77K eV 0.407 0.8 1.43 0.227

Ep eV 21.5 22.4 28.8 23.3
∆ eV 0.38 0.81 0.341 0.81

mc/m0 − 0.0224 0.0412 0.0670 0.0135
γ1 − 19.4 11.84 6.98 32.4
γ2 − 8.545 4.25 2.06 13.3
γ3 − 9.17 5.01 2.93 15.15

VBO eV −0.59 −0.03 −0.8 −0.03
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Figure. 3.3 (Right) The overall band dispersion of strained bulk InAs. The material is under
intrinsic compressive strain of −7.09%. The red solid line is from the 8 × 8 Hamiltonian while
the blue line is from the 6 × 6 Hamiltonian. (Left) The band dispersion of standalone bulk
InAs against the strained one.
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Figure. 3.4 The bulk band structure of unstrained InAs along different crystallographic direc-
tions. The vertical solid lines are the boundaries of the first Brillouin zone. Solid curves are
from the 14 × 14 k· p Hamiltonian [104].
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1 bulk.name=’InAs’;

2 bulk.substrate.name=’GaAs’;

3 bulk.direction =[1 0 0];

4 bulk.stress =0;

5 bulk.nKP=8;

6 bulk.model=’Chaung ’;

7 bulk.SPscheme.s=0;

8 bulk.SPscheme.alfa =0;

9 bulk.SPscheme.model =0;

10 bulk=Setbulk(bulk);

11 a0=bulk.layer.a0;

12 kv=getKv(’LGXUKG ’,’line’,nk,a0);

13 for i=1: length(kv)

14 kx=kv.kv(i,1);

15 ky=kv.kv(i,2);

16 kz=kv.kv(i,3);

17 Ek(i,:)=BULK_KP(bulk ,kx,ky,kz);

18 end

19 PLOTBAND(kv,Ek ,15,-25,’LGXUKG ’,’nm’)

Figure. 3.5 The compact script used to setup and calculate band dispersion of bulk InAs. The
Strained 8×8 k· p Hamiltonian used is from Chuang et al [73].

Such unphysical solutions should be identified and removed from the region of interest.
The spurious solutions arise from the incompleteness of the basis states used for the construction
of the Hamiltonian [30]. This is still a standing problem; different approaches and models
have been proposed to eliminate them but each approach has its drawbacks. Such solutions
may appear as highly oscillatory or strongly localized wave functions within the band gap or
dispersion curves bending in the wrong direction [24, 31, 22]. Three main reasons have been
identified for the source of the spurious solutions. First, the input experimental parameters can
trigger wing-band solutions within the band gap originating from second-order Hamiltonian’s
terms at large-k values [31, 61, 22]. These solutions can be avoided by parameter rescaling
procedures [81, 138]. Second, the interface between two materials can be subject to localized
spurious solutions due to improper boundary condition for the envelope function components.
These solutions can be removed by a proper ordering of differential operators [106, 138].
Finally, the spurious solutions may also be triggered by the chosen discretization scheme
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and the mesh width, and it was found to be related to the ill-representation of the first-order
derivative terms of the Hamiltonian [75, 22].

In the developed simulation tools, two elimination models are implemented. The first one
is based on adding a small correction to the off-diagonal elements of the Hamiltonian [61]
to discard terms responsible for the spurious solutions and the second one modifies Kane’s
parameter Pcv [30, 31].

3.8.3 Electronic Band Structure of Type-II InAs/GaSb Superlattice

Finally, the last test case illustrates the ability of the tools to model a realistic optoelectronic
device where the miniband dispersions of the active region of an infrared photodetectors based
on type-II InAs/GaSb superlattices are calculated. The studied superlattice is mainly composed
of nine InAs/GaSb periods with thicknesses around 44 Å/21 Å, respectively. The InAs layers
are chosen to be thicker than GaSb layers to efficiently reduce the dark current [107]. This
superlattice is designed to operate in a long wavelength infrared radiation (LWIR) 8–14 m
atmospheric detection window. The potential profile V (r) of this active region is periodic and
this periodicity is handled using the Bloch theorem, which greatly simplifies the computational
task. Within this theorem, the wave function in two adjacent superlattice periods differs only by
a phase shift: ϕ(z) = ϕ(z− p)eikp·p where kp is the Bloch wavenumber and p is the superlattice
period. From a computational point of view, this boundary condition is implemented by
overlaying the last element matrix onto the first one modulated by the factors e±ikp·p in the
global matrix system. The Dirichlet boundary condition is implemented by setting the envelope
function to zero at the external borders of the structure. Type II InAs/GaSb superlattice is
made of narrow energy gap materials in which the coupling between conduction bands and
valance bands is strong; therefore, the 8 × 8 k· p Hamiltonian in Equation (3.69) should be
used. To account for this strong interaction, the original electron effective mass m∗

e in the
diagonal Hamiltonian matrix as well as the original Luttinger parameters γ1,γ2, and γ3 should
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be updated according to:

m0

m∗
e
=

m0

m∗
c
−Ep

Eg +2∆/3
Eg (Eg +∆)

(3.81)

γ1 = γ
L
1 −

Ep

3Eg +∆

γ2 = γ
L
2 − 1

2
Ep

3Eg +∆
(3.82)

γ3 = γ
L
3 − 1

2
Ep

3Eg +∆

where m∗
c , γL

1 , γL
2 , and γL

3 are now the original effective mass and the original Luttinger parame-
ters, respectively. These normalizations are only required with Hamiltonians of size greater
than 8 × 8. This is because the strong interaction is explicitly included in the formulation of the
eight-band model, whereas, in smaller size k· p models, the valence and conduction bands are
decoupled and the Luttinger parameters are adjusted using Löwdin perturbation method [74].
Using the Löwdin perturbation, method, the Hamiltonian is reduced to a smaller number of
relevant bands, including the effect of the remote bands perturbatively. In all calculations, the
symmetrization rules given by Equation (3.55) are applied to taken into account the real space
dependence of the bulk band parameters.

The band edge profile potential emanating from a structure of a nine-period InAs/GaSb44
Å/21 Å superlattice, simulated using our model is shown in Figure 3.6 (right). The corre-
sponding miniband energy-dispersions versus in-plane wavevector kt solved using Dirichlet
boundary conditions are shown in Figure 3.6 (left). In this figure, the reference of energy is
taken to be the unstrained conduction band edge of InAs layers with a VBO value of 560 meV.
The formation of minibands confirms the quantum mechanical intuition that, since electrons
and holes in InAs/GaSb Type II superlattice are separated in space, confined electrons in thin
InAs layers form their mini-bands due to overlap of electron wave functions. Similarly, the
interaction among holes in thin GaSb layers leads to hole minibands.
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Figure. 3.6 (Right) Band edge profile Ec (in blue) and Ev (in red) of a nine-period InAs/GaSb 44
Å/21 Å grown on GaSb substrate. The fundamental electron and heavy-hole envelope-function
component moduli squared are shown in black, respectively. (Left) The corresponding overall
band dispersion as a function of the in-plane wavevector kt where they have been calculated
using full 8 × 8 Hamiltonian and Dirichlet boundary conditions. The black dashed horizontal
lines indicate the effective bandgap. The reference of energies is the unstrained InAs conduction
band edge with a VBO value of 560 meV.

The Hamiltonian used is the full 8 × 8 k· p model without block diagonalization. The funda-
mental electron and heavy-hole envelope-function component moduli squared for nine periods
solved using Dirichlet boundary conditions are shown in Figure 3.6 (right). At kt = 0, a
classification of minibands states as heavy-hole, light-hole, and split-off states is possible, and
are denoted by HHn, LHn, and SOn (n is the quantum number of the subband), respectively.
The minibands nomination are assigned based on the dominance of envelope functions at the
band edges [96], although this is usually not achievable with the eight band model and with
all other higher multi-band k· p models exhibiting strong band mixing. The case is worse
with narrow gap systems such as InAs/GaSb and type II heterostructures with a broken gap.
The distribution of the eight components of the envelope function spinor ⟨Fµ |Fµ⟩ for the 21
eigenstates solution of Equation (3.79) near the effective gap is plotted in Figure 3.7. In this
figure, the states numbered 4 and 20 have the largest components ⟨Fµ |Fµ⟩ among all other states.
In addition, State 20 has the largest component ⟨F1|F1⟩ corresponding to ⟨S|S⟩, indicating a
s-like character of conduction-band, while State 4 is mostly dominated by the two largest
components ⟨F2|F2⟩ and ⟨F6|F6⟩, indicating a mixture of valence band character. Therefore,
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these two states correspond, respectively, to the lowest state of a conduction miniband C1 and a
highest state of a valence miniband HH1. The band dispersion of the SOn states are of less
practical interest due to their lower energy range compared to the range of HHn and LHn states
and therefore are not shown.

Figure. 3.7 Components of the envelope function spinor ⟨Fµ |Fµ⟩ of the eigenstates near the
effective gap for 9 periods InAs/GaSb 44 Å/21 Å solved using Dirichlet boundary conditions.

The energy dispersion relations and the corresponding fundamental electron and heavy-hole
envelope-function component moduli squared for a nine-period InAs/GaSb 44 Å/21 Å grown
on GaSb substrate solved using Periodic boundary conditions are illustrated in Figure 3.8.
Since there are nine degenerate set of subbands under Dirichlet boundary conditions, each of
which belongs to one period, the strong interaction lifts the degeneracy into nine states for each
subband, as shown in Figure 3.6. In general, each state splits into Np states where Np is the
number of periods. Using periodic boundary conditions, because of the double degeneracy of
±kp states, E(+kp) = E(−kp), the degeneracy is lifted only into five states for each subband, as
shown in Figure 3.8. For both cases of boundary conditions, the dispersion relations converge
at higher in-plane wavevector kt as the interaction becomes weaker. The time for the entire
calculation in this case study using coarse meshing is 608.18 s. Obviously, the higher is the
complexity of design, the longer is the execution time. This time increases with the increase
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in the number of layers, the size of the Hamiltonian, and the number of in-plane wave vector
sampling points. However, it could be optimized with the FEM approach where, for larger
layers, one can use coarse mesh instead of fine mesh for thin layers. In fact, it could be further
optimized by using Hermit shape functions.

The full form of the 8 × 8 Hamiltonian used in this work is reflected in the anisotropy
of band structure. Figure 3.9 shows the fundamental heavy hole sub-band structure in polar
coordinates for both full and block diagonalized Hamiltonian. The anisotropy is strong
in the transversal [110] direction for the full form and is absent in the block diagonalized
one, which yields unrealistic isotropic in-plane masses in the later case. This anisotropy is
usually neglected in previous works where the axial approximation is usually used after block-
diagonalization. The transversal directions along which the dispersion relations exhibit the
largest difference are [100] and [110]. This anisotropy of the sub-band is estimated by the
difference E[100](kt)−E[110](kt). Between (kx = 1,ky = 0) (Å−1) and (kx = 1,ky = 1) (Å−1),
it was found to be about −90 meV, which indicates that the effective mass is slightly larger
along the [110] direction than the [100] direction. This observation confirms that the hole
sub-bands are neither parabolic nor isotropic, as can be seen from the dispersion curves.

Figure. 3.8 (Right) Band edge profile Ec (in blue) and Ev (in red) of nine-period InAs/GaSb 44
Å/21 Å grown on GaSb substrate. The fundamental electron and heavy-hole envelope-function
component moduli squared are shown in black, respectively. (Left) The corresponding overall
band dispersion as a function of in-plane wave vector kt where they have been calculated using
the full 8 × 8 Hamiltonian and periodic boundary conditions. The black dashed horizontal
lines indicate the effective bandgap. The reference of energy is the unstrained InAs conduction
band edge with a VBO value of 560 meV.



3.8 Simulation Results and Discussion 82

Figure. 3.9 Fundamental heavy hole sub-band structure: (Right) using full Hamiltonian; and
(Left) using block diagonalized Hamiltonian.

Despite the difference between the two types of boundary conditions used, the effective
band gaps and band edges at the zone center are expected to be comparable since there is no
phase shift between the envelope functions at kp = 0. As indicated in Figures 3.6 and 3.8, the
effective bandgap is determined by the difference between the bottom of the lowest electron
miniband (C1) and the top of the highest hole miniband (HH1) and it has the value of 0.13 eV,
which is in excellent agreement with the one experimentally reported by [36] and theoretically
with the absorption spectrum reported in Figure 3.11. This effective gap can be tuned by
changing the layer thickness and is primarily determined by the position of the C1 bottom edge
since the HH1 band width is less sensitive to layer thickness [9]. The HH1 band width is too
small which might be interpreted as it experiences a balanced effect between higher and lower
bands.

3.8.3.1 Density of States

The density of states counts the number of electronic states in the conduction or valence band
at a given energy E. It is a physical quantity which immediately depends on the band structure
of the material and is extremely important for the evaluation of a large number of macroscopic
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properties related to carriers transport. The general formula for the density of states can be
written as:

g(E) =
N(E)

Ω
=

1
Ω

∑
k′

δ
[
E −E

(
k′)] . (3.83)

where Ω = L3 is the material’s volume and N(E) denotes the number of states at energy E.
It is usually convenient to think of the E(k) as a continuous function and to integrate rather
than summing:

g(E) = Nk

∫
k

δ
[
E −E

(
k′)]dk. (3.84)

where Nk denotes the density of states in reciprocal k–space . As within nanostructures, carriers
can be confined in quantum wells, where they are free to move only in two dimensions, or in
quantum wires where they can only move in one dimension Nk have the general form:

Nk = 2× Ld

(2π)d , (3.85)

where L is the sample size, d the dimensionality (1, 2, or 3), and the factor of two accounts
for spin degeneracy. The integrals are then carried out in one, two, or three dimensions. The
integral given in Equation (3.84) can be solved analytically for some special cases. These
include the case of the single band effective mass model with isotropic parabolic dispersion.
For carriers in a bulk semiconductor (3D), Nk =

Ω

4π3 and g(E) per unit sample volume reads:

g(E)3D =
m∗√2m∗E

π2h̄3 . (3.86)

which goes as the square root of energy. For confined carriers, the density of states is altered.
For quantum well, which is a two-dimensional structure (2D), with n bound states, the density
of states shows a staircase form with height of the steps is a material constant but the their
position depends on the position of the discrete energy level En:

g(E)2D =
m∗

π h̄2 ∑
n

θ (E −En) . (3.87)

where θ(x) is the Heaviside function.
The density of states of a real band structure is very different from that obtained in the

parabolic approximation. In most other cases, Equation (3.84) can only be calculated numeri-
cally. In particular, this includes the case of all multi-band k· p models. To do this, the band
structure should be calculated first for each band not only in certain preferred directions, as for
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drawing a band diagram, but in all the Brillouin zone. Then, for a given energy E, we search in
k –space, the energies Ek of the band structure equal to E. To obtain a resolved density of states
in energy space a high number of k points are required for the evaluation of Ek. Therefore an
interpolation schemes has been used to reduce the number of Brillouin zone points where Ek is
evaluated. We obtain the density of states shown in Figure 3.10 by add contributions from all
the available states of the band structure:

Figure. 3.10 (Right):Band dispersion of InAs/GaSb 44 Å/21 Å T2SL and (Left) the corre-
sponding Density Of States (DOS) function.

The real DOS shows step-like behaviour at each miniband minima and sharp peaks at the
miniband maxima due to the finite width of the minibands.

3.8.3.2 Absorption Spectrum

The absorption spectrum at photon energy h̄w is derived from Fermi’s golden rule as:

α (h̄w) =
4π2e2

nrcε0m2
0wLS ∑

n,m
∑
kt

|⟨Ψnkt |ê ·P|Ψmkt ⟩|
2

× [ f n
c (kt)− f m

v (kt)]×L(kt , h̄w) (3.88)
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where ε0 and C are the speed of light and permittivity in a vacuum, and nr and L are the
refractive index and the thickness of the superlattice, respectively. f n

c and f m
v are the Fermi

functions for the mth valence sub-band with an energy Em
v and the nth conduction sub-band

with an energy En
c , respectively, given by:

f n
c (kt) =

1

1+ exp
En

c (kt)−Fn

KBT

(3.89)

f m
v (kt) =

1

1+ exp
Em

v (kt)−Fm

KBT

(3.90)

To account for different scattering relaxations causing finite transition linewidth, a normal-
ized Gaussian or Lorentzian L(kt , h̄w) distribution function with a broadening γ parameter can
be chosen. The summation over kt takes into account the spin degeneracy. The calculation of
the optical transition matrix elements ⟨Ψnkt |ê ·P|Ψmkt ⟩ between the hole sub-bands and the
electron subbands for TE (e⊥ẑ)- or TM (e ∥ ẑ)-polarized optical beams requires the evaluation
of a dense 8×8 momentum matrix P:

P8×8 =
m0

h̄
∇kH (3.91)

Then, the final expression for the momentum matrix elements reads:

⟨Ψnkt |ê ·P|Ψmkt ⟩= ê · ∑
µ,µ ′

∫
Fn∗

µ (kt ,z)
[m0

h̄
∇kHµ,µ ′

]
Fm

µ ′(kt ,z)dz (3.92)

To accelerate the evaluation of these elements, the derivatives of the Hamiltonian elements
are calculated explicitly in terms of spinor envelope components and are given in Appendix
5. Using Equations (13) and (14), the average time required to calculate the matrix element
of a single transition at a given in-plane wavevector is reduced from 7 s to 0.7 s compared to
the direct Hamiltonian derivation method. Figure 3.11 shows the total absorption spectrum for
nine-period InAs/GaSb 44 Å/21 Å type II superlattice using both kind of boundary conditions.
The cutoff energies for different types of interband transitions are consistent with the effective
band gaps between different sub-bands predicted in Figures 3.6 and 3.8. The maxima observed
in Figure 3.11 of around 550 meV indicate a large wavefunction overlap of around this energy
value due to larger in-plane wavevector states’ contributions, where the hole dispersions
are neither parabolic nor isotropic. Figure 3.12 shows the largest envelope function spinor



3.8 Simulation Results and Discussion 86

component dependent on in-plane wavevectors near the LH1 miniband. Clearly, the in-plane
states’ contributions are high to produce the absorption maxima.

Figure. 3.11 The absorption spectrum for nine-period InAs/GaSb 44 Å/21 Å type II superlattice
using both kind of boundary conditions at room temperature. The specific inter-miniband
transitions contributing to the shown total absorption are explicitly indicated.
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Figure. 3.12 The dependence of the light hole envelope function spinor component on in-plane
wavevectors near the LH1 miniband for nine-period InAs/GaSb 44 Å/21 Å type II superlattice.

The strong coupling among the valance bands are indicated by the Spin orientation, i.e the
spin expectation value ⟨σ⟩ for the Light–Hole band presented in Figure 3.13 for the kxky plane.

Figure. 3.13 The Spin Texture in the kxky plane for the Light–Hole band in nine-period
InAs/GaSb 48 Å/22 Å type II superlattice.
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To clarify the sensitivity to the input parameters in Figure 3.14, the absorption spectrum for
different Valence Band Offset (VBO) values is calculated. As could be inferred from Figure 3.14,
an increase of InAs/GaSb superlattice’s VBO from 510 meV to 575 meV leads to an increase
of the absorption coefficient. Such a sensitivity indicates that the type II superlattice structure
should be properly designed to achieve maximum quantum efficiency in real devices such
as infrared detectors. In addition, for the LWIR window, a shift of nearly 1 m in the cutoff
wavelength is due to 5 meV change in the VBO. Our calculations show that the LWIR cutoff
wavelength is in a good agreement with the experimental data from reference [36].

Figure. 3.14 Calculated total absorption spectrum for nine-period InAs/GaSb 48 Å/22 Å type II
superlattice for different Valence Band Offset (VBO) values. The periodic boundary condition
is used.

There exists a further complication with InAs/GaSb superlattices. Although the separation
of the confined states and minibands can be tuned to a desired IR windows by adjusting the
InAs and GaSb layer thicknesses, it was found that the physical and optical properties and
device performance depend critically on the composition and structure of interfaces formed at
the heterojunctions. Recent studies demonstrated that the interface InAs/GaSb is not always
abrupt and in fact has chemical asymmetries in compositional profile due to segregation of Sb
and In atoms at the interfaces [52, 76]. This segregation leads to the formation of unintentional
interfaces (IFs) with different composition configurations. For InAs/GaSb SLs, IFs often turn
out to be InSb-like or GaAs-like. Previous studies modeled IF’s effect either by fine-tuning
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the VBO values or the use of an interface potential profile (short-range delta function potentials
centered at the interface [124] and graded or asymmetric interface [39, 66]). However, these
approaches miss the effect of the intrinsic strained property of IFs on the electronic structure
and the optical properties. The most successful approach is to insert InSb layers to account
for large IFs lattice mismatch and the strain effect. A structure with an IF layer is obtained by
introducing an interface InSb layer between InAs and GaSb on both sides, while the thickness
of one superlattice period is kept fixed. The change in the fundamental effective gap as a
function of the number of periods N are plotted in Figure 3.15 for InAs/GaSb 44 Å/21 Å SL
without and with InSb IF layer forced at 1.2 Å.

For small number of periods, the effective gap exhibits a strong variation, which indicates
the quantum mechanical interaction and the start of miniband formation, while, for a higher
number of periods, the effective gap tends to converge to the fundamental minibands gap of
the superlattice. For very small periods, the large scatter of eigen energies is a signature of
the single quantum well confinement. The presence of InSb IF layer induces a decrease in the
effective energy about 25%. This is because the valence band state energies are shifted upward
due to the presence of hole states in InSb layer lying in a higher level than those in InAs and
GaSb, whereas this effect is negligible with conduction band states since these states in InSb
are in between the corresponding ones in InAs and GaSb. The overall effect of including IF
layers on the HH miniband is minor with an upward shift less than 6 meV. It is suggested that
this upward shift of HH miniband with respect to LH miniband, results in the reduction or
suppression of the Auger recombination process. The absorption coefficients with effect of
interfacial layers taken into account are shown in Figure 3.16 indicating an increasing shift in
the cut-off wavelengths with IF layers thickness.
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Figure. 3.15 Variation of the inter-miniband band transition energies at kx = ky = 0 with the
number of periods for InAs/GaSb 44 Å/21 Å type II superlattice. The HH1-C1 and LH1-HH1
transitions are denoted by brown and mauve shaded zones, respectively. The effect of including
InSb interfacial layers are also shown (left). The blue square markers are energies of states
above the bottom of C1 miniband edge and below the top of LH1 miniband edge, while those
at middle are for HH1 miniband. The value used for VBO is 560 meV.
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Figure. 3.16 Effect of InSb interfacial layers on the modeled total absorption spectrum for
InAs/GaSb 44 Å/21 Å type II superlattice grown on GaSb substrate.

3.9 Summary

In this chapter, an efficient, accurate and rigorous model for the overall band structure calcula-
tion based on the k· p approach is presented and tested for cubic zincblende bulk semiconductor
materials as well as for their quantum heterostructures. These modeling tools are useful for the
design of optoelectronic devices and the estimation of their performance. The tools include
different k· p Hamiltonian formulations namely: 14 × 14, 8 × 8, 6 × 6, 4 × 4, and single
band non-parabolic model. These models take into account the strain effects and can be in-
voked easily within the modeling steps. The results of the using a non-parabolic model are in
excellent agreement with published data. The predicted cutoff energies for different types of
interband transitions are consistent with the calculated band dispersion curves of InAs/GaSb
Type II broken gap superlattice and demonstrate excellent agreement with the experimental
data reported in [36]. Our modeling shows that the IF’s lattice mismatch and induced strain
yields a significant increase in the absorption coefficient as well as in cut-off wavelengths. As a
result, a wide tunable range of optical properties can be obtained with IF layers. Finally, the
model can be extended easily to cover materials belonging to wurtzite crystal symmetry just by
generating the correct Hamiltonian.



Chapter 4

Design and modelling of Barrier Infrared
Detectors based InAs/GaSb type II
superlattice

4.1 Introduction

Different semiconductor material systems are being invested into new quantum infrared pho-
todetectors using different architectures. The material list includes bulk InAs, InSb, InAsSb,
InGaAsSb, InAsPSb, and engineered materials HgCdTe (MCT), and InAs/GaSb, InAs/InAsSb,
and InAsSb/InSb type-II superlattices. This investments has spurred by the limitation of the
unmatched superior performance HgCdTe material: cryogenic operating temperature (less than
150 K for MWIR and 77 for LWIR), bulky and costly cryogenic coolers for high operating
temperature, extremely expensive growing material processes and lack of native passivant oxide
(CdTe for MCT). All of these new detector architectures being based on III-VI materials they
can take benefit of existing III-VI processing techniques, utilizing inexpensive large diameter
lattice matched substrates and as such are considerably cheaper than HgCdTe. Moreover,
engineering the bandgap of these structures require the use of sophisticated MBE machines
which delayed the development of these technologies until only within the last 15-25 years.
Among these detector architectures, some have the potential to offer reduced dark current,
higher operating temperature or multi-spectral detection.

The standard Infrared photodetectors technology is based on a conventional photodiode
architecture in which an n-type absorber layer is surrounded by substrate from one side and by
a p-type cap layer on the other side. Upon the absorption of a photon after passing through the
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substrate into the n-type absorber layer a single electron-hole pair will be created. The electron
will then drift under the effect of electric field to the n-contact and the hole will diffuse towards
the cap layer where it will be collected by the p-contact. This process results in a measurable
photocurrent. In fact, the contribution due to drift in the absorber region is significantly less
than diffusion since all of the voltage is dropped across the depletion region.

Unfortunately, the photodiodes performance is notably inhibited by a relatively large
dark current due to generation-recombination trap assisted current (G-R), diffusion current and
surface leakage current. Fortunately, a very high quality HgCdTe lattice matched epitaxial layers
can be engineered to significantly minimize G-R dark current component. The diffusion dark
current component due to fundamental Auger and radiative recombination mechanisms can only
be minimized through cooling to cryogenic temperatures as stated previously to subsequently
improve the signal to noise ratio. The surface leakage current is minimized through properly
passivating the detector surface though it is weakly temperature dependent. Nearly ideal
performances with diffusion limited behaviour can be reached at cryogenic temperatures by
HgCdTe photodiodes grown on lattice matched CdZnTe substrates and passivated with CdTe
[67, 109]. InAsSb photodiodes with a 9% Antimony content is lattice matched to GaSb
substrate face similar problems which also require cooling. However, at very low temperatures
below 100 K they exhibit a strong dominant G-R current and there are no additional benefits
from further cooling. Therefore, it is very desirable to devise a new detector architectures that
allow for much higher operating temperatures (≥ 140 K) while reducing the diffusion current
and to avoid costly cryogenic cooling.

In the 2000s, (Klipstein, 2003 [55]; Maimon and Wicks, 2006 [78]) introduced a new
type of quantum infrared photodetector with an aim to increase the operating temperatures
and in some cases suppressing surface leakage dark current. This new type of detectors is
now referred to in the literature as nBn [78], pBp [77], XBn [56] and CBIRD [135, 137]
Barrier detectors. The original idea goes back to a patent in 1987 in which White [2] coined
a method for improving photoconductor impedance without inhibiting quantum efficiency.
This is accomplished by implementing into the device structure a thin wide bandgap barrier
layer having ideally zero valance band offset with the absorber in order to impede the flow of
majority carriers without blocking minority carriers. Due to the ability to block one carrier
type while allowing the unimpeded flow of the other, this new type of detectors also coined the
term unipolar barrier detector. Unipolar barrier infrared photodetectors have been implemented
in a variety of semiconductor material systems including the list mentioned at beginning of
this chapter. Among different type of Unipolar barrier-based devices, the nBn barrier detector
is the most popular one which will be simulated in this work. This detector typically consists
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of a narrow-gap n-type Absorber Layer (AL), a wide-gap depleted Barrier Layer (BL), and a
narrow-gap n-type Contact Layer (CL). By blocking the electron flow by BL, the holes becomes
the dominant source of current. Therefore, the nBn detector operates as a unipolar unity-gain
minority carrier device. A key benefit of the nBn architecture is that, for a wide range of
design parameters, there is no depletion region in the narrow-gap layers, thereby eliminating the
space-charge G-R dark currents that have plagued conventional InAs and InAsSb homo-junction
photodiodes and severely limited their applicability for high sensitivity requirements to lower
temperatures. Another key benefit of the nBn architecture is self-passivation. Moreover, from
experimental point of view, the III-VI nBn is considerably less expensive and much easier to
fabricate than MWIR HgCdTe photodiodes.

Despite of the considerable experimental development effort invested into such new quan-
tum infrared detectors, theoretical understanding of the physics underling this new devices and
design guidelines is still lacking. In these respect, an accurate simulation of these engineered
devices is an important requirement for the development process. Simulations can speed up
design and optimization of the device structure without actually manufacturing each possible
option. Moreover, the simulation results can be useful in elucidating underlying physical
mechanisms and predicting device performance parameters which are not readily measurable.
Consequently, I developed a second numerical modelling tool intended to study and analyze the
operation of barrier detectors and to optimize their performance under dark and illumination
conditions. The simulation model is dedicated to handle III–V materials and their combination.
A number of free and commercial software packages have been developed and extensively used
to simulate semiconductor devices. The free one-dimensional software usually lack advanced
physical models encountered in engineered materials and most of them designed for homo-
junction devices. Two-dimensional commercial software such as SILVACO ATLAS are less
common, but are necessary for describing lateral effects. Silvaco ATLAS has been effectively
used for the simulation of various types of devices based on traditional materials. However, it
provides little built-in support for relatively new engineered material such as SLs due to a lack
of proper understanding and availability of associated physical models and parameters. In this
chapter, an effort is made to model and simulate the carriers transport within different infrared
barrier detector using my second modelling tool and examine the effects of bias, contact doping,
minority carrier lifetime, absorber doping and barrier doping on the dark current characteristics
of barrier detectors

This chapter is organized as follows: Section 4.2 details the physical transport model
implemented by the tool including the different current mechanisms affecting the operation
of the device, the optical characteristics and the approach used to calculate some of infrared
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detector figures of merits that should be given some specific care. Section 4.3 reviews the
numerical model used to solve the equations of the transport model employing the required
boundary conditions. This requires solving self-consistently the transport equations. The
meshing techniques that ensures the convergence of the solution strategy is also presented.
Section 4.4 focuses on the choice of material models used in this chapter. Section 4.5 validate
the output of the developed tool with published results on GaAs/AlGaAs and Cds/CdTe
heterostructurse based devices. Sections 4.6, 4.7 cover the numerical simulation of infrared
detectors using the techniques outlined in section 4.2 and section 4.3. In section 4.6 the
numerical simulation of InAs/InAsSb/AlAsSb nBn infrared detectors is performed to study
the underlying physics including the factors that contribute to the dark current and quantum
efficiency, as well as the effect of the doping in the wide-gap barrier layer. Finally, section 4.7
is devoted to design and theoretically evaluate the performances of InAs/GaSb T2SL barrier
infrared detectors for LWIR spectral windows.

4.2 Physical Transport Model

As the quantum detectors studied in this work are mainly composed of strongly coupled
superlattices, which results in miniband dispersion, a fully quantum transport modelling is
ideally the best option to study carriers transport across the whole device. However, such a
general theory is not available yet, only for simple case where the scattering of carriers are
usually neglected though the involved calculations and the numerical computation remains quite
tedious and time consuming [141, 140]. These simple quantum transport approach are derived
using density-matrix theory [115] or nonequilibrium Green functions [65], the master-equation
approach [29], or Wigner functions [15] under a large number of simplifying approximations:
high temperature limit, neglecting broadening, low, medium, and high bias ect. Moreover the
extension of these models to 2D or 3D adds another degree of complexity. A very elementary
quantum transport theory has been provided by Esaki and Tsu in their pioneering paper [26] in
which they derived a simplified version for the average drift velocity of carrier under an applied
electric field. Furthermore, even if one starts from more advanced models, it remains extremely
complicated to tackle the problem due to the complex band structure behaviour.

An alternative approach based on macroscopic description of semiconductors with nonuni-
form composition is available and known in the literature as Drift-Diffusion transport model
(DD). This model is implemented in our tool and can be derived based on an approximate
solution of the semi-classical Boltzmann’s Transport Equation (BTE). A direct solution of
the full BTE is challenging computationally, particularly when combined with applied fields.
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Overall, the DD transport model still persistent to this date to be the only model able to simulate
large structures and compute carrier transport in actual semiconductor devices (including solar
cells, transistors, light-emitting diodes, or detectors ) with a computational time compatible with
optimization and design [71]. The formulation of the DD model describes heterostructures by
conservation equations for the electric charge ρ(x) and for the hole and electron concentrations,
p(x) and n(x). These are the electron and hole continuity equations coupled with Poisson’s
equation to be solved in the DD analysis:

∇ · [ε∇φ ] =−ρ = q
(

p−n+N+
D −N−

A +ρfix
)

(4.1)

∂n
∂ t

=+
1
q

∇ ·Jn +Gn −Rn, Jn =+qDn∇n−qµnn∇φn (4.2)

∂ p
∂ t

=−1
q

∇ ·Jp +Gp −Rp, Jp =−qDp∇p−qµp p∇φp (4.3)

where

ε : position dependent dielectri constant
[
Fcm−1]

φ : electrostatic potential [V]

q : elemental charge [C]
p : hole density

[
cm−3]

n : electron density
[
cm−3]

N+
D : ionized donor density

[
cm−3]

N−
A : ionized acceptor density

[
cm−3]

ρfix : charge density from traps and fixed charge density
[
CΩcm−3]

Gn,p : electron/hole generation rate
[
cm3s−1]

Rn,p : electron/hole recombination rate
[
cm−3s−1]

µn,p : electron/hole mobility
[
cm2V−1s−1]

Dn,p : electron/hole diffusion constant
[
cm2s−1]

(4.4)

4.2.1 Poisson’s Equation

Poisson’s equation relates the carrier concentrations to the electrostatic potential and counts for
band bending due to the redistribution of charge carriers:

∇ · [ε(x)∇φ(x)] =−ρ(x) (4.5)
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where φ(x) denotes the electrostatic potential, ε(x) is the position dependent dielectric
tensor which reflects nonuniform material composition, and ρ(x) is the charge density. The
charge density is consisted of holes p(x), electrons p(x), ionized donors N+

D (x), ionized
acceptors N−

A (x), and fixed charges ρfix(x) as follow

ρ(x) = e
[
p(x)−n(x)+N+

D (x)−N−
A (x)+ρfix(x)

]
(4.6)

Possible contributions to the fixed charges are due to fixed surface and volume trap charges
as well as polarization charges ρpol(x) due to piezo– and pyroelectric polarizations thought our
structures does not exhibit such charges. To obtain the unique solution of the Poisson equation
external boundary conditions are required to be specified at the boundaries of simulation
domain. In our structures these are provided by the top and bottom contacts. The application
of the boundary conditions for the electrostatic potential will be discussed in the subsequent
sections in combination with the boundary conditions for the charge density.

In the standard DD transport model, the charge carrier densities n(x) and p(x) are calculated
according to Thomas-Fermi approximation by:

n(x) = ∑
i∈CB

Ni
c(T )F1/2

([
−E i

c(x)+qφ(x)+Fn(x)
]
/kBT

)
(4.7)

p(x) = ∑
i∈VB

Ni
v(T )F1/2

([
E i

v(x)−qφ(x)−Fp(x)
]
/kBT

)
(4.8)

The summations run over the included valence and conduction bands, respectively, however
one band is usually chosen. Here, E i

c(x) and E i
v(x) denote the position dependent band edges,

Fn and Fp are the quasi-Fermi levels for holes and electrons respectively, F1/2 denotes Fermi-
Dirac integral of order 1/2 which reduces to Boltzmann distribution for non-degenerate case,
Ni

c(T ) and Ni
v(T ) are the equivalent densities of states at the valence and conduction band

edges. They are given by

Ni
c(T ) = gi

c

(
mi

dos,e(x)kBT

2π h̄2

)3/2

(4.9)

Ni
v(T ) = gi

v

(
mi

dos,h(x)kBT

2π h̄2

)3/2

(4.10)
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where mi
dos,e(x) and mi

dos,h(x) are the effective density-of-states masses for electrons and
holes in the various valence and conduction bands. These density-of-states masses are calculated
from the effective mass tensors m∗i

e and m∗i
h according to

mi
dos,e(x) = (det m∗i

e )
1/3 (4.11)

mi
dos,h(x) = (det m∗i

h )
1/3 (4.12)

Likewise, expressions for the densities of ionized impurities can be derived in the context of
the Thomas-Fermi approximation. For the ionized donors and acceptors the resulting formulas
are given by

N+
D (x) = ∑

i∈Donors

Ni
D(x)

1+gi
D exp

(
+
[
Fn(x)−E i

D(x)
]
/kBT

) (4.13)

N−
A (x) = ∑

i∈Acceptors

Ni
A(x)

1+gi
A exp

(
−
[
Fp(x)−E i

A(x)
]
/kBT

) (4.14)

where

E i
D(x) = Ec(x)−qφ −∆E i

D,ion(x) (4.15)

E i
A(x) = Ev(x)−qφ −∆E i

A,ion(x) (4.16)

The summation in Equations (4.13) and (4.14), runs over all different existing donors and
acceptor levels. Each type of donors or acceptor is characterized by its ionization energy
∆E i

D,ion(x) or ∆E i
A,ion(x), degeneracy gi

D or gi
A respectively. The most accepted impurity

degeneracies in literatures are gD = 2 for donors and gA = 4 for acceptors.

4.2.2 Current Continuity Equations

If an external bias is applied to the contacts of a device, the system is driven out of equilibrium
and an electrical current may be generated between the contacts. In this situation charge
distribution in general does not follow the Fermi-Dirac statistics. In the limit of semi-classical
treatment, the non- equilibrium distribution function is obtained by solving the BTE. The BTE

describes the space, phase and time evolution of a particle using a probability density function.
It consists of terms due to drift, diffusion and scattering and is given by:
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∂ f (x,k, t)
∂ t

+
Fext

m
·∇v f (x,k, t)+v ·∇x f (x,k, t) =

(
∂ f (x,k, t)

∂ t

)
collisions

(4.17)

where

f (x,k, t) : non-equilibrium distribution function
depending on location, momentum, and time

Fext : contribution of all external forces acting on the system
(Fext/m) ·∇v f (x,k, t) : contribution due to drift

v ·∇x f (x,k, t) : contribution due to diffusion
(∂ f (x,k, t)/∂ t)collisions : contribution due to carrier scattering

(4.18)
Note that f (x,k, t) is simultaneously a function of both position and momentum. Therefore,

(4.17) is strictly classical as it assumes position and momentum are simultaneously known,
which violates the Heisenberg uncertainty principle. Therefore, the BTE cannot be used to
described quantum mechanical effects and only provides a macroscopic view of the system.
The semi-classical nomination mentioned earlier stem from the case when the collisions’ term
is evaluated quantum mechanically.

The DD current continuity equations can be derived by first approximating the BTE using the
relaxation-time approximation in which the scattering term (∂ f (x,k, t)/∂ t)collisions is assumed
to be inversely proportional to a characteristic time τ that characterizes the mean free time
between collisions. Then equation (4.17) reduces to:

∂ f
∂ t

+
Fext

m
·∇v f +v ·∇x f =− f − f0

τ
(4.19)

where f0 is the equilibrium distribution function. The arguments from f (x,k, t) are dropped
for convenience. The time τ represents the average time in which the system, through collisions,
relaxes from its non-equilibrium state to its equilibrium state. Secondly, by solving for the
zeroth and first moments of Equation (4.19) the continuity equation and an expression for
the current density can be obtained. Taking into account holes and electrons, the continuity
equations at steady state are given by
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−1
q

∇ ·Jn(x) = +U(x) (4.20)

−1
q

∇ ·Jp(x) =−U(x) (4.21)

where Jn(x) and Jp(x) are the current densities for holes and electrons, respectively. The
two equations are coupled in terms of generation and recombination processes that are both
included in U(x) = G(x)−R(x). Depending on the sign of U(x) either generation (U(x)< 0)
or recombination (U(x) > 0) is dominant. The current densities that result from the first
moment of the Boltzmann equation are given

Jn(x) = +qDn(x)∇n(x)−qµn(x)n(x)∇φn(x) (4.22)

Jp(x) =−qDp(x)∇p(x)−qµp(x)p(x)∇φp(x) (4.23)

The nonuniform material within these equations is described by the position-dependent
band parameters Vn and Vp for conduction and valence bands respectively and are related to φn

and φp by the electrostatic potential φ :

φn = φ +Vn (4.24)

φp = φ −Vp (4.25)

qVn = χ(x)−χr + kBT log
[

Nc(x)
Ncr

]
(4.26)

qVp =−(χ(x)−χr)− (EG(x)−EGr)+ kBT log
[

Nv(x)
Nvr

]
(4.27)

where Nc(x) and Nv(x) are the position-dependent effective densities-of-states for conduc-
tion and valence bands respectively, and EG(x) is the bandgap. The parameter χ(x) (which
may differ from the electron affinity is the difference between the conduction band edge and
an internal reference energy. The subscript r refers to the values of the various parameters at
a reference location within the heterostructure. It should be noted that in writing Vn and Vp

Boltzmann statistics are assumed. When Fermi-Dirac statistics are employed, they also depend
on the carrier concentrations n(x) and p(x) and need to be redefined.
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4.2.3 SuperLattice in the DD Transport Model

Superlattices have been investigated in previous chapter in the context to tailor the absorption
coefficient and band structure in quantum infrared photodetectors to their optimum values. In
designing T2SL detectors, a band structure calculation is then performed first for calculating the
conduction and valence band profiles for every SLs layer required to form detector structures.
From the perspective of the DD transport model, the actual bandgap and electron affinity of
each SL layer is not the same as for the bulk materials constituting the SL. Therefore to model
T2SL detector structures, effective masses and bandgaps and other transport parameters for
the superlattice regions are extracted from the band structure calculations described above.
Device transport simulation is then performed by replacing the superlattices with effective bulk
materials assigned these properties. The resulting band profiles used to solve the transport
equations in a bulk-like fashion are shown in Figure 4.1 While for some extracted parameters
there is an accepted agreement between the theoretical and experimental results, more feedback
from the experimental results (if available) is always favourable for further improvements.

Figure. 4.1 Schematic view of the InAs/GaSb T2SL miniband edges illustrating the effective
bulk material approach.
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4.2.4 Boundary conditions

To complete the physical model description, boundary conditions on φ , n, and p need to be
specified. The two most important types of boundary conditions are the Dirichlet and the Von
Neumann boundary conditions. Generally, for a given domain Ω with boundary ∂Ω, these are
given by

φ(x)|x∈∂Ω
= f (x) (Dirichlet boundary condition) (4.28)

and
∂nφ(x)|x∈∂Ω

= g(x) (Von Neumann boundary condition) (4.29)

where n denotes the normal to ∂Ω and f (x) and g(x) are given functions defined on ∂Ω.
For semiconductor devices simulation, Dirichlet boundary condition applies for Ohmic as
well as for ideal Schottky contacts. In our work, the boundary condition are just two points:
x = 0 at the bottom contact and x = L at the top contact where L represent the thickness of the
device. As default options, our tool uses ideal ohmic contacts for which we invoke space-charge
neutrality and assume equilibrium which enables us to solve ρ(x) = 0 for φ eq at x = 0 and
x = L. The boundary conditions for p and n are then obtained from Equations (4.7) and (4.8),

φ = φ
eq (4.30)

n = neq (4.31)

p = peq (4.32)

This in fact means that the contacts is at thermodynamic equilibrium with infinite surface
recombination velocity. For Schottky barriers, the equilibrium contact potential is given by

qφ
eq =−φB − (χ −χr)+

Egr

2
− kBT

2
log
(

Ncr

Ncr

)
(4.33)

where φB is the barrier height at the metal contact. If a contact is biased, then the applied
voltage is added to it’s equilibrium potential.

Our tool also has an option for Von Neumann boundary conditions for which the following
formula is applied at a given contact:
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dφ

dx
= 0 (4.34)

Jn = 0 (4.35)

Jp = 0 (4.36)

In some cases it is desirable to simulate contacts with finite surface recombination velocities
for electrons and holes denoted respectively by Sn and Sp. In such cases the last two boundary
conditions are modified as follows,

Jn(0) = +qS0
n (n(0)−neq(0)) (4.37)

Jp(0) =−qS0
p (p(0)− peq(0)) (4.38)

Jn(L) =−qSL
n (n(L)−neq(L)) (4.39)

Jp(L) = +qSL
p (p(L)− peq(L)) (4.40)

4.3 Numerical model

The transport equations of the DD model give a quantitative description of the operation of
most semiconductor devices. Those are a sets of coupled Partial Differential Equations (PDEs)
in position space. The solution of these PDEs consists of computing the values φ(x), n(x),
and p(x) that satisfy the DD equations. Due to the high non-linearity of the problem, a
closed form solution does not exist only for simple and usually non-realistic situations. This
immediately requires their discretization on a grid which in turn involve subdivision of the
domain defined by the device into segments connecting nodes. This process is termed box
integration finite differences scheme (or just box discretization) represent the first step in
obtaining an approximate numerical solution to the problem. The following step consists of
approximating in a suitable way the solution inside each segment of the grid. Next, the partial
derivative operators in the system of PDEs are replaced by differential operators defined in terms
of the nodal values of the unknowns. Finally, the resulting system of algebraic equations is
solved for the nodal values of the unknowns. In this section I review the numerical techniques
used by our tool and provide some details of their implementation in one-dimension.
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4.3.1 Domain Box discretization

Box discretization belongs to a class of flux conservative schemes that are usually achieved
by subdivision of the computational domain into boxes surrounding the mesh nodes (see
Figure 4.2). As material discontinuities are naturally present in the simulation of nanostructures,
then Box discretization scheme is systematically adopted for our work. After meshing the
device domain, we integrate the DD PDEs over each box volume to obtain an integral equation
that is then discretized using the finite differences scheme.

Figure. 4.2 Representation of non-uniform spatial discretization using Box meshing method.

4.3.2 Discretization of Poisson’s Equation

The discretization of Poisson’s equation will be illustrated here using one-dimensional grid
shown in Figure 4.2. For this case, Poisson’s equation in (4.5) reduces to:

d
dx

(
ε(x)

dφ(x)
dx

)
=−ρ(x) (4.41)

We want to find an approximate solution for the electrostatic potential φ(x) at the grid node
xi, where xi is the ith element of the ordered set {x1,x2, · · · ,xNnodes}. For each is associated
a control box Vi =

[
xi− 1

2
,xi+ 1

2

]
where xi+ 1

2
= (xi+1 + xi)/2. We further define grid spacings

∆xi between neighboring where ∆xi = xi+1 − xi. To derive now a discretization for Equation
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(4.41) we proceed as follows: For each grid node we integrate Equation (4.41) over the control
volume Vi =

(∆xi+∆xi−1)
2 ×1×1:

∫
Vi

d
dx

(
ε(x)

dφ(x)
dx

)
dx =−

∫
Vi

dxρ(x) (4.42)

which gives (
ε(x)

dφ

dx

)
x

i+ 1
2

−
(

ε(x)
dφ

dx

)
x

i− 1
2

=−
∫

Vi

dxρ(x) (4.43)

In evaluating the RHS, the charge density ρ(x) is assumed to be constant over the segment
and equals the charge at node i. Similarly the dielectric constant ε(x) is assumed constant and
evaluated at the edges of the control volume. We now use finite differences to approximate the
first-order derivatives at the edges of the box:[

εi+ 1
2

φi+1 −φi

∆xi
− εi− 1

2

φi −φi−1

∆xi−1

]
=−ρ (xi)

[
xi+ 1

2
− xi− 1

2

]
(4.44)

Discretized Poisson’s equation now can be rewritten in a form suitable for matrix imple-
mentation:

εi+ 1
2

∆xi
φi+1 −

(
εi+ 1

2

∆xi
+

εi− 1
2

∆xi−1

)
φi +

εi− 1
2

∆xi−1
φi−1 =−ρiVi (4.45)

4.3.3 Discretization of Continuity Equations

The continuity equation for electrons expressed in the form of (4.20) is simplified for the
one-dimensional case as

− 1
q

d
dx

Jn(x) =U(x) (4.46)

Then, integrate over the control volume

− 1
q

∫
Vi

(
d
dx

Jn(x)
)

dx =
∫

Vi

U(x)dx (4.47)

which simplifies to

(Jn)i− 1
2
− (Jn)i+ 1

2
= qUiVi (4.48)

where (Jn)i− 1
2

and (Jn)i+ 1
2

are the normal (outgoing) current density evaluated at the left and
right edges of the box respectively. Defining the currents at the edges of boxes enforce current
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flux conservation (the current exiting one box side is exactly equal to the current entering the
neighboring box through the side in common).

Now we need a discretized expression for Jn. Recalling that

Jn(x) = +qDn(x)
dn(x)

dx
−qµn(x)n(x)

dφn(x)
dx

(4.49)

and assuming a Linearized interpolation schemes for the charge density between two nodes Jn

can then be rewritten as

(Jn)i+ 1
2
=+qDn,i+ 1

2

ni+1 −ni

∆xi
−qµn,i+ 1

2
ni+ 1

2

φi+1 −φi

∆xi
(4.50)

(Jn)i− 1
2
=+qDn,i− 1

2

ni −ni−1

∆xi−1
−qµn,i− 1

2
ni− 1

2

φi −φi−1

∆xi−1
(4.51)

where ni , φi, and ni+1 , φi+1, and ni−1, φi−1 are the electron density and electrostatic
potential at the nodes i, i+1 and i−1 respectively. This scheme can lead to substantial errors
in regions where the variation in the potential is high. An alternative famous approach known
as the Scharfetter-Gummel scheme has provided an optimal solution to this problem. In this
scheme the rapidly varying carrier concentrations are far better approximated with exponential
functions rather than low order polynomial functions. Consequently, the possibility of obtaining
non-physical negative carrier density is greatly reduced or totally eliminated with suitable mesh
spacing. To derive the discretized form of Jn using Scharfetter-Gummel, begin by multiplying
both terms of (??) by exp(φ(x)

VT
) where VT = kBT/q and the sub-index n of φn is dropped for

convenience.

Jn exp
(
−φ(x)

VT

)
= qDn

[
exp
(
−φ(x)

VT

)
∂n
∂x

− n
VT

exp
(
−φ(x)

VT

)
∂φ

∂x

]
= qDn

[
∂

∂x

(
nexp

(
−φ(x)

VT

))] (4.52)

Then, integrating between xi and xi+1

∫ xi+1

xi

Jn exp
(
−φ(x)

VT

)
dx = qDn

[
nexp

(
−φ(x)

VT

)]xi+1

xi

= qDn

[
ni+1 exp

(
−φi+1

VT

)
−ni exp

(
− φi

VT

)] (4.53)
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then by assuming Jn constant along the segment we find

Jn = qDn

 ni+1∫ xi+1
xi

exp
(

φi+1−φ(x)
VT

)
dx

− ni∫ xi+1
xi

exp
(

φi−φ(x)
VT

)
dx

 (4.54)

Now we assume that φ varies linearly between mesh points,

φ(x) =
φi+1 −φi

(∆xi)
(x− xi)+φi (4.55)

Jn =
qDn

∆xi

ni+1
(φi −φi+1)/VT

1− exp
[
−
(

φi−φi+1
VT

)] −ni
−(φi −φi+1)/VT

1− exp
[
+
(

φi−φi+1
VT

)]


=
qDn

∆xi

{
niB(∆i,i+1)−ni+1B(−∆i,i+1)

} (4.56)

where ∆i,i+1 = (φi −φi+1)/VT and

B(x) =
x

exp(x)−1
(4.57)

is the Bernoulli function. Similar expression can be found for the holes current equation,

Jp =−
qDp

∆xi

{
piB(−∆i,i+1)− pi+1B(∆i,i+1)

}
(4.58)

Finally, substitution of the discretized current equations for electrons (??) and holes (??)
into their respective continuity equations yields the following discretized form of the later
which must be solved together with discretized Poisson’s equation at every node in the mesh by
our tool

1
∆xi−1

Dn,i+ 1
2
B
(

φi+1 −φi

VT

)
ni+1

−
[

1
∆xi−1

Dn,i− 1
2
B
(

φi −φi−1

VT

)
+

1
∆xi

Dn,i+ 1
2
B
(

φi −φi+1

VT

)]
ni

+
1

∆xi
Dn,i− 1

2
B
(

φi−1 −φi

VT

)
ni−1

=UiVi (4.59)
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Table 4.1 Normalisation constants used to renormalise equations and variables.

Quantity Symbol Expression Unit

Density C0 1019 cm−3

Energy VT kBT eV
Length LD

√
ε0kBT/(q2C0) cm

Mobility µ0 max µ(x) cm2/(V · s)
Time t0 ε0/(qµ0C0) s
Gen. rate G0 C0µ0kBT/

(
qL2

D
)

cm−3 · s−1

Current J0 µ0C0kBT/LD A/cm2

1
∆xi−1

Dp,i+ 1
2
B
(

φi −φi+1

VT

)
pi+1

−
[

1
∆xi−1

Dp,i− 1
2
B
(

φi−1 −φi

VT

)
+

1
∆xi

Dp,i+ 1
2
B
(

φi+1 −φi

VT

)]
pi

+
1

∆xi
Dp,i− 1

2
B
(

φi −φi−1

VT

)
pi−1

=UiVi (4.60)

Linear interpolation schemes is assumed to determine the edge point values for the diffusion
coefficient or equivalently carrier mobility as they are related by Einstein’s relation Dn,p =

kBT µn,p/q (as long as this relation is valid).

4.3.4 Numerical techniques

4.3.4.1 Renormalization Of Variables

Due to the limited precision of computers and hence to avoid underflow/overflow in numerical
calculations, the descretized DD transport equation need to be renormalized using the nor-
malisation constants listed in Table 4.1 before they are implemented in a computer code. In
this respect, quantities such as carrier concentrations are renormalised by the intrinsic carrier
concentration of a reference material or by relatively large value, the electrostatic potential φ is
renormalised by the thermal voltage VT and the electric field is renormalised by VT/LD , where
LD is the Debye length defined in Table 4.1. Then, after obtaining the desired solutions the
real interested quantities are rescaled back to the original ones using the same normalisation
constants.
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4.3.4.2 Solution Methods

The first step to implement the descretized DD transport equations into a computer code after
providing the input quantities, is to discretize the simulation domain into a grid of points
or mesh. However there are limitations on the choice of mesh size which must be smaller
than the Debye length where one has to resolve charge variations in space. Generally, in
simulating planar heterostructures in the vertical direction, it is essential to mesh more finely at
heterojunctions and doping boundaries in order to properly capture the physics of the device.
Moreover, regions near contacts should be further refined to account for the perturbed carrier
dynamics caused by the presence of these contacts.

The discretization of DD transport equations transforms each equation into a system of
algebraic equations

Ax = b (4.61)

for all nodes of the mesh, where A is a non-singular N ×N matrix and b is a given right
hand side N ×1 column vector. These can also be written in residual form as,

Fφ

i (φ ,n, p) = 0 (4.62)

Fn
i (φ ,n, p) = 0 (4.63)

F p
i (φ ,n, p) = 0 (4.64)

These system of equations are coupled in terms of fundamental variables φ , n and p and
are nonlinear since the quantities ρ , Jn, Jp, and U involve nonlinear functions. Thus, it is not
possible, quite generally, to obtain a solution directly in one step, but a nonlinear iteration
method is required. The two famous schemes for solving these coupled set equations are the
Gummel’s iteration method and the Newton’s method. It is not an easy task to determine an
optimum strategy to find the solution, since this will depend on a number of details related
to the particular device under investigation. In Gummel’s iteration method, the equations are
solved using a decoupled procedure, in which one system of equations say Fφ

i (φ ,n, p) = 0 is
solved first using a guess for the φ 0(x), n0(x) and p0(x), then the resulting potential φ 1(x) is
used to solve electron and hole continuity equations to yields a new carrier distributions n1(x)
and p1(x). These procedure is iterated many times until a converged values is obtained. To
improve convergence, the nonlinear Poisson’s equation is usually linearised in terms of φis and
solved iteratively using Newton’s method. The non-linearity arises here from the non-linear
dependence of the density ρ on the electrostatic potential φ . In our tool, we adopted Newton’s
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method, therefore, equations (??), (??) and (??) are solved as a one block system of size
3N ×3N employing the Newton-Raphson algorithm. In this sense, after writing the problem
into that of finding the zero of a function F(φ ,n, p) = 0 as in (??), (??) and (??), I linearised
the equations by Taylor expansion in fundamental variables φ , n and p to give,

∂Fφ

∂φ

∂Fφ

∂n
∂Fφ

∂ p
∂Fn

∂φ

∂Fn

∂n
∂Fn

∂ p
∂F p

∂φ

∂F p

∂n
∂F p

∂ p

 ·
 δφ

δn

δ p

=

 Fφ

Fn

F p

 (4.65)

where the right hand side matrix is a short notation for a 3N ×3N block tridiagonal matrix,
ones solved for the corrections (δφ ,δn,δ p)T starting from an initial guess, we can estimate an
update values for the solutions φ , n and p,

φ
k+1 = φ

k +δφ (4.66)

nk+1 = nk +δn (4.67)

pk+1 = pk +δ p (4.68)

These operation is repeated many times until a converged solutions is obtained. The
Newton’s method offers advantages of fast convergence against high memory demand compared
to relatively slow convergence against less memory demand for Gammel’s method.

4.4 Extraction of parameters’ values

The devices structures studied in this work are actually a stack of different layers combining
bulk and SL materials. To conduct a successful modelling of these devices, precise material
parameter values must be specified. For binary materials and ternary or quaternary alloys, the
material properties are retrieved automatically from our tool’s database. The main sources of
database are from Vurgaftman’s paper. The data parameters includes among other parameters,
the energy bandgap, the electron and hole effective masses, the lattice constants and the elastic
constants. For SLs, being a relatively novel materials, it’s materials parameters are not readily
available in the literature. In fact, it is not practical to draw up an exhaustive list of parameters
values since the material properties might change with different superlattice designs. Therefore
in this work the main parameters of the SLs based layers are calculated using k· p band
modellings. This namely includes the bandgap, the effective electron and hole masses and
absorption coefficient and minibands alignments (effective affinities). In case experimental
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data are available, the bandgap is favourably determined from measured cut-off wavelength.
The electron and Hole mobility, SRH lifetimes, radiative and Auger rates were determined
following existing literature. Carriers mobilities and permittivity of superlattice structures were
calculated as a weighted average of binary bulk materials values constituting the superlattice.

4.5 Validation of the Modelling Tool

We first check the output of our modelling tool with published results by presenting two
illustrative applications. The first application simulates a simple p–GaAs/n–Al0.25Ga0.75As
abrupt heterostructure devices taken from [146] at different doping densities and bias. In the
second application we consider a n+CdS/p–CdTe heterojunction based prototype solar-cell
by simulating it’s quantum efficiency and band diagram. It is worth mentioning that sensible
comparison to published experimental results is usually not feasible since the measured data
depend strongly on the preparation of the devices and sometimes are intentionally hidden. If
own experimental measurements can be performed, a ’calibration’ of the modelling tool is
needed by adjusting the process-dependent material parameters (within a plausible physical
range) to reproduce the experimental results with the modelling tool. Therefore, a comparison
to published simulation results may be more sensible but the complete device dimension,
doping, etc are rarely given in full detail which, makes only a qualitative comparison sensible.

4.5.1 GaAs/AlGaAs Diode

The layers’ sequences of this device as shown in Figure 4.3 is consisted of an p-doped
GaAs layer with NA1 = 1017cm−3 followed by a n-type Al0.25Ga0.75As layer at different
doping density ND2. For the present application, the temperature-dependent model for material
parameters is taken into account for the energy bandgap, and electron and hole mobilities and
are given by:

Eg = 1.519−5.405×10−4 T 2

(T +204)
[eV] (4.69)

µn =
7200

[1+5.51×10−17 (ND +NA)]
0.233 ×

(
300
T

)2.3 [
cm2V−1s−1] (4.70)

µp =
380

[1+3.17×10−17 (ND +NA)]
0.266 ×

(
300
T

)2.7 [
cm2V−1s−1] (4.71)
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Table 4.2 Material parameters used in the simulation of GaAs/AlGaAs diode.

Parameter Symbol Expression Unit

Band gap Eg Eg GaAs +1.247x eV
Electron affinity χ 4.07−0.6 [Eg GaAs(x)−Eg GaAs] eV
Electron effective mass m∗

e (0.067+0.083x) m0
Hole effective mass m∗

h (0.48+0.31x) m0
Dielectric constant ε (13.1−3x) ε0
Electron life time τn 10−9 s
Hole life time τp 10−9 s

The temperature-dependence bandgap model also applies for AlGaAs material, and the
electron and hole mobilities are reduced by 12.7% and 6.7% per aluminium composition of 0.1
from the values in GaAs, respectively. The other material parameters used in this application
are given in Table 4.2.

The recombination–generation model is swished on only for Shockley Read-Hall model
with with single trap level at the middle of the gap. Furthermore, ideal Ohmic contacts are
assumed for device which are described by an infinite recombination velocity by our tool.
Moreover, the incomplete ionization of impurities is considered with acceptor ionization energy
∆EA = 0.026 eV in GaAs and donor ionization energy ∆ED = 0.018 eV in Al0.25Ga0.75As. A
non-uniform mesh is adopted for the structure and refined with a logistic map function centrared
at the junction interface as shown in Figure 4.3.

In the following the carrier transport across the heterojunction is investigated as a function
of doping and bias. When the device is forward biased, the conduction band edge of AlGaAs is
shifted upward (see Figure 4.4). With the decrease of energy barrier height, more electrons from
AlGaAs jump over the barrier. However, under the reverse bias condition, the electrons injected
from GaAs side see an abrupt energy barrier whose height is determined by the conduction
band discontinuity.

Figure 4.5, shows the conduction band edge of the n–GaAs/n–Al0.25Ga0.75As heterojunc-
tions for different doping density of ND2, at a reverse bias of −0.1 V. The shown electron
quasi-Fermi level is for the case of ND2 = 1016 cm−3. The figure indicates that at high doping
concentration, the snick of the conduction band approaches the Fermi-level while the energy
barrier width shrinks.

The current-voltage J(V ) characteristics of the p–GaAs/n–Al0.25Ga0.75As heterojunction
diode at T = 300 K is shown in Figure 4.6. At low applied forward-bias, the current is
dominated by the space charge recombination (SRH) current [J ∝ exp(qVBias/2kBT )]. Under
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Figure. 4.3 The device structures used for the first application. The mesh is also shown using
Right-Smoothed mesh mode at the junction interface. The doping density of the GaAs layer
is kept fixed while the AlGaAs doping density is varied. The heights of the shaded boxes
indicates the respective material bandgaps.

(a) Conduction band profiles at different Bias.
Black curves is for VBias = 0.

(b) Charge density at different Bias. Red curves
for electrons and blue curves for holes.

Figure. 4.4 Simulation results for p–GaAs/n–Al0.25Ga0.75 diode at different Bias.
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(a) Conduction band edges obtained by our tool. (b) After the original paper [].

Figure. 4.5 Calculated conduction band edges of the n–GaAs/n–Al0.25Ga0.75As diode at differ-
ent doping densities ND2 and under a Bias of −0.1 V.

reverse bias, the net flow across the junction is composed of a few minority carriers from each
region. For negative voltages beyond a −0.5 V , the J(V ) curves saturate, reminiscent of a
reverse biased diode behaviour. However, we note a slightly increase in the revere bias current
due to the expansion of the depletion region which is proportional to the magnitude of applied
voltage.

(a) J(V ) obtained by our tool. (b) J(V ) after the original paper [].

Figure. 4.6 Calculated J(V ) characteristics of a p–GaAs/n–Al0.25Ga0.75As diode for NA1 = 1017

cm−3 and ND2 = 1017 cm−3 at T = 300 K.

We conclude that the outputs of our modelling tool are in excellent agreement with the
published results.
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Table 4.3 Material parameters used in the simulation of CdS/CdTe Solor-Cell.

Parameter Symbol CdS CdTe Unit

Thickness L 25 4000 nm
Band gap Eg 2.4 1.5 eV
Electron affinity χ 4.0 3.9 eV
Electron effective mass m∗

e 0.02 0.3 m0
Hole effective mass m∗

h 0.06 0.29 m0
Dielectric constant ε 10 9.4 ε0
Electron life time τn 10 5 ns
Hole life time τp 10−4 5 ns
Electron mobility µn 100 320 cm2/(V · s)
Hole mobility µp 25 40 cm2/(V · s)

4.5.2 CdS/CdTe Solar-Cell

This is a simple heterojunction consisting of a thin n+-doped layer of CdS and a p-type CdTe
layer. The material parameters are shown in Table 4.3. The doping density was set to 1017 cm−3

for CdS layer and 1015 cm−3 for CdTe layer. For this example, we specify a finite recombination
velocities for electrons and holes at left and right contacts to be both equal 107 cm/s. Our tool
includes Shockley-Read-Hall, radiative, Auger, Band to Band, and Trap Assisted Tunnelling
recombination mechanisms. Here only the Shockley-Read-Hall mechanism is considered. This
application is choosen due to the similarity between detectors and solor-cells. The aim here is
to show the capability of the tool in calculating the spectral response as function of bias.

The evaluation of the device is made under the standard solar spectrum: air mass 1.5 direct
solar spectrum ( AM1.5D). Figure 4.7 shows the computed band diagram at different bias
and under dark conditions. The efficiency in CdTe/CdS solar cells mainly deteriorates due to
optical, electrical and recombination losses. In actual CdTe/CdS solar cells, the solar radiation
before reaching the photoelectrically active CdTe absorber layer passes through a glass plate,
a transparent conducting oxide (TCO) and then CdS window layer. Obviously, each pass
is accompanied by optical losses due to reflection at all interfaces. In this calculation, the
transmission thought all interfaces before CdTe layer is assumed to be equal unity. Figure 4.8
shows the computed Quantum efficiency of CdS/CdTe solar cell at different applied voltages.

As expected, there is a reduction in quantum efficiency at higher voltages caused by the
decrease of the depletion layer.
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Figure. 4.7 Band diagram under dark conditions at different applied voltage for CdS/CdTe
device.

(a) QE at 0 V . (b) QE at different bias.

Figure. 4.8 Quantum efficiency of CdS/CdTe solar device under solar spectrum AM1.5D
at different Bias. The shaded zones at left shows together with the total QE, the different
contributions to QE namely: SRH and surface recombination. The SRH component is rescaled
to fit within the same figure.



4.6 Numerical Simulations of InAs nBn MWIR Detector 117

4.6 Numerical Simulations of InAs nBn MWIR Detector

This section reports our initial results for the simulations of nBn MWIR detectors with an InAs
absorber layer and an AlAsSb barrier layer using our tool. We theoretically investigate the
effects of bias, temperature, contact doping, barrier doping and absorber doping on the dark
current characteristics of these detectors. The results is proved to explain the behavior of the
barrier detectors and their underlined physics. These investigations also includes photocurrent
dependence of bias voltage for various illumination fluxes.

4.6.1 Detector’s Structure and Model Specifications

The simulated structure is illustrated Figure 4.9. It consists of n–type GaSb-like substrate on
which a 2µm thick and lightly n–doped InAs Absorber Layer (AL) is grown, followed by a
200 nm thick wide-gap AlAs0.18Sb0.82 barrier layer (BL) and finally terminated by a 100 nm

thick InAs Contact Layer (CL). The contact and the absorber are lattice-matched to InAs. The
GaSb-like substrate acts as a transparent Window Layer (WL) to the infrared radiation (IR)
and has a larger bandgap than InAs to provide a valence band barrier for the minority carriers
(holes) in the AL. This barrier prevent the hole collection at the back contact. The doping of the
window layer, absorber layer, barrier layer, and contact layers are taken to be 1.2×1016 cm−3,
1.2×1016 cm−3, 1.8×1015 cm−3, and 1.0×1018 cm−3, respectively. On the WL, a transparent
metallic contact is deposited and grounded at zero voltage during all the simulation. Similarly,
on the top of structure, another metallic contact is placed to bias the device.

Table 4.4 provides more material specifications for each layer including expressions for the
energy gap, recombination lifetimesn, electron affinity and effective masses. Due to the lack of a
universal detailed parameters model for each material, a complete set of all of these parameters
is not available in the open literature. Therefore, the material characteristics are gathered from
multiple sources and in some instances are interpolated from the binary compounds. The
Valence Band Offset (VBO) at the InAs/AlAsSb interface which is a key parameter for the
energy band diagram construction, is assumed to be 19.8 meV at 200 K, where the InAs valence
band edge line-up above the AlAs0.18Sb0.82 valence band edge. This line-up ensures for nBn
detector that the valence band edges of the three layers are all aligned closely to allow hole
transport between the absorber and collector layers. An accepted approach in constructing
the line-ups between materials is based first on obtaining VBO for each material constituting
the interface and then simply subtracting their individual values. For binary materials InAs,
AlAs, and AlSb the VBO values are −0.59eV , −1.33eV , and −0.41eV respectivally, and are all
relative to that for InSb taken from the review by Vurgaftman et al [139]. For AlAsxSb1−x, the
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VBO value is obtained by linearly interpolating between the values for the binaries AlAs and
AlSb which gives the value of −0.5756eV for x = 0.18. Furthermore, because of the sensitivity
of the band diagram to the band offset and the relatively high doping used in the CL, I have also
activated the bandgap narrowing effect model in the CL according to:

∆Eg = 14.0×10−9N1/3
d +1.97×10−7N1/4

d +57.9×10−12N1/2
d (4.72)

where Nd is the electron dopant density.

Figure. 4.9 Schematic illustration of layers’ sequence of InAs nBn MWIR detector investigated
in this work.

The physical transport model used here includes only radiative, Auger, and Shockley–Read–Hall
mechanisms. The Absorber Layer (AL) SRH lifetime τSRH used in the simulations is 10µs for
both electrons and holes. The carrier lifetimes are taken to be very long in the AlAsSb material
so that very few carriers recombine there. The optical absorption coefficient of the AL can be
fitted to the desired wavelength range according to the following expression:

α(h̄ω) =

 948.23× exp [170(h̄ω −E0)] , h̄ω ≤ Eg

K(h̄ω−Eg−c)
√
(h̄ω−Eg−c)

2−c2

h̄ω
+800, h̄ω > Eg

(4.73)

where E0 = Eg +0.001, K = 10000+20000Eg , h̄ω = hc/λ is the photon energy and λ is
the wavelength. In fact, this expression depends on temperature as Eg does. The AL absorption
coefficient as function of wavelength at T = 200K is plotted in Figure 4.10. Because the BL
material has a wide bandgap, the infrared radiation cannot be absorbed there, which allows to
consider this layer to be completely transparent for IR radiation in this model.
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Figure. 4.10 Absorption coefficient of InAs as a function of wavelength at T = 200K. The red
circles denoted the fitted absorption coefficient to a target wavelength range.

4.6.2 Energy Band and Hole Concentration Profiles

Several bias conditions illustrations of the calculated energy band diagrams for nBn detector is
shown in Figure 4.11. Focusing on the barrier region, we observe a very small potential barrier
in the valence band between InAs and AlAsSb, while a large barrier is present in the conduction
band, creating a barrier for electrons. This barrier inhibits the flow of electrons from the AL to
the CL, thus eliminating all electron currents. Additionally we observe at the neighbourhood of
BL that band-bending slightly increases by increasing reverse bias which indicates that all the
depletion region is located in the AlAsSb layer leading to a reduced dark current as a result
of the suppressed SRH generation in the depleted region. In fact, it has already been shown
that InAs nBn detectors exhibits lower dark current in several orders of magnitude compared to
conventional InAs photodiode detectors. Because of the small VBO, the hole transport is not
significantly affected by the barrier, making this a unipolar minority carrier device.

Furthermore, as it can be seen clearly from Figure 4.11, the reverse bias further reduces
the valence band barrier and the electric field present in the barrier region sweeps holes out
of the AL into the CL to be collected (Figure 4.12). Moreover, as the reverse bias is further
increased, the depletion region at the interface between the AL and BL increases, leading to
additional SRH generation, thus increasing the dark current. This effect can be reduced by
properly choosing the doping concentration for the barrier layer.
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Table 4.4 Material parameters specifications for each layer of nBn detector. The affinities χs
are calculated with respect to affinity of InSb forced to be zero.

Parameter WL AL BL CL Unit

Thickness 0.5 2 0.2 0.1 µm
Eg@0K 0.822 0.411 1.7526 0.411 eV
χ 0.415 0.415 −0.9266 0.415 eV
m∗

e 0.023 0.0254 0.0254 0.023 m0
m∗

h 0.41 0.4159 0.4159 0.41 m0
ε 15.15 15.3 13.36 15.15 ε0
τn 10 10 100 10 µs
τp 10 10 100 10 µs
µn 4.15×104 4.15×104 3.01×103 4.15×104 cm2/(V · s)
µp 4.6×102 4.6×102 1.94×102 4.6×102 cm2/(V · s)
ND 1.2×1016 1.2×1016 0 1×1018 cm−3

NA 0 0 1.8×1015 0 cm−3

Varshni α 3.4×10−4 3.4×10−4 4.46×10−4 3.4×10−4 eV/K
Varshni β 210 210 210.2 210 K

Figure. 4.11 Calculated energy band diagrams of the nBn device without incident light at 200
K under: zero bias, reverse bias and forward bias.

4.6.3 J(V) Characteristics: Dark- and Photo- Current

The calculated dark current density as a function of applied bias from −0.3 V to 0.3 V , for
different temperatures between 120 K to 240 K is shown in Figure 4.13. The nearly saturated
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Figure. 4.12 Holes distributions for different bias values of the nBn device without incident
light at 200 K.

behaviour of reverse dark current reflects a diffusion-limited behavior down to bias of −0.3
V before e SRH dark current starts to dominate at higher reverse bias. Figure 4.14 shows
Arrhenius plots of dark current densities as a function of the reciprocal temperature for a set
values of reverse applied bias between −0.03 V and −0.6 V .

Figure ?? indicates the dependence of the calculated photocurrent for various incident
photon fluxes levels and applied bias at a temperature of 200 K for a fixed wavelength of 2.0µm.
We note that the detector has the following interesting features. First, even at zero applied
bias, the device is out of equilibrium, due to the gradient in the hole density triggered by the
optical illumination causing a net hole current flowing from the AL to the CL. Second, when
a reverse bias is applied, a stronger electric field in the barrier compared with the values at
equilibrium further enhances the hole collection in addition to collection by diffusion process.
At forward bias, the applied voltage leads to an injection of holes from the CL to the AL. Third,
the calculated photocurrent at forward bias voltages greater than 0.1 V is due to holes that are
photogenerated in the CL by IR radiation that has travelled the AL and is absorbed in the CL.
Last, the detector responses linearly to the increase of the incident optical fluxes up to 1018

photons cm2s−1 and is operating under low-level injection conditions. Figure ??(b) presents
the Diffusion and drift photocurrent components.

The calculated photocurrent gives access to the evaluation of the spectral responses (QE) as
function of lambda and bias at temperature of 200 K as shown in Figure 4.16. On the other
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Figure. 4.13 Calculated darkcurrent versus bias voltage for various temperatures of InAs nBn
detector.

Figure. 4.14 Arrhenius plots of the dark current densities of InAs nBn detector under reverse
bias voltages between −0.03 and −0.6 V . Dash black curve calculated without SRH. Solid
colored curves calculated including SRH with τ = 10µs.

hand, the reflection losses at the WL is neglected. The calculation of QE is carried out using
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the following method which assumes that over a small flux interval the quantum efficiency is
constant:

QE =
JTotal(Φ+∆Φ)− JTotal(Φ)

q

where Φ and ∆Φ is the incident photon flux and its increment respectively. This approach
has been shown to give accurate results compared to the standard one of QE = J−JDark

q

(a) @ −0.3 V . (b) @ different bias: AL of 2µm.

Figure. 4.16 Spectral responses of InAs nBn detector as function of bias under uniform
illumination with an incident photon flux of 1017 photons cm−2s−1 at a temperature of 200 K.

4.7 Design and Simulation of InAs/GaSb T2SL Barrier De-
tectors

In this section, I design and theoretically evaluate, by using our modelling tools, the per-
formances of T2SL LWIR barrier detectors. The material of choise is Type II InAs/GaSb
superlattices thanks to its remarkable optical and hole transport properties [133, 59]. In fact,
this engineered material offers many advantages for IR detection including a high effective
mass, reduced Auger recombination rates, excellent material uniformity, normal incidence and
the possibility to be engineered to a particular wavelength over a wide range of values while
keeping the SL structure lattice matched to the GaSb substrate. Benefiting from the lattice-
matched growth conditions and advances in the molecular beam epitaxy (MBE) technology,
the type-II broken gap band alignment of this system enables an accurate control of energy
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band structure and exhibits great flexibility in the design of detector devices without degrading
the material quality. However, the reported short minority carrier lifetime (10 to 150 ns at 77
K ) prevented this material system, in terms of dark currents, from reaching its theoretical
limit nor to surpass MCT detectors. The main reason is due to a Shockley-Read-Hall (SRH)
mechanism which limits the minority carrier lifetime of the SL, resulting in a higher dark
currents than those of MCT. The poor carrier lifetimes in InAs/GaSb SL materials have been
mainly attributed to native defects in the GaSb binary layer. Recently, the InAs/InAsSb SL
(referred as the ‘Ga-Free’ SL) has been proposed as an alternative to the T2SL InAs/GaSb
technology since a longer minority carrier lifetime has been reported both in the MWIR and
LWIR spectral windows [90, 122, 35, 134]. Despite this fact and the initial made progress,
Ga-Free detector performances have not proved to be superior than those of T2SL detectors
and are still facing many challenges, especially for high temperature operation and/or LWIR
spectral window. Therefore, InAs/GaSb SL remains the material of choice for LWIR detection
supported by the growing interest in space applications such as Earth Observation missions.

The challenge for making high temperature LWIR photodetectors in InAs/GaSb SL material
system is to reduce the dark current density in order to achieve a high signal-to noise ratio.
The dark current is caused by the exponential decay of minority carriers through Shockley-
Read-Hall (SRH), Radiative (RAD), and Auger (AUG) recombination, especially for the narrow
bandgap absorbers. Increasing the operating temperature is highly desirable since it removes
the burden of cryogenic cooling systems, and thus lower the cost of this technology. On the
way of solving this problem, different types of barrier architectures have been proposed and
implemented in phtodetectors for suppressing the dark current, which results in an increase
in operating temperature in comparison with the p-i-n photodiodes. As has been mentioned
in section 4.6, the nBn type barrier detector has received the most attention and development.
However, the traditional nBn barrier detector requires bias to extract photocarriers and uses
low mobility of minority carriers (holes) which reduce the device speed. For these reasons, the
nBp barrier detector has been proposed, which has the advantages of zero bias operation and
higher mobility minority electron leading to higher extraction efficiency. In the following, by
means of our modelling tools, we present the design and the numerical simulation of LWIR
InAs/GaSb T2SL nBp barrier photodetectors for high temperature operation. The composition,
thickness and doping level of each of the device layers (absorbing, barrier and contact layers)
are carefully chosen. The analysis of dark currents is made in term of the temperature of
operation.
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4.7.1 T2SL nBp Detector’s Structure

The proposed nBp device architecture consists mainly of n-doped top Contact Layer (CL),
a Barrier Layer (BL) with large Valence Band Offset (VBO) and minimal Conduction Band
Offset (CBO), and a p-type LWIR superlattice Absorber Layer (AL). The full detector’s structure
is shown in Figure 4.17. In the following sections, when appropriate, the doping type of the
barrier is denoted using a subscripts indicate the doping type, naimlly nBpp or nBnp.

Figure. 4.17 Schematic illustration of InAs/GaSb T2SL nBp LWIR detector structure.

4.7.2 Absorber Layer Design

The first design requirement of an LWIR detector is to select an efficient absorber materials to
achieve high quantum efficiency and low dark current density. In addition to the advantages
mentioned above, InAs/GaSb T2SL offers also the possibility to choose different period com-
positions for a given wavelength. Indeed, the InAs/GaSb SL period thickness and composition
have shown experimentally, strong effect on both material properties and PIN photodetector
performances. T2SL absorbers with period mainly composed of InAs (referred to as the
“InAs-rich SL”), exhibit a lower dark current than those with period mainly composed of GaSb
(referred to as the GaSb-rich SL”) having the same cut-off wavelength. Therefore, we propose
and design a Type-II superlattice (T2SL) with 14 Mono-Layer (ML) of InAs and 7 ML of GaSb
(∼44InAs/21GaSb), perperiodasamaterial f ortheLWIRAbsorberLayer(AL)withabandgapwavelengthcloseto11µm.
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We will further support this choice with the arguments in the subsequent paragraphs. To get the
desired band alignment, absorption coefficient and main effective material parameters for the
Absorber Layer (AL), Barrier Layer (BL) and Contact Layer (CL), various T2SLs with different
period compositions were simulated using our k· p tool developed in chapter 3. The conduction
and valence band edge energies (Ec and Eν ) and the corresponding effective band gap were
calculated as a function of the SL’s period compositions are shown in Figure 4.18 and Figure
4.19. In our k· p modelling, we compensate for the tensile strain of the InAs layer on GaSb
layer (∆a/a ∼−0.6%), by introducing an interface InSb layer between InAs and GaSb on both
sides (see Figure 4.20). This interfacial effects has been investigated thoroughly in chapter 3
along with the absorption coefficient of the InAs-rich 14 ML InAs / 7ML GaSb LWIR T2SL.

(a) At 77 K. (b) At 300 K.

Figure. 4.18 Conduction band and valance band energies plotted as a function of period
composition in a type II InAs/GaSb superlattice calculated with kp band calculation.

Figure 4.19 indicates that for increasing InAs quantum well thickness, the effective band
gap decreases due to the strong localization of holes, while it slightly increases with increasing
GaSb well thickness, which is due to quantum confinement effects as suggested by the electron-
hole wavefunction profiles especially for thin InAs thickness. In addition, we can see that the
InSb IF layer causes a decrease in the effective band gap energy where it is more pronounced for
thicker InAs layer and fixed GaSb well thickness. This result indicates the importance of the IF
layer consideration for band gap calculation which in turn impact on the absorption coefficient
and cut-off wavelength as previously demonstrated in chapter 3. Furthermore, the splitting of
the highest heave-hole band (HH1) and the highest light-hole band (LH1) responsible for the
minimization/suppression of Auger recombination is more noticeable for InAs/GaSb T2SL
with thinner GaSb layer.
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(a) Without the IF effect. (b) With the IF effect of 2.4 Å.

Figure. 4.19 Effective Band gap energy Eg as a function of InAs layer width and GaSb layer
width for a type II InAs/GaSb superlattice At 77 K including IF layer effect.

Figure. 4.20 The band edge profile at InAs/GaSb interface with forced InSb layer in between.
The solid lines are unstrained band edges while the dashed blue, red and cyan lines denoted
the strained conduction, heavy-hole and light-hole band edges respectively. The symbols are a
Hamiltonian elements defined in chapter 3.

The electron and hole effective masses at the band edge in both directions: in-plane m∗
e,h,//

and perpendicular m∗
e,h,⊥ were also extracted from the calculated band structure Ek using

m∗−1
e,h,//,⊥ = h̄−2

∂ 2E/ ∂k2
//,⊥

∣∣∣
k=0

. The effective mass is positive for a conduction-type band
and negative for a valence-type band. Figure 4.21 shows the electron and hole effective masses
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in color levels as a function of InAs and GaSb thicknesses. In the first chapter, I mentioned
the importance of the high effective masses of T2SL in limiting the tunnelling dark currents.
However, too large effective masses can also deteriorate the collection of carriers. It is therefore
necessary to find a SL design having a good compromise between reducing the tunnelling
current and the collection efficiency of photo-generated carriers. Overall, our calculation gives
effective mass values higher than what would be expected by a simple interpolation of the
two effective masses composing the period. In addition, we note a trend in Figure 4.21, as
the thickness of InAs in the period decreases, the effective mass of the SL tends gradually to
the bulk effective mass of GaSb material. The same trend holds also as we sweep the GaSb
thickness interval while keeping InAs thickness fixed. Moreover, for a given band gap (or
a cut-off wavelength), all the effective masses are accessible from 0.02 to 0.07 mainly by
changing the thickness of GaSb layer. It’s clear from Figure 4.22 that the InAs-rich 14 ML InAs
/ 7ML GaSb T2SL offers electron effective mass larger than the electron effective mass in the
HgCdTe material which scales as ∼ 0.07×Eg [109]. Therefore, as the tunnelling probability
is exponentially dependent on the effective mass, the 14 ML InAs / 7ML GaSb T2SL should
exhibit lower tunnelling current than HgCdTe, especially in the LWIR range where the effective
mass in HgCdTe is very small compared to the one in SL. Also, the collection efficiency is
not affected too much by this choice of SL as an absorber since the effective mass is not too
high. Furthermore, the flexibility of the InAs/GaSb SL material is reflected in the ability to
achieve the same energy band gap with different SL design which have different electronic
band structures which in turn can have an impact on the device operation.

Next in this parameters’ investigations, the minority carrier lifetime and mobility should
carefully be specified in order to conduct a successful carriers transport simulations as they
determine the final device behaviour. The minority carrier lifetimes and mobilities are then
selected from the existing literature on LWIR T2SL photodiodes [60]. The Varshni’s parameters
Eg(0K), α and β accounting for temperature dependence of the bandgap were determined
by fitting the energy band gap obtained from photo-luminescence (PL) measurements to the
well-known Varshni’s relation Eg(T ) = Eg(0K)− α·T 2

β+T [5, 20]. Some other physical parameters
of the SL used in the simulation such as the permittivity were calculated as a weighted average
of InAs and GaSb bulk values.

The quantum efficiency is a device-dependent property, which can be affected by many
factors including doping level, AL thickness, minority carrier diffusion length. As a first
attempt, the p-type active region is chosen to be 4 µm thick and will be optimized later on.
The detector can also be modelled with different p-doping conditions for the AL, however,
an optimum value of 1× 1016cm−3 is chosen as it is close enough to the range confirmed
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Table 4.5 Material parameters used in the simulation for InAs-rich InAs/GaSb T2SL.

Parameter Symbol Value Unit

Band gap Eg@0K 0.111 eV
Trap energy ET 0 eV
Electron affinity χ 4.76 eV
Electron effective mass m∗

e 0.025 m0
calculated as:
m∗

e,⊥
1/3 ×m∗

e,//
2/3

Hole effective mass m∗
h 0.309 m0

Tunneling effective mass m∗
t 0.025 m0

Dielectric constant ε 15.29 ε0
Electron life time τn 30 ns
Hole life time τp 30 ns
Electron mobility µn 2.6×104 cm2/(V · s)
Hole mobility µp 680 cm2/(V · s)
Varshni parameter α 1.9×10−5 eV/K
Varshni parameter β 270 K

from capacitance vs. voltage measurements on a similar SL structure [60, 20]. Finally, the
material parameters chosen for our transport simulation of InAs-rich T2SL LWIR detector are
summarized in Table 4.5.
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(a) In-plane m∗
e,x. (b) In-plane m∗

e,y.

(c) In-plane m∗
hh,x. (d) In-plane m∗

hh,y.

(e) Perpendicular m∗
e,z: No IF effect. (f) Perpendicular m∗

e,z: IF effect of 2.4 Å.

Figure. 4.21 Effective masses as a function of InAs layer width and GaSb layer width for a type
II InAs/GaSb superlattice At 77 K. The solid lines are the effective mass contour lines.



4.7 Design and Simulation of InAs/GaSb T2SL Barrier Detectors 131

Figure. 4.22 Perpendicular electron effective mass for different period compositions of SL as a
function of the energy band gap at 77K. Solid lines are for fixed GaSb layer thicknesses, while
symbols are for fixed InAs layer thicknesses. Shaded zone shows the electron effective mass
region in MCT material.

4.7.3 Barrier Layer Design

The second design requirement of an nBp LWIR detector is to select barrier materials for the
chosen T2SL absorber such that the conduction band edge of the designed BL is smoothly aligned
with the corresponding band edge of the AL, while it has a large VBO with respect to the AL. In
this barrier design with a p-type doping for the CL, majority holes emanating by thermionic
emission from the CL are blocked from reaching the AL essentially by the VBO potential barrier
∆EV . This flux of carriers transfer over the barrier is proportional to m∗

h T 2 exp(−∆EV+EF
kBT ) and

constitutes one of the dark currents components that should be minimized to ensure a diffusion
limited behaviour. The thermionic current variation with the VBO at 77, 150 and 300 K is
shown in Figure 4.23. The value of ∆EV for which this thermionic flux equals the dark-current
in a similar P-I-N device at 150 K was found to be 130 meV [20]. Therefore, a VBO value
larger than 130 meV is required. Given that effective barrier ∆EV +EF for carriers depends on
the doping level and the applied bias, the band bending may leads to a decrease in this effective
barrier, thus a value larger than 300 meV has to be chosen for ∆EV to be in the safe side in
lowering the thermionic contribution at least by one order of magnitude than the diffusion
dark-current. Similarly, a carriers’ transfer through the barrier due to tunnelling is also possible
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which may takes significant levels for very thin barriers. In our case, barrier thicknesses greater
than a few hundred angstroms ensures that the tunnelling current is negligible.

Figure. 4.23 Thermionic Emission current as a function of the VBO between contact and barrier
at 77, 150 and 300 K. Inset shows the operating band edge profile of a pBp device.

Additionally, in order to allow for an impeded flow of photo-generated electron carriers
when crossing the BL toward the CL where they will be collected, the BL needs to have ideally
no barrier potential ∆EC with respect to the AL. If this CBO has none negligible value, then a
high reverse applied bias will be required to turn on the device by reducing the barrier ∆EC.
Usually this happen when the barrier, ∆EC exceeds about 3kBTop, where Top is the operating
temperature.

The material responding for the above barrier requirement is chosen to be made from
InAs/AlSb SL with a composition of 16.5 MLs of InAs and 4 MLs of AlSb estimated by k· p
treatments. The calculated band alignment between the AL and BL are shown in Figure 4.24. It
can be seen that, the InAs/AlSb superlattice of the BL is designed to give a smooth conduction
band alignment and a large VBO of nearly 400 meV with the AL. Note that in Figure 4.24, the
CBO is defined as the energy difference between the bottom of the two electron mini-bands and
the VBO as the energy difference between the top of the two hole mini-bands.
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Figure. 4.24 Mini-bands alignment between the AL and BL of a T2SL based barrier device,
superimposed on the individual alignment of the band gaps of InAs, GaSb and AlSb. The
number of shown periods in each layer are in fact repeated many times in the real device and
cannot to scale in one figure.

The doping type and level has an important effect on the device performance. In fact, when
the BL doping is n-type and the AL p-type, in order to have the same Fermi level throughout the
structure, the ionized electrons from donnor levels in the BL diffuse toward the AL and at the
same time, the majority holes in AL defuse to BL until a PN junction is created at the interface
BL/AL. As a result, the barrier is fully depleted because of its relatively small thickness and the
donor states receive a positive charge as illustrated in Figure 4.25. In addition, the depletion
zone extends into the AL where negative ionized acceptors are created. The pronounced extent
of the depletion zone into the narrow band gap material of the AL, activates the contribution of
G-R centres to the dark current even at very low bias. Therefore, the barrier layer cannot be
n-type when the active zone is p-type to avoid the creation of an extended depletion zone at
BL/AL interface.
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(a) Charge density. (b) Band edges.

(c) Holes density. (d) Electron density.

Figure. 4.25 Simulation results for the charge density, band edges, holes density and electron
density around the barrier layer for a range of negative bias voltages for nBnp structure at 77 K.
The barrier doping level was fixed at 5×1015cm3. The black curves in each subfigure is for the
equilibrium case.

Now, if the doping type of the BL is switched to p-type, the majority holes in the barrier
reduce their energy substantially by diffusing to the AL to accumulate at the interface next to
the barrier as shown in Figure 4.26. As a result, the acceptor states of the BL receive a negative
charge and the barrier is fully depleted given its thickness. Since the extent of accumulation
zone is usually narrow given the relatively low doping level, the depletion zone does not extends
into the AL and remains confined into the BL, and so the electric field (see Figure 4.27a). The
band bending under the effect of reverse bias leads to diminish this accumulation zone until
its extinction at a maximum bias where the bands in the AL are totally flat. Beyond this bias,
the depletion in the barrier layer will start to extend into the AL and the G-R contribution to
the dark current will start to increase rapidly. The applied bias corresponds to the flat band
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condition depends on the thickness and doping level of the BL. The effect of doping level will
be investigated in following sections.

(a) Charge density. (b) Band edges.

(c) Holes density. (d) Electron density.

Figure. 4.26 Simulation results for the charge density, band edges, holes density and electron
density around the barrier layer for a range of negative bias voltages for pBpp structure at 77 K.
The barrier doping level was fixed at 5×1015cm3. The black curves in each subfigure is for the
equilibrium case.
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(a) Electric field in a nBpp device. (b) Electric field in a nBnp device.

Figure. 4.27 Simulation results for the electric field in the space-charge and accumulation
regions of the nBpp and nBnp detector around the barrier layer for a range of negative bias
voltages. The barrier doping level was fixed at 5×1015cm3. The black curves in each subfigure
is for the equilibrium case.

4.7.4 Contact Layer Design

The contact material can be made from the same or from a different material than the AL. In
our case, the AL and the CL are both made from the InAs-rich T2SL with same composition.
The only difference between the AL and CL is their thickness, which is not as critical for the
contact as for the barrier or the absorber. However, the CL thickness is kept to be not too
thick (typically less than 200 nm) to avoid its absorbing for IR radiation which deteriorates
the quantum efficiency. The AL is always p-type as confirmed from the discussion above. The
doping type in the CL can be either p-type or n-type to create pBp and nBp devices, respectively.
In the beginning of designing our device, we have made the n-type choice for the CL, here, we
confirm our choice by comparing in Figure 4.28 the band edges of a nBp and pBp designs with
contact doping level of 1016cm−3 at 77 K. As the band bending in nBp design pins the Fermi
level close to the conduction band edge of CL, the thermionic current is therefore smaller than
in the pBp design due to the reduction in the potential barrier in the valence band. In addition,
the large band bending, in an n-type contact lowers the potential barrier in the conduction band
for the minority electrons, thus reducing the turn on voltages compared to a pBp device. Finally,
a n-type doping level of 1016cm−3 is chosen for the CL of the nBp design since a narrow hole
accumulation region is persistent to exist at the interface AL/BL which delays the formation of
a depletion layer by confining the electric field into the BL.
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(a) Band edges of nBpp. (b) Band edges of pBpp.

Figure. 4.28 Simulation results for band edges around the barrier layer at equilibrium for nBpp
and pBpp structure. The barrier doping level was fixed at 5×1015cm3. The vertical arrows
in each subfigure shows that the thermionic potential barrier is lower in nBpp than in pBpp
device. Also the potential hump in the conduction band is lower for nBpp case due to a larger
band-bending.

Having established the initial design requirements for CL, BL and AL, now I will simulate
and further analyse the design of the whole barrier detector.

4.7.5 Energy Band-Edge Profiles

The band edge profiles for the optimized nBp photodetector with a p-type barrier are shown in
Figure 4.28 at a temperature of 77 K for equilibrium and for negative bias dark condition. The
bias convention is shown in Figure 4.17. To enhance the collection of carrier, the top of the
structure is terminated with a 60 nm thick n+ doped InAs-rich T2SL followed by 20 thick n+

doped InAs cap layer.
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(a) Equilibrium. (b) Reverse Biased.

Figure. 4.29 Band edge profiles for LWIR nBpp detector with p-type barrier at dark condition
and T=77 K: a) for equilibrium and b) for negative bias. The barrier doping level was fixed at
5×1015cm3.

The most notable feature of the band profiles is the presence of a large potential barrier in
the BL. This large barrier blocks transfer of holes between the AL and the CL, for a large range
of operating bias voltages. Additionally, the BL exhibits a smooth conduction band potential
barrier which presents no impediment to the transport of minority electrons between the AL and
the CL. The BL also has a valence band potential well for holes that forms due to its negatively
charged acceptors. The presence of this potential well and its variation under the effect of
band bending and the applied reverse bias does not affect the ability of the BL to block the
majority holes. At negative bias, current is due to electrons that are thermally generated or
photo-generated in the AL and that are subsequently driven from the AL to the CL by the strong
electric field in the BL.

4.7.6 J(V) Characteristics of LWIR T2SL nBp Detector

The numerical simulations for the dark current density versus voltage relation J(V ) for a nBp
LWIR photodetector at 77 K are presented in Figure 4.30. On the same figure is shown the dark
current of an equivalent InAs-rich SL PIN detector. The dark current components accounted
for in the numerical simulations are the Diffusion, Generation-Recombination, Trap-Assisted
Tunneling (TAT) and the Band-to-Band (BTB) tunneling currents. The diffusion current
component is generated due to diffusion of thermally generated minority carriers from the AL

and are obtained by the Equation (4.22). The generation-recombination current component is
triggered by the presence of traps within the forbidden gap and is obtained by integrating the
well-known Shockley-Read-Hall (SRH) recombination rate equation:
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JGR = q
∫

RSRHdz (4.75)

where

RSRH =
pn−n2

i

τp

[
n+ni exp

(
Etrap
kBT

)]
+ τn

[
p+ni exp

(
−Etrap

kBT

)] (4.76)

where RSRH is the Shockley-Read-Hall (SRH) recombination rate, and n, p and ni are the
electron, the hole and the intrinsic carrier concentration, respectively. Etrap is the difference
between the trap energy level and the intrinsic Fermi level, kB is the Boltzmann constant and T

is the lattice temperature. τn and τp are the electron and hole carrier lifetimes.
The Trap-Assisted Tunneling current component is also modelled based on an approach

developed by Hurkx [41]. This approach uses an effective lifetime by including a field effect
factor in Equation (4.76). According to Hurkx the recombination rate expression becomes:

RTAT =
pn−n2

i

τp
1+Γp

(
n+nie

Etrap
kBT

)
+ τn

1+Γn

(
p+nie

−Etrap
kBT

) . (4.77)

where Γn,p is the field-effect enhancement term given by

Γn,p =
∆En,p

kBT

∫ 1

0
exp
(

∆En,p

kBT
u−Kn,pu

3
2

)
du (4.78)

where ∆En,p is the energy interval in which the tunneling can occur for an electron or a
hole, and u is the integration variable. Kn,p is defined as:

Kn,p =
4
3

√
2 ·mt ·∆E3

n,p

qh̄|E|
(4.79)

with mt the tunneling mass, E is the electric field and h̄ the reduced Plank’s constant. The
combined SRH and TAT current density therefore becomes:

JSRH+TAT = q
∫

RTATdz (4.80)

For the band-to-band tunneling contribution, our tool implements a local model according to
Hurkx [41] in which a recombination-generation rate RBT B at each point in space is calculated
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based solely on the value of the localized field at that point. Similarly, the BTB current density
is then given by:

JBT B = q
∫

RBTBdz. (4.81)

As expected, the dark current of nBp design shows diffusion-limited behaviour down to
300 mV before other dark current components starts to dominate at higher reverse bias. On
the other hand, the PIN device is not diffusion limited at small reverse bias. If we make a
closer look at the absorber region adjacent to the barrier in Figure 4.29, we observe a less
significant band-bending for nBp device than in pin device as shown in Figure 4.33. This in
turn is confirmed in the Arrhenius plot of dark current density as function of temperature and
bias in Figure 4.31. These plots shows diffusion-limited behaviour for the nBp device down
to 77 K, while the PIN device is limited by other mechanisms at this temperature, with a dark
current greater by more than many order of magnitude compared to the barrier device. In
addition, at a given dark current in Figure 4.32, the presence of the barrier results in an increase
in the operating temperature compared to PIN device. Specifically, for a current density 2x10−4

A/cm−2, the operating temperature of the PIN device is nearly 60 K while for the nBp device
it is close to 80 K with an improvement of 20 K. This difference in the operating temperature
reduces the power consumption of the cooling system.

The diffusion plateau dark-current level reaches 8.5x10−5 A/cm−2 which is within one
order of magnitude of MCT Rule-07 indicating that InAs/GaSb T2SL detectors may replace the
MCT technology at longer wavelength. This claim might appear surprising since InAs/GaSb
T2SL shows lower minority carrier lifetime τ than MCT material. However, as the diffusion
current is inversely proportional to the Ndop × τ product (with Ndop being the AL doping level )
which must be kept at maximum without deteriorating the transport of carriers. Therefore, the
short minority carrier lifetime effect can be compensated by a choosing a higher doping level
for the the AL than in MCT. Moreover we enforce our claim by the fact that T2SL technology
offers high operability, stability and durability of focal plane arrays [103].
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Figure. 4.30 The dark current density as a function of the applied bias voltage of the optimized
LWIR T2SL based barrier detector and the corresponding dark current of its equivalent PIN
detector at 77 K. Both devices have a p-type SL InAs/GaSb active layer with a bandgap
wavelength close to 11 µm.

(a) LWIR nBpp detector. (b) Equivalent LWIR PIN detector.

Figure. 4.31 Arrenius plot of dark-current density of the LWIR nBp detector (a) and of the
equivalent pin photodiode (b). The barrier doping level was fixed at 5x1015 cm−3.
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Figure. 4.32 The dark current density as a function of the temperature of the LWIR T2SL nBp
detector and the corresponding dark current of its equivalent PIN detector at 75 mV. Solid
points are for the temperatures for which both devices exhibit dark current density level of
2x10−4 A/cm−2 indicated by horizontal red line.

Figure. 4.33 Simulated band diagram of the T2SL pin structure at 77K and 0V. The structure
here is the same as for the nBp structure except the barrier is excluded.
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4.8 Summary

In this chapter, a physical transport model suitable for simulating different detector structures
has been developed and validated. The numerical counterpart of this model has been imple-
mented into our second modelling tool. The transport model is based on the adaptation of
Boltzmann Transport Equation for electrons and holes inside minibands. Using our transport
tool, the performance and physics of an nBn photodetector based on the InAs/AlAsSb material
system is investigated. We have shown that, due to a small VBO, photogenerated minority carri-
ers (holes) diffuse to the CL layer even without applied voltage indicating that the device is in an
on state before applying any bias. Furthermore, by decreasing the reverse bias voltages down to
0.1 V and using CL with thickness greater than 3 µm, it is possible to push QE up 90%. We have
also used our tool to design and simulate nBp barrier photodetector involving InAs-rich 14 ML

InAs / 7ML GaSb LWIR T2SL for being used as an efficient absorber to achieve high operating
temperature. By analysing band edge diagrams and the electro-optical properties, each layer
of the barrier device has been optimized in terms of composition, doping and thickness. The
designed barrier device consists of a 4 µm thick p-type InAs-rich 14 ML InAs / 7ML GaSb
LWIR T2SL absorber, a 200 nm thick p-type InAs/AlSb SL barrier and an n-type InAs-rich 14
ML InAs / 7ML GaSb LWIR T2SL contact layer. The optimum doping level of absorber, barrier
and contact layer are found to be 1×1016cm3, 5×1015cm3 and 1×1016cm3 respectively. The
nBp photodetector based on this design exhibits a diffusion limited dark-current down to -300
mV with a dark-current level plateau as low as 8.5× 10−5A/cm2 which is more than one
order of magnitude lower compared to a similar PIN photodiode. Furthermore, this value is
near the level of the MCT ‘rule 07’ demonstrating that InAs/GaSb SL detectors may provide
new opportunities to replace the MCT technology in the LWIR spectral window given the
MCT material instability problem at longer wavelengths. Moreover, we have demonstrated
that the presence of the barrier allows improving the current performances and the operating
temperature over the standard PIN device. In addition, as the surface leakage current, is more
significant for LWIR absorbers, the barrier also plays the role of a passivation material.



Chapter 5

Conclusion

In this work, we have focused on exploring new designs for quantum infrared photodetectors to
raise them to a new level of maturity. Specifically, the topic of research has been concerned with
modelling and simulation of high temperature quantum infrared photodetectors using advanced
finite element methods. The aim was to devise novel designs based on standard platforms to im-
prove quantum efficiency, specific detectivity, conversion efficiency, and operating temperature.
Based on the outcome of the literature survey, high temperature infrared photodetectors based
on GaSb/InAs/AlSb heterostructures has been identified as an interesting and timely topic of re-
search. In fact, these heterostructures cover a wide range of infrared spectrum and allow the use
of type II band alignments, which provides great freedom in band gap engineering. Quantum
infrared photodetectors are multidisciplinary devices: material science necessary for epitaxy,
electronic band structure, carriers transport in these semiconductor layers, electromagnetic
modeling of optical coupling. Therefore it is instructive to master each of these topics in order
undestand how to find ways to increase the prformances of quantum infrared photodetectors.
Towards this end, I have developed a robust numerical simulation tools for the simulation of
IR detectors based on InAs/GaSb superlattices as well as InAs/AlAsSb alloys that takes into
account the composition, doping and temperature dependence. The simulation is mainly mad
through three process. First, I used finite element method to solve 8× 8 k ·p Hamiltonians
for InAs/GaSb superlattices with type II alignment to compute the minibands alignments and
optical and materials’ characteristics. For InAs/AlAsSb alloys based detectors, I instead use the
tool library to generates all the needed bulk material properties. Secondly, the transfer matrix
method or the Beer-Lambert law is used to compute the optical generation profiles in the device.
Finally, I employ the finite volume method to solve the transport equations to compute the dark-
and photo- currents, quantum efficiency among other device properties.
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Chapter one and two covered the context of this work and recalled the IR detection as well
as the state of the art of the three main competing technologies namely HgCdTe, GaAs/AlGaAs
Multiple Quantum Wells and Type-II superlattices (T2SLs) Photodetectors. More specifically,
the main properties of GaSb/InAs superlattices technology and it’s current needs, such as
improving the intrinsic performance, increasing operating temperature and increasing the size
of FPAs are presented. The InAs/GaSb superlattice meets these requirements. First, because
the specific alignment between the InAs and the GaSb allows, by changing the thickness of
the period, to address the detection wavelengths beween SWIR and LWIR. Secondally, the
GaSb/InAs SL in the LWIR and VLWIR, offers effective masses higher than bulk materials with
equivalent wavelength. This point is an advantage for detection, as these high masses limit the
tunnel currents which are a major source of noise at high wavelengths. Moreover, theoretically
the SL has a low Auger recombination rate, which improves the lifetime of the carriers. Finally,
the use of III-V material assumes a uniformity in the growth of InAs/GaSb SLs, enabling
the realization of large FPAs. For further improvements, the effect of incorporating unipolar
barriers that could lead to higher performance infrared photodetectors where also investigated.

Next in chapter three, a significant effort has been devoted to the development of a quantum
simulation tool to accurately characterize the different nano-structures in terms of band structure,
density of states and absorption coefficient as well as interface configuration. The nano-
structures are mainly antimonide Type-II superlattices and are described by an 8× 8 k · p
Hamiltonians that takes into account stain effects. Using this tool allows to predicted cutoff
energies (band gaps) for different types of interband transitions and are consistent with the
calculated band dispersion curves of InAs/GaSb Type II broken gap superlattice and demonstrate
excellent agreement with the experimental data reported in [36]. In addition, the modelling
results show that the Inter-Facial (IF’s) lattice mismatch and induced strain yields a significant
increase in the absorption coefficient as well as in cut-off wavelengths. As a result, a wide
tunable range of optical properties can be obtained with IF layers.

Once the 8×8 k ·p band structure tool model was validated, its output results were used in
Chapter four as input parameters for the second tool devoted to study the transport characteristics
of infrared barrier detectors based on InAs/GaSb superlattices. I first described and formulated
the physical transport model using the Boltzman transport equation for electrons and holes.
Then, I discussed the adaptation of the model to super-lattices based device. Next, I reviewed
the numerical techniques required to solve the highly non-linear coupled transport equations.
Subsequently, the validated numerical transport model on simple heterostructure devices, is
used to investigate in detail a bulk InAs/AlAsSb nBn detector photodetector to explore some
aspects of their operation. Being a new type of infrared detectors that implements a large
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barrier for electrons in the conduction band, the nBn detector is a unipolar device. During the
simulation and validation of a physical transport model for nBn detectors with InAs/AlAsSb
structures, I fount it hard to retrieve a complete list of parameters for this material system due
to a lack of information even thought it is a bulk alloy. Using these material models, I have
performed a numerical simulation to study the underlying physics and assess the performance
of InAs/ AlAsSb nBn detectors. I have shown that, even at zero bias voltage, a photo-current
crosses the device due to the diffusion of photo-generated minority carriers (holes) to the CL
layer that were not impeded by the small valence band offset. This diffusion current is triggered
by the illumination that creates a non uniformity in the minority carriers’ distribution in the
AL. This observation is consistent with the demonstration reported by Klipstein et all [? ].
Furthermore, I have shown that, a quantum efficiency as high as 90% is achievable by pushing
the reverse bias down to −0.3 V and expanding the AL above 3.0 µm.

We have also shown that to enhance more in the suppression of SRH generation component
from the dark current, a carefully chosen doping level in the AL and BL for a given bias voltage
is advisable. For the first glance, it seems that a higher doping level would always lead to an
increase in the signal-to-noise ratio because of no removal of electrons from the region near
the AL/BL interface (small depletion region). In fact, the benefit of higher absorber doping in
reducing diffusion and SRH generation dark currents, should be balanced against the possibility
of reducing diffusion length due to shortened SRH lifetime. Clearly, there is an upper bound for
the n-type doping level in the BL. While this is true for n-type BL, it’s not the case for p-type
BL where the AL doping should be kept relatively high. An optimized approach is to keep the
n-type doping level in the AL relatively low, of the order of 1015 cm−3 while using an n-type
doping barrier with similar doping level.

Finally in chapter four, we have also used our transport simulation tool to design and
simulate nBp barrier photodetector involving InAs-rich 14 ML InAs / 7ML GaSb LWIR T2SL

for being used as an efficient absorber to achieve high operating temperature. By analysing
band edge diagrams and the electro-optical properties, each layer of the barrier device has
been optimized in terms of composition, doping and thickness. The designed barrier device
consists of a 4 µ m thick p-type InAs-rich 14 ML InAs / 7ML GaSb LWIR T2SL absorber, a 200
nm thick p-type InAs/AlSb SL barrier and an n-type InAs-rich 14 ML InAs / 7ML GaSb LWIR

T2SL contact layer. The optimum doping level of absorber, barrier and contact layer are found
to be 1×1016cm3, 5×1015cm3 and 1×1016cm3 respectively. The nBp photodetector based on
this design shows a diffusion limited dark-current down to -300 mV with a dark-current density
plateau as low as 5.5×10−6A/cm2 which is more than one order of magnitude lower compared
to a similar PIN photodiode. Furthermore, this value is near the level of the MCT ‘rule 07’
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demonstrating that InAs/GaSb SL detectors may provide new opportunities to replace the MCT
technology in the LWIR spectral window given the MCT material instability problem at longer
wavelengths. Moreover, we have demonstrated that the presence of the barrier allows improving
the current performances and the operating temperature over the standard PIN device.
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Material Parameters

The simulation tools and implemented with different and flexible material system database to
allow for simple and fast material setting. The database essentially includes parameters for
elementary and binary materials such as Si, Ge, GaAs, AlAs, etc. Material parameters for
ternary, or quaternary materials, such as AlxGa1−xAs or AlxGa1−x Asy Sb1−y are determined
from the material parameters of the binaries that they are composed of. For this, we use
polynomial interpolation formulas. The simplest approach is linear interpolation by means of a
convex combination. However, it turns out that for the calculation of some material properties
of ternaries or quaternaries, a second order term should be included. This is widely known as
bowing.

For the common material system AlxGa1−xAs, the bowing parameter depends on the alloy
composition x. We have developed consistent interpolation schemes for ternaries as well as
quaternaries that also take such dependencies of the bowing parameter on the alloy composition
into account in linear order. These schemes are presented in the following.

Binar Alloys of the form: AxB1−x

For alloys of this type (and also AxB1−xH where H is an inert component) we can use linear
interpolation:

Q(1)(x) = xQA +(1− x)QB (1)

to compute the material property Q as a function of the concentration x with

QA = Q(A), QB = Q(B) (2)
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A second order interpolation scheme Q(2)(x) that is consistent to the components A and B can
be obtained by adding a quadratic bowing parameter as

Q(2)(x) = xQA +(1− x)QB + x(1− x)QAB (3)

Finally, a consistent third order interpolation is given by

Q(3)(x) = xQA +(1− x)QB + x(1− x)QAB(x)

= xQA +(1− x)QB + x(1− x)
[
xQA

AB +(1− x)QB
AB
] (4)

where QAB(x) is a bowing parameter that depends linearly on x.

Ternary Alloys of the form: AxByC1−x−y

For alloys of this type (and also AxByC1−x−yH where H is an inert component) we can use
linear interpolation:

Q(1)(x,y) = xQA + yQB +(1− x− y)QC (5)

to describe the material property Q as a function of the concentrations x and y with

QA = Q(A), QB = Q(B), QC = Q(C) (6)

A second order interpolation scheme Q(2)(x) that is also consistent to the three limiting one
parameter alloys AzB1−z, AxC1−x, and ByC1−y is given by

Q(2)(x,y) = xQA + yQB +(1− x− y)QC + xyQAB + x(1− x− y)QAC + y(1− x− y)QBC (7)

where QAB; QAC; and QBC are the bowing parameters for the limiting one-parameter alloys.
Additional bowing that does not change the results for the limiting one-parameter cases can be
achieved by adding a third order term as

Q(2.3)(x,y) = xQA + yQB +(1− x− y)QC + xyQAB + x(1− x− y)QAC + y(1− x− y)QBC

+ xy(1− x− y)QABC
(8)

This extra term is also needed in order to achieve bowing on one of the three constraint surfaces

x = x0, y = y0, x+ y = z0. (9)
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But the most general third order interpolation scheme has 10 parameters. With

Q(3)(x,y) = xQA + yQB +(1− x− y)QC + xy
[
xQA

AB + yQB
AB
]

+ x(1− x− y)
[
xQA

AC +(1− x− y)QC
AC
]

+ y(1− x− y)
[
yQB

BC +(1− x− y)QC
BC
]

+ xy(1− x− y)QABC

(10)

these parameters can again be chosen consistent to the three limiting one-parameter alloys.

Quaternary Alloys of the form: AxB1−xCyD1−y

For alloys of this type (and also AxB1−xCyD1−yH where H is an inert component) we cannot
use linear interpolation to describe a material property Q as a function of the concentrations
x and y, since we need here at least four interpolation coefficients. For this reason, we add a
quadratic term and use

Q(1.2)(x,y) = xyQAC +(1− x)yQBC + x(1− y)QAD +(1− x)(1− y)QBD (11)

to interpolate Q with

QAC = Q(AC), QBC = Q(BC), QAD = f (AD), QBD = Q(BD) (12)



Momentum Matrix Elements

We provide here the explicit derivation of matrix elements nPm = ⟨Ψnkt |(x̂+ ŷ) ·P|Ψmkt ⟩
corresponding to TE transition mode between the initial spinor |Ψmkt ⟩ and the final spinor
|Ψnkt ⟩. These are for 8x8 KP Hamiltonian given by Equation (??) and are evaluated for any
direction in transversal reciprocal kt(kx,ky) space and in terms of spinor envelope components
|Smkt ⟩ from the initial vector state and |Fnkt ⟩ from the final vector state. In the following, the
subscript kt has been dropped for convenience.
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Abstract

The topic of research is concerned with modelling and simulation of high temperature long wavelength infrared quantum photodetectors using
advanced finite element methods. The aim is to devise novel designs based on quantum well structures to improve quantum efficiency, and operating
temperature. These new designs rely on quantum confinement of electrons and holes inside a mixture of materials within which the energies of
the carriers become discrete and differ from those observed in bulk materials. Type II GaSb / InAs superlattices is one of these meta--materials
which offer a large flexibility in the design of infrared photodetectors, including the possibility to adjust the detected wavelength over a very wide
range and to realize a suitable absobers' uniploar barriers to suppress dark current while maintaining a significant portion of photocurrent at high
temperatures. In order to validate this interest, A set of rigorous modelling tools based on multi-band k· p band structure theory and Boltzmann
transport theory has been developed, which provide a better understanding of the electronic structure and transport in these heterostructures. The
framework takes into account in particular the effect of the intrinsic strained property of the unintentional interfaces on the electronic structure
and the optical properties. Using this tools, new structures based on nBn and nBp architectures have been designed, with optimized design, which
contribute to the realization of mid- and long-wave infrared photodetector based on Type-II superlattices InAs / GaSb material system as well as
InAs/AlAsSb alloy mterial system. The developed model allows to study the underlying physics of these devices and to explain the factors limiting
the device performances.

keywords : Superlattice, Infrared, Photodetector, T2SL, nBn, nBp, Barrier, InAs/GaSb

ملخص
المتقدمة. المحدودة ᣅالعنا طرق ᗷاستخدام الحرارة درجة عالᘭة الᝣمᘭة الطᗫᖔلة الحمراء تحت الأشعة كشف أجهزة ومحاᝏاة بنمذجة الᘘحث موضᖔع يهتم
ᣢع الجدᘌدة التصمᘭمات هذە تعتمد الᙬشغᘭل. حرارة ودرجة الᝣمᘭة ال᜻فاءة ᡧ ᢕᣌلتحس الᝣمᘭة الآᗷار هᘭاᝏل ᣠإ ᘻسᙬند جدᘌدة تصمᘭمات ابتᜓار هو الهدف
المواد ᢝ

ᡧᣚ لوحظت ᢝ ᡨᣎال تلك عن ومختلفة منفصلة الحاملات طاقات تصبح حᘭث ، المواد من خلᘭط داخل الموجودة والثقوب ونات ᡨᣂ᜻للإل ᢝᣥᝣال ᣆالح
تحت ᗷالأشعة ᢝ

᡽ᣍالضو ال᜻شف أجهزة تصمᘭم ᢝ
ᡧᣚ ة ᢕᣂكب مرونة توفر ᢝ ᡨᣎال الفوقᘭة المواد هذە إحدى ᢝ

ᡧᣍالثا النᖔع من InAsͭGaSb الفائقة الشᘘᜓات ᢔᣂتعت السائᘘة.
ᣢع الحفاظ مع الظلام تᘭار لقمع مناسᘘة القطبᘭة أحادᘌة حواجز وتحقيق جد᠍ا واسع نطاق ᣢشفعᙬالمك ᢝ ᢔᣐالمو الطول ضᘘط إمᜓانᘭة ذلك ᢝ

ᡧᣚ ᗷما الحمراء،
العصاᗷات ب ᘭة نظᗫᖁة ᣢع بناءً دقᘭقة محاᝏاة أدوات تطᗫᖔر تم ، الاهتمام هذا صحة من التحقق أجل من عالᘭة. درجاتحرارة عند ᢝ

᡽ᣍالضو التᘭار من ᢕᣂكب جزء
وجه ᣢع الاعتᘘار ᢝ

ᡧᣚ النموذج ᘌأخذ المتجاᙏسة. ᢕᣂغ الهᘭاᝏل هذە ᢝ
ᡧᣚ والنقل ونᘭة ᡨᣂ᜻الإل للب ᘭة أفضل فهم᠍ا توفر ᢝ ᡨᣎوال مان ᡧ

ᡨᣂلᘘل النقل ونظᗫᖁة k · p المتعدد
تصمᘭم تم ، الأدوات هذە ᗷاستخدام الᗫᣆᘘة. والخصائص ونᘭة ᡨᣂ᜻الإل الب ᘭة ᣢع المقصودة ᢕᣂغ البᚏنᘭة للسطᖔح الذاتᘭة الاجهادات خاصᘭة ᢕᣂتأث الخصوص
والمتوسطة الطᗫᖔلة للموجات الحمراء تحت ᗷالأشعة ضوئᘭة كواشف تحقيق ᢝ

ᡧᣚ ᛒساهم مما ، محسّن تصمᘭم مع nBp و nBn ب ᘭة ᣢع بناءً جدᘌدة هᘭاᝏل
ᗫاء ᡧ ᢕᣂالف ᗷدراسة المطور النموذج ᛒسمح . InAsͭAlAsSb المواد نظام سᘘائك وكذا ، InAsͭGaSb المواد لنظام ᢝ

ᡧᣍالثا النᖔع من الفائقة الشᘘᜓات أساس ᣢع
أدائها. من تحد ᢝ ᡨᣎال العوامل ح ᡫᣃو الأجهزة لهذە الأساسᘭة

. InAsͭGaSb ،حاجز، nBp، nBn، T2SL، ᢝ
᡽ᣍضو ᛿اشف حمراء، تحت فائقة، ᡧᣎب كلماتمفتاحية:

Résumé

Le sujet de recherche concerne la modélisation et la simulation de photodétecteurs quantiques infrarouges à haute température et à longue longueur
d'onde à l'aide de méthodes avancées d'éléments finis. L'objectif est de concevoir de nouvelles conceptions basées sur des structures de puits quan-
tiques pour améliorer l'efficacité quantique et la température de fonctionnement. Ces nouvelles conceptions reposent sur le confinement quantique
des électrons et des trous à l'intérieur d'un mélange de matériaux dans lequel les énergies des porteurs deviennent discrètes et différentes de celles
observées dans les matériaux massifs. Les super-réseaux GaSb/InAs de type II sont l'un de ces méta-matériaux qui offrent une grande flexibilité
dans la conception des photodétecteurs infrarouges, y compris la possibilité d'ajuster la longueur d'onde détectée sur une très large gamme et de
réaliser des barrières uniplairs appropriées pour supprimer le courant d'obscurité tout en maintenant une partie importante du photocourant à des
températures élevées. Afin de valider cet intérêt, un ensemble d'outils de modélisation rigoureux basés sur la théorie de la structure des bandes k ·p
multi-bandes et la théorie du transport de Boltzmann a été développé, qui permettent de mieux comprendre la structure électronique et le transport
dans ces hétérostructures. Le model prend en compte en particulier l'effet de la propriété de contrainte intrinsèque des interfaces non intentionnelles
sur la structure électronique et les propriétés optiques. En utilisant ces outils, des nouvelles structures basées sur l'architecture nBn et nBp, ont été
conçues avec une conception optimisée, qui contribuent à la réalisation de photodétecteurs infrarouges à ondes moyennes et longues basées sur
les super-réseaux de Type II du système de matériaux GaSb/InAs ainsi que sur le système de l'alliage InAs/AlAsSb. Le modèle développé permet
d'étudier la physique sous-jacente de ces dispositifs et d'expliquer les facteurs limitant leurs performances.

Mots-clés : Super-réseau, Infrarouge, Photodétecteur, T2SL, nBn, nBp, Barrière, InAs/GaSb
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