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Abstract

We deal with backward stochastic differential equations with two reflecting barriers and a
continuous coefficient which is, first, linear growth in (y,z) and then quadratic growth with
respect to z. In both cases we show the existence of a maximal solution.
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0. Introduction

Since their introduction by Pardoux and Peng in [19], the literature on backward
stochastic differential equations (BSDEs) has increased steadily. The main reason for
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that is the intervention of these equations in many fields of mathematics such as
mathematical finance (see, e.g. [5,6]), stochastic control and games (see, e.g.
[3,7-9,12]), partial differential equations and homogenization [18,20,21].

In [4], El-Karoui et al. have introduced the notion of one barrier reflected BSDE,
which is actually a backward equation but the solution is forced to stay above a
given barrier. Carrying on this work, Cvitanic and Karatzas have introduced in [1]
the notion of two barrier reflected BSDE. The solution is now forced to stay between
two given barriers.

Precisely a solution for that equation, associated with a coefficient f, a terminal
value ¢ an upper (resp. lower) barrier U (resp. L), is a quadruple of adapted
processes (Y, Z;, K, K;),<7 with values in R"™*1*! which mainly satisfies:

_de Zf(t, Yl,Zt)dl‘i‘dK;'__dK[__Z[dBt, IST, YT=€,
L<Y,<U, and (Yi—L)dK} = (U, - Ypdk =0, vi<T. D

The process K (resp. K™) is continuous non-decreasing and its role is to keep Y
above L (resp. under U). Moreover they act just when necessary. This type of
equation is a powerful tool in zero-sum mixed game problems [9] and in American
game options [2].

In [1], Cvitanic and Karatzas have proved the existence and uniqueness of the
solution of (1) if, on the one hand, f is Lipschitz and, on the other hand, either the
barriers are regular or they satisfy the so-called Mokobodski’s condition which
means the existence of a difference of non-negative super-martingales between L and
U. However, a restrictive condition on f has been supposed when they deal with the
case where the barriers are regular. In [11], Hamadéne et al. consider also Eq. (1). An
improvement of one of Cvitanic and Karatzas’s results is obtained. They show the
existence of a solution, which is not necessarily unique, when f is continuous with
linear growth and when just one of the barriers is regular.

In this paper, we carry on the study of BSDEs with two reflecting barriers. First,
we show the existence of a minimal and a maximal solutions for (1) when f is
continuous with linear growth and under Mokobodski’s condition. In a second part,
we deal with the problem of existence of a solution for the same equation when f is
continuous with quadratic growth with respect to z. We prove the existence of a
solution in that case under either Mokobodski’s condition or a regularity
assumption on one of the barriers. Finally, an application related to the
determination of the value function of a risk-sensitive zero-sum game on stopping
times is given.

For BSDEs associated with a continuous generator satisfying a quadratic growth
condition in z, but just with one reflecting barrier or without reflection, one can see,
respectively, the papers by Kobylanski et al. [14], Kobylanski [13] and Lepeltier and
San Martin [16].

The paper is organized as follows:

In the first section we begin to set the problem and to recall the results which
provide existence/uniqueness of the solution for double barrier reflected BSDEs.
A new and weak formulation of Mokobodski’s condition is given.
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In Section 2, we first give a comparison theorem of the solutions in the case when
the coefficients are Lipschitz. We show that we can compare not only the
components Y’s but also the non-decreasing processes K=’s of the solutions. Then
using an approximation procedure we show that the two barrier reflected BSDE with
a continuous and linear growth coefficient has a maximal and a minimal solutions
when Mokobodski’s condition is satisfied. In addition, maximal or minimal
solutions can also be compared. In those proofs, the comparison of the K=’s plays
an important role.

Section 3 is devoted to the case when the coefficient f is continuous with quadratic
growth with respect to the variable z. Using the results of Section 1, we first show the
existence of a maximal solution when the coefficient satisfies a so-called structure
condition. Then with the help of an exponential transform we turn the reflected
BSDE whose coefficient is continuous with quadratic growth in z into another one
whose coefficient satisfies the structure condition. Finally a Logarithmic transform
allows us to come back to the original problem and to show the existence of a
maximal solution under either Mokobodski’s condition or a regularity assumption
on one barrier. In the particular case of f(¢,y,z) = h(t,y) + %|z|2, we prove that the
component Y can be identified with the value function of a risk-sensitive stopping
zero-sum game. This identification could have an application in the study of
American game options in a financial incomplete market with exponential utility.

1. Preliminaries and statement of the problem

Throughout this paper (2, 7, P) is a fixed probability space on which is defined a
standard m-dimensional Brownian motion B = (B,),r whose natural filtration is
(F):=0{B,,s<1}),< 7. We denote by (F,),<r the completed filtration of (F?), with
the P-null sets of . On the other hand, let:

e Z be the g-algebra on [0, T] x Q of F,-progressively measurable sets,

o #*K be the set of Z-measurable processes v = (v;);< 7 With values in RF such that
E[fOT |vg]? ds] < oo,

o #* be the set of Z-measurable and continuous processes ¥ = (¥),< 7 such that
Efsup, <7l Y, |*]<oo.

From now on we are given four objects:

(i) a function f from [0, T] x @ x R'*" into R which with (¢, ®, y, z) associates
f(t,w,y,z) and such that for any (y,z) € R'*", the process (f(t,®,y, Z))<r 18
#-measurable and (f(t, »,0,0)),. 7 belongs to H,

(i) a random terminal value ¢ Fy-measurable and E[¢%]< oo,

(iii) two obstacles U = (U,),<7 and L = (L), which are processes of > such
that P-a.s., Vi<T,L,<U, and Ly <é<U7p.

A solution for the reflected BSDE associated with the coefficient (or gene-
rator) f, the terminal value ¢, the upper (resp. lower) obstacle U (resp. L) is a pro-
cess (Y,Z, K", K" )=(Y,,Zi,K},K;),c 7, #-measurable, with values in R'*"*!+!
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such that:
Y,K* and K~ € 9%, Ze#x*; KV K-
are non-decreasing and K = K; =0,
Y, =&+ fff(s, Y, Z)ds+ Ky — K — K7+ K, — f,T Z.dB,, t<T, )
Vi<T,L,<Y,<U, and [/ (U,— Y)dK; = [ (Y, — L)dK} =0.

Let us now gather some assumptions on the data f,&, L and U of the problem,
which we are sometimes led to assume hereafter.
(H1) There exists a constant C >0 such that

P-as. [f(t,y,2) = f(,y,2)<C(y = Y|+ |z =Z|) foranyty,),z7.

In this case we say that f is uniformly Lipschitz with respect to (y, z).
(H2) The map (y,z)—~f (¢, w,y, z) is continuous. In addition there exist a constant
C>0 and a process y:=(y,),< 7 which belongs to #*' such that

P-as. [f(t,y,2)|<C(y, + [yl + |z]) for any ¢,y,z.

When [ satisfies this assumption, it is said continuous with linear growth with respect
to (y,2).

(H3) There exist a constant C>0 and a function ¢ from R into R, which is
bounded on compact subsets of R, such that

P-as. |[f(1,,2)|<C(1 + @)+ |zI*) for any #,y,z.

In addition the mapping (y,z)—~f(z,®,y,z) is continuous. In that case f is said
continuous with quadratic growth with respect to z.

(H4) A process X = (X;),;<r of 92 is called regular if there exists a sequence of
processes (X"),~q such that:

(i) Vt<T, X"= X" and lim,_. 1o X" = X,, P-as.
(i) Vn=0 and 1<T, X! =X} + fot Xp(s)ds + fot X,(s)dB,, where x,, X, are F,-

adapted processes such that
T 1/2
{ / |xn(s)|2} ds
0

(HS) Mokobodski’s condition: There exist two non-negative super-martingales
n=(n),<r and 0:=(0,),<; which belong to ¥* such that V¢ e [0,T], L/l <7+
Slp=n<n, — 0+ EEIF )< U e+ Elp=ry.

(H6) The obstacles U, L and the r.v. £ are bounded, i.e., there exists a constant
C>0 such that P-as., Vi<T, |U,| + |L]| + |¢|]<C.

In this paper we have two main objectives. The first one is to show that (2) has a
solution if the assumptions (H2) and (H5') (which is a weak version of Mokobodski’s
condition, see Lemma 1.3 below) are fulfilled. The second is to deal with reflected
BSDEs with coefficients which are continuous and with quadratic growth with

sup sup max{x,(7),0}<C and FE <+o00 Vnx=l.
T

n t<
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respect to z. We prove that under the assumptions (H3), (H6) and some other
conditions, which are linked to (H4) or (HY’), Eq. (2) has also a solution.

However, to begin with, we recall the known results which provide a solution for
(2). Mainly they are of two types. Either it is assumed that Mokobodski’s condition
is fulfilled or that the upper barrier is regular. Precisely we have:

Theorem 1.1 (Cvitanic and Karatzas [1], Hamadene and Lepeltier [9]). If the
assumptions (H1) and (H5) hold, then the reflected BSDE (2) has a unique solution.

Theorem 1.2 (Hamadene et al. [11]). Under the hypothesis (H2) and if U or
—L:=(—L;);< 7 satisfies (H4), Eq. (2) has a solution which is not necessarily unique. In
addition if, instead of (H2), f satisfies (H1) then the solution is unique.

In [11], the proof is done for the case when the upper barrier U is regular.
However, this proof remains valid (only minor changes necessary) if the regularity
assumption holds on —L.

Mokobodski’s condition in (HS5) is a bit stringent since it requires the continuity of
the non-negative super-matingales # and 6 which, moreover, should satisfy 1, = 07r.
Now, when we make use of this condition in order to show the existence of a solution
for Eq. (2), the continuity of # and 0 is irrelevant (see e.g. [1,9]). We just need that
they are right continuous with left limits (r.c.l.l. for short). Therefore, Theorem 1.1
remains valid if (HS) holds with just r.c.l.l. super-martingales. This remark allows us
to weaken the hypothesis (HS) in the following way:

Lemma 1.3. Assume that:
(HS') There exist two non-negative r.c.ll super-martingales n = (n,),<7 and
0 = (0,),<r such that

Vi<T, L,<n,—0,<U,; and E[sup{lntl + |6,|}2] <00.
(<T
Then Mokobodski’s condition is satisfied.

Proof. For t<T, let #j, = (n, + E[{” |[F/])1<1 and 0, = 0, + E[f+|F,])1[,<n. Since
n and 0 are non-negative super-martingales then 6 and 7 still non-negative
super-martingales which are also r.c.l.l.. Moreover, they satisfy {4,1¥<n +
Spy=n<il, = 0, + EEIF )< U+ Ely=y  and  E[sup,c 7 {17, + 10:]}7]<oc0.
Thus, Mokobodski’s condition is satisfied with two non-negative r.c.l.l. super-
martingales. Therefore, as it is pointed out previously, the conclusion of Theorem 1.1
remains valid if (H1) and (H5) hold. O

2. Reflected BSDEs under Mokobodski’s condition and linear growth

In [11], the authors show that the reflected BSDE (2) has a solution if f is
continuous with linear growth and the barrier U is regular. In this section we are



1112 K. Bahlali et al. /| Stochastic Processes and their Applications 115 (2005) 1107-1129

going to replace the regularity of U by Mokobodski’s condition (which from now on
is (H5")) and to show, once again, that Eq. (2) has a solution. On the same subject,
we are aware of a recent work of Lepeltier and San Martin [17]. They have obtained
the existence of a solution for (2) when f satisfies (H3) but with a rather stronger
condition, with respect to (HY'), on the barriers. In addition, the proofs are
completely different.

We begin to give a comparison theorem which allows to compare the com-
ponents Y’s, K*’s of two solutions of reflected BSDEs. This result is crucial in order
to reach the linear growth case, i.e., when f satisfies (H2), from the Lipschitz case.

Let (f'(t,w,y,z),&, L, U') be another quadruple such that for any (y,z) € R'"*",
(f'(t,,2)),<r is P-measurable, L, <U,,Vi<T, & is Fr-measurable, square integr-
able and L, <& < U7.

Theorem 2.1. Assume that the reflected BSDE associated with (f,&¢, L, U) (resp.
(", &, L', U") has a solution (Y, Z;, K}, K;),<7 (resp. (Y, Z\, K"}, K',),< 7). Then:

() if f satisfies (H1), (<& and for any t<T, L,<L, U,<U, f(1,Y),, Z)<
[, Y, Z)), then we have P-as. Y<Y'.

t
(ii) if moreover:

@) f(t,y,2)<f'(t,y,2) for any (t,,2), (f'(1,0,0)),< 1 belongs to #™*" and [ satisfies
(H1),
b L=L,U=U

then we have also P-a.s., Vt<T, K; <K', and K} >K'].

Proof. First let us show that Y <Y’. Letusset K, = K — K; and K, = K'Y — K',,
s<T. Using Tanaka’s formula [15,22] with (Y — Y")*? yields

T
(¥, - Y;)+2+/ ly.o | Zs — ZJ2ds
t
T
. / (Y, = Y (s, You Zy) — /(s Yo Z)) ds
t
T T
12 / (Y, — ¥)"(dK, — dK') 2 / (Y, — Y)"(Z, - Z))dB,
t t

T
<2 / (Y, = Y (s, Y0, Z0) =[5, Vs Z)) ds

T T
42 / (Y, — ¥ (dK, — dK') — 2 / (Ys— Y)"(Z, — Z))dB,
t t

since  f(1,Y,,Z)<f'(t,Y,,Z). But f(;(YS — Y)*(dK; - dK)) = flT( Y,—Y)F
(—dK; — dK’;r)s() because when Y, > Y’ we have Y,>L, and U,> Y. Hence for
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any 1< T,

T
(Y, — Y)*? +/ liy,> vl Zs — Z)* ds

t

T
< / (Y = Y)Y (s, Yoo Zy) — f(s5, Y., Z)) ds
' T
- 2/ (Ys—Y)"(Z,— Z,)dB,.
t

Now, since f is Lipschitz then we can write (¢, Y, Z,) — f(t, Y|, Z})) = a(Y, — Y}) +
b(Z,—Z}), where (a;),<r and (b),<r are bounded Z-measurable processes.
Therefore,

T

(¥ 102 [ yiZo- ZP ds

t
T
<2/ (Y, — Y;)+{as( Y, — Y;) +by(Z, — Zﬁ)} ds
t
T
-2 [ (- vyt -z,
Next, using the inequality |a.b|<éelal* + ¢ '|b|?, Ve>0 and a,b € R*, we obtain
T T
(ri-vprec [ vpRas-2 [ (- vyt - Z)ds,
t t

where C is a constant. Now since f(')(YS - Y)*(Z,— Z\)dB, is a martingale
then taking expectation on both sides and using Gronwall’s inequality to get
E[(Y,— Y))"]=0,Vt<T and then Y< Y.

We now prove that K" >K~. Let 1 =inf{r>0,K; >K';} AT (hereafter we
always assume that inf{J} = +00). We are going to show that P[t<T] = 0 which
implies that K; <K', ,Vt<T and then K~ <K'~ by continuity.

Suppose that P[t<T]>0. As K~ and K'~ are continuous processes then we have
K. =K'_ on the set {t<T}.

On the other hand we also have Y, =Y, = U, on the set {t<T}. Indeed,
let we{t<T} If Yyu)(w)# Uywm(w), then there exists a real number n(w)>0
such that V¢ €]t(w) — n(w), t(w) + n(w)[ we have Y, (w)<U,(w) which implies
that K7, () = K’} (0) = K] (0) <K', (w), Vi € [t(w), T(w) + n(w)[. But this con-
tradicts the definition of t(w), henceforth Y ()(®) = Uyw)(®) = Y;(w)(a)) since
Y<Y'<U.

Now let 6 = inf{r>=1,Y,=L,} AT. We have {t<T} C {0>1}. Indeed if w is such
that t(w)<T then Yyu)(w)= Uyw)(w). Now if d(w)=1t(w) then Yse)(w)=
Lswy(®w) = Uyw)(w) = Lywy(w) which is absurd since U, > L;,Vt<T. Hence {t<T} C
{0>1} and then P[6>1]>0.

Now for 7€ [r,0] we have K} =K} and K'[ =K'} since the processes
K" (resp. K'") moves only when Y (resp. Y’) reaches the obstacle L. It follows
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that, Vt € [z, ],
)
YI Y(3+/ f(S YsyZS)dS_(K(S - t)_/ ZSdBSa
I3

o
Y =Y, + /f(s Y;,z;)ds—(K’g—K’;)_/ 7. dB,.
t

Now let (Y, Z,, K,),<s (resp. (¥, Z,,K)),s) be the unique solution on [0, 3] of the
BSDE whose coefficient is f (resp. f), the terminal value Y; (resp. Y) and
reflected by the upper obstacle U, i.e.,

B )
7, =¥, / F(s, Vo, Z)ds — (R; —K) = / Z.dB,
t t

5 5
(resp. V. =Y} —|—/ £, Y, Z)ds—(R'y —K'7) - / Z, dBS,Vl<5>.
t t

The comparison theorem for one upper barrier reflected BSDEs (see, e.g. [11,
Proposition 2.3]) implies that ¥ < ¥" and K, — K,<K, — K,,Vs<t<d. Now since f
a.ndf are Lipschitz in (v, z) then V7 € [, 6] we have Y, = Y,, Y.=Y,Z =27 and
Z,=Z7,. 1t follows that K; — K, = K; — K; and K'; —K', _K’(S K[ ,Vte
[z, 9]. Hence we have K'; — K’ >K‘ — KS for any T(w)<s<t<5(a)) As on the set
(t<T}, K'7 =K, then K’;(w)}K,‘(w),Vt € [t1(w), 6(w)]. But this contradicts the
definition of 7, hence P[t<7] =0 and then K~ <K'". In the same way we can
show that P-a.s., KT >K'", whence the desired result. [

Remark 2.2. The process K~ (resp. KT) in definition (2) stands for, in a sense, the
power which is deployed in order to keep the component Y of the solution under
(resp. above) the barrier U (resp. L). So since Y < Y’ then we can obviously guess
that K~ <K'~ and K" >K'".

We now show that the reflected BSDE (2) has a solution under the assumptions
(H2) and (HY’), i.e., when f is continuous with linear growth and under
Mokobodski’s condition.

Theorem 2.3. Assume that (H2) and (H5') are fulfilled. Then the reflected BSDE
associated with (f,&, L, U) has a solution (Y, Zi, K}, K[ ),y which is moreover
maximal, i.e., if (Y, Z,,K'[,K'7),<r is another solution then P-a.s., Y=Y

Proof. For n>1 let f, be the function defined as follows:
fn(tyway’z):z sup {f([,CU, u, U)_ (n—‘f_ C)(Iu_y| + IU_ZI)}a (3)

(u,v)eRH"’
where C is the constant of linear growth of f* (see (H2)). The function f, satisfies:
= Cyw)+ I + 12D <f (1, ,p,2)
<Cy(w)+ sup  {C(lul + |v]) = (n+ O)|lu — y[ + v — z])}

(u,l})ERl+m

<C@y (o) + [y| + 12).
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Therefore it is finite and satisfies |f,(¢, w,y,2)| < C(y(w)+ || + |z]). On the other
hand it is Lipschitz in (y, z) uniformly in (¢, ®) since

lfn(ta w,y, Z) _fn(ta UJ,)/,Z/)| <(C + n)(ly - y/| + |Z - ZII)‘

Indeed, basically this stems from the inequality |sup;c; a; — sup;e; bi| <sup;es |ai — bil.
Finally, f,>f,,; and P-a.s. for any (¢, , z) the sequence (f ,(t,»,y,z)),> converges
to f(t,w,y,z). Actually, for any n>1 there exits (u,,v,) such that f,(¢,®,y,z)<
f(t,,uy,0,) — (n+ O)f|uy, — y| + v, — 2|} + n~!. Therefore, we have f,(t,w,y,z) +
(n+ Oluy — y| + v, — 2|} <f(t, 0, u,,v,) + 171 It implies that lim,_ o (4, v,) =
(»,2z) and then lim,_f,(t, ®,y,z)<f(t,w,y,z). Therefore, lim,_, o f,(¢,w,¥,2) =
f(t,w,y,z) since [, =f.

Now according to Theorem 2.1, there exists a process (Y", Z", K*", K~") solution
of the reflected BSDE associated with (f,, ¢, L, U), i.e., which satisfies:

YY" K™ and K" € ¥%, Z" € #*"; moreover K" K~ are non-decreasing
(K" =Ky =0),

Y=+ [T 10, Y, Z0 ds + K3 — K" — K"+ K" — [T Z"dB,,
t<T,

VI<T, Li<Y'<U, and [](U;— Y")dK;" = [ (Y" — L) dK?" = 0.

As f,=f,41 then according to comparison Theorem 1.1 we have Y"> Yy,
KT <Kt and K" > K", Now since for any <7, L,<Y"<U, and L, U
belong to 2 then there exists a #-measurable process Y:=(Y,),<, such that P-a.s.
for any 1< T the sequence (Y7),, converges pointwisely to Y; and the sequence of
processes (Y"),- | converges in A to Y.

On the other hand, let (¥, Z, K*, K™) be the unique solution of the reflected BSDE
associated with (—C(y + |y| + |z]), &, L, U)). Once again, the comparison Theorem
1.1 implies that K™"<K*, ¥n=1. As E[(K;")* 4+ (K#)*] <00, then P-as., for any
t<T, the sequence (K;"),s, (resp. (K; "), ) converges to K/ (resp. K, ). In addi-
tion, the process K™ = (K/),<r (resp. K~ =(K;),<7) is non-decreasing lower
(resp. upper) semi-continuous and E[(K*T')z]<oo (resp. E[(K})2]<oo).

Now using Itd’s formula with (¥Y”)> and standard calculations vyield
E[fOT |Z§’|2ds] < C, where C is a constant which does not depend on n.

Let us show that Y is continuous and the sequence (£"), | is convergent in H",
Using It6’s formula with (Y” — Y™)? yields, for any < T,

(Y" = Y"yY? + EUT |z — Z?’|2ds}
. t
_2 / (Y! = YO o5, YO Z0) — s, Y7, Z) ds
' T
+ 2/ (YZ’ — YT) d(Kj"” — Kj"m - KS_’” + KS_"")
t

T
-2 / (Y" — Y")(Z" — Z")dB,. @)
t
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But ([y(Y" — Y"™)(Z" — Z")dB,),< 1 is an (F,, P)-martingale and
T
/ (Y’; _ Y&:i) d(K;k—,n _ K;&-,m _ Ks—,n +K:,m)
t
T T
= [ ymaw - ke - - vmass - ko
t t
T T T
- / (Y" — L)dKH" + / (Ly — Y™y dKH" — / (U, — Y™MydK
t t t
T
+/ (Y™ — U,)dK;"<0.
t

Then taking into account the linear growth of f,, the boundedness of (Z,),-; in
A" and the fact that L< Y"< U yield,

T T
EV |zg—z';’|2ds]<c\/E[/ |Y’;—Y’S”|2ds}
0 0

Therefore (Z"),- is a Cauchy sequence in A#*" and then converges in the same
space to a process Z = (Z;),< -

Now going back to (4), taking the supremum and using the Burkholder—
Davis—Gundy inequality [15,22] we obtain

T T
E[sup 1Y — Y¢’|2] <C \/EU 1Y — Y’;’|2ds] +E[/ |Z" —Z’{'Izds]
1<T 0 ' ' 0 ' ;

Henceforth the sequence (Y"),.; converges also to Y in &2 and then Y is con-
tinuous.
Next we focus on the continuity of the processes K*. For any t< T we have,

t t
KM — K" =YY" — /0 fols, Y, Z) ds + /O Z"dB,. (5)

But there exists a subsequence of the sequence of processes ((f (¢, w, YV, Z7)) ;< 7),>1
which converges in L'(Q x [0, T],dP ® dr) to (f(t,», Y, Z;)),<r- Actually for any
0>1 we have,

T
E |:/ lfn(sa Y;I;Z;l) _f(sa YS’ Z\‘)' dS:|
0
T
= E{/ (s, YE,Z5) — (s, Y, Z)I gy 221<4) ds}
0

T
+E [/ (s, YE,Z) — (s, Y, Z)I gy 12215 ] ds]-
0
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But
T
EU o, Yo Z0) = f 5 Yo ZOWgviiizyi<a ds]
0
T
<E[ /0 (s, Y0, Z0) — f(5, Y, ZD) Ny 4120 <o) ds]

T
+ E{/ (s, Y, Z5) — f(s, Y, Z)I Ny 41221 <4) ds} ~
0

The first term in the right-hand side converges to 0, as n — oo, since P-a.s, Vi< T,
SUP iz <o [ (8 0,9, 2) — f(£,0,p,2)] — 0 (thanks to Dini’s theorem) and through
Lebesgue dominated convergence theorem. The second term converges also to 0 at
least along a subsequence. Now in order to complete the proof of the claim it is just
enough to underline that we have

T
C
E{/o (s, Y5, Z5) — f(s, Y, Z)yyr 121> 61 ds} < %
since L< Y"< U, the sequence (Z"),- is uniformly bounded in A" and finally
taking into account the linear growth of f and f,.
Therefore from (5) there exists a subsequence of (K™ — K~"), | (which we still
denote by n) such that:

lim E {sup (K" — K" — (K" — K,””)q =0.
n,m— 00 (<T

It follows that the process K™ — K~ is continuous and once again from (5) we
deduce that:
t t
P-as. Vi<T, K/ —-K, =Yy—Y,— / f(s, YS,ZS)ds+/ Z,dB; (6)
0 0
and then

t t
ViI<T, Kf=K +Yy—Y, — / 1, Y‘Y,Zs)ds+/ Z,dB,.
0 0

But K™ is lower semi-continuous and K~ is upper semi-continuous. It means that
K* and K~ are lower and upper semi-continuous in the same time therefore they
are continuous and then belong to %2 since we know already that E[(KJTF)2 +
(K7)’]<oe.

Now from (6) we have: Vi< T

T T
Y, =&+ / F(s Yo Zy)ds + (Kb — KP) — (K7 — K;) — / Z,dB,.
t t

In order to finish the proof it remains to show that fOT( Y,— UydK, = fOT( Y, —
Ly)dK! =0. But this is a direct consequence of the convergence of (Y"),-,
(K™=, and (K™"),~ in % respectively to ¥, K™ and K~ and since for any n>1
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we have [[[(Y" — U)dK;" = [/ (Y" = L,)dK+" = 0. The proof of this claim can
be read in [10, p. 10].

Finally, Y is the maximal solution because if (Y’, Z’, K", K'~) is another solution
for the reflected BSDE associated with (f, &, L, U). Then according to Theorem 1.1
we have P-a.s., Y">Y and Y > Y. The proof is now complete. [

An example where Mokobodski’s condition is satisfied is the following: assume
that for t+<T, L, = Ly + fot lyds + f(; I;dB; where the processes (/)< and (/)<

belong to #>! and #>™, respectively. Then (HS') is satisfied with 1, = E[LT +

ftT [, ds|F,] and 0, = E[L} + ftT IT ds|F,). However it is not necessarily true that
(HY) is satisfied since we do not know whether or not 07 is equal to 7.

Remark 2.4. In the previous theorem, the machinery works since it is possible to
claim that, for every Lipschitz coefficient 7, the reflected BSDE associated with
(f,¢, L, U) has a unique solution. So if instead of (H5') we assume that U or —L
satisfies (H4), in combination with (H2), then with the help of Theorem 1.2 we
obtain the same result as in Theorem 2.3.

Had we approximated the function f by a non-decreasing sequence of Lipschitz
functions, we would have constructed the minimal solution of the reflected BSDE.
Therefore we have,

Corollary 2.5. Assume that (H2) and either (H5") or, U or —L vatlvﬁev (H4) Then the
reflected BSDE assoczated with (f, ¢, L, U) has a minimal solution (Y,, Z, K, , K )i<T>
i.e. zf(Y,,Z K K )i<r Is another solution then P-a.s., Y < Y.

We have seen in Theorem 1.1 that we can compare the solutions of reflected
BSDEs in the case when, at least, one of the coefficients is uniformly Lipschitz. In the
following result, which will be useful in the next section, we show that maximal
solutions associated with coefficient which are of linear growth at most, can also be
compared.

Proposition 2.6. Proposition Let f, /' be two coefficients which satisfy the assumption
(H2) and such that P-as., f(t,w,y,2)<f (t,w,¥,2), for any t,y and z. Moreover
assume that (H5) or, U or —L satisfies (H4). Let (Y, Z, K/, K;), <y (resp.
(Y, Z,,K'F,K'}),<7) be the maximal solution of the reflected BSDE associated with
f, ¢, L U) (resp (f',& L, U)), then P-as., Y<Y', K*>K'" and K- <K'~.

Proof. First let us point out that w.l.o.g. we can assume that the constants of linear
growth of /" and f’ are the same. Now for n>1 let f/ be the function defined as
follows:

f;l(t,a),y,z):z Sup {f/(lawauav)_(n+C)(|u_y|+|v_z|)}-

(u,v)eRH"’

So for any n>1, we have f,>f,. Now for n>1 let (Y",Z",K™" K~") (resp.
(Y",Z", K™ K'™")) be the solution of the reflected BSDE associated with
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(f &, L, U) (resp. (f),, &, L, U)). Therefore the comparison Theorem 1.1 implies that
P-as., Y'SY", K™>K"" and K™"<K'™". As (Y",Z",K™",K™")),>, (resp.
Yy, Z’" K", K’ "Nps1) converges to (Y, Z, K5 K;),<r (resp. (Y}, Z,, K,
K'[),<r) the maximal solution of the reflected BSDE associated with (f,¢&, L, U)
(resp. (f',& L, U)), we obtain P-as., Y<Y, K*>K"and K-<K'~. O

3. Double barrier reflected BSDEs with quadratic growth with respect to z

In this section, we prove the existence of a maximal solution for a two barrier
reflected BSDE with a continuous generator f which satisfies a quadratic growth
condition w.r.t. z. This is done both under Mokobodski’s condition as well as in the
case when one of the barriers satisfies the regularity assumption (H4). However, we
begin to give an intermediate result which states the existence of a maximal solution
under a structure condition on the coefficient. Then, in the general case we use an
exponential transform and we obtain a new generator which satisfies the structure
condition. Therefore, the associated BSDE has a maximal solution. Finally, a
Logarithmic transform leads to the solution of the initial problem. The change
of the coefficient, in using an exponential function, is a technique which has been
already used in order to study BSDEs with a generator which has the same
properties as in our frame but without reflection (e.g. [13,16]) or with just one
reflecting barrier (e.g. [14]).

Theorem 3.1. Let

(1) n be a bounded Fp-measurable random variable with values in R,

(i) L= (Lt),<T and U=(U t),<T be two bounded and #-measurable processes such
thatVt<T,L,< U, and L <n< Ur. In addition there exists a constant o.>0 such that
vi<T, L,>u

(iii) F :[0,T] x 2 x [0, 00[x R"—> R a P-measurable function, continuous in (y, z)
and satisfying the following structure condition:

3C>0 such that P-as. Vt,y,z, —2C%y — ClzP<F(t,0,y,2)<2C%y. (7

In addition assume that either the pair (L, U) satisfies (H5') or one of the processes
U or —L satisfies (H4). Then the double barrier reflected BSDE associated with
(F,n,L,0)

Yo=n+ [ F(s,Y,Z)ds+Kf —K; —K; +K; — [" Z,dB,, Vi<T,

Z e #*", K* are continuous non-decreasing and E[Kf]<oo (K§ =0), (8)
vi<T, L,<Y,<U, and fo (Yy— L)dK] = fo (U5 — Yy dK; =0,

has a maximal solution (Y., Z,, K;r,Kt_),éT.

Proof. Let M:=esssup,,, U, and consider the continuous and bounded function
p:R— R such that p(x) = oljxcy + X1 n<r<r) + M1 a. Consider now the
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following reflected BSDE:

Z € #*"; K* are continuous non-decreasing and E[KF]<oo (K& = 0),
Yo=n+ [ FGs,p(Y,),Z)ds + Kf — K/ — K7 + K; — [ Z,dB,, )
Vi<T, Li<Y,<U, and [J(Y,-L)dK; = [[(T, - Y,)dK; =0.

We shall prove that the reflected BSDE (9) has a maximal solution (Y,,Z,, K,
K;),<7. Therefore it satisfies a<Y,<M and then p(Y)=Y. It follows that
(Y,,Z,,Kj’,Kt_),gT is also a maximal solution for (8).

From now on the proof will be divided into 6 steps.

Step 1. Let us define F(t, ,y,z)=F(,w,p(y),z) and for p=1,letx, : R"—> R be a
smooth function which satisfies:

0<K,<1, k(z)=11if |z|<p and K,(z) =0 if |z|=p+ L.

Let  Fy(t,0,y,2):=2Cp()(1 — 1,(2) + k() (t, 0, p,2). From (7) we have
F(t,0,y,2)<2C?p(y) and then for any p>1,

Fp(la @, ), Z) - Fp-‘r](l’ W, Y, Z) = (2C2p(y) - F(t’ w,), Z))(Kp-‘rl(z) - Kp(z))>0

since the sequence (kp),>; Is 1ncreasmg It means that the sequence of functions
(F p)p>1 18 decreasing and lim,, oo | F = = F.In addition, F is bounded since for any
(t,y,z) we have |Fp(t ®,¥,2)| < Ci(1 + |p|*). Therefore, Theorem 2.3 (resp. Remark
2.4) implies that the reflected BSDE associated with (F,,#, L, U) has a maximal
solution (Y?, ZP, K, KP~) since the pair (L, U) (resp. one of the processes U or —L)
satisfies (H5') (resp. (H4)). So we have

e #*" KP* belong to ¥? and non-decreasing (Kﬁi =0),
Y =n+ [ Fys, Y0, Z)ds + K} — K0T — Ky + K0 — [| 722 dB,, (10)
Vi<T, L<Y!<U, and [](Y? - L)dK"* = [[(TU,— Y?)dK?~ =0.

Now the comparison theorem of maximal solutions (Proposition 2.6) implies that
M=YP =Y >q, KPT<KPDT and KP~>KP*D7 since F,y1<F,. Therefore
there exists a process Y:=(Y,),< 7 such that P-a.s. ViI<T, Y, =1lim,_ o Y/ and Y =
w - lim,— Y”. In addition P-a.s. Vi<T,a<Y, <M.

Step 2. There exists a positive constant ¢ such that E[ fo |Z"| ds]<e, vp=1.

Let ¥(x) = e 3*. By It&’s formula we have

1 T 1" p
YD+ [ raizE ds

T
=P(Yh) + / W(YP)F (s, Y, Z0) ds + / P(Y?)dKP*

t

T T
- / P'(Y?)dKP — / W(Y?)Z" dB,.
t t
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It is easily seen that EJ| ftT Y'(Y?)dKE™|]< ML E[KY "] where M :=sup, < <y |/ (%)].

Now since ¥’/ <0 and K?* is an increasing process, ftT ?'( Y?)dK?* <0. Finally,
taking expectation on both sides of the last inequality yields

1 T
s+ gE| [ vzl
0
T
<EY(Y)))+E [ / P(YD)F (s, Y?,Z0) ds} + M E[KS].
0

Now let 4:=2C? max{a, M}. Using the inequality (7) and the fact that ¥ <0 we
obtain

T
Ew(YS)) +§E[ / aﬂ”(anZ{:Fds}
0
T
<EPOp - E| [0 ma s Qziyas| 4 an ey
0
Henceforth,
T
E[Y(Y)] +E { /0 (2 P(Y?) + C'I”(Y{j)) |ZP|? ds}
T
<E[Y(Y)] — AE [ / P'(Y7?) ds] + M E[K) ).
0
As the function ¥ satisfies 1¥” + C¥’' = %Czﬁf’ we get
T3
EY(Y)|+E U 3 C*P(YD)| 2P| ds}
0
T
<E[Y(Y))]— AE [ / 'P/(Yf)ds] + M E[K"]
0
and then
T3 »
E[Y(YD]+E [ / 3 C?e3CYs |z ds}
0
T
<E[Y(Y")] — AE { /0 P'(Y7) ds] + M E[K)).
Finally, taking into account the fact that K?~>K®+D~ it holds that
T
%Cze‘3CME [ / |ZP|? ds] <SE[P(E)]+3CATe ™ + M E[K}],
0

which implies the existence of a constant ¢ such that E[ fOT |ZIS’|2 ds]<é, Vp=1.
Step 3. There exists a subsequence of (Z),.; which converges strongly in H".

The sequence (£”),, is bounded in A>™ then there exists a subsequence of
ZP), -, which we still denote (Z”) -, which converges weakly in #>" to a process
p=1 p=1
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Z=(Z,),<7- Now let 0 = max{C,4C> M}, ¥(x) = (¢'* — 1/120) — x and p, ¢ be two
positive integers such that p<<g. Then we have Y”> Y9. On the other hand using
It6’s formula with y(Y? — Y9) and taking expectation yields

1 T
PO - Y| [ v - vz - zip )
0

=1, q9) + 1P, q9) + I3(p, 9),

where
T ~ ~
N = E| [ 007 YO, Y2 = By 71,201 .
0
T
L(p,q) = E{/ Y'(Y? — YHd(KPT — K?*)} and
0

T
B. = | [ w07 - voarr ki)

First note that
T
B = | [ 007 - Y1y k]
0 N 'S e

T
o ,

since Kt (resp. K97) moves only when Y7 (resp. Y?) reaches the lower obstacle L.

But Y?/< Y? then {Y? = L} C {Y? = L}. As ¥/(0) = 0 then the first term in the right-

hand side is null. On the other hand we have E[fOT V(Y2 — YD) yo_y, dKIT]>0

since P'(x)>0 when x>0. It follows that I(p, ¢)<0. In the same way we can show
that I5(p, ¢)<0. Thus

1 T
§E|:/O PI(YP — YN ZP — 79 ds
T ~ ~
sE[ | = Y vz - Fy v ZD) ds (a1
0

since Y(Y5 — Y{)>0. But we have
Fyls, Y0, Z80) = Fy(s, Y2, Z9) = 2C°p(Y2)(1 = i)(Z0) + 1p(Z0)E (s, Y7, Z0)

— Fy(s, Y!,29)

<2Cp(YD)(1 = K,)(ZD)) + Kp(Z8) x 2C?p(Y?)
— F(s,Y4,2%)

<2C2p(Y?) 4+ 2C2p(YY) + C|Z1)2

<4C’M + C1Z9P<0(1 + | Z1P)

<30(1+ |28 — 202 + 128 — Z,* + | Z,?).
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As V'(Y? — Y?)>0, then plugging this latter inequality in (11) yields
T 1"
v )
EUO (2— 307 )(YI; — Y928 — Z§1|2ds}
T
<30E UO P(Y? - YD1 + |20 — Z,)* + |Zs|2}ds} (12)

However ¥"(x)/2 — 30¥(x) = 30¢'2* 430, then the process (¥”/2—30¥")!/?
(Y? — Y7) converges, as ¢ tends to oo, strongly in #>! to the uniformly bounded
process (¥"/2 —30%)/2(Y? — Y). Hence (¥"/2—30%)2(Y? — Y9) x (2" — Z9)
converges weakly to (¥"/2—30%)/*(Y? — Y) x (Z” — Z). Therefore by (12)
we obtain

T W”
EU (2 - 36W’>(Y1; - Y)|Z8 - Zs|2ds]
0

T "
< lim infEU (% - 30‘1”)(st’ — YD) ZP — Z§i|2ds}
0

q— 00
T
<30E [ / (Y- YO+ 120 - Z + |Zx|2)ds}
0

since for any sequence (x,),; of A#*! which converges weakly to x we have
llx]1> < lim inf,_, « [|x,||>. It implies that

T lP//
EU (7 — 66W’>(Y§3 - Y| 2P - ZS|2ds]
0
T
<30FE { / P(Y? — Y1 +|Z%) ds}
0

Now since (P”/2 —60%') =60, thanks to Lebesgue dominated convergence
theorem, we deduce that lim,_, o £ fOT |Z8 — Z,|>ds = 0 which is the desired result.
Step 4. The process Y:=(Y,),. 7 is continuous.
We shall prove that Y? converges uniformly to Y in L*(Q,dP). Let p, g be two
positive integers such that p<q. Applying It6’s formula with (¥? — Y¥)* yields:

T
Y- YIP + /0 20— 2P ds = [, @) + D(po @) + I3, ) + La(p. ).

where

T
Li(p,q) =2 / (YP — YO)(F (s, Y2, ZP) — F (s, Y7, Z9)) ds,
0
T
L(.q) =2 /0 (Y7 — YO d(KI* — KT+),
T

L) = —2 / (Y7 — Y0)d(K?~ — K°) and
0

T
14(p,q) = —2/ (Y? — YI)(ZP — Z9)dB,.
0
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But as in Step 3 we have I)(p,q)<0 and I3(p,q)<0. Now applying the
Burkholder—Davis—Gundy inequality [15,22] we obtain for some constant C,

T
E{ sup |Y1;—Y;’|2]+EU |Z§’—Z‘{|2dt}
0

0<t<T
T
<CE[ / | Y2 — YU Fy(s, Y2, Z0) — F (s, Y?,Zi’)lds}
0

As both F and F » are continuous and F » converges decreasingly to F, then by Dini’s
theorem F »(t, w,.,.) converges to F(f,,.,.) uniformly on compact subsets of R
for each fixed (¢, w). On the other hand, since (Z7),-; converges strongly in A" to
Z then there exists Z € #>" and a subsequence, which we still denote (27),>1, such
that (Z"),, converges to Z, d/® dP-a.c and sup,, |Z0|<Z,. Then F (s, Yﬂ,’,zzg,’)
converges to F(s, Y, Z), dt ® P-a.e and moreover |F,(s, Y2, Z0)| < Ci(1 + |Z8|7) <
C1(1 + | Z,|?) for some constant C;. Finally, since the sequence (Y?),5 is uniformly
bounded, the Lebesgue dominated convergence theorem implies that E[ f0T|Y1; —
YUIF,(s, Y2, Z8) — Fy(s, Y, Z?)| ds] tends to 0 as p, ¢ tend to infinity. Henceforth the
sequence (¥7),-; converges uniformly to Y in L?*(Q,dP) and then Y is continuous.

Step 5. Construction of the continuous processes K+ and K~.

For any p>1 and t<T we have,

t t
Y?=Yh— /0 Fo(s, Y, ZP)ds — KU* + K™ — /O 7P dB; (13)
and then

T T
KPT+<K1’;+|YPT|+|Y5|+/ C1(1+|Zs|2)ds+‘/ 7" dB,|. (14)
0 0

The sequence of increasing processes (K”7),- is non-increasing then it is con-
vergent to a process (K, ),<7 which moreover is increasing, upper semi-continuous
and integrable since E[K}]SE[KOT_]<00.

Next, inequality (14) implies that for any p>1, E[K"T+]<C for some constant C
since the sequences (Y?),-, and (ZF),-, are so in their respective spaces. On the
other hand the sequence of increasing processes (I(I’Jf)p21 is increasing then, in
combination with Fatou’s Lemma, it converges also to a process (K )., which
moreover is lower, semi-continuous and satisfies E[K7}] < oo.

Now as there exists a subsequence of ((F(z, Y? ’Zf))téT)p>l which converges in
LY(Q x [0, T],dP ® dr) to (F(z, Y., Z,)),<r then working with Eq. (13) and with the
same subsequence we deduce that (KP™ — K?7),~ | converges uniformly in L'(Q,dP)
to K™ — K~. Therefore the process K™ — K~ is continuous and once again from (13)
we deduce that P-a.s. for any t<T we have

t t
K; =K +Y,-7Y, +/ F(s, YS,Zs)ds+/ Z,dB,. (15)
0 0

It follows that the processes K~ and K%t are upper and lower semi-continuous
in the same time; therefore they are continuous and once again through Dini’s
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theorem we have

P—as. lim sup{|[K?" — K| +|KY” — K[|} = 0. (16)
P70 LT
Step 6. The process (Y, Z;, K, K;),<r satisfies (8) and (9) and is a maximal
solution.
Regarding (15), in order to show that the quadruple (Y, Z, K¥) satisfies (8)—(9), it
remains to show that

T T
/ (Y,— Uy dK; = / (Ls — Yy dK! =0. 17)
0 0

But this is true as a direct consequence of the uniform convergence of (¥”(®)),,
and (ch(co))pZl to Y(w) and K*(w), respectively, and the following properties:

T T
Vp=1, / (Y? — U,)dK"~ =/ (L, — Y?)dK?* = 0.
0 0

One can see the proof of this claim in [10, p. 10].

Let us now show that this solution is maximal. Let (¥,2Z, K", k") be another
solution for (8), which of course is also a solution for (9). Now for any p>1and />1,
let FP be the function defined as follows:

~] N
Fp(t7 w,y, Z):Z sup {F])(ta w,u, U) - l(|u _J’| + |D - Z|)}

(wp)eR*
Like for the definition of /', in (3), since we have |Fp(t, ,,2)|<Ci(1 + |p|?) for any
(v,z) € R'™™ the function F; is defined, Lipschitz with respect to (y, z) and converge
decreasingly and pointwisely to Fp as [ — oo. Now let (YI,ZII,,K;”L,K;’_) be the
solution of the reflected BSDE associated with (F[ll,n,l:, U). Since F; >F,>F,
Yll, >Y for any p,/>1. But for any p>1 we have lim/, o Y; =Y, (see

theconstruction of the maximal solution in Theorem 2.3). Therefore Y,>Y and
finally Y > Y. It implies that the solution we have constructed is maximal. [J

We are now going to give the main result of this part. Basically, it is based on the
use of an exponential transform which turns the reflected BSDE with a quadratic
coefficient into another one whose coefficient satisfies the structure condition.

So from now on we assume that f satisfies (H3) and £, L and U satisfy (H6). Let
m = inf,, L(w), M =sup,,U, (w) and ¢ the function from R into R such that
@(x) = mlpy<pm + Xlpn<x<my + M- . Henceforth, there exists a constant C>0
such that |f(¢, w, p(), 2)| < C(1 + |z|?) for any (¢, y, z).
2Cm

Now let o = ¢ and let us set

Y(t,y,2z) € [0, T] x [o, 00[x R™,

- L 2
F(t,a),y,z):2Cy{f<t,w,i~y,i~)— &l ]
2C 2Cy 4Cy?
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Then the function F satisfies the structure condition. Indeed, first, it is easily seen

that
2
2éy{f< Ly f)- il }<2Czy.
C '2Cy 4Cy?

In addition,

~ L 2 . 2 . 2
2Cy{f<tw ny Z~>— |{| }2—2C2y—|z|>—2C2y—|Z|.
C '2Cy 4Cy? y

Then there exists a constant C such that
P-as. Y(t,p,2) € [0, T] x [0, 00[x R, —2Cy* — Clz]* < F(t,m,y,2)<2C)?,

i.e., F satisfies the structure condition. Note that the coefficient F is the one we obtain
when we apply the exponential transform (x—e>“¥) to the BSDE associated with

(f, & L, U).

We are now ready to give the main theorem of this section.
Theorem 3.2. Assume that:
(i) f satisfies (H3) and L, U and & satisfy (H6), i.e., they are bounded,

(i) either the pair (€*CL,e*CUY satisfies (HS') or one of the processes e
satisfies (H4).

2CU
b

Then there exists a quadruple of P-measurable processes (Y,Z,Kt,K™)=(Y,,
Z, K}, K, ), <7 solution of the reflected BSDE associated with (f, &, L, U), i.e., which
satisfies

Z € #*", K* continuous non-decreasing and E[K%E]<oo(KE = 0),
Y, =¢+ ftTf(Sa Y, Z)ds + K? - K;r - K7+ K, — frT ZydB,, <T, (18)
vi<T, Li<Y,<U; and fOT(Us — Yy dK = fOT(YS — L) dKT =0.

Moreover it is maximal.

Proof. First let us notice that in (18), unlike to (2), we just require E[KF]<oo
and not E[(Ki)2]<oo Now as it is said previously the function F satisfies
the structure condition. Therefore, according to Theorem 3.1, the double obstacle
reflected BSDE associated with (F,e2C¢, e2CL ¢2CU) has a maximal solution
(Yt,Zt,Kf 5K )t<T

Now for t<T, let us set

- N ot
LnY, Z and dKT = dk,

Y[ == ~ Z[ == ~ ~ ¢ .
2C 207, 207,
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Since ¥ >¢*" then these processes are well defined. Henceforth using 1t6’s formula
we obtain,

T T
Y,=f+/ S, YS,Zs)ds—i—(K“TL—Kf)—(K}—K,‘)—/ Z,dB,, <T.
t t

On the other hand, Z belongs to A" since Z is so and f’)eze’“. In addition, for
the same reason, we have E[KﬁTE]<oo. Now K* (resp. K7) is a continuous process
which satisfies foT( Y,— Ly)dK/ =0 (resp. fOT(U‘Y — Y,)dK; = 0) since fOT( Y, —
ALy dRT = 0 (resp. [ (€U — ¥,)dR, = 0). It follows that (Y, Z,, K}, K; )< p
satisfies (18). Finally let us show that this solution is also maximal. Let (Y, Z,,
K;L,Kt_)th be another solution. Then (e2¢¥,2Ce*Y Z,, IN 2CeCYs d{(j, fOtN2C~’e2~CY*
dK;),<7 is a solution for the reflected BSDE associated with (F,e*¢<, ¢2¢L, ¢2CV),

Henceforth we have ¢2¢¥ < ¥ and then Y < Y. The proof is now complete. [

Remark 3.3. We give below two examples where the assumptions of Theorem 2.3 are
verified:

(i) let g be a bounded C*-function from R™ into R such that D.g is of poly-
nomial growth and there exists a constant ¢ such that Z,':l’m|D,-g(x)|2 +
et Dig(x) <e. If U = g(By), t<T, then (e*“9™)) _; satisfies the assump-
tion (H4).

(if) Assume that there exists a constant a such that V¢<T, L, <a< U, then the pair
(€*CLe, 2CU1) satisfies (HS') with e.g. n = e*““ and 0 =0. O

Finally, let us deal with a particular case of the coefficient f. Actually assume that
f(t,y,z)=h(t, y)+%|z|2. Then there exists a link between the component Y of the
solution (Y, Z;, K}, K, ), of the reflected BSDE associated with (f, &, L, U) and
the value function of a risk-sensitive zero-sum game on stopping times. Indeed we have

=t vt

TAV
e¥' = essinf esssup E[exp{/ h(s, Yg)ds + Urlp<y
t

+Lv1[v<T<T] + gl[va]}lFlil
TAV

= esssup essiltaf E {exp{ h(s, Yg)ds+ Urlp<y
t

V=t =
TAV
+L 1 p<oer) + 51[v=r=T]/ }|Fz], Vi<T,
t
where v and 7 are F;-stopping times whose values are in [¢, 7). Actually for <7, let

Y, =exp{Y, + fot h(s, Y,)ds}). Then there exist processes K", K~ and Z such that
the quadruple (Y, Z, I%JF,IT) is solution of an appropriate reflected BSDE. Namely
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it satisfies:

T
—d¥,=dk —dR, —dZ,dB,, 1<T; ¥;= exp{/ h(s, Yy)ds + 5},
0

T T
L<7,<0, and / (¥, LydR = / (U, — TR =0,
0 0
where L, = exp{L, + f(; h(s, Ys)ds} and U, = exp{U, + fot h(s, Yy)ds}, t<T. Now
according to [1], Theorem 3.1 or [9], Theorem 4, the process Y is the value function
of a zero-sum game on stopping times, i.e.,

=t vt

T
Y, = essinf esssup E {exp{ / h(s, Yy)ds + f} A ——
0
+ 01 1[r<v] + val[vgr< T]|Ft:|

T
= esssup ess>irtlf E [exp{/ h(s, Ys)ds + f} lpy=c=17}
0

vt =
+0‘cl[‘r<v] + Zvl[v<r<T]|Ft:| .

The result now follows obviously.
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