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Abstract

This thesis aims to study a new type of stochastic partial differential equations (SPDEs) with

space interactions. By space interactions, we mean that the dynamics of the system at time t

and position in space x also depend on the space-mean of values at neighbouring points.

In the first part, we introduce linear SPDEs. Then we prove the existence and uniqueness re-

sults (mild solution) for nonlinear SPDEs under linear growth and Lipschitz conditions on the

coefficients. In the second part of this thesis, using results from Noisy Observation (nonlin-

ear filtering), we transformed this noisy observation stochastic differential equation (SDE) con-

trol problem into full observation stochastic partial differential equations (SPDEs), and then we

prove a sufficient and necessary maximum principle for the optimal control of SPDEs. In the

third part of this thesis, we prove the existence and uniqueness of strong, smooth solutions of a

class of stochastic partial differential equations with space interactions., and we show that, un-

der some conditions, we use white noise theory to prove a positivity theorem for a class of SPDEs

with space interactions. The solutions are positive for all times if the initial values are. Then we

study the general optimization problem for such a system. Sufficient and necessary maximum

principles for the optimal control of such systems are derived. Finally, we apply the results to

study an example of optimal vaccination strategy for epidemics modelled as stochastic partial

differential equations (SPDEs) with space interactions.
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Symbols and Abbreviations

The main symbols and abbreviations used in this thesis:

(Ω,F ,P): Probability space.

P : Probability measure

PT : the product of the Lebesgue measure in [0,T ]

(Ω,F , {Ft }t≥0,P ) : Filtered probability space

B(t ): Brownian motion

u(t , x): control process

Y (t , x): The average value of Y (t , x +·)
Ax : The second order partial differential operator acting on x

D : An open set in Rn

∂D : The boundary of the set D

τ: stopping time

⋄: Wick multiplication

∇xF : Fréchet derivative

i.e.: Namely or that is.

a.s.: almost surely.

a.e.: almost everywhere.

SDE: Stochastic Differential Equation

SPDEs: Stochastic Partial Differential Equations

BSPDE: Backward Stochastic Partial Differential Equations
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General Introduction

0.1 Introduction

The theory of stochastic partial differential equations (SPDEs for short) finds applications in

many scientific fields, such as physics, biology, chemistry, and finance. The main motivation

for studying this type of equation is the filtering of partially observable processes. The first re-

sults on stochastic evolution equations started to appear in the early 1960s and were motivated

by physics, filtering, and control theory. An important development, concerning the potential

theory on infinite dimensional spaces, has been initiated by L. Gross [24] and Yu. Daleckij [14].

Basic results on the existence and uniqueness of solutions of SPDEs were obtained in the 1970s

by A. Bensoussan, R. Temam [4],[5] E. Pardoux [19], M. Viot [36], and many others. SPDEs are a

type of stochastic differential equation that is defined on an infinite dimensional space. A dif-

ferent method for studying stochastic partial differential equations, the so-called variational ap-

proach, was introduced by Pardoux [47], Krylov, Rozovskii [33] by Prévot and Röckner [50]. There

is another method, the so-called semigroups generated by unbounded operators and mild so-

lutions in [22] and [15]

Our objective in this thesis is to introduce a new type of generalised stochastic heat equation

with space interactions as a model for population growth. This result is new (we refer to read[38]).

By space interactions, we mean that the dynamics of the population density Y (t , x) at a time t

and a point x depends not only on its value and derivatives at x, but also on its values in a neigh-

borhood of x. For example, define G to be a space-averaging operator of the form

G(x,ϕ) = 1

V (Kr )

∫
Kr

ϕ(x + y)d y ; ϕ ∈ L2(Rn), (1)

1



General Introduction

where V (·) denotes Lebesgue volume and

Kr = {y ∈Rn ; |y | < r }

is the ball of radius r > 0 in Rn centred at 0. Then

Y G (t , x) :=G(x,Y (t , ·))

is the average value of Y (t , x +·) in the ball Kr .

More generally, if we are given a nonnegative measure (weight) ρ(d y) of total mass 1, then the ρ

weighted average of Y at x is defined by

Y ρ(t , x) :=
∫

D
Y (t , x + y)ρ(d y).

We believe that by allowing interactions between populations at different locations, we get a

better model for population growth, including the modelling of epidemics. For example, we

know that COVID-19 is spreading by close contact in space.

We illustrate the above by the following population growth model:

Example 1 With G as in equation (1), suppose the density Y (t , x) of a population at the time t

and the point x satisfies the following space-interaction version of a reaction-diffusion equation:


dY (t , x) =

(
1
2∆Y (t , x)+αY (t , x)−u(t , x)Y (t , x)

)
d t +βY (t , x)dB(t ),

Y (0, x) = ξ(x); x ∈ D,

Y (t , x) = η(t , x); (t , x) ∈ (0,T )×∂D,

(2)

whereα is a constant, ξ,η are given bounded functions, Y (t , x) =G(x,Y (t , ·)) and B(t ) = B(t ,ω); (t ,ω) ∈
[0,T ]×Ω is a Brownian motion on a filtered probability space (Ω,F , {Ft }t≥0,P ).

2



General Introduction

Here u(t , x) is our control process, e.g. representing our harvesting or vaccine effort.

x

Y (t , x)

D

Then the equation (2) is a natural model for population growth with space interactions in an

environment.

If u(t , x) represents a vaccination effort rate at (t , x), we define the total expected utility J0(u)

of the harvesting by an expression of the form

J0(u) = E
[∫

D

∫ T

0
U1(u(t , x))d td x +

∫
D

U2(Y (T, x))d x
]

,

where U1 and U2 are given cost functions. The problem to find the optimal vaccination rate u∗ is

the following:

Problem 2 Find u∗ ∈U such that

J0(u∗) = inf
u∈U

J0(u),

where U is a given family of admissible controls.

We will return to the example above after first discussing more general stochastic optimal

control models with a system whose state Y (t , x) at time t and at the point x satisfies an SPDE

3



General Introduction

with a non-local space-interaction dynamics of the following type:



dY (t , x) = AxY (t , x)d t +b(t , x,Y (t , x),Y (t , ·),u(t , x))d t

+σ(t , x,Y (t , x),Y (t , ·),u(t , x))dB(t ),

Y (0, x) = ξ(x); x ∈ D,

Y (t , x) = η(t , x); (t , x) ∈ (0,T )×∂D.

(3)

Here dY (t , x) denotes the differential with respect to t while Ax is the second order partial dif-

ferential operator acting on x of the form

Axφ(x) =
n∑

i , j=1
αi j (x)

∂2φ

∂xi∂x j
+

n∑
i=1

βi (x)
∂φ

∂xi
; φ ∈C 2

0 (Rn). (4)

The domain D is an open set in Rn with a Lipschitz boundary ∂D and closure D . We extend

Y (t , x) to be a function on all of [0,T ]×Rn by setting

Y (t , x) = 0 for x ∈Rn \ D .

0 T
t

Y (0, x) = ξ(x)

︸
︷︷

︸

D

Y (t , x) = η(t , x)

[0,T ]× D̄

Y (t , x) = η(t , x)

Example 3 In particular, the partial differential operator Ax could be the Laplacian ∆. or more

generally an operator of the di v − g r ad-form

Ax(ϕ) = di v(α(x)∇ϕ)(x); ϕ ∈C 2(D),

4



General Introduction

where di v denotes the divergence operator, ∇ denotes the gradient and

α(x) = [αi , j (x)]1≤i , j≤n ∈Rn×n

is a nonnegative definite matrix for each x. Equations of this type are of interest because they

represent important models in many situations, e.g. in physics (e.g. fluid flow in random media,

see e.g Holden et al [25], in epidemiology and in biology, e.g. in population growth where Y (t , x)

represents the population density at t , x.

There are two well-known approaches to solve stochastic control problems: The Bellman

dynamic programming [12] method and the Pontryagin maximum principle [30]. Because of

the space-mean dependence in our model, the system is not Markovian, and it is not clear how

to apply a dynamic programming approach. Instead, we will use a stochastic version of the

Pontryagin maximum principle, which involves a coupled system of forward/backward SPDEs.

Stochastic control of SPDEs has been studied widely in the literature, for example, we refer to

Bensoussan [6], [7], [8], [9], Hu & Peng [27], Zhou [58], Øksendal [43], Fuhrman et al [20] and

Øksendal et al [44], [45], [46] and the references therein. In the fundamental papers [6, 25] it

is assumed that the diffusion coefficient of the system does not depend on the control, and in

[6, 25], there is no space-mean dependence so they do not cover our situation.

In [35], a general maximum principle of optimal control of SPDEs is proved, with an adjoint

equation (BSPDE) formulated in a weak setting. The general setting in [35] covers the situation

we consider, except that in [35] only the case with the underlying space D being all of Rn is con-

sidered. Our approach deals with general D and is directly focused on the effect of the space

interaction, with application to population modelling in mind.

Moreover, for our type of equation, we prove the smoothness and positivity of the solution.

Specifically, in our case of a control problem for an SPDE with space-interaction in a subset D

of Rn , we derive an explicit adjoint equation, which is a BSPDE, also with space-interaction de-

pendence. We derive both sufficient and necessary maximum principles for this type of stochas-

tic control problem. For related singular stochastic control with space interaction, we refer to

Agram et al. [2].

This thesis is organized as follows:

5



General Introduction

Chapter 1: The aim of this chapter is to study stochastic partial differential equations (SPDEs).

We introduce linear SPDEs, and we prove the existence and uniqueness of nonlinear SPDEs.

Chapter 2: In this chapter, using results from noisy observation (nonlinear filtering), we trans-

form these noisy observation SDE control problems into full observation SPDEs and then we

prove a sufficient and necessary maximum principle for the optimal control of SPDEs.

Chapter 3: (The results of this chapter were the subject of a paper published in international

journal ESAIM: Control, Optimisation and Calculus of Variations, COCV 29,2023). In this chap-

ter, we aim to prove the existence and uniqueness of strong, smooth solutions of a class of

stochastic partial differential equations (SPDEs) with space interactions., and we show that, un-

der some conditions, the solutions are positive for all times if the initial values are. Sufficient

and necessary maximum principles for the optimal control of such systems are derived. Finally,

we apply the results to study an optimal vaccine strategy problem for an epidemic by modelling

the population density as a space mean stochastic reaction-diffusion equation.

6



Chapter 1

Preliminaries
Probability theory plays a vital role in the general study of stochastic calculus. Stochastic cal-

culus is concerned with the study of stochastic processes, which involve randomness or noise.

In this Chapter, we give preliminaries on stochastic calculus and semigroup theory which are

required for this thesis. For more details, we refer for example to [42],[15],[22],[16].

1.1 Elements from Stochastic Calculus:

Definition 4 A probability measure P on a measurable space (Ω,F ) is a function P : F → [0,1]

such that

(i) P (;) = 0,P(Ω) = 1

(ii) if A1, A2, ... ∈F and {Ai }∞i=1 is disjoint (i.e. Ai ∩ A j =; if i ̸= j ) then

P(∪∞
i=1 Ai ) =

∞∑
i=1

P(Ai ).

Definition 5 A complete probability space is a probability space (Ω,F ,P) if F contains all subsets

A ofΩwith P-outer measure zero. That is,

P(A) = inf{P(F ),F∈F , A ⊂ F } = 0.

Definition 6 Let (Ω,F ,P) be a given probability space. A function f :Ω→Rn is called F -measurable

7
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if for all open sets U ∈Rn , we have,

f −1(U ) = {ω ∈Ω, f (ω) ∈U } ∈F .

Definition 7 If Ω is a given set, then a σ-algebra F on Ω is a family of subsets of Ω with the

following properties:

(i) ;∈F ,

(ii) A ∈F =⇒Ac ∈F ,

(iii) A1, A2, ... ∈F =⇒A :=∪∞
i=1 Ai ∈F .

Let H and U be two separable Hilbert spaces.

Definition 8 A processΦ(t ), t ∈ [0,T ] with values in L(H ,U ) defined on a probability space (Ω,F ,P)

with normal filtration Ft , t ∈ [0,T ] is said to be elementary if there exists 0 = t0 < t1 < ... < tk =
T,k ∈N such that

Φ(t ) =
k−1∑
m=0

Φm1]tm ,tm+1](t ),0 ≤ t ≤ T.

Where

(i) Φm is Ftm -measurable with respect to the Borel σ-algebra on L(H ,U ), 1 ≤ m ≤ k −1

(ii) Φm takes only a finite number of values in L(H ,U ), 1 ≤ m ≤ k −1.

Definition 9 The stochastic integral for an elementary processΦ(t ), t ∈ [0,T ] is defined by

∫ t

0
Φ(s)dB(s) =

k−1∑
m=0

Φm(B(tm+1 ∧ t )−B(tm ∧ t )),0 ≤ t ≤ T.

Definition 10 (Q-Wiener processes) A U -valued stochastic process B(t ), t ≥ 0, is called a Q-Wiener

process if

(a) B(0) = 0,

(b) B(t ) has P-a.s continuous trajectories,

8



Preliminaries

(c) B(t ) has independent increments,

(d)

L (B(t )−B(s)) =L (0, (t − s)Q),0 ≤ s ≤ t ≤ T.

Note that there exists a complete orthonormal system {ek }in U and a bounded sequence of

nonnegative real numbers{λk } such that

Qek =λk ek ,k ∈N.

Proposition 11 Assume that B(t )is a Q-Wiener process. Then the following statements hold.

• B is a Gaussian process on U and

E(B(t )) =0,Cov(B(t )) = tQ, t ≥ 0.

• For arbitrary t ≥ 0, B has the expansion

B(t ) =
∞∑

j=1

√
λ jβ j (t )e j ,

where

β j (t ) = 1√
λ j

〈
B(t ),e j

〉
, j ∈N,

are real valued Brownian motions mutually independent on (Ω,F ,P).

Definition 12 (Generalized Wiener processes) Let B(t ), t ≥ 0, be a Wiener process on a Hilbert

space U and let Q be its covariance operator. For each a ∈U define a real valued Wiener process

Ba(t ), t ≥ 0, by the formula

Ba(t ) = 〈a,B(t )〉 , t ≥ 0.

The transformation a → Ba is linear from U to the space of stochastic processes. Moreover it is

9
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continuous in the following sense:

{an} ⊂ U , t ≥ 0,

lim
n→∞an = a =⇒ lim

n→∞E[Ba(t )−Ban (t )]2 = 0.

Remark 13 The operator Q is self-adjoint and positive definite, we call it the covariance of the

generalized Wiener process a → Ba . If the covariance Q is the identity operator I then the gener-

alized Wiener process is called a cylindrical Wiener process in U . Denote by U0 the image Q1/2(U )

with the induced norm. We call Q1/2(U ) the reproducing kernel of the generalized Wiener process

a → Ba .

Proposition 14 Let U1 be a Hilbert space such that U0 = Q1/2(U ) is embedded into U1 with a

Hillbert–Schmidt embedding J . Then the formula

B(t ) =
∞∑

j=1
Q1/2e jβ j (t ), t ≥ 0,

defines a U1-valued Wiener process. Moreover, if Q1 is the covariance of B then the spaces Q1/2
1 (U1)

and Q1/2(U ) are identical.

Definition 15 Let H and U be two separable Hilbert spaces. A bounded linear operator A : H →U

is called Hilbert-Schmidt if ∑
k∈N

∥Aek∥2 <∞,

where ek ,k ∈N is an orthonormal basis of H. We denote the space of all Hilbert-Schmidt operators

from H to U .

1.2 The Itô formula:

Assume thatφ is an L2
0-valued process stochastically integrable in[0,T ],ϕ a H-valued predictable

process Bochner integrable on [0,T ], P-a.s., and Y (0) a F0-measurable H-valued random vari-

able. Then the following process

Y (t ) = Y (0)+
∫ t

0
ϕ(s)d s +

∫ t

0
φ(s)dB(s), t ∈ [0,T ],

10
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is well-defined. Assume that a function F : [0,T ]× H → R and its partial derivatives Ft ,Fx ,Fxx ,

are uniformly continuous on bounded subsets of [0,T ]×H .

Theorem 16 (The Itô formula) Under the above conditions, P-a.s., for all t ∈ [0,T ]

F (t ,Y (t )) = F (0,Y (0))+
∫ t

0

〈
Fx(s,Y (s)),φ(s)dB(s)

〉
+

∫ t

0
{Ft (s,Y (s))+〈

Fx(s,Y (s)),ϕ(s)
〉

+ 1

2
Tr [Fxx(s,Y (s))(φ(s)Q1/2)(φ(s)Q1/2)∗]}d s.

(see [15]).

1.3 Cauchy problems:

Linear evolution equations, as parabolic, hyperbolic or delay equations, can often be formulated

as an evolution equation in a Banach space E (see[15]):

 u′(t ) = A1u(t ), t ≥ 0,

u(0) = x ∈ E ,
(1.1)

with A1 being a linear operator, in general unbounded, defined in a dense linear subspace D(A1)

of E . In equation (1.1) u′(t ) stands for the strong derivative of u(t )

lim
h→0

u(t +h)−u(t )

h
= u′(t ).

The equation (1.1) is the Cauchy problem or the initial value problem.

Definition 17 We say that the Cauchy problem (1.1) is well posed if:

1. for arbitrary x ∈ D(A1) there exists exactly one strongly differentiable function u(t , x), t ∈
[0,+∞), satisfying (1.1) for all t ∈ [0,+∞),

2. if {xn} ∈ D(A1) and lim
n→∞xn = 0, then for all t ∈ [0,+∞),

lim
n→∞u(t , xn) = 0, (1.2)

11
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If the limit in (1.2) is uniform in t on compact subsets of [0,+∞) we say that the Cauchy

problem (1.1) is uniformly well posed.

1.4 Elements of Semigroup Theory:

Let (X ,∥.∥X ) and (Y ,∥.∥Y ) be Banach spaces. Denote by L (X ,Y ) the family of bounded linear

operators from X to Y . L (X ,Y ) becomes a Banach space when equipped with the norm

∥ T ∥L (X ,Y )= sup
x∈X ,∥x∥X=1

∥ T x ∥Y ,T ∈L (X ,Y ).

For brevity,L (X ) will denote the Banach space of bounded linear operators on X . Let X ∗ denote

the dual space of all bounded linear functionals x∗ on X . X ∗ is again a Banach space under the

supremum norm

∥ x∗ ∥X ∗= sup
x∈X ,∥x∥X=1

| 〈x, x∗〉 |,
where 〈., .〉 denotes the duality on X ×X ∗. For T ∈L (X ,Y ), the adjoint operator T ∗ ∈L (X ∗,Y ∗)

is defined by 〈
x,T ∗y∗〉= 〈

T x, y∗〉
, x ∈ X , y∗ ∈ Y ∗.

Let H be a real Hilbert space. A linear operator T ∈L (H) is called symmetric if for all h, g ∈ H ,

〈
T h, g

〉
H = 〈

h,T g
〉

H .

A symmetric operator T is called a nonnegative definite if for every h ∈ H ,

〈T h,h〉H ≥ 0.

Definition 18 Let X be a Banach space. A semigroup S(t ) ∈L (X ), t ≥ 0, of bounded linear oper-

ators on a Banach space X such that

(i) S(0) = I , the identity operator on X .

12
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(ii) S(t + s) = S(t )S(s) for every t , s ≥ 0, Semigroup property.

(iii) lim
t→0+

S(t )x = x for every x ∈ X , Strong continuity property.

Let S(t ) be a C0-semigroup on a Banach space X . Then, there exist constants α≥ 0 and M ≥ 1

such that

∥ S(t ) ∥L (X )≤ Meαt , t ≥ 0.

Remark 19 If M = 0, then S(t ) is called a pseudo-contraction semigroup. If α = 0, then S(t ) is

called uniformly bounded, and if M = 1 andα= 0, then S(t ) is called a semigroup of contractions.

Definition 20 The infinitesimal generator of a semigroup S(t ) is a linear operator A defined by

D(A) = {x ∈ X : lim
t→0+

S(t )x −x

t
,exists}

Where D(A) is the domain of A, and

Ax = lim
t→0+

S(t )x −x

t

If

lim
t→0+

∥ S(t )− I ∥L (X )= 0.

A semigroup S(t ) is called uniformly continuous.

Theorem 21 (Hille-Yosida) Let A : D(A) ⊂ X → X be a linear closed operator on X . Necessary

and sufficient conditions for A to generate a C0-semigroup S(t ) are

(a) A is the infinitesimal generator of a C0-semigroup S(.) such that

∥ S(t ) ∥≤ Meαt ,∀t ≥ 0.

(b) D(A) is dense in X , the resolvent set ρ(A) contains the interval (α,+∞) and the following

estimates hold ∥∥∥Rk (λ, A)
∥∥∥≤ M

(λ−α)k
,∀k ∈N.

13
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Moreover if either (a) or (b) holds then

R(λ, A)x =
∫ ∞

0
e−λt S(t )xd t ,∀x ∈ X ,λ>α.

Finally

S(t )x = lim
n→∞e t An x,∀x ∈ X ,

where

An = n AR(n, A),

and the following estimate holds

∥∥e t An
∥∥≤ Me

αnt

n−α ,∀t > 0,n >α.

The operators An = AJn where Jn = nR(n, A), n > α, are called the Yosida approximations

of A. The following properties of Yosida approximations will be frequently used.

1.5 Factorization formula:

Proposition 22 Assume that p > 1,r ≥ 0,α> 1
p + r and that E1,E2 are Banach spaces such that

|S(t )x|E1 ≤ M t−r |x|E2 ,0 ≤ t ≤ T, x ∈ E2,

then Ga given by

Ga f (t ) =
∫ t

0
(t − s)α−1S(t − s) f (s)d s, t ∈ [0,T ].

is a bounded linear operator from Lp (0,T,E2) into C ([0,T ];E1).

Proof (see[15])

Assume now that U and H are Hilbert spaces and that B is a U -valued Wiener process. De-

14
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note

Ba(t ) =
∫ t

0
S(t − s)Φ(s)dB(s), t ≥ 0,

Yα(t ) =
∫ t

0
(t − s)α−1Φ(s)dB(s), t ≥ 0.

The following result is a corollary of the stochastic Fubini theorem.

Theorem 23 Assume that for some α ∈ (0,1) and all t ∈ [0,T ],

∫ t

0
(t − s)α−1

(∫ s

0
(s −σ)−2αE

[
S ∥(t −σ)Φ(σ)∥2

L0
2

]
dσ

)1/2

d s <+∞.

Then

Ba(t ) = sinαπ

π

∫ t

0
(t − s)α−1Yα(s)d s, t ∈ [0,T ].

Thus

sinαπ

π

∫ t

0
(t − s)α−1Yα(s)d s

= sinαπ

π

∫ t

0
(t − s)α−1S(t − s)

[∫ s

0
(s −σ)−αS(s −σ)Φ(σ)dB(σ)

]
d s

= sinαπ

π

∫ t

0

[∫ t

0
(t − s)α−1(s −σ)−αd s

]
S(s −σ)Φ(σ)dB(σ).

Since ∫ t

0
(t − s)α−1(s −σ)−αd s = π

sinαπ
,σ ∈ [0,T ],α ∈ (0,1).

Theorem 24 If Tr Q <+∞ then for arbitrary p > 2,

lim
n→∞E

[
sup

0≤t≤T
|Ba(t )−Ban(t )|p

]
= 0.

15
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1.6 Useful results:

Theorem 25 (Burkholder-Davis-Gundy inequality) Let p > 0, there are positive constants cp

and Cp such that, for any continuous local martingale X = (X t )t≥0, null in 0 :

cpE
[
〈X , X 〉p/2

∞
]
≤ E

[
sup
t≥0

|X t |p
]
≤CpE

[
〈X , X 〉p/2

∞
]

.

Lemma 26 (Gronwall lemma) Let T < 0, and let g be a measurable positive function bounded

on [0,T ]. Suppose there are two constants a ≥ 0,b ≥ 0, such that for all t ∈ [0,T ],

g (t ) ≤ a +b
∫ t

0
g (s)d s,

then, we have for all t ∈ [0,T ],

g (t ) ≤ a exp(bt ).

Theorem 27 (Stochastic Fubini theorem) Assume that (E ,E ) is a measurable space and let

Φ : (t ,ω, x) →Φ(t ,ω, x)

be a measurable mapping from (ΩT ×E ,PT ×B(E)) into (L0
2,B(L0

2)). Assume that

∫
E
∥Φ(., ., x)∥T µ(d x) <+∞,

then P-a.s ∫
E

[∫ T

0
Φ(t , x)dB(t )

]
µ(d x) =

∫ T

0

[∫
E
Φ(t , x)µ(d x)

]
dB(t ).

proof (we refer to read [15])

Theorem 28 (Girsanov) Let Y (t ) ∈Rn be an Itô process of the form

 dY (t ) =α(t ,ω)d t +dB(t ); t ≤ T,

Y (0) = 0.

16
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where t ≤∞ is a given constant and B(t ) is n-dimensional Brownian motion. Put

Mt = exp

(
−

∫ t

0
α(s,ω)dBs − 1

2

∫ t

0
α2(s,ω)d s

)
; t ≤ T,

. Assume that a(s, w) satisfies Novikov’s condition

E [exp(
1

2

∫ T

0
a2(s, w)d s] <∞,

where E = EP is the expecation w.r.t.P. Define the measureQ on (Ω,FT ) by

dQ(ω) = MT (ω)dP (ω).

Then Q is a probability measure on F (n)
T and Y (t ) is an n-dimensional Brownian motion w.r.t. Q,

for t ≤ T ,and
dQ(ω)

dP (ω)
= MT (ω) = exp

(
−

∫ T

0
α(s,ω)dBs − 1

2

∫ T

0
α2(s,ω)d s

)
,

is called the Radon-Nikodym derivative.

Lemma 29 (Bayes’rule) [42] Let be µ and ν be two probability measures on a measurable space

(Ω;G) such that dν(ω) = f (ω)dµ(ω) for some f ∈ L1(µ). Let X be a random variable on (Ω;G) such

that

Eν[ |X | ] =
∫
Ω
|X (ω)| f (ω)dµ(ω) <∞.

Let H be a σ-algebra, H ⊂G . Then

Eν[X |H ].Eµ[ f |H ] = Eµ[ f X |H ] a.s.

Proposition 30 (Holder’s inequality) Let p, q ∈ [1,+∞], with 1
p + 1

q = 1. Let f , g are measurable

applications, then ∥∥ f g
∥∥

1 ≤
∥∥ f

∥∥
p

∥∥g
∥∥

q .

Proposition 31 (Young inequality) Let a,b ≥ 0 and p, q ∈ ]1,+∞[, with 1
p + 1

q = 1 then

ab ≤ ap

p
+ bq

q
.

17
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Definition 32 (Fréchet differentiable) Let f : Rn → Rm is Fréchet differentiable at x if there is a

linear form L :Rn →Rm such that

f (x +h) = f (x)+L(h)+∥h∥ε(h),∀h ∈Rn ,

ε(h) → 0, when h → 0. we can note f ′(x) = L, we can replace ∥h∥ε(h)by o(h). The gradient of f is

the vector ∇ f =
(
∂ f
∂xi

)
.

Theorem 33 (The Riesz representation theorem) Let H a Hilbet space and f a continuous lin-

ear form defined on H. Then there exists a unique vector y ∈ H such that, for all x ∈ H ,

f (x) = 〈
x, y

〉
.

And ∥∥ f
∥∥

H∗ =
∥∥y

∥∥
H .

Definition 34 (Duncan-Mortensen-Zakai equation) the Zakai equation is a linear stochastic

partial differential equation (Linear SPDEs) for the un-normalized density of a hidden state. It

was named after Moshe Zakai [57].

In the state of the system evolves and observation equation have the form:

 d x(t ) = f (x, t )d t +dB(t ),

d z(t ) =β(x, t )d t +dB̃(t ).

where are independent Wiener processes. Then the unnormalized conditional probability density

p(x, t ) of the state at time t is given by the Zakai equation:

d p = L(p)d t +ph⊤d z,

where

L(p) =−∂( fi p)

∂xi
+ 1

2

∂2p

∂xi∂x j
(1.3)
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1.7 Sobolev Spaces

A Sobolev space is a vector space of functions equipped with a norm that is a combination of

Lp -norms of the function together with its derivatives up to a given order. Sobolev spaces are

named after Sergei Sobolev, (We refer to read [1])

Definition 35 (Test Functions) LetΩ be a domain in Rn . A sequence {Φ j }of functions belonging

to C∞
0 (Ω) is said to converge in the sense of the space D(Ω) to the function Φ ∈ C∞

0 (Ω) provided

the following conditions are satisfied:

• there exists K ⊂Ωsuch that supp (Φ j −Φ) ⊂ K for every j , and

• lim j→∞ DαΦ j (x) = DαΦ(x) uniformly on K for each multi-index α.

Definition 36 (Schwartz Distributions) The dual space D′(Ω) of D(Ω) is called the space of(Schwartz)

distributions onΩ. D′(Ω) is given the weak-star topology as the dual of D(Ω), and is a locally con-

vex TVS with that topology. We summarize the vector space and convergence operations in D′(Ω)

as follows: if S,T,T j belong to D′(Ω) and c ∈C, then

(S +T )(Φ) = S(Φ)+T (Φ),Φ ∈D(Ω),

(cT )(Φ) = cT (Φ),Φ ∈D(Ω),

T j → T in D′(Ω) if and only if T j (Φ) → T (Φ) in C for everyΦ ∈D(Ω).

Definition 37 (Derivatives of Distributions) Let u ∈C 1(Ω) andΦ ∈D(Ω). SinceΦ vanishes out-

side some compact subset ofΩ, we obtain by integration by parts in the variable x j

∫
Ω

(
∂

∂x j
u(x)

)
Φ(x)d x =−

∫
Ω

u(x)

(
∂

∂x j
Φ(x)

)
d x.

Similarly, if u ∈C |α|(Ω) , then integration by parts |α| times leads to

∫
Ω

(Dαu(x))Φ(x)d x = (−1)|α|
∫
Ω

u(x)DαΦ(x)d x.
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Definition 38 (The Sobolev Norms) We define a functional ∥.∥m,p , where m is a positive integer

and 1 ≤ p ≤∞, as follows:

∥u∥m,p =
(

0≤|α|≤m
∥∥Dαu

∥∥p
p

)1/p
, if 1 ≤ p ≤∞.

∥u∥m,∞ = max
0≤|α|≤m

∥∥Dαu
∥∥∞ .

Definition 39 (Sobolev Spaces) Assume that Ω ∈ Rn . For any positive integer m and 1 ≤ p ≤∞.

The Sobolev space W m,p (Ω) Consists of functions u ∈ Lp (Ω) such that for every multi-indexαwith

|α| ≤ m, the weak derivative Dαu exists and Dαu ∈ Lp (Ω). Thus

W m,p (Ω) = {u ∈ Lp (Ω) : Dαu ∈ Lp (Ω), |α| ≤ m}.

Definition 40 (White noise) The white noise process is the measurable map

w : S ×S ′ →R,

given by

w(φ,ω) = wφ(ω) = 〈
ω,φ

〉
,φ ∈S ,ω ∈S ′.

From wφ we can construct a Wiener process W (t ), t ∈R, as follows:

• (Step1): The isometry E
[

w 2
φ

]
= ∥∥φ∥∥2 ,φ ∈ S , holds true where, according to our notation,

the left-hand side is

E
[

w 2
φ

]
=

∫
S ′

〈
ω,φ

〉2 P (d w).

• (Step2): Use Step 1 to define the value
〈
ω,ψ

〉
for arbitraryψ ∈ L2(R), as

〈
ω,ψ

〉= lim
〈
ω,φn

〉
,

where φn ∈S ,n = 1.2, ..., and φn →ψ in L2(R).

• (Step3): Use Step2 to define

W̃ (t ,ω) = 〈
ω,χ[0,t ]

〉
, t ∈R,

by choosing

ψ(s) =χ[0,t ](s) =
 1 if s ∈ [0, t )(or s ∈ [t ,0) if t < 0),

0 otherwise,
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which belongs to L2(R)for all t ∈R. (see [16])

Definition 41 (The Wick Product) If Y = ∑
α

aαHα ∈ (S )∗, Z = ∑
β

bβHβ ∈ (S )∗ then the Wick

product Y ⋄ Z of Y and Z is defined by

Y ⋄ Z =∑
α

aαbβHα+β =
∑
γ

( ∑
α+β=γ

aαbβ

)
Hγ.
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Chapter 2

Stochastic Partial Differential Equations
A stochastic partial differential equation (SPDE) is an equation combining the features of equa-

tions with partial derivatives and stochastic differential equations. In the most general sense, an

SPDE is a partial differential equation in which at least one of the following is random: coeffi-

cients, initial conditions, boundary conditions, the region in which the equation is considered,

including the terminal time, and the driving force. There are two types of SPDEs:

(1) SPDEs as Stochastic Equations: A stochastic differential equation (SDE) describes an adapted

stochastic process with values in a finite-dimensional Euclidean space and has a finite-

dimensional initial condition (see Gikhman and Skorokhod [32], Khasminskii [51]).

(2) SPDEs as Partial Differential Equations: As partial differential equations, SPDEs can be

classified according to the following features: the order of the equation, the type of the

nonlinearity in the equation, the type of the initial and boundary conditions, elliptic/hy-

perbolic/parabolic,..., (see [40]).

This chapter consists of two parts. In the first part, we introduce linear SPDEs (see [15]) . In

the second part, we prove the existence and uniqueness of the solutions nonlinear SPDEs under

linear growth and Lipschitz conditions on the coefficients, we refer the reader to [15], using a

method that involves semigroups generated by unbounded operators and results in construct-

ing mild solutions.
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2.1 Linear SPDEs:

Let (Ω,F ,P) be a complete probability space together with a normal filtration Ft , t ≥ 0. We

consider two Hilbert spaces H and U , and a Q-Wiener process B(t ) on (Ω,F ,P)(see Definition

9). We assume that there exists a complete orthonormal system {ek } in U , a bounded sequence

{λk } of nonnegative real numbers such that

Qek =λk ek ,k ∈N,

and a sequence {βk } of real independent Brownian motions such that

〈B(t ),u〉 =
∞∑

k=1

√
λk 〈u,ek〉βk (t ),u ∈U , t ≥ 0.

We will consider the following linear affine equation

 dY (t ) = (AY (t )+ f (t ))d t +K dB(t ),

Y (0) = ξ.
(2.1)

Where

A : D(A) ⊂ H → H

K : U → H

are linear operators and f is an H-valued stochastic process. We will assume that the determin-

istic Cauchy problem  u′(t ) = Au(t ),

u(0) = x ∈ H ,

is uniformly well posed (see Definition 17) and that K is bounded.

Hypothesis1.1 A generates a C0-semigroup S(.) in H and K ∈ L(U , H). It is also natural to re-

quire the following.

Hypothesis1.2 (i) f is a predictable process with Bochner integrable trajectories on an arbi-
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trary finite interval [0,T ].

(ii) ξis F0-measurable.

An H-valued predictable process Y (t ), t ∈ [0,T ], is said to be a strong solution to (2.1) if Y (t )

takes values in D(A), ∫ T

0
|AY (s)|d s <+∞,P−a.s.

And for t ∈ [0,T ]

Y (t ) = ξ+
∫ t

0
[AY (s)+ f (s)]d s +K B(t ),P−a.s.

This is a strong solution that should necessarily have continuous modification.

An H-valued predictable process Y (t ), t ∈ [0,T ], is said to be a weak solution to (2.1) if the

trajectories of Y (.) are P-a.s. Bochner integrable and if for all z ∈ D(A∗) and all t ∈ [0,T ] we have

〈Y (t ), z〉 = 〈ξ, z〉+
∫ t

0
[
〈

Y (s), A∗z
〉+〈

f (s), z
〉

]d s +〈K B(t ), z〉 ,P−a.s.

This definition is meaningful for a cylindrical Wiener process because the scalar processes 〈K B(t ), z〉,
t ∈ [0,T ]

2.2 Nonlinear SPDEs:

The purpose of this section is to study mild solutions of nonlinear stochastic partial differential

equations (SPDEs for short), we prove existence and uniqueness of the solutions of nonlinear

SPDEs under linear growth and Lipschitz conditions on the coefficients.

2.2.1 Existence and uniqueness for nonlinear SPDEs:

Let (Ω,F ,P) be a compete probability space together with a normal filtration Ft , t ≥ 0. Let P

and PT will denote predictableσ-fields onΩ∞ = [0,+∞)×Ω and onΩT = [0,T ]×Ω respectively.

For any T > 0 we define PT to be the product of the Lebesgue measure in [0,T ] and the measure

P. We assume two Hilbert spaces H and U , and that B is a Q-Wiener process on U ⊂ U1 and

U0 = Q1/2U , (see proposition 14). Spaces U , H and L0
2 = L2(U0, H) are equipped with Borel σ-

fields B(U ), B(H) and B(L0
2). Morever ξ is an H- valued random variable F0-measurable. We
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fix T > 0 and impose first the following conditions on coefficients A, F and K of the equation We

proceed to study nonlinear equations

 dY (t ) = (AY (t )+F (t ,Y ))d t +K (t ,Y )dB(t ),

Y (0) = ξ.
(2.2)

Where

A : D(A) ⊂ H → H ,

F : Ω× [0,T ]×H → H ,

K : Ω× [0,T ]×H → L0
2.

Here, A is the generator of a C0-semigroup of operators S(t ) = e t A, t ≥ 0 in H (see Defintion 18).

The initial condition ξ is an F0-measurable H-valued random variable.

Hypothesis:

(A0) F is measurable from (ΩT ×H ,PT ×B(H)) into (H ,B(H)).

(A1) K is measurable from (ΩT ×H ,PT ×B(H)) into (L0
2,B(L0

2)).

(A2) A is the generator of a C0-semigroup of operators S(t ) = e t A, t ≥ 0 in H .

(A3) There exists a constant C > 0 such that for all y, z ∈ H , t ∈ [0,T ],ω ∈Ω, we have

∣∣F (t ,ω, y)−F (t ,ω, z)
∣∣+∥∥K (t ,ω, y)−K (t ,ω, z)

∥∥
L0

2
≤C

∣∣y − z
∣∣ (2.3)

and ∣∣F (t ,ω, y)
∣∣2 +∥∥K (t ,ω, y)

∥∥2
L0

2
≤C 2(1+ ∣∣y

∣∣2). (2.4)

Definition 42 A stochastic process Y (t ) defined on a filtred probability space (Ω,F , {Ft }t≤T ,P)

and adapted to the filtration {Ft }t≤T is a mild solution of equation (2.2) if
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(1) the following conditions hold:

P(
∫ T

0
∥ Y (t ) ∥H d t <∞) = 1,

P(
∫ T

0
∥ F (t ,Y ) ∥H +∥K (t ,Y )∥2

L0
2
<∞) = 1.

(2) for every t ≤ T, P-a.s.,

Y (t ) = S(t )ξ+
∫ t

0
S(t − s)F (s,Y )d s +

∫ t

0
S(t − s)K (s,Y )dB(s).

Proposition 43 Assume Hypothesis 2.2.1 (A3) and that for arbitrary y,h ∈ H ,u ∈U .

The processes
〈

F (., ., y),h
〉

,
〈

K (., ., y)Q1/2u,h
〉

are predictable. Then Hypothesis 2.2.1 (A0)-(A1) are

fulfilled. A predictable H-valued process Y (t ), 0 ≤ t ≤ T is said to be a mild solution of (2.2) if

P(
∫ T

0
|Y (s)|2 d s <+∞) = 1, (2.5)

and, for arbitrary 0 ≤ t ≤ T , P-a.s.,

Y (t ) = S(t )ξ+
∫ t

0
S(t − s)F (s,Y (s))d s +

∫ t

0
S(t − s)K (s,Y (s))dB(s). (2.6)

Theorem 44 Assume that ξ is an F0- measurable H-valued random variable and Hypothesis

2.2.1 is satisfied.

(1) There exists a mild solution Y to (2.2) unique, up to equivalence, among the processes, satis-

fying

P(
∫ T

0
|Y (s)|2 d s <+∞) = 1.

Moreover, Y possesses a continuous modification.

(2) For any p ≥ 2 there exists a constant Cp,T > 0 such that

sup
0≤t≤T

E
[|Y (t )|p]≤Cp,T (1+E[|ξ|p]

). (2.7)
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(3) For any p > 2 there exists a constant Ĉp,T > 0 such that

E

[
sup

0≤t≤T
|Y (t )|p

]
≤ Ĉp,T (1+E[|ξ|p]

). (2.8)

Proof. We first prove uniqueness. We show that if Y1(.) and Y2(.) are two processes satisfying

(2.5) and (2.6) then, for arbitrary 0 ≤ t ≤ T ,

P(Y1(t ) = Y2(t )) = 1

For a fixed number R > 0 we define

τi = inf{t ≤ T :
∫ t

0
|F (s,Yi (s))|d s ≥ R}, i = 1,2

or

τi = inf{t ≤ T :
∫ t

0
∥K (s,Yi (s))∥2

L0
2

d s ≥ R}, i = 1,2

and τ= τ1 ∧τ2. Let Ŷi (t ) = I[0,τ](t )Yi (t ),0 ≤ t ≤ T, i = 1,2. then, for arbitrary 0 ≤ t ≤ T , P-a.s.

Ŷi (t ) = I[0,τ](t )S(t )ξ+ I[0,τ](t )
∫ t

0
I[0,τ](s)S(t − s)F (s, Ŷi (s))d s

+I[0,τ](t )
∫ t

0
I[0,τ](s)S(t − s)K (s, Ŷi (s))dB(s).

Consequently, for arbitrary 0 ≤ t ≤ T , P-a.s.

E
[∣∣Ŷ1(t )− Ŷ2(t )

∣∣2
]

≤ 2E

{∫ t

0

∣∣F (s, Ŷ1(s))−F (s, Ŷ2(s))
∣∣d s

}2

(2.9)

+2E

{∫ t

0

∥∥K (s, Ŷ1(s))−K (s, Ŷ2(s))
∥∥2

L0
2

d s

}
.

By (2.3) and (2.4) we get

E
[∣∣Ŷ1(t )− Ŷ2(t )

∣∣2
]
≤ 2C 2(T +1)

∫ t

0
E
[∣∣Ŷ1(t )− Ŷ2(t )

∣∣2
]

d s.

The boundedness of E
[∣∣Ŷ1(t )− Ŷ2(t )

∣∣2
]

,0 ≤ t ≤ T , and by the Gronwall lemma (sse Lemma 26)
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we have

E
[∣∣Ŷ1(t )− Ŷ2(t )

∣∣2
]
= 0

. Therefore, for all 0 ≤ t ≤ T , one has

P(Y1(t ) = Y2(t )) = 1.

So the predictable processes Ŷ1(.), Ŷ2(.) are PT -a.s. identical. Since this is true for arbitraryR > 0

therefore Y1(.) and Y2(.) are PT -a.s. identical. Taking into account that Y1 and Y2 are solutions of

the equation (2.6) one easily deduces that for arbitrary 0 ≤ t ≤ T,Y1(t ) = Y2(t ),P-a.s.

The proof of existence is based on the classical fixed point theorem for contractions. Denote

by Hp , p ≥ 2, the Banach space of all the H-valued predictable processes Z defined on the time

interval [0,T ] such that

∥Z∥p =
(

sup
0≤t≤T

E
[|Z (t )|p])1/p

<+∞.

If one identifies processes which are identical PT -a.s. thenHp , with the norm ∥Z∥p , becomes a

Banach space. Let K be the following transformation:

K (Z )(t ) = S(t )ξ+
∫ t

0
S(t − s)F (s, Z (s))d s +

∫ t

0
S(t − s)K (s, Z (s))dB(s)

= S(t )ξ+K1(Z )(t )+K2(Z )(t ),0 ≤ t ≤ T, Z ∈Hp .

We assume that E(|ξ|p ) <+∞ and show that K : Hp →Hp . As the composition of measurable

mappings is measurable therefore, taking into account Hypothesis 2.2.1 (A0-A3), one obtains

that the transformations K1 and K2 are well defined. Moreover

∥K1(Z )∥p
p ≤ M pE

(∫ T

0
|F (s, Z (s))|d s

)p

≤ T p−1M pE

[∫ T

0
|F (s, Z (s))|p d s

]
≤ 2p/2−1T p−1M pC pE

[∫ T

0
(1+|Z (s)|p )d s

]
≤ 2p/2−1(T MC )p (1+∥Z∥p ).

where M = sup
0≤t≤T

∥S(t )∥. Consequently K1 : Hp → Hp . To show the same property for K1 we
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remark that, by Theorem [47] we find

∥K2(Z )∥p
p ≤ sup

0≤t≤T
E

[∣∣∣∣∫ t

0
S(t − s)K (s, Z (s))dB(s)

∣∣∣∣p]
≤ M pCp/2E

[∫ T

0
∥K (s, Z (s))∥2

L0
2

d s

]p/2

≤ M pCp/2C pE

[∫ T

0
(1+|Z (s)|2)d s

]p/2

≤ M pCp/2C T p/2−1E

[∫ T

0
(1+|Z (s)|2)p/2d s

]
≤ M pCp/2C T p/2−12p/2−1E

[∫ T

0
(1+|Z (s)|p )d s

]
≤ M pCp/2C (2T )p/2−1(T +∥Z∥p )p .

Let Z1 and Z2 be arbitrary processes from Hp then

∥K (Z1)−K (Z2)∥p ≤ ∥K1(Z1)−K1(Z2)∥p +∥K2(Z1)−K2(Z2)∥p

= I1 + I2,

and

I p
1 ≤ sup

0≤t≤T
E

[∣∣∣∣∫ t

0
S(t − s)(F (s, Z1(s))−F (s, Z2(s)))d s

∣∣∣∣p]
≤ M p sup

0≤t≤T
E

[∫ t

0
[|F (s, Z1(s))−F (s, Z2(s))|]d s

]p

≤ (MC )p T p−1
[∫ T

0
E |Z1(s)−Z2(s)|p d s

]
(MC )p T p sup

0≤t≤T
E
[|Z1(s)−Z2(s)|p]

≤ (MC )p T p ∥Z1 −Z2∥p
p .

By Theorem [47] we have

I p
2 ≤ M pCp/2E

[∫ T

0
∥K (s, Z1(s))−K (s, Z2(s))∥2

L0
2

d s

]p/2

Cp/2(MC )p T p/2−1E

∫ T

0

[
∥K (s, Z1(s))−K (s, Z2(s))∥2

L0
2

]
d s

≤ Cp/2(MC )p T p/2−1 ∥Z1 −Z2∥p
p .
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Summing up the obtained estimates we have:

∥K (Z1)−K (Z2)∥p ≤C M(T p +Cp/2T p/2)1/p ∥Z1 −Z2∥p , (2.10)

for all Z1, Z2 ∈K . Consequently, if

MC T (1+Cp/2T 1/2)1/p < 1, (2.11)

then the transformation K has unique fixed point Y in Hp which, as it is easy to see, is a solu-

tion of the equation (2.2).

To construct a solution when E |ξ|p = +∞, we show first that if ξ and η are two initial con-

ditions satisfying E |ξ|p <+∞,E
∣∣η∣∣p <+∞, and if Y , Z ∈ Hp are the corresponding solutions of

equation (2.2), then

IΓY (.) = IΓZ (.), (2.12)

P-a.s., where

Γ= {ω ∈Ω : ξ(ω) = η(ω)}.

We define

Y 0 = S(.)ξ,Y k+1 =K (Y k ),0 ≤ t ≤ T,k ∈N.

Thus for 0 ≤ t ≤ T,P-a.s.

Y k+1(t ) = S(t )ξ+
∫ t

0
S(t − s)F (s,Y k (s))d s +

∫ t

0
S(t − s)K (s,Y k (s))dB(s).

Since IΓ is an F0-measurable random variable, therefore IΓK (.,Y k (.)) is an L0
2-predictable pro-

cess and for 0 ≤ t ≤ T,

∫ t

0
S(t − s)IΓK (s,Y k (s))dB(s) = IΓ

∫ t

0
S(t − s)K (s,Y k (s))dB(s).
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Thus for 0 ≤ t ≤ T,

IΓY k+1(t ) = S(t )IΓξ+
∫ t

0
S(t − s)IΓF (s,Y k (s))d s (2.13)

+
∫ t

0
S(t − s)IΓK (s,Y k (s))dB(s).

If for a similarly defined sequence

Y 0(t ) = S(t )η,Y k+1(t ) =K (Y k ),0 ≤ t ≤ T,k ∈N,

we have

IΓY k (.) = IΓZ k (.),PT −a.s.

Then

IΓF (.,Y k (.)) = IΓF (., Z k (.)), IΓB(.,Y k (.)) = IΓK (., Z k (.)),PT −a.s.

Consequently

IΓY k+1(.) = IΓZ k+1(.),PT −a.s.

Since the processes Y and Z are limits in the ∥.∥p norm of the sequences Y k (.) and Z k (.) respec-

tively, therefore (2.12) must be true. Moreover the processIΓY (.) satisfies the equation (2.2) with

the initial condition IΓξ= IΓη.

We now prove existence. Let us define, for n ∈N

ξn

 ξ i f |ξ| ≤ n,

0 i f |ξ| > n,

and denote by Yn(·) the corresponding solution of (2.11). By the previous argument we have

Yn(t ) = Yn+1(t ), {ω ∈Ω : |ξ| ≤ n}.

Then

Y (t ) = lim
n→∞Yn(t ),0 ≤ t ≤ T,

is P-a.s. well defined and satisfies the equation (2.2).
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For proof of the existence of continuous modification of the mild solution assume first that

E |ξ|2r <+∞ for some r > 1. From the first part of the theorem one knows that

sup
0≤t≤T

E
[∥Y (t )∥2r ]<+∞,

Define

Φ(t ) = K (t ,Y (t )),0 ≤ t ≤ T,

and

I = E
[∫ T

0
∥Φ(t )∥2r

L0
2

d t

]
= E

[∫ T

0
∥K (t ,Y (t ))∥2r

L0
2

d t

]
.

By (2.3) and (2.4) we have

I ≤C 2rE

(∫ T

0
(1+|Y (t )|2)r d t

)
<+∞.

Consequently Proposition (45) below implies that the process

∫ t

0
S(t − s)K (s,Y (s))dB(s),0 ≤ t ≤ T,

and therefore also Y (t ), 0 ≤ t ≤ T , has a continuous modification. The case of initial conditions

satisfying E
[|ξ|2r ] = +∞ can be reduced to the case just considered by regarding initial condi-

tions ξn

ξn

 ξ i f |ξ| ≤ n,

0 i f |ξ| > n,

as in the proof of existence. Finally (2.8) follows again from Gronwall’s lemma. The proof is

complete.

We consider now the approximating problem

 dYn = (AnY +F (t ,Yn))d t +K (t ,Yt )dB(t ),

Yn(0) = ξ.
(2.14)

where An are the Yosida approximations of A (see Theorem [21]), the problem (2.14) has a

unique solution Yn for any random variable ξ , F0-measurable. We will need the following re-

32



Stochastic Partial Differential Equations

sult.

Proposition 45 Let p > 2,T > 0 and letΦ be an L0
2-valued predictable process such that

E

[∫ T

0
∥Φ(s)∥p

L0
2

d s

]
<+∞.

There exists a constant CT > 0 such that

E

[
sup

0≤t≤T
|S(t − s)Φ(s)dB(s)|p

]
≤CTE

[∫ T

0
∥Φ(s)∥p

L0
2

d s

]
. (2.15)

Moreover

lim
n→∞E

[
sup

0≤t≤T

∣∣BΦA (t )−B A,n(t )
∣∣p

]
= 0, (2.16)

where BΦA,n is defined as

BΦA,n(t ) =
∫ t

0
e(t−s)AnΦ(s)dB(s),0 ≤ t ≤ T,

and An are the Yosida approximations of A. where BΦA has a continuous modification define by

W Φ
A =

∫ t

0
S(t − s)Φ(s)dB(s)

Proof. We will use the factorization method, Let α ∈ ( 1
p , 1

2 ), the stochastic Fubini theorem (Theo-

rem27) implies that

BΦA (t ) = sinπα

π
=

∫ t

0
(t − s)α−1S(t − s)Z (s)d s,0 ≤ t ≤ T,

where

Z (s) =
∫ s

0
(s −σ)−αS(s −σ)Φ(σ)dB(σ),0 ≤ s ≤ T.

Since α > 1
p , applying Hölder’s inequality (see Proposition [30]) one obtains that there exists a

constant C1,T > 0 such that

sup
0≤t≤T

∣∣BΦA (t )
∣∣p ≤C1,T

∫ T

0
|Z (s)|p d s. (2.17)
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Moreover, by Theorem(47), there exists a constant C2,T > 0such that

E
[|Z (s)|p]≤C2,T E

(∫ s

0
(s −σ)−2α ∥Φ(σ)∥p

L0
2

dσ

)p/2

. (2.18)

Now, using the Young inequality (see Proposition [31]), we obtain that

∫ T

0
E
[|Z (s)|P d s

] ≤ C2,TE

[∫ s

0
σ−2αdσ

]p/2 ∫ s

0
∥Φ(σ)∥2r

L0
2

dσ

≤ C3,TE

[∫ T

0
∥Φ(σ)∥p

L0
2

dσ

]
.

This finishes the proof of (2.15) with C =C1,T C2,T .

We now prove (2.16), we have

BΦA,n(t ) = sinπα

π

∫ t

0
e(t−s)An (t − s)α−1Zn(s)d s,

where

Zn(s) =
∫ s

0
e(s−σ)An (s −σ)−αΦ(σ)dB(σ).

Thus

BΦA (t )−BΦA,n(t ) = sinπα

π

∫ t

0

[
S(t − s)−e(t−s)An

]
(t − s)α−1Z (s)d s

= sinπα

π

∫ t

0

[
S(t − s)−e(t−s)An

]
(t − s)α−1Z (s)d s

+sinπα

π

∫ t

0
e(t−s)An (t − s)α−1 [Z (s)−Zn(s)]d s

= In(t )+ Jn(t ).

We proceed now in two steps.

Step 1 Exactly as in Step 1 of the proof of theorem 24 we show that

lim
n→∞E

[
sup

0≤t≤T
|In(t )|p

]
= 0. (2.19)
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Step 2

lim
n→∞E

[
sup

0≤t≤T
|Jn(t )|p

]
= 0. (2.20)

The following estimate is proved as (2.17)

sup
0≤t≤T

|Jn(t )|p ≤C2,T

∫ T

0
|Z (s)−Zn(s)|p d s. (2.21)

We now show

lim
n→∞E

[∫ T

0
|Z (s)−Zn(s)|p d s

]
= 0.

We define the operators

KnΦ(s) =
∫ s

0
(s −σ)−α(S(s −σ)−e(s−σ)An )Φ(s)dB(s).

Where KnΦ= Z −Zn . We will show that if E
∫ T

0 ∥Φ(s)∥p

L0
2

d s <∞, then

lim
n→∞E

[∫ T

0
|KnΦ(s)|p d s

]
= 0. (2.22)

It follows from considerations following (2.18) that the operators

Kn : Lp (Ω× [0,T ];L0
2) → Lp (Ω× [0,T ]; H).

It is enough to prove (2.22) for a dense set of such that

E

[∫ T

0

∥∥A2Φ(s)
∥∥p

L0
2

d s

]
<∞.

In fact, the processes Z can by approximated as follows:

Zm = (m(mI − A)−1)2Z ,Φm = (m(mI − A)−1)2Φ.

By Theorem (47)

E
[|KnΦ(s)|p]≤ cp E

[∫ s

0
(s −σ)−2α

∥∥(S(s −σ)−e(s−σ)An )Φ(σ)
∥∥2

L0
2

dσ

]p/2

.
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However, ∥∥(S(s −σ)−e(s−σ)An )Φ(σ)
∥∥2

L0
2
≤

(
M

n −ω
)2

∥AΦ(s)∥p

L0
2

,

and therefore

E
[|KnΦ(s)|p]≤ cp

(
M

n −ω
)2

E

[∫ s

0
(s −σ)−2α ∥AΦ(σ)∥p

L0
2

dσ

]p/2

.

By Young’s inequality, it follows that

E

[∫ T

0
|KnΦ(s)|p

]
≤ cp

(
M

n −ω
)2 (∫ T

0
σ−2α

)2/p

E

[∫ T

0
∥AΦ(σ)∥p

L0
2

dσ

]
.

and we get the required convergence. Finally, the existence of a continuous modification of

W Φ
A now follows easily from (2.16)

Proposition 46 Under the hypotheses of Theorem (44), assume that ξ ∈ Lp (Ω,F ,P) with p ≥ 2,

and let Y and Yn be the solutions of problems (2.2) and (2.14) respectively. Then we have

lim
n→∞ sup

0≤t≤T
E
[|Y (t )−Yn(t )|p]= 0.

Moreover, if p > 2

lim
n→∞E

[
sup

0≤t≤T
|Y (t )−Yn(t )|p

]
= 0.

Proof. The result follows from a straightforward application of the contraction principle de-

pending on the parameter n, Theorem (47) and Proposition (45).

Theorem 47 For every p > 0 there exists cp > 0 such that for every t ≥ 0,

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0
Φ(τ)dB(τ)

∣∣∣∣p]
≤ cpE

[∣∣∣∣∫ s

0
Φ(τ)dB(τ)

∣∣∣∣p]p/2

.

proof (we refer to read [15])
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Chapter 3

Partial (Noisy) Observation Optimal Control
In the theory of stochastic processes, filtering is the problem of estimating the state of a system

as a set of observations. Filtering found applications in many fields from signal processing to

finance. In 1960, R.E. Kalman published his famous paper [29] on recursive minimum variance

estimation for linear Gaussian dynamical systems. Basically, the filter gives a procedure for esti-

mating the state of a system which satisfies a noisy linear differential equation, based on a series

of noisy observations. The problem of optimal non-linear filtering (even for the non-stationary

case) was solved by Ruslan L. Stratonovich (1959, 1960)(we refer to read [54]and [55]), see also

Harold J. Kushner’s work [31] and Moshe Zakai’s, who introduced a simplified dynamics for the

unnormalized conditional law of the filter(see [57]) known as Zakai equation. In this chapter,

using results from Noisy Observation (nonlinear filtering), we transform this noisy observations

stochastic differential equation (SDE) control problem into a full observation stochastic partial

differential equations (SPDEs for short) control problem, we refer the reader to [17], [46] and

[59]. Then we obtain a sufficient and a necessary maximum principle for the optimal control of

SPDEs.

3.1 Problem formulation:

We consider the signal processX (t ) with X (t ) = X (u)(t ) and the observation process Z (t ) are

given respectively by the following system of stochastic differential equations (SDE) of the form:
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• (Signal process)

 d X (t ) = α(X (t ), Z (t ),u(t ))d t +σ(X (t ), Z (t ),u(t ))dB(t ); t ∈ [0,T ],

X (0) = X0

(3.1)

• (Observation process)  d Z (t ) = β(X (t ))d t +dB̃(t )

Z (0) = 0.
(3.2)

α : R×R×U→R,

σ : R×R×U→R,

β : R→R,

are given deterministic functions. Let (Ω,F , {Ft }t≥0,P ) be a complete filtered probability

space equipped with a natural filtration Ft = σ(B(s), B̃(s),0 ≤ s ≤ t } where B and B̃ be

two independent standard Brownian motions.. The process u(t ) is our control process,

assumed to have values in a given convex set U ⊂ R. Such that u(t ) be adapted to the

filtration

G := {Gt }0≤t≤T ,

where Gt is the sigma-algebra generated by the observations process Z (s), s ≤ t . A control

u(.) is called admissible if it takes values in U and is {Gt }t≥0 adapted. We call u(t) admissi-

ble if, in addition, (3.1) and (3.2) has a unique strong solution (X (t ), Z (t )) such that

E [
∫ T

0

∣∣ f (X (t ),u(t ))
∣∣d t + ∣∣g (X (T )

∣∣] <∞.

Where f :R×U→R and g :R→R are given functions. The set of all admissible controls is

denoted by AG For u ∈AG we define the performance functional

J (u) = E [
∫ T

0
f (X (t ),u(t ))d t + g (X (T ))].

Problem 48 We consider the noisy observation sochastic control poblem to find u∗ ∈ AG such
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that

sup
u∈AG

J (u) = J (u∗) (3.3)

We now proceed to show that this noisy observation SDE control problem can be trans-

formed into a complete observation SPDE control problem (sse [17], [46] ). To do this, first,

we change the probability measure as followes:

Define the probability measure P̃ by:

dP̃ (ω) = Mt (ω)dP (ω).

where

Mt (ω) = exp(−
∫ t

0
β(X (s))dB̃(s)− 1

2

∫ t

0
β2(X (s))d s).

By the Girsanov theorem (Theorem 28) that the observation process Z (t ) defined by (3.2) is a

Brownian motion with respect to P̃

Moreover, we have

dP (ω) = Kt (ω)dP̃ (ω)

where

Kt = M−1
t (ω) = exp(

∫ t

0
β(X (s))dB̃(s)+ 1

2

∫ t

0
β2(X (s))d s).

In (3.2), we have

dB̃(t ) = d Z (t )−β(X (t ), Z (t ),u(t ))d t

then

Kt = M−1
t (ω) = exp(

∫ t

0
β(X (s))d Z (s)− 1

2

∫ t

0
β2(X (s))d s).

For ϕ ∈C 2
0 (R) and fixed g ∈R, c ∈U define the integro-differential operator A = Ag ,c by

Ag ,cϕ(x) =α(x, g ,c)
∂ϕ

∂x
(x)+ 1

2
σ2(x, g ,c)

∂2ϕ

∂x2
, (3.4)

and let A∗ be the adjoint of A, in the sense that

(Aϕ,ψ)L2(R) = (ϕ, A∗ψ)L2(R) (3.5)
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for all ϕ,ψC 2
0 (R).

Suppose that there exists a stochastic process y(t , x) such that

E P̃ [ϕ(X (t ))Kt |Gt ] =
∫
R
ϕ(x)y(t , x)d x (3.6)

for all bounded measurable functionsϕ. Then y(t , x) is called the unnormalized conditional

density of X (t ) given the observation filtration Gt . Note that by the Bayes rule ( see Lemma 29)

we have

E [ϕ(X (t )) |Gt ] = E P̃ [ϕ(X (t ))Kt |Gt ]

E P̃ [Kt |Gt ]
(3.7)

Then y(t , x) exists under certain conditions and satisfies the following integro-SPDE, called the

Duncan–Mortensen–Zakai equation (see Definition 34):

 d y(t , x) = A∗
Z (t ),u(t ) y(t , x)d t +β(x)y(t , x)d Z (t ),

y(0, x) = F (x).
(3.8)

If (3.6) holds, we get

J (u) = E

[∫ T

0
f (X (t ),u(t ))d t + g (X (T ))

]
= EP̃

[∫ T

0
f (X (t ),u(t ))Kt d t + g (X (T ))KT

]
= EP̃

[∫ T

0
EP̃

[
f (X (t ),u(t ))Kt |Gt

]
d t +EP̃

[
g (X (T ))Kt |Gt

]]
= EP̃

[∫ T

0
EP̃

[
f (X (t ), v)Kt |Gt

]
v=u(t ) d t +EP̃

[
g (X (T ))Kt |Gt

]]
= EP̃

[∫ T

0

∫
R

[ f (x,u(t ))y(t , x)d xd t +
∫
R

g (x)y(T, x)d x

]
= J

P̃
(u).

This transforms the noisy observation stochastic control problem (3.3) into a full observation

SPDE control problem of the type we have discussed in the previous sections.

Theorem 49 [17] we transform the noisy observation SDE control to full into SPDE control as-

suming that (3.6) and (3.7) hold. Then the solution u∗(t ) of the noisy observation SDE Control

Problem (3.3) coincides with the solution u∗ of the following stochastic partial differential equa-
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tions (SPDEs for short) control problem:

Problem 50 Find u∗ ∈AG such that

sup
u∈AG

JP̃ (u) = JP̃ (u∗),

where

JP̃ (u) = EP̃

[∫ T

0

∫
R

f (x,u(t ))y(t , x)d xd t +
∫
R

g (x)y(T, x)d x

]
,

where y(t , x) solves the stochastic partial differential equations (SPDEs) (3.8).

3.2 Stochastic maximum principle for SPDEs:

Stochastic control of the stochastic partial differential equations (SPDEs) arising from partial

observation control has been studied by Mortensen [39], using a dynamic programming ap-

proach, and subsequently by Bensoussan, using a maximum principle method. See [9] and the

references therein. In this section, We prove a sufficient and necessary maximum principle for

the optimal control of SPDEs (see [46]).

Let T > 0 and let D be an open set in Rn with C 1 boundary ∂D . Suppose that the state Y (t , x) ∈R
of a system at time t ∈ [0,T ] and at the point x ∈ D = D ∪∂D is given by stochastic partial differ-

ential equation of the form

dY (t , x) =
[

AY (t , x)+b(t , x,Y (t , x),u(t , x))
]

d t (3.9)

+σ(t , x,Y (t , x),u(t , x))dB(t ), (t , x) ∈ (0,T )×D

with boundary conditions

Y (0, x) = ξ(x); x ∈ D (3.10)

Y (t , x) = η(t , x); (t , x) ∈ [0,T ]×∂D (3.11)

The operator A is a linear integro-differential operator acting on x.

The equation (3.9) for Y is interpreted in the weak (variational) sense, i.e.,Y (t , .) satisfies the
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equation

(Y (t , .),φ)L2(D) = (a,φ)L2(D) +
∫ t

0
(Y (s, .), A∗φ)L2(D)d s

+
∫ t

0
(b(s,Y (s, .),φ)L2(D)d s +

∫ t

0
(σ(s,Y (s, .),φ)L2(D)dBs

for all smooth functions φ with compact support in D . Here

(ψ,φ)L2(D) =
∫

D
ψ(x)φ(x)d x

is the L2 inner product on D and A∗ is the adjoint of the operator A, in the sense that

(Aψ,φ)L2(D) = (ψ, A∗φ)L2(D) (3.12)

for all smooth L2 functions ψ,φ with compact support in D.

The process B(t ) = B(t ,ω); t ≥ 0,ω ∈Ω is a Brownian motion on a filtered probability space

(Ω,F , {Ft }t≥0,P ), while u(t , x) = u(t , x,ω) is our control process. We assume that u(t , x) has

values in a given convex set U ⊂ Rk and that u(t , x, .) is Ft -mesurable for all (t , x) ∈ [0,T ]×D ,

i.e., that u(t , x) is adapted for all x ∈ D . The functions b : [0,T ]×D×R×U →R andσ : [0,T ]×D×
R×U →R are given C 1 functions. The boundary value functions ξ : D →R and η : (0,T )×∂D →R

are assumed to be deterministic and C 1.

We call the control process u(t , x) admissible if the corresponding stochastic partial differ-

ential equation in (3.9), (3.10) and (3.11) has a unique, strong solution Y (.) ∈ L2(λ×P ), where

λ is Lebesgue measure on [0,T ]×D , and with values in a given set S ⊂ R. The set of admissible

controls is denoted by A .

we define the performance J (u) obtained by u ∈A of the form

J (u) = E
[∫ T

0

(∫
D

f (t , x,Y (t , x),u(t , x))dx

)
dt +

∫
D

g (x,Y (T, x))dx
]

. (3.13)

Where f : [0,T ]×D ×R×U → R and g : D ×R→ R are given lower bounded C 1 functions and E

denotes the expectation with respect to P.
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Problem 51 Find u∗ ∈A such that

sup
u∈A

J (u) = J (u∗) (3.14)

This is an optimal control problem for the stochastic partial differential equation (SPDE).

3.2.1 A sufficient Maximum Principle:

We now formulate a sufficient maximum principle for optimal control.

Define the Hamiltonian H : [0,T ]×D ×R×U ×R×R→R

by

H(t , x, y,u, , p, q) = f (t , x, y,u)+b(t , x, y,u)p +σ(t , x, y,u)q. (3.15)

We define the adjoint process p(t , x), q(t , x) as the solution of BSPDE


d p(t , x) =−{A∗p(t , x)+ (∂H

∂y )(t , x,Y (t , x),u(t , x), p(t , x), q(t , x))}d t +q(t , x)dB(t ); (t , x) ∈ (0,T )×D

p(T, x) = ∂g
∂y (x,Y (T, x)); x ∈ D

p(t , x) = 0; (t , x) ∈ [0,T ]×∂D,

(3.16)
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Theorem 52 (A Sufficient Maximum Principle) [46], [17] Let û ∈ A with corresponding solu-

tions Ŷ (t , x), p̂(t , x), q̂(t , x) of (3.9) and (3.16) respectively. Suppose that

(1) y → g (x, y) is concave for all x,

(2) (y,u) → H(y,u) := H(t , x, y,u, p̂(t , x), q̂(t , x)); y ∈R,u∈U,is concave for all t , x,

(3) sup
u∈U

H [t , x, Ŷ (t , x),u, p̂(t , x), q̂(t , x)] = H [t , x, Ŷ (t , x), û(t , x), p̂(t , x), q̂(t , x)] for all t , x.

Then û(t , x) is an optimal control for the stochastic control Problem (51).

Proof. Let u ∈ A be an arbitrary admissible control with corresponding solution of (3.9) and

(3.16) be Y (t , x) and p(t , x), q(t , x), respectively. For simplicity of notation, we write

f = f (t , x,Y (t , x),u(t , x)), f̂ = f (t , x, Ŷ (t , x), û(t , x))

and similarly with b, b̂,σ, σ̂. and so on. Moreover put

H(t , x) = H(t , x,Y (t , x),u(t , x), p̂(t , x), q̂(t , x)),

Ĥ(t , x) = H(t , x, Ŷ (t , x), û(t , x), p̂(t , x), q̂(t , x)).

In the following we write f̃ = f̂ − f , b̃ = b̂ −b, σ̃= σ̂−σ.

Consider

J (u)− J (û) = I1 + I2

where

I1 = E

[∫ T

0

(∫
D

{ f̂ (t , x)− f (t , x)}d x

)
d t

]
,

I2 = E

[∫
D

{ĝ (x)− g (x)}d x

]
.

By the definition of H we have

I1 = E

[∫ T

0

∫
D

{H̃(t , x)− p̂(t , x)b̃(t , x)− q̂(t , x)σ̃(t , x)}d xd t

]
, (3.17)
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Since g is concave with respect to y we have

g (x,Y (T, x))− ĝ (x,Y (T, x)) ≤ ∂g

∂y
(x, Ŷ (T, x)).Ỹ (T, x). (3.18)

where

Ỹ (T, x) := Y (T, x)− Ŷ (T, x),

and

H̃(t , x) := H(t , x)− Ĥ(t , x).

We get

I2 ≤ E[
∫

D

∂g

∂y
(x, Ŷ (T, x))Ỹ (T, x)d x] (3.19)

= E[
∫

D
p̂(T, x)Ỹ (T, x)d x]

= E
[∫

D

(∫ T

0
p̂(t , x)dỸ (t , x)+

∫ T

0
Ỹ (t , x)d p̂(t , x)+

∫ T

0
d [p̂, Ỹ ]t

)
d x

]
= E

[∫
D

∫ T

0
{p̂(t , x)[AỸ (t , x)+ b̃(t , x)− Ỹ (t , x){A∗p̂(t , x)+ ∂Ĥ(t , x)

∂y
}+ σ̃(t , x)q̂(t , x)}d td x

]
.

Where
∂Ĥ(t , x)

∂y
= ∂H

∂y
(t , x, y, Ŷ (t , x), û(t , x), p̂(t , x), q̂(t , x)).

By a small extension of (3.12) we get

∫
D

Ỹ (t , x)A∗p̂(t , x)d x =
∫

D
p̂(t , x)AỸ (t , x)d x (3.20)

Therefore, adding (3.17)-(3.19) and using (3.20) we get

J (u)− J (û) ≤ (3.21)

E [
∫

D
(
∫ T

0
{H(t , x)− Ĥ(t , x)− [p̂(t , x)AỸ (t , x)+ Ỹ (t , x)

∂Ĥ(t , x)

∂y
]}d t )d x].

Hence

J (u)− J (û) ≤ E [
∫

D
(
∫ T

0
H(t , x)− Ĥ(t , x)−∇Ŷ Ĥ(Ỹ )(t , x)}d t )d x]. (3.22)
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where

∇Ŷ .Ĥ(Ỹ ) =∇y Ĥ(Ỹ )

By the concavity assumption of H in (y,u) we have

H(t , x)− Ĥ(t , x) ≤∇Ŷ Ĥ(Y − Ŷ )(t , x)+ ∂Ĥ

∂u
(t , x)(u(t , x)− û(t , x))

and the maximum condition implies that

∂Ĥ

∂u
(t , x)(û(t , x)−u(t , x)) ≤ 0.

Hence by (3.22) we get

J (u)− J (û) ≤ 0.

Since u ∈A was arbitrary, this shows that û is optimal.

3.2.2 A Necessary Maximum Principle:

We proceed to prove a corresponding necessary maximum principle, we need the following as-

sumptions about the set of admissible control processes:

• For all t0 ∈ [0,T ] and all bounded Ft0 -measurable random variables α(x,ω), the control

θ(t , x,ω) defined by

θ(t , x,ω) := 1[t0,T ]α(x,ω)

belong to A .

• For all u,β0 ∈A with β0(t , x) ≤ K ≤∞ for all t , x define

δ(t , x) = 1

2K
di st (u(t , x),∂V )∧1 > 0

and put

β(t , x) = δ(t , x)β0(t , x) (3.23)
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then the control

ũ(t , x) = u(t , x)+aβ(t , x) ∈A , t ∈ [0,T ]

for all a ∈ (−1,1).

• For all β as in (3.23) the derivative process

η(t , x) = d

d a
Y u+aβ(t , x)|a=0. (3.24)

exists, and belongs to L2(λ×P) and



dη(t , x) = [Aη(t , x)+ ∂b
∂y (t , x)η(t , x)+ ∂b

∂u (t , x)β(t , x)]d t

+[∂σ
∂y (t , x)η(t , x)+ ∂σ

∂u (t , x)β(t , x)]dB(t )

(t , x) ∈ [0,T ]×D,

η(0, x) = d
d a Y u+aβ(0, x)|a=0 = 0,

η(t , x) = 0;(t , x) ∈ [0,T ]×∂D.

(3.25)

Theorem 53 (Necessary maximum principle) [46], [17] Let û ∈A Then the following are equiv-

alent:

1.
d

d a
J (û +aβ)|a=0 = 0,

for all bounded β ∈A of the form (3.23).

2.
∂H

∂u
(t , x)u=û = 0, for all (t , x) ∈ [0,T ]×D

Proof. We can Write
d

d a
J (u +aβ)|a=0 = I1 + I2

where

I1 = d

d a
E [

∫
D

∫ T

0
f (t , x,Y u+aβ(t , x),u(t , x)+aβ(t , x))d td x] ∥a=0
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and

I2 = d

d a
E [

∫
D

g (x,Y u+aβ(T, x))d x] |a=0 .

By our assumptions on f and g and by (3.24) we have

I1 = E [
∫

D

∫ T

0
{
∂ f

∂y
(t , x)η(t , x)+ ∂ f

∂u
(t , x)β(t , x)}d td x], (3.26)

I2 = E [
∫

D

∂g

∂y
(x,Y (T, x))η(T, x)d x] = E [

∫
D

p(T, x)η(T, x)d x]. (3.27)

By Itô formula

I2 = E [
∫

D
p(T, x)η(T, x)d x] = E [

∫
D

∫ T

0
p(t , x)dη(t , x)d x (3.28)

+
∫

D

∫ T

0
η(t , x)d p(t , x)d x +

∫
D

∫ T

0
d [p,η](t , x)d x]

= E [
∫

D

∫ T

0
p(t , x){Aη(t , x)

+∂b

∂y
(t , x)η(t , x)+ ∂b

∂u
(t , x)β(t , x)}d td x

+
∫

D

∫ T

0
p(t , x){

∂σ

∂y
(t , x)η(t , x)+ ∂σ

∂u
(t , x)β(t , x)}dBt

−
∫

D

∫ T

0
η(t , x)[A∗p(t , x)+ ∂H

∂y
(t , x)]d td x

+
∫

D

∫ T

0
q(t , x){

∂σ

∂y
(t , x)η(t , x)+ ∂σ

∂u
(t , x)β(t , x)}d td x

+
∫

D

∫ T

0
η(t , x)q(t , x)dBt d x

= E [
∫

D
(
∫ T

0
{p(t , x)Aη(t , x))}d t

+
∫ T

0
η(t , x){p(t , x)

∂b

∂y
(t , x)+q(t , x)

∂σ

∂y
(t , x)− A∗p(t , x)− ∂H

∂y
(t , x)}d t

+
∫ T

0
β(t , x){p(t , x)

∂b

∂u
(t , x)+q(t , x)

∂σ

∂u
(t , x)}d t )d x]

= E [−
∫

D

∫ T

0
η(t , x)

∂ f

∂y
}d t +

∫ T

0
{
∂H

∂u
(t , x)− ∂ f

∂u
(t , x)}β(t , x)}d td x]

= −I1 +E [
∫

D

∫ T

0

∂H

∂u
(t , x)β(t , x)d td x].
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Adding (3.26) and (3.28) we get

d

d a
J (u +aβ)|a=0 = I1 + I2 = E [

∫
D

∫ T

0

∂H

∂u
(t , x)β(t , x)d td x].

We conclude that
d

d a
J (u +aβ)|a=0

if and only if

E [
∫

D

∫ T

0

∂H

∂u
(t , x)β(t , x)d td x] = 0,

for all bounded β ∈A . of the form (3.23)

Now apply this to β(t , x) = θ(t , x), we get that this is again equivalent to

∂H

∂u
(t , x) = 0 for all (t , x) ∈ [0,T ]×D.

3.3 Controls which are independent of x

In many situations, for example in connection with partial (noisy) observation control, it is of

interest to study the case when the controls u(t ) = u(t , x) are not allowed to depend on the space

variable x. Thus we let the set A1 of admissible controls defined by:

A1 = {u ∈A ,u(t , x) = u(t )}

where control u des not depend on x. With the performance functional J (u) as in Problem

(3.14), the problem is now the following:

Problem 54 For each find u∗
1 ∈A1 such that

sup
u∈A1

J (u) = J (u∗
1 ). (3.29)

49



Partial (Noisy) Observation Optimal Control

Theorem 55 (Sufficient SPDE maximum principle for controls which are independent of x ) [17][46]

Let û ∈ A1 with corresponding solutions Ŷ (t , x) of (3.9) and p̂(t , x), q̂(t , x) of (3.16) respectively.

Suppose that

(1) y → g (x, y) is concave for all x,

(2) (y,u) → H(y,u) := H(t , x, y,u, p̂(t , x), q̂(t , x)); y ∈R,u∈U,is concave for all t , x,

(3) sup
u∈U

H [t , x, Ŷ (t , x),u, p̂(t , x), q̂(t , x)] = H [t , x, Ŷ (t , x), û(t ), p̂(t , x), q̂(t , x)] for all t , x.

Then û(t ) is an optimal control for the stochastic control problem in (Problem 3.29).

Proof. Let u ∈ A1be an arbitrary admissible control with corresponding solution of (3.9) and

(3.16) be Y (t , x) and p(t , x), q(t , x), respectively. For simplicity of notation, we write

f = f (t , x,Y (t , x),u(t )), f̂ = f (t , x, Ŷ (t , x), û(t ))

and similarly with b, b̂,σ, σ̂. and so on. Moreover put

H(t , x) = H(t , x,Y (t , x),u(t ), p̂(t , x), q̂(t , x)),

Ĥ(t , x) = H(t , x, Ŷ (t , x), û(t ), p̂(t , x), q̂(t , x)).

In the following we write f̃ = f̂ − f , b̃ = b̂ −b, σ̃= σ̂−σ.

Consider

J (u)− J (û) = I1 + I2

where

I1 = E

[∫ T

0

(∫
D

{ f̂ (t , x)− f (t , x)}d x

)
d t

]
,

I2 = E

[∫
D

{ĝ (x)− g (x)}d x

]
.

By the definition of H we have

I1 = E

[∫ T

0

∫
D

{H̃(t , x)− p̂(t , x)b̃(t , x)− q̂(t , x)σ̃(t , x)}d xd t

]
, (3.30)
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Since g is concave with respect to y we have

g (x,Y (T, x))− ĝ (x,Y (T, x)) ≤ ∂g

∂y
(x, Ŷ (T, x)).Ỹ (T, x). (3.31)

where

Ỹ (T, x) := Y (T, x)− Ŷ (T, x),

and

H̃(t , x) := H(t , x)− Ĥ(t , x).

We get

I2 ≤ E[
∫

D

∂g

∂y
(x, Ŷ (T, x))Ỹ (T, x)d x] (3.32)

= E[
∫

D
p̂(T, x)Ỹ (T, x)d x]

= E
[∫

D

(∫ T

0
p̂(t , x)dỸ (t , x)+

∫ T

0
Ỹ (t , x)d p̂(t , x)+

∫ T

0
d [p̂, Ỹ ]t

)
d x

]
= E

[∫
D

∫ T

0
{p̂(t , x)[AỸ (t , x)+ b̃(t , x)− Ỹ (t , x){A∗p̂(t , x)+ ∂Ĥ(t , x)

∂y
}+ σ̃(t , x)q̂(t , x)}d td x

]
.

Where
∂Ĥ(t , x)

∂y
= ∂H

∂y
(t , x, y, Ŷ (t , x), û(t ), p̂(t , x), q̂(t , x)). (3.33)

By a slight extension of (3.33) we get

∫
D

Ỹ (t , x)A∗p̂(t , x)d x =
∫

D
p̂(t , x)AỸ (t , x)d x (3.34)

Therefore, adding (3.30)-(3.32) and using (3.34) we get

J (u)− J (û) ≤ (3.35)

E [
∫

D
(
∫ T

0
{H(t , x)− Ĥ(t , x)− [p̂(t , x)AỸ (t , x)+ Ỹ (t , x)

∂Ĥ(t , x)

∂y
]}d t )d x].

Hence

J (u)− J (û) ≤ E [
∫

D
(
∫ T

0
H(t , x)− Ĥ(t , x)−∇Ŷ Ĥ(Ỹ )(t , x)}d t )d x]. (3.36)
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where

∇Ŷ .Ĥ(Ỹ ) =∇y Ĥ(Ỹ )

By the concavity assumption of H in (y,u) we have

H(t , x)− Ĥ(t , x) ≤∇Ŷ Ĥ(Y − Ŷ )(t , x)+ ∂Ĥ

∂u
(t , x)(u(t )− û(t ))

and the maximum condition implies that

∂Ĥ

∂u
(t , x)(û(t )−u(t )) ≤ 0.

Hence by (3.36) we get

J (u)− J (û) ≤ 0.

Since A1 was arbitrary, this shows that û is optimal.

We proceed as in Theorem 53 to establish a corresponding necessary maximum principle

for controls which do not depend on x. We assume the follwing:

• For all t0 ∈ [0,T ] and all bounded H t0 -measurable random variables α(x,ω), the control

θ(t ,ω) defined by

θ(t ,ω) := 1[t0,T ]α(ω)

belong to A1.

• For all u,β0 ∈A1 with β0 ≤ K ≤∞ for all t define

δ(t ) = 1

2K
di st (u(t ),∂V )∧1 > 0

and put

β(t ) = δ(t )β0(t ) (3.37)

then the control

ũ(t ) = u(t )+aβ(t ) ∈A , t ∈ [0,T ]

for all a ∈ (−1,1).

52



Partial (Noisy) Observation Optimal Control

• For all β as in (3.37) the derivative process

η(t , x) = d

d a
Y u+aβ(t , x)|a=0. (3.38)

exists, and belongs to L2(λ×P) and



dη(t , x) = [Aη(t , x)+ ∂b
∂y (t , x)η(t , x)+ ∂b

∂u (t , x)β(t , x)]d t

+[∂σ∂y (t , x)η(t , x)+ ∂σ
∂u (t , x)β(t , x)]dB(t )

(t , x) ∈ [0,T ]×D,

η(0, x) = d
d a Y u+aβ(0, x)|a=0 = 0,

η(t , x) = 0;(t , x) ∈ [0,T ]×∂D.

(3.39)

Theorem 56 (Necessary SPDE maximum principle for controls which are independent of x) [17,

46] Let û ∈A Then the following are equivalent:

1.
d

d a
J (û +aβ)|a=0 = 0,

for all bounded β ∈A of the form (3.37).

2.
∂H

∂u
(t , x)u=û = 0, for all (t , x) ∈ [0,T ]×D

Proof. The proof is analogous to the proof of Theorem 53.
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Chapter 4

Stochastic Partial Differential Equations

with space interactions and application to

population modelling
The purpose of this chapter is to introduce a new type of generalised stochastic partial differ-

ential equations (SPDEs) with space interactions as a model for population growth this result is

new [38]. The SPDEs have space interactions, where the dynamics of the system at time t and

position in space x also depend on the space-mean of values at neighbouring points. Our goal

in this chapter is to prove the existence and uniqueness of a strong, smooth solution of a class

of space interaction SPDEs, including the application studied in Section 4. In this application,

we have an example in which the density Y (t , x) of infected individuals in a population in a

random/noisy environment changes over time t and space point x according to the following

space interaction reaction-diffusion. And we give an iterative procedure for finding the solution

(Theorem 57). Then we use white noise theory to prove a positivity theorem for a class of SPDEs

with space interactions (Theorem 58). White noise W (t ) is formally defined as a derivative of

the Brownian motion:

Wt = d

d t
B(t ),

(we refer to read [34],[16]) and we prove that the solution is positive if the initial values are (The-

orem 59). Subsequently, in Section 3 of this chapter, we study the general optimization problem

for such a system. We derive both suffcient and necessary maximum principles for optimal con-
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trol. See (Theorem 66 and Theorem 67). Finally, as an illustration of our results, in Section 4, we

study an example about optimal vaccination strategy for epidemics modelled as an SPDE with

space interactions.

4.1 Solutions of SPDEs with space interactions,

and positivity

In this section, we prove the existence and uniqueness of a strong, smooth solution of stochastic

partial differential equations (SPDEs) with space interactions. We are not aiming to prove this

for the most general SPDE of this type, but we settle for a class of SPDEs which includes the

application in Section 4. Thus, for simplicity, we consider only the case when Ax = L given by

L = 1

2
∆ := 1

2

k=n∑
k=1

∂2

∂x2
k

, and D =Rn ,

but it is clear that our method can also be applied to more general situations.

Fix t > 0, and let k ∈N0 = {0,1,2, . . . , . . .} , α= (α1,α2, . . . ,αm) ∈Nm
0 ;m = 1,2, ....

For functions f ∈ C ∞
0 (Rn) (the family of functions in C (Rn) with compact support), we define

the Sobolev norm (see Definition 38)

∣∣ f
∣∣
k = ∑

|α|≤k

(∫
Rn

|∂α f (x)|2d x
) 1

2 ;α= (α1,α2, . . . ,αn) ∈Nn
0 ,

and we define the Sobolev spaceHk (see Definition 39 ) to be the closure of C∞
0 (Rn) in this norm.

Note thatHk is a Hilbert space for all k. Also, note that if f ∈Hk+2 then L f ∈Hk , because

∣∣L f
∣∣
k = ∑

|α|≤k
(
∫
Rn

∣∣∂αL f (x)
∣∣2 d x)

1
2 ≤ 1

2

∑
|α|≤k+2

(
∫
Rn

∣∣∂αL f (x)
∣∣2 d x)

1
2 = 1

2

∣∣ f
∣∣
k+2 . (4.1)

Let Y (t )
k denote the family of adapted random fields Y (s, x) = Y (s, x,ω) , such that

∥Y ∥t ,k <∞,
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where

||Y ||t ,k = E
[

sup
s≤t

{|Y (s, .)|2k
}] 1

2

, (4.2)

and let Y (t ) be the intersection of all the spaces Y (t )
k ;k ∈N0, with the norm

||Y ||2t :=
∞∑

k=1
2−k ||Y ||2t ,k . (4.3)

In the following we let

ϕ 7→ϕ(x)

be any averaging operator such that there exists a constant C1 such that

|ϕ|k ≤C1|ϕ|k for all ϕ,k. (4.4)

This holds, for example, if ϕ(x) = ∫
ϕ(x + y)ρ(d y) for some measure ρ of total mass 1.

We can now prove the following:

Theorem 57 Let ξ ∈Y (T ) be deterministic and let h : [0,T ] 7→R be bounded and deterministic.

(i) Then there exists a unique solution Y (t , x) ∈Y (T ) of the following SPDE with space interac-

tions:

Y (t , x) = ξ(x)+
∫ t

0
LY (s, x)d s

+
∫ t

0
Y (s, x)d s +

∫ t

0
h(s)Y (s, x)dB(s); t ∈ [0,T ].

(ii) Moreover, the solution Y (t , x) can be found by iteration, as follows:

Choose Y0 ∈Y (T ) arbitrary deterministic and define inductively Ym to be the solution of

Ym(t , x) = ξ(x)+
∫ t

0
LYm(s, x)d s +

∫ t

0
Y m−1(s, x)d s

+
∫ t

0
h(s)Ym(s, x)dB(s); t ∈ [0,T ];m = 1,2, .... (4.5)
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Then

Ym → Y in Y (T ) when m →∞.

Proof. Part(i): In the first part of the proof, we are concerned on proving the existence and the

uniqueness of the solution of Y (t , x) ∈Y (T ). Define the operator F : Y (T ) →Y (T ) by F (Z ) = Y Z

where Y Z is the solution of the equation

Y Z (t , x) = ξ(x)+
∫ t

0
LY Z (s, x)d s +

∫ t

0
Z (s, x)d s +

∫ t

0
Y Z (s, .)h(s)dB(s).

For i = 1,2 choose Zi ∈Y (T ) and define Yi = Y Zi =: F (Zi ) to be the solution of the SPDE

Yi (t , x) = ξ (x)+
∫ t

0
LYi (s, x)d s +

∫ t

0
Zi (s, x)d s +

∫ t

0
Yi (s, ·)h (s)dB (s) .

Note that here Zi (and hence Zi , is given for each i . Therefore the existence and uniqueness

of the solution Yi follows by the general existence and uniqueness theorems for solutions of

SPDEs. e.g. as given in Theorem 3.3 in [22]. Define

Ỹ = Y1 −Y2,

Z̃ (t , x) = Z1 (t , x)−Z2 (t , x)

Z̃ = Z 1 −Z 2.

Then

Ỹ (t , x) =
∫ t

0
LỸ (s, x)d s +

∫ t

0
Z̃ (s, x)d s +

∫ t

0
Ỹ (s, x)h (s)dB (s) .

Hence

∣∣Ỹ (s, .)
∣∣
k ≤

∫ s

0

∣∣LỸ (r, .)
∣∣
k dr +

∫ s

0

∣∣∣Z̃ (r, .)
∣∣∣
k

dr

+
∣∣∣∣∫ s

0
Ỹ (r, ·)h(r )dB(r )

∣∣∣∣
k

(4.6)

By (4.1) we have ∣∣LỸ (r, .)
∣∣
k ≤ ∣∣Ỹ (r, .)

∣∣
k+2 , (4.7)
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and from (4.4) we get ∣∣∣Z
∣∣∣
k
≤C1 |Z |k for all k. (4.8)

Then by (4.6), (4.7) and (4.8), we get

E

[
sup
s≤t

∣∣Ỹ (s, .)
∣∣2
k

]
(4.9)

≤ 3E

[
sup
s≤t

(∫ s

0

∣∣Ỹ (r, .)
∣∣
k+2 dr

)2]
+3C1E

[
sup
s≤t

(∫ s

0

∣∣Z̃ (r, .)
∣∣dr

)2]
+3E

[
sup
s≤t

∣∣∣∣∫ s

0
Ỹ (r, ·)h (r )dB (r )

∣∣∣∣2

k

]
.

By the Burkholder-Davis-Gundy inequality (see Theorem 25) for Hilbert spaces (see e.g. [41]),

there exists a constant C2 such that

E

[
sup
s≤t

∣∣∣∣∫ s

0
Ỹ (r, ·)h (r )dB (r )

∣∣∣∣2

k

]
≤C2E

[∫ t

0

∣∣Ỹ (r, .)
∣∣2
k h2 (r )dr

]
≤C2h2

0tE

[
sup
s≤t

∣∣Ỹ (s, .)
∣∣2
k

]
; where h2

0 = sup
s∈[0,T ]

|h (s)|2 .

Combining the above we get, if 0 ≤ t ≤ 1,

E

[
sup
s≤t

∣∣Ỹ (s, .)
∣∣2
k

]
(4.10)

≤ 3t 2E

[
sup
r≤t

∣∣Ỹ (r, .)
∣∣2
k+2

]
+3C1t 2E

[
sup
r≤t

∣∣Z̃ (r, .)
∣∣2
k

]
(4.11)

+3C2h2
0tE

[
sup
r≤t

∣∣Ỹ (r, .)
∣∣2
k

]
. (4.12)

In other words,

||Ỹ ||2t ,k ≤ 3t 2||Ỹ ||2t ,k+2 +3C1t 2||Z̃ ||2t ,k +3C2h2
0t ||Ỹ ||2t ,k . (4.13)

Note that

∞∑
k=1

2−k ||Ỹ ||2t ,k+2 =
∞∑

j=3
2−( j−2)||Ỹ ||t , j ≤ 4

∞∑
j=3

2− j ||Ỹ ||t , j ≤ 4
∞∑

k=1
2−k ||Ỹ ||t ,k = 4||Ỹ ||t .
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Therefore, by multiplying the terms in (4.13) by 2−k and summing over k, we get

||Ỹ ||2t =
∞∑

k=1
2−k ||Ỹ ||2t ,k ≤ 12t 2||Ỹ ||2t +3C1t 2||Z̃ ||2t +3C2h2

0t ||Ỹ ||2t ,

or

(1−12t 2 −3C2h2
0t )||Ỹ ||2t ≤ 3C1t 2||Z̃ ||2t .

Hence, if t0 > 0 is chosen so small that

3C1t 2
0

1−12t 2
0 −3C2h2

0t0
< 1,

we obtain that the map

Z → Y Z = F (Z )

is a contraction on Y (t0). Therefore, by the Banach fixed point theorem there exists a fixed point

Ŷ of this map. Then Ŷ solves the SPDE

 dŶ (t , x) = LŶ (t , x)d t + Ŷ (t , x)d t + Ŷ (t , x)h (t )dB (t ) ; t ∈ [0, t0] ,

Ŷ (0, x) = ξ(x); x ∈Rn .

Uniqueness follows by a similar argument.

Since the constants do not depend on t0, we can repeat the argument starting from t0 and

hence by induction obtain a solution Y (t , x) ∈Y (2t0). Repeating this argument we thus obtain a

solution Y ∈Y (T ). This proves part (i).

Part (ii): The second part of the theorem follows by the Banach fixed point theorem on the

Banach space Y (T ).
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4.2 The non-homogeneous stochastic heat equation and posi-

tivity

In this section we will prove positivity of the solutions Y (t , x) of SPDEs of the form

 dY (t , x) = LY d t +K (t , x)d t +h (t )Y (t )dB (t ) ,

Y (0, x) = ξ(x); x ∈Rn ,

where the function ξ ∈ Y (T ) is deterministic and positive, h : [0,T ] 7→ R is bounded and deter-

ministic and K (t , x) = K (t , x,ω) : [0,T ]×Rn ×Ω 7→R is a given positive random field.

To motivate our method, we first recall the following basic results about the classical heat equa-

tion:

Let L = 1
2△ and consider the equation

 dY (t , x) = LY d t +K (t , x)d t ,

Y (0, x) = ξ(x); x ∈Rn ,
(4.14)

where ξ ∈ Y (T ) and K ∈ L2([0,T ]×Rn) are given deterministic functions. Define the operator

Pt : L2 (Rn) → L2 (Rn) by

Pt f (x) =
∫
Rn

(2πt )−
n
2 f

(
y
)

exp

(
−

∣∣x − y
∣∣2

2t

)
d y, (4.15)

then
d

d t
Pt f = L

(
Pt f

)
,

and if we define

Y (t , x) = Ptξ (x)+
∫ t

0
Pt−s (K (s, .)) (x)d s,

we get

d

d t
Y (t , x) = L (Ptξ) (x)+P0 (K (t , .)) (x)+

∫ t

0
L (Pt−s (K (s, .))) (x)d s

= LY (t , x)+K (t , x) .
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Hence

Y (t , x) solves the heat equation (4.14).

Next, consider the case

dY (t , x) = LY d t +K (t , x)d t +θ (t )Y (t , x)d t .

Multiply the equation by

Z (t ) = exp

(
−

∫ t

0
θ (s)d s

)
.

Then the equation becomes

d (Z (t )Y (t , x)) = L (Z (t )Y (t , x))d t +Z (t )K (t , x)d t .

Hence, if we put

Ŷ = Z (t )Y (t , x) ,

then Ŷ solves the equation

 dŶ (t , x) = LŶ d t +Z (t )K (t , x)d t ,

Ŷ (0, x) = ξ(x),

and we are back to the previous case.

Finally, consider the SPDE

dY (t , x) = LY d t +K (t , x)d t +h (t )Y (t )dB (t ) , (4.16)

where h is a given bounded deterministic function and K (t , x) is stochastic and adapted, and

E[
∫ T

0

∫
Rn K 2(t , x)d td x] <∞. We handle this case by using white noise calculus on the Hida space

(S )∗ of stochastic distributions: We introduce white noise Wt ∈ (S )∗ (see Definition 40) defined

by

Wt = d

d t
B(t ),
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and then we see that equation (4.16) can be written

d

d t
Y (t , x) = LY +K (t , x)+Y (t )h (t )⋄Wt ,

where ⋄ denotes Wick multiplication or (wick product) (see Definition 41). We refer to e.g. [16]

for more information about white noise calculus. If we Wick-multiply this equation by

Zt := exp⋄
(
−

∫ t

0
h (s)dB (s)

)
,

where in general exp⋄(φ) =∑∞
n=0

1
n!φ

⋄n ;φ ∈ (S )∗ is the Wick exponential, we get

Zt ⋄ d

d t
Y (t , x) = L (Y ⋄ Zt )+K ⋄ Zt +Y (t )h (t )⋄Wt ⋄ Zt . (4.17)

Now
d

d t
(Zt ⋄Y ) = Zt ⋄ d

d t
Y (t )−Y (t )⋄ Zt ⋄h (t )Wt , (4.18)

and hence (4.17) can be written as

d

d t
(Zt ⋄Yt )︸ ︷︷ ︸

Ŷt

= L (Zt ⋄Yt )︸ ︷︷ ︸
Ŷt

+K (t , x)⋄ Zt .

This has the same form as (4.14). Hence the solution Ŷ is

Ŷ (t , x) = Ptξ (x)+
∫ t

0
Pt−s (K (s, .)) (x)⋄ Zsd s.

Now we go back from Ŷ to Y and get the solution

Y (t , x) = Ŷ (t , x)⋄exp⋄
(∫ t

0
h (s)dB (s)

)
= Ptξ (x)⋄exp⋄

(∫ t

0
h (s)dB (s)

)
+

∫ t

0
Pt−s (K (s, .)) (x)⋄exp⋄

(∫ t

s
h (r )dB (r )

)
d s. (4.19)
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Note that

exp⋄
(∫ t

0
h (s)dB (s)

)
= exp

(∫ t

0
h (s)dB (s)− 1

2

∫ t

0
h2 (s)d s

)
> 0.

Recall the Gjessing-Benth lemma (see [11], [23] or Theorem 2.10.6 in [25] or Proposition 13 in

[10]), which states that

φ⋄exp⋄
(∫ t

0
h (s)dB (s)

)
= (

τ−hφ
)

exp⋄
(∫ t

0
h (s)dB (s)

)
,

where, for φ :Ω 7→R, we define τ−hφ(ω) =φ(ω−h);ω ∈Ω to be the shift operator onΩ.

Using this in (4.19) we conclude that if

ξ≥ 0 and K ≥ 0 then Y ≥ 0.

We summarize what we have proved as follows:

Theorem 58 Assume that ξ ∈Y (T ) is deterministic, E[
∫ T

0

∫
Rn K 2(t , x)d td x] <∞ and let h : [0,T ] 7→

[0,T ] be bounded deterministic.

1. Then the unique solution Y (t , x) ∈Y (T ) of the non-homogeneous SPDE

dY (t , x) = LY d t +K (t , x)d t +h (t )Y (t )dB (t ) ,

Y (0, x) = ξ(x); x ∈Rn

is given by

Y (t , x) = (τ−hPtξ)(x)exp⋄
(∫ t

0
h (s)dB (s)

)
+

∫ t

0
(τ−hPt−s(K (s, .))(x)exp⋄(

∫ t

s
h(r )dB(r ))d s,

where exp⋄(
∫ t

s h(r )dB(r )) = exp(
∫ t

s h(r )dB(r )− 1
2

∫ t
s h2(r )dr ); 0 ≤ s ≤ t ≤ T.

2. In particular, if ξ(x) ≥ 0 and K (t , x) ≥ 0 for all (t , x) ∈ [0,T ]×Rn , then Y (t , x) ≥ 0 for all

(t , x) ∈ [0,T ]×Rn .

Combining this with Theorem 57 we get
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Theorem 59 (Positivity) Assume that ξ ∈ Y (T ) is deterministic and let h : [0,T ] 7→ R be bounded

and deterministic. Let Y (t , x) ∈ Y (T ) be the unique solution of the following SPDE with space

interactions:

Y (t , x) = ξ(x)+
∫ t

0
LY (s, x)d s +

∫ t

0
Y (s, x)d s +

∫ t

0
h(s)Y (s, x)dB(s); t ∈ [0,T ], (4.20)

given by Theorem 58.

Then if ξ(x) ≥ 0 for all x ∈Rn , we have Y (t , x) ≥ 0 for all (t , x) ∈ [0,T ]×Rn .

Proof.

By Theorem 57 we know that the solution of (4.20) can be obtained as the limit when m →∞
of the sequence Ym(t , x) defined recursively by the equation (4.5). Then by Theorem 58, part 2,

we know that Ym(t , x) ≥ 0 for all t , x,m. We conclude that Y (t , x) ≥ 0 for all (t , x).

Remark 60 The results from this and the previous section can be extended to equations of the

form

dY (t , x) = [
LY (t , x)+γ(t , x)Y (t , x)

]
d t +Y (t , x)d t +h(t )dB(t ); t ∈ [0,T ], (4.21)

for a given adapted process γ ∈ Y (T ).To see this we apply the arguments above with the operator

L replaced by the operator L̂ defined by L̂ϕ= Lϕ+γϕ;ϕ ∈C ∞(Rn). We omit the details.

4.3 The optimization problem

In general, if X ,Y are two Banach spaces and F : X →Y if Fréchet differentiable at x ∈X , then

we let ∇xF denote the Fréchet derivative of F at x (see Definition 32). It is a linear operator from

X to Y and the action of ∇xF to h ∈ X is denoted by ∇xF (h) = 〈∇xF,h〉 ∈ Y . Recall that if F is

Fréchet differentiable at x with Fréchet derivative ∇xF , then F has a directional derivative

DxF (h) := lim
ϵ→0

1

ϵ
(F (x +ϵh)−F (x)) (4.22)
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in all directions h ∈X and

DxF (h) =∇xF (h) = 〈∇xF,h〉. (4.23)

In particular, note that if F is a linear operator, then ∇xF = F for all x.

4.3.1 The Hamiltonian and the adjoint BSPDE

We now give a general formulation of the problem we consider.

Let Ax be a linear second order partial differential operator given by

Axφ(x) =
n∑

i , j=1
αi j (x)

∂2φ

∂xi∂x j
+

n∑
i=1

βi (x)
∂φ

∂xi
; φ ∈C 2

0 (Rn). (4.24)

Let T > 0 and assume that the state Y (t , x) at time t ∈ [0,T ] and at the point x ∈ D := D ∪∂D

satisfies the following non-local quasilinear stochastic heat equation:



dY (t , x) = AxY (t , x)d t +b(t , x,Y (t , x),Y (t , ·),u(t , x))d t

+σ(t , x,Y (t , x),Y (t , ·),u(t , x))dB(t ),

Y (0, x) = ξ(x); x ∈ D,

Y (t , x) = η(t , x); (t , x) ∈ (0,T )×∂D.

(4.25)

We make the following assumptions on (α,β,b,σ,ξ,η)

(a) (αi j (x))1≤i , j≤n is a given symmetric nonnegative definite n × n matrix with eigenvalues

bounded away from 0 and with entries αi j (x) ∈C 4(D)∩C (D) for all i , j = 1,2, ...,n.

(b) βi (x) ∈C 3(D)∩C (D) for all i = 1,2, ...,n.

(c) The functions b and σ are F-adapted, C 2 with respect to y and u and admit uniformly

bounded derivatives.

(d) ξ ∈ L2(D), and η ∈ L2([0,T ]×D ×Ω) in F-adapted.

We call the equation (4.25) a stochastic partial differential equation with space-interactions.
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In general, the formal adjoint A∗ of an operator A is defined by the identity

(Aφ,ψ) = (φ, A∗ψ), for all φ,ψ ∈C 2
0 (D),

where (φ1,φ2) := 〈φ1,φ2〉L2(D) =
∫

D
φ1(x)φ2(x)d x is the inner product in L2(D) and C 2

0 (D) is the

set of twice differentiable functions with compact support in D . In our case we have

A∗
xφ(x) =

n∑
i , j=1

∂2

∂xi∂x j
(αi j (x)φ(x))−

n∑
i=1

∂

∂xi
(βi (x)φ(x)); φ ∈C 2(D).

We interpret Y as a weak (variational) solution to (4.25), in the sense that

〈Y (t ),φ〉L2(D) = 〈ξ(x),φ〉L2(D) +
∫ t

0
〈Y (s), A∗

xφ〉L2(D)d s

+
∫ t

0
〈b(s,Y (s)),φ〉L2(D)d s +

∫ t

0
〈σ(s,Y (s)),φ〉L2(D)dB(s);φ ∈C 2

0 (D).

For simplicity, in the above equation, we have not written all the arguments of b,σ.

In the following, we will assume that there is a unique strong solution of (4.25). It is not known

to us under what conditions this is the case for general D . In the case when D =Rn it follows by

Proposition 12.1 in [35] that there exists a unique weak solution Y (t ; x) of (4.25) for all given ini-

tial values ξ ∈ L2(D). In Section 2 of this chapter, we have proved that there is a unique smooth,

strong positive solution of equation (4.21) if ξ> 0 and D = Rn . The process u(t , x) = u(t , x,ω) is

our control process, assumed to have values in a given convex set U ⊂Rk .

Definition 61 We call the control process u(t , x) admissible if u(t ; x) is F-predictable for all (t , x) ∈
[0,T ]×D and u(t , x) ∈U for all t , x. The set of admissible controls is denoted by U .

The performance functional (cost) associated to the control u is assumed to have the form

J (u) = E
[∫ T

0

∫
D

f (t , x,Y (t , x),Y (t , .),u(t , x))d xd t +
∫

D
g (x,Y (T, x),Y (T, .))d x

]
;u ∈U . (4.26)

We make the following assumptions on ( f , g ):

(e) The function f (t , x, y,ϕ,u) is F-adapted and the function g (x, y,ϕ) is FT -measurable. They

are assumed to be bounded, C 2 with respect to y,ϕ,u, with uniformly bounded deriva-
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tives.

We consider the following problem of optimal control of a solution of an SPDE:

Problem 62 Find û ∈U such that

J (û) = inf
u∈U

J (u). (4.27)

As mentioned in the Introduction ( General Introduction), this type of problem has been stud-

ied by many authors, and it may in some sense be considered as a special case of the general

problem discussed in [35], except that we are considering strong solutions on [0,T ]×D , where

D a given open subset of Rn , with given boundary values on ∂D . Moreover, our approach is

specifically focused on the stochastic reaction-diffusion equation with space interaction pre-

sented in Section 1 of this chapter, and therefore gives more explicit results.

To study this problem we define the associated Hamiltonian H : [0,T ]×D ×R×L(Rn)×U ×R×
R×Ω→R by

H(t , x, y,ϕ,u, p, q) := H(t , x, y,ϕ,u, p, q,ω) = f (t , x, y,ϕ,u)+b(t , x, y,ϕ,u)p

+σ(t , x, y,ϕ,u)q. (4.28)

In general, if h : L2(D) 7→ L2(D) is Fréchet differentiable map, then its Fréchet derivative (gra-

dient) at ϕ ∈ L2(D) denoted by ∇ϕh = ∇h is a bounded linear map on the Hilbert space L2(D),

and by the Riesz representation theorem (see Theorem 33) we can represent it by a function

∇h(x, y) ∈ L2(D ×D). We denote the action of ∇h on a function ψ ∈ L2(D) by
〈∇h,ψ

〉
.

Hence 〈∇h,ψ
〉

(x) :=
∫

D
∇h(x, y)ψ(y)d y ; for all ψ ∈ L2(D). (4.29)

Remark 63 • Note in particular that if h : L2(D) 7→ L2(D) is linear, then

∇h(x, y) = h(x, y)

.
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• Also note that from (4.29) it follows by the Fubini theorem that

∫
D

〈∇h,ψ
〉

(x)d x =
∫

D

∫
D
∇h(x, y)ψ(y)d yd x =

∫
D

∫
D
∇h(y, x)ψ(x)d xd y

=
∫

D

(∫
D
∇h(y, x)d y

)
ψ(x)d x =

∫
D
∇h(x)ψ(x)d x,

where

∇h(x) :=
∫

D
∇h(y, x)d y. (4.30)

Example 64 a) Assume that h : L2(D) 7→ L2(D) is given by

h(ϕ) = 〈
h,ϕ

〉
(x) =G(x,ϕ(·)) = 1

V (Kr )

∫
Kr

ϕ(x + y)d y. (4.31)

Then 〈∇ϕh,ψ
〉

(x) = 〈
h,ψ

〉
(x) = 1

V (Kr )

∫
Kr

ψ(x + y)d y.

Therefore ∇h(x, y) is given by the identity

∫
D
∇h(x, y)ψ(y)d y = 1

V (Kr )

∫
Kr

ψ(x + y)d y ; ψ ∈ L2(D).

Substituting z = x + y this can be written

∫
D
∇∗
ϕh(x, y)ψ(y)d y = 1

V (Kr )

∫
x+Kr

ψ(z)d z =
∫

D

1x+Kr (y)

V (Kr )
ψ(y)d y.

Since this is required to hold for all ψ, we conclude the following:

b) Suppose that h is given by (4.31). Then

∇h(x, y) = 1x+Kr (y)

V (Kr )
,

and

∇ϕh(x) =
∫

D
∇ϕh(y, x)d y = 1

V (Kr )

∫
D

1y+Kr (x)d y = 1

V (Kr )

∫
D

1x−Kr (y)d y

= V ((x −Kr )∩D)

V (Kr )
= V ((x +Kr )∩D)

V (Kr )
,
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since Kr =−Kr .

We associate with the Hamiltonian the following backward stochastic partial differential equa-

tions (BSPDE for short) given by

d p(t , x) =−
[

A∗
x p(t , x)+ ∂H

∂y (t , x)+∇H(t , x)
]

d t +q(t , x)dB(t ), (4.32)

with boundary/terminal values

 p(T, x) = ∂g
∂y (x)+∇g (x); x ∈ D,

p(t , x) = 0; (t , x) ∈ (0,T )×∂D,
(4.33)

where we have used the simplified notation

H(t , x) = H(t , x, y,ϕ,u, p, q)|y=Y (t ,x),ϕ=Y (t ,·),u=u(t ,x),p=p(t ,x),q=q(t ,x),

and similarly we have used the notation g (x) for g (x,Y (T, x),Y (T, ·)). Here A∗
x denotes the ad-

joint of the operator Ax .

Note that in differential of p in (4.32) can be written explicity as follows:

d p (t , x) =−
[ n∑

i , j=1
αi j (x)

∂2

∂xi∂x j
p(t , x)

+
n∑

i=1

(
−βi (x)+2

n∑
j=1

∂

∂x j
αi j (x)

) ∂

∂xi
p(t , x)

(
−

n∑
i=1

∂

∂xi
βi (x)+

n∑
i , j=1

∂2

∂xi∂x j
αi j (x)

)
p(t , x)+

(
(
∂

∂y
+∇)b(t , x)

)
p(t , x)

+
(
(
∂

∂y
+∇)σ(t , x)

)
q(t , x)+

( ∂
∂y

+∇
)

f (t , x)
]

d t +q(t , x)dB(t ).

To the best of our knowledge, the existence and uniqueness of a solution of (4.32)-(4.33) is not

known in general. However, note that (for given u) the equation (4.32), regarded as a BSPDE

in the unknown Y (T ) ×Y (T )-valued processes (p, q), is linear. Therefore, in view of our general

assumptions (a)-(d) above, the existence and uniqueness of solution follows from e.g.Theorem

2.1 in [18], provided that the terms ∇b(t , x),∇σ(t , x) and ∇ f (t , x) satisfy condition (Fm) in [18].

To this end, it suffices that b,σ and f depend linearly on ϕ and in a space-averaging manner,
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as in the example with h in (4.31) above. In particular, this holds in the application studied in

Section 4 of this chapter.

Remark 65 Here, as in Sections 1 and 2, of this chapter we are primarily interested in strong

solutions (p, q) ∈ Y (T ) ×Y (T ), but weak solutions are also of interest. A pair (p, q) of random

fields is said to be a weak solution to the backward SPDE (4.32)-(4.33) if, for all φ ∈C 2
0 (D),

〈p(t , .),φ(.)〉−〈p(T, .),φ(.)〉 =
∫ T

t
〈A∗

x p(s, .),φ(.)〉d s +
∫ T

t
〈∂H
∂y (t , .)+∇H(t , .),φ(.)〉d s

−
∫ T

t
〈q(s, .),φ(.)〉dB(s); a.s. for each t ∈ [0,T ].

Hence, we observe that p admits the following mild representation

p(t , x) = PT−t

(
p(T, x)

)
+

∫ T

t
Ps−t

(
∂H
∂y (t , x)+∇H(t , x)

)
d s −

∫ T

t
Ps−t

(
q(s, x)

)
dB(s); 0 ≤ t ≤ T,

where Pt denotes the semigroup of the operator A∗.

4.3.2 A sufficient maximum principle approach (I)

We now formulate a sufficient version ( a verification theorem) of the maximum principle for

the optimal control of the problem (4.25)-(4.27).

In the special case when D = Rn the result follows from Theorem 12.21 in [25]. We give direct

proof for our situation, with general D .

Theorem 66 (Sufficient Maximum Principle (I)) Suppose û ∈U , with corresponding

Ŷ (t , x), p̂(t , x), q̂(t , x). Suppose the functions (y,ϕ) 7→ g (x, y,ϕ) and

(y,ϕ,u) 7→ H(t , x, y,ϕ,u, p̂(t , x), q̂(t , x)) are convex for each (t , x) ∈ [0,T ]×D. Moreover, suppose

that, for all (t , x) ∈ [0,T ]×D,

min
v∈U

H(t , x, Ŷ (t , x), Ŷ (t , ·), v, p̂(t , x), q̂(t , x))

= H(t , x, Ŷ (t , x), Ŷ (t , ·), û(t , x), p̂(t , x), q̂(t , x)).

Then û is an optimal control.
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Proof. Consider

J (u)− J (û) = I1 + I2,

where

I1 = E
[∫ T

0

∫
D

{ f (t , x,Y (t , x),Y (t , ·),u(t , x))− f (t , x, Ŷ (t , x), Ŷ (t , ·), û(t , x))}d xd t

]
,

and

I2 =
∫

D
E
[
g (x,Y (T, x),Y (T, ·))− g (x, Ŷ (T, x), Ŷ (T, ·))

]
d x.

By convexity on g together with the identities (4.29)-(4.30) (by putting ∇h(x, y) =∇ϕĝ (T, x) and

ψ= (Y (T, .)− Ŷ (T, .))), we get

I2 ≥
∫

D
E
[
∂ĝ
∂y (T, x)(Y (T, x)− Ŷ (T, x))+〈∇ϕĝ (T, x), (Y (T, ·)− Ŷ (T, ·))

〉]
d x

=
∫

D
E
[
∂ĝ
∂y (T, x)(Y (T, x)− Ŷ (T, x))+∇ĝ (T, x)(Y (T, x)− Ŷ (T, x))

]
d x

=
∫

D
E
[
p̂(T, x)(Y (T, x)− Ŷ (T, x))

]
d x

=
∫

D
E
[
p̂(T, x)Ỹ (T, x)

]
d x,

where we put

Ỹ (t , x) = Y (t , x)− Ŷ (t , x); (t , x) ∈ [0,T ]×D. (4.34)

Applying the Itô formula to p̂(t , x)Ỹ (t , x), we have

I2 ≥
∫ T

0

∫
D
E
[

p̂(t , x){Ax Ỹ (t , x)+ b̃(t , x)}− Ỹ (t , x){A∗
x p̂(t , x)

+ ∂Ĥ

∂y
(t , x)+∇∗

ϕĤ(t , x)}+ q̂(t , x)σ̃(t , x)
]

d xd t , (4.35)

where

b̃(t ) = b(t )− b̂(t ), σ̃(t ) =σ(t )− σ̂(t ). (4.36)
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Since Ỹ (t , x) = p̂(t , x) ≡ 0, for all (t , x) ∈ (0,T )×∂D , we get

∫
D

p̂(t , x)Ax Ỹ (t , x)d x =
∫

D
Ỹ (t , x)A∗

x p̂(t , x)d x. (4.37)

Substituting (4.37) in (4.35), yields

I2 ≥
∫ T

0

∫
D
E
[

p̂(t , x)b̃(t , x)− Ỹ (t , x)
{
∂Ĥ
∂y (t , x)+∇Ĥ(t , x)

}
+ q̂(t , x)σ̃(t , x)

]
d xd t . (4.38)

Using the definition of the Hamiltonian H in (4.28), and putting

H̃(t , x) = H(t , x,Y (t , x),Y (t , ·),u(t , x), p̂(t , x), q̂(t , x))

−H(t , x, Ŷ (t , x), Ŷ (t , ·), û(t , x), p̂(t , x), q̂(t , x)), (4.39)

we get

I1 = E
[∫ T

0

∫
D

{H̃(t , x)− p̂(t , x)b̃(t , x)− q̂(t , x)σ̃(t , x)}d xd t

]
≥ E

[∫ T

0

∫
D

{
∂Ĥ

∂y
(t , x)Ỹ (t , x)+〈∇Ĥ(t , x), Ỹ (t , ·)〉

+∂Ĥ

∂u
(t , x)ũ(t , x)− p̂(t , x)b̃(t , x)− q̂(t , x)σ̃(t , x)

}
d xd t

]
, (4.40)

where the last inequality holds because of the concavity assumption of H .

Summing (4.38) and (4.40), and using (4.29), (4.30), we end up with

I1 + I2 ≥ E
[∫ T

0

∫
D

∂Ĥ

∂u
(t , x)ũ(t , x)d xd t

]
.

By the maximum condition of H we have

J (u)− J (û) ≥ E
[∫ T

0

∫
D

∂Ĥ
∂u (t , x)ũ(t , x)d xd t

]
≥ 0.
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4.3.3 A necessary maximum principle approach (I)

We now go to the other version of the necessary maximum principle which can be seen as an

extension of Pontryagin’s maximum principle to SPDE with space-mean dynamics. In the case

when D = Rna version of the necessary maximum principle is proved in [35]. Here concavity

assumptions are not required . We consider the following:

Given arbitrary controls u, û ∈U with u bounded, we define the following convex perturbation

uθ := û +θu; θ ∈ [0,1] .

Note that, thanks to the convexity of U , we also have uθ ∈ U . We denote by Y θ := Y uθ and by

Ŷ := Y û the solution processes of (4.25) corresponding to uθ and û, respectively.

Define the derivative process Z (t , x) by

Z (t , x) = lim
θ→0

1

θ
(Y θ(t , x)− Ŷ (t , x)) (limit in Y (T )). (4.41)

Then, by our assumptions on f , g ,b and σ it is easy to see that Z (t , x) exists and satisfies the

following equation:



d Z (t , x) =
{

Ax Z (t , x)+ ∂b

∂y
(t , x)Z (t , x)+〈∇b(t , x), Z (t , ·)〉+ ∂b

∂u
(t , x)u(t , x)

}
d t

+
{
∂σ

∂y
(t , x)Z (t , x)+〈∇σ(t , x), Z (t , ·)〉+ ∂σ

∂u
(t , x)u(t , x)

}
dB(t ),

Z (t , x) = 0; (t , x) ∈ (0,T )×∂D,

Z (0, x) = 0; x ∈ D.

(4.42)

Note that (4.42), regarded as an SPDE in the unknown Y (T )-valued process Z , is linear and hence the

existence and uniqueness of solution follows from e.g. Theorem 3.3 in [22].

Theorem 67 (Necessary Maximum Principle (I)) Let û(t , x) be an optimal control and Ŷ (t , x) the corre-

sponding trajectory and adjoint processes (p̂(t , x), q̂(t , x)). Then we have

∂Ĥ

∂u

∣∣∣∣
u=û

(t , x) = 0; a.s.
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Proof. Since û is optimal we get, by the definition (20) of J , dominated convergence and the chain rule,

0 ≤ lim
θ→0

J (uθ)− J (û)

θ

= lim
θ→0

1

θ
E
[∫

D
{g (x,Y θ(T ),Y θ(T, ·))− g (x, Ŷ (T, x), Ŷ (T, ·))}d x

+
∫

D

∫ T

0
{ f (t , x,Y θ(t , x),Y θ(t , ·),u(t , x))− f (t , x, Ŷ (t , x), Ŷ (t , ·),u(t , x))}d td x

]
= E

[∫
D

lim
θ→0

1

θ
{g (x,Y θ(T ),Y θ(T, ·))− g (x, Ŷ (T, x), Ŷ (T, ·))}d x

+
∫

D

∫ T

0
lim
θ→0

1

θ
{ f (t , x,Y θ(t , x),Y θ(t , ·),u(t , x))− f (t , x, Ŷ (t , x), Ŷ (t , ·),u(t , x))}d td x

]
= E

[∫
D

∂g

∂y
(x, Ŷ θ(T, x), Ŷ θ(T, ·))lim

θ→0

1

θ
(Y θ(t , x)− Ŷ (t , x))

+
〈
∇g (x, Ŷ θ(T, x), Ŷ θ(T, ·)), lim

θ→0

1

θ
(Y θ(t , ·)− Ŷ (t , ·))

〉
d x

+
∫

D

∫ T

0
lim
θ→0

1

θ
{ f (t , x,Y θ(t , x),Y θ(t , ·),u(t , x))− f (t , x, Ŷ (t , x), Ŷ (t , ·),u(t , x))}d td x

]

Therefore, writing ∂ĝ
∂y (T, x) = ∂g

∂y (x, Ŷ (T, x), Ŷ (T, ·)) and ∂ f̂
∂y (t , x) = ∂ f

∂y (t , x, Ŷ (t , x), Ŷ (t , ·), û(t , x)) and simi-

larly with ∇ĝ (T, x),∇ f̂ (t , x) we obtain

0 ≤ lim
θ→0

J (uθ)−J (û)
θ

= E
[∫

D

{∂ĝ

∂y
(T, x)Z (T, x)+〈∇ĝ (T, x), Z (T, ·)〉}

d x

]
+E

[∫ T

0

∫
D

{
∂ f̂

∂y
(t , x)Z (t , x)+〈∇ f̂ (t , x), Z (t , ·)〉+ ∂ f̂

∂u
(t , x)u(t , x)

}
d xd t

]
.

(4.43)

By (4.29) and the BSPDE for p̂(t , x), we have

E

[∫
D

{∂ĝ

∂y
(T, x)Z (T, x)+〈∇ĝ (T, x), Z (T, ·)〉}

d x

]
= E

[∫
D

p̂(T, x)Z (T, x)d x

]
,

The Itô formula applied to the product p̂(t , x) ·Z (t , x), where p̂ and Z are the associated equations (4.42),

(4.32)-(4.33), respectively, to the optimal control û, combined with the definition of Ĥ in (4.28), leads to
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E

[∫
D

p̂(T, x)Z (T, x)d x

]
= E

[∫ T

0

∫
D

(
p̂(t , x)d Z (t , x)+Z (t , x)d p̂(t , x)

+
∫ T

0

∫
D

{
q̂(t , x)

(
∂σ

∂y
(t , x)Z (t , x)+〈∇σ(t , x), Z (t , ·)〉+ ∂σ

∂u
(t , x)u(t , x)

)}
d td x

]
= E

[∫ T

0

∫
D

{
p̂(t , x)

(
Ax Z (t , x)+ ∂b

∂y
(t , x)Z (t , x)+〈∇b(t , x), Z (t , ·)〉+ ∂b

∂u
(t , x)u(t , x)

)
+Z (t , x)

(
− A∗

x p̂(t , x)− ∂Ĥ

∂y
(t , x)−∇Ĥ(t , x)

)
+

{
q̂(t , x)

(
∂σ

∂y
(t , x)Z (t , x)+〈∇σ(t , x), Z (t , ·)〉+ ∂σ

∂u
(t , x)u(t , x)

)}
d td x

]
.

Substituting this in (4.43), we get

0 ≤ E
[∫ T

0

∫
D

∂Ĥ

∂u
(t , x)u(t , x)d xd t

]
.

In particular, if we apply this to

u(t , x) = 1[s,T ](t )α(x),

where α(x) is bounded and Fs-measurable we get

0 ≥ E
[∫ T

s

∫
D

∂Ĥ

∂u
(t , x)α(x)d xd t

]
.

Since this holds for all such α (positive or negative) and all s ∈ [0,T ], we conclude that

0 = ∂Ĥ

∂u
(t , x); for a.a. t , x.

4.3.4 Controls which are independent of x

In many situations, for example in connection with partial observation control, it is of interest to study

the case when the controls u(t ) = u(t ,ω) are not allowed to depend on the space variable x. Let us denote

the set of such controls u ∈U by U . Then the corresponding control problem is to find û ∈U such that

J (û) = inf
u∈U

J (u).
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Theorem 68 (Sufficient Maximum Principle (II)) Suppose û ∈U , with corresponding

Ŷ (t , x), p̂(t , x), q̂(t , x). Suppose the functions (y,ϕ) 7→ g (x, y,ϕ) and

(y,ϕ,u) 7→ H(t , x, y,ϕ,u, p̂(t , x), q̂(t , x) are convex for each (t , x) ∈ [0,T ]×D. Moreover, suppose the follow-

ing average minimum condition,

min
v∈U

{∫
D

H(t , x, Ŷ (t , x), Ŷ (t , ·), v, p̂(t , x), q̂(t , x))d x

}
=

∫
D

H(t , x, Ŷ (t , x), Ŷ (t , ·), û(t ), p̂(t , x), q̂(t , x))d x.

Proof. Consider

J (u)− J (û) = I1 + I2,

where

I1 = E
[∫ T

0

∫
D

{ f (t , x,Y (t , x),Y (t , ·),u(t ))− f (t , x, Ŷ (t , x), Ŷ (t , ·), û(t ))}d xd t

]
,

and

I2 =
∫

D
E
[
g (x,Y (T, x),Y (T, ·))− g (x, Ŷ (T, x), Ŷ (T, ·))

]
d x.

By convexity on g together with the identities (4.29)-(4.30) (by putting∇h(x, y) =∇ϕĝ (T, x) andψ= (Y (T, .)−
Ŷ (T, .))), we get

I2 ≥
∫

D
E
[
∂ĝ
∂y (T, x)(Y (T, x)− Ŷ (T, x))+〈∇ϕĝ (T, x), (Y (T, ·)− Ŷ (T, ·))

〉]
d x

=
∫

D
E
[
∂ĝ
∂y (T, x)(Y (T, x)− Ŷ (T, x))+∇ĝ (T, x)(Y (T, x)− Ŷ (T, x))

]
d x

=
∫

D
E
[
p̂(T, x)(Y (T, x)− Ŷ (T, x))

]
d x

=
∫

D
E
[
p̂(T, x)Ỹ (T, x)

]
d x,

where we put

Ỹ (t , x) = Y (t , x)− Ŷ (t , x); (t , x) ∈ [0,T ]×D. (4.44)

Applying the Itô formula to p̂(t , x)Ỹ (t , x), we have

I2 ≥
∫ T

0

∫
D
E
[

p̂(t , x){Ax Ỹ (t , x)+ b̃(t , x)}− Ỹ (t , x){A∗
x p̂(t , x)

+ ∂Ĥ

∂y
(t , x)+∇∗

ϕĤ(t , x)}+ q̂(t , x)σ̃(t , x)
]

d xd t , (4.45)
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where

b̃(t ) = b(t )− b̂(t ), σ̃(t ) =σ(t )− σ̂(t ). (4.46)

Since Ỹ (t , x) = p̂(t , x) ≡ 0, for all (t , x) ∈ (0,T )×∂D, we get

∫
D

p̂(t , x)Ax Ỹ (t , x)d x =
∫

D
Ỹ (t , x)A∗

x p̂(t , x)d x. (4.47)

Substituting (4.47) in (4.45), yields

I2 ≥
∫ T

0

∫
D
E
[

p̂(t , x)b̃(t , x)− Ỹ (t , x)
{
∂Ĥ
∂y (t , x)+∇Ĥ(t , x)

}
+ q̂(t , x)σ̃(t , x)

]
d xd t . (4.48)

Using the definition of the Hamiltonian H in (4.28), and putting

H̃(t , x) = H(t , x,Y (t , x),Y (t , ·),u(t ), p̂(t , x), q̂(t , x))−H(t , x, Ŷ (t , x), Ŷ (t , ·), û(t ), p̂(t , x), q̂(t , x)),

we get

I1 = E
[∫ T

0

∫
D

{H̃(t , x)− p̂(t , x)b̃(t , x)− q̂(t , x)σ̃(t , x)}d xd t

]
≥ E

[∫ T

0

∫
D

{
∂Ĥ

∂y
(t , x)Ỹ (t , x)+〈∇Ĥ(t , x), Ỹ (t , ·)〉

+∂Ĥ

∂u
(t , x)ũ(t )− p̂(t , x)b̃(t , x)− q̂(t , x)σ̃(t , x)

}
d xd t

]
, (4.49)

where the last inequality holds because of the concavity assumption of H.

Summing (4.48) and (4.49), and using (4.29), (4.30), we end up with

I1 + I2 ≥ E
[∫ T

0

∫
D

∂Ĥ

∂u
(t , x)ũ(t )d xd t

]
.

By the maximum condition of H we have

J (u)− J (û) ≥ E
[∫ T

0

∫
D

∂Ĥ
∂u (t , x)ũ(t )d xd t

]
≥ 0.

Then û is an optimal control.

Theorem 69 (Necessary Maximum Principle (II)) Let û(t ) be an optimal control and Ŷ (t , x) the corre-
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sponding trajectory and adjoint processes (p̂(t , x), q̂(t , x)). Then we have

∫
D

∂Ĥ

∂u

∣∣∣∣
u=û

(t , x)d x = 0; a.s. d t ×dP.

Proof. The proof is analogous to the proof of Theorem 67

4.4 Application to vaccine optimisation

In this section we study an example, assuming that the density Y (t , x) of infected individuals in a popu-

lation in a random/noisy environment changes over time t and space point x according to the following

space-interaction reaction-diffusion equation


dY (t , x) = 1

2
∆Y (t , x)d t +

(
αY (t , x)−u(t , x)Y (t , x)

)
d t +βY (t , x)dB(t ),

Y (0, x) = ξ(x) ≥ 0; x ∈ D,

Y (t , x) = η(t , x) ≥ 0; (t , x) ∈ (0,T )×∂D,

whereα,β are given constants modelling the effect on the growth dY (t , x) of the term Y and of the noise,

respectively, and Y (t , x) =G(x,Y (t , ·)), where, as before, G is a space-averaging operator of the form

G(x,ϕ) = 1

V (Kr )

∫
Kr

ϕ(x + y)d y ; ϕ ∈ L2(D),

with V (·) denoting Lebesgue volume and

Kr = {y ∈Rn ; |y | < r }

is the ball of radius r > 0 in Rn centered at 0.

By a slight extension of Theorem 59 (see Remark 60), we know that Y (t , x) ≥ 0 for all t , x.

If u(t , x) represents our vaccine effort rate at (t , x), we define the total expected cost J (u) of the effort by

J (u) = E
[ρ

2

∫
D

∫ T

0
u(t , x)2Y (t , x)d td x +

∫
D

h0(x)Y (T, x)d x
]

,

where ρ > 0 is a constant, and h0(x) > 0 is a bounded function. Here we may regard the first quadratic

term as the cost of the vaccination effort, with unit price ρ, and the second term as the cost of having
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remaining infection at time T . In this case the Hamiltonian is

H(t , x, y, y , p, q) = (αy −uy)p +βyq + ρ

2
u2 y,

and the adjoint equation satisfies


d p(t , x) =−

[
1
2∆p(t , x)−u(t , x)p(t , x)+∇y H(t , x)+βq(t , x)+ ρ

2 u2(t , x)
]

d t +q(t , x)dB(t ),

p(T, x) = h0(x); x ∈ D

p(t , x) = 0; (t , x) ∈ (0,T )×∂D,

(4.50)

where, by Example 64, ∇y H(t , x) = vD (x)αp(t , x), with vD (x) := V ((x+Kr )∩D)
V (Kr ) .

The first order condition for an optimal u = û for H together with the requirement that Y (t , x) > 0, lead

to

û(t , x) = p(t , x)

ρ
.

Hence the pair of random fields (p̂, q̂) becomes


d p̂(t , x) =−

[
1
2∆p̂(t , x)+ 1

2ρ p̂2(t , x)+ vD (x)αp̂(t , x)+βq̂(t , x)
]

d t + q̂(t , x)dB(t ),

p̂(T, x) = h0(x); x ∈ D,

p̂(t , x) = 0; (t , x) ∈ (0,T )×∂D.

(4.51)

Since h0 and all the coefficients of this equation are deterministic, we can conclude that q̂ = 0 and (4.51)

reduces to the deterministic partial differential equation



∂
∂t p̂(t , x) =−

[
1
2∆p̂(t , x)+ 1

2ρ p̂2(t , x)+ vD (x)αp̂(t , x)
]

,

p̂(T, x) = h0(x); x ∈ D,

p̂(t , x) = 0; (t , x) ∈ (0,T )×∂D.

This is a (deterministic) Fujita type backward quadratic reaction diffusion equation. We could also

from the beginning have allowed h0(x) to be random and satisfy E
[∫

D h2
0(x)d x

]<∞. Then the equation

(4.51) would have become a nonlinear backward stochastic reaction-diffusion equation. We will not dis-

cuss this further here, but refer to Bandle, & Levine [3], Dalang et al [13] and Fujita [21] and the references

therein for more information.
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conclusion

In this thesis, we have used the stochastic partial differential equations theory. In the first part, We in-

troduced linear SPDEs. We proved the existence and uniqueness of nonlinear SPDEs Then in the sec-

ond part, We have used results from noisy Observation (nonlinear filtering), and we transformed these

noisy observations stochastic differential equation (SDE) control problem into a complete observation

stochastic partial differential equations (SPDEs for short). We proved a sufficient and necessary maxi-

mum principle for the optimal control of SPDEs. Finally, in the third part, we have used a new type of

non-local stochastic partial differential equations (SPDEs). The SPDEs have space interactions, in the

sense that the dynamics of the system at time t and position in space x also depend on the space-mean

of values at neighboring points. We have proved the existence and uniqueness of solutions of a class of

SPDEs with space interactions, and we have shown that, under some conditions. In case we have the

solutions positive for all times if the initial values are. Then we have proved sufficient and necessary

maximum principles for optimal control. Finally, we have applied the results to study an optimal vac-

cine strategy problem for an epidemic by modeling the population density as a space-mean stochastic

reaction-diffusion equation. The results of the third part were the subject of a paper published in inter-

national journal ESAIM: Control, Optimisation, and Calculus of Variations, COCV 29,2023.
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