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Abstract

This thesis extends the famous Pontryagin’s stochastic maximum principle to the case

of volatility uncertainty and ambiguity which is modelled by G-Brownian motion (G-

SMP) where we present two research topics, the first one is divided into four parts.

In the first part, we introduce an optimal control problem where the state equation is

driven by G-Brownian motion and the cost functional is given of risk-neutral type. We

prove the stability of controlled stochastic differential equations driven by G-Brownian

motion (G-SDEs in short) with respect to the control variable by using the convex

perturbation method, in which the set of admissible controls is convex. In the second

part, we introduce the G-adjoint process and the G-adjoint equation by using the

resolvent method and the G-martingale representation theorem. In the third part,

we establish necessary and sufficient optimality conditions for this model. Lastly, we

illustrate our main result by giving an example of a linear-quadratic problem where we

solve the Riccati-type equation.

The second topic is characterising the problem of optimal control under a risk-sensitive

control model. Both the admissible control and the system dynamics are defined in

the same way as those of the first topic. The only difference is the way of defining

the performance criterion. Instead of minimizing the direct cost, we aim to minimize a

convex disutility function of the cost. As a preliminary step, we clarify the relationship

between risk-neutral and risk-sensitive loss functional. Secondly, we are doing a simple

reformulation of risk-sensitive problem as a standard risk-neutral problem under G-

expectation. Thus, An intermediate G-SMP is obtained by a standard application

of risk-neutral result. Thirdly, we prove the equivalence relation between G-expected

exponential utility and G-quadratic backward stochastic differential equation. Finally,

we deal with the example of Merton’s problem with power utility.

Key words: G-expectation, G-SDE, G-SMP, Risk-sensitive control.
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Résumé

Cette thèse étend le principe du maximum stochastique de Pontryagin dans le cas de

l’incertitude de la volatilité et l’ambigüıté qui est modélisée par G-mouvement Brownien

(G-PMS) où nous présentons deux sujets de recherche, le premier est divisé en quatre

parties. Dans la première partie, nous introduisons un problème de contrôle optimal où

l’équation d’état est gouvernée par G-mouvement Brownian et le fonctionnel de coût est

donné de type risque-neutre. Nous démontrons la stabilité des équations différentielles

stochastiques contrôlées gouvernée par G-mouvement Brownien par rapport à la vari-

able de contrôle en utilisant la méthode de perturbation convexe dans laquelle l’ensemble

des contrôles admissibles est convexe. Dans la deuxième partie, nous introduisons le

G-processus adjoint et la G-équation adjoint en utilisant la méthode de la resolvant

et le théorème de la representation des G-martingales. Dans la troisième partie, nous

établissons des conditions necessaires et suffisantes d’optimalité pour ce modèle. Enfin,

nous illustrons notre résultat principal en donnant un exemple de problème linéaire-

quadratique où nous résolvons l’équation de type Riccati.

Le deuxième sujet consiste à caractériser le problème du contrôle optimal avec une

fonction de performance de risque-sensible modèle de contrôle. Le contrôle admissible

et la dynamique du système sont définis dans de la même manière que ceux du premier

sujet. La seule différence est la façon de définir le critère de performance. Au lieu

de minimiser le coût direct, nous visons à minimiser un fonction de désutilité convexe

du coût. Dans un premier temps, nous clarifions la relation entre risque-neutre et

risque-sensible. Deuxièmement, nous faisons une reformulation simple au problème

du risque-sensible comme un problème de risque-neutre sous G-espérance. Ainsi, un

intermédiaire G-PMS est obtenu par une application standard du résultat de risque-

neutre. Troisièmement, nous démontrons la relation d’équivalence entre G-espérance

d’utilité exponentielle et G-équation différentielle stochastique rétrograde quadratique.

iv



Enfin, nous traitons l’exemple du problème de Merton avec l’utilité de puissance.

Mots Clés: G-espérance, G-EDS, G-PMS, Contrôle de risque-sensible.
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Symbols and Abbreviations

For readers’ convenience, we list the different symbols and abbreviations used in this

thesis as follows.

Symbols
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Symbols and Abbreviations

E : Sublinear expectation.

EG : G-expectation.

B : G-Brownian motion.

⟨B⟩ : Quadratic variation process of B.

(Ω,H,E) : Sublinear expectation space.

(Ft)t∈[0,T ] : Filtration generated by the canonical process B.

Rn : n-dimensional Euclidean space.

Rn×d : The space of n× d matrices with real values.

Uad : The set of all admissible controls.

|·| : Euclidean norm on Rn.

T : Appearing in the superscripts denotes the transpose of a matrix or a vector.

û : Optimal control.

uθ : Perturbed control.

θ : Perturbation index.

ε : Risk sensitivity index.

∇xf : The gradient vector of the function f in the vector x.

Dxφ : The gradient matrix of the vectorial function φ in the vector x.

1A : The indicator function of A.

Abbreviations

a.s. : Almost-surely.

q.s. : Quasi-surely.

q.c. : Quasi-continuous.

G-SDE : G-stochastic differential equation.

G-SMP : G-stochastic maximum principle.

BDG : Burkholder-Davis-Gundy.

G-BSDE : G-backward stochastic differential equation.

G-QBSDE : G-quadratic backward stochastic differential equation.
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Introduction

Traditionally, we quantify the risk in our statement on the uncertain events in our

daily life with a unique probability measure. However, sometimes in our probability

assessment we should not ignore the variety of uncertainties in the financial markets

and we are faced with the so-called Knightian uncertainty, model uncertainty or ambi-

guity (see Knight Frank [20]), which indicates that the decision-makers have a sceptical

attitude on the model they used and they are unable to obtain objectively an accurate

form of the model and this is due to incomplete information or vague concepts and

principles. In early 1953, when Allais paradox was introduced [1], the economists dis-

covered that the theory of “expected utility” based on linear mathematical expectation

posed many questions. A question then arises: can we find a new theory that can be

a natural generalisation of a linear expectation? In particular, preserving, as much

as possible, the properties of the classical linear expectation. As an answer to this

question, Peng proposed in [25] a new notion of nonlinear expectation more dynamic,

called G-expectation. Considerably, the notion of nonlinear mathematical expectation

then has been developed and a new concept of sublinear expectation has been given

by Peng [30] by using a functional analysis theory. The G-expectation framework is a

generalisation of the classical probability system based on the sublinear expectation and

generated by a nonlinear heat equation with a given infinitesimal generator G to deal

with the phenomena that cannot be described by a single probabilistic model. These

phenomena are closely related to the long-existing concern about model uncertainty in
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Introduction

many fields. Similar to the concepts of the classical framework, Peng [29] established

the notions of distribution and independence in this new context. However, the dis-

tributions and independence in the G-framework are quite different from the classical

setup. These distinctions bring difficulty when applying the idea of this framework to

general probabilistic practice. Therefore, a fundamental and unavoidable problem is

better understanding G-version concepts from a probabilistic perspective.

In this thesis, we work in a G-Brownian motion setting that turns out to be a good

framework to develop stochastic calculus of Itô’s type. We can also use the related

stochastic calculus, including the Itô’s formula, G-SDEs, martingale representation and

G-BSDEs, as developed in [14, 29, 33, 36, 37, 38, 39]. Many economic and financial prob-

lems involve volatility uncertainty, refer to Epstein and Ji [11], which is characterized by

a family of nondominated probability measures. Volatility uncertainty has been investi-

gated in the literature by following two approaches, by introducing an abstract sublinear

expectation space (see [33]) or by capacity theory. These two methods are strongly re-

lated and have been proved by Denis et al [8]. The link between these two approaches

is the representation of the sublinear expectation E associated with the G-Brownian

motion as a supremum of ordinary expectations over a tight family of probability mea-

sures P , whose elements are mutually singular1. To solve the super-replication problem

in an uncertainty volatility model, Denis and Martini [9] independently introduced a

notion of upper expectation and the related capacity theory. Recently, Peng [26, 28]

established a nonlinear expectation theory. A random variable X with “G-normal dis-

tribution” is defined via the heat equation. With this single nonlinear distribution and

as a special and typical case, Peng [33] studied a fully nonlinear expectation, called

G-expectation EG [.] under which the canonical process is a G-Brownian motion and

the corresponding time-conditional G-expectation EG [. |Ft ] on a space of random vari-

1Two measures P and P̃ on Ω are singular if there exists A ⊂ Ω such that P(A) = 1 and P̃(A) = 0.

They are equivalent, if for every A,P(A) = 0 if and only if P̃(A) = 0. Thus P and P̃ singular implies
that they are not equivalent, but the converse is false.
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Introduction

ables completed under the norm (EG [|.|p])
1
p , denoted by Lp

G(ΩT ), p ≥ 1. Under this

G-framework, a new type of Brownian motion B = (B1, ..., Bd) has independent, sta-

tionary and G-normally distributed increments called G-Brownian motion with B0 = 0,

for more details see [31]. We call an increasing process (⟨B⟩t)t≥0 the quadratic vari-

ation process of G-Brownian motion B and for all 1 ≤ i, j ≤d,
〈
Bi, Bj

〉
= ⟨B⟩ij is its

cross-variation process, it characterises the part of statistic uncertainty of G-Brownian

motion. It is important for understanding the nature of G-Brownian motion to keep in

mind that its quadratic variation ⟨B⟩ is not a deterministic process, unlike the classi-

cal case, but it is absolutely continuous with the density tak value in a fixed set (for

example, [σ2, σ2] for d = 1). Each P ∈ P can then be seen as a model with a different

scenario for the quadratic variation. That justifies why G-Brownian motion is a good

framework for investigating model uncertainty. G-Brownian motion and its quadratic

variation plays a central role in the related nonlinear stochastic analysis. Indeed, the

stochastic integrals with respect to G-Brownian motion and its quadratic variation have

been first introduced by Peng in his pioneer work [30], which are initially defined on the

simple process space and later extended as a linear operator on Banach completions.

Thereafter, the G-stochastic calculus is further developped, for example, in [12, 21, 23].

In papers [25, 29, 30], as in the classical case, Peng has introduced the definition of the

Itô’s integral by Riemann-Stieltjes’s sums the process of the form

ηt =
N−1∑
k=0

ξk1[tk,tk+1[ (t) . (1)

In the following, the M0,2
G (0, T )-space of the processes is completed for the standard

norm

(
1
T
EG

[∫ T

0

|.|2 dt
])1/2

(see Peng [30]). This completed space is noted byM2
G (0, T ).

After getting a G-Itô’s inequality instead of the Itô’s isometry in classical case, Peng

demonstrated that Itô’s integral of the form I (η) =

∫
ηtdBt can be seen as a contin-

uous and linear functional on M0,2
G (0, T ), and that it can be extended uniquely to the

3



Introduction

completed space M2
G (0, T ). Subsequently, Li and Peng [21] defined Itô’s integral for a

process of the form (1), where the ξk are replaced by bounded random variables. Sim-

ilarly, they have shown that the definition of this new integral can be extended to the

completed M2
G (0, T ). Moreover, the notion of quasi-sure with respect to the associated

Choquet capacity is introduced by Denis et al. to the G-framework. After having de-

fined the stochastic integrals within the framework of G-expectation and similar to their

classical counterparts, stochastic differential equations driven by G-Brownian motion

(G-SDEs) are well defined in the quasi-sure sense and their solvability can be estab-

lished by the contracting mapping theory under Lipschitz’s assumptions. The first work

on G-SDE has been carried out by Peng [30] by using the fixed point theorem. Then

in [2, 41] with the following form for all 0 ≤ t ≤ T, 1 ≤ i, j ≤d

 dxt = b (t, xt) dt+ hij (t, xt) d ⟨B⟩ijt + σi (t, xt) dB
i
t,

x (0) = x0 ∈ R,
(2)

where the coefficients b, hij and σi are uniformly Lipschitz and the G-SDE (2) has a

unique strong solution. In addition, other researchers have been interested in G-SDE,

for example, the work of Lin [23] and Bai and Lin [24]. Overall these papers were

carried out under a common assumption which ensures that the coefficients are linearly

growing. Note that in these papers on G-SDEs, some tools for stochastic analysis

in the framework of G-expectation are developed. For example, Itô’s Formula was

introduced in Peng’s paper [29] and was generalised by Gao [12], Li and Peng [21]

and Zhang et al. [47]. An inequality of Burkholder-Davis-Gundy type (BDG in short)

has been also proved in this new framework. In contrast to the classical martingale

representation, the G-martingale is decomposed into two parts: the G-Itô’s type integral

part Xt =
∫ t

0
ZsdBs, which is called symmetric G-martingale, in the sense that −Xt

is still a G-martingale and the decreasing G-martingale part K, which vanishes in the

classical theory, but it plays a significant role in this new context (see [33, 36]). However,
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Introduction

the challenging problem of wellposedness for optimal control problem remained open

until now. The stochastic optimal control problem is important in control theory. The

maximum principle, necessary and sufficient conditions for optimality, is one of the

central results. A lot of work has been done on this topic in the classical expectation.

However, in the G-expectation, few papers we are aware of and which deal with the

G-stochastic maximum principle are [3, 13, 40, 46], where the controlled G-SDE is given

in risk-neutral type control.

The main objective of this thesis is to study two research topics about G-stochastic max-

imum principle. For the first topic, we study G-stochastic maximum principle for risk-

neutral control problem where the system is governed by the nonlinear n-dimensional

controlled G-stochastic differential equation for all 0 ≤ t ≤ T, 1 ≤ i, j ≤d

 dxt = b (t, xt, ut) dt+ hij (t, xt, ut) d ⟨B⟩ijt + σi (t, xt, ut) dB
i
t,

x (0) = x ∈ Rn.
(3)

The cost functional that is minimized over the class of admissible controls has the

following form

J (u) = EG

[
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

mij (t, xt, ut) d ⟨B⟩ijt
]
.

Xu [46] studied this problem. Based on the subadditivity of E[·], he obtained the varia-

tional inequality by the classical variational method. Moreover, Hu and Ji [13] thought

that the classical variational method which was used in [46] can not be applied for (3)

and they establish a stochastic maximum principle for stochastic recursive optimal con-

trol problems in the G-setting by the linearization and weak convergence but still using

the worst-case approach where they use the minimax theorem to obtain the variational

inequality under a reference probability P∗ and the stochastic maximum principle holds

then under such a P∗-a.s, which is the main difference with respect to our approach.
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In recent papers, Sun et al. [40] proved a stochastic maximum principle for controlled

processes driven by G-Brownian motion. Then they obtained the maximum condition

in terms of the H-function, plus some convexity conditions constitute sufficient condi-

tions for optimality. Biagini et al. [3] studied also a stochastic maximum principle of

controlled G-SDE under the assumption of the existence of the strongly robust optimal

control but their control problem is different from the one in [13] and they considered

delayed information and adapted the stochastic maximum principle to the G-framework

to find necessary and sufficient conditions for the existence of a strongly robust opti-

mal control by using the G-adjoint equation directly without proof. However, our

contribution proposes different methods to prove this problem. In order to derive the

G-stochastic maximum principle, we must first verify the stability of controlled G-SDE.

Moreover, we introduce the variational equation and variational inequality. Further-

more, we prove that the obtained stochastic maximum principle is also a sufficient

condition under some convex assumptions.

In the G-framework, the only result we are aware of about the existence of an optimal

control for this problem has been given by Redjil et al. [35], which is the existence of

an optimal relaxed control where the stochastic differential equation is considered with

jump diffusion, the celebrate Chattering lemma was generalised in the G-framework

and the existence of relaxed optimal control was proved using the approximtion of

trajectories such that each G-relaxed control is considered as a limit of a sequence of

strict controls.

For the second topic, our system is governed by controlled G-stochastic differential

equation and it is given for all 0 ≤ t ≤ T by

 dxu
t = b (t, xu

t , ut) dt+ h (t, xu
t , ut) d ⟨B⟩t + σ (t, xu

t , ut) dBt

x (0) = x0 ∈ R.

The objective of the risk-sensitive optimal control problem is to minimize, over the set

6
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Uad of all admissible controls, the functional cost J ε (.) of the form

J ε (u) = EG

[
exp ε

(
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

m (t, xu
t , ut) d ⟨B⟩t

)]
. (4)

A stochastic control û is called optimal if it solves J ε (û) = infu∈Uad
J ε (u) by using

the fact that the set of admissible controls Uad is convex.

The risk-sensitive maximum principle for optimal stochastic control derived from the

classical one, that is an immediate generalisation of the G-stochastic Pontryagin maxi-

mum principle.

In the past decades, much research has attracted attention to control problems with

risk-sensitive performance functional in the classical expectation. We note that nec-

essary optimality conditions for risk-sensitive cost functional, where the systems are

governed by a stochastic differential equation, have been studied by [22]. We also real-

ize that necessary optimality conditions for stochastic controls, where the systems are

governed by a nonlinear forward stochastic differential equation with jumps, have been

studied by [18] in the case where the set of admissible controls is convex and [19] in the

general case with application to finance. Furthermore, the case of systems governed by

a mean-field stochastic differential equation has been studied by [10]. Chala [4] devel-

oped Pontryagin’s risk-sensitive stochastic maximum principle for backward stochastic

differential equations with application. In addition, in [6] the authors proved the use

of Girsanov’s theorem to describe the risk-sensitive problem and application to opti-

mal control. Moreover, Chala [5] studied a risk-sensitive stochastic control problem of

a nonlinear system in which the variable control has two components, the first being

continuous and the second being singular.

Most formulations of the G-stochastic maximum principle have been studied in a risk-

neutral type where the performance functionals are G-expected values of stage-additive

payoff functions. However, not all behaviours can be captured by risk-neutral type

7
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controls. One way of capturing risk-averse and risk-seeking behaviours is by expo-

nentiating the performance functional before G-expectation. More information on the

risk-sensitive control can be found in [42, 43, 44].

There has been renewed interest in the cost criterion (4) during the past decade. The

primary reason is the original one: when ε > 0 the use of the exponential reduces the

possibility of rare, but devastating large excursions of the state process. This control

problem has attracted more recent attention because of the interesting connections

between risk-sensitive control, game theory and mathematical finance.

Finally, when the process incorporates three sources of uncertainty: drift, diffusion

and volatility uncertainty are control-dependent in the case of G-expectation, the risk-

sensitive stochastic maximum principle is not very different from the classical one, where

the G-maximum condition has additional terms involving the second G-adjoint variable

and the risk-sensitive parameter. That is, the optimal control depends explicitly on

these quantities.

Our work brings together two important subjects of actual intensive research, Pon-

tryagin’s stochastic maximum principle for risk-neutral control problem under Peng’s

sublinear G-expectation on one side and for risk-sensitive control problem popularised

by P. Whittle [42] on the other side.

Let us briefly describe the contents of this thesis:

In the first chapter, we present the most important results and the basic definitions

of the G-framework, the sublinear expectation, G-normal distribution, G-Brownian

motion and G-stochastic calculus which are used throughout this thesis.

In the second chapter, we study an optimal control problem where the state equa-

tion is driven by G-Brownian motion. First, introducing the problem and the various

assumptions used throughout this chapter. Second, proving the stability between the

perturbed solution and the optimal solution of controlled stochastic differential equa-

8
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tions driven by G-Brownian motion, where we introduce three estimation’s lemmas

about the solution of controlled G-SDE by using the convex perturbation method,

in which the set of admissible controls is convex. Third, we introduce in detail the

G-adjoint process and G-adjoint equation by using the resolvent method and the G-

martingale representation theorem. Moreover, we give our first and second main results

in this chapter, the necessary as well as sufficient optimality conditions for G-SDE. In

conclusion, We give an example of a linear-quadratic problem.

In the third chapter, we discuss a risk-sensitive control problem while the state is

described by G-SDE with an exponential of integral cost functional. First, we formu-

late the problem of risk-sensitive control problem and give the various assumptions and

proofs of some results about the stability between the perturbed solution and the opti-

mal solution of the controlled G-stochastic differential equations. Second, we establish

mean-variance uncertainty of loss functional. Third, this part is devoted to applying

and proving in detail risk-neutral control problem to solve risk-sensitive control prob-

lem. Then, we give and prove the relationship between the G-expected exponential

utility and the G-quadratic backward stochastic differential equation. Lastly, applying

the obtained results to solve a Merton-type problem with power utility.
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Chapter 1

Preliminaries in G-Framework

In this introductory chapter, we introduce a few notations and basic results in the

framework of sublinear expectation, G-expectation, G-Brownian motion and related

G-stochastic calculus, which are required in the following chapters. Furthermore, the

readers interested in more details on this topic are referred to [27, 28, 29, 30, 31, 32, 34],

the book of Peng [33] and the references therein.

Let Ω be a given set and let H be a linear space of real-valued functions defined on Ω,

such that H satisfies the following conditions:

1) c ∈ H for each constant c.

2) |X| ∈ H if X ∈ H. We will treat elements of H as random variables.

1.1 Sublinear expectation

Definition 1.1 (Sublinear expectation) A sublinear expectation E is a functional

E : H → R satisfying the following properties for all X, Y ∈ H:

1) Monotonicity: If X ≤ Y , then E (X) ≤ E (Y ).

2) Constant preserving: E (c) = c, for each constant c.

3) Sublinearity: E (X + Y ) ≤ E (X) + E (Y ) , or E (X)− E (Y ) ≤ E (X − Y ).

11



Chapter 1. Preliminaries in G-Framework

4) Positive homogeneity: E (λX) = λE (X) for all λ ∈ R+.

Remark 1.1 The triple (Ω,H,E) is called sublinear expectation space.

Remark 1.2 If it further satisfies E (−X) = −E (X) for all X ∈ H, then E is called

a linear expectation.

We will consider the space H of random variables having the following property: if

Xi ∈ H, i = 1, ..., n then

φ(X1, ..., Xn) ∈ H, ∀φ ∈ Cl,Lip(Rn),

where Cl,Lip(Rn) denotes the linear space of all continuous real-valued functions φ de-

fined on Rn satisfying the following local Lipschitz condition

|φ(x)− φ(y)| ≤ C(1 + |x|m + |y|m) |x− y| ∀x, y ∈ Rn,

where the constant C > 0 and the integer m ∈ N depend on φ.

In this thesis, we mainly use Cl,Lip(Rn) for convenience of techniques. In practice,

Cl,Lip(Rn) can be replaced by Cb,Lip(Rn) the space of bounded and Lipschitz continuous

functions.

Theorem 1.1 (Representation of a sublinear expectation) Let E be a functional

defined on a linear space H satisfying subadditivity and positive homogeneity. Then

there exists a family of linear functionals Eθ : H → R, indexed by θ ∈ Θ, such that,

E (X) = sup
θ∈Θ

Eθ (X) , for X ∈ H, (1.1)

where

Eθ (X) =

∫
Ω

X (w) dPθ (w) .

12
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Moreover, for each X ∈ H, there exists θX ∈ Θ such that E (X) = EθX (X).

Furthermore, if E is a sublinear expectation, then the corresponding Eθ is a linear

expectation.

Proof. The proof of this theorem can be found in Peng [33].

Theorem 1.2 (Robust Daniell-Stone Theorem [33]) Assume that (Ω,H,E) is a

sublinear expectation space satisfying

E[Xi] → 0, as i → ∞, (1.2)

for each sequence {Xi}∞i=1 of random variables in H such that Xi(ω) ↓ 0 for each ω ∈ Ω.

Then there exists a family of probability measures {Pθ}θ∈Θ defined on the measurable

space (Ω, σ (H)) such that

E[X] = max
θ∈Θ

∫
Ω

X(ω)dPθ, for each X ∈ H. (1.3)

Here σ (H) is the smallest σ-algebra generated by H.

We will express the notions of distribution and independence of random vectors using

test functions in Cl,Lip(Rn).

Definition 1.2 (Distribution) For an n-dimensional random vector X = (X1, ..., Xn)

for Xi ∈ H, i = 1, 2,···, n, set

FX(φ) := E (φ(X)) : φ ∈ Cl,Lip(Rn) 7−→ R.

The triplet (Rn, Cl,Lip(Rn), FX) forms a nonlinear expectation space. FX is called the

distribution of random vector X on (Ω,H,E).

13
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In this case FX is also a sublinear expectation. Furthermore, there exists a family of

probability measures {FX(θ, .)}θ∈Θ defined on (Rn,B(Rn)) such that

FX [φ] = sup
θ∈Θ

∫
Rn

φ(x)FX(θ, dx), for each φ ∈ Cl,Lip(Rn).

Thus FX [.] characterizes the uncertainty of the distributions of X.

Definition 1.3 Let X1 and X2 be two n-dimensional random vectors defined on non-

linear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2), respectively. They are called

identically distributed, denoted by X1
d
= X2, if

E1[φ(X1)] = E2 [φ(X2)] for all φ ∈ Cb,Lip(Rn).

We say that the distribution of X1 is stronger than that of X2 if

E1[φ(X1)] ≥ E2 [φ(X2)] , for each φ ∈ Cb,Lip(Rn).

The distribution of X ∈ H has the following typical parameters:

µ := E[X], µ := −E[−X], σ2 = E[X2], σ2 = −E[−X2].

The subsets
[
µ, µ

]
and [σ2, σ2] characterizes the mean-uncertainty and the variance-

uncertainty of X.

Proposition 1.1 (See [33]) Let (Ω,H,E) be a sublinear expectation space and X, Y

be two random variables such that E[Y ] = −E[−Y ], i.e., Y has no mean-uncertainty.

Then we have

E[X + αY ] = E[X] + αE[Y ] for α ∈ R.

14
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In particular, if E[Y ] = E[−Y ] = 0, then

E[X + αY ] = E[X].

Definition 1.4 (Independence) For two random vectors Y = (Y1, , ..., Ym) for Yj ∈

H and X = (X1, ..., Xn) for Xi ∈ H, if for all φ ∈ Cb,Lip(Rn × Rm)

E [φ(X, Y )] = E [E [φ(x, Y )]x=X ] .

We say that Y is independent from X.

Remark 1.3 The situation “Y is independent of X” often appears when Y occurs after

X, thus a robust expectation should take the information of X into account.

1.1.1 G-Normal distribution

In what follows, we introduce a new definition of a special type of distribution, which

plays the same role as the classical normal distribution in probability and statistics

theory.

Definition 1.5 Let (Ω,H,E) be a sublinear expectation space, and X = (X1, ..., Xn)

be n-dimensional random vector, is called G-normally distributed with zero mean if for

each a, b ≥ 0, we have

aX + bX
d
=

√
a2 + b2X,

where X is an independent copy of X, i.e., X
d
= X and X independent of X.

Definition 1.6 The distribution of X is characterized by sublinear function G : Sn →

R defined by

G (A) = GX (A) :=
1

2
E (⟨AX,X⟩) , for all A ∈ Sn, (1.4)
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where Sn denotes the collection of n× n symmetric matrices.

The G-normal distribution is characterized by a nonlinear heat equation as follows.

Proposition 1.2 An n-dimensional random vector X = (X1, ..., Xn) in a sublinear ex-

pectation space (Ω,H,E) is G-normally distributed if and only if for each φ ∈ Cl,Lip(Rn),

the function u defined by

u(t, x) := E[φ(x+
√
tX)], (t, x) ∈ [0,∞)× R.

is the unique viscosity solution of the following G-heat equation:

 ∂tu−G(D2
xu) = 0;

u(0, x) = φ(x),

where D2
xu =

(
∂2u

∂xi∂xj

)n
i,j=1

is the Hessian matrix of u and the function G : Sn → R is a

monotonic, sublinear mapping on Sn, which implies that there exists a bounded, convex

and closed subset Σ ⊂ S+
n such that

G(A) =
1

2
sup
B∈Σ

tr [AB] ,

S+
n denotes the collection of nonnegative elements in Sn.

Definition 1.7 (Stochastic process) Let (Ω,H,E) be a sublinear expectation space.

(Xt)t≥0 is called an n-dimensional stochastic process if for each t ≥ 0, Xt is an n-

dimensional random vector in H.

1.1.2 G-Brownian motion

Now we introduce the notion of G-Brownian motion, which is Brownian motion related

to G-normal distribution in a space of a sublinear expectation, for more details see Peng
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[31].

Definition 1.8 (G-Brownian motion) A process (Bt (w))t≥0 in a sublinear expec-

tation space (Ω,H,E) is called Brownian motion under E (or G-Brownian motion ),

if for each n ∈ N and 0 ≤ t1 < t2 < ... < tn < t < ∞, Bt1 , Bt2 , ..., Btn ∈ H and the

following properties are satisfied:

1) B0 (w) = 0.

2) For each t, s ≥ 0, the increments satisfy Bt+s−Bt
d
= Bs and Bt+s−Bt is independent

from (Bt1 , Bt2 , ..., Btn).

3) |Bt|3 ∈ H and
E
(
|Bt|3

)
t

→ 0 as t ↓ 0.

Moreover, if E (Bt) = E (−Bt) = 0, then (Bt)t≥0 is called a symmetric G-Brownian

motion.

Remark 1.4 Here the letter G indicates that the Bt is G-normal distributed with

G (α) :=
1

2
E (⟨αX,X⟩) = 1

2
E
(
αX2

)
=

1

2

(
σ2α+ − σ2α−) ,

where σ2 := E (X2) ≥ −E (−X2) := σ2, for every α ∈ R. Notice that X+ = X ∨ 0 and

X− = (−X)+ and

a ∧ b = min{a, b} =
1

2
(a+ b− |a− b|), a ∨ b = −[(−a) ∧ (−b)].

1.1.3 G-expectation

Definition 1.9 Let Ω = C0(R+,Rd) the space of all Rd-valued continuous paths (ωt)t∈[0,T ]

vanishing at the origin, equipped with the distance (the uniform convergence on compact

17
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intervals topology)

ρ(ω(1), ω(2)) =
∞∑
i=1

2−i

((
max
t∈[0,i]

∣∣ω(1) − ω(2)
∣∣) ∧ 1

)
, ω(1), ω(2) ∈ Ω.

The canonical process (Bt)t≥0 is defined by Bt(ω) := ωt, for (t, ω) ∈ [0,∞) × Ω and

denote by B(Ω) the Borel σ-algebra of Ω. Let

H =Lip(Ω) :=
{
φ(ωt1 , ..., ωtn) : t1, ..., tn ∈ [0,∞) and φ ∈ Cb,Lip(Rd×n) for all n ∈ N

}
.

A G-expectation EG is a sublinear expectation on (H,Ω) defined as follows: for X ∈

Lip(Ω) of the form

X = φ(Bt1 −Bt0 , ..., Btn −Btn−1), φ ∈ Cb,Lip(Rd×n) and 0 = t0 < t1 < ... < tn < ∞,

we set

EG [X] := E
[
φ
(
ξ1
√
t1 − t0, ..., ξn

√
tn − tn−1

)]
,

where ξ1, ..., ξn are d-dimensional random variables on the sublinear expectation space

(Ω̃, H̃,E) such that for each i = 1, ..., n, ξi is G-normally distributed and independent

of (ξ1, ..., ξi−1). We denote by Lp
G(Ω) for p ≥ 1, the completion of Lip(Ω) under the

norm ∥X∥Lp
G

:= (EG [|X|p])1/p . Then it is easy to check that EG is also a sublinear

expectation on the space (Ω,L2
G(Ω)), where L2

G(Ω) is a Banach space and the canonical

process Bt(ω) := ωt is a G-Brownian motion.

Following [33] and [8], we introduce the notations: for each t ∈ [0,∞)

1) Ωt := {ω·∧t : ω ∈ Ω} ,Ft := B(Ωt),

2) L0(Ω) is the space of all B(Ω)-measurable real functions,

3) L0(Ωt) is the space of all B(Ωt)-measurable real functions,

4) Lip(Ωt) := Lip(Ω) ∩ L0(Ωt) and Lp
G(Ωt) := Lp

G(Ω) ∩ L0(Ωt),
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5) Let M0,p
G (0, T ) be the collection of processes in the following form: for a given

partition of the set {t0 < ... < tN} of [0, T ]

ηt (ω) =
N−1∑
i=0

ξi (ω) 1[ti,ti+1[ (t) ,

where ξi ∈ Lp
G (Ωti), we denote by Mp

G (0, T ) ,Hp
G (0, T ) ,Sp

G (0, T ) the completion of

M0,p
G (0, T ) under the norm

∥η∥Mp
G
=

(
EG

[∫ T

0

|η (t)|p dt
])1/p

,

∥η∥Hp
G
=

(
EG

[∫ T

0

|η (t)|2 dt
] p

2

)1/p

,

∥Z∥SpG :=

(
EG

[
sup

t∈[0,T ]

|Zt|p
])1/p

respectively.

7) Set

P =
{
P : P is a probability on (Ω,B(Ω)) ,EP (X) ≤ E (X) for X ∈ L1

G(Ω)
}
.

The set P is relatively weakly compact and thus its completion P is weakly compact.

Therefore, we can naturally define the Choquet capacity C(.) by C(A) := supP∈P P (A),

A ∈ B(Ω) and introduce the notions of Choquet capacity and quasi-sure.

Definition 1.10 (Upper probability) The set function C is called an upper probabil-

ity associated with P.

One can easily verify the following theorem.

Theorem 1.3 (Choquet capacity) The upper probability C(.) is a Choquet capacity,

i.e. (see [33]):
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1) 0 ≤ C(A) ≤ 1,∀A ⊂ Ω.

2) If A ⊂ B, then C(A) ≤ C(B).

3) If (An)
∞
n=1 is a sequence in B(Ω), then C(∪∞

n=1An) ≤
∑∞

n=1 C(An).

4) If (An)
∞
n=1 is an increasing sequence in B(Ω) : An ↑ A = ∪∞

n=1An, then C(∪∞
n=1An) =

limn→∞ C(An).

Definition 1.11 (Quasi-sure) A set A ∈ B(Ω) is a C-polar, if C(A) = 0. A property

is said to hold “quasi-surely” (q.s.) with respect to C, if it holds true outside a C-polar

set.

1) We say that a random variable Y is a version of X if X = Y q.s.

2) A random variable X is said to be quasi-continuous (q.c. in short), if for every ϵ > 0

there exists an open set O such that C(O) < ϵ and X|Oc is continuous.

Theorem 1.4 (Theorem 18 and 25 in [8]) For each p ≥ 1 one has

Lp
G(Ω) =

{
X ∈ L0(Ω) : X has a q.c. version and lim

n→∞
EG

[
|X|p1{|X|>n}

]
= 0
}
.

Definition 1.12 (Conditional G-expectation) For each random variable X ∈ Lip(ΩT )

of the following form:

X = φ(Bt1 −Bt0 , Bt2 −Bt1 , ..., Btn −Btn−1) : t1, ..., tn ∈ [0, T ],

the conditional G-expectation EG [. |Ωti ] , i = 1, ..., n, is defined as follows

EG [X |Ωti ] = EG

[
φ(Bt1 −Bt0 , Bt2 −Bt1 , ..., Btn −Btn−1) |Ωti

]
= φ̃(Bt1 −Bt0 , Bt2 −Bt1 , ..., Bti −Bti−1

),

where

φ̃(x1, ..., xi) = E
[
φ(x1, ..., xi, ξi+1

√
ti+1 − ti, ..., ξn

√
tn − tn−1)

]
.
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If t ∈ (ti, ti+1), then the conditional G-expectation Eti [X] could be defined by reformu-

lating X as

X = φ̂(Bt1 −Bt0 , Bt2 −Bt1 , ..., Bt −Bti , Bti+1
−Bt, ..., Btn −Btn−1), φ̂ ∈ Cl,Lip(Rn+1).

For each given t ∈ [0, T ], the conditional G-expectation EG[. |Ωt ] : Lip(ΩT ) → Lip(Ωt)

can be also extended as a mapping EG[·|Ωt ] : L1
G (ΩT ) → L1

G (Ωt) and satisfies the

following properties:

1) If ξ, η ∈ L1
G (Ωt) ; ξ ≤ η, then EG[ξ |Ωs ] ≤ EG[η |Ωs ] for all s ≤ t;

2) If ξ ∈ L1
G (Ωt) and η ∈ L1

G(Ω) then EG[ξ + η |Ωt ] = ξ + EG[η |Ωt ];

3) EG[ξ + η |Ωt ] ≤ EG[ξ |Ωt ] + EG[η |Ωt ];

4) If ξ ∈ L0 (Ωt) is bounded, η ∈ L1
G(Ω), then EG[ξη |Ωt ] = ξ+EG[η |Ωt ]+ξ−EG[−η |Ωt ];

5) If ξ ∈ L1
G(Ω) then EG[EG[ξ |Ωt ] |Ωs ] = EG[ξ |Ωs∧t ].

Definition 1.13 (G-martingale) A process (Xt)t∈[0,T ] with Xt ∈ L1
G (Ωt) , 0 ≤ t ≤ T ,

is called a G-martingale (respectively, G-supermartingale, G-submartingale) if for all

0 ≤ s ≤ t ≤ T , we have

EG[Xt |Ωs ] = Xs (respectively, ≤ Xs, ≥ Xs).

The process (Xt)t∈[0;T ] is called symmetric G-martingale if −X is also a G-martingale.

1.2 G-stochastic calculus

1.2.1 Itô’s integral with respect to G-Brownian motion

In this part, we discuss the stochastic integrals with respect to the G-Brownian motion

and its quadratic variation. In [33] Chapter 03, Peng introduces Itô’s type stochastic

integral with respect to the G-Brownian motion.
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Definition 1.14 For η ∈ M0,2
G (0, T ), we can define

I (η) =

∫ T

0

ηsdBs :=
N−1∑
i=1

ξi (w)
(
Bti+1

−Bti

)
.

Remark 1.5 The mapping I : M0,2
G (0, T ) → L2

G (ΩT ) can be continuously extended to

I : M2
G (0, T ) → L2

G (ΩT ), then for every η ∈ M2
G (0, T ) .

Moreover, this extension of I satisfies, for each η ∈ M2
G (0, T )

EG (I (η)) = 0, and EG

(
I2 (η)

)
≤ σ2EG

(∫ T

0

η2 (t) dt

)
. (1.5)

Proposition 1.3 Let η, θ ∈ M2
G (0, T ) and let 0 ≤ s ≤ r ≤ t ≤ T . Then we have

1)
∫ t

s
ηudBu =

∫ r

s
ηudBu +

∫ t

r
ηudBu.

2)
∫ t

s
(αηu + θu) dBu = α

∫ t

s
ηudBu +

∫ t

s
θudBu, if α is bounded and in L1

G (Ωs).

3) EG

[
X +

∫ T

r
ηudBu |Ωs

]
= EG [X |Ωs ] for all X ∈ L1

G (Ω).

1.2.2 Quadratic variation process of G-Brownian motion

Dissimilar to the classical theory, the quadratic variation of G-Brownian motion B is

not always a deterministic process, and can be formulated in L2
G (Ωti) by

⟨B⟩t := lim
N→∞

N−1∑
i=1

(
Bti+1

−Bti

)2
= lim

N→∞

N−1∑
i=1

(
B2

ti+1
−B2

ti

)
− lim

N→∞

N−1∑
i=1

2B2
ti

(
B2

ti+1
−B2

ti

)
= B2

t − 2

∫ t

0

BsdBs.

(⟨B⟩t)t≥0 is an increasing process with B0 = 0. We call it the quadratic variation

process of the G-Brownian motion B. It characterizes the part of statistic uncertainty

of G-Brownian motion. We have the following isometry.
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Proposition 1.4 Let η ∈ M2
G (0, T ). Then

EG

[(∫ T

0

ηtdBt

)2
]
= EG

[∫ T

0

η2t d ⟨B⟩t
]
.

Proof. We refer the readers to the Proposition 3.4.5 conducted by Peng [33].

All distributional uncertainty of the G-Brownian motion B is concentrated in ⟨B⟩.

Moreover, ⟨B⟩ itself is a typical process with mean uncertainty and variance-uncertainty.

We have the upper bound EG

[
⟨B⟩2t

]
≤ 10σ4t2.

1.2.3 G-Itô’s formula

We are going now to give the general form of G-Itô’s formula. We start with

Xν
t = Xν

0 +

∫ t

0

bν(t)dt+

∫ t

0

hν
ij (t) d ⟨B⟩ijt +

∫ t

0

σν
i (t) dB

i
t, ν = 1, . . . , n, i, j = 1, . . . , d.

Theorem 1.5 (See [33]) Let X be a C2-function on Rn such that ∂2
xµxνφ satisfies

polynomial growth condition for µ, ν = 1, . . . , n. Let bν, σν
i and hν

ij, ν = 1, . . . , n, i, j =

1, . . . , d be bounded processes in M2
G (0, T ). Then for each t ≥ 0 we have in L2

G (Ωt)

φ (Xt)− φ (Xs) =

∫ t

s

∂xνφ (Xu)σ
ν
i dB

i
u +

∫ t

s

∂xνφ (Xu) b
ν(u)du

+

∫ t

s

[
∂xνφ (Xu)h

ν
ij (u) +

1

2
∂2
xµxνφ (Xu)σ

µ
i (u)σ

ν
j (u)

]
d ⟨B⟩iju .

1.2.4 G-martingales representation theorem

In contrast to the classical martingale representation, the G-martingale is decomposed

into two parts: the G-Itô’s type integral part Xt =
∫ t

0
ZsdBs, which is called symmetric

G-martingale, in the sense that −Xt is still a G-martingale; the decreasing G-martingale

part K, which vanishes in the classical theory. However, it plays a significant role in
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this new context (see [36, 33]).

Theorem 1.6 (G-Martingales representation theorem) Let ξ be in L2
G(ΩT ).

Then the martingale EG[ξ |Ft ] has a continuous quasi-modification Y ∈ S2
G (0, T ) given

by

Yt = EG[ξ] +

∫ t

0

ZsdBs +Kt,

where Z ∈ H2
G (0, T ) and K is a non-increasing continuous G-martingale with K0 = 0

and KT ∈ L2
G(ΩT ). Moreover, the above decomposition is unique.

Proof. The proof might be found in [36].

1.2.5 G-backward stochastic differential equation

In this subsection, we give a short introduction to G-backward stochastic differential

equations (G-BSDEs in short) and their solutions which are a key tool to consider the

maximum principle. We consider the following G-BSDE

Yt = YT +

∫ T

t

f (s, Ys, Zs) ds+

∫ T

t

g (s, Ys, Zs) d ⟨B⟩s−
∫ T

t

ZsdBs− (KT −Kt) . (1.6)

For simplicity, we denote by G2
G (0, T ) the collection of process (Y, Z,K) such that

Y ∈ S2
G (0, T ) , Z ∈ H2

G (0, T ) , K is a non-increasing G−martingale with K0 = 0 and

KT ∈ L2
G (ΩT ) .

Theorem 1.7 Under the condition of Lipschitz on the coefficients f and g with respect

to (Y, Z), then the G-BSDE (1.6) has unique strong solution (Y, Z,K) ∈ G2
G (0, T ) .

Proof. See the paper of Hu et al [14].

Lemma 1.1 (Integration by parts) Suppose
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EG

[
(X i

T )
2
]
< ∞ for i = 1, 2 where

X i
t = X i

0 +

∫ t

0

bi (s,Xs) ds+

∫ t

0

hi
ij (s,Xs) d ⟨B⟩ijs

+

∫ t

0

σi
i (s,Xs) dB

i
s.

Then

X1
t X

2
t = X1

0X
2
0 +

∫ t

0

X1
sdX

2
s +

∫ t

0

X2
sdX

1
s +

〈
X1, X2

〉
t
.

In this case the quadratic covariation is

〈
X1, X2

〉
t
=

∫ t

0

σ1
i (s,Xs)σ

2
j (s,Xs)

T d ⟨B⟩ijs .

The following lemmas of Burkholder-Davis-Gundy (BDG in short) are essential in the

field of stochastic control, see Gao [12].

Lemma 1.2 (BDG1) For each p ≥ 1 and η ∈ M2
G (0, T ) , we have the following

inequality

EG

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

ηsd ⟨B⟩s

∣∣∣∣p
]
≤ σ2pT p−1

∫ T

0

EG (|ηs|p) ds. (1.7)

Lemma 1.3 (BDG2) For each p ≥ 2 and η ∈ M2
G (0, T ) , Then there exist some

constant Cp depending only on p and T, such that

EG

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

ηsdBs

∣∣∣∣p
]
≤ CpT

p
2
−1

∫ T

0

EG (|ηs|p) ds. (1.8)

1.2.6 Girsanov’s type transformation for G-expectation

In the next, we present a result, which is called the G-Girsanov’s Theorem, it plays an

important role in the application, especially in economics and optimal control to change

a G-Brownian motion with a drift to a G-Brownian motion under the transformation of
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G-expectation. In G-Girsanov’s theorem application, we can visit the papers [45, 15].

In the application of G-Itô’s calculus, G-Girsanov’s theorem is used frequently since

it transforms a class of processes to Brownian motion with an equivalent probability

measure transformation.

Assumption 1.1 There exists an ε0 > 0 such that

EG

[
exp

{(
1

2
+ ε0

)∫ T

0

Z2 (s, ω) d ⟨B⟩s
}]

< ∞. (1.9)

Here, Z (s, ω) is such that the integral exists under the G-framework.

Define

ξ (Bt) := exp

{∫ t

0

Z (s, ω) dBs −
1

2

∫ t

0

Z2 (s, ω) d ⟨B⟩s
}
.

For any X ∈ Lip(ΩT ), introduce

ẼG [X] = EG [ξ (BT )X] .

ẼG [X |Ft ] = [ξ (Bt)]
−1 EG [ξ (BT )X |Ft ] .

Theorem 1.8 If Assumption 1.1 holds, then Bt −
∫ t

0
Z (s, ω) d ⟨B⟩s is a G-Brownian

motion under ẼG.

Proof. The proof might be found in [45].
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Chapter 2

G-Stochastic Maximum Principle

for Risk-Neutral Control Problem

In this chapter, the system is governed by the nonlinear n-dimensional controlled G-

stochastic differential equation and the cost functional has a volatility term, that is a

generalization of our results in [7]. For all 0 ≤ t ≤ T, 1 ≤ i, j ≤d

 dxt = b (t, xt, ut) dt+ hij (t, xt, ut) d ⟨B⟩ijt + σi (t, xt, ut) dB
i
t,

x (0) = x0 ∈ Rn,
(2.1)

where b, hij and σi are uniformly Lipschitz, x0 is the initial state, Bt is a G-Brownian

motion that satisfies

⟨B⟩t = B2
t − 2

∫ t

0

BsdBs, 0 ≤ t ≤ T.

The cost functional to be minimized over the class of admissible controls has the form

J (u) = EG

[
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

mij (t, xt, ut) d ⟨B⟩ijt
]
.
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A stochastic control û is called optimal if it solves J (û) = infu∈Uad
J (u).

Our objective in this chapter is to establish necessary and sufficient optimality con-

ditions for this model. The idea is to use the fact that the set of admissible controls

Uad is convex and all the terms of (2.1) are controlled. Then, we establish necessary

optimality conditions by using the convex perturbation method. More precisely, if we

denote by û an optimal control and u is an arbitrary element of Uad, then with a suffi-

ciently small θ > 0 and for each t ∈ [0, T ], we can define a perturbed control as follows

uθ
t = ût + θ (ut − ût) . By using the fact that the coefficients b, h and σ are uniformly

Lipschitz with respect to (x, u), then the G-stochastic maximum principle is obtained

directly in the global form.

This chapter is organized as follows. In section 01, we formulate the problem and

give the various assumptions used throughout this chapter. In section 02, we study

some estimations of the solution of the G-SDE. In section 03, we introduce in detail

the adjoint process and adjoint equation. In section 04, we give our first and second

main results, the necessary and sufficient optimality conditions of optimality for the G-

SDE. In the last section, we apply the necessary and sufficient G-stochastic maximum

principle to the linear-quadratic problem.

2.1 Control problem under G-expectation

Let T be a strictly positive real number and let U be a nonempty convex subset of Rn.

Definition 2.1 An admissible control u is Ft−adapted process with valued in U , such

that u ∈ M2
G (0, T ). We denote by Uad the set of all admissible controls.

For any admissible control u ∈ Uad and initial state x0 ∈ Rn, we consider the following

n-dimensional progressive SDE driven by the d-dimensional G-Brownian motion B =
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(B1, ..., Bd) for each given 0 ≤ t ≤ T < ∞

 dxt = b (t, xt, ut) dt+ hij (t, xt, ut) d ⟨B⟩ijt + σi (t, xt, ut) dB
i
t,

x (0) = x0 ∈ Rn,
(2.2)

where ⟨B⟩ij =
〈
Bi, Bj

〉
is the cross-variation process of B, for 1 ≤ i, j ≤d. We recall the

following assumptions.

Assumption 2.1 We will work under the following standard assumptions:

(H1) b : [0, T ]×Rn×U → Rn, hij : [0, T ]×Rn×U → Rn and σi : [0, T ]×Rn×U → Rn

are given functions satisfying b (., x, u), hij (., x, u) , and σi (., x, u) ∈ M2
G (0, T ) for each

x ∈ Rn and u ∈ U.

(H2) There exists constant κ such that |φ (t, x, u)− φ (t, y, v)| ≤ κ (|x− y|+ |u− v|)

for each x, y ∈ Rn and u, v ∈ U where φ := b, hij, σi.

Theorem 2.1 (See Peng [30]) Under the above assumptions, for every u ∈ Uad the

equation (2.2) has unique strong solution x ∈ S2
G (0, T ).

We define the criterion to be minimized, with terminal cost, under G-expectation type,

as follows

J (u) = EG

[
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

mij (t, xt, ut) d ⟨B⟩ijt
]

(2.3)

= sup
P∈P

EP
[
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

mij (t, xt, ut) d ⟨B⟩ijt
]

= sup
P∈P

JP (u) ,

where l : [0, T ]×Rn×U → R, g : Rn → R and mij : [0, T ]×Rn×U → R. Our objective

is to minimize the functional J over Uad. If û ∈ Uad is an optimal control, that is

J (û) = inf
u∈Uad

J (u) . (2.4)
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Remark 2.1 The set Uad of all admissible controls is convex.

A control that solves the problem {(2.2) , (2.3) , (2.4)} is called optimal. If an optimal

control minimises the cost J over Uad exists, we seek necessary as well as sufficient

conditions for optimality checked by this control in the form of G-stochastic maximum

principle.

We will use a method which consists in perturbing the optimal control û as follows

uθ
t = ût + θ (ut − ût) . (2.5)

We denote by xθ
t the trajectory of the system corresponding to uθ as follows

 dxθ
t = b

(
t, xθ

t , u
θ
t

)
dt+ hij

(
t, xθ

t , u
θ
t

)
d ⟨B⟩ijt + σi

(
t, xθ

t , u
θ
t

)
dBi

t,

xθ (0) = x0; 0 ≤ t ≤ T.
(2.6)

Assumption 2.2 We will work under the following assumptions:

(H1) b, hij, σi, l and mij are continuously differentiable with respect to (x, u) .

(H2) The derivatives of b, hij, σi, l and mij are uniformly bounded by C (1 + |x|+ |u|) .

(H3) g is continuously differentiable with respect to x and its derivative is bounded

uniformly by C (1 + |x|).

Since Uad is convex, we have the perturbed control uθ ∈ Uad, hence uθ is an admissible

control and from the optimality of û, we have

J
(
uθ
)
≥ J (û) .

Thus

EG

[
g
(
xθ
T

)
+

∫ T

0

l
(
t, xθ

t , u
θ
t

)
dt+

∫ T

0

mij

(
t, xθ

t , u
θ
t

)
d ⟨B⟩ijt

]
−EG

[
g (x̂T ) +

∫ T

0

l (t, x̂t, ût) dt+

∫ T

0

mij (t, x̂t, ût) d ⟨B⟩ijt
]
≥ 0.
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In this case, using the property 03 of definition 1.1, we get the following first form of

variational inequality

EG

[(
g
(
xθ
T

)
− g (x̂T )

)
+

∫ T

0

(
l
(
t, xθ

t , u
θ
t

)
− l (t, x̂t, ût)

)
dt

+

∫ T

0

(
mij

(
t, xθ

t , u
θ
t

)
−mij (t, x̂t, ût)

)
d ⟨B⟩ijt

]
≥ 0.

(2.7)

It is easy to show that (2.2) and (2.6) have a unique strong solution and in the next

section we are going to prove some basic estimates about it.

2.2 Stability of controlled G-SDE

In this section, we prove the stability between the perturbed solution and the optimal

solution of the controlled G-stochastic differential equation with respect to the control

variable. We introduce the short-hand notations for the sake of simplicity: ϱ (t, xt, ut) =

ϱ (t) , ϱ
(
t, xθ

t , u
θ
t

)
= ϱθ (t) , ϱ (t, x̂t, ût) = ϱ̂ (t) , for all ϱ = b, hij, σi, l and mij.

Lemma 2.1 Let û ∈ Uad be an optimal control and (x̂) the corresponding trajectory.

Then under the assumptions 2.2, we have

lim
θ→0

EG

[
sup

t∈[0,T ]

∣∣xθ
t − x̂t

∣∣2] = 0. (2.8)

Proof. Let x̂, xθ denote the solution of equations (2.2) and (2.6) respectively. By the
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property of the absolute value and as (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i , we have

∣∣xθ
t − x̂t

∣∣2
≤ 6

[∣∣∣∣∫ t

0

(
b
(
s, xθ

s, u
θ
s

)
− b

(
s, x̂s, u

θ
s

))
ds

∣∣∣∣2 + ∣∣∣∣∫ t

0

(
b
(
s, x̂s, u

θ
s

)
− b (s, x̂s, ûs)

)
ds

∣∣∣∣2
+

∣∣∣∣∫ t

0

(
hij

(
s, xθ

s, u
θ
s

)
− hij

(
s, x̂s, u

θ
s

))
d ⟨B⟩ijs

∣∣∣∣2 + ∣∣∣∣∫ t

0

(
hij

(
s, x̂s, u

θ
s

)
− hij (s, x̂s, ûs)

)
d ⟨B⟩ijs

∣∣∣∣2
+

∣∣∣∣∫ t

0

(
σi

(
s, xθ

s, u
θ
s

)
− σi

(
s, x̂s, u

θ
s

))
dBi

s

∣∣∣∣2 + ∣∣∣∣∫ t

0

(
σi

(
s, x̂s, u

θ
s

)
− σi (s, x̂s, ûs)

)
dBi

s

∣∣∣∣2
]
.

Then, we have

sup
t∈[0,T ]

∣∣xθ
t − x̂t

∣∣2 ≤ 6

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
b
(
s, xθ

s, u
θ
s

)
− b

(
s, x̂s, u

θ
s

))
ds

∣∣∣∣2
+ sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
b
(
s, x̂s, u

θ
s

)
− b (s, x̂s, ûs)

)
ds

∣∣∣∣2
+ sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
hij

(
s, xθ

s, u
θ
s

)
− hij

(
s, x̂s, u

θ
s

))
d ⟨B⟩ijs

∣∣∣∣2
+ sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
hij

(
s, x̂s, u

θ
s

)
− hij (s, x̂s, ûs)

)
d ⟨B⟩ijs

∣∣∣∣2
+ sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
σi

(
s, xθ

s, u
θ
s

)
− σi

(
s, x̂s, u

θ
s

))
dBi

s

∣∣∣∣2
+ sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
σi

(
s, x̂s, u

θ
s

)
− σi (s, x̂s, ûs)

)
dBi

s

∣∣∣∣2
]
.

By the third property of the sublinear expectation, we have

EG

[
sup

t∈[0,T ]

∣∣xθ
t − x̂t

∣∣2] ≤ 6 {I1 + I2 + I3} ,
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where

I1 = EG

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
b
(
s, xθ

s, u
θ
s

)
− b

(
s, x̂s, u

θ
s

))
ds

∣∣∣∣2
]

+ EG

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
b
(
s, x̂s, u

θ
s

)
− b (s, x̂s, ûs)

)
ds

∣∣∣∣2
]
.

I2 = EG

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
hij

(
s, xθ

s, u
θ
s

)
− hij

(
s, x̂s, u

θ
s

))
d ⟨B⟩ijs

∣∣∣∣2
]

+ EG

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
hij

(
s, x̂s, u

θ
s

)
− hij (s, x̂s, ûs)

)
d ⟨B⟩ijs

∣∣∣∣2
]
.

I3 = EG

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
σi

(
s, xθ

s, u
θ
s

)
− σi

(
s, x̂s, u

θ
s

))
dBi

s

∣∣∣∣2
]

+ EG

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
σi

(
s, x̂s, u

θ
s

)
− σi (s, x̂s, ûs)

)
dBi

s

∣∣∣∣2
]
.

By using G-Hölder inequality and G-BDG inequalities (1.7) , (1.8), we obtain

I1 ≤ T

∫ T

0

EG

[∣∣b (s, xθ
s, u

θ
s

)
− b

(
s, x̂s, u

θ
s

)∣∣2] ds
+T

∫ T

0

EG

[∣∣b (s, x̂s, u
θ
s

)
− b (s, x̂s, ûs)

∣∣2] ds.
I2 ≤ σ4T

∫ T

0

EG

[∣∣hij

(
s, xθ

s, u
θ
s

)
− hij

(
s, x̂s, u

θ
s

)∣∣2] ds
+σ4T

∫ T

0

EG

[∣∣hij

(
s, x̂s, u

θ
s

)
− hij (s, x̂s, ûs)

∣∣2] ds.
I3 ≤ C2

∫ T

0

EG

[∣∣σi

(
s, xθ

s, u
θ
s

)
− σi

(
s, x̂s, u

θ
s

)∣∣2] ds
+C2

∫ T

0

EG

[∣∣σi

(
s, x̂s, u

θ
s

)
− σi (s, x̂s, ûs)

∣∣2] ds.
Since the coefficients b, hij and σi are Lipschitz with respect to (x, u), we easily obtain
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the following estimate

EG

[
sup

t∈[0,T ]

∣∣xθ
t − x̂t

∣∣2] ≤ 6Tκ

∫ T

0

EG

∣∣xθ
s − x̂s

∣∣2 ds+ 6Tκ

∫ T

0

EG

∣∣uθ
s − ûs

∣∣2 ds
+ 6σ4Tκ

∫ T

0

EG

∣∣xθ
s − x̂s

∣∣2 ds+ 6σ4Tκ

∫ T

0

EG

∣∣uθ
s − ûs

∣∣2 ds
+ 6C2κ

∫ T

0

EG

∣∣xθ
s − x̂s

∣∣2 ds+ 6C2κ

∫ T

0

EG

∣∣uθ
s − ûs

∣∣2 ds.
Then, we have

EG

[
sup

t∈[0,T ]

∣∣xθ
t − x̂t

∣∣2] ≤ ς

∫ T

0

EG

∣∣xθ
s − x̂s

∣∣2 ds+ ςθ2
∫ T

0

EG |us − ûs|2 ds.

where ς = 6κ(T +σ4T +C2) and σ4, C2 are the constants appeared in BDG inequalities.

Using Gronwall’s inequality and sending θ → 0, we arrive at the desired result (2.8).

Lemma 2.2 We assume that the assumptions 2.2 are satisfied. Then Y (.) is the solu-

tion of the following variational equation



dYt =
(
Dxb̂ (t)Yt +Dub̂ (t) (ut − ût)

)
dt

+
(
Dxĥij (t)Yt +Duĥij (t) (ut − ût)

)
d ⟨B⟩ijt

+(Dxσ̂i (t)Yt +Duσ̂i (t) (ut − ût)) dB
i
t,

Y0 = 0,

(2.9)

where Yt = limθ→0
1
θ

(
xθ
t − x̂t

)
, and

Dxk̂ :=


∂x1 k̂1 · · · ∂xn k̂1
...

. . .
...

∂x1 k̂n · · · ∂xn k̂n

 , Duk̂ :=


∂u1 k̂1 · · · ∂un k̂1
...

. . .
...

∂u1 k̂n · · · ∂un k̂n

 ∈ Rn×n,
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for all k = b, hij and σi.

(
Dxk̂ (t)Yt +Duk̂ (t) (ut − ût)

)

=


∂x1 k̂1 · · · ∂xn k̂1
...

. . .
...

∂x1 k̂n · · · ∂xn k̂n




Y1

...

Yn

+


∂u1 k̂1 · · · ∂un k̂1
...

. . .
...

∂u1 k̂n · · · ∂un k̂n




(u− û)1
...

(u− û)n

 .

Proof. We have

xθ
t − x̂t =

∫ t

0

(
b
(
s, xθ

s, u
θ
s

)
− b (s, x̂s, ûs)

)
ds+

∫ t

0

(
hij

(
s, xθ

s, u
θ
s

)
− hij (s, x̂s, ûs)

)
d ⟨B⟩ijs

+

∫ t

0

(
σi

(
s, xθ

s, u
θ
s

)
− σi (s, x̂s, ûs)

)
dBi

s.

For all k = b, hij and σi, we have

k
(
s, xθ

s, u
θ
s

)
= k

(
s, x̂s +

(
xθ
s − x̂s

)
, ûs +

(
uθ
s − ûs

))
Using Taylor’s expansion with an integral remain on the functions b

(
s, xθ

s, u
θ
s

)
, hij

(
s, xθ

s, u
θ
s

)
and σi

(
s, xθ

s, u
θ
s

)
at the point (x̂s, ûs) ,

k
(
s, xθ

s, u
θ
s

)
= k (s, x̂s, ûs)

+

∫ 1

0

Dxk
(
s, x̂s + λ

(
xθ
s − x̂s

)
, ûs + λ

(
uθ
s − ûs

)) (
xθ
s − x̂s

)
dλ

+

∫ 1

0

Duk
(
s, x̂s + λ

(
xθ
s − x̂s

)
, ûs + λ

(
uθ
s − ûs

)) (
uθ
s − ûs

)
dλ.
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By (2.5), we get

1

θ

(
k
(
s, xθ

s, u
θ
s

)
− k (s, x̂s, ûs)

)
(2.10)

=

∫ 1

0

1

θ
Dxk

(
s, x̂s + λ

(
xθ
s − x̂s

)
, ûs + λθ (us − ûs)

) (
xθ
s − x̂s

)
dλ

+

∫ 1

0

Duk
(
s, x̂s + λ

(
xθ
s − x̂s

)
, ûs + λθ (us − ûs)

)
(us − ûs) dλ.

Since all the derivatives of b, hij, σi are continuous and bounded with respect to (x, u),

using the Lebesgue’s bounded convergence theorem and the result (2.8), then the limit

when θ goes to zero for every member in the side of (2.10) gives us the desired result.

Lemma 2.3 Under the assumptions 2.2, we have

lim
θ→0

EG

[
sup

t∈[0,T ]

∣∣∣∣1θ (xθ
t − x̂t

)
− Yt

∣∣∣∣2
]
= 0, (2.11)

where Y is given by (2.9) .

Proof. By replacing x̂t, x
θ
t and Yt by their values in equations (2.2) , (2.6) and (2.9)

respectively, if we put for simplification x̃θ
t =

1
θ

(
xθ
t − x̂t

)
−Yt, where x̃

θ
t : [0, T ]×Ω → Rn
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and Λ̃θ
s :=

(
s, x̂s + λθ

(
x̃θ
s + Ys

)
, ûs + λθ (us − ûs)

)
, we get

x̃θ
t =

∫ 1

0

∫ t

0

Dxb
(
Λ̃θ

s

) (
x̃θ
s + Ys

)
dsdλ+

∫ 1

0

∫ t

0

Dub
(
Λ̃θ

s

)
(us − ûs) dsdλ

+

∫ 1

0

∫ t

0

Dxhij

(
Λ̃θ

s

) (
x̃θ
s + Ys

)
d ⟨B⟩ijs dλ+

∫ 1

0

∫ t

0

Duhij

(
Λ̃θ

s

)
(us − ûs) d ⟨B⟩ijs dλ

+

∫ 1

0

∫ t

0

Dxσi

(
Λ̃θ

s

) (
x̃θ
s + Ys

)
dBi

sdλ+

∫ 1

0

∫ t

0

Duσi

(
Λ̃θ

s

)
(us − ûs) dB

i
sdλ

−
∫ t

0

(
Dxb̂ (s)Ys +Dub̂ (s) (us − ûs)

)
ds

−
∫ t

0

(
Dxĥij (s)Ys +Duĥij (s) (us − ûs)

)
d ⟨B⟩ijs

−
∫ t

0

(Dxσ̂i (s)Ys +Duσ̂i (s) (us − ûs)) dB
i
s.

According to the sublinearity of the G-expectation EG, G-Hölder inequality and G-BDG

inequalities (1.7) , (1.8), we have

EG

[
sup

t∈[0,T ]

∣∣x̃θ
t

∣∣2]

≤ C1

∫ 1

0

∫ t

0

EG

∣∣∣Dxb
(
Λ̃θ

s

)
x̃θ
s

∣∣∣2 dsdλ+ C2

∫ 1

0

∫ t

0

EG

∣∣∣Dxhij

(
Λ̃θ

s

)
x̃θ
s

∣∣∣2 dsdλ
+ C3

∫ 1

0

∫ t

0

EG

∣∣∣Dxσi

(
Λ̃θ

s

)
x̃θ
s

∣∣∣2 dsdλ+ EG

[
sup

t∈[0,T ]

∣∣ρθt ∣∣2
]
,
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where

EG

[
sup

t∈[0,T ]

∣∣ρθt ∣∣2
]
≤ C4

∫ t

0

EG

∣∣∣∣∫ 1

0

{
Dxb

(
Λ̃θ

s

)
−Dxb̂ (s)

}
Ysdλ

∣∣∣∣2 ds
+ C5

∫ t

0

EG

∣∣∣∣∫ 1

0

{
Dxhij

(
Λ̃θ

s

)
−Dxĥij (s)

}
Ysdλ

∣∣∣∣2 ds
+ C6

∫ t

0

EG

∣∣∣∣∫ 1

0

{
Dxσi

(
Λ̃θ

s

)
−Dxσ̂i (s)

}
Ysdλ

∣∣∣∣2 ds
+ C7

∫ t

0

EG

∣∣∣∣∫ 1

0

{
Dub

(
Λ̃θ

s

)
−Dub̂ (s)

}
(us − ûs) dλ

∣∣∣∣2 ds
+ C8

∫ t

0

EG

∣∣∣∣∫ 1

0

{
Duhij

(
Λ̃θ

s

)
−Duĥij (s)

}
(us − ûs) dλ

∣∣∣∣2 ds
+ C9

∫ t

0

EG

∣∣∣∣∫ 1

0

{
Duσi

(
Λ̃θ

s

)
−Duσ̂i (s)

}
(us − ûs) dλ

∣∣∣∣2 ds.
Since all the derivatives of b, hij and σi are continuous and bounded and by using

Lebesgue’s bounded convergence theorem, we obtain the limit of the term

EG

[
supt∈[0,T ]

∣∣ρθt ∣∣2] equals 0 when θ goes to 0. So that, we can use G-Gronwall’s

inequality to find the limit (2.11) .

The next lemma gives us the second and the third forms of the variational inequality,

which are the principal tools to establish the G-stochastic maximum principle in the

following sections.

Lemma 2.4 Assume that hypotheses 2.2 hold, then we have

0 ≤ EG

[∫ T

0

((
∇xl̂ (t)

)T
Yt +

(
∇ul̂ (t)

)T
(ut − ût)

)
dt

+

∫ T

0

(
(∇xm̂ij (t))

T Yt + (∇um̂ij (t))
T (ut − ût)

)
d ⟨B⟩ijt + (∇xg (x̂T ))

T YT

]
,

(2.12)

38



Chapter 2. G-Stochastic Maximum Principle for Risk-Neutral Control Problem

and

0 ≤ EG

[∫ T

0

((
∇xl̂ (t)

)T
Yt +

(
∇ul̂ (t)

)T
(ut − ût)

)
dt

]
+EG

[∫ T

0

(
(∇xm̂ij (t))

T Yt + (∇um̂ij (t))
T (ut − ût)

)
d ⟨B⟩ijt

]
+ EG

[
(∇xg (x̂T ))

T YT

]
,

(2.13)

where

∇xg (x̂T ) :=


∂x1g (x̂T )

...

∂xng (x̂T )

 ,∇xl̂ (t) :=


∂x1 l̂ (t)

...

∂xn l̂ (t)

 ,∇ul̂ (t) :=


∂u1 l̂ (t)

...

∂un l̂ (t)

 ∈ Rn,

∇xm̂ij (t) =


∂x1m̂ij (t)

...

∂xnm̂ij (t)

 ,∇um̂ij (t) :=


∂u1m̂ij (t)

...

∂unm̂ij (t)

 ∈ Rn.

Proof. We use the same techniques as in lemma 2.3, we consider the perturbed control

uθdefined in (2.5). On one hand, from the variational inequality (2.7) and if we put

Λθ
t :=

(
t, x̂t + λ

(
xθ
t − x̂t

)
, ût + λθ (ut − ût)

)
, we get

0 ≤ EG

[∫ 1

0

1

θ

(
∇xg

(
x̂T + λ

(
xθ
T − x̂T

)))T (
xθ
T − x̂T

)
dλ

+

∫ T

0

∫ 1

0

(
1

θ

(
∇xl

(
Λθ

t

))T (
xθ
t − x̂t

)
+
(
∇ul

(
Λθ

t

))T
(ut − ût)

)
dλdt

+

∫ T

0

∫ 1

0

(
1

θ

(
∇xmij

(
Λθ

t

))T (
xθ
t − x̂t

)
+
(
∇umij

(
Λθ

t

))T
(ut − ût)

)
dλd ⟨B⟩ijt

]
.

On the other hand, from the variational inequality (2.7) and by using the subadditivity

property of G-expectation Definition 1.1 we get

0 ≤ EG

[
g
(
xθ
T

)
− g (x̂T )

]
+ EG

[∫ T

0

(
l
(
t, xθ

t , u
θ
t

)
− l (t, x̂t, ût)

)
dt

]
+ EG

[∫ T

0

(
mij

(
t, xθ

t , u
θ
t

)
−mij (t, x̂t, ût)

)
d ⟨B⟩ijt

]
.

39



Chapter 2. G-Stochastic Maximum Principle for Risk-Neutral Control Problem

For the second time, we put Λθ
t :=

(
t, x̂t + λ

(
xθ
t − x̂t

)
, ût + λθ (ut − ût)

)
, we get

0 ≤
{
EG

[∫ 1

0

1

θ

(
∇xg

(
x̂T + λ

(
xθ
T − x̂T

)))T (
xθ
T − x̂T

)
dλ

]
+ EG

[∫ T

0

∫ 1

0

(
1

θ

(
∇xl

(
Λθ

t

))T (
xθ
t − x̂t

)
+
(
∇ul

(
Λθ

t

))T
(ut − ût)

)
dλdt

]
+ EG

[∫ T

0

∫ 1

0

(
1

θ

(
∇xmij

(
Λθ

t

))T (
xθ
t − x̂t

)
+
(
∇umij

(
Λθ

t

))T
(ut − ût)

)
dλd ⟨B⟩ijt

]
.

Since the derivative of g, l and mij are continuous and bounded, then from (2.8),(2.11)

and letting θ going to 0, we get (2.12) and (2.13).

2.3 G-adjoint process and G-adjoint equation

We consider the linear form of the equation (2.9)

 dΦ (t) = Φ (t)Dxb̂ (t) dt+ Φ(t)Dxĥij (t) d ⟨B⟩ijt + Φ(t)Dxσ̂i (t) dB
i
t; 0 ≤ t ≤ T,

Φ(0) = In,

(2.14)

where Φ : [0, T ] × Ω → Rn×n is a symmetric matrix. This equation is linear and has

bounded coefficients, then it admits a unique strong solution. Moreover, this solution

is invertible and its inverse Ψ is given by


dΨ(t) = −Ψ(t)Dxb̂ (t) dt+Ψ(t)

(
Dxσ̂i (t) (Dxσ̂j (t))

T −Dxĥij (t)
)
d ⟨B⟩ijt

−Ψ(t)Dxσ̂i (t) dB
i
t; 0 ≤ t ≤ T,

Ψ(0) = In.

(2.15)
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In fact, by applying G-Itô’s formula on the C2-function f (Φ (t)) = (Φ (t))−1 we have

f (Φ (t)) = f (Φ (0)) +

∫ t

0

f ′ (Φ (s)) Φ (s)Dxb̂ (s) ds

+

∫ t

0

f ′ (Φ (s)) Φ (s)Dxσ̂i (s) dB
i
s +

∫ t

0

f ′ (Φ (s)) Φ (s)Dxĥij (s) d ⟨B⟩ijs

+
1

2

∫ t

0

Φ (s)Dxσ̂i (s) f
′′ (Φ (s)) Φ (s)Dxσ̂j (s) d ⟨B⟩ijs .

Then

(Φ (t))−1 = In −
∫ t

0

(Φ (s))−1Dxb̂ (s) ds−
∫ t

0

(Φ (s))−1DxDxĥij (s) d ⟨B⟩ijs

−
∫ t

0

(Φ (s))−1Dxσ̂i (t) dB
i
t +

∫ t

0

(Φ (s))−1Dxσ̂i (t) (Dxσ̂j (t))
T d ⟨B⟩ijs .

By naming (Φ (t))−1 := Ψ (t), we get

Ψ (t) = In −
∫ t

0

Ψ(s)Dxb̂ (s) ds−
∫ t

0

Ψ(s)Dxĥij (s) d ⟨B⟩ijs

−
∫ t

0

Ψ(s)Dxσ̂i (t) dB
i
t +

∫ t

0

Ψ(s)Dxσ̂i (t) (Dxσ̂j (t))
T d ⟨B⟩ijs .

In addition, the processes Φ and Ψ are continuous and also

EG

[
sup

t∈[0,T ]

|Φ|2
]
+ EG

[
sup

t∈[0,T ]

|Ψ|2
]
< ∞. (2.16)

By using the resolvent method, we put

R (t) = Ψ (t)Y (t) . (2.17)
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Hence, we apply integration by parts for G-Itô’s processes to R (t) , we get

dR (t) = d [Ψ (t)Y (t)]

= Ψ (t) dY (t) + dΨ(t)Y (t) + d ⟨Ψ, Y ⟩t

= I1 + I2 + I3,

where

I1 = Ψ(t)
[(

Dxb̂ (t)Yt +Dub̂ (t) (ut − ût)
)
dt+

(
Dxĥij (t)Yt

+Duĥij (t) (ut − ût)
)
d ⟨B⟩ijt + (Dxσ̂i (t)Yt +Duσ̂i (t) (ut − ût)) dB

i
t

]
.

I2 =
[
−Ψ(t)Dxb̂ (t) dt+Ψ(t)

(
Dxσ̂i (t) (Dxσ̂j (t))

T −Dxĥij (t)
)
d ⟨B⟩ijt

−Ψ(t)Dxσ̂i (t) dB
i
t

]
Y (t) .

I3 = −Ψ(t)Dxσ̂i (t) (Dxσ̂j (t)Yt +Duσ̂j (t) (ut − ût)) d ⟨B⟩ijt .

Then

dR (t) = Ψ (t)Dub̂ (t) (ut − ût) dt+Ψ(t)Duσ̂i (t) (ut − ût) dB
i
t

+Ψ(t)
(
Duĥij (t) (ut − ût)−Dxσ̂i (t) (Duσ̂j (t))

T (ut − ût)
)
d ⟨B⟩ijt .

We suppose that

Γ = Φ (T )∇xg (x̂T ) +

∫ T

0

Φ (s)∇xl̂ (s) ds+

∫ T

0

Φ (s)∇xm̂ij (s) d ⟨B⟩ijs . (2.18)

ξ (t) = EG [Γ |Ft ]−
∫ t

0

Φ (s)∇xl̂ (s) ds−
∫ t

0

Φ (s)∇xm̂ij (s) d ⟨B⟩ijs . (2.19)
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We observe from (2.17) , (2.18) and (2.19) that

EG

[
(∇xg (x̂T ))

T YT

]
= EG

[
(∇xg (x̂T ))

T Φ (T )R (T )
]
= EG

[
(ξ (T ))T R (T )

]
.

In fact, (2.17) equivalent to YT = Φ(T )R (T ) , such that

EG

[
(∇xg (x̂T ))

T YT

]
= EG

[
(∇xg (x̂T ))

T Φ (T )R (T )
]
.

On the other hand, using properties of conditional sublinear expectation, we get

EG

[
(ξ (T ))T R (T )

]
= EG

[(
EG

[(
Φ (T )∇xg (x̂T ) +

∫ T

0

Φ (s)∇xl̂ (s) ds+

∫ T

0

Φ (s)∇xm̂ij (s) d ⟨B⟩ijt
)
| FT

]
−
∫ T

0

Φ (s)∇xl̂ (s) ds−
∫ T

0

Φ (s)∇xm̂ij (s) d ⟨B⟩ijt
)T

R (T )

]

= EG

[(
Φ (T )∇xg (x̂T ) +

∫ T

0

Φ (s)∇xl̂ (s) ds+

∫ T

0

Φ (s)∇xm̂ij (s) d ⟨B⟩ijt

−
∫ T

0

Φ (s)∇xl̂ (s) ds−
∫ T

0

Φ (s)∇xm̂ij (s) d ⟨B⟩ijt
)T

R (T )

]

= EG

[
(∇xg (x̂T ))

T Φ (T )R (T )
]
.

According to the result obtained in [33]. Under the assumption EG

[
|Γ|2 |Ft

]
< ∞

and by the G-martingales representation theorem there exists a couple (Z,K) , where

Z ∈ H2
G(0, T ) and K is a non-increasing continuous G-martingale with K0 = 0 and

KT ∈ L2
G(ΩT ), such that

EG [Γ |Ft ] = EG [Γ] +

∫ t

0

Zi(s)dB
i
s +Kt.
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The equation (2.19) can be rewritten as

dξ (t) = −Φ (t)∇xl̂ (t) dt− Φ (t)∇xm̂ij (t) d ⟨B⟩ijt + Zi(t)dB
i
t + dKt.

Using integration by parts for G-Itô’s processes to (ξ (t))T R (t) , we get

d
(
(ξ (t))T R (t)

)
= (ξ (t))T

[
Ψ(t)Dub̂ (t) (ut − ût) dt+Ψ(t)Duσ̂i (t) (ut − ût) dB

i
t

+Ψ(t)
(
Duĥij (t) (ut − ût)−Dxσ̂i (t) (Duσ̂j (t))

T (ut − ût)
)
d ⟨B⟩ijt

]
+
[
−Φ (t)∇xl̂ (t) dt− Φ (t)∇xm̂ij (t) d ⟨B⟩ijt + Zi(t)dB

i
t + dKt

]T
R (t)

+ Ψ (t)Duσ̂i (t) (ut − ût)Zi(t)d ⟨B⟩ijt .

Then

d
(
(ξ (t))T R (t)

)
= (ξ (t))T Ψ(t)Dub̂ (t) (ut − ût) dt+ (ξ (t))T Ψ(t)Duσ̂i (t) (ut − ût) dB

i
t

+ (ξ (t))T Ψ(t)
(
Duĥij (t) (ut − ût)−Dxσ̂i (t) (Duσ̂j (t))

T (ut − ût)
)
d ⟨B⟩ijt

+ (Zi(t))
T (Ψ (t)Duσ̂j (t) (ut − ût)) d ⟨B⟩ijt −

(
∇xl̂ (t)

)T
Φ (t)R (t) dt

− (∇xm̂ij (t))
T Φ (t)R (t) d ⟨B⟩ijt + (Zi(t))

T R (t) dBi
t + (dKt)

T R (t) .

Then, if we put

p̂G (t) = Ψ (t) ξ (t) , (2.20)

Q̂G
i (t) = Ψ (t)Zi (t)−Dxσ̂i (t) p̂

G (t) , (2.21)
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where p̂G (t) , Q̂G
i (t) ∈ Rn. Then we get

EG

[
(ξ (T ))T R (T )

]
= EG

[∫ T

0

(
p̂G (t)

)T
Dub̂ (t) (ut − ût) dt−

∫ T

0

(
∇xl̂ (t)

)T
Ytdt

−
∫ T

0

(∇xm̂ij (t))
T Ytd ⟨B⟩ijt +

∫ T

0

(dKt)
T R (t)

+

∫ T

0

((
p̂G (t)

)T
Duĥij (t) + Q̂G

i (t)Duσ̂j (t)
)
(ut − ût) d ⟨B⟩ijt

]
. (2.22)

By replacing (2.22) into (2.13), we obtain

0 ≤ EG

[∫ T

0

((
∇xl̂ (t)

)T
Yt +

(
∇ul̂ (t)

)T
(ut − ût)

)
dt

]
+ EG

[∫ T

0

(
(∇xm̂ij (t))

T Yt + (∇um̂ij (t))
T (ut − ût)

)
d ⟨B⟩ijt

]
+ EG

[∫ T

0

(
p̂G (t)

)T
Dub̂ (t) (ut − ût) dt−

∫ T

0

(
∇xl̂ (t)

)T
Ytdt

−
∫ T

0

(∇xm̂ij (t))
T Ytd ⟨B⟩ijt +

∫ T

0

((
p̂G (t)

)T
Duĥij (t)

+
(
Q̂G

i (t)
)T

Duσ̂j (t)

)
(ut − ût) d ⟨B⟩ijt +

∫ T

0

(dKt)
T R (t)

]
.

And by (2.12), we get

0 ≤ EG

[∫ T

0

(
∇ul̂ (t)

)T
(ut − ût) dt+

∫ T

0

(∇um̂ij (t))
T (ut − ût) d ⟨B⟩ijt

+

∫ T

0

(
p̂G (t)

)T
Dub̂ (t) (ut − ût) dt+

∫ T

0

(
p̂G (t)

)T
Duĥij (t) (ut − ût)

d⟨B⟩ijt
dt

dt

+

∫ T

0

(
Q̂G

j (t)
)T

Duσ̂i (t) (ut − ût)
d⟨B⟩ijt
dt

dt+

∫ T

0

(dKt)
T R (t)

]
.

(2.23)

We define the Hamiltonian H : [0, T ]× Rn × Rn × Rd×n × U → R by

H (t) = H
(
t, xt, p

G
t , Q

G
i (t), ut

)
= l (t) +mij (t)

d⟨B⟩ijt
dt

+
(
(b (t))T + (hij (t))

T d⟨B⟩ijt
dt

)
pG (t) + (σi (t))

T QG
j (t)

d ⟨B⟩ijt
dt

.
(2.24)
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Hence, (2.23) becomes

0 ≤ EG

[∫ T

0

(
∇uH

(
t, x̂t, p̂

G (t) , Q̂G
i (t), ût

))T
(ut − ût) dt+

∫ T

0

(dKt)
T R (t)

]
.

First, by replacing ξ (t) with its value in (2.20), we get the G-adjoint process as

p̂G (t) = Ψ (t) ξ (t)

= EG

[
Ψ(t) Φ (T )∇xg (x̂T ) + Ψ (t)

∫ T

t

Φ (s)∇xl̂ (s) ds

+Ψ(t)

∫ T

t

Φ (s)∇xm̂ij (s) d ⟨B⟩ijt |Ft

]
= EG [Ψ (t) Φ (T )∇xg (xT ) |Ft ] + Ψ (t)

∫ T

t

Φ (s)∇xl̂ (s) ds

+Ψ(t)

∫ T

t

Φ (s)∇xm̂ij (s) d ⟨B⟩ijt .

(2.25)

Second, by applying integration by parts for G-Itô’s processes to (2.20), we find the

G-adjoint equation satisfied by the above G-adjoint process

dp̂G (t) = Ψ (t)
[
−Φ (t)∇xl̂ (t) dt− Φ (t)∇xm̂ij (t) d ⟨B⟩ijt + Zi(t)dB

i
t + dKt

]
+ ξ (t)

[
−Ψ(t)Dxb̂ (t) dt+Ψ(t)

(
Dxσ̂i (t) (Dxσ̂j (t))

T −Dxĥij (t)
)
d ⟨B⟩ijt

−Ψ(t)Dxσ̂i (t) dB
i
t

]
− Zi(t)Ψ (t)Dxσ̂i (t) d ⟨B⟩ijt

= −∇xl̂ (t) dt−∇xm̂ij (t) d ⟨B⟩ijt −
(
Dxb̂ (t)

)T
p̂G (t) dt

−
(
Dxĥij (t)

)T
p̂G (t)

d ⟨B⟩ijt
dt

dt− (Dxσ̂i (t))
T (Ψ (t)Zj (t)

−Dxσ̂j (t) p̂
G (t)

) d ⟨B⟩ijt
dt

dt+
(
Ψ(t)Zi (t)−Dxσ̂i (t) p̂

G (t)
)
dBi

t +Ψ(t) dKt.
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By (2.21), we obtain

dp̂G (t) = −
(
∇xl̂ (t)

)T
dt−∇xm̂ij (t) d ⟨B⟩ijt −

(
Dxb̂ (t)

)T
p̂G (t) dt

−
(
Dxĥij (t)

)T
p̂G (t)

d ⟨B⟩ijt
dt

dt+ Q̂G
i (t)dB

i
t

− (Dxσ̂i (t))
T Q̂G

j (t)
d ⟨B⟩ijt
dt

dt+Ψ(t) dKt.

By (2.24) , we have

∇xĤ (t) = ∇xH
(
t, x̂t, p̂

G (t) , Q̂G
i (t), ût

)
= ∇xl̂ (t) +∇xm̂ij (t) d ⟨B⟩ijt +

(
Dxb̂ (t)

)T
p̂G (t)

+

((
Dxĥij (t)

)T
p̂G (t) + (Dxσ̂i (t))

T Q̂G
j (t)

)
d ⟨B⟩ijt
dt

.

Then, we get

dp̂G (t) = −∇xĤ (t) dt+ Q̂G
i (t) dBi

t +Ψ(t) dKt,

p̂G(T ) = ∇xg (x̂T ) .
(2.26)

Remark 2.2 We prefer to call (2.26) a backward stochastic differential equation under

G-expectation (see Peng [28]), or a fully nonlinear BSDE, instead of 2BSDE.

2.4 A stochastic maximum principle for G-SDE

2.4.1 A necessary maximum principle

We can now state necessary optimality conditions for stochastic control problem (2.2) , (2.3) ,

and (2.4) for G-SDE in the global form.

Theorem 2.2 (Necessary optimality conditions for G-SDE) Let û be an opti-

mal control minimizing the functional J over Uad and x̂ be the solution of (2.2) asso-

ciated with û. Then, there exists unique process
(
p̂G, Q̂G

i , K
)

of the G-BSDE system
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(called G-adjoint equation), and by using the notation given in the last section, we have

 dp̂G (t) = −∇xĤ (t) dt+ Q̂G
i (t) dBi

t +Ψ(t) dKt; 0 ≤ t ≤ T,

p̂G(T ) = ∇xg (x̂T ) .

where
(
p̂G, Q̂G

i , K
)
∈ G2

G (0, T ), such that, for every u ∈ Uad, we have

EG

[∫ T

0

(
∇uH

(
t, x̂t, p̂

G (t) , Q̂G
i (t), ût

))T
(ut − ût) dt+

∫ T

0

(dKt)
T R (t)

]
≥ 0.

(2.27)

Proof. By using the above procedure, we obtain (2.27) where the Hamiltonian given

by (2.24) and the terms of the adjoint process
(
p̂G, Q̂G

i , K
)

given by (2.20) , (2.21)

respectively. Hence, since û is an optimal control, the variational inequality (2.13)

translates into (2.27), for all u ∈ Uad, almost every 0 ≤ t ≤ T and this completed the

proof of Theorem 2.2.

2.4.2 A sufficient maximum principle

In this section, we study when the necessary optimality condition (2.27) becomes suf-

ficient. For any u ∈ Uad, we denote x, x̂ the solution of equation (2.2) controlled by u

and û respectively.

Assumption 2.3 The function g is convex with respect to the state variable.

Assumption 2.4 The Hamiltonian H is convex with respect to (x, u) .

Theorem 2.3 (Sufficient optimality conditions for G-SDE) Assume the as-

sumptions (2.1) − (2.4) are satisfied. Then, û is an optimal solution of the stochastic

control problem {(2.2) , (2.3) , (2.4)} if it satisfies (2.27).
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Proof. Let û be an arbitrary element of Uad (candidate to be optimal). For any

u ∈ Uad, and using the definition of the sublinear expectation EG (??), we have for all

P ∈P q.s.

1

θ
{JP(uθ)− JP(û)}

=
1

θ
EP
[
g
(
xθ
T

)
− g (x̂T ) +

∫ T

0

(
lθ (t)− l̂ (t)

)
dt+

∫ T

0

(
mθ

ij (t)− m̂ij (t)
)
d ⟨B⟩ijt

]
.

By the convexity of the function g, we get

g
(
xθ
T

)
− g (x̂T ) ≥ (∇xg (x̂T ))

T (xθ
T − x̂T

)
=
(
p̂G(T )

)T (
xθ
T − x̂T

)
.

Using G-Itô’s formula to
(
p̂G (t)

)T (
xθ
t − x̂t

)
, we have

(
p̂G(T )

)T (
xθ
T − x̂T

)
= −

∫ T

0

(
∇xĤ (t)

)T (
xθ
t − x̂t

)
dt

+

∫ T

0

(
Q̂G

i (t)
)T (

xθ
t − x̂t

)
dBi

t +

∫ T

0

(dKt)
T Ψ(t)

(
xθ
t − x̂t

)
+

∫ T

0

(
p̂G (t)

)T (
bθ (t)− b̂ (t)

)
dt+

∫ T

0

(
p̂G (t)

)T (
hθ
ij (t)− ĥij (t)

) d ⟨B⟩ijt
dt

dt

+

∫ T

0

(
p̂G (t)

)T (
σθ
i (t)− σ̂i (t)

)
dBi

t +

∫ T

0

(
Q̂G

i (t)
)T (

σθ
i (t)− σ̂i (t)

) d ⟨B⟩ijt
dt

dt. (2.28)

By the definition of H (2.24), we can write

∫ T

0

(
lθ (t)− l̂ (t)

)
dt+

∫ T

0

(
mθ

ij (t)− m̂ij (t)
) d ⟨B⟩ijt

dt
dt

=

∫ T

0

[
Hθ (t)− Ĥ (t)−

(
p̂G (t)

)T (
bθ (t)− b̂ (t)

)
−
((

p̂G (t)
)T (

hθ
ij (t)− ĥij (t)

)
+
(
Q̂G

i (t)
)T (

σθ
i (t)− σ̂i (t)

)) d ⟨B⟩ijt
dt

]
dt. (2.29)
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By the convexity of the Hamiltonian H with respect to (x, u) , we have

Hθ (t)− Ĥ (t) ≥
(
∇xĤ (t)

)T (
xθ
t − x̂t

)
+
(
∇uĤ (t)

)T (
uθ
t − ût

)
.

Adding (2.28) and (2.29), hence, As K is non-increasing G-martingale and B is a

symmetric G-martingale, we get for all P ∈ P q.s.

1

θ
{JP(uθ)− JP(û)} ≥ 1

θ
EP
[(

∇xĤ (t)
)T (

uθ
t − ût

)
dt+

∫ T

0

(dKt)
T Ψ(t)

(
xθ
t − x̂t

)]
.

Then

1

θ
{JP(uθ)− JP(û)} ≥ EP

[(
∇xĤ (t)

)T
(ut − ût) dt+

1

θ

∫ T

0

(dKt)
T Ψ(t)

(
xθ
t − x̂t

)]
.

Then, by sending θ → 0, thanks to lemma 2.2, thus

lim
θ→0

1

θ
{JP(uθ)− JP(û)} ≥ EP

[(
∇xĤ (t)

)T
(ut − ût) dt+

∫ T

0

(dKt)
T Ψ(t)Yt

]
.

Hence

lim
θ→0

1

θ
{JP(uθ)− JP(û)} ≥ EP

[(
∇xĤ (t)

)T
(ut − ût) dt+

∫ T

0

(dKt)
T R (t)

]
.

By (2.27), the last inequality implies that for all P ∈ P q.s.

lim
θ→0

1

θ
{JP(uθ)− JP(û)} ≥ 0.

Thus J (u) − J (û) ≥ 0. This proves that the control û is optimal for the problem

{(2.2) , (2.3) , (2.4)} .
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2.5 LQ problem

As an application of our result, in this section, we consider a one-dimensional linear

quadratic (LQ) control problem for G-Stochastic Maximum principle in which the state

equation dynamics is

 dxu
t = (atxt + btut + ct) dt+ σtdBt,

xu
0 = ξ ∈ R.

(2.30)

Our linear quadratic functional cost is given by

J (u) = EG

[∫ T

0

l (t, xu
t , ut) dt+ g (xu

T )

]
, (2.31)

where

l (t, xu
t , ut) =

1

2

(
mtu

2
t + ntx

2
t

)
, and g (xu

T ) =
1

2
(xu

T )
2 . (2.32)

The Hamiltonian H defined by

H
(
t, xu

t , ut, p̂
G (t) , Q̂G (t)

)
=

1

2

(
mtu

2
t + ntx

2
t

)
+p̂G (t) (atxt + btut + ct)+Q̂G (t)σt

d ⟨B⟩t
dt

.

(2.33)

We want to minimize (2.31) subject to (2.30) by choosing u over Uad, we can check that

all the assumptions in section 05, are satisfied. Hence, we may apply Theorem 2.2 to

solve our G-Linear Quadratic stochastic optimal control problem {(2.30) , (2.31)}.

Let (x̂t, û) be an optimal solution, and the G-adjoint equation (2.26) can be written by

 dp̂G (t) = −
(
p̂G (t) at + ntx̂t

)
dt+ Q̂G (t) dBt + dK̂t,

p̂G(T ) = x̂T .
(2.34)

51



Chapter 2. G-Stochastic Maximum Principle for Risk-Neutral Control Problem

Minimizing the Hamiltonian (2.33) , we obtain

ût = − bt
mt

p̂G (t) . (2.35)

Substituting (2.35) into the G-SDE (2.30), we get


dx̂t =

(
atx̂t −

b2t
mt

p̂G (t) + ct

)
dt+ σtdBt,

x̂0 = ξ ∈ R.
. (2.36)

Similarly, substituting (2.35) into the G-BSDE (2.34) , we get

 dp̂G (t) = −
(
p̂G (t) at + ntx̂t

)
dt+ Q̂G (t) dBt + dKt,

p̂G(T ) = x̂T .
(2.37)

Unfortunately, such a system cannot be solved explicitly. for this raison let us guess

that (2.37) admits the solution of the following form

p̂G (t) = φ (t) x̂t + χ (t) , (2.38)

for some deterministic differentiable functions φ (t) and χ (t). Application of Itô’s for-

mula to (2.38), gives

dp̂G (t) =

[
φ′ (t) x̂t + φ (t)

(
atx̂t −

b2t
mt

p̂G (t) + ct

)
+ χ′ (t)

]
dt (2.39)

+ φ (t)σtdBt.

Replacing (2.38) into (2.39), we get

dp̂G (t) =

[(
φ′ (t)− b2t

mt

φ2 (t) + φ (t) at

)
x̂t −

b2t
mt

φ (t)χ (t) + χ′ (t) + ct

]
dt (2.40)

+ φ (t)σtdBt.
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On the other hand, after substituting (2.38) into (2.37), we arrive at

 dp̂G (t) = − (φ (t) at + nt) x̂tdt+ Q̂G (t) dBt + dKt,

p̂G(T ) = x̂T .
(2.41)

By equating the coefficients of (2.40) and (2.41), it gives

(
p̂G (t) , Q̂G (t)

)
= (φ (t) x̂t + χ (t) , φ (t)σt) , (2.42)

where φ (t) is the solution of the following Riccati type equation


φ′ (t)− b2t

mt

φ2 (t) + 2atφ (t) + nt = 0,

φ (T ) = 1,

(2.43)

and χ (t) is a solution of the following ordinary differential equation


χ′ (t)− b2t

mt

φ (t)χ (t) + ct = 0,

χ (T ) = 0.

(2.44)

Replacing the value of functions φ and χ in the optimal control from state (2.35) , we

get this feedback form of the optimal control

ût = − bt
mt

(φ (t) x̂t + χ (t)) . (2.45)

Assuming that the discriminant ∆ = 4a2 + 4n
b2

m
> 0, we obtain

dt =
m

b2
dφ (t)

φ2 (t)− 2at
m

b2
φ (t) +

m

b2
nt

.
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If we denote

L (t) =
φ (T )− δ2
φ (T )− δ1

exp (2a (T − t)) , δ1 = −
2am
b2

−
√
∆

2
, and δ2 = −

2am
b2

+
√
∆

2
.

Then, we get

2a (T − t) =

∫ T

t

(
1

φ (s)− δ2
− 1

φ (s)− δ1

)
dφ (s) .

φ (t) =
δ1 − δ2L (t)

1− L (t)
. (2.46)

The explicit solution of the equation (2.44) is

χ (t) =

[
exp

(∫ T

t

b2

m
φ (s) ds

)][∫ T

t

−c exp

(∫ T

t

b2

m
φ (r) dr

)
ds

]
, (2.47)

where φ (s) is determined by (2.46).

To summarize, we have the following result.

Corollary 2.1 The Riccati equation (2.43) admits an explicit solution (2.46). Moreover

equation (2.44) admits an explicit solution (2.47).

Moreover, by Theorem 2.3, we have the following verification result.

Corollary 2.2 If equations (2.43) and (2.44) admit the solutions φ (.) and χ (.) re-

spectively, then the feedback control (2.45) of our G-linear quadratic stochastic optimal

control problem {(2.30) , (2.31)} is optimal.

Theorem 2.4 If the equations (2.43) admits the solutions φ (.) given by (2.46), then the

optimal control of our G-Linear Quadratic stochastic optimal control problem {(2.30) , (2.31)}

has the state feedback form (2.45).
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Chapter 3

Solving the Risk-Sensitive Control

Problem Using G-Stochastic

Maximum Principle for

Risk-Neutral Control Problem

In this chapter, we discuss the risk-sensitive control problem where the state is described

by G-SDE with an exponential of integral cost functional which is fundamentally dif-

ferent from the existing results. We have proved in detail four results. The first is

the stability between the perturbed solution and the optimal solution of the controlled

G-stochastic differential equations, while the second is the mean-variance uncertainty

of loss functional. Third, we apply the results of risk-neutral control problem type

to solve risk-sensitive control problem where the last result is the relation between G-

expected exponential utility and G-quadratic backward stochastic differential equation.

In addition, an important contribution of this chapter is the method of proof, which

consists of two steps outlined as follows. The first is a simple reformulation of the risk-

sensitive problem as a standard risk-neutral problem by augmenting the state with an
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auxiliary process (this new state process represents the evolution of the cost over time).

An intermediate G-maximum principle is then obtained by a standard application of

risk-neutral result to the augmented problem where the second adjoint equation is a

nonlinear G-backward stochastic differential equation (G-BSDE see [14]) and the first

adjoint equation is linear. We study a class of stochastic control problems of the type

(for simplicity in one dimension)

 dxt = b (t, xt, ut) dt+ h (t, xt, ut) d ⟨B⟩t + σ (t, xt, ut) dBt,

x (0) = x0 ∈ Rn,

where b, h and σ are uniformly Lipschitz, x0 is the initial state. The cost functional to

be minimized over the class of admissible controls has the form

EG

[
exp ε

(
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

m(t, xu
t , ut)d ⟨B⟩t

)]
.

This chapter is organized as follows. In section 01, we formulate the problem and give

the various assumptions used throughout this part and proof of some results about

the stability between the perturbed solution and the optimal solution of the controlled

G-stochastic differential equations. In section 02, we introduce the mean-variance un-

certainty of loss functional that has been studied by [6] with details in the classical

case of linear expectation. Section 03, is devoted to applying and proving in detail

risk-neutral control problem to solve our problem of risk-sensitive control problem. In

section 04, we give and prove the relationship between the G-expected exponential util-

ity and the G-quadratic backward stochastic differential equations. In the last section,

we give an example of Merton’s problem with power utility and here we basically use

G-Girsanov’s theorem.
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3.1 Statement of risk-sensitive control problem un-

der G-expectation

Let T be a strictly positive real number and U is a nonempty convex subset of R. A

controller then intervenes on the system via an Ft-adapted stochastic process u. The

set of those controls is called admissible and denoted by Uad. When the controller acts

with u under almost every P ∈ P ,

Uad =
{
u| u is Ft-adapted process with valued in U , u ∈ M2

G (0, T )
}
.

Let us now consider some systems, whose evolution is described (for simplicity) by

the canonical G-Brownian motion B, u ∈ Uad and initial state x0 ∈ R. Then for all

0 ≤ t ≤ T we set

 dxu(t) = b (t, xu
t , ut) dt+ h (t, xu

t , ut) d ⟨B⟩t + σ (t, xu
t , ut) dBt

xu (0) = x0 ∈ R.
(3.1)

We define the risk-sensitive cost functional under G-expectation type associated with

(3.1) with terminal cost as follows

J ε (u) = EG

[
exp ε

(
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

m(t, xu
t , ut)d ⟨B⟩t

) ]
, (3.2)

= sup
P∈P

EP
[
exp ε

(
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

m(t, xu
t , ut)d ⟨B⟩t

)]
,

:= sup
P∈P

JPε(u),

where u ∈ Uad and ε is the risk sensitivity index.

Assumption 3.1 We recall the following assumptions

(A1) The functions b, h, σ, l,m : [0, T ]×R× U → R are given and satisfying b (., x, u),
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h (., x, u), σ (., x, u), l (., x, u), m (., x, u) ∈ M2
G (0, T ) and g : R → R for each x ∈ R

and u ∈ U.

(A2) There exists constant κ such that

|φ (t, x, u)− φ (t, y, w)| ≤ κ (|x− y|+ |u− w|) for each x, y ∈ R and u,w ∈ U where

φ := b, h, σ, l,m.

Theorem 3.1 (See [30]) Under the above assumption, for every u ∈ Uad the equation

(3.1) has unique strong solution x ∈ S2
G (0, T ) and the standard estimates show that

EG

[
supt∈[0,T ] |xt|2

]
< ∞.

Our objective is to minimize the functional J ε over Uad. If û ∈ Uad is an optimal

control, that is

J ε (û) = inf
u∈Uad

J ε (u) . (3.3)

Remark 3.1 The set Uad of all admissible controls is convex.

A control that solves the problem {(3.1) , (3.2) , (3.3)} is called optimal. If an optimal

control minimises the cost J ε over Uad exists, we seek necessary optimality conditions

checked by this control in the form of G-stochastic maximum principle.

Assumption 3.2 We will work under the following standard assumptions

(A1) Assume b, h, σ, l and m are continuously differentiable with respect to (x, u) .

(A2) All the derivatives of b, h, σ, l and m are uniformly bounded by C (1 + |x|+ |u|) .

(A3) g is continuously differentiable with respect to x and its derivative is uniformly

bounded by C (1 + |x| ) .

Remark 3.2 It is not easy to solve the problem {(3.1) , (3.2) , (3.3)} and seek the nec-

essary condition by the classical method. For this reason, we may follow a new method.

We may introduce an auxiliary state process yut which is solution of the following G-SDE

dyut = l (t, xu
t , ut) dt+m(t, xu

t , ut)d ⟨B⟩t , yu0 = 0.
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From the above auxiliary process, our control problem of {(3.1) , (3.2) , (3.3)} is equiv-

alent to 

inf
u∈Uad

EG [f ε (xu
T , y

u
T )] ;

subject to

dyut = l (t, xu
t , ut) dt+m(t, xu

t , ut)d ⟨B⟩t ;

dxu
t = b (t, xu

t , ut) dt+ h (t, xu
t , ut) d ⟨B⟩t + σ (t, xu

t , ut) dBt;

yu (0) = 0; xu (0) = x0;

(3.4)

where

J ε (u) = EG

[
exp ε

(
g (xu

T ) +

∫ T

0

l (t, xu
t , ut) dt+

∫ T

0

m(t, xu
t , ut)d ⟨B⟩t

) ]
;

= EG [exp ε (g (xu
T ) + yuT )] ; u ∈ Uad;

= EG [f ε (xu
T , y

u
T )] .

We will use a method which consists in perturbing the optimal control û as follows

uθ
t = ût + θ (ut − ût) . (3.5)

We denote by xθ
t , y

θ
t the trajectories of the system corresponding to uθ

t as follow


dyθt = l

(
t, xθ

t , u
θ
t

)
dt+m(t, xθ

t , u
θ
t )d ⟨B⟩t ; 0 ≤ t ≤ T.

dxθ
t = b

(
t, xθ

t , u
θ
t

)
dt+ h

(
t, xθ

t , u
θ
t

)
d ⟨B⟩t + σ

(
t, xθ

t , u
θ
t

)
dBt;

yθ (0) = 0; xθ (0) = x.

(3.6)

Since Uad is convex, we have the perturbed control uθ ∈ Uad, hence uθ is an admissible

control and from the optimality of û, we have

J ε
(
uθ
)
≥ J ε (û) .
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Then

EG

[
f ε
(
xθ
T , y

θ
T

)]
− EG [f ε (x̂T , ŷT )] ≥ 0.

In this case, using the property 03 of definition 1.1, we get

EG

[
f ε
(
xθ
T , y

θ
T

)
− f ε (x̂T , ŷT )

]
≥ 0. (3.7)

The next Lemma gives the stability between the perturbed solution and the optimal

solution of the controlled G-stochastic differential equations.

Lemma 3.1 Let û ∈ Uad be an optimal control and (x̂, ŷ) the corresponding trajectories.

Then under the assumptions 3.1 and 3.2, we have

lim
θ→0

EG

[
sup

t∈[0,T ]

∣∣xθ
t − x̂t

∣∣2] = 0. (3.8)

lim
θ→0

EG

[
sup

t∈[0,T ]

∣∣yθt − ŷt
∣∣2] = 0. (3.9)

Proof. Let x̂, ŷ, xθ, yθ denote the solution of the systems (3.4) and (3.6) respectively.

The proof of (3.8) is the same as lemma 3.9 [7]. For the second limit (3.9), Applying

G-Hölder’s inequality and G-BDG inequality (1.7) yields that

EG

[
sup

t∈[0,T ]

∣∣yθt − ŷt
∣∣2] ≤ 4T

∫ T

0

{
EG

[∣∣l (s, xθ
s, u

θ
s

)
− l
(
s, x̂s, u

θ
s

)∣∣2]
+EG

[∣∣l (s, x̂s, u
θ
s

)
− l (s, x̂s, ûs)

∣∣2]} ds

+ 4σ4T

∫ T

0

{
EG

[∣∣m (s, xθ
s, u

θ
s

)
−m

(
s, x̂s, u

θ
s

)∣∣2]
+EG

[∣∣m (s, x̂s, u
θ
s

)
−m (s, x̂s, ûs)

∣∣2]} ds.

Since the coefficients l and m are Lipschitz with respect to (x, u), we easily obtain the
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following estimate

EG

[
sup

t∈[0,T ]

∣∣yθt − ŷt
∣∣2] ≤ 4Tκ(1 + σ4)

∫ T

0

EG

∣∣xθ
s − x̂s

∣∣2 ds
+ 4Tκ(1 + σ4)

∫ T

0

EG

∣∣uθ
s − ûs

∣∣2 ds.
By sending θ → 0 and using the first limit we arrive at the desired result (3.9).

We introduce the short hand notation for the sake of simplicity: ϱ (t, xu
t , ut) = ϱu (t),

ϱ (t, x̂t, ût) = ϱ̂ (t), ϱ
(
t, xθ

t , u
θ
t

)
= ϱθ (t) and ϱx(t) =

dϱ
dx

(t, xt, ut) for all ϱ = b, h, σ, l and

m.

Lemma 3.2 We assume that the assumptions 3.2 are satisfied, then we have



dYt =
(
l̂x (t)Xt + l̂u (t) (ut − ût)

)
dt

+(m̂x (t)Xt + m̂u (t) (ut − ût)) d ⟨B⟩t ,

dXt =
(
b̂x (t)Xt + b̂u (t) (ut − ût)

)
dt

+
(
ĥx (t)Xt + ĥu (t) (ut − ût)

)
d ⟨B⟩t

+(σ̂x (t)Xt + σ̂u (t) (ut − ût)) dBt,

Y0 = 0, X0 = 0,

(3.10)

where Yt = limθ→0
1
θ

(
yθt − ŷt

)
and Xt = limθ→0

1
θ

(
xθ
t − x̂t

)
are the variational equations

along the optimal control.

Proof. Using Taylor’s expansion with an integral remain on the function b
(
t, xθ

t , u
θ
t

)
,

h
(
t, xθ

t , u
θ
t

)
, σ
(
t, xθ

t , u
θ
t

)
, l
(
t, xθ

t , u
θ
t

)
and m

(
t, xθ

t , u
θ
t

)
at the point (x̂, û) and using (3.5),
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we get for all φ = b, h, σ, l and m

1

θ

(
φ
(
t, xθ

t , u
θ
t

)
− φ (t, x̂t, ût)

)
(3.11)

=

∫ 1

0

1

θ
φx

(
t, x̂t + λ

(
xθ
t − x̂t

)
, ût + λθ (ut − ût)

) (
xθ
t − x̂t

)
dλ

+

∫ 1

0

φu

(
t, x̂t + λ

(
xθ
t − x̂t

)
, ût + λθ (ut − ût)

)
(ut − ût) dλ.

Since all the derivatives of b, h, σ, l and m are continuously with respect to (x, u) and

by using the limit with respect to θ goes to zero for every member in the side of (3.11)

we obtain the desired result.

Lemma 3.3 Under the assumptions 3.2, we have

lim
θ→0

EG

[
sup

t∈[0,T ]

∣∣∣∣1θ (xθ
t − x̂t

)
−Xt

∣∣∣∣2
]
= 0, (3.12)

lim
θ→0

EG

[
sup

t∈[0,T ]

∣∣∣∣1θ (yθt − ŷt
)
− Yt

∣∣∣∣2
]
= 0, (3.13)

where (X, Y ) is the solution of the system given by (3.10) .

Proof. For the first limit, we follow the same as lemma 3.11 [7]. For the second limit, by

replacing ŷt, y
θ
t and Yt with their values in equations (3.4) , (3.6) and (3.10) respectively,

if we put for simplification ỹθt = 1
θ

(
yθt − ŷt

)
− Yt, where ỹθt : [0, T ] × R × U → R and

Λ̃θ
s :=

(
s, x̂s + λθ

(
x̃θ
s +Xs

)
, ûs + λθ (us − ûs)

)
, we get

ỹθt =

∫ 1

0

∫ t

0

lx

(
Λ̃θ

s

) (
x̃θ
s +Xs

)
dsdλ+

∫ 1

0

∫ t

0

lu

(
Λ̃θ

s

)
(us − ûs) dsdλ

+

∫ 1

0

∫ t

0

mx

(
Λ̃θ

s

) (
x̃θ
s +Xs

)
d ⟨B⟩s dλ+

∫ 1

0

∫ t

0

mu

(
Λ̃θ

s

)
(us − ûs) d ⟨B⟩s dλ

−
∫ t

0

(
lx (s)Xs + l̂u (s) (us − ûs)

)
ds−

∫ t

0

(m̂x (s)Xs + m̂u (s) (us − ûs)) d ⟨B⟩s .

According to the sublinearity of the G-expectation EG, G-Hölder inequality and the
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limit (3.12), we have

EG

[
sup

t∈[0,T ]

∣∣ỹθt ∣∣2
]
≤ C1

∫ 1

0

∫ t

0

EG

∣∣∣lx (Λ̃θ
s

)
x̃θ
s

∣∣∣2 dsdλ
+ C2

∫ 1

0

∫ t

0

EG

∣∣∣mx

(
Λ̃θ

s

)
x̃θ
s

∣∣∣2 dsdλ+ EG

[
sup

t∈[0,T ]

∣∣ρθt ∣∣2
]
,

where

EG

[
sup

t∈[0,T ]

∣∣ρθt ∣∣2
]
≤ C3

∫ t

0

EG

∣∣∣∣∫ 1

0

{
lx

(
Λ̃θ

s

)
− l̂x (s)

}
Xsdλ

∣∣∣∣2 ds
+ C4

∫ t

0

EG

∣∣∣∣∫ 1

0

{
mx

(
Λ̃θ

s

)
− m̂x (s)

}
Xsdλ

∣∣∣∣2 ds
+ C5

∫ t

0

EG

∣∣∣∣∫ 1

0

{
lu

(
Λ̃θ

s

)
− l̂u (s)

}
(us − ûs) dλ

∣∣∣∣2 ds
+ C6

∫ t

0

EG

∣∣∣∣∫ 1

0

{
mu

(
Λ̃θ

s

)
− m̂u (s)

}
(us − ûs) dλ

∣∣∣∣2 ds.
Since all the derivatives of l and m are continuous and bounded and by using the

Lebesgue’s bounded convergence theorem, we obtain the limit of the term EG

[
supt∈[0,T ]

∣∣ρθt ∣∣2]
equals 0 when θ goes to 0. So that, we can use (3.12) to find the limit (3.13) .

In the following part, we explore the relationship between risk-neutral and risk-sensitive

performance cost functional.

3.2 Mean-variance uncertainty of loss functional

We denote by Aε(T ) = exp ε (g (xu
T ) + yuT ), and we can put also

Θ(T ) = g(xu
T ) + yuT . (3.14)
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The risk-sensitive loss functional under G-expectation is given by

Ψ(ε) :=
1

ε
log [EG [exp (εΘ(T ))]] . (3.15)

Lemma 3.4 Let Ψ(ε) be the loss functional written as (3.15), where Θ(T ) is given

by (3.14). Then, if the risk-sensitive index ε is small, the loss functional Ψ(ε) can be

verified the following

Ψ(ε) ≤ µ+
ε

2
(σ2 − µ2) + o(ε), (3.16)

where µ := EG [Θ(T )] ;σ2 := EG [Θ2(T )] and µ2 := EG [Θ(T )]2 .

Proof. Applying the limited expansion on the function f (x) = exp(εx) with rang two

around zero, yields that

f (x) = exp(εx) =
2∑

n=0

(εx)n

n!
= 1 + εx+

(εx)2

2
+ o(ε).

Replacing x by Θ(T ), we get

exp (εΘ(T )) = 1 + εΘ(T ) +
(εΘ(T ))2

2
+ o(ε).

By taking G-expectation and using its properties, we have

EG [exp (εΘ(T ))] = EG

[
1 + εΘ(T ) +

(εΘ(T ))2

2
+ o(ε)

]

= 1 + EG

[
εΘ(T ) +

(εΘ(T ))2

2
+ o(ε)

]
.

Then

log [EG [exp (εΘ(T ))]] = log

[
1 + EG

[
εΘ(T ) +

(εΘ(T ))2

2
+ o(ε)

]]
.

If we take y = EG

[
εΘ(T ) + (εΘ(T ))2

2
+ o(ε)

]
, and by using the limited expansion of the
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function g(y) = ln(1 + y) with rang two in neighborhood of zero, we get

g(y) = ln(1 + y) =
2∑

n=1

(−1)n−1

n
yn.

Hence, replacing y by its value, we obtain

log [EG [exp (εΘ(T ))]] = EG

[
εΘ(T ) +

(εΘ(T ))2

2
+ o(ε)

]

− 1

2
EG

[
εΘ(T ) +

(εΘ(T ))2

2
+ o(ε)

]2
+ o(ε)

≤ εEG [Θ(T )] +
ε2

2
EG

[
Θ2(T )

]
− θ2

2
EG [Θ(T )]2

− ε4

8
EG

[
Θ2(T )

]2
+ . . .+ o(ε)

≤ εEG [Θ(T )] +
ε2

2

(
EG

[
Θ2(T )

]
− EG [Θ(T )]2

)
+ o(ε).

By replacing µ := EG [Θ(T )] ;σ2 := EG [Θ2(T )] and µ2 := EG [Θ(T )]2 we get the desired

result.

Remark 3.3 The right-hand side of (3.16) tends to µ since ε goes to 0.

3.3 Applying risk-neutral G-stochastic maximum prin-

ciple

Let us introduce the G-adjoint equations of controlled G-SDEs with risk-sensitive per-

formance cost. We suppose that the assumptions 3.1−3.2 hold. Then, for all 0 ≤ t ≤ T

there exists a unique Ft-adapted triplet (−→p G(t),−→q G(t),
−→
k G(t)) where

−→p G(t) :=

 pG1 (t)

pG2 (t)

 ;−→q G(t) :=

 qG1 (t)

qG2 (t)

 ;
−→
k G(t) :=

 kG
1 (t)

kG
2 (t)

 ;
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that solves the following system matrix of G-BSDE



 dpG1 (t)

dpG2 (t)

 = −


 0 0

l̂x(t) + m̂x(t)
d⟨B⟩t
dt

b̂x(t) + ĥx(t)
d⟨B⟩t
dt


 pG1 (t)

pG2 (t)


+

 0 0

0 σ̂x(t)
d⟨B⟩t
dt


 qG1 (t)

qG2 (t)


 dt+

 qG1 (t)

qG2 (t)

 dBt

+

 dkG
1 (t)

dkG
2 (t)

 ;

 pG1 (T )

pG2 (T )

 =

 f ε
y (xT , yT )

f ε
x(xT , yT )

 ;

(3.17)

where, for i = 1, 2,
(
pGi , q

G
i , k

G
i

)
∈ G2

G (0, T ) . To this end, we may define the Hamiltonian

Hε associated with the optimal state dynamics (x̂t, ŷt)t∈[0,T ] and the couple of adjoint

processes (−→p G(t),−→q G(t),
−→
k G(t)) given by

Hε(t) = Hε(t, x̂t, ŷt, ût,
−→p G(t),−→q G(t)) (3.18)

=

[
l̂(t) + m̂(t)

d ⟨B⟩t
dt

]
pG1 (t) +

[
b̂(t) + ĥ(t)

d ⟨B⟩t
dt

]
pG2 (t) + σ̂(t)

d ⟨B⟩t
dt

qG2 (t).

In the rest of this section, we give a proof of Theorem 3.2. The main ingredients

are Taylor’s expansion with an integral remainder of the state trajectory and the cost

functional with respect to the perturbation of the control variable. Let us make it more

precise below.

Theorem 3.2 Suppose that the assumptions 3.1 and 3.2 hold. If (x̂t, ŷt)t∈[0,T ] is an

optimal solution of the risk-neutral control problem (3.4). Then, there exist Ft-adapted
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processes (pG1 , q
G
1 , k

G
1 ) and (pG2 , q

G
2 , k

G
2 ) that satisfy (3.17), such that

EG

[∫ T

0

Hε
u

(
t, x̂t, ŷt, ût,

−→p G
t ,

−→q G
t

)
(ut − ût) dt

−
∫ T

0

X−
t dk

G
2 (t)−

∫ T

0

Y −
t dkG

1 (t)

]
≥ 0,

(3.19)

for all u ∈ Uad, almost every t ∈ [0, T ].

Proof. By applying Taylor’s expansion on the function f ε
(
xθ
T , u

θ
T

)
at the point

(x̂T , ûT ) , we get

f ε
(
xθ
T , y

θ
T

)
− f ε (x̂T , ŷT ) = f ε

x(x̂T , ŷT )
(
xθ
T − x̂T

)
+ f ε

y (x̂T , ŷT )
(
yθT − ŷT

)
.

We have x̃θ
t =

1
θ

(
xθ
t − x̂t

)
−Xt and ỹθt =

1
θ

(
yθt − ŷt

)
− Yt, then

x̃θ
t +Xt =

1

θ

(
xθ
t − x̂t

)
.

ỹθt + Yt =
1

θ

(
yθt − ŷt

)
.

By using (3.7) , we get

0 ≤ 1

θ
EG

[
f ε
x(x̂T , ŷT )

(
xθ
T − x̂T

)
+ f ε

y (x̂T , ŷT )
(
yθT − ŷT

)]
= EG

[
f ε
x(x̂T , ŷT )

(
x̃θ
T +XT

)
+ f ε

y (x̂T , ŷT )
(
ỹθT + YT

)]
= EG

[
pG2 (T )

(
x̃θ
T +XT

)
+ pG1 (T )

(
ỹθT + YT

)]
.

By sending θ → 0, we get

0 ≤ EG

[
pG2 (T )XT + pG1 (T )YT

]
. (3.20)
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Using integration by parts for G-Itô’s processes to pG2 (t)Xt and pG1 (t)Yt, we obtain

d
(
pG2 (t)Xt

)
= pG2 (t)dXt +Xtdp

G
2 (t) +

〈
pG2 , X

〉
t
.

= pG2 (t)
[(

b̂x (t)Xt + b̂u (t) (ut − ût)
)
dt

+
(
ĥx (t)Xt + ĥu (t) (ut − ût)

)
d ⟨B⟩t +(σ̂x (t)Xt + σ̂u (t) (ut − ût)) dBt

+Xt

[
−
((

l̂x(t) + m̂x(t)
d ⟨B⟩t
dt

)
pG1 (t) +

(
b̂x(t) + ĥx(t)

d ⟨B⟩t
dt

)
pG2 (t)

+σ̂x(t)
d ⟨B⟩t
dt

qG2 (t)

)
dt+ qG2 (t)dBt + dkG

2 (t)

]
+ (σ̂x (t)Xt + σ̂u (t) (ut − ût)) q

G
2 (t)d ⟨B⟩t ,

and

d
(
pG1 (t)Yt

)
= pG1 (t)dYt + Ytdp

G
1 (t) +

〈
dpG1 , dY

〉
t
.

= pG1 (t)
[(

l̂x (t)Xt + l̂u (t) (ut − ût)
)
dt

+(m̂x (t)Xt + m̂u (t) (ut − ût)) d ⟨B⟩t] + Yt

(
qG1 (t)dBt + dkG

1 (t)
)
.

As G-Itô’s integral is a symmetric G-martingale and kG
1 , k

G
2 are non-increasing contin-

uous G-martingales, then by Proposition 1.3.7 in [33], we obtain

EG

[
pG2 (T )XT + pG1 (T )YT

]
= EG

[∫ T

0

pG2 (t)̂bu (t) (ut − ût) dt+

∫ T

0

pG2 (t)ĥu (t) (ut − ût) d ⟨B⟩t

+

∫ T

0

σ̂u (t) (ut − ût) q
G
2 (t)d ⟨B⟩t +

∫ T

0

pG1 (t)l̂u (t) (ut − ût) dt

+

∫ T

0

pG1 (t)m̂u (t) (ut − ût) d ⟨B⟩t −
∫ T

0

X−
t dk

G
2 (t)−

∫ T

0

Y −
t dkG

1 (t)

]
.
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Then by (3.20) and the definition of Hε we get

EG

[∫ T

0

Hε
u

(
t, x̂t, ŷt, ût,

−→p G
t ,

−→q G
t

)
(ut − ût) dt

−
∫ T

0

X−
t dk

G
2 (t)−

∫ T

0

Y −
t dkG

1 (t) ≥ 0

]
.

3.4 G-expected exponential utility and G-QBSDE

In this part, we tend to prove the relationship between the G-expected exponential util-

ity and the G-quadratic backward stochastic differential equation (G-QBSDE). First of

all, it is very important to write the G-expected exponential utility under the following

form

exp(εΥε
t) = EG [Aε(t, T ) |Ft ]

= EG

[
exp ε

(
g(xu

T ) +

∫ T

t

mu(s)d ⟨B⟩s +
∫ T

t

lu(s)ds

)
|Ft

]
.

(3.21)

The process Υε is the first component of the Ft-adapted triplet of processes (Υε, N,K) ,

which is the unique solution of the following G-QBSDE

 dΥε
t = −lu(t)dt−

(
mu(t) +

ε

2
|N(t)|2

)
d ⟨B⟩t +N(t)dBt + dKt,

Υε
T = g(xu

T ),
(3.22)

where Υε ∈ S2
G (0, T ) , N ∈ H2

G (0, T ) , K is a non-increasing G-martingale with K0 = 0

and KT ∈ L2
G(ΩT ).

For more details about the expected exponential utility optimisation and about the

G-QBSDE, the reader can visit the papers [5] and [16, 17].

Lemma 3.5 The assertions (3.21) and (3.22) are equivalent.
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Proof. Assume that

exp (εΥε
t) = EG

[
exp

(
ε

(∫ T

t

lu(s)ds+

∫ T

t

mu(s)d ⟨B⟩s + g(xu
T )

))
|Ft

]
.

Multiplying the two sides of the above expression by exp
(
ε
(∫ t

0
lu(s)ds+

∫ t

0
mu(s)d ⟨B⟩s

))
.

Fortunately, we have exp
(
ε
(∫ t

0
lu(s)ds+

∫ t

0
mu(s)d ⟨B⟩s

))
is a continuous function.

Thus, it is a measurable function w.r.t. Ft and exp
(
ε
(∫ t

0
lu(s)ds+

∫ t

0
mu(s)d ⟨B⟩s

))
>

0. Then by the positive homogeneity property of the sublinear expectation, we obtain

exp

(
ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

= EG [Aε(T ) |Ft ] , (3.23)

where F0 = {∅,Ω}.

According to the G-martingale representation theorem (see Theorem 1.6) and under the

assumption Aθ(T ) ∈ L2
G(ΩT ), there exist Z ∈ H2

G(0, T ) and a non-increasing continuous

G-martingale K with K0 = 0 and KT ∈ L2
G(ΩT ), such that for every t ∈ [0, T ] we get

exp

(
ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

= EG [Aε(T )] +

∫ t

0

Z(s)ds+Kt q.s..

For t = 0, we have exp (εΥε
0) = EG [Aε(T )] q.s.. Then

exp

(
ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

−exp (εΥε
0) =

∫ t

0

Z(s)dBs+Kt. (3.24)

Applying G-Itô’s formula on (3.24), we obtain

ε (lu(t)dt+mu(t)d ⟨B⟩t) + εdΥε
t +

ε2

2
⟨dΥε

t , dΥ
ε⟩t

= exp

(
−ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))(

Z(t)dBt + dKt

)
q.s..

(3.25)
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Hence the right side of (3.25) is a G-martingale. Then

ε2 ⟨dΥε, dΥε⟩t =
(
Z(t) exp

(
−ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
)))2

d ⟨B⟩t .

Thus

dΥε
t = −lu(t)dt−

(
mu(t) +

ε

2
|N(t)|2

)
d ⟨B⟩t +N(t)dBt + dKt,

where

εN(t) := Z(t) exp

(
−ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

.

εdKt := exp

(
−ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

dKt.

Indeed, exp (εΥε
T ) = EG [exp (εg(xu

T )) |FT ] = exp (εg(xu
T )). Then

ln exp (εΥε
T ) = ln exp (εg(xu

T )) .

Finally, we get

Υε
T = g(xu

T ).

The second step in this proof is the other side. Suppose that (3.22), we have

d(exp (εΥε
t)) + ε exp (εΥε

t) (l
u(t)dt+mu(t)d ⟨B⟩t) = ε exp (εΥε

t) (N(t)dBt + dKt) .

Multiplying the two sides of the above expression by exp ε
(∫ t

0
lu(s)ds+

∫ t

0
mu(s)d ⟨B⟩s

)
,
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yields that

exp

(
ε

(∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

d [(exp (εΥε
t))

+ε exp (εΥε
t) (l

u(t)dt+mu(t)d ⟨B⟩t)]

= ε exp

(
ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

(N(t)dBt + dKt) . (3.26)

But, we have

d

(
exp ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

= exp

(
ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

(εdΥε
t + εlu(t)dt+ εmu(t)d ⟨B⟩t) .

(3.27)

By (3.26) and (3.27) we notice that

d(exp

(
ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

)

= ε exp

(
ε

(
Υε

t +

∫ t

0

lu(s)ds+

∫ t

0

mu(s)d ⟨B⟩s
))

(N(t)dBt + dKt) .

Then

EG

[
exp

(
ε

(
Υε

T +

∫ T

0

lu(r)dr +

∫ T

0

mu(r)d ⟨B⟩r
))

|Ft

]
= EG

[(
exp

(
ε

(
Υε

t +

∫ t

0

lu(r)dr +

∫ t

0

mu(r)d ⟨B⟩r
))

+ε

∫ T

t

exp

(
ε

(
Υε

s +

∫ s

0

lu(r)dr +

∫ s

0

mu(r)d ⟨B⟩r
))

N(s)dBs

+ε

∫ T

t

exp

(
ε

(
Υε

s +

∫ s

0

lu(r)dr +

∫ s

0

mu(r)d ⟨B⟩r
))

dKs

)
|Ft

]
.

Using the second property in proposition 3.2.3 [33] and the Independence property of
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EG [. |Ft ], yields that

EG

[
exp ε

(
Υε

T +

∫ T

0

lu(r)dr +

∫ T

0

mu(r)d ⟨B⟩r
)
|Ft

]
= exp ε

(
Υε

t +

∫ t

0

lu(r)dr +

∫ t

0

mu(r)d ⟨B⟩r
)

+ EG

[
ε

∫ T

t

exp ε

(
Υε

s +

∫ s

0

lu(r)dr +

∫ s

0

mu(r)d ⟨B⟩r
)
N(s)dBs

+ε

∫ T

t

exp ε

(
Υε

s +

∫ s

0

lu(r)dr +

∫ s

0

mu(r)d ⟨B⟩r
)
dKs

]
.

Pay attention that G-Itô’s integral is a symmetric G-martingale and for any φ(.) ∈

M2
G(0, T ),

∫ T

t
φ(t)dKt is a G-martingale if and only if φ(.) ≥ 0 a.e., q.s.. Then we get

EG

[
exp ε

(
Υε

T +

∫ T

0

lu(r)dr +

∫ T

0

mu(r)d ⟨B⟩r
)
|Ft

]
= exp ε

(
Υε

t +

∫ t

0

lu(r)dr +

∫ t

0

mu(r)d ⟨B⟩r
)
.

By the positive homogeneity property of EG and as Υε
T = g(xu

T ), we have

exp (εΥε
t) = exp

(
−ε

∫ t

0

lu(r)dr − ε

∫ t

0

mu(r)d ⟨B⟩r
)
EG [exp ε (Υε

T

+

∫ T

0

lu(r)dr +

∫ T

0

mu(r)d ⟨B⟩r
)
|Ft

]
= EG

[
exp ε

(
g(xu

T ) +

∫ T

t

lu(r)dr +

∫ T

t

mu(r)d ⟨B⟩r
)
|Ft

]
.

We get the desired result.
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3.5 Merton problem with power utility

Our system is governed by a G-Stochastic differential equation under the form for all

0 ≤ t ≤ T  dxu
t = xu

t ute
3td ⟨B⟩t + xu

t ute
−3tdBt,

xu
0 = 1.

(3.28)

The functional should be minimized, over the set of admissible controls Uad as described

in the beginning of section 3.1, is given under the G-expectation for all u ∈ Uad

J (u) = EG

[
3x

1
3
T

]
. (3.29)

Using G-Itô’s formula to ln xu
t , we get

d (lnxu
t ) =

(
e3tut −

1

2
e−6tu2

t

)
d ⟨B⟩t + ute

−3tdBt.

Then, the explicit solution of (3.28) , can be given as

xu
t = exp

{∫ t

0

(
e3sus −

1

2
e−6su2

s

)
d ⟨B⟩s +

∫ t

0

use
−3sdBs

}
.

The cost functional with respect to G-expectation (3.29) , gets the form

J (u) = EG

[
3 exp

{
1

3

∫ T

0

(
e3sus −

1

2
e−6su2

s

)
d ⟨B⟩s +

1

3

∫ T

0

use
−3sdBs

}]
(3.30)

= 3EG

[
exp

{
− 1

18

∫ T

0

e−6su2
sd ⟨B⟩s +

1

3

∫ T

0

use
−3sdBs

}
× exp

{∫ T

0

(
1

3
e3sus −

1

9
e−6su2

s

)
d ⟨B⟩s

}]
.

G-Girsanov’s theorem for G-expectation and G-martingale allows us to put

ξε (T ) = exp

{
1

3

∫ T

0

e−3tutdBt −
1

18

∫ T

0

e−6tu2
td ⟨B⟩t

}
.
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By (1.9) we note that and Z(t) = ute
−3t. We can rewrite (3.30) with respect to the

new G-expectation ẼG under the G-Brownian motion Bε
t = Bt − 1

3

∫ t

0

e−3susd ⟨B⟩s for

every t ∈ [0, T ] as follows

J ε (u) = 3ẼG

[
exp

{∫ T

0

(
1

3
e3sus −

1

9
e−6su2

s

)
d ⟨Bε⟩s

}]
. (3.31)

The minimum of the new cost functional with respect to G-expectation ẼG, is given by

J ε (u) = 3 inf
u∈Uad

ẼG

[
exp

{∫ T

0

(
1

3
e3sus −

1

9
e−6su2

s

)
d ⟨Bε⟩s

}]
.

Then, it is very easy to verify that the optimal control in a weaker sense is the solution

of the function u 7−→ 1
3
e3tut − 1

9
e−6tu2

t , hence

ût =
3

2
e9t. (3.32)

The G-adjoint equation related to optimal control (3.32) of a linear G-backward stochas-

tic differential equation can be defined as a G-conditional expectation representation

as follows

p̂G(t) = (x̂t)
−1 EG

[
(x̂T )

1
3 |Ft

]
= (x̂t)

−1 (x̂t)
1
3 EG

[
exp

{
− 1

18

∫ T

t

e−6sû2
sd ⟨B⟩s +

1

3

∫ T

t

ûse
−3sdBs

}
× exp

{∫ T

t

(
1

3
e3sûs −

1

9
e−6sû2

s

)
d ⟨B⟩s

}
|Ft

]
= (x̂t)

− 2
3 ẼG

[
exp

{∫ T

t

(
1

3
e3sûs −

1

9
e−6sû2

s

)
d ⟨Bε⟩s

}
|Ft

]
.
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By replacing the optimal control with its value given in the expression (3.32) , the

optimal G-adjoint process can be written as

p̂G(t) = (x̂t)
− 2

3 ẼG

[
exp

{∫ T

t

(
1

3
e3sûs −

1

9
e−6sû2

s

)
d ⟨Bε⟩s

}
|Ft

]
= (x̂t)

− 2
3 ẼG

[
exp

{∫ T

t

1

4
e12sd ⟨Bε⟩s

}
|Ft

]
.

We know that the distribution of the quadratic variation process of G-Brownian motion

does not change under the transformation. Then

p̂G(t) = (x̂t)
− 2

3 EG

[
exp

{∫ T

t

1

4
e12sd ⟨B⟩s

}
|Ft

]
= (x̂t)

− 2
3 sup
P∈P

EP
[
exp

{∫ T

t

1

4
e12sd ⟨B⟩s

}
|Ft

]
= (x̂t)

− 2
3 exp

(∫ T

t

1

4
e12sds

)
; P-a.s..

On one hand, by using G-Itô’s formula to (x̂t)
− 2

3 exp

(∫ T

t

1
4
e12sds

)
, and replacing the

optimal control by its value in (3.32) , we have

dp̂G(t) = d

(
(x̂t)

− 2
3 exp

(∫ T

t

1

4
e12sds

))
= −p̂G(t)e6tdBt +

1

4
e12tp̂G(t) (d ⟨B⟩t − dt) . (3.33)

On the other hand, by using our result, found in the previous sections, the G-adjoint

equation (2.26), we get

dp̂G(t) = −ut

(
e3tp̂G (t) + e−3tq̂G(t)

)
d ⟨B⟩t + q̂G(t)dBt + dkt. (3.34)

By identifying (3.33) with (3.34), we first obtain

q̂G(t) = −p̂G(t)e6t.
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Second, and by replacing the value of q̂G in (3.34), we get

dkt =
1

4
e12tp̂G(t) (d ⟨B⟩t + dt) . (3.35)

Remark 3.4 We have got that the process (dkt)t∈[0,T ] has the explicit form (3.35), with

respect to ⟨B⟩t and t, which is non trivial process.
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This thesis is concerned with recent advances in G-SMP and contains two main results,

the first result is the Theorems 2.2 and 2.3, where the system is governed by G-SDE

(2.2), establishing the necessary and sufficient optimality conditions respectively using

an almost similar scheme as in Xu [46] while the control problem model studied is

different from our model. The proof is based on the convexity condition of the set of

admissible controls. The form of the maximum condition (2.27) is very similar to its

counterpart (see Theorem 2.1, [46]) with the non-increasing G-martingale (K(.)) in the

G-adjoint equation (2.26) there replaced by (−k(.)). In the G-framework, the situa-

tion is complicated by the presence of the third component of the G-adjoint equation

which is the non-increasing G-martingale (K(.)), and the main difficulty is to get the

stochastic maximum principle since the sublinear operator EG in the main Theorem 2.2

can not be deleted. The second main result is the Theorem 3.2, suggests G-SMP for

the system of type control given in the form of risk-sensitive performance, as our best

acknowledgement that these results are a good extension of the results established by

Chala in [5]. The main difference between our risk-sensitive optimal control problem

(3.1), (3.2), (3.3) and usual risk-neutral problems is the exponential-of-integral type

cost functional (3.2) which contains also the volatility uncertainty term d ⟨B⟩t.

Note that if we substitute ε = 0 in (3.16), the risk-sensitive loss functional Ψ(ε) is

dominated by the risk-neutral cost functional EG [Θ(T )] and this is due to the subaddi-

tivity of EG [.]. Despite the success of proving the result of Theorem 3.2 which is a good
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G-SMP for risk-neutral control problem, it is not a desirable one. Since augmenting the

state process with the auxiliary process y yields a system of two G-adjoint equations

that appears complicated to be solved in concrete situations, which are all left for our

future exploration.

Following this study, several perspectives are considered. We plan to deal with the

optimal control problem where the state equation is driven by G-Brownain motion.

• Stochastic maximum principle for risk-sensitive control problem.

• Maximum principle for G-stochastic control systems with controlled jump diffu-

sions.

As future perspectives, It will be interesting to treat applications in finance in case of

volatility uncertainty, controlled G-BSDEs and the problem of mean-field control.
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