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Introduction

In a letter to L'Hospital in 1695, Leibniz asked the following question: “Can the meaning of
integer-order derivatives be generalized to non-integer-order derivatives?” L’Hospital was

very curious about that question and replied to Leibniz by asking what would happen

d"x (t 1
dﬁs) if n = 3 Leibniz wrote a letter dated 30 September 1695, in

order to explain the answer to the query raised by L’Hospital, known as the birthday
of fractional calculus, which mentioned “It will lead to a paradox, from which one-day
useful consequences will be drawn.” This was the beginning of fractional calculus. Many
famous mathematicians, namely Liouville, Riemann, Weyl, Fourier, Abel, Lacroix, Leibniz,
Griinwald, and Letnikov, contributed to fractional calculus over the years. Recently,
various types of fractional differential and integral operators have been developed, namely
the Riemann-Liowville fractional integral and derivative, Caputo fractional derivative,
Griinwald-Letnikov fractional derivative, and Riesz fractional derivative [33, 40, 12, 17,
2, 15, 45, 14, 49].

Fractional calculus is a mathematical subject dating back over 300 years. But throughout
these centuries, this topic developed slowly and was even neglected for some time due to the
lack of a geometric interpretation of these derivatives and the lack of realistic applications
for them. A few years ago, the subject received more attention from researchers and
developed rapidly. Recently, more considerable interest has been attributed to the applications
of fractional derivatives in several fields. Due to the availability of computers for numerical
computations, fractional-order differential equations have attracted the attention of many
researchers because of their interesting potential applications in many fields of science and
engineering [11, 25, 27]. As many physical phenomena cannot be correctly modeled by
integer differential equations, there is a need for fractional-order differential equations.

Another reason stands in the non-local property of fractional differential equations, for
which the next state of a system not only depends on its current state but also on its
previous states. Therefore, fractional differential equations have become popular and have
been applied to many actual dynamic systems.

In addition, applications of fractional calculus have been reported in several fields such
as: signal processing, image processing, automatic control and robotics, these examples,
and many other similar samples perfectly clarify the importance of consideration and
analysis of dynamical systems with fractional order models.

Another theory that is developing in parallel with fractional derivation, such is the
theory of dynamical systems, which aims to study physical systems..., that change over
time. It has its origins in the work of Henri Poincaré (1854-1912). There are important
differences in many aspects between ordinary differential systems and the corresponding

to the term



fractional differential systems, for example, in qualitative properties. Most of the properties
of ordinary systems cannot be simply extended to the case of fractional order systems. The
purpose of this thesis is study is the stability of fixed points for two discrete chaotic systems
extracted from continuous chaotic systems.

The first chapter, we give some essential preliminary notions, used in the fractional
derivation and contain several definitions and properties of the integration and the derivation
of different types of fractional order, which are necessary in the following chapters of this
work.

The second chapter, we mentioned what is related to chaotic behavior and the two
mathematical principles that explain chaotic behavior, namely Devaney [20] and Li-Yorke
[34], and properties of the chaotic attractor and types of attractor. We have provided some
definitions of discrete dynamic system and bifurcation, local stability of fixed points, and
stability of periodic orbits, exponents of Lyapunov, because dynamic behaviors depend on
the instability and non-linearity of dynamic systems.

In the third chapter, we mentioned some discretization methods used to construct the
discrete time model of a continuous time differential equation, such as explicit and implicit
Euler’s scheme [51], Taylor method [43], Runge-Kutta [8], predictor-corrector |19, 18, 21,
6], and nonstandard finite difference methods [28, 52, 29, 54, 41, 42, 44, 10, 7, 32, 39,
38|, and piecewise constant approximation method [4]. Some of these are based on the
approximation technique of the derivatives, and conversely, some others on the integral.

In the fourth chapter, we presented two examples of the fractional chaotic continuous
system, extracted from them discrete systems using the method mentioned in the articles
[23, 1, 24, 22, 3, 31, 53, 30, 35|, studied the stability of the fixed points, and confirmed the
validity of the theoretical results numerically.



Chapter 1

Fractional Derivatives and Fractional
Integrals

1.1 Fractional Derivatives and Fractional Integrals

1.1.1 Specific Functions for Fractional Derivation

In this section, we present the Gamma and Mittag-Leffler functions, which will be used
later in this work. These functions play a very important role in the theory of fractional
calculus.

Gamma Function

We start by considering the Gamma function (or second order Euler integral), denoted
I'(.) represented in Figure 1.1.
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Figure 1.1: Gamma Function.



The gamma function is defined as:

I'(p) :/ e P ldx,
0

where p > 0.
The basic properties of the Gamma function are:

1. The function I (p) is continuous for p > 0.
2. The function I" (p) obeys the property:
I'(p+1)=pl(p).

3. The following relations are also valid:

I'(p+n) (p+n—1)---(@+1pl'(p), neN,
ra) = 1,

'n+1) = nl
ro) = 4oo.

Beta Function

Here we consider the Beta function, denoted Beta function B.
The Beta function, or the first order Euler function, can be defined as:

1
B(p,q) = / 2P~ (1 —2)7 ! da,
0

where Re (p) > 0 and Re (q) > 0.
The basic properties of the Beta function are:

1. For every p > 0 and ¢ > 0 we have:

B(p,q) = B(q,p)-

2. For every p > 0 and ¢ > 1, the Beta function satisfies the property:

qg—1
B(p,q) = ————B(p,q—1).
(p:q) pp— (p.g—1)

3. For every p > 0 and ¢ > 0, it is valid the identity:

I'(p)T (q)
F'(p+aq)

4. For every p > 0, and for the natural number n, it can be proved

B(p,q) =

(1.2)



Mittag-LefHler Function

The exponential function e?, plays a very important role in the theory of integer order
differential equations. Its one-parameter generalization, is the Mittag-Leffter function.

We introduce the one- and two-parameter Mittag-Leffler functions, denoted as Ep(-)
and E, 4(-), respectively.

e The one-parameter Mittag-Leffler function (E),), is defined as:

Ep(z):kzof(pk+1)’ Re (p) > 0.

e The two-parameter Mittag-Leffler function (E, ), is defined as:

e k
z
Epq(2) = § ; Re(p) > 0,Re(q) >0, g€ C.
= T'(pk + q)

For particular values of p and ¢ it results:

o0 k oo
z
Eoa(2) =) =>
k=0 I (pk T 1) k=0
o Zk ;
E“(Z):Zr(kﬂ)_ ’
k=0
> 2k 1o k1 e —1
E = == =
12(2) ;r(lHQ) zkzzo(k:—l—l)' z
> 2k 1 o= zht2 ef—1—z
E = == =
13(2) Zr(k:+3) zzz(k+2)| 2
k=0 k=0
o0 zk B
Bro(2) =) ¢ *)
k=0

Laplace Transforms

Let f(t) be a real or complex-valued function of the (time) variable ¢ > 0 and s is a real or
complex parameter. Then the Laplace transform of f(t), denoted by L£{f(t)}, is defined
by

Fs) = L0} ()= | T et (1) di

0

= lim ' e St f (t) dt. (1.3)

T—>00 0

If the integral in (1.3) is convergent at so € C, then it converges absolutely for s € C
such that Re (s) > Re (sg).



The inverse Laplace transform is denoted by

. 1 c+1i00 o
LTHAF(s)}t)=f(t) = / e F (s) dt, c= Rel(s). (14)

278 Jo—ioo

In which £ and £~ are linear integral operators.

Proposition 1.1.1 /33, 48/ If the Laplace transforms of f and g exist, then the Laplace
transform of the convolution product verifie

L(f*g)(s)=L(f)(s).L(g)(s), (1.5)
with the convolution product of f and g is defined by
(f*9) / ft—2) (1.6)

Proposition 1.1.2 The Laplace transform of the derivative of ordern € N* of the function
f s given by

£ (1) () = 2 () - S [0 0] =snep (- ot [k 0 )]
=0 k=0

(1.7)

Proof 1.1.3 From relation (1.3) and by integration by parts, hence the result.

1.1.2 Fractional Derivatives and Fractional Integrals

Definition 1.1.4 (Fractional Integral of Order o)
For every a > 0 and a local integrable function f (t), the left fractional integral of order
« 1s defined:

2 f(t):r(la)/ (t = 2)° f (2) da, s <a<t<o (1.8)

Alternatively, it can be defined also the right fractional integral

b
I f(t):F(la)/t (x— 6)° f (2) da, Cso<t<b<oo (L9

For particular values of the a and b parameters, the following cases are known:

e Riemann: a =0, b = +o0.

e Liouville: ¢ = —o0, b= 0.



Riemann-Liouville Fractional Derivatives

Definition 1.1.5 (Fractional Derivative of Riemann-Liouville Order «)
Let f be an integrable function. For every «, the Riemann-Liouville fractional derivative
of ordre o can be defined as:

oD f(t)zl<d>n/t(t—x)”_a_1f(x)dx:D”[aIt"0‘ f®], n-1<a<n, t>a,

T (n—a) \dt
(1.10)
hence D" = d—n
ot
In particular
o for a =0, we have:
DY f)=D[ ;™0 FO)] =), (1.11)

o for a =m € N, we have:

oD f(t) =DM T f ()] = DM GO f(H)] =DMD [ JIF f(1)] =DMf(t).
(1.12)

Remark 1.1.6 For a € N, the fractional derivative of Riemann-Liouville coincides with
the usual derivative.

Proposition 1.1.7 If C is o constant, then:

Cx™@
OD?C:W’ where 0 < o < 1.
Example 1.1.8 Fora>0,n—1<a <n, f>n—1 the Riemann—Liouville derivative
of the function f (t) = t°, we can write:

t
I= oD th = L 4 (t—2)" 1 2Pda
0+ I'(n—a)dt™ J ’

and we take:
x=uyt, dx=tdy.

It follows:
I = 1dn/1 (t — )" (yt)’ td
- T(n—a)dn ), Y Y 4
1 dn 1
— tn—oz—&—ﬁ/ 1o] 1 n—a—ld
T —a) di" Y (I-y) Y,

but

dr o C'(p+1) p—n

dtn F(p—n+1) ’

I'(p)I'(g)

! 1
B(p,q) = /pr‘l(l—y)q_ dy = Tpta)



so that it results:

1 F(B—l—1)F(n—a)lﬂ(n—a—|—ﬂ+1)tﬁfa

a B8 _ _
oDt 7 = I_F(n—a)r(n—a+ﬁ+1) I'(—a+p+1) ’
F(/B+1) t,Bfa
I'(—a+p+1) '

Example 1.1.9 Fora >0, n—1<a<n, 8 >n—1,a € R the Riemann—Liouville
derivative of the function f (t) = (t — a)®, we can write:

= JI¥ —aﬁ:L t — ) Nz —a) dx
= up (=0 =g [ -0 - o e

The following change of variable

T —a
=y dz=(t—a)dy,
allows to calculate:
(?f—-OL)O“JrﬁL/’1 s a1 (t—a)’
I = ——— | vv(Q-y)* dy=-——"~—B(a,f+1),
T o VY Tl C@fth
r (6 —+ 1) a+f
= 17 (=
and e
«a _\B _ % n—a _\B
WDF (t—a)? = o | (t—a)’]
and finally:
T 1 dm r 1
D¢ (t _ a)ﬁ _ (B + ) (t . )n—a+6 _ L (t _ a)ﬂ—a )

T T(n—a+B+1)dm L(B—a+1)

Theorem 1.1.10 For 0 < a <1, ¢,9 € Ca,b] the following integration rules are valid:

b b
/ 6(x) o ¢ (z)dr = / Bt g () dt, (113)
b b
/ F() oD2 g () dt = / g(x) D f(t)dt, (1.14)
where I D¢ f(x)= f(x).

Proof 1.1.11 We use the Dirichlet theorem, written in the form:

/abdaz/axf(az,t)dt:/abdt/tbf(x,t)dx

o For the case (1.13), we introduce the following notation:

¢ (x) ¥ (1)
[ (a) (z — )"

f($7t) =



in the Dirichlet theorem. It results:

/¢> dx—/w ) g o (t)dt

e For the case (1.14), we introduce in (1.13):

Dy f)=0(t), oDF g(@)=v(z), off oDF f(zx)=[(2).

Theorem 1.1.12 For n — 1 < a < n, p is a positive integer and I**P  DP, ,D&TP

exists. The following integration and derivation rules are volid:

w W IDF0) =t £ - S ).
b ulp [0F 10] =0 % et f))
off' | oD = P _Tla—k+1)
(t —a)*
o Dol f®] = oI [DF O]+ 55— (@)

Ao WIf £ = W7 DO+ S [t DA 0,
el a k (t — a)Oé—k’
e- DP [ I f(1)] = oIff [DPf(t)]+ >0 Df()m-

Proof 1.1.13 a- Integrating by parts, it results:
JOTUDF (1) = f (t—x)* f (v)dx

I(a+1)
= ! —SL‘a T @ t _$a71 2) dx
r((a+1))(f )f()a+1“(a+1)f“(t )L f (z) da,
t—a) a t a—1
_1Et(a+)£)f(a)+ar(a) [Ht—2)* " f(2)d,

e AORRANICE

b- We using a in Theorem (1.1.12), it results:

(t _ a)afl

I= WIf W DFF O] =~y oDF Wiy + olf LD 0]
_ (t a)ail a—1 (t a)a*Q a—2 a—2 a—2
N I'(a) oD e ['(a—1) DY ()]i—y + WIPT DT (@)]
- (t_a)a_k a—
== Fa—kgD 0|, +10




c- We have: . .
JEF 0 = s [ (=) @)
and
DoIff(t) ] =D [ oD f () ] = oDi7"f (1) = oIP7'f(D)
B N (t _ a)afl
= WF D]+ ).
d- We using a in Theorem (1.1.12), it results:
JEDF 0] = W50 - S @)
we have
a+2 2 a+1 (t B a)aJrl
DA @] = I DS (0] = g DF (O
—a [ —a a+1
= P50 - @ = S D Ol
a+3 [ 3 _ rat2 P2 (t—a)**
aIt [D f(t)] - aIt [D f(t)] - F(a—|—3) D f(t)‘t_a7
—a a —a a+1 —a a+2
= aIta (t) - (t ) f(a)_ (;(aj_2) f(t)‘t:a_ (;(Oz—?-:g)

I'(a+1)

JETP[DPF (O] = QIR

Hence

2

10

D f (t)‘t:a ’



11

We have
2 « (t — a)a_z
D*[I}f(t)] = D I [Df(t)]+Df (a)m,
2 (t—a)*? (t—a)*
= off (DY) + DS () Ty + D ) Ty
31 1o _ a 2 2 (t—a)’ 2 (t—a)*?
DLIEF O] = DI [P 0]+ D2 (o) g+ D2 )
2 2 (t— a)a_3 2 (t— G)Q_Z
= Dl [P (0] + D (@) [ + DA ()
—a a—3 —a a—2
= gy (D)4 D @ s @ s )
« k t — a)a i
DP[ IR f(t)] = oIf [DPf(2 +ZD m
Theorem 1.1.14 For f € C[a,b]. The exponents property:
P f() = JTPF(t),  Va,B8>0. (1.15)

Proof 1.1.15 For a, 8 > 0, it results:

a B . 1 t _[Ea—l xl,_ Bp-1 T
I= oI If()_F(a)I‘(ﬁ)/(t ) /a( y)" f (y) dzdy,

// (t — )~ (= )~  (y) dady,

we apply the Dirichlet equality

/:/jﬂy)dwdy:/;/ytﬂy)d:cdy.

We obtien

o 1 t t _:Cafl T — Bs—1 X
I_I‘(OL)F(B)/CL /y (t ) ( y) f(y)d dya

and we apply the change of variable
rT=yY+=z (t - y) )

de = (t —y)dz, t—zx=(1-2)(t—-y),



12

// (1=2)* "t —y)* P =) (- y) f (y) dzdy,
1
T O ) / (1= )" 2 ey,

F(a)F(ﬁ) a 0
=T (a)lr (B) / (t =) (y) B, ) dy,
B 1 t _atp-1 ['(a)T(B)
S IE T A MR e
_ (a1+6) (t— ) f(y) dy,
= JoP

Theorem 1.1.16 Forn—1<a<n, m—1< g <m, and I, Df , an
The following integration and derivation rules are valid:

a- DF [/ (D] = WDFOF () -

exists.

(t —a)*F
t=a T (a+1—k)

b ol [P (0] = I r )~ £ DI |
(t—a)y "

e WDp [WDYF O] = DI - £ DI | e

k=1

Proof 1.1.17 a-

DF [P 0] = S e [ r 0] = S P 0] = uDp )

dtn dtn
b-
o=z (D 0)] = g f = D2 )]
(t —a)* 1
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o
L= W[l 0] = (Z Sl =yt [D2f ()] da
= [0t 50| ( v > +
m—la—n@)nfi( 2 (DI f ()] da,
- DI (1) Z DEEF (1) | (t—a) "

t:aF(l—a—k)'

Theorem 1.1.18 Let f(t), g (t) functions defined on [a,b], as D f(t), Dff g(t)
exists almost everywhere. Moreover, C; € R, i = 1,2, so:

aIta [le (t) + 029 (t>] = C’1 aIf[ f(t) + CQ aIta g(t) (116)
Proof 1.1.19
IE (O 0)+ Cag (0] = s [ =0 e @)+ Cag @) dn,
. (10) / (t—2)* f (2) do + cgr(la)/ (t—2)* g (2) dx,
- Cl aIta f(t) +C2 aIta g(t) .

Lemma 1.1.20 Thatisa >0, n = [a]+1 and f € L' (0,b), the Laplace transform of the
Riemann-Liouville fractional integral is formulated as follows:

Lol f) (s) = s""Lf (s). (1.17)
Proof 1.1.21 We can oI f write as a convolution of two functions g (x) = IJSOE:) and
f(t) so
1 T _ a—1
I @) =y | @0 T 0= s ),
then

xa—l

I'(«)

LI (s) = £ (

by the integral by part we have

) )£,

hence the result.
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Theorem 1.1.22 If f € L' (0,b), the Laplace transform of the Riemann-Liouville fractional
derivative is formulated as follows:

n—1
L oDPf J(s)=s"Lf(s) =D 8" [ oDF* 1 F (1], (1.18)
k=0
withn —1<a<n.
Proof 1.1.23
Ll oDg fl(s) = L[D" oI f](s), (using (1.10))
n—1
= Lo )= D" DW (o )] (using (1.7)
k=0
n—1
= s TL(f) () = 38T [DW (o 1) ()] (using (1.17))
k=0
n—1
= L) = 25 DO (o £ 1)
k=0
n—1
= L) ()= Y [P o )]
k=0
n—1
— o7 (f) (S) o 5P D(n—k—l) Izm—a—(k—i-l)—l—(k—i-l) ¥ (t) :
S foee ).
n—1

= s"L(f)(s) =Y s"[( oD 1 ) ®)] -

B
Il
o

Caputo Fractional Derivatives

In this subsection, we present the definitions and some properties of the Caputo fractional
derivative, with the relation between the Caputo and Riemann-Liouville fractional derivatives.

Definition 1.1.24 Let a > 0, n — 1 < a < n, n € N*, the Caputo derivative operator of
order « is defined as:
1 K a1 -
Dy f(t) = F(n—a)/a (t— )"t fO) (@) de = LI F (1) (1.19)
Theorem 1.1.25 Thatisa > 0, n—1 < a < n, if f has n — 1 derwatives at a and if
oDft [ exists, then:

n—1
ﬂmfm:am*Pu%- O ¢ ap|, vt (20
i !

=0




Proof 1.1.26 We have

aDta [f (t> - L
. !

=0

Using integration by parts, we get

P [f (-5 1@ a>’f]

k=0
1

- [f—a)t [f (@) - 3

I'n—a)

T T(n—a+1

= L D ) -

"= (a)
and PR
n—1
n f
N L:o k!
50 N
70 [f(t)kz_of o <ta>’“] -
and
n—1 (k)
Dy [f(t)— S <t—a>k] =
k=0 ’

15

k!

n-1 n—1
f(k) (a) (t — a)k»] = D" [f (t) — f(k) (a) (t - a)k] )

k=0

(t— a)k s a polynomial of degree n — 1 then

D" (TP DU () = D" oI oI DS (1),

P DU ()= D f(1).

Corollary 1.1.27 That is o >0, n=[a] + 1, if D¢f and SD{f emists, we suppose

que DX f(a) =0 fork=0,1,...,n—

SDF f(t)= oD f(1).

1, so:

(1.21)

Theorem 1.1.28 If f € C[a,b] andifa >0 (n—1 < a < n), we suppose que DX f (a) =

0fork=0,1,...,n—1, so:

cDp oI f()=F(1).

(1.22)
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and
n—1 (k) a
dp 0r =10 - D ap (1.23)
k=0 '

Proof 1.1.29 We suppose that If* f(t) = g (t) and by corollary (1.21) DX g (a) =0 for
k=0,1,....,n—1 so

aCDta aIta f(t): aCDta g(t): aD? g(t): aDta aIg f(t):f(t)

and
n—1 (k)
Jdf CDF f(t) = JIf WD |f(t) - fl@&taf
k=0 ’
L flR)
_ f(t)—sz!(a)(t—a)k.
k=0

Theorem 1.1.30 Let f;, i = 1,2 functions defined on [a,b], as S D fi, i = 1,2 ewist
almost everywhere. Moreover, ¢; € R, i = 1,2, so D¢ (c1f1+ cafz) ewist almost
everywhere on [a,b], and we have

OD (c1fi+cafe) =c1 §DF fi+ca $DY fo. (1.24)
Proof 1.1.31

IDf (crfi+cafa) = oI D" (c1fi + cafa),
= ¢ oI D"fi+c2 oLy D" fo,
= o ¢Df fite DY fo

Proposition 1.1.32 If C is a constant, then:
“peC = 0.
Theorem 1.1.33 If n — 1 < a < n, where n € N*| then:

lim §DFF(1) =/ (1),

[0}

lim §Dpf(t) ="V (@) - f 70 (0).

a—n—1

Proof 1.1.34 In the formula

1

¢ Do = — t — )"t ) (1) dx
SO () = oy [ =)™ 1 @),

We will use the integration by parts. It results:

011 0)= iy |- o - [ e .
0 0

n—uo

"5 ()

I'n—a) n—a
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Using the property of I' function
F'h—a+1l)=n—a)l'(n—a),
it results:

SDET (O = gy | O+ [ (=2 ) ) o).

a—n

lim §DFf (1) =" (0)+ /0 O (@) da = £ (0) 4 10 @) =1,

and

lm | 077 (0 =00+ [ (- 2) 10 @),
1 0

t
=t O+t 10 @) = af @) + [ 1 @)
= [ @) = 0D () - 10 (0).

Example 1.1.35 Fora>0,n—1<a<mn, 8 >n—1 Caputo derivative of the function
f () =t5, we can write:

1 t dn
— CpaB - = ., a\n—a—-1 % g3
I o D't F(na)/o (t—x) p dz
1 ¢ n—a—1 r (6 + 1) B—n
= T, T ey

and we take:
r=yt, dx=tdy.

It follows:
1 rB+1) 5. [ n—o—1  fn
I = Saoaraont 4w e
B 1 rg+1) ﬁ_aI‘(ﬁ—n—i—l)F(n—a)
- I'n—a)T(B—n+1) FrB—a+1) ’
F(6+1) tﬂ—a
rp—a+1l) )

Theorem 1.1.36 Forn—1< a <n,n € N and a function f(t) which obey the conditions
of Taylor theorem, then:

© ) (g
Fori) =3¢ ot

Proof 1.1.37 We can apply the Taylor expansion, because f(t) satisfy the conditions of

the Taylor theorem:
IO~ S0
FO=2 = =2t
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The Caputo derivative of f () :

« _ G f(k) (O) o _ G f(k) (O) F<k+1> k—a
68 S (0) ‘kzzorafﬂ) o optt LG T (h—atD)

and finally:

o PO
§DRf(t) = Z mtk :
k=0

Theorem 1.1.38 If f € C'[0,b], the Laplace transform of the Caputo fractional derivative
1s formulated as follows:

n—1

LL§DF f](s) =s"Lf ()= D [f 0 @) _ (1.25)

k=0

withn —1 < a <n.

Proof 1.1.39 We have
§Dg f(t)= ol f™ (1),

50

c(§0x f)s) = £( ol 1) (s),
= s (g (f(”)) (s), (using (1.17))

= "Lf(s)— Zl so kL0 )]
k=0

t=0 "

Griinwald-Letnikov Fractional Derivative

Differintegral Ordinary derivatives are defined in terms of backward differences as

f) = g“):hli%f(t)_z(t_h)v (1.26)

v _ Pf oo LR\ _ L (f()—f(t—h) f(t—h)—f(t—2h)

)= dtz(t)_hlinoh< h )_;}E}oh< h N h >
g SO —2f )+ f (- 2h) (1.27)

h—0 h?
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In general, for n € N, and f € C™ [a,b],a <t <b

> [=0F () (2~ kn)
k=0 )

D"f(t) = lim — 1.28

f(t) = lim o (1.28)

Consider base point a and define for ¢t > a, h = ;a, n is a positive integer and the
n

symbol (Z), can be generalized for negative integers as

n\ n! ~nn—1)...(n—k+1)
k) TRk k! ‘

The idea of Griinwald-Letnikov approach is based on the remark that one can express
the derivative of the integer order « (if « is positive ) and the repeated integral (—a) fois

(if o is negative ) of a function f by the following general formula:

n

Df (1) =limh >y (—1)F <2‘>f (t — kh), (1.29)

h—0
k=0

which represents the derivative of integer order o if 0 < o < n and the repeated integral
(o) fois if —n < —av < 0 with nh =t — a.

The generalization of this formula for non-integer a (0 < n—1 < o < n and (—1)F () =
—a(l-a)2-a)...(k—a-1)  T'(k—-a)

i ST T (—a)) BV
G o _ 1 —a . F(k_a) -
DY f(t) = hﬁn_hm 2 Tkt l)F(—a)f(t kh), (1.30)
and
«a k—l—Oé _ 1 ! a—1
“D;> f(t _I}LHL{LO Fk—i—l )f(t—kh)—r(a)/G(t—T) f(r)dr.

Using integration by parts of (1.31) we get:

)k‘-‘ra’ 1
k+a+1) F'n+a

D Zf [t an s

we substitute —a with o we find

n—1 (k) a —a k—a t
¢Dp f(t):kzof ng)_(ta+)1) +F(n1— 3 / (t—7)" 0 f (r)dr. (1.33)

Proposition 1.1.40 If C is a constant, then:

C

G na —
a Di C_F(l—a)

(t—a) “.



Proposition 1.1.41 For m positive integer and o non-integer we have:

dm
1S (§DF F(0) = SDFT F(t).

m—1 (k) _ _\k—a—m
2. JDp <dtmf( )) = GDIT () - P fr(/(:z(fx —C;ZL+1) '

Proof 1.1.42 1. C‘;—Z ($Dg (1)
n1 f® ( i a)k*a v
= dtm n—a—1
_ n—1 f(k) ( ) ( )k a—m 1 . e )
_kzz:o F'(k—a—-m+1) +F(n—a—m)f“(t 7) F A7) dr,

= S0 f (1)

2 00¢ (Gl )

1 0 (@) (8= )

& Tkh-atl) Tm-a
B n+m—1 f(k) (a) (t — a)k—a—m 1 t n/—m—a—1 p(n’
= 3 T m i) —i—r(n,_m_a)fa(t—T) £ () dr,

k=m

W (a) (= ) 1

kz (I;)(k:fafmqul) +F(n’fmfoz)f

e (e (e
,;::0 F'k—a—-—m+1)

el 1 @) (6= )
i—o T(k—a—-m+1)

i

= SO (1) -
Proposition 1.1.43 e [f 5 <0 and o € R then:
¢og (D7 F) = 0 ).
e [fO<m—1<p<manda<0 then:
oy (D7 £(1) = §Dr @),

only if f#)(a)=0Vk=0,1,...,m —2.
e [f0<m—-1<fB<mand0<n—1<a<n then:

Spp (9p7 f) = ¢p7 (§Df F@) = §DI F@),

only if f#) (a) =0Vk=0,1,...,r — 2 with r = max (n,m).

20
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Proof 1.1.44 e If 8 < 0 and o < 0 then:

oop (907 1) = 5 Ji ¢ =7 (€07 1 () ar,

S S ) (T (= )P £ (s) dsdr

_F(_a)lr(_ﬂ) fa (t ) fa( ) f( )d da

= [" [t =) (=) P f (s) dsdr usin e Dirichlet equali
_F(—a)lr(—ﬁ)fafs (t ) ( ) f(s)dsdr, ( g the Dirichlet equality)

=T (—a)T (=5) Sl =) F (s) fy (1= 2)7 ! 2P Ndads,
(using the change of variable T = s+ z (t(— s))) -
L g graset o T (=)
_F(—O{)F(—ﬂ)f“(t ) f(s) T (—a—5)

= Fa g e T () ds = D7 1)

e IfB<0and0<n—-1<a<nsca=a—n+n, a—n<O0 then:

ds,

¢op (¢pf 1) = jt{ pp (o7 1)},
= TSy ),

= oyttt p(t) = $DrtY ().

o [f0<m—-1<fB<manda<0 then:

L) (o) (1 — a)F B t
o0} 1= 3 T+ g [, - @ar

if f%) (a) =0Vk=0,1,...,m — 2 we have

frY @ -
T (m—f) L' (m—p

B = t — )AL m) (1 gr
cpy f (1) )/Ga ymA=t f0m) (1) g,

and (t — a)* " have non-integrable singularities so aGDerﬁ f (t) only exists if fF) (a) =
0Vk=0,1,....m—2 so

f(m—l) (a) (t _ a)mfafﬁfl

eor (€07 10) = e AN
@
N L'(m—a-p) +F(m—a—5)/a(t_7> [ (7) dr,

GDYTP F(t).
off0<m—-1<fB<mand 0<n—1<a<n then:

cop (¢pf 1) = { oy (¢nf 1)}
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only if f*¥) (a) =0Vk=0,1,...,m —2 so0:

cop (eof 1) = S { eprt f )
= SpetPof(t).

Theorem 1.1.45 If f € L' (0,b), the Laplace transform of the Griinwald-Letnikov fractional
derivative is formulated as follows:

[,( gD,?‘f ) (s) =s“Lf(s), (1.34)
with 0 < o < 1.

Proof 1.1.46 We have

FDE £ = Ty o+ e [ -0 @)
E( ng‘ f) (s) = I‘(J;(E)a)ﬁ (t_a) (s)+ L (Oftl_af’) (s),
o f(O) Ooe—st - Soz—l / s usin
_ r(1—a)/0 odt+ oL (s), (using (1.17)
_ 81_(11{(8)_0[)1“(1—a)+so‘_1(s£f(s)—f(0)), (using (1.7))
= SYLf(s).

Remark 1.1.47 For a > 1 does not exist the Laplace transform in the classical sense but
in the sense of the distributions we also have:

L(§Dgf ) (s)=s"Lf(s). (1.35)
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Chapter 2

Chaos and Local Stability of Fixed
Points

2.1 Chaos

Chaotic behavior [47, 46, 5, 9, 50, 47] is related to instability and non-linearity in deterministic
dynamic systems. The system manifests a very high sensitivity to changes in conditions,
which is affirmed by Poincaré in a chapter in his book entitled "Science et Méthode ”[5].
There is no standard definition of chaos hence the publication of several slightly different
definitions. Two important mathematical principles explain the chaotic behavior, those of
Devaney [20] and Li-Yorke [34].

2.1.1 Chaos in the Sense of Devaney

Devaney proposed the following definition of chaos: a dynamic system is chaotic if and
only if

e it is topologically transitive.
e it has a dense set of periodic orbits.
e it presents the phenomenon of sensitivity to initial conditions.

The first two assumptions imply the third without the converse being true [30].

2.1.2 Chaos in the Sense of Li-Yorke

Li and Yorke introduced the first mathematical definition of chaos. They established a
very simple criterion: "The presence of three periods implies chaos". This criterion plays
a very important role in the analysis of chaotic dynamical systems.
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2.2 Attractors

2.2.1 Types of Attractors
There are four main types of attractors:

1. fixed point: is a point in phase space towards which the trajectories tend, it is therefore
a constant stationary solution.

2. cycle limit: is a closed trajectory in the phase space towards which the trajectories
tend. It is therefore a periodic solution to the system.

\\@x

Figure 2.1: Cycle limit.

3. torus: represents the movements resulting from two or more independent oscillations,
which are sometimes called "quasi-periodic movements".

O.Os
L |
o
e 1=
. 1
Ta.1S
-1 1 |
.:l.. =

Figure 2.2: Torus.

4. Chaotic attractors (strange attractor): we observe that the trajectory in phase space
to remains confined in a well-defined region, after a transitional period of variable
duration.
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2.2.2 Properties of a Chaotic Attractors

Strange attractor manifest the following properties:

Self-similarity: the geometric pattern that repeats on scales smaller, and smaller
whatever the scale where we look at this structure, the appearance looks identical in
Figure 2.3.

Sensitivity to initial conditions: two trajectories initially very close to the phase
space diverge from each other and diverge exponentially over time, but this divergence
cannot be indefinite because the attractor has a finite diameter in Figure 2.4.

The fractal dimension: the dimension ”’d ” of the strange attractor is not integer. It
must be strictly greater than the dimension of the phase space.

Stretching and folding: The strange attractor is invariant by stretching and folding
for multiple iterations. If the system is three-dimensional, stretching the attractor by the
flow is in one direction, folding in another direction, and periodic behavior in the third
direction.

Figure 2.4: Sensitivity to initial conditions.
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2.3 General Notions of Discrete Dynamical Systems

The objective of this part is to introduce many basic concepts and techniques of discrete
dynamic systems theory.

2.3.1 Definitions

Definition 2.3.1 [46] A dynamical system is one whose state changes with time (t). Two
main types of dynamical system are encountered in applications: those for which the time
variable is discrete (t € Z or N) and those for which it is continuous (t € R).

Definition 2.3.2 [46] (Discrete dynamic system)
Let f be a function of class C' defined on an open D C R™. A discrete dynamic system
noted (D, N, f) is a relation of the form

Tnt1 = [ (x,) . (2.1)
Thus, if o represents the composition of the applications, we have
zn = " (0), (2.2)

or
fi(z)=fofo-—-of(x),¥neNand fO=Id, zg is the initial condition.

The application f is called recurrence, iteration or point transformation. If the discrete
dynamic system is invertible, the equality (2.2) remains true for n € Z.

Definition 2.3.3 [46/(Autonomous and non-autonomous discrete dynamic systems)
When the function f in (2.2) depends explicitly on time t, the system is known as
non-autonomous. Otherwise, the system is known to be autonomous.

Definition 2.3.4 [46] (Trajectories)
Given the initial point xo, we called the orbit or trajectory of the system (2.2) the
sequence

O(zo) = {z(0) ==, (1) =f(z(0),....x(n+1)=f(z(n)),...}
= {;(:0, X1, :IZQ,...,CEn,...}.

Example 2.3.5 The fized point is a simple trajectory.

2.3.2 Exponents of Lyapunov

The Lyapunov exponent denoted A can be considered a quantitative measure of sensitivity
to initial conditions ([9]). For two slightly different initial states xo and z¢ + €, their
divergence after n iterations can be characterized as follows:

£ (2o + €) — f7 (z0)] = €0

As shown in figure (2.5), the Lyapunov exponent gives the average rate of divergence
of two trajectories and depends on the initial conditions.
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(D) + S

- HS ()|l = =eAtxo?

HSCOS — = (0

Figure 2.5: Quantification of the divergence of trajectories by Lyapunov exponents.

Case of a One-Dimensional Discrete Map

|f™ (xg + &) — f™ (20)| =~ ce™ where n\ ~ In " (o +¢) = /" (o)

and for ¢ — 2 we have: c
N o~ iy If" (zo) 7
dxg
~ Ly | " (20) df"! (zo)  df! (xo)
o |dfr (o) dfn 2 () dzg
o Ly | Y (@no1) df (2n2)  df (20)
T n drn,—1  dz,_2 dxg
gl ldf (x)
T n ;1 dz; |’
finally for n — 0 we have:
n—1
A= limS o |f (w)

A is called Lyapunov exponent, he indicates the average rate of divergence.
* If A > 0 so there is a sensitivity to the initial conditions.

* If X\ < 0 trajectories are approaching and we lose information on the initial conditions.

Case of a Multidimensional Discrete Map
Let f be a discrete map from R™ to R™ :
Tpt1 = f(zn).

An m—dimensional system has m Lyapunov exponents, each of them measures the rate
of divergence along one of the axes of the system. As before we are interested in:

1™ (w0 +€) — f (20)] ~ ee™.
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Pose mz) = x¢ + €, we have the development in limited series of order 1 of f" (mé) in

the vicinity of xq following:
nean = " (w0) = /M (@0),

= f”(fﬂo)—k(#;j(j())(xz)—ﬂﬁo) — " (wo0),

_df" (xo0) (x’o _x())’

dxg
= J" (o) (156 - 960) ,

J™ (zp) denotes the Jacobian matrix of f™ at point x¢. This is an m x m square matrix,
if it is diagonalizable, that is to say if there exist two matrices P,, invertible and D,,
diagonal of the eigenvalues w; (f™ (x0)), i =1,...,m of J" such that:

T

J" = P,D,P,.

We then define the m Lyapunov exponents as follows:

.1 .
N = i s (7 ()] i = 1, m. (23)
For z* the equilibrium point the formula (2.3) becomes
1
Ai = lim—Inju; ()], i=1,...,m. (2.4)

n—0n

The following table summarizes the different Lyapunov exponent configurations discussed
earlier:

Type of attractor

Lyapunov exponent

Fixed point

Ap - <A <0

Periodic

AM=0, A, << A <0

Periodic of 2 order M=X=0 )\, < < A3 <0
Periodic of k order | A =--- =X, =0, A\, < <A1 <0
Chaotic A1>0, > A <0
i=1

Hyper-chaotic

=1

=
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2.3.3 Limit Points, Limit Sets and a Periodic Orbits

Definition 2.3.6 [37] A point z is known a limit point of the orbit O (xo) if there is a
subsequence {x,, : k=0.1,...} of O(x0) such that

li —z=o0.
k_lgloollxnk z||

Definition 2.3.7 [37] The point xo has period n or is a periodic point of period n if
[ (w0) = xo. If 3o has period n. then the orbit of zo, which is {xo, f (w0) , f? (o), ..., " (w0) }is
a periodic orbit and is called an n—cycle.

Remark 2.3.8 1. A stationary orbit has a single limit point (fized point).

2. O (zg) a p-periodic orbit has exactly p limit points.

Definition 2.3.9 [37] The limit set L(xq) of the orbit O (xo) in the set of all limit points
of the orbit.

The following is a fundamental equality between L(xg) and its image under the continuous
function f which governs the dynamical system:

f(L(z0)) = L(zo), with f (L(z0)) = {f (2) : 2z € L(x0)} .

Definition 2.3.10 /37/
An orbit O (xg) is said to be asymptotically stationary if its limit set is a stationary
state, and asymptotically periodic if its limit set a periodic orbit.

An orbit O (xg) such that x4, = z, for some n > 1 and some p > 1 is said to be
eventually stationary if p = 1 and eventually periodic if p > 1.

Hence, every eventually stationary or eventually periodic orbit is respectively, asymptotically
stationary or asymptotically periodic. The converse is not true.

Definition 2.3.11 [37]
An orbit O (xo) is stable if for every r > 0 there exists 6 > 0 such that ||zo — yol|| < 0
implies that ||z, — yp|| < r for every n > 1.

Local Stability of Fixed Points

The notion of stability plays a role in mathematics and mechanics, numerical algorithms,
quantum mechanics, economic models, nuclear physics, etc. Je, the Jacobian matrix at
the fixed point x* of the map f, to simplify the notions of the local stability of the fixed
point x*. To characterize the nature of this fixed point, we give the following definitions:

Definition 2.3.12 [26](fized points)
The point x* is a fized point of f (x) if and only if f (z*) = z*.

Remark 2.3.13 Sometimes, these points are called stationary points or equilibrium points.
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Definition 2.3.14 [26] A point T is said to be an eventually equilibrium or stationary
point for equation (2.1) or an eventually fixed point for f if there exists a positive integer
r and o fired point x* € R such that

fr@=a*, (@) #£2"

Definition 2.3.15 [26] A fized point x* is stable if for all € > 0 there exists 6 > 0 such
that
lxo — x*|| < ¢ involved ||z, — x*|| < € for all n > 1.

Definition 2.3.16 [26] A fized point x* is not stable is known as unstable.

Definition 2.3.17 [26] If all of eigenvalues of jacobian matriz strictly less than 1, then
the fized point x* of f is said to be asymptotically stable.

Definition 2.3.18 [26] If one of eigenvalues of jacobian matrixz strictly greater than 1,
then the fized point x* of f is said to be unstable.

Remark 2.3.19 This conditions of stability and instability on the eigenvalues is not necessary,
it is only sufficient.
Stability of Perodic Orbits

Definition 2.3.20 [37] A periodic orbit of period n {xg,...,Tpn_1,...} is stable if each
point x5, j =0,1,...,n— 1 is a fivred point of the dynamical system governed by f".

Remark 2.3.21 The stability of xo as a fized point of f™ guarantees(it is actually equivalent
to) the stability of all remaining points x1,...,x,—1 whenever f is continuous.

Definition 2.3.22 [37] A periodic orbit of period n {xo,...,Tn_1,...} which is not stable
is said to be unstable.

Remark 2.3.23 The orbit is unstable if one of its points xj, j = 0,1,...,n — 1 is an
unstable fized point of f™. the instability of o as a fized point of f" guarantees(it is
actually equivalent to) the instability of all remaining points x1,...,Tn—1 whenever f is
continuous.

2.3.4 Bifurcation
Definition 2.3.24 [37] Consider the following nonlinear dynamic system:
z(n+1) = f (2 (n), ) (2.5)
from where x (n) € R", p € R™ n €N and f: R" x R™ — R™.

Definition 2.3.25 [37] A bifurcation is a qualitative change of the solution x of the system
(2.5) when we modify the control parameter p, i.e. the disappearance or change of stability
and the appearance of new solutions.

Definition 2.3.26 [37] A bifurcation diagram is a portion of the parameter space on which
all the bifurcation points are represented.
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Gruwth Fata

Figure 2.6: Bifurcation diagram.
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Chapter 3

Discretization Methods

There are many discretization methods that have been used to construct the discrete
time model using continuous-time methods such as Euler’s method, Runge-Kutta method,
Taylor method, predictor-corrector method, non standard finite difference methods, and
piecewise constant approximation method. Some of them are approximations for the
derivative and some for the integral. The methods are used because, for most fractional
differential equations, obtaining an exact analytical solution is very complicated; thus, it
is necessary to turn to numerical methods.

3.1 Presentation of the Initial-Value Problem

Let us consider the following initial-value problem:

n—1
0D (1) + 3 p (DI e () £ pa (Da(t) = f(1), 0<t<T<oc  (31)
j=1

(0D a ()], =bk, k=1,2,...,n, (3.2)

t=0

where

12

Ok Qg A —1 ay o,
D oD DY D

Ok—1 ~ Q-1 Ap—2 ol
oD} ~ D oD DM

k

O = ZO&j, k:1,2,...,n,
j=1

0 < o; <1, j=1,2,...,n,

pr (t), 5 =1,2,...,n are continuous functions on [0, 7], and f (t) € L' (0,T), i.e.

T
/ IF (8)] dt < oo.
0

An equation that is not linear is called nonlinear.



3.2 Euler’s Method

The initial value problem of fractional differential equations

{ oDz (t) = f (t,z (1)),

x (a) = .

33

(3.3)

The fractional derivative is in Riemann-Liouville sense with the order 0 < a < 1 and
t € [a,b], f € R. If we apply the Riemann-Liouville fractional derivative of 1 — a order on
(3.3), and use the properties of fractional integration and fractional derivative, we get the

following equation:
{ Z(t)=F(tz(t)= D" f(tz(t)),
x (a) = xp.

1 d .t —a
m% fa (t—7)"%f(r,x)dr.

We cut the time domain according to step h, where h = (t,11 — t) -

F(t,:L') = aDtlia f(tam) =

3.2.1 Explicit Euler Method
Tpt1 = Tn+h [F (ta Z (t)) |t:tn] )
z (a) = xo.
3.2.2 TImplicit Euler Method
{ Tnt1 =2Tn +h [F (t,x (1)) |t=tn+1] )

x (a) = .

3.3 Taylor Method

3.3.1 Generalized Taylor’s Formula

Theorem 3.3.1 (Generalized mean value theorem)
Suppose that f (t) € Ca,b] and ¢D{ € C(a,b], for 0 < a < 1, then we have

1 o o
f(t)Zf(a)+m( SDEf)(©)-(t—a)”,
with a < & <t, YVt € (a,b].
Proof 3.3.2 From (1.8) we have
1 t
(I (ED21) 0 = 5 [ =2 (D8F ) @)
Using the integral mean value theorem, we get
1 t
(I (€088 )W) = 7y (§D80)© [ =) aa,
1

= m( IDf ) (&) (t—a),

(3.4)

(3.5)
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with a < & < t.
From (1.23) we have

(I (SD2f ) (1) = F(t) — £ (a),

£ =F(a) 4t

m( IDEf ) (€ (t—a)®.

Remark 3.3.3 If a =1, the generalized mean value theorem reduces to the classical mean
value theorem.

Theorem 3.3.4 Suppose that S DPef (t) aCDlE”H)O‘f(t) € C(a,b], and 0 < a <1
then we have

(a7 (§Dpaf ) () = (" (S )) (1) = ;t(;a“j 5 (6Df ) <a(>, |
3.6

where
C nna C C C ;
JD= D¢ . YDy .- (DY (n-times).

Proof 3.3.5 We have
(a2 (§Dpof ) (0 = (2D (DD f ) (1)
= @I (SDps ) @) = (alpe oIy (SDIVNE ) (1) (using (1.15))

N ( (Sppef ) t)—( I (ch+1 ))(t)) (using (1.16))
= oI ((EDPf) (8) = (ol §DF ) (SDPF) (1))

= uIpe ((Dpef ) (t) [( SDpf ) ) = (EDpf ) (a)])

= oIpe [(TDFf ) (a)]

_ Iw;ayé (t— )" ( CDEf ) (a) do

= ~— = (&DIf ) (a).

Theorem 3.3.6 (Generalized Taylor’s formula)
Suppose that CDFCf (t) € C(a,b] for k =0,1,...,n+ 1, where 0 < a < 1, then we
have

(&pfrr )@

0= @msDatD

(t—a ”+1O‘+Zr(t(2_@il (SDef ) (@), (37
1=0

with a < € <t,Vt € (a,b], and D> = D¢ . YD ... CDg (n-times).
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Proof 3.3.7 From (3.6), we have

S (i €018 ) ()= (w1 ey ) () =3 s

=0 1=0

(DI f ) (a),

and

n

S (i §Dif ) ) = (I SO Y () = £ (O (oL"V CDI D ) (1),

=0

S0 }
- (n+Da o ~(n+1)a _ . (t — a)m C Mio
O = (a0 IDf 0 ) (0 > Fasn (D) @),
Using the integral mean value theorem, we get
¢
(n+1)a ¢ (n+1)a I S _ \mdDa-1 (¢t
(aIt aDt f > (t) F((n—i—l)a) /a (t 1’) (aDt f) (.Z') d.I',

(gD er ) ()

. _a(n l)oc.
= Tt Dasy 0"

So

_a(” Da nw 1o a
(=" 3 F e (6D ) @

Approximation of functions through the generalized Taylor’s formula

Theorem 3.3.8 Suppose that SDff(t) € C(a,b] for k = 0,1,...,n+ 1, where 0 <
a <1, then

N e}
PO =P80 =Y o (6D ) @,
1=0

and the error term RS (t) has the form

( anDEN—H)af ) (f)
T(N+1Da+1)

Ry (t) = (t —a) M+,

with a < & < t.

Proof 3.3.9 The larger the N, the greater the Pg (t) and the lower the error RY (1),
because t approaches a in this case.



36

3.3.2 Series Solutions of Fractional Differential Equations

In this part, we use the generalized Taylor’s formula to solve fractional differential equations.
This method is very useful and can be applied to solve many important fractional differential
equations with non constant coefficients.

To solve a fractional differential equation using the generalized Taylor formula, we write
the solution as a fractional series of the form:

Z "T (na+ 1) na—i—l

and writing each term in the dlﬁerential equation as a fractional power series, equate
the coefficients of the resulting series on both sides of the equation, and finally find the
unknown coefficients in the series representation of the assumed solution.

Example 3.3.10 Consider the initial value problem
6D (t) =Xe(t), x(0)= o, (3.8)

where 0 < a <1, AeR andt > 0.
Using the generalized Taylor’s formula, assuming that the solution x (t) can be written

as
tno

H=S ecp— . .
z(?) ZC I'(na+1) (39)
n>0

From the definition of Caputo fractional deriative (1.19), we obtain
c 1 ¢ :

Dgx (t = — t—y) @

1 t tna—l
= — t—y) n—=——d
r(1—a)/0 (t=v) ;C T (na) Y

C1

= -— = "o )@ ©2 b a1 R
= F(l—a)r(a)/ot (t—v) dy+F(1—oz)F(2a)/0t (t—y) “dy+---,

we pose z = % then

§Dpa(t) = —— o 1 227N (1 —2) %dz + el /1 2l (1—2)°
0t L(1—a)T(a)f I(l-a)T(20) Jy
 al(@)T'(1—«a) o' 2a)T (1 — ) t¢
 T(1-a)T(a)T(1) T(1—a)l(2a)(1+a) ’
t(n=1o
- chF((n— Da+1)

And equation (3.8) becomes

Z T ha+ 1) T (n Z (na + 1 =0,

n>0 n>0

dz+’
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no

m#Oso Cn+1 — A = 0 with ¢g = z (0) = xq,

we get

that 1is
cn = \xg. (3.10)

Substituting (3.10) into (3.9), we obtain the solution

)\ta
— E, (¢
xoz na—i—l OZ ' (na+1) = z0Ba (X),

where Eq, (t) is the Mittag—Leffler function.

Example 3.3.11 Consider the fractional differential equation

as

§D#x (t) + §Dgx(t) —2x(t) =0, (3.11)
where D} = §Dg . D¢ | andt > 0.
Using the generalized Taylor’s formula, assuming that the solution x (t) can be written
=> (3.12)
=0 F (na+1)

From the definition of Caputo fractional derivative (1.19), we obtain

t(n—1o
D¢z (t) =) cp : (3.13)
0t ; F'((n—1)a+1)
and _2)
§ Dz n 14
;C (n—2)a+1) (314)

And equation (3.11) becomes

fna
7; (Cnt2 + cnp1 — 2¢n) ThatD =0,
na

we gel F(T"'l) %0 50 cpyo + cna1 — 2¢, = 0.
This gives

co = 2cq —c1, c3 = —2¢o + 3c1,c4 = 6y — Heq, - (3.15)
Substituting (3.15) into (3.12), we obtain the solution

20 30 Ao
T = < <1+2F(2a+1) T Bar D) TatD +> +

to t2a t3a t4a
¢ - +3 ~5 T+ ).
F(a+1) T(a+1)  TBa+1) T(da+1)
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3.4 Non Standard Finite Difference Methods

NSFED schemes, which were first proposed by Mickens ([38]). This class of schemes and
their formulations center on two issues. First, how should discrete representations for
derivatives be determined, and second, what are the proper forms to be used for nonlinear
terms.

We can discretize the fractional differential equation

{ Dex (t) = f(t,z (), te€[0,T]

2(0) = ap, (3.16)

To apply Mickens’ scheme, we have chosen the Griinwald—Letnikov method approximation
for the fractional derivative as follows:

Dy (t) = limh Y~ (~1) (‘;‘>x (t — jh), (3.17)
j=0

t
where n = 7 and [t] denotes the integer part of ¢ and h is the step size.

Therefore , equation (3.16) is discretized in the next form,
n
Y Sanj=f(tnan), n=123,.., (3.18)
j=0

in this expression, n — 1 < o < n, n € N, T is the final time, z,, is the approximation
of z(tn), tn = nh, ¢f is the Griinwald-Letnikov coefficient defined as:

_ _ o« 1+« )
g =h"%, c?:ha(—l)]<j>:<1— ; )cjo-‘_l, j=1,2,3,..., (3.19)

3.4.1 Non Standard Finite Difference Scheme

The non-standard finite difference (NSFD) schemes were first proposed by Mickens. A
scheme is called nonstandard if at least one of the following two conditions is satisfied:

1. a nonlocal approximation is used for nonlinear terms appearing in the system.

2. the discretization of derivatives is not traditional and uses a non negative function.

dz x(t+h)—z(t
In standard discretization, the derivative term — is replaced by (t+h) ( )

h
x(t+h)—z(t) .
5 () , where ¢ (h) is

a continuous function of step size h, and this function has the following properties:

However, in the Mickens schemes this term is replaced by

¢(h)=h+o(h*), 0<¢(h)<1 where h — 0. (3.20)
For example, of the function ¢ (h) that satisfy these conditions are [Mickens, 2000]
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¢(h)=h, e"—1, sin(h), sinh(h), In(1+h), 1—e " etc. (3.21)
The nonlinear terms f(x (t)) on the right-hand side in (3.16) can be in general replaced
by nonlocal discrete representations[Mickens, 2000]. For example

2 Tp—1+ Tp
€T — InpTp+l, Tn—1Tn, Tp—1Tn+1, # Tn—1,

3 Tpt+1 + Tp—1 2 Tp—1+ Tp ) 2
. — (2 T # Tpn_1, LTp—1Tn, Tpn—2Tn—1Tn,
xy = 22y —xY — 2Tp41Yn — Tnt1Yntls  Tntl¥Yn,  TnYntl

Now we extend the above-mentioned approach to the fractional differential equation
(63 —
x (0) = xp,
For this purpose, we employ the discretized Griinwald—Letnikov approximation formula
from relation (3.18). Therefore, we can provide a modification of the NSFD scheme in the
fractional sense as follows:

Z; 1 CfTn1—j + [ (tng1, Tns1)

S o , n=0,1,2,...,

where
o —a o j (07 1+ o o .
§ = (6 ()™, cj:<—1>f(j):<1— j ) J=1.2.3...

Example 3.4.1 Consider a fractional-order generalization of the Rossler system [47]. In
this system, the integer-order derivatives are replaced by fractional-order derivatives, as

follows:

Do (1) = —y (1) — 2 (¢),

Dy (t) =z (t) + ay (t), (3.23)
D¥z(t)=b+z(t)(x(t) —¢),

where (x,y,z) are the state variables and (a,b,c) are positive constants. Applying

Mickens’ scheme by replacing the step size h by a function ¢ (h) and using the Grinwald-
Letnikov discretization method, yields the following equations:

Z;H_(} ;11 T (tny1-j) = =y (tn) — 2 (tn) ,
Z?;+01 ?2y (tn-i-l—]) =Z (tn—f—l) +a (2y (tn) ) (tn-‘rl)) )

S S (bng1—g) = b+ 2 (tng1) 2 (tn) — @ (tnr1) 2 (tng1) — ¢z (tn)

to simplify, we have the following relations:

- En+1 = (tn+1—j) -y (tn) -z (tn>

1

x (tn+1) 2 J Cal )

0
(tni) = - Z?Jrll C;my( nt1-5) + 2 (tns1) + 2ay (tn)
y n+1 . 0842 + a )
— ZJ 1 cj?’z( nti—j) + 0+ 2z (thy1) 2 (tn) — cz (ty)

< (tn+1) a3 ’

o’ + @ (tnt1)
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where ¢g' = (¢ (h))™™", &g* = (¢ (h)) ™™, ¢§° = (¢(h))™™*, & (h) = sin(h).

3.5 Piecewise Constant Method

In the following, we consider an initial value fractional differential equation of the form:
6 Dfx(t) = f(z(t))
0t )
{ 2 (0) = 0. (3.24)

where 0 < o < 1 and f(z(t)) is potentially a nonlinear vector field.
The corresponding equation with a piecewise constant argument

SDYx (t) = f (x (h [ZD) . (3.25)

With time step h. The piecewise constant function is chosen so that in the limit of
small h we recover the original equation, i.e.

lim f (a; (h [ZD) — fx (). (3.26)

Has been used a unit step function, defined by

0 t<o0,
u(t):{ Lo (3.27)

we rewrite the right-hand side equation (3.25) as a sum, giving

DY (t) = Z f(x(mh)) (u(t —mh)—u(t—(m-+1)h)). (3.28)

m=0

The in finite sum on the right hand side of this equation is convergent, as for any value
t the difference between the step functions is 0 for all bar one term. Equation (3.28) can
be expressed as a sum of single unit step functions,

§ D (t) = f (z0) + Y (f (x (mh)) = f (x ((m = 1) b)) u (t — mh). (3.29)

m=1

The Laplace transform of equation (3.29) yields,

S LAz ()} = ao = 57" f (wo) +57" Y (f (@ (mh)) — f (x ((m — 1) h))) e, (3.30)

m=1

the solution of equation (3.29) can be found utilising inverting the Laplace transform
gives,

to 2. (t —mh)®
Tara’ @0+ 2 Tara

m=1

x (t) = w0 + (f (@ (mh)) = f (z ((m = 1) b)) u(t —mh) .

(3.31)
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where z(0) = xg.
This is a solution in continuous ¢. can be simpli ed to an n—th order difference equation
by setting t = nh,

(nh)®

v (0h) = 20t 5 (o $0+Z (OB (o ) 1 o (0 = D 1) - (332

Example 3.5.1 The fractional order Riccati equation,

CDpx (t) =1 p(x (1), (3.33)

the initial condition x(0) = zo, and 7, = nh. Our discretization of equation (3.33) can
be found from (3.32)

() =m0+ 2 (1 ) + Zp P (@ o)) = @ ))))

3.6 Predictor-Corrector Method

Consider the following initial value problem:

{OCDM) flta(t) 0<t<T

3.34
2®) (0) = gk> k=0,1,...,n—1, (3:34)

where the iL‘(()k) may be arbitrary real numbers and where n — 1 < o < n.

Lemma 3.6.1 If the function f is C' , then the initial value problem (3.34) is equivalent
to Volterra integral equations:

Zwo T /0 (t—7)*" f(r,x (7)) dr. (3.35)

Proof 3.6.2 Suppose x (t) satisfies (3.35). Then observe that D"x exists and is integrable,
because

n—1
s () = Dr <§j é’“>§€,+ ol f(t,xa))),

k=0
= D" oIf f(t,z(t)),
= DD"! oIt oIt f (o (1)),

= Db} " f(ta(t) = oDp f(tx (1)),

which exists and is integrable as f' is continuous. Thus oI~ ™ (t) = §D§ x (1)
exists. So

§Df w(t)= off ™ a™ (t) = ol oDPT f(ta(t)) = f(t.2(t)),

as [ is continuous and 0 < n —a < 1. Hence x (t) satisfies (3.34).
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Let f be a continuous function that satisfies a Lipschitz condition with respect to the
second argument:
|f (t,z1) = f (t,a2)| < Llan —asf, LeR],

then the initial value problem (3.34) has a unique solution on the interval [0,77], the

T
interval is divided into IV subintervals. Let h = N tp, =nh,n=0,1,2,--- | N.

The principle of this method is to replace the original equation (3.34) by the Volterra
integral equation (3.35) and we use the product trapezoidal quadrature formula to replace
the integral with the nodes t;; j = 0,1, ..., n which are taken respectively from the function
(tne1 —)* ! that is to say:

tn+1 a1 tn+1 a—1 ~
[t @ [ -0 el (330
0 0

where g,11 is the piecewise linear interpolant for g with nodes and knots chosen at the
tj. We write the integral on the right-hand side of (3.36) as

tnt1 ol ~ n+1
/0 (tnyr =) g1 () dr =Y ajnirg (), (3.37)
=0
where
o (n*tt — (n—a) (n+1)%) ifj=0
Gt = ((n — i+ 2 (=) —2(n—j+ 1)0‘“) if1<j<n

if j=n+1.

This then gives us our corrector formula (i.e., the fractional variant of the Adams-
Moulton method), which is

n—1 k @ n+1 @
B (k) tn h , , 4 h
@ (bn) = kZO AR Py Zo+f (t5:2 (0) + gy (s @ (),

where we have used o (v + 1) I' (o) =T (v + 2) and apy1n41 = 1.

To determine the prediction formula (predictor), which gives x? (¢,,41), we proceed in
the same way as before but this time the integral will be replaced using the rectangle
method

tn+1 n
/0 (tns1 — T)O‘_l g (7)dr ~ Z bint19 (t5),
=0

where now o

bimsr = o (1= )~ (= )°)

therefore we have:

n—1 k n
Wtk 1
¥ (tny1) = ng : k+'1 + (o) > bjmrf (L (t5)).
k= ’ j=0
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3.7 Runge-Kutta Method

The initial value problem with time-fractional derivative in Caputo’s sense of the form:

CDog = T
{xo(é))t_a?(ot’) (1), (3.38)

where o € (0,1]. Let [0,a] be an interval for which we are finding the solution of
the problem in equation (3.38). The collection of points (¢;,x(t;)) are used to find the
approximation. The interval [0, a] is subdivided into r subintervals [t;, t;+1] of equal step
size h = % using the nodal points t; = ih for i =0,1,2,...,r.

Suppose that x(t), §Dgz (t)and §D?*x (t) are continuous functions on the interval
[0, a], and applying Taylor’s formula involving fractional derivatives, we have

he h2a

ZE(t—Fh):.CC(t)-Fm OCDtal' (t)+m

§D2x () + - (3.39)
and using the formula Dz (t) = §D¢f (t,xz )+ f(t,x(t) §D2f (t,x(t))in
equation (3.39) gives
he h2a

o (w (0) g

2+ = O+ v, 1+ 2a)

[6Df (tx (1) + f (b () §Df (ta(t)]+ - .

(3.40)
And we have

2h°T (1 4 «) o
B B [tz (t)+ T +20) 6 DR f (tx (1))
t+h) =z (t)+—=————<f (¢ t —_— a
A = e T O ey | 2eraea) s eper ey |
I (1+2a) ’ 0wl A
(3.41)
It can also be written as
he he 2h°T (1 4 «) 2h°T (1 + «)
t+h) =z (t)+—=———<f (¢ t _ _ ——f (¢ t .
2(t+h) =2 Ot sy ( ’x()>+2r(1+a)f( T Tt W Tt bW
(3.42)
The following formula is the 2—stage fractional Runge-IKutta method.
We have e
Tn+1 x+2I‘(1+a)[ 1+ 2] (3.43)
where
Kl - f(tna$n)a
2h°T (1 4 «) 2h°T (1 4 «)
K == tn g, tnu n .
2 f< T Tatr20) "t Tar2a) | )
Example 3.7.1 Consider the nonlinear fractional differential equation
§Dfr (1) = (@ (1)~ .
(t+1) (3.44)

x(0) = =2, 0<a<l



By using the fractional Runge-Kutta method, we get the iterative

ha
xn+1=$n+m[Kl+K2]7
where
2

K = o2 ———,

" (et 1)
o < 2h0‘F(1+a)K>2 2

2 "TT(1+2a) ! < 20T (1 +

>+1>2'

" T (14 2a)

44

(3.45)
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Chapter 4

Main Results

In this chapter, we derive a new discrete chaotic dynamical systems from the fractional
order differential Arneodo’s system and the fractional-order differential finance system.
the asymptotic stability of the fixed points of this new systems, are thoroughly analyzed
in the three-dimensional space of parameters. One can prove analytically the asymptotic
stability of each of the three fixed points. And we brighten some dynamical behaviors,
such as the chaotic attractor, bifurcation for different values of parameters. Moreover, the
numerical simulations confirm the validity of our theories.

4.1 Bifurcation and Stability in a New Discrete System Induced
from Fractional Order Continuous Chaotic Finance System

The fractional-order finance model [16] is given by the following dynamical system:

D (t) = (y () —a)z (t) + 2 (1),
Doy (t) =1—a”(t) = by (1), (4.1)
Dz (t) = = (x (t) + ez (1)),

where x is the interest rate, y is the investment demand, z is the price index, a > 0 denotes
saving amount, b > 0 denotes cost per investment, and ¢ > 0 denotes elasticity of demand
of commercial markets. Where ¢ > 0, and « is the fractional-order satisfying o € (0,1].
The equilibrium points of system (4.1) are given as follow:

e G (R O Gl I )
(e (o) ()

Assume that x(0) = z9, y(0) = yo and z(0) = zy are the initial conditions of system
(4.1).

Following [24] a transformation process from a continuous system of fractional order to
a discrete system is proposed as follows:
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t t
Doy(t)y=1-22(|— — — 4.2
vy =1=a [5] ) =w ([i] ). @
t t
| Do) = - (x (M h> tez (M h>> .
First, let t € [0,h), so t/h € [0,1). Thus, we obtain
D%x (t) = (yo — a) xo + 20,
D% (t) =1 — a2 — byo, (4.3)
D%z (t) = — (xo + c20) ,
and the solution of (4.3) is reduced to
z1(t) = zo + J* ((yo — @) zo + 20) = 0 + 1“(1t+a) [(yo — a) zo + 20)] ,
(63 ta
yi(t) =yo+J (1—x(2)—byo):yoer[l—x%—byo], (4.4)
A(t) = 20+ J (= (@0 + c20)) = 20 + F(ltJrOZ) [~ (w0 + ex0)]
Second, let t € [h,2h), which makes ¢/h € [1,2). Hence, we get
“x(t) = (y1 — a) o1 + 21,
DO‘ y(t) =1— 23 — by, (4.5)
Dz(t) = — (1 + c21),
which have the following solution
22(t) = @1 (B) + I8 (31 — )1+ 21) = a1 () + (4 — @)y + 2
2(l) = T1 n Y1 1 1) =21 F(14_04):% 1 1,
t—h)"
— o (1 — 42— = ( 1— 22— 4,
yo(t) = w1 (h) + JX (1 — 2 —byr) = y1 (h) + T +a) [1— a2t —by], (4.6)
B N B (t —h)”
2o(t) = 21 (h) + Jp (= (x1 + cz1)) = 21 (h) + T+ a) [— (z1 + c21)],
)
where Ji¥ = fh T (o) ds, a > 0. Thus, after repeating the discretization process n
a

times, we obtain

Tp1(t) = xp (nh) + (t _1 :l_hcg Yn (nh) — a) zy, (nh) + 2, (nh)],
pra(t) = oo (nh) + = T L k) — by ().
a
t —nh)

s (t) = 2 (nh) + | [= (@n (nh) + 2, (nh))],

I'l+a)
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where t € [nh, (n + 1)h). For t — (n + 1)h, system (4.7) is reduced to

Tpt1 =T +L[( — Q) Ty, + 2n)

n+1 = Tn F(1+a) Yn n nl

ntl = Yn + = |1 — Q_bn7 .
B

Zn+l1 = 2Zn + [_ (Qj‘n+CZn)],

'l+a)
which can be expressed as

Tptl1 = Tp + S [(yn - CL) Tp + Zn] ,
Ynt+l = Yn + S [1 - l’% - byn] ) (4-9)
Zntl = 2n + 8 [— (zn + c20)],

«

in which s = ———, and h is a new positive parameter in the discrete system.
'l+«)

For the following values a = 1.63,b = 0.418,¢ = 1.98,a« = 0.99 the system (4.9) is in
a chaotic state because one of the Lyapunov exponent is positive, which is considered as
one of the characteristics of the existence of chaos (see Figure 4.1).

0.3

02—

Figure 4.1: Maximal Lyapunov exponent of model (4.9) for h € [0, 1.5].

4.1.1 Stability of the Fixed Points of Discrete System

In this subsection, one discusses the local stability of the fixed points of system (4.9), which
is determined by the eigenvalues of the Jacobian matrices corresponding to its fixed points.
The Jacobian matrix of system (4.9) is:

1+ s(yn—a) sz, s
Je., = | —2szn 1—bs 0 . (4.10)

—S 0 1—cs
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Stability of Fixed Point Ej

In order to study the stability of the fixed point Ey of system (4.9), we recall the two
lemmas.

Lemma 4.1.1 Let F (\) = A%+ BA+ C. Suppose that F (1) > 0, A\ and X2 are two roots
of F(A) =0. Then

1. M| <1 and |X2] <1 if and only if F(—1) >0 and C < 1.

2. M| <1 and [A2| > 1 (or || > 1 and |X2| < 1) if and only if F'(—1) < 0.

3. M| > 1 and |A2| > 1 if and only if F (—1) >0 and C > 1.

4. M\ and Ay are complez and |\| = |Xo| = 1 if and only if B> —4C < 0 and C = 1.

Lemma 4.1.2 When the associated Jacobian matriz has three real eigenvalues \;, i = 1,
2, 3.

1. The fized point Eeq is called a locally asymptotically stable (sink) if |\;| < 1 for all
i=1,2 3.

The fized point Eeq is called an unstable (source) if |N\;| > 1 for all i =1, 2, 3.
The fized point Eeq is called a one-dimensional saddle if one |X\;| < 1.

The fized point Ecq is called a two-dimensional saddle if one |\;| > 1.

SR

The fized point Eeq if is called non-hyperbolic if one |\;| = 1.

The jacobian matrix of Ey of system (4.9) is

1
1+s<b—a> 0 s
Toe =1 1—bs 0 : (4.11)
—s 0 1—cs

The characteristic equation of the Jacobian matrix (4.11) is

PN =A\+bs—1)F(\)=(A+bs—1) (A +BXx+C), (4.12)
1

1
where B = ~3 (2b+ s —abs —bcs), C b

By calculating, one further has

1 1
F(1) = ESQ(b—c—l—abc), F(-1)= B((b—c+abc)82+(2—260—2ab)s+4b),and

(b + s+ bs? — cs® — abs — bes + abcs2) )

1
B2 —4C = ﬁSQ (a262 — 2ab%c — 2ab + b*c? — 4b? + 2be + 1).
1 1 b— 1
Let a1:g(—2b—|—bc+1),a2:g(2b+bc+1),and agz—%,m:—g(bc—l)
1
81:m(\/—(2b+ab—bc—1)(2b—ab+bc+1)+ab+bc—l),
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1
SQZ_W (1\/—(2b+ab—bc—1)(2b—ab+bc+1)—ab—bc+1),
ab + oc —
and s3 Dot abe’ A3 bs

Remark 4.1.3 F (1) > 0 if and only if a > ag and b, c € R} .
Remark 4.1.4 a3 >0 ifb<c.

Remark 4.1.5 If a € |—00, a1] U [az, +00[ then
—(2b4+ab—bc—1)(2b—ab+bc+1) > 0.

Remark 4.1.6 s1s9 = >0 so0 s1,s9 > 0.

4—
b—c+ abc
Remark 4.1.7 Ifa > a4 so ab+bc—1 > 0.

Remark 4.1.8 Ifab+bc—1>0,b—c+ abc >0, b > 0 then s1, sg, s3 > 0.
Lemma 4.1.9 The sign of s1 — so, s3 — s1, and s3 — so depends on the sign of b— c+ abc.

Proof 4.1.10 We hawve:

81—82:m\/—(Qb"_ab—bC—1)(2b—ab+bc+1), and
53—81:—m\/—@b—f—ab—bc—1)(Qb—ab+bc+1),
53—82:m\/—@b—i—ab—bc—1)(2b—ab—|—bc—|—1)

Lemma 4.1.11 Ifc € ]1,+o0o[ then ay < az < a1 < as.

1 1
Proof 4.1.12 We have a3 — ay = —= (¢ +1)? and a3 —ay = —- (¢ — 1)?,
c c

1
a3—a4:E(02—1).
Remark 4.1.13 F (—1) is a polynomial of degree 2 of the variable s.
1. F(-1) <0 if ]sg,s1]-
2. F(—1) =0 if s =s1,s2.
3. F(=1) >0 if |—00, s2[ U]s1, +00].
Remark 4.1.14 C — 1 is a polynomial of degree 2 of the variable s.
1. C—1<0ifs€]—00,s3|.
2.C—-1=0 1 s=ss.
3. C—1>0ifse]ss,+o0[.

Remark 4.1.15 B2 —4C < 0 if a € |a, az[.
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Lemma 4.1.16 The sign of |\3| — 1 depends on the sign of b(bs — 2).
Proof 4.1.17 Calculating |X3|* — 1 one find
(IAs] = 1) (JAs[ + 1) = sb(bs — 2).

Now, relatively to the dynamical properties of the fixed point Ejy, one has the following
results.

Theorem 4.1.18 If the fized point Ey exists with the following assumptions a € |as, a1] U
[as, +o0o[, b € R} and ¢ € |1, +o0] then:

2
a- FEy is a asymptotically stable if 0 < s < min <32, b> .

2
b- Ejy is a unstable if s > max <51, b) .

. . . , 2
c- FEy is a one-dimensional saddle if so < s < s1 or b <5< 81

2
d- Ey is a two-dimensional saddle if 7 < 8 < 89.

2
e- Ey is a non-hyperbolic if s = 5

Proof 4.1.19 For b € R} :
1. [fa S }a3,a1] U [ag,—l-OO[, S }17_‘_00[ :

The condition F (1) > 0 is verified, then (Remark 4.1.3), and according to Remark
4.1.5, Remark 4.1.7 and Lemma 4.1.11 so a € (]—00, a1] U [az, +o0])N]as, +oo0[N]ay, +o0] =
las, a1] Ulag, +o0f.

F(=1) > 0 if s € |—00,s2[ U]s1,+00].(3 Remark 4.1.13), C < 1 if s € |—o0, s3] (1
Remark 4.1.14) then s € (]—o0, s2[ U ]s1, +00[) N ]—00, s3] = | —00, so[(Lemma 4.1.9).

C >1ifs€]ss,+oo| (3 Remark 4.1.14) then s € (]—o0, so[ U ]s1, +00[) N]s3, +00] =
|s1, +oo[(Lemma 4.1.9).

F(—1) <0ifs€]s2,s1] (1 in Remark 4.1.13).

B? —4C < 0 if a € Jay, az] (Remark 4.1.15), and C =1 if s = s3 (2 in Remark 4.1.14).

And using the sign of |\i| —1 (Lemma 4.1.16).

Using Lemma 4.1.1, hence applying the stability conditions using Lemma 4.1.2. One
can obtain the results.
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Stability of Fixed Points F; and E»
We recall the lemma 1 of [31], the definition and the theorem 4 of [23].

Definition 4.1.20 When the associated Jacobian matriz has one real eigenvalue A\ and
a pair of complex eigenvalues \o3 = p & wi, then the following definitions are valid

1. The fized point E.q is called a locally asymptotically stable (sink) if |Ni| < 1 for all
i=1,2 3.

2. The fized point Ecq is called an unstable (source) if |N;| > 1 for all i =1, 2, 3.

3. The fized point Eeq is called a one-dimensional saddle if |Ai| < 1 and |Ay3| > 1.
4. The fized point Ecq is called a two-dimensional saddle if [\1| > 1 and |2 3] < 1.
5

. The fized point Eq is called non-hyperbolic if |\| =1 or |Aa| =1 or |A3| = 1.

The Jacobian matrix associated with the fixed point Ej and E2 of the system (4.9) is
given by

1 1
—(c+s) s\/—c(b—c+abc) s
Jg, = 1 , 4.13
= —25\/—(b—c+abc) 1—bs 0 (4.13)
c
—s 0 1—cs
and
1 1
—(c+s) —s\/—(b—c—i-abc) s
c c
Jg, = 1 , 4.14
b2 23\/— (b — ¢+ abc) 1—bs 0 (4.14)
c
—s 0 1—cs
then, the characteristic polynomial of Jg, and Jg, is
Py (X)) = A3 4+ b1 A2 + by + b3, (4.15)
where by = —n3s — 3, by = 77282 + 2n3s + 3, and b3 = 77133 - 32772 —n3s — 1,
1
and my =2(c—b—abc), ny = - (20—3b—|—b02—2abc) ,and 3 = —— (02+bc— 1).
c c

By calculating, one further has

A=1b}—3by=—5*(3n2—n3),

B =0b1by — 9b3 = —s° (91 + n2ms3) + 52 (6772 — 277%) ,

C = b3 — 3bibs = (13 + 3mn3) s* + (9 + nams) s> + (03 — 3m2) 2,

A = B? — 4AC = 355((2Tn? + 18mnams — 4mn3 + 4n3 — m3ng) = sSA*.

The derivative of Py ()\) is P| (\) = 3A2 + 2b1\ + by, and the equation P] (\) = 0 has

two roots: ) .
12= 3 <_b1 + /b3 — 3bz> =38 <773 +\/n3 — 3772) + 1. (4.16)
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When A* <0, i.e. A <0, by Lemma 1 page 6 in [31], equation (4.15) has three real
roots A1, A2 and Az. From this, one can easily prove that both roots A7, (let A] < A7) of
equation Pj (\) = 0 also are real.

When A* > 0,ie. A >0, by Lemma 1 page 6 in [31], one has that equation (4.15) has

1 1

b 3 3
one real root A\| = —w,

and a pair of conjugate complex roots Ao 3 :

1 1
A23 = — 5 << 2b1—|—y1 +y23) :I:Z\[<

No,h-t

where

3

i),

=g ((—277§ + 9nans + 27m1) £ VA*) Sy > Yo,

and

Wﬁr—;<<ﬁ—gm>mr— —Qm—n@ﬁ (m)y = ;<<% 2n)ny% —@m—n@v-

Let

1 1

b—c Pty
az = — bc , 1 = u n3, then 901 = —37’]3@% - 9772801 + 277]17 and

(p1); = ( 3n3 — \f\/?mg - 8772) (p1)y = (—3n3 +/3y/3n% — 8772) ,

and P; (1 )—7718 P (—1) = n8% — 295> —47]35—8.

1
Remark 4.1.21 —=(b—c+abc) >0 ifb,c e Rf, b<cand 0 < a < as.
c

Remark 4.1.22 Ifbe R}, ce [1,4+o00[, b<c and 0 < a < as, then n1, n2 > 0, n3 < 0.

Remark 4.1.23 A* is a polynomial of degree 2 of the variable 1.
1. A*>0if 3y <113, Cmd m € =00, (m);[U](m)y , +00[ or if 3n2 > 3 or if 32 = 13,
1
m € R —{=gmnams — *773}

. . 1 2
2. A* < 04f 3 <n3, m € [(m)y, (m)y] or if 3ne =n3, and n1 = —=nans —

.3
3 273
Lemma 4.1.24 1. If 4o < n3 then (m), <0, (m1), > 0.
2. If n2 > 0,13 < 0 and 3n2 < n3 < 4na, then (m1)y, (m)y > 0.

8. If m2,m3 > 0 and 3b < ¢® < 4b then (m),, (m1), < O.

1
Proof 4.1.25 As (m1),.(m)y = 27172 (4n2 — n3) , then the sign of (m),, (m), depends on
the sign of 4ng — n3.

Lemma 4.1.26 If 41y < 02 or 3ne < n3 < 4ng, and n1 > (m1), > 0, then y1 > 0.
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Proof 4.1.27 Either 4ny < 13 or 3na < 13 < 4n2, andm € |(m), , +00[, one has 3ny < 13,
and A* positive (1 in Remark 4.1.23),

9 27
and (‘U% + =m2ns + 771> > 0 because

2 2
9 27 9 27 3
(—n§ + 53 + 2n1> > (—n§ + o+ o (mb) =/—(Br—n3)" >0,
as 3
S
n=y5 ((—2n§ + 9mams + 27m1) + vA*) ,
then y1 > 0.

Lemma 4.1.28 If 3ny < 13, then y1 and ya have the same sign.

Proof 4.1.29 If 31y < 13, one has y1y2 = s° (—3772 + 77%)3 > 0, then y1, y2 have the same
sigm.

Lemma 4.1.30 Ifny € RT, n3 < —/3n2 then (m)y + n2mz < 0.

Proof 4.1.31 The difference between (1), and —nans3, is:

2

3 2
(m)y + m2m3 = > < — (B2 +m3)" + ?75,’) + 3m,

then < — (3172 + 77%)3 + 77§> < 0 because
< — (32 +n3)° + 775,‘) < — (3 +n3)” - Té’) = =275 + 9n2n3 (3n2 —13) < 0,

and ( — (3772 + ?7%)3 — 77§> > 0. Therefore, (m)q + n2m3 < 0.

Remark 4.1.32 If o € RT and 3n2 < 13, then 8ny < 3n3.

Lemma 4.1.33 If 32 <02, m € |—o0, (m),[U](m)y, +o0[, then

1. the sign of |[A\23| — 1 depends on the sign of
(3 + 30301 + 9m2) s + 3 (o1 + 3n3) .

2. the sign of |\1| — 1 depends on the sign of p1 (sp1 —6).

Proof 4.1.34 A* > 0if3n2 < 03 and ny € ]—o0, (m),[U](m1), , +oo[ (1 in Remark 4.1.23).
Calculating |Ao 3> — 1 and |\ |* — 1 one finds:

(IM23l = 1) (A2l +1) = = ((¢] + 3n31 +9Im2) s> + 3 (1 + 3n3) ),

— O =

(Ml =D (Pl +1) = gopr (51 = 6).

The above result is true because |A2 3| + 1, |[A\1] + 1, s are positive.
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Remark 4.1.35 ¢ > 0 if y1, y2, —m3 > 0 and o1 <0 if y1, y2, —m3 < 0.

Lemma 4.1.36 For ny € RT, 03 € |—00, —2,/2[, then

2 6
< .
N3 —n3+\/=3m2 + 03
(n% — 2 +m3/03 — 3772) , M2 <13 and

2

2 6
-3 —n3++/—3m2 + 77% B 213

n3 > 3 because 4ng < 13, and
(77§ — 2+ M35 — 3772) (n% — 12 — M3/ 15 — 3772) =12 (n3 +12) > 0 one has
(77§ — M2 + 773\/77:% — 3772) > 0 because (77% — 1y — n3\/7732, — 3772) > 0,

Proof 4.1.37

then

2 6
< .
-3 —n3 4+ +/—3n2 + 77%

Lemma 4.1.38 For o € RT, 13 € ]—oo,—2,/n2[ or n3 € ]—2,/172,—\/3772[, the sign of
6
Al +1 and X5 + 1 are positive if s € |0, .
—n3 + /=32 + 173

1 1
Proof 4.1.39 \] +1= 3% (773 — 3 - 3772) +2and N5+ 1= 3% <173 + /3 - 3n2> +2
are a polynomial of degree 1 of the variable s, and

(773 — /5 - 3772) (773 + /3 — 37}2) = 3n2 > 0, then (773 + \/M) <0, and

77% > 37]2.

The sign of A} + 1 is positive if s € ]0, , and the sign of \5+1 1is

6
—n3 + /=312 + n?

6

—n3 = /=3 + 13 |
6 6
< .
—n3+ /=32t —ns— /=302 403

6
Finally \T + 1, A5 + 1 are positive if s € |0,
—n3 + /=31 + 113

Now, relatively to the dynamical properties of the fixed points Fq and F», one has the
following results.

For theorems 4.1.40 to 4.1.42, let: k1 = —3

positive if s € ]0,

One has

w1+ 33 2 6
5 , Ky = and kg = —.
o7 + 3n3p1 + 9o —12 1




95

Theorem 4.1.40 If the fized points F;,i = 1,2 exist with the following assumptions
m2 € RT, mg < =2/m2.

1. When m =0 then A <0 and E; is a non-hyperbolic.
2
2. When m €10, (n1),) then A <0 and E; is a asymptotically stable if 0 < s < —.
-3
3. When mi € |(m)y, —n2n3| then A >0 and:

(a) E; is a asymptotically stable if 0 < s < min (K1, K3) .
(b) E; is a unstable if s > max (K1, K3).
(c) E; is a one-dimensional saddle if k1 < s < R3.

(d) E; is a two-dimensional saddle if k3 < s < Kj.
6 6

or s =

(1), (p1)y
4. When m € [—nans, +oo[ then A > 0 and:

(e) E; is a non-hyperbolic if s =

(a) E; is a unstable if s > k3.
(b) E; is a one-dimensional saddle if 0 < s < k3.
(¢) E; is a non-hyperbolic if s = k3.

Proof 4.1.41 Form, € R, n3 < —2/n:

1. Ifa=0:
the condition 4ns < n§ 18 verified, and 3ny < 77%.
A <0 because A* <0 (2 in Remark 4.1.23). One has Py (1) =0 (a null).

Hence, applying the stability conditions using Theorem 4 (5.i) of [23], one obtains
the result.

2. If m €10, (m),] :
the condition 4n < n? is verified, then (1), > 0 (1 in Lemma 4.1.24), and 31 < 13.
A <0 because A* < 0 (2 in Remark 4.1.23). One has Py (1) > 0 (m positive) and

2
Pi(-1)<0ifse ]0, — [ because
-3

ms® — 2nes? — dnzs — 8 < —namzsd — 2mas? — 4ngs — 8 (1), + 1m2ns negative (Lemma 4.1.30)),
83 — 2mas? — 4dngs — 8 < (—m38 — 2) (77232 + 4) ,

hence Py (—1) < 0 if (—n3s — 2) < 0 because (n2s® +4) > 0.

And

(ns — V3 — 3772) (ng + /13 — 3772) = 3m2 >0,

50 AT, A5 < 1 because (773 + /3 — 3772) < 0.

Hence, applying the stability conditions using Lemma 4.1.36, Lemma 4.1.38 and
Theorem 4 (1.3) of [23], one obtains the result.
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3. Ifae](n)y,+oof:

The condition 4ny < 03 is verified, then (m)y > 0 (1 in Lemma 4.1.24), and 3ny < n3.
A > 0 because A* > 0 (1 in Remark 4.1.23). And according to Lemma 4.1.26, Lemma
4.1.28 and Remark 4.1.35, one has ©1 > 0.

One study the sign of (¢7 + 3n3p1 +9m2) , (1 +3n3), @1 (sp1 — 6) .

The sign of p3 + 3031 + 92 is positive because

(90% + 3n3p1 + 9772) w1 = 271 1s positive, and @1 + 313 s negative if M + 1203 18
negative because (v1 + 313) (go% + 9172) =27 (m + n2m3) -

Hence a € |(m)y,+00[ N0, —nanz[ = |(m1)g, —m2ms[ ((m)y < —m2m3 using Lemma
4.1.30),

and 1 + 313 is positive or null if m + 123 is positive or null because
(p1 = 3c) (9T +9m2) = 27 (1 + n213) -

Hence a € |(n1)y,+00[ N [—n2m3, +00] = [—nam3, +00[ ((m)y < —n2m3 using Lemma
4.1.30).

Using Lemma 4.1.33, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.

Theorem 4.1.42 If the fized points E;,i = 1,2 exist with the following assumptions

2 S R+7 n3 S ]_2\/77?7_\/3772[

1. When m1 € [0, (m),] then A <0 and E; is a asymptotically stable if

2
0<s< —.
-3

2. When mi € |(n)y, —n2n3| then A > 0 and:

(a) E; is a asymptotically stable if 0 < s < min (K1, K3) .
(b) E; is a unstable if s > max (K1, K3).
(c) E; is a one-dimensional saddle if k1 < s < k3.

(d) E; is a two-dimensional saddle if k3 < s < K1.
6 6

or s =

(¢1); (901)2'
3. When m € [—nams, +00| then A > 0 and:

(e) E; is a non-hyperbolic if s =

(a) E; is a unstable if s > Kg.
(b) E; is a one-dimensional saddle if 0 < s < k3.
(¢) E; is a non-hyperbolic if s = k3.
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Proof 4.1.43 For ny € RT, 03 € |-2/m2, —/3n2|:

1. When i € [0, (m),] :
the condition 31y < n3 < 4ng is verified, hence (1), > 0 (2 in Lemma 4.1.24).
A <0 because A* < 0 (2 in Remark 4.1.23). One has P; (1) > 0 (n1 positive) and

2
P (-1)<0ifse ]0, — [ because
-3

ms® — 2nes? — dnzs — 8 < —namzs — 2mas® — 4ngs — 8( (1), + m2m3 negative (Lemma 4.1.30)),
msd — 2nps? — dngs — 8 < (—m3s — 2) (m2s® +4)
so Py (—1) <0 if (—m3s — 2) < 0 because (77252 + 4) > 0.
And

<773 -V 77?% - 3772> (7]3 + 4/ 77% — 3772) =32 > 0,

then A7, A5 < 1 because (773 + /3 - 3772) < 0.

Hence, applying the stability conditions using Lemma 4.1.36, Lemma 4.1.38 and
Theorem 4 (1.3) of [23], one obtains the result.

2. If a €](m)y,+oo[:
the condition 31y < n3 < 4ng is verified, then (1), > 0 (2 in Lemma 4.1.24).
A > 0 because A* > 0 (1 in Remark 4.1.23). And according to Lemma 4.1.26, Lemma
4.1.28 and Remark 4.1.35, one has 1 > 0.
One study the sign of (cp% + 3n3p1 + 9772) , (o1 +3m3), w1 (s¢p1 —6).
The sign of ©3 + 3n3p1 + 912 is positive because (cp% + 3n3p1 + 97)2) w1 = 27 18
positive, and 01 —3c is negative if n1+12m3 is negative because (o1 + 3n3) (3 + In2) =
27 (1 +m2m3) -
Hence m € ](n1)y, +00[N]0,bc[ = ](m)y, be[ ((m1)y < —m2m3 using Lemma 4.1.30),
and @1 + 3n3 s positive or null if 71 + n2n3 is positive or null because
(01 +3n3) (0F +9n2) = 27 (1 + 12103) -
Hence)m € [(m)y , +00[ N [=nanz, +0o[ = [—nanz, +-o00[ ((m)y < —n2m3 using Lemma
4.1.30).

Using Lemma 4.1.33, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.
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4.1.2 Numerical Simulations

In this subsection, we present bifurcation diagrams, phase portraits of the model (4.9),
which confirm the analytical results above and illustrate the dynamic behaviors of our
model numerically relay. A bifurcation occurs when the stability of a point of equilibrium
changes [13].

Based on the previous analysis, the parameters of the model (4.9) can be examined by:

varying h in the range 1.25 < h < 1.4 and fixing a = 1.63, b = 0.418, ¢ = 1.98,
a = 0.99, with the initial conditions (zg,yo,20) = (0.3,2.11, — 0.1) . The resulting points
are plotted versus the parameter h (see Figure 4.7).

According to Theorem 4.1.40, we have 7o = 0.83163 € RT, 3 = —1.8929 < =22 =
—1.8239 , and 1 = 0.42589 € |(n1)y, —m2m3] = ]0.106 42, 1.574 2] ; we have (¢1), ~ 4.5921,

6 (@1)2 + 313
=-3 ~ 1.3066, h = ¢/sT (1 +a) ~ 1.3046 and E;
(©1)4 (@1)% + 303 (¢1)5 + 92

is asymptotically stable if 0 < h < 1.3046, (see (a) and (b) in Figure 4.3), all trajectories
converge to the point E. If h ~ 1.3046, system (4.9) undergoes a bifurcation as mentioned
above (see (c) in Figure 4.3); the fixed point E; becomes unstable if A > 1.3046 (see (d)
in Figure 4.3).

S =

In this second part of numerical results, varying b in the range 0.417 < b < 0.5, and
fixing a = 1.63, ¢ = 1.98, h = 1.399, o = 0.99, the resulting points are plotted versus
the parameter b (see Figure 4.4). Attracting invariant circles and chaos appear when
decreasing b in such way that the parameter remains in the interval [0.417,0.5]. The phase
portraits for various b—values corresponding to Figure 4.4 are plotted. Furthermore, the
period—2 orbits (b = 0.44) are shown (a) in Figure 4.5, and for the attracting invariant
circles (b = 0.4395,b = 0.428) see (b) and (c) in Figure 4.5. Attracting chaotic sets are also
observed if b = 0.418 and are plotted (d) in Figure 4.5.
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c 161 The equilibrium point loses stability
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Figure 4.2: Bifurcation Diagram of model (4.9) for h € [1.25,1.4].

(a) Stable fixed point at h = 1.2. (b) Stable fixed point at h = 1.3046.

(c) The fixed point loses stability at h = 1.3046. (d) Unstable fixed point at h = 1.4.

Figure 4.3: The trajectory diagrams of model (4.9) for Various h Corresponding to Figure
4.2.
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b

Figure 4.4: Bifurcation Diagram of Model (4.9) for b € [0.417,0.5].

\v , | | | | | | \
X X
n n

(a) Period-2 orbits at b = 0.44. (b) Attracting invariant circles at b = 0.4395.

(c) Attracting invariant circles at b = 0.428. (d) Chaotic attractor at b = 0.418

Figure 4.5: Phase Portrait Diagrams of model (4.9) for Various b Corresponding to Figure
4.4.
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4.2 Bifurcation and Stability in a New Discrete System Induced
from Fractional Order Continuous Chaotic Arneodo’s System

The fractional-order Arneodo’s system [36] is given by:

D (t) =y (1),
Dy (t) =z (t), (4.17)
D% (t) = —ax (t) — by (t) — cz (t) + da> (1),

where a, b, ¢ and d are constant parameters, ¢ > 0 and « is the fractional order satisfying
a € (0,1). Assume that xz(0) = zo; y(0) = yo and z(0) = zp are the initial conditions of
system (4.17).

Following [24] a transformation process from a continuous system of fractional order to
a discrete system is proposed as follows

Tn41 = Tn + SYn,
Ynt1 = Yn + SZn, (4.18)
Zntl = 2Zn + 8 (—awn — by, — czp + dx;ri) )

[0}

where s = ———, and h is a new positive parameter in the discrete system.
I'(l+ )

For the following values a = 0.7437, b = 1.523, ¢ = 2.158, d = 2, o = 0.99, the system
(4.18) is in a chaotic state because one of the Lyapunov exponent is positive, which is
considered as one of the characteristics of the existence of chaos (see Figure 4.6).

0.2
0.1 ?
0

02 -

MLE

03 -

S04 -

06 ! | | | | ! !

Figure 4.6: Maximal Lyapunov exponent of model (4.18) for h € [0, 1.6].

4.2.1 Stability of the Fixed Points of Discrete System

In this subsection, one discusses the local stability of the fixed points of system (4.18),
which is determined by the eigenvalues of the Jacobian matrices corresponding to its fixed
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points. The Jacobian matrix of system (4.18) is:

1 s 0
Jg, =1 0 1 5 . (4.19)
5 (—a + de%) —bs 1—cs

The fixed points of system (4.18) are: E, = (0,0,0), E, = <\/Z,o,o), and Ey —

<—\/Z, 0, 0). In order to study the stability of the fixed points of system (4.18), we recall
the lemma 1 of [31], the definition and the theorem 4 of [23].

Stability of Fixed Point Ej

The Jacobian matrix associated with the fixed point Ey of the system (4.18) is given by

1 S 0
JE, = 0 1 s , (4.20)
—as —bs 1—cs

then, the characteristic polynomial of Jg, is
P ()\) :)\3+01>\2—|—02)\+03, (4.21)

where 01 = ¢s — 3, 09 = bs? — 2cs + 3, and 03 = as® — bs? + cs — 1. By calculating, one
further has

A1 = U% — 302 = —32 (3[)— 62) y

B = 0109 — 903 = —s> (202 — bsc — 6b + 9as) ,

Ci = a% — 30103 = §° (6232 —bes — 3b+ ¢ — 3aes® + 9as) ,

Al = B% —4A4,C; = 35 (27a2 — 18abe + 4ac® + (4b — 62) b2) = S6A{.
The derivative of P; (\) is P{ (\) = 3A\2 + 201\ + 02, and the equation P| (\) = 0 has two

roots:
* 1 2 _ 1 2
1253 —0o1 £ \/o7 — 302 —gs( cEt Ve 3b)+1.

When A} <0, i.e. Ay <0, by Lemma 1 page 6 in [31], equation (4.21) has three real

roots A1, A2 and Az. From this, one can easily prove that both roots A7, (let A] < A3)

of equation P; (A) = 0 are also real. When A} > 0, i.e. A; > 0, by Lemma 1 page 6 in
1 1

o1ty +ys

[31], one has that equation (4.21) has one real root A\; = — 3

, and a pair of

conjugate complex roots g3 :

1 11 , 3.3
A23 = 6 <<yf +y3 —201> +iV3 <yf _923>> )
where 3
y172 = % ((203 — 9bC+ 27@) + 3\/E>> y Y1 > Y2,

and
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ap = % ((gb—02> c— \/—(3b—c2)3> Ly = 237 <<§b—62> c+\/—(3b—c2)3>.

1 1

34,3
Let 6, = il + ¢, then 63 = 3¢67 — 9b6; + 27a, and
s
1 1
(02), = 3 (3c —V3V3E 8b) (00, = 5 <3c +V3V3E - Sb) :
and P; (1) = as®, Py (—1) = as® — 2bs® + 4cs — 8.

Remark 4.2.1 A] is a polynomial of degree 2 of the variable a.
1. AT >0 i{ 3b <202, and a € ]|—00,a1] U Jag, +oo[ or if 3b > ¢* or if 3b = 2,
R — {=bc — —c3}.
a € {3 = 5C }

1 2
2. AT <0if3b<c? a€lay,az) orif3b=c? and a = gbc—ﬁc?’.

Lemma 4.2.2 1. If4b < 2 then a1 < 0, as > 0.
2. Ifb,c > 0 and 3b < ¢ < 4b, then a1, as > 0.
3. Ifb>0,c<0 and 3b < c® < 4b then ay,as < 0.
Proof 4.2.3 As ajas = %bg (4b—02), then the sign of a1, as depends on the sign of
4b — 2.
Lemma 4.2.4 If4b < ¢® or 3b < ¢ < 4b, and a < a1 < 0, then ys < 0.

Proof 4.2.5 Either 4b < % or 3b < ¢® < 4b, and a € |—o0, a1[, one has 3b < c2, and A}
positive (1 in Remark 4.2.1),

2
and <63 - gbc + 27a> < 0 because

9 27 9 27
3 7 < 3 7 <t — ./ 23
<c 2bc—i— 2a> < <c 2bc+ 2a1> \/—(3b—¢?)” <0,

s3

) ((203 — 9bc + 27a) — 3\/A79{)) )

as
Yo =

then yo < 0.

Lemma 4.2.6 If4b < ¢® or 3b < ¢® < 4b, and a > a > 0, then y; > 0.
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Proof 4.2.7 Either 4b < ¢* or 3b < ¢® < 4b, and a € ]ag, +o0[, one has 3b < ¢, and A}
positive (1 in Remark 4.2.1),

9 27
and (03 — §bc + 2a) > 0 because

9 27 9 27
3 7 “0 3 7 “t _ - .23
(c ch—i— 2a> > (c 2bc+ 2a2> = (3b—c2)” >0,

as
3

Yy = % ((203 — 9bc + 27a) + 3\/A’1‘)) ,

then y1 > 0.
Lemma 4.2.8 If 3b < ¢?, then y1 and yo have the same sign.

Proof 4.2.9 If 3b < 2, one has y1ys = s° (—3b—|—c2)3 > 0, then y1, y2 have the same
Sign.

Lemma 4.2.10 Ifb € R, ¢ < —/3b then a; — be > 0.

Proof 4.2.11 The difference between a1 and be, is:

2 2
a; —be = —5 < —(3b—02)3—|—03> - gbc,

then < —(3b—¢2) + 03> < 0 because
( —(3b—2)* + c3> ( —(3b—¢2)® — C3> = —27b% + 9bc* (3b — %) < 0,
and ( —(3b—¢2)® — 63) > 0. Therefore, a3 — bc > 0.

Lemma 4.2.12 Ifbe RT, V/3b < ¢ then as — be < 0.

Proof 4.2.13 The difference between as and be, is:

2 2
o _ “ - o3 3}~
as — be 57 < (3b—c?)” —¢ ) 3bc,
then < —(3b— 2)® — 03> < 0 because

( —(3b—¢2)® — c3> ( —(3b—¢2) + c3> = —27b% + 9bc* (3b — %) < 0,

and ( —(3b— 62)3 + c3> > 0. Therefore, as — bec < 0.
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Remark 4.2.14 Ifb € R and 3b < ¢?, then 8b < 3c?.

Lemma 4.2.15 If3b < c?, a € |—00,a1[ U Jag, +oo[, then

1. the sign of |[A\23| — 1 depends on the sign of
(67 — 3cb1 + 9b) s + 3 (61 — 3c).

2. the sign of |[\1| — 1 depends on the sign of 01 (s6; — 6).

Proof 4.2.16 A} >0 if 3b < ¢® and a € ]—00,a1[UJaz, +oo[ (1 in Remark 4.2.1).
Calculating |A\a 3> — 1 and |\|* — 1 one finds:

1
(A2l — 1) (JXesl +1) = 5((9%—3091+9b)52+3(91—3c)s),
1
(Al =D (M +1) = §561(591—6).

The above result is true because |Aa 3| + 1, |[A\1]| + 1, s are positive.

Remark 4.2.17 61 > 0 if y1, y2,¢ > 0 and 61 <0 if y1, y2,c < 0.

2 6
Lemma 4.2.18 For bc R, c € }2\/5, —i—oo[, then — < —————.
¢ c+vV-=3b+c?
2 6 2
Proof4.2.19 - — —M = — <b —Z+eve? — 36) , b < and ¢ > 3b because
¢ c+vV=-3b+c2 e
4b < 2, and

<b—02+cx/02 —36) (b—02 —cV? —3b) =b(c?+0b) >0, one has
b—c?+cve2 —3b < 0 because b — ¢ — cv/e2 — 3b < 0,
th 2 < 0
en — < —————,
¢ c+V=3b+c?
Lemma 4.2.20 For b € R, ¢ € ]2\/5, —1—00[ or c € }\/?E, 2\/15[, the sign of A\] + 1 and

6
A5+ 1 are positive if s € |0, ——————| .
2 P / ] c+ \/—3b+c2[
1 1
Proof 4.2.21 \j + 1 = 38 (—c— Ve? —3b> +2and X5+ 1 = 3 (—c—i— Ve? —3b> + 2

are a polynomial of degree 1 of the variable s, and
(—c — Ve — 3b) (—c +Ve2 — 3b> =3b> 0, then (—c +Ve2 — 3b> <0, and

c? > 3b.

6
The sign of Xy + 1 s positive if s € |0, ————1, and the sign of \5 + 1 is
g of X + 1 is positive if 5 € [0, L g of
6
ositive if s € |0, —————| .
P f } C—\/—3b—|—62|:
6
One has

< .
c++vV=-3b+c?2 c—V-3b+c2

6
Finally Xy 4+ 1, Xy + 1 are positive if s € |0, —————| .
AL A posttive 1f ] c+\/m[
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Now, relatively to the dynamical properties of the fixed point Ejy, one has the following
results.

01 — 2
For theorems 4.2.22 to 4.2.36, let: 1 = —3 L3¢ 6

LT = = and vy = .
02 —3c0,+ 90" 2 5 BTy

Theorem 4.2.22 [f the fized point Fy exists with the following assumptions b € R,
ceR™ andd e R.

1. When a € |—00, a1 then Ay > 0 and:

(a) Ey is a unstable if s > vy.
(b) Ey is a two-dimensional saddle if 0 < s < 1.
(¢) Ey is a non-hyperbolic if s = vy.

2. When a € [a1,0] then A1 <0 and Ey is a source if 0 < s < vs.

3. When a =0 then A1 <0 and Ey is a non-hyperbolic.

Proof 4.2.23 Forbe R, ,cc R andd e R:

1. Ifa € |—o00, a1 :
the condition 4b < c? is verified, hence a; < 0 (1 in Lemma 4.2.2), and 3b < c2.

A1 > 0 because A > 0 (1 in Remark 4.2.1). And according to Lemma 4.2.4, Lemma
4.2.8 and Remark 4.2.17, one has 61 < 0.

One study the sign of (07 — 3¢ty +9b) , (61 — 3c), 01 (sb1 — 6).

The sign of 62 — 3ch1 + 9b is positive because (9% — 3¢y + 9b) 01 = 27a is negative,
and 01 —3c is negative because (61 — 3c) 0% = —9b01 +27a is negative, and 6, (s61 — 6)
1S posilive.

Using Lemma 4.2.15, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.
2. Ifa€[ay,0[:

the condition 4b < c? is verified, then a1 < 0 is negative (1 in Lemma 4.2.2), and
3b < 2.

Ay <0 because A} < 0 (2 in Remark 4.2.1). One has P; (1) < 0 (a negative) and
Py (—1) <0 if s €0, 5[ because

as® — 2bs? + 4cs — 8 < bes® — 2bs? 4 4es — 8 (a negative, be positive),
as® — 2bs® + 4cs — 8 < (cs — 2) (bs® +4)

hence Py (—1) < 0 if (bs® +4) > 0 because (cs —2) < 0.
A5 > 1 because (—c + Ve — 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.b) of [23], one obtains
the resull.
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3. Ifa=0:
the condition 4b < c¢? is verified, and 3b < c2.
Ay <0 because A} <0 (2 in Remark 4.2.1). One has P (1) =0 (a null).

Hence, applying the stability conditions using Theorem 4 (5.1) of [23], one obtains
the result.

Theorem 4.2.24 [If the fired point Fy exists with the following assumptions b € R,
c < —3v=band a € lbc,as], d € R then Ey is a source if s > vs.

Proof 4.2.25 For b € R, ¢ < —3v/—b, and a € |bc, az] the condition 4b < c? is verified,

hence az > 0 (1 in Lemma 4.2.2), and 3b < c2.
2 2 2 2
fgbcf 2—703 >0 if c < =3y —b then ag — bc = 7V (3b—¢2)% — gbc— 2—763 > 0.
A1 < 0 because A7 < 0 (2 in Remark 4.2.1). One has Py (1) > 0 (a positive) and
Py (—1) > 0 if s € Jva, +00] because
as® — 2bs? + 4cs — 8 > bes® — 2bs? + 4es — 8 (a € Jbe, ag] ),
as® — 2bs? + 4cs — 8 > (cs — 2) (bs? +4) ,
hence Py (—1) > 0 if (bs> +4) < 0 because (cs —2) < 0.

A5 > 1 because (—c +Ve? - 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.a) of [23], one obtains the
result.

2

Theorem 4.2.26 If the fired point Ey exists with the following assumptions b € R,
2

¢>3v—=banda € [ay,bc[, d € R then Ey is a source if 0 < s < — or vy < s.
c

Proof 4.2.27 For b € R, ¢ > 3v/—b, and a € [a1,bc| the condition 4b < c¢? is verified,
then ay < 0 (1 in Lemma 4.2.2), and 3b < c?.
2 2 2 2 2
—Zbe — —c® <0 if ¢ > 3v/—b hence a; — bc = —57V (3b — 02)3 — gbc - ﬁc?’ < 0.

3 27
Ay < 0 because A7 < 0 (2 in Remark 4.2.1). One has P; (1) < 0 (a negative) and

2
P (-1)<0ifse }O, { or s € Jvg, 400 because
c

as3 — 2bs% + 4cs — 8 < bes® — 2bs? + des — 8 (a € [ag,be| ),
as® — 2bs? + 4cs — 8 < (cs — 2) (bs? +4) ,
then Py (—1) < 0 if (bs?+4) <0, (cs—2) >0 or (bs?+4) > 0, (cs —2) <0, and

(usmg c> 3\/jb) .
One has (—c + M) (—c — \/m> =3b < 0.

A5 > 1 because (—c +Ve? — 3b> > 0.
Hence, applying the stability conditions using Theorem 4 (2.1.b) of [23], one obtains the
resull.

<

oI N
>
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Theorem 4.2.28 If the fired point Fy exists with the following assumptions b € R™,
ce RS and d € R.

1. When a =0 then A1 <0 and Ey is a non-hyperbolic.
2
2. When a € ]0,a3] then A1 <0 and Ey is a source if s > —.
c
3. When a € |ag, 00| then Ay > 0 and:

(a) Ey is a unstable if s > vs.
(b) Ey is a one-dimensional saddle if 0 < s < vs.
(c) Ey is a non-hyperbolic if s = v3.

Proof 4.2.29 Forbe R ,ce R} andd e R :

1. Ifa=0:
the condition 4b < c? is verified, and 3b < c?.
Ay <0 because AT <0 (2 in Remark 4.2.1). One has P; (1) =0 (a null).
Hence, applying the stability conditions using Theorem 4 (5.i) of [23], one obtains
the result.
2. Ifa€]0,a9] :
the condition 4b < c¢? is verified, then as > 0 (1 in Lemma 4.2.2), and 3b < 2.
Ay < 0 because A7 < 0 (2 in Remark 4.2.1). One has P; (1) > 0 (a positive) and

2
P (-1)>0ifse ] ,—l—oo[ because
c

as — 2bs% + 4cs — 8 > 4es — 8 (a positive, b negative),
then Py (—1) > 0 if (4es — 8) > 0.

One has (—c + \/m> (—c -V - Bb) = 3b < 0, hence
A5 > 1 because (—c+ \/M) > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.a) of [23], one obtains
the result.

3. If a € ]ag, +o0o[ :
the condition 4b < ¢? is verified, then as > 0 (1 in Lemma 4.2.2), and 3b < 2.

A1 > 0 because AT >0 (1 in Remark 4.2.1). And according to Lemma 4.2.6, Lemma
4.2.8 and Remark 4.2.17, one has 61 > 0.

One study the sign of (67 — 3c61 + 9b), (61 — 3c), 61 (s61 — 6).

The sign of 03 — 3cfy + 9b is positive because (6?% — 3cby + 9b) 01 = 27a is positive,
and 6, — 3c is positive because (61 — 3c) 03 = —9b + 27a is positive.

Using Lemma 4.2.15, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.
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Theorem 4.2.30 If the fived point Eqy exists with the following assumptions b € RT,
¢ < —2Vb and d € R.

1. When a € |—o00, be| then Ay > 0 and:

(a) Ey is a unstable if s > vy.
(b) Ey is a two-dimensional saddle if 0 < s < vy.
(¢) Ey is a non-hyperbolic if s = vy.

2. When a € [bc,ay| then Ay > 0 and Ey is a unstable.

3. When a € [a1,0] then Ay <0 and Ey is a source.

4. When a =0 then Ay <0 and Ey is a non-hyperbolic.

b
5. When a € )0, az] then Ay <0 and Ey is a one-dimensional if 0 < s < 2—.
a

Proof 4.2.31 Forbe R, c < —2vVb and d e R :

1. Ifa € ]—o0,a1[:
the condition 4b < c? is verified, then ay < 0 (1 in Lemma 4.2.2), and 3b < 2.

Ay > 0 because AT >0 (1 in Remark 4.2.1). And according to Lemma 4.2.4, Lemma
4.2.8 and Remark 4.2.17, one has 61 < 0.

One study the sign of (07 — 3cf1 +9b) , (61 — 3c), 61 (sby — 6).

The sign of 03 — 3cfy + 9b is positive because
(0% — 3¢ty + 9b) 01 = 27a is negative, and 01 — 3c is negative if a — bc is negative
because (01 — 3c) (67 + 9b) = 27 (a — be) , and 6, (sf1 — 6) is positive.

Hence a € |—00,a1[N]—00,be] = |—00, be| (a1 > be using Lemma 4.2.10).

And 01— 3c is positive or null if a—bc is positive or null because (61 — 3¢) (9% + 9b) =
27 (a —bc), and 01 (s61 — 6) is positive.

Hence a € |—00,a1[ N [be, 0] = [be,ai| (a1 > be using Lemma 4.2.10).
Using Lemma 4.2.15, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.

2. If a € [a1,0] :
the condition 4b < c¢? is verified, then a; < 0 (1 in Lemma 4.2.2), and 3b < .
A7 <0 because AT < 0 (2 in Remark 4.2.1). One has P; (1) < 0 (a negative) and
Py (—1) <0 (a, ¢ negative, b positive).

A5 > 1 because (—c +Ve? - 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.b) of [23], one obtains
the resull.
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3. Ifa=0:
the condition 4b < c¢? is verified, and 3b < c2.
Ay <0 because A} <0 (2 in Remark 4.2.1). One has P (1) =0 (a null).

Hence, applying the stability conditions using Theorem 4 (5.1) of [23], one obtains
the resull.

4. If a €0, as] :
the condition 4b < ¢? is verified, hence ag > 0 (1 in Lemma 4.2.2), and 3b < c2.
Ay < 0 because A7 < 0 (2 in Remark 4.2.1). One has P (1) > 0 (a positive) and
P (-1)<0ifse ]0, 22 [ because

as® — 2bs? + 4cs — 8 < 5% (as — 2b) (c negative),
then Py (—1) <0 if (as — 2b) < 0.

A5 > 1 because (—c + V2 - 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (3.i.a) of [23], one obtains
the result.

Theorem 4.2.32 If the fized point Ey exists with the following assumptions b € RT,
ceE —2\/5,—\/@[ and d € R.

1. When a € |—00, be| then Ay > 0 and:

(a) Ey is a unstable if s > vy.
(b) Ey is a two-dimensional saddle if 0 < s < vy.
(c) Ey is a non-hyperbolic if s = vy.

2. When a € [be,aq[ then Ay > 0 and Ey is a unstable.

3. When a € |a1, as] then Ay <0 and Ey is a source.

Proof 4.2.33 Forbe Rt ce |—2vb, —V/3b| and d € R :

1. Ifa€]—o0,a1]:
the condition 3b < c* < 4b is verified, then a; < 0 (3 in Lemma 4.2.2).

Ay > 0 because AT >0 (1 in Remark 4.2.1). And according to Lemma 4.2.4, Lemma
4.2.8 and Remark 4.2.17, one has 61 < 0.

One study the sign of (67 — 3c61 + 9b), (61 — 3c), 01 (s61 — 6).

The sign of 03 — 3cty + 9b is positive because
(0% — 3cby + 9b) 01 = 27a is negative, and 01 — 3c is negative if a — bc is negative
because (61 — 3c) (63 + 9b) = 27 (a — bc) , and 6, (s61 — 6) is positive.

Then a € ]—o00, a1[ N ]—o0, be[ = |—00, be| (a1 > be using Lemma 4.2.10),
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and 01 — 3c is positive or null if a—bc is positive or null because (61 — 3c) (9% + 9b) =
27 (a —bc), and 01 (s61 — 6) is positive.

Hence a € |—00,a1[ N [be, 0] = [be,ai] (a1 > be using Lemma 4.2.10).
Using Lemma 4.2.15, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.

2. Ifa € [ay,a2] :
the condition 3b < ¢* < 4b is verified, then ay,as <0 (3 in Lemma 4.2.2).
Ay <0 because AT < 0 (2 in Remark 4.2.1). One has Py (1) < 0 (a negative) and
Py (—1) <0 (a, ¢ negative, b positive).

A5 > 1 because (—c +Ve? - 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.b) of [23], one obtains
the result.

Theorem 4.2.34 If the fived point Eqy exists with the following assumptions b € RT,

ce}\/:?b,z\/é[ and d € R.

1. When a € [a1,az] then Ay <0 and Ey is a asymptotically stable if
0<s< 2
c
2. When a € |ag, be[ then Ay > 0 and:
(a) Ey is a asymptotically stable if 0 < s < min (v1,v3).
(b) Ey is a unstable if s > max (v1,v3).
(c) Ey is a one-dimensional saddle if v1 < s < vs.

(d) Ey is a two-dimensional saddle if v3 < s < vy.

6
or s =

6
(61), (61),
3. When a € [bc,+o00[ then Ay > 0 and:

(e) Ey is a non-hyperbolic if s =

(a) Ey is a unstable if s > v3.
(b) Ey is a one-dimensional saddle if 0 < s < vs.
(c) Ey is a non-hyperbolic if s = vs.

Proof 4.2.35 Forbc Rt c € }\/?Tb,?\/l;[ and d e R :

1. When a € [al,ag] :
the condition 3b < c¢* < 4b is verified, hence a1,as > 0 (2 in Lemma 4.2.2).
Ay < 0 because A7 < 0 (2 in Remark 4.2.1). One has P; (1) > 0 (a positive) and

2
P (-1)<0ifse ]0, - [ because
c
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as® — 2bs? + 4cs — 8 < bes® — 2bs? + 4es — 8(az — be negative (Lemma 4.2.12)),
as® — 2bs? + 4cs — 8 < (cs — 2) (bs? +4) ,
so P (=1) <0 if (cs — 2) < 0 because (bs® +4) > 0.
And
(—c—m) (—c+m> —3b> 0,
then A1, A5 < 1 because (—c—l— \/m> <0.

Hence, applying the stability conditions using Lemma 4.2.18, Lemma 4.2.20 and
Theorem 4 (1.7) of [23], one obtains the result.

If a € Jag, +00] :

the condition 3b < ¢ < 4b is verified, then as > 0 (2 in Lemma 4.2.2).

A1 > 0 because AT > 0 (1 in Remark 4.2.1). And according to Lemma 4.2.6, Lemma
4.2.8 and Remark 4.2.17, one has 61 > 0.

One study the sign of (9% — 3¢y + 9b) , (01 —3c), 61 (st —6).

The sign of 02 — 3cfy + 9b is positive because (9% — 3cby + 9b) 01 = 27a is positive,
and 61 — 3c is negative if a — be is negative because (61 — 3c) (63 + 9b) = 27 (a — be) .

Hence a € |ag,+00[ N0, bec| = Jag, be| (az < be using Lemma 4.2.12),

and 61 — 3c is positive or null if a —be is positive or null because (61 — 3¢) (0% + 9b) =
27 (a — be) .

Hence a € Jag, +00[ N [be, +00[ = [be, +00] (az < be using Lemma 4.2.12).

Using Lemma 4.2.15, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.

Theorem 4.2.36 If the fived point Eqy exists with the following assumptions b € RT,
c¢>2Vb and d € R.

1.

When a € [a1,0] then Ay <0 and Ey is a two-dimensional saddle if
2
0<s<—.
c
When a = 0 then A1 <0 and Fy is a non-hyperbolic.
2
When a €10, az] then Ay <0 and Ey is a asymptotically stable if 0 < s < —.
c
When a € |ag, be[ then Ay > 0 and:

(a) Ey is a asymptotically stable if 0 < s < min (v1,v3).
(b) Ep is a unstable if s > max (v1,v3).
(c) Ey is a one-dimensional saddle if v1 < s < vs.

(d) Ey is a two-dimensional saddle if v3 < s < vy.

6 6
(e) Ey is a non-hyperbolic if s = —— or s = ——.
(61)1 (61),
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5. When a € [be, +oo] then A1 > 0 and:

(a) Ey is a unstable if s > v3.
(b) Ey is a one-dimensional saddle if 0 < s < vs.
(c) Ey is a non-hyperbolic if s = v3.

Proof 4.2.37 Forbe Rt ¢>2Vb and d e R :

1. If a € [a1,0]:
the condition 4b < c? is verified, then ay < 0 (1 in Lemma 4.2.2), and 3b < c2.
Ay <0 because AT < 0 (2 in Remark 4.2.1). One has Py (1) < 0 (a negative) and
P (-1)<0ifse ]0, % [ because
as® — 2bs? + 4cs — 8 < bes® — 2bs? 4 4es — 8 (a negative, be positive),
as® — 2bs® + 4cs — 8 < (cs — 2) (bs® +4)
then Py (—1) < 0 if (cs — 2) < 0 because (bs* +4) > 0.
And
Al < 1 because (—c — m> < 0.

Hence, applying the stability conditions using Lemma 4.2.18, Lemma 4.2.20 and
Theorem 4 (4.i.b) of [23], one can obtains the result.

2. Ifa=0:
the condition 4b < c? is verified, and 3b < c?.

Ay <0 because A} <0 (2 in Remark 4.2.1). One has P; (1) =0 (a null).

Hence, applying the stability conditions using Theorem 4 (5.1) of [23], one obtains
the resull.

3. Ifa €10,a9] :
the condition 4b < c¢? is verified, then as > 0 (1 in Lemma 4.2.2), and 3b < 2.
Ay < 0 because A7 < 0 (2 in Remark 4.2.1). One has P (1) > 0 (a positive) and
P (-1)<0ifse ]O, % [ because
as® — 2bs? + 4cs — 8 < bes® — 2bs? + 4es — 8 (ag — be negative (Lemma 4.2.12)),
as® — 2bs? + 4cs — 8 < (cs — 2) (bs® +4) ,
hence Py (—1) < 0 if (cs — 2) < 0 because (bs? +4) > 0.
And
(—c— m) (—c+ m) —3b> 0,
50 AT, A5 < 1 because (—c+ M) < 0.

Hence, applying the stability conditions using Lemma 4.2.18, Lemma 4.2.20 and
Theorem 4 (1.7) of [23], one obtains the result.
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4. If a € Jag, +o0[ :
The condition 4b < c? is verified, then as > 0 (1 in Lemma 4.2.2), and 3b < c2.
A1 > 0 because AT > 0 (1 in Remark 4.2.1). And according to Lemma 4.2.6, Lemma
4.2.8 and Remark 4.2.17, one has 61 > 0.
One study the sign of (67 — 3cf1 + 9b), (61 — 3c), 01 (s61 — 6).
The sign of 02 — 3cfy + 9b is positive because
(0% — 3¢ty + 9b) 01 = 27a is positive, and 01 — 3c is negative if a — bc is negative
because (61 — 3c) (67 + 9b) =27 (a — bc) .
Hence a € lag, +00[N]0, be| = Jag, be| (az < be using Lemma 4.2.12),
and 61 — 3c is positive or null if a —be is positive or null because (61 — 3¢) (0% + 9b) =
27 (a — be) .
Hence a € lag, +00[ N [be, +00[ = [be, +00] (az < be using Lemma 4.2.12).

Using Lemma 4.2.15, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.

Stability of Fixed Points F; and E»

The Jacobian matrix associated with the fixed points Ey and Ey of the system (4.18) is
given by
1 s 0
Jg, =Jg, =1 0 1 5 , (4.22)
2as —bs 1—cs

then, the characteristic polynomial of Jg, and Jg, is
Py(A) = A+ A + pod + pi3, (4.23)

where p11 = cs — 3, 1o = bs? — 2cs + 3 and pu3 = —2as® — bs? + c¢s — 1. By calculating, one
further has
Ay = pf —3pp = —s* (3b— %),
By = piijio — Y3 = 82 (—202 + bsc 4 6b + 18a3) ,
Coy = p3 — 3uipug = s° (b252 — bes — 3b+ ¢ + 6acs? — 18(15) )
Ay = B3 — 4A5Cy = 35° (108a” + 36abc — 8ac® 4 (4b — %) b?) = sCA3.
The derivative of Py (A) is P (\) = 3A\% + 2u1\ + 2, and the equation P4 ()\) = 0 has

two roots: 1 .
Ao = 3 <—,LL1 +\/1f - 3M2> =39 (—ci V2 — 3b) + 1.

When A5 < 0, i.e. Ay <0, by Lemma 1 page 6 in [31], equation (4.21) has three real

roots A1, A2 and A3. From this, one can easily prove that both roots A7, (let A} < A3)

of equation P, (A\) = 0 are also real. When A% > 0, i.e. Ay > 0, by Lemma 1 page 6 in
i1

w1+ 28+ 2

[31], one has that equation (4.21) has one real root \; = — 3

, and a pair of
conjugate complex roots Ag 3:

1 1 1 1 1
Aog = 6 <(zf + 23 —2u1> +iV3 <Z13 —223)> ,
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where 3
219 = % ((—54(1 +2¢% — 9bc) & 3\/A2> 21 > 22,
and
1 9 1 9
=g ((¢=30) e V@)= g (¢ 30) v @),
1 1
3 3
Let p1 = At + ¢, then p3 = 3cp? — 9bp; — 54a and

S
1 1
(p1)y = 5 (3¢ = VBVEZ=8b), (p1)y = 5 (3¢ + V3VEZ = 8b).
and Py (1) = _2CLS3,P2 (_1) — —92a53 — 2bs2 + 4des — 8.

Remark 4.2.38 Aj is a polynomial of degree 2 of the variable a.

1. A3 > 0df 3b < ¢ and a € |—00,a3[ U Jag, +oo[ or if 3b > ¢ or if 3b = % and

2 1
2. Ay <0if3b<c? and a € [a3,a4] or if 3b =c? and a = EC?’_ gbc.

Lemma 4.2.39 1. If4b < ¢? then az <0, ag > 0.
2. Ifb,c >0 and 3b < ¢® < 4b then a3, a4 < 0.

3. Ifb>0,c<0 and 3b < c® < 4b then a3, as > 0.

1
Proof 4.2.40 As asaq = mlﬁ (4b — 02) , then the sign of as, as depends on the sign of
4b — 2.

Lemma 4.2.41 [f4b < ¢ or 3b < ¢® < 4b and a < a3z < 0, then z > 0.

Proof 4.2.42 Either 4b < c¢? or 3b < ¢ < 4b and a € |—o0,as[, one has 3b < ¢, and A}
positive (1 in Remark 4.2.38),

and <63 - gbc — 27a> > 0 because

(03 — gbc - 27a> > <c3 - gbc - 27a3> =/—Bb—2)* >0,
as 5
2= 5 ((~54a+ 26" — 9bc) +3V/B2),
then z1 > 0.

Lemma 4.2.43 If 4b < 2 or3b<c®<4band a > ay > 0, then zo < 0.
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Proof 4.2.44 FEither 4b < ¢* or 3b < ¢ < 4b and a € Jaq, +o0[, one has 3b < ¢, and A}
positive (1 in Remark 4.2.38),

and (03 — gbc — 27a> < 0 because

<c3 — gbc - 27@) < <03 - gbc - 27a4> = —\/—(3b—¢)’ <0,

as
3

29 = % ((—54@ +203 — 9bc) — 3\/5) )
then z9 < 0.

Lemma 4.2.45 If 3b < 2, then z; and zy have the same sign.

Proof 4.2.46 If 3b < c2, one has 2129 = s° (—3b+ 62)3 > 0, then z1, zo have the same
Sign.

b
Lemma 4.2.47 Ifbe RT, V/3b < ¢ then a3 + 50 > 0.

b
Proof 4.2.48 The difference between az and —EC, 18:

be . 1 213 3 1
a3+2— 27(\/ (3b— )" —¢ +3bc,
then < —(3b— 2)° — 03> < 0 because
( —(3b—¢2)® — c3> ( —(3b—¢2) + c3> = —27b% + 9bc* (3b — %) < 0,
b
and ( —(3b—¢2)® + c3> > 0. Therefore as + Ec > 0.

b
Lemma 4.2.49 Ifbe RT, ¢ < —V/3b then as + EC < 0.

b
Proof 4.2.50 The difference between a4 and —Ec, 18:

s+ 3 =57 <\/ (3b—¢2)"+¢ +Sbc,
then < —(3b—¢2)® + C3> < 0 because

( —(3b—¢2)* — c3> ( —(3b—¢2)® + c3> = —27b% + 9bc* (3b — %) < 0,

b
and (\/ —(3b—¢2)® — 03> > 0. Therefore aq + EC < 0.
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Lemma 4.2.51 If3b < ¢ and a € |—00,a3[ U ]ay, +00] :

1. the sign of [\23| — 1 depends on the sign of
(p? — 3cp1+9b) s+ 3 (p1 — 3¢).

2. the sign of |\1| — 1 depends on the sign of p1 (sp1 — 6) .

Proof 4.2.52 A% > 0 if 3b < ¢? and a € ]—00, a3[ U]ay, +oo[ (1 in Remark 4.2.38).
Calculating |A\o 3> — 1 and |\ |* — 1 one finds:

(M3l = 1) (hesl +1) = = ((pf —3cp1 +9b) s* + 3 (p1 — 3¢) s),

— O =

(Ml =1 (Pl +1) = gopi (sp1—6).

The above results are true because |A2 3| + 1, |A1| + 1, s are positive.
Remark 4.2.53 p; > 0 if z1, z0,¢ > 0 and p1 <0 if 21, 22,¢ < 0.

Now, relatively to the dynamical properties of the fixed points Fy and F», one has the
following results.

-3 6
For theorems 4.2.54 to 4.2.68, let: v; = —3 pL ¢ and y3 = —.

2
02— 3o+ 90 2T b p1

Theorem 4.2.54 If the fized points E;, 1 = 1,2 exist with the following assumptions
beR, ,ceR” anddeR.

1. When a =0 then As <0 and E; are non-hyperbolic.
2. When a € ]0,a4] then Ao < 0 and E; are source if 0 < s < 2.
3. When a € |ay, 400 then Ay > 0 and:

(a) E; are unstable if s > 1.

(b) E; are a one-dimensional saddle if 0 < s < 1.
(¢) E; are non-hyperbolic if s = 1.

Proof 4.2.55 Forbe R, ccR™ andd e R:

1. Ifa=0:
the condition 4b < ¢? is verified, and 3b < c?.
Ay <0 because A5 <0 (2 in Remark 4.2.38). One has P, (1) =0 (a null).

Hence, applying the stability conditions using Theorem 4 (5.i) of [23], one obtains
the result.
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2. Ifa€]0,a4] :
the condition 4b < c¢? is verified, then ay > 0 (1 in Lemma 4.2.39), and 3b < c%.
Ay < 0 because A5 < 0 (2 in Remark 4.2.38). One has P> (1) < 0 (a positive) and
Py (—1) <0 if s € ]0,72[ because
3 2 be, 3 2 be "

—2as® — 2bs* +4cs — 8 < —2(—5)8 — 2bs* +4cs — 8| a, 0} positive | ,

—2as® — 2bs? + 4cs — 8 < (cs — 2) (bs* +4)
then Py (—1) < 0 if (bs® +4) > 0 because (cs —2) < 0.

A5 > 1 because (—c +Ve? - 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.b) of [23], one obtains
the resull.

3. If a € ]Jag, +oo[ :
the condition 4b < c¢? is verified, then ay > 0 (1 in Lemma 4.2.39), and 3b < c%.

Ay > 0 because Ay > 0 (1 in Remark 4.2.38). And according to Lemma 4.2.43,
Lemma 4.2.45 and Remark 4.2.53, one has p1 < 0.

One study the sign of (p — 3cp1 +9b), (p1 — 3c), p1 (sp1 —6).
The sign of p? — 3cp1 +9b is positive because (,0% —3cp1 + 96) p1 = —b4a is negative,

and p1—3c is negative because (p1 — 3c) p3 = —9bp1—5da is negative. And py (sp1 — 6)
positive.

Using Lemma 4.2.51, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.

Theorem 4.2.56 If the fixed points E;, i = 1,2 exists with the following assumptions

b
beR,,c<—-3v—-bandac [ag,—; [, d € R then E; are source if s > 7.

be

Proof 4.2.57 Forbc R, ,c < 3v/—b, anda € [ag), 5 [, the condition 4b < c? is verified,
then ag < 0 (1 in Lemma 4.2.39), and 3b < 2.
%bc—i— 2i7c3 <0 if c < —3v/—b hence az + % = —2i7 —(31)—02)3 + %bc—i— %703 < 0.
Ay < 0 because Ay < 0 (2 in Remark 4.2.38). One has P> (1) > 0 (a negative) and
Py (—1) > 0 if s € |y2,+00[ because
—2as> — 2bs? + 4cs — 8 > —2(—%)53 —2bs? +4cs — 8 (a € |:CL3, —% [},
—2as® — 2bs* + 4cs — 8 > (cs — 2) (bs* +4) ,
hence Py (—1) > 0 if (bs® +4) < 0 because (cs —2) < 0.
A5 > 1 because (—c+ m> < 0.

Hence, applying the stability conditions using Theorem 4 (2.i.a) of [23], one obtains the
result.
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Theorem 4.2.58 If the fixed points E;, i = 1,2 exists with the following assumptions
b 2
beR, ,c>3v—bandac } —;,M] , de R then E; are source if 0 < s < — or 72 < s.
c

Proof 4.2.59 Forbc R, c> 3v/—b, and a € } —%, a4] the condition 4b < ¢? is verified,
then ag > 0 (1 in Lemma 4.2.39), and 3b < 2.

gchr 23763 >0 if ¢ > 3v/—b hence a4 + % = %\/7(3b—02)3+ %bc+ %03 > 0.

Ay < 0 because Ay < 0 (2 in Remark 4.2.38). One has Py (1) < 0 (a positive) and
Py(-1)<0ifse }O, % { or s € |2, +00[ because

—2as3 — 2bs% + 4cs — 8 < —2(—%)53 —2bs? +4cs — 8 (a € } —%, a4] ),
—2as® — 2bs* + 4cs — 8 < (cs — 2) (bs* +4) ,
hence Py (—1) < 0 if (bs®> +4) <0, (cs —2) > 0 or (bs*+4) >0, (cs —2) <0, and
% <2 (using c> 3\/jb) .
One has <fc + \/M) (fc — \/m> =3b < 0.

X5 > 1 because (—C +Ve? - 3b) > 0.

Hence, applying the stability conditions using Theorem 4 (2.1.b) of [23], one obtains the
result.

Theorem 4.2.60 If the fired points E;, i = 1,2 exist with the following assumptions
beR™,ceR andd e R.

1. When a € |—00,ag| then Ay > 0 and:

(a) E; are unstable if s > 3.
(b) E; are a one-dimensional saddle if 0 < s < 3.
(c) E; are non-hyperbolic if s = 3.

2
2. When a € |as, 0] then Ao <0 and E; are source if s > —.
c

3. When a =0 then As <0 and E; are non-hyperbolic.
Proof 4.2.61 Forbe R ,ce RS andd e R :

1. Ifa € |—00, a3 :
the condition 4b < c¢? is verified, then az < 0 (1 in Lemma 4.2.39), and 3b < c%.

Ay > 0 because A5 > 0 (1 in Remark 4.2.38). And according to Lemma 4.2.41,
Lemma 4.2.45 and Remark 4.2.53, one has p1 > 0.

One study the sign of (pi — 3cpr +9b) , (p1 — 3c), p1 (sp1 — 6).

The sign of p3 — 3cp1 + 9b is positive because (p% —3cp1 + 9b) p1 = —bda is positive,
and p1 — 3c is positive because (p1 — 3c) p3 = —bda — 9bpy is positive.

Using Lemma 4.2.51, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.
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3.
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a € [a3,0[:
the condition 4b < c¢? is verified, then az < 0 (1 in Lemma 4.2.39), and 3b < c%.
Ay < 0 because Ay < 0 (2 in Remark 4.2.38). One has Py (1) > 0 (a negative) and

2
Py(-1)>01ifse ] ,—i—oo[ because
c

—2as® — 2bs® + 4cs — 8 > 4es — 8 (a, b negative)
then Py (—1) > 0 if (4dcs — 8) > 0.

One has (—c + m> (—c — M) =3b<0,s0
A5 > 1 because (—c+ M) > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.a) of [23], one obtains
the result.

a=0:

the condition 4b < c? is verified, and 3b < c?.

Ay <0 because A5 <0 (2 in Remark 4.2.38). One has P> (1) =0 (a null).

Hence, applying the stability conditions using Theorem 4 (5.1) of [23], one obtains
the result.

Theorem 4.2.62 If the fized points E;, 1 = 1,2 exist with the following assumptions
beRt, ¢c< —2Vb and d € R.

1.

b
When a € [a3,0[ then Ay <0 and E; are a one-dimensional saddle if 0 < s < ——.
a

When a = 0 then Ag <0 and E; are non-hyperbolic.

When a € )0, a4] then Ay <0 and E; are source.

b
When a € ]a4, —21 then Ay > 0 and E; are unstable.

b
When a € ] _567 +oo[ then As > 0 and:

(a) E; are unstable if s > 1.
(b) E; are a one-dimensional saddle if 0 < s < 1.
(c) E; are non-hyperbolic if s = 1.

Proof 4.2.63 Forbe Rt c < —2Vb and d e R :

1.

a € las, 0] :
the condition 4b < c¢? is verified, then az < 0 (1 in Lemma 4.2.39), and 3b < c2.
Ao <0 because Ay < 0 (2 in Remark 4.2.38). One has Py (1) > 0 (a negative) and

b
Py(—-1)<0ifse ]0, —[ because
a
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—2as3 — 2bs? + 4cs — 8 < 252 (—as — b) (c negative),
hence P (—1) <0 if (—as —b) < 0.

A5 > 1 because (—c +Ve? — 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (8.i.a) of [23], one obtains
the resull.

. Ifa=0:

the condition 4b < c? is verified, and 3b < c?.

Ay <0 because A5 <0 (2 in Remark 4.2.38). One has P> (1) > 0 (a null).

Hence, applying the stability conditions using Theorem 4 (5.i) of [23], one obtains
the result.

. Ifa€]0,a4] :

the condition 4b < c* is verified, then ay > 0 (1 in Lemma 4.2.39), and 3b < c?.

Ay < 0 because A5 < 0 (2 in Remark 4.2.38). One has P> (1) < 0 (a positive) and
P, (—1) < 0 (c negative, b, a positive).

A5 > 1 because (—c + V2 — 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.b) of [23], one obtains
the result.

Ifa€lag, +o0[:

the condition 4b < c? is verified, then ay > 0 (1 in Lemma 4.2.39), and 3b < c2.

Ay > 0 because A5 > 0 (1 in Remark 4.2.38). And according to Lemma 4.2.43,
Lemma 4.2.45 and Remark 4.2.53, one has p1 < 0.

One study the sign of (p — 3cpr +9b), (p1 — 3c), p1 (sp1 —6).

The sign of p? — 3cp1 + 9b is positive because (p% —3cp1 + 9b) p1 = —bda is negative,
and p1—3c is positive or null if 2a+bc is negative or null because (p1 — 3c) (p% + 9b) =
—27(2a + bc) .

b b b
then a € Jay,+o0[ N ]O,—;} = ]a;;,—zc} (ag < —EC using Lemma 4.2.49), and
p1 (sp1 — 6) positive.
And p1 — 3c is negative if 2a + be is positive because
(p1 — 3¢) (pf + 9b) = =27 (2a + be) . And py (sp1 — 6) positive.

b b b
Then a € Jayg, +o00[ N ] —EC, +o0 { = ] —EC, +oo[ (a4 < —EC using Lemma 4.2.49).

Using Lemma 4.2.51, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.
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Theorem 4.2.64 If the fired points E;, i = 1,2 exist with the following assumptions
b€ RY, CG}—Q\/E,—\/%{ and d € R.

1. When a € [a3,a4] then Ay < 0 and E; are source.

b
2. When a € ]a4, —26} then Ao > 0 and E; are unstable.

b
3. When a € ] —26,+oo[ then Ao > 0 and:

(a) E; are unstable if s > 1.
(b) E; are a one-dimensional saddle if 0 < s < 1.
(¢) E; are non-hyperbolic if s = 1.

Proof 4.2.65 For bc Rt ce |—2vb, —/3b| and d € R :

1. Ifa € las,a4] :
the condition 3b < ¢ < 4b is verified, then az,as > 0 (3 in Lemma 4.2.39).
Ay < 0 because A5 < 0 (2 in Remark 4.2.38). One has P> (1) < 0 (a positive) and
P, (—1) < 0 (c negative, b, a positive).

A5 > 1 because (fc R 3b> > 0.

Hence, applying the stability conditions using Theorem 4 (2.i.b) of [23], one can
obtains the result.

2. If a € |ag, +o0] :
the condition 3b < ¢ < 4b is verified, so aqs > 0 (3 in Lemma 4.2.39).
Ay > 0 because A5 > 0 (1 in Remark 4.2.38). And according to Lemma 4.2.43,
Lemma 4.2.45 and Remark 4.2.53, one has p1 < 0.
One study the sign of (pi — 3cp1 +9b) , (p1 — 3c), p1 (sp1 — 6).

The sign of p? — 3cp1 + 9b is positive because (p% — 3cp1 + 9b) p1 = —5d4a 1s negative,
and p1—3c is positive or null if 2a+be is negative or null because (p1 — 3¢) (p% + 9b) =
—27(2a + be) .

be be bc
Hence a € lay,+oo[ N O,—E = |a1,—5 (ay < — using Lemma 4.2.49), and
p1 (sp1 — 6) positive,
and p1 — 3¢ is negative if 2a + be is positive because
(p1 — 3¢) (p? + 9b) = —27 (2a + be) . And py (sp1 — 6) positive.

2 2

Using Lemma 4.2.51, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.

b b b
Hence a € Jay, —i—oo[ﬁ]—c, +00 [ = ] ——C, —1—00[ (a4 < _Ec using Lemma 4.2.49).
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Theorem 4.2.66 If the fired points E;, i = 1,2 exist with the following assumptions
b€ RY, ce}@,Qﬁ[ and d € R.

1. When a € ] —00, —b;} then As > 0 and:

(a) E; are unstable if s > 3.
(b) E; are a one-dimensional saddle if 0 < s < 3.
(¢) E; are non-hyperbolic if s = ~s.

b
2. When a € ] —;,ag[ then As > 0 and:

(a) E; are asymptotically stable if 0 < s < min (7y1,73) .
(b) E; are unstable if s > max (v1,73).
(¢) E; are a one-dimensional saddle if y1 < s < 3.

(d) E; are a two-dimensional saddle if v3 < s < 1.
6 6

or s =

(Pl)l (01)2'

(e) E; are non-hyperbolic if s =

2
3. When a € |as, aq] then Ay <0 and E; are asymptotically stable if 0 < s < —.
c

Proof 4.2.67 For bc R, c € }\/376,2\[17[ and d € R :

1. Ifa € ]—o00,a3[:
the condition 3b < ¢ < 4b is verified, then az < 0 (2 in Lemma 4.2.39).

Ay > 0 because A5 > 0 (1 in Remark 4.2.38). And according to Lemma 4.2.43,
Lemma 4.2.45 and Remark 4.2.53, one has p1 > 0.

One study the sign of (p% —3cp1 + 9b) , (p1 —3¢), p1(sp1 —6).

The sign of p? — 3cp1 + 9b is positive because
(p? — 3cp1 + 9b) p1 = —bda is positive, and p1 — 3c is positive or null if 2a + be is
negative or null because (p1 — 3c) (p3 + 9b) = —27 (2a + be) .

2 2
and p1 — 3c is negative if a — be is positive because
(p1 — 3¢) (p3 + 9b) = —27 (2a + be) .

b b b
Hence a € |—00,a3[N ] —00, —C} = ] —00 C} (a3 > _Ec using Lemma 4.2.47),

b b b
Hence a € ]—oo,ag[ﬂ]—;,()[ = ] —;,ag[ (a3 > —50 using Lemma 4.2.47).

Using Lemma 4.2.51, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.
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2. If a € [a3, a4]:
the condition 3b < c* < 4b is verified, then a3, as < 0 (2 in Lemma 4.2.39).
Ay <0 because AT < 0 (2 in Remark 4.2.1). One has Py (1) > 0 (a negative) and

2
P (-1)<0ifse ]0, - [ because
c

e

—2as3 — 2bs? + 4es — 8 < —2( 5 )83 — 2bs% + des — 8

(as + % positive (Lemma 4.2.47)),
—2as® — 2bs?* + 4cs — 8 < (cs — 2) (bs* +4) ,
hence Py (—1) < 0 if (cs — 2) < 0 because (bs* +4) > 0.
And
<—c— m) (—c+\/m> —3b> 0,
then AT, A5 < 1 because <fc+ \/M) < 0.

Hence, applying the stability conditions using Lemma 4.2.18, Lemma 4.2.20 and
Theorem 4 (1.3) of [23], one obtains the result.

Theorem 4.2.68 If the fized points E;,i = 1,2 exist with the following assumptions b €
RT, c¢>2Vb and d € R.

1. When a € ] —00, —b;} then As > 0 and:

(a) E; are unstable if s > 3.
(b) E; are a one-dimensional saddle if 0 < s < 3.
(c) E; are non-hyperbolic if s = 3.

2. When a € ] —b;,ag[ then Ag > 0 and:

(a) E; are asymptotically stable if 0 < s < min (7y1,73) -
(b) E; are unstable if s > max (v1,73).
(¢) E; are a one-dimensional saddle if 1 < s < 3.

(d) E; are a two-dimensional saddle if y3 < s < 1.
6 6

or s =

(p1)y (p1)y

(e) E; are non-hyperbolic if s =

2
3. When a € [a3,0] then Ay < 0 and E; are asymptotically stable if 0 < s < —.

c
4. When a =0 then As <0 and E; are non-hyperbolic.

2
5. When a € )0, ay4] then Ay <0 and E; are a two-dimensional saddle if 0 < s < —.
c
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Proof 4.2.69 Forbe Rt ¢>2vVb andd e R :

1. Ifa €]—o0,a3]:
the condition 4b < c? is verified, then a3 < 0 (1 in Lemma 4.2.39), and 3b < c2.

Ay > 0 because A5 > 0 (1 in Remark 4.2.38). And according to Lemma 4.2.41,
Lemma 4.2.45 and Remark 4.2.53, one has p1 > 0.

One study the sign of (p — 3cp1 +9b), (p1 — 3c), p1 (sp1 —6).
The sign of p3 — 3cp1 + 9b is positive because (p% —3cp1 + 9b) p1 = —5d4a is positive,

and p1 — 3c is positive or null if 2a + be is negative or null because
(p1— 3c) (p? 4+ 9b) = —27(2a + be) .

2 Y 9
and p1 — 3c is negative if 2a + be is positive because
(p1 — 3¢) (p} + 9b) = —27 (2a + be) .
b b
Hence a € ]—oo,ag[ﬂ] —20,0[ = ] _507

Using Lemma 4.2.51, hence applying the stability conditions using Definition 4.1.20.
One can obtain the results.

b b b
Hence a € ]—oo,ag[ﬁ]—oo, —C} = ] —00 C} (as > ~x using Lemma 4.2.47),
be |
asg| (ag > — using Lemma 4.2.47).

2. If a € [a3,0]:
the condition 4b < c¢? is verified, then az < 0 (1 in Lemma 4.2.39), and 3b < c%.
Ay < 0 because Ay < 0 (2 in Remark 4.2.38). One has Py (1) > 0 (a negative) and

2
Py(-1)<0ifse ]0, - [ because

—2as> — 2bs? + 4cs — 8 < —2(—%)33 — 2bs? + 4des — 8
(as + % positive (Lemma 4.2.47)),
—2as® — 2bs® + 4cs — 8 < (cs — 2) (bs* +4) ,
then Py (—1) < 0 if (cs — 2) < 0 because (bs* +4) > 0.
And
(—e= Ve =3b) (—e+ Ve =3b) =3 >0,
50 AT, A5 < 1 because (—c—i— \/m> < 0.

Hence, applying the stability conditions using Lemma 4.2.18, Lemma 4.2.20 and
Theorem 4 (1.7) of [23], one can obtain the result.
3. Ifa=0:
the condition 4b < ¢? is verified, and 3b < c?.
Ay <0 because A5 <0 (2 in Remark 4.2.38). One has P> (1) > 0 (a null).

Hence, applying the stability conditions using Theorem 4 (5.1) of [23], one obtains
the result.
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4. If a €]0,a4] :
the condition 4b < c¢? is verified, then ay > 0 (1 in Lemma 4.2.39), and 3b < c%.
Ay < 0 because A5 < 0 (2 in Remark 4.2.38). One has P> (1) < 0 (a positive) and

Py(-1)<0ifse ]0, % [ because
—2as% — 2bs? + 4cs — 8 < —2(—@)33 — 2bs? + 4cs — 8 (a, be positive),
—2as® — 2bs? + 4cs — 8 < (cs — 2) (bs* +4) ?

hence Py (—1) < 0 if (cs — 2) < 0 because (bs* +4) > 0.

And
Al < 1 because (—c — m> < 0.

Hence, applying the stability conditions using Lemma 4.2.18, Lemma 4.2.20 and
Theorem 4 (4.1.b) of [23], one obtains the result.

4.2.2 Numerical Simulations

In this subsection, we present bifurcation diagrams, phase portraits of the model (4.18),
which confirm the analytical results above and illustrate the dynamic behaviors of our
model numerically relay. A bifurcation occurs when the stability of a point of equilibrium
changes [13].

As discussed earlier in Section 4.2.1, this paper focuses on varying new positive parameter h
in the model (4.18). Based on the previous analysis, the parameters of the model (4.18) can
be examined by: varying h in the range 1.31 < h < 1.6 and fixing a = 0.7437, b = 1.523,
c=2.158,d =2, o = 0.99, with the initial conditions (xg,yo, z0) = (0.001,0.001,0.001).
The resulting points are plotted versus the parameter h (see Figure 4.7).

According to Theorem 4.2.34, we have b € R, ¢ € }\/% 2@[:]2. 1375,2.4682] , and

a € Jag, be[ =]0.35305, 3.2866[, d € R; we have (61), ~ 4.3947,

6 (91)2 — 3c
= -3 ~ 1.3653, h = {/sI'(1+ «) ~ 1.3638 and Ej
(61), (61)3 — 3¢ (61)y + 90

is asymptotically stable if 0 < h < 1.3638, (see (a) and (b) in Figure 4.8), all trajectories
converge to the point Ey. If h >~ 1.3638, system (4.18) undergoes a bifurcation as mentioned
above (see (c) in Figure 4.8); the fixed point Ey becomes unstable if A > 1.3638 (see (d)
in Figure 4.8).

S =

In this second part of numerical results, the fractional order is only considered as a
parameter in the discrete system. Varying the fractional order («) in the range 0.3 < a < 1,
and fixing a = 0.656, b = 1.64, ¢ = 2.21, d = 2, h = 1.747, the resulting points are plotted
versus the fractional order (a) (see Figure 4.9). Attracting invariant circles and chaos
appear when increasing («) in such way that the fractional order remains in the interval
[0.3, 1[. The phase portraits for various a—values corresponding to Figure 4.9 are plotted.
Furthermore, the period—2 orbits (o = 0.73) are shown (a) in Figure 4.10, and for the
attracting invariant circles (v = 0.77, @ = 0.83) see (b) and (c) in Figure 4.10. Attracting
chaotic sets are also observed if a = 0.99 and are plotted (d) in Figure 4.10.
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Figure 4.7: Bifurcation Diagram of model (4.18) for h € [1.31,1.6].

(a) Stable fixed point at h = 1.31.

(c) The fixed point loses stability at h = 1.3638.

(b) Stable fixed point at h = 1.35.

(d) Unstable fixed point at h = 1.6.

Figure 4.8: The trajectory diagrams of model (4.18) for Various h Corresponding to Figure

4.7.
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Figure 4.9: Bifurcation Diagram of model (4.18) for o € [0.3,1].
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(a) Period-2 orbits at a = 0.73.
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Attractor when o=0.83
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(c) Attracting invariant circles at o = 0.83.

Figure 4.10: Phase Portrait Diagrams of model (4.18)

Figure 4.9.
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(b) Attracting invariant circles at a = 0.77.

Attractor when 2=0.99
T T T

(d) Chaotic

for Various «

attractor at o = 0.99.

Corresponding to
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Conclusion and Perspectives

This thesis has provided an in-depth exploration of fractional calculus and its application
to chaotic systems. The preliminary chapters laid the foundation by introducing the
necessary mathematical tools and concepts. Chaos theory was also discussed, highlighting
its importance in understanding complex dynamical systems.

Chapter 3 focused on discretization methods for transforming continuous fractional-
order chaotic systems into discrete counterparts. The various discretization techniques
were analyzed, considering their impact on system dynamics and their ability to preserve
the essential chaotic features during the discretization process.

Chapter 4 presented the main results of the thesis. Firstly, it investigated the bifurcation
and stability properties of a new discrete system derived from a fractional-order continuous
chaotic finance system. Through numerical simulations and mathematical analysis, the
chapter revealed the existence of bifurcation points and characterized their influence on
the system’s stability. Secondly, a similar analysis was conducted on a discrete system
induced from the chaotic Arneodo’s system, exploring its bifurcation patterns and stability
properties.

Overall, this research has contributed to the understanding of fractional-order chaotic
systems and their discretization. The findings demonstrate the existence of bifurcation
points and provide insights into the stability properties of the studied systems. These
results have practical implications in various fields, such as finance and engineering, where
chaotic dynamics are relevant.

Moving forward, there are several perspectives for further research. One avenue could
involve investigating the control and synchronization of discrete fractional-order chaotic
systems. Understanding how to control and synchronize these systems could have applications
in secure communication and information processing. Additionally, exploring the effects of
noise and uncertainties on the discretized chaotic systems would provide valuable insights
into their robustness and practical implementation.
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Abstract:

This thesis investigates the bifurcation and stability properties of discrete systems induced by fractional-order continuous
chaotic finance systems and Arneodo's chaotic system. The research is structured into four chapters, each focusing on different
aspects related to fractional calculus, chaos theory, discretization methods, and the main results obtained from the analysis.

Chapter 1 and Chapter 2 provide a preliminary introduction to fractional calculus, presenting the necessary mathematical tools
and concepts for understanding the fractional order systems. Additionally, it discusses the fundamentals of chaos theory,
emphasizing the significance of chaos.

In Chapter 3, various discretization methods are examined to transform the continuous fractional-order chaotic systems into
discrete counterparts. The discretization techniques are thoroughly analyzed, considering their impact on the system dynamics
and preserving the essential chaotic features during the discretization process.

Chapter 4 presents the main results of the thesis. Firstly, it investigates the bifurcation and stability properties of a new discrete
system induced from a fractional-order continuous chaotic finance system. Through numerical simulations and mathematical
analysis, the chapter reveals the existence of bifurcation points and characterizes their influence on the system's stability.
Secondly, a similar analysis is conducted on a discrete system induced from the chaotic Arneodo's system, exploring its
bifurcation patterns and stability properties.

Key words:
Discrete dynamical system, Arneodo’s system, finance system, fixed point stability, bifurcation, chaotic behavior, discretization.
Résumé :

Cette these étudie les propriétés de bifurcation et de stabilité des systéemes discrets induits a partir de systemes financiers
chaotiques continus d'ordre fractionnaire et du systéme chaotique d'Arneodo. La recherche est structurée en quatre chapitres,
chacun se concentrant sur différents aspects liés au calcul fractionnaire, a la théorie du chaos, aux méthodes de discrétisation
et aux principaux résultats obtenus a partir de I'analyse.

Les chapitres 1 et 2 fournissent une introduction préliminaire au calcul fractionnaire, en présentant les outils mathématiques et
les concepts nécessaires pour comprendre les systéemes d'ordre fractionnaire. De plus, ils abordent les fondamentaux de la
théorie du chaos, en soulignant I'importance des phénomeénes chaotiques.

Dans le chapitre 3, différentes méthodes de discrétisation sont examinées pour transformer les systémes chaotiques continus
d'ordre fractionnaire en systemes discrets. Les techniques de discrétisation sont analysées en détail, en tenant compte de leur
impact sur la dynamique du systéme et de leur capacité a préserver les caractéristiques chaotiques essentielles lors du
processus de discrétisation.

Le chapitre 4 présente les principaux résultats de la thése. Tout d'abord, il étudie les propriétés de bifurcation et de stabilité
d'un nouveau systéme discret induit a partir d'un systeme financier chaotique continu d'ordre fractionnaire. Grace a des
simulations numériques et a une analyse mathématique, le chapitre révéle I'existence de points de bifurcation et caractérise
leur influence sur la stabilité du systéme. Ensuite, une analyse similaire est menée sur un systéeme discret induit a partir du
systeme chaotique d'Arneodo, explorant ses motifs de bifurcation et ses propriétés de stabilité.

Mots clés:

Systeme dynamique discret, systeme d'Arneodo, systeme financier, stabilité du point fixe, bifurcation, comportement
chaotique, discrétisation.
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