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Résumé

ans cette these, notre intérét se porte sur une classe d’équations différentielles

stochastiques rétrogrades dirigées par un processus Markovien de saut pur (ED-
SRs en abrégé). Nous prouvons d’abord un résultat d’existence et d’unicité pour ce
type d’EDSRs avec des générateurs globalement Lipschitzien aussi bien qu'un théoreme
de comparaison pour les solutions. Ensuite, nous proposons d’affaiblir la condition de
Lipschitz et nous traitons trois cas faisant 'objet de trois sujets différents.

Dans le premier cas, nous étudions une classe d’équations différentielles stochas-
tiques rétrogrades qui sont dirigées par un processus Markovien de saut et un processus
de Wiener. Pour commencer, nous démontrons l'existence d’un résultat dans le cas ou le
générateur de 'EDSR est continu et satisfait la condition de croissance linéaire. Ensuite,
lorsque le générateur est simplement continu a gauche, croissant et borné. La technique
utilisé consiste a trouver une suite croissante de processus dont la limite est la solution
souhaitée. Enfin, nous démontrons que, sous 'hypothese de continuité et de croissance
linéaire du générateur, 'EDSR étudiée peut avoir soit une seule soit un nombre non
dénombrable de solutions.

Dans le deuxieme cas, nous étudions une EDS rétrograde qui est dirigée par
un processus Markovien de saut dont le générateur peut étre localement Lipschitzien.
Nous établissons des théoremes d’existence, d'unicité et de stabilité pour ces EDSRs.
Nous approximons essentiellement le probléme initial en construisant une suite d’EDSRs
avec des générateurs globalement Lipschitzien pour lesquels 'existence et 1'unicité des

solutions sont vérifiées. En passant aux limites, nous montrons l'existence et 1'unicité

iv



des solutions au probleme initial. Finalement, nous prouvons l’existence d’une solution
unique a ’équation de Kolmogorov associée.

Dans le troisieme cas nous focalisons au méme type d’EDSRs avec un générateur
continu et de croissance logarithmique, c¢’est une croissance entre linéaire et quadratique.
En utilisant une méthode de localisation, pour démontrer ’existence et 1'unicité de la
solution. La méthode consiste a approximer le générateur de 'EDSR en utilisant une
suite de générateurs Lipschitziens, ce qui nous permet d’obtenir ’existence de la solution
en faisant un passage a la limite. Finalement, nous présentons une application aux EDSRs
quadratiques.

Mots clés: Equation differentielle stochastique progressive rétrograde, processus de

Markov a saut, mesure aléatoire, principe de comparaison, equation de Kolmogorov.



Abstract

N the present thesis we are interested in the well-posedness problem to a wide class of
backward stochastic differential equations driven by Brownian motion and indepen-
dent random measures related to pure jump Markov processes (BSDEJs for short). We
first prove an existence and uniqueness result for this type of BSDEJs with globally Lips-
chitz generators along with a comparison theorem for the solutions. Then, we propose to
relax the Lipschitz framework in three directions as three different topics.

The first topic is devoted to the study such BSDEJs with continuous generators
(not necessarily Lipschitz) allowing a linear growth condition. We start by proving the
existence of at least one (minimal) solution. Then, we extend this later result to the case
when the generator is merely left continuous, increasing, and bounded. Finally, we prove
that if the generator is assumed to be continuous and of linear growth in (y, z, k (-)) The
BSDEJ has one or uncountable solutions.

In the second topic we are concerned with locally Lipschitz setting. We establish
an existence, uniqueness and stability theorems to such BSDEJs. We approximate the
initial problem by a sequence of BSDEJs with globally Lipschitz generators, such that for
each integer n the previous BSDEJ has a unique solution (Y™, K"(-)). Then by passing
to the limits, we show that the initial problem has a unique solution (Y, K (-)) as a limit
of a Cauchy sequence (Y, K"(-)) in a Banach space to be determined later. Finally, we
prove the existence of a unique solution to a Kolmogorov equation.

In the third topic we give a result of existence and uniqueness to a class of BSDEJs

driven by a jump Markov process with a generator allowing a logarithmic growth. Then,



we apply this result to prove the existence of a unique solution to one type of quadratic
BSDEJs.
Keywords: Backward stochastic differential equations (BSDE), jump Markov pro-

cess, comparison principle, Random measure, Kolmogorov equation.
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List of Symbols and Abbreviations

The different symbols and abbreviations used in this thesis.

a.e

(I,€)
(Q, F,P)

{'Ft}te[O,T]
(€, F, 7, P)

almost everywhere.
almost surely.
real numbers.
is a stopping time.
the closure of the set A.
the indicator function of the set A.
o-algebra generated by A.
measurable space.
probability space.
filtration.
filtered probability space.
the totality of the P-negligible sets.
The mathematic expectation.
conditional expectation.
is a Brownian motion.

is a given Markov process.




BSDFEs: Backward stochastic differential equations.
P®dt: the product measure of P with the Lebesgue measure dt.

L™(p): denote the space of real function Wy(w, ) defined on Q x [t,00[ x I';and
P ® E-measurable such that

E//|W p(ds, ) IE//|W v(s, X,,d)ds < co.

L}, (p"): the space of the real functions W such that W1.Ijo ., € £'(p") for some

increasing sequence of F'-stopping times 7,, diverging to +oo.

M?2: the space of real valued square integrable progressively measurable and pre-

dictable processes ¢p={¢, : u € [0, T} such that

T
6 =E [ |6uf* du < +oc.

Sp: p > 1 the space of real-valued and Prog' —measurable processes Y on [t, T such

that

T
E[/ Y|P dr| < oco.
t

§2: is the space of Fj-adapted and right-continuous with the left limit processes Y,
such that
E [ sup |Y;|”

t€[0,T]

LA(T,E,v(.,z,d0)): the space of processes k: I' — R such that

k() (/ E(O)]2 (-, 2 dH))l < .

B: is a Banach space.




General Introduction

He theory of Backward Stochastic Differential Equations (BSDEs for short) is an im-
Tportant and vital field of modern Mathematics. This sort of equation has found many
applications in finance, economics, homogenization, partial differential equations, stochas-
tic control, etc. Seminal survey papers in this context are [10, 16, 20, 23, 24, 31].

It is well known that the linear BSDE driven by continuous Brownian motion goes
back to the work of J.M. Bismut [15], in 1973, as an adjoint equation of the stochastic
version of Pontrayagin stochastic maximum principle. Nonetheless, the theory of non-
linear BSDEs was developed in 1990 by Pardoux and Peng, in their paper [44]. From this
work, many authors attempt to relax the assumptions on the generator. Good references
for this are [6, 27, 32, 38].

A generally acknowledged fact that the Brownian motion can be seen as the
most basic model for describing random phenomena whose value varies continuously.
However, when describing, for example, physical phenomena or in the field of finance
and insurance, the observed processes may present discontinuities whose location and
amplitude are random. The counting of the events that cause these discontinuities is
classically described by Poisson processes. Overall, the use of jump processes in modeling
stochastic systems with jumps provides valuable insights into the behavior of these systems
and helps in making predictions and decisions.

Many papers have also studied BSDEs driven by random jumps processes. Among

them, Becherer [13], M. Royer [47]. I. Kharroubi et al. [36], E. Bandini and F. Confortola
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[12]. We refer the reader to the following list of primordial papers for more literature on
this subject [4, 5, 14, 26, 28, 29, 30, 37, 39, 40, 43].

Motivated by all the aforementioned references, we aim in this Ph.D. dissertation
to deal with a class of BSDEJs driven by Markov jump processes. The first paper where
this type of equation is studied is due to Confortola and Fuhrman, in [19]. The authors
provided existence and uniqueness results for globally Lipschitz BSDEJ driven by a pure
Markov jump process of the following type

Vo= h(Xn) 4 [0 XY ()= [ [ Ko0)atar, o), (0.1)

forall s € [t,T] where t € [0,T], X is a jump Markov process defined on a complete filtered
probability space (92, F, (F) +e[0.7] ,P), q(dr, df) stands for a random measure associated to
the jump Markov process X, f is the generator and h(X7) the terminal condition. They
further applied their own results to study nonlinear variants of the Kolmogorov equation
of the Markov process and also to solve some optimal control problems. Then, in [18§]
they studied a class of backward stochastic differential equations driven by a marked point
process. Under appropriate assumptions they proved the well-posedness and continuous
dependence of the solution on the data. Subsequently, Confortola [17] proved the existence
and uniqueness of LP—solutions (p > 1) to a BSDEJ driven by a marked point process, on
a bounded time interval.

To the best of our knowledge the Lipschitz condition is the strangest condition
that ensures the existence and uniqueness of solution to BSDEJs. The natural question
that arises then is: can we get the existence or the uniqueness of solutions to such BSDEJs
under a set of conditions weaker than the Lipschitz condition? Fortunately, the answer
to this question is yes. Therefore, throughout this dissertation, we want to explore some
possible extensions. First to more general versions of this equation driven by jump Markov
process and independent Brownian motion, then to BSDEJs with continuous or locally
Lipschitz or logarithmic growth generators.

To set the stage for contributions of this dissertation, we first recall some existing
results in the literature that cover the same regions mentioned above as possible gener-
alizations for BSDEs driven by continuous Brownian motion (without the jump part).

Lepeltier and San Martin [38] studied one-dimensional BSDE with a bounded terminal

Mohamed Khider University of Biskra.
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condition and only a continuous generator which satisfies the linear growth conditions.
The first result concerned with multidimensional BSDE with continuous generator is
due to Hamadéne [33]. In this reference, an existence result has been proved under as-
sumptions that the generator f is uniformly continuous with respect to vy, z and the *®
component f; of f depends only on the i*" row of z. As a second result in this framework,
using the so-called L?-domination technique, Hamadéne & Mu [34] proved an existence
result for a multidimensional Markovian BSDE with continuous generator and stochastic
linear growth. Subsequently, the later result was extended to a coupled BSDEs system in
Mu & Wu [41].

The theory of locally Lipschitz BSDEJs driven by continuous Brownian motion
started with Hamadene in his seminal paper [32]; in which one-dimensional BSDE with a
bounded terminal condition is studied. Then, Bahlali [6] generalized the previous result
to the multidimensional case with square integrable terminal data. Subsequently, the last
work has been extended by Auguste and N’zi [3] to non-linear Volterra integral equations.

In order to highlight the logarithmic growth case, we present some papers. Bahlali
in [6] proved the existence, uniqueness, and stability of the solution for multidimensional
BSDEs with locally monotone coefficients. This is done with an almost quadratic growth
coefficient and a square-integrable terminal datum, also Bahlali et al. in [9] studied
the existence and uniqueness of BSDEs with Logarithmic growth in z and LP-integrable
terminal value. Bahlali et al. in [11] proved the existence and uniqueness of solutions of
BSDEs with generator allowing a logarithmic growth (|y||In|y||+]|z||ln|z||) in the variables
y and z with an LP- integrable terminal value.

Another avenue of generalization to the forenamed results concerned the driver
process itself, which could contain a jump part. In this setting, El Otmani [25] has stud-
ied BSDEJs driven by a simple Lévy process and proved the existence of a (minimal)
solution to BSDEJs with continuous or left continuous increasing and bounded gener-
ators. Later Yin and Mao [48], dealt with a class of BSDEJ with Poisson jumps and
random terminal times. They proved the existence of a unique solution along with two
comparison theorems for such BSDE under non-Lipschitz assumptions on the coefficient.

These results have been applied to investigate the existence and uniqueness of a minimal

Mohamed Khider University of Biskra.
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solution to one-dimensional BSDE with jumps in the case where its generator is merely
continuous and of linear growth. Subsequently, Qin and Xia [46] studied one-dimensional
BSDEJ driven by Poisson point processes with continuous and discontinuous coefficients.
By means of the comparison theorem, the authors proved the existence of a (minimal)
solution for such BSDEJ where the coefficient is continuous and satisfies an improved
linear growth assumption. Then, they extended the result to BSDEJ with left or right
continuous coefficients. More recently Eddahbi et al. [22] investigated existence results
to multidimensional Markovian BSDE driven by a Poisson random measure and indepen-
dent Brownian motion. They got their results in two different cases by assuming that
the BSDEJ’s generator is totally or partially continuous with respect to state variables
and satisfies the usual linear growth condition. As opposed to the case of BSDEJs with
a continuous generator, there are only a few papers in the locally Lipschitz or the log-
arithmic growth settings. To the best of our knowledge, the first extension to the case
of the jump is due to Bahlali et al. [7], where they treat BSDEJs driven by a family of
Teugels martingales and independent Brownian motion. Then, Bahlali et al. [21], estab-
lished an existence and uniqueness of the solution to a reflected multidimensional BSDE
in a d-dimensional convex region with locally Lipschitz generator and squared integrable
terminal condition. Finally, K Oufdil [42] studied one-dimensional backward stochastic
differential equations under logarithmic growth in the z-variable.

This thesis presents advancements in four areas related to the driver process or
to the set of conditions satisfied by the BSDEJ’s generator or the terminal datum. This
will make the content of the four chapters of this dissertation and give rise to the theory
of BSDEJs.

In the first chapter, inspired by Confortola and Fuhrman [19], we prove an exis-
tence and uniqueness result to a class of BSDEJs driven by both a jump Markov process

and an independent Wiener process of the following form

Y, =h(Xy)+ [T f(r, X, Yo, Zp, Ko(-))dr (0.2)
- fsT ZrdBr - fsT fF KT(H)Q(dT? de)a

where f is globally Lipschitz function. We further give a new demonstration of comparison

theorem which is one of the principal tools in the theory of BSDEs. This theorem allows

Mohamed Khider University of Biskra.
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us to compare the solutions of two BSDEJs whenever we can compare their inputs: if
RY(X7) < R*(X7) and fl(s,z,y, 2, k(-) < f2(s,2,y, 2, k(-))
ds ® dP-a.s. on [0,7T] x , then
V<Y, Vsel0,T], P-as. (0.3)

In the second Chapter we deal with BSDEJs with only continuous generators
(not necessarily Lipschitz). Firstly, we prove the existence of a (minimal) solution for
BSDEJ (0.2) where the generator f is continuous in (y, z), Lipschitz in k(-) and satisfies
the following linear growth condition: for all (s,w,x,y,2) € [0,T] x @ x ' x R x R and
k(-) € L*(T, &, v(s,x,df)) we have

[f (s, 2,9, 2, k() < AL+ [yl + 2]+ [1(kes) C)IL)

where ¢4(0) : Q x [0, 7] x ' — R is P ® E-measurable and satisfies a < 4(0) < b. The
main tools are the comparison theorem and the approximation technique. As the second
result, we weaker the continuous conditions and we prove the existence of a (minimal)
solution for BSDEJ (0.2) when f is only left continuous in y and bounded by using again
an approximation of the generator by increasing sequences of Lipschitz functions. We also
prove that if the generator is continuous and of linear growth in (y, z) and Lipschitz in
k (-) the BSDEJ (0.2) has one or uncountable solutions. Finally, we use the first result

to show the existence of an unnecessarily unique solution to the quadratic BSDEJ of the

form
Y, =hXp)— [ ZdB, — [I |- K.()q(dr,d0)
+ [ H(r, X, Y,, Z,, K, (-))dr,
where
H(r, Xo,y, 2, k() = f(r, X0, y, 2,k (1) + 9 (y) |2 + [Kr,xr,,yb
and

— [P kO) = FO) = PORO), oy

F'(y)

Mohamed Khider University of Biskra.
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such that ¢ is a measurable continuous function that belongs to L' (R) and F is a one to

one function from R onto R belongs to C? (R) defined as follow

F(z) = /Ox exp <2 /0y¢(t)dt> dy.

In the third Chapter, we deal with a class of BSDEJs when the generator is merely
locally Lipschitz: for every integer M > 1, there exist two constants L,; > 0 and Ly >0
such that, for a.e. s € [0,T],

‘f(svxaya k()) - f(S,:U,ZJ, k())‘ < LM ‘y - y’ + Ly Hk(> - ]%()

Y
14

’

and for all y, ¢, k(-), k(-) such that |y| < M, |g| < M, ||k(.)|, < M,

o], <

We give an existence and uniqueness theorems to such BSDEJs, we essentially
approximate the initial problem by constructing a suitable sequence of BSDEJs with
globally Lipschitz generators for which the existence and uniqueness of solutions hold. By
passing to the limits, we show the existence and uniqueness of solutions to the original
problems. The second main result of this chapter is the stability theorem which claims
that: if f,, — f and h, (X7) = h(X7) as n — oo than (Y™, K" (-)) — (Y, K () as
n — oo, such that (f,)nen is a sequence of Prog-measurable functions, (h,) _ is a
sequence of F|; rj—measurable and square-integrable random variables.

This Chapter can be regarded as an extension of the papers [6, 19], where Bahlali
in [6] assumed that the locally Lipschitz constant w.r.t y and z are the same and they
behave as v/log M in the ball B (0, M), while in our setting the locally Lipschitz constant
on y behaves as log M, whereas of z behaves as /log M On the other hand, under the

square integrability assumption on the terminal data we mention that technically the

sub-linear growth condition of f
[f(E 2,y k() < AL+ [y + 1kCID) ae (t,2) € [0,T] x T,

such that A > 0, and « € [0, 1] is only needed in the case where |Y| and ||Z (-)||, are

I,
sufficiently large. Besides, by virtue of the boundedness of the terminal data, we can
trade off the sub-linear growth in y by the linear growth see Remark 1 and Corollary 1 of
Section 3 in Chapter 3. We can also allow f to be of super-linear growth in y under some

appropriate conditions: yf (t,z,y,k(-)) < C (1 + yI* + |yl Hk()Hy) ,a.e. (t,x) € [0, T)xT,

Mohamed Khider University of Biskra.
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see remark 2 and Example 2 of Section 3 in Chapter 3. Obviously, those improvements
increase the choices in selecting the generators that satisfy those hypotheses. We also
present a parabolic backward equation associated to a Markov process X of the following

form
w(tr) = b+ | Lo (r2) dr (0.4)
—l—/tTf(r,x,u (ryx),u(r,.) —u(r,z))dr,

where t € [0,T], x € T, u:[0,7] x I' = R is an unknown function such that the function
t — u (t, ) is absolutely continuous on [0, 7] such that (u (s, X ), u(s,0) —u(s, X5 )) €

63,2, f and h are two given functions, £, denote the generator of X of the form

L (e @) = [ (¢ (6) = ¢ @) (r.z.d0),

such that ¢ : I' = R is a measurable function, we apply Theorem 3.5 to prove the existence
of a unique solution u, Moreover for every t € [0,7], x € T we have Y}* = u (s, X,),
K5 (0) = u(s,0) — u (s, X,_), so that in particular u (¢, z) = Y;"".

In the fourth Chapter, we study a class of BSDEJs (0.1) with Logarithmic growth

in y and k of the type
|ty k) 1< e+ Clyll Iyl + co RO, /I n(RC)],)

where ¢y and C' are two positive constants. We extend the work of Bahlali [11] to the
jump case, we prove an existence and uniqueness result under an exponential integrability
condition on the terminal data. It is worth mentioning that neither the uniform continuity
nor the locally Lipschitz condition will be needed, then we prove that the quadratic BSDEJ

with exponential moments

T
Y, = h(XT)+/ <YT+ZT In|Z,| + Y|

1
n (eKr(-) — 1) \/!111 (X0 =D+ Y|+ B |Z:|* + [KT,XTD ds
T T
- / Z,dB, — / / K, (8)q(dr, df),
s s T
has a unique solution (Y, Z, K (+)) if and only if

(Yr, 20, ki (0)) = (eYT,eY’ZmeYT(eKT(G) — 1)) ,

Mohamed Khider University of Biskra.
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for any r € [0,7] and 0 € T" is a unique solution of the following equation

T
Ys = e’yh(XT) —+ /s (y'/‘ In Yy + Zr |1H |Z7~|| + k’r () | ]'n<”k7‘()”u>|) dr
T T
- / 2B, — / / kr(0)q(dr, d6).
s s r

To finish this introduction, let us recall that the content of this thesis is the
subjects of the papers [1, 2]:

1) Abdelhadi, K., Eddahbi, M., Khelfallah, N., & Almualim, A. (2022).
Backward Stochastic Differential Equations Driven by a Jump Markov Process with Con-
tinuous and Non-Necessary Continuous Generators. Fractal and Fractional, 6(6), 331.

2) Abdelhadi, K., & Khelfallah, N. (2022). Locally Lipschitz BSDE with jumps

and related Kolmogorov equation. Stochastics and Dynamics, 2250021.

Mohamed Khider University of Biskra.
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CHAPTER 1

BSDE] with Lipschitz Coefficients

(Joint work with N. Khelfallah, A. Almualim and M. Eddahbi)

1.1 Introduction

In this chapter, we are interested in the class of backward stochastic differential
equations driven by a jump Markov process and an independent Brownian motion with
Lipschitz coefficients. In section 1, we give a brief introduction to the jump Markov
process theory. In section 2, we give an existence and uniqueness result of BSDEJs (0.2)
with globally Lipschitz coefficients. In Section 3, we prove a comparison theorem which
will play an important role in the next chapter. Section 4 is devoted to the study of
the existence of a unique solution to the Kolmogorov equation related to the underlying

BSDEJ.

1.2 Overview of a jump Markov Process

A Markov process is a stochastic process having the Markov property, that is, the
law of the future conditionally to the present is independent of that of the past. We recall
that the jump processes, which play a crucial role in the theory of probability, are in
fact members of a wide class called the Lévy processes. The most well-known examples of
Lévy processes are the Wiener process, often called the Brownian motion process, Poisson
process and Gamma process.

A Markov jump process (or Markov chain in continuous time) generalizes the
notion of the Poisson process in the case where the jump occurring at a random instant

is itself random. Moreover, this type of process combines a Poisson process and a Markov

10



1.2. OVERVIEW OF A JUMP MARKOV PROCESS 11

chain. They were initiated in 1902 by the Russian mathematician Andrey Andreyevich
Markov (1856-1922), and they are named after him.

Throughout this thesis, the real positive number T stands for the horizon, and
(Q, F,P) stands for a complete probability space. Let (', £) be a measurable space such
that £ contains all one-point sets and let X be a normal jump Markov process and
B a standard Weiner process. We denote by F! := (‘F[t’s])se[t,+oo[ the filtration such

that (F[t’s}>se[t,+oo[
o (X, r<s)Vo(B,t<r<s)VN, where N is the totality of P-null sets.

is the right-continuous increasing family of F defined by Fy 4 :=

Let Prog" be the progressive o -algebra on [t, 00| x €; the same symbols will also
denote the restriction to [¢t,T] x Q; let P* be the predictable o -algebra. We define a
transition measure (also called a rate measure) v(s,x,A), s € [t,T], z € T, A € T from
[t,00) x I" to I, such that sup v(s,z,I") < co and v(s,z, {z}) = 0.
s€[0,T],zel

For every t > 0, we define a sequence (7},),-, of random variables with values in [0, oc]

as follows

Té (w) = t,

ta (W) = inf{s> T (W) X, (W) # Xry) @)}

with the convention that 7! (w) = oo if the indicated set is empty. Since X is a jump
process, we have T} (w) < T¢ ; (w) if T} (w) < oo. Since X is non-explosive, T}, (w) tends
towards infinity with n.

In other words, T} are the jump times of X; we consider the marked point process

(T i XT;;) and the associated random measure
t —
p'(ds,dd) == 67, xs,)(ds,db) on Jt, +oo x T,

where § stands for the Dirac measure. The compensator (also called the dual predictable
projection) p¢ of p* is pt(ds,dd) = v(s, X;*,df)ds, so that q'(dr,dd) := p'(dr,dd) —
v(r, X,_,d#)dr is the Tto differential of an F*—martingale. Notice that
T
E[ [ K@Opsd)= > K (Xn)selT],
¢ JI n>1,Tt<s

is always well defined since T — oco.

Mohamed Khider University of Biskra.



1.2. OVERVIEW OF A JUMP MARKOV PROCESS 12

We refer the reader to the paper [19] for further information about this subject.

In the remainder of this study, we will work on the following spaces

o For m € [1,00[, we define L™(p") as the space of P ® E-measurable real functions

K4(w,0) defined on Q x [t,T] x ', such that

//|K )™ pt(dr, df) = //|K v(r, X, d0)ds

_ / / 1K, (8)|™ v(r, X, dB)ds < oo

o L],.(p') is the space of the real functions K such that K1), € £'(p') for some

increasing sequence of Fi-stopping times 7,, diverging to +o0.

o L*(T,&,v(.,x,db)) the space of processes k : I' — R such that
IO, = ([ KO)F v(-,2,0)% <

o S%is the space of Fi-adapted and right- continuous with the left limit (tell) processes
Y, such that

E[sup v, ?
te[0,T

« S, , p>1 the space of real-valued and Prog'~measurable processes Y on [t, T| such

that
< 0.

T
EV Yo dr
t

o H? the space of the processes K (-) on [t,T] such that K : Q x [t,T] x ' — R is

P! ® B (R)-measurable and

B|[ Ik

o M? the space of real valued square integrable, progressively measurable and pre-

dictable processes ¢ = {¢, : u € [0,T]} such that

< Q.

T
161° =E [ |éul* du < +o.

Mohamed Khider University of Biskra.
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o B:=8%% M?® H? is the space of processes (Y, Z, K(-)) on [0, T], such that

< +00.

2 2 T 2 T 2
10 Z KDl =B | sup P+ [ 12 ar+ [ KO dr
s€[0,T7] 0 0

The space B endowed with this norm, is a Banach space.
Definition 1.1
A solution to equation (0.2) is a triple of processes (Y, Z, K (-)) which satisfying BSDE.J
(0.2) such that (Y, Z, K(-)) € B.

Remark 1.1

the stochastic integral [ [ K, (0)q(dr,df) is a finite variation martingale if K €
LH(p").

Now, we give the representation theorem which is one of the important tools to
prove the results concerning the existence of solutions. Its proof can be found in ([17]

Theorem 2.9).
Proposition 1.2

Given (t,z) € [0,T] x I, let M be a square-integrable martingale and F*—adapted on
[t,T]. Then there exists two processes K (-) € L* (p) and Z € M? such that

M, :Mt—i—/rZudBu—i—/r/Ku(e)qt(du,de), relt,T].
t t I

In what follows, we recall Girsanov’s theorem which plays a key role in the sequel.

Let us denote by A? the set of square integrable martingales and by A the subset:
A={(M.),com € A : w; (0)] < Crwn (€) > —1,u € M?},

such that My = [fu,dB, + [ [rw.(0)q'(dr,df). For all M € A, the Doleans-Dade

exponential is defined as

er (M) = MM 1 (14 AM,) e M,
s€[0,T7]

Mohamed Khider University of Biskra.
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Proposition 1.3
(Girsanov’s theorem ) Let W € L% (p), V € M? and

U, = [FVidB, + [ [p W, (0) ¢'(dr,df). For a given M € A, we define U, = U, —

(M,U),, then the process Uis a martingale under the probability measure d@) :=
ET (M) dP.

Remark 1.4

For the sake of simplicity, we drop the superscripts t; x and shall state the results and

their proofs for t = 0.

1.3 BSDEJ with Globally Lipschitz Coefficients

1.3.1 Problem Statement and Main Results

In this section, we tackle existence and uniqueness results for BSDEJ (0.2) in the
globally Lipschitz case. The main hypothesis needed in this Section are the following:
Hypothesis 1

H The final condition A : I' —3 R is & measurable and E |h(X7)]? < oo.
(Hii) |h(X7)]

(Hy2) For every s € [0,T], z €T, reR, z€R, f(s,x,r, z ) is a mapping
L*(T, €&, v(s, z,df)) — R.

(H,3) For every bounded and E-measurable function k(-) : I' — R, the mapping
(s,z,7 2) — f(s,x,r, 2, k(.)) is B([0,T]) ® £ ® B(R)-measurable.

(His) E [T [f(s,Xs,0,0,0)%ds < oc.

(Hy5) There exists L > 0 such that for every s € [0,T], x € T, r, 7, 2z, 2 € R and
k(-), k(-) € LA(T, €, v(s, x,d0))

F(s,m,m2, k() = f(s,2, 7, 2, K()]
SL[(r =+ 1z = 2) + [k() = £O) ]

Mohamed Khider University of Biskra.
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Noting that, under Hypotheses 1, it was shown in Lemma 3.2 in [19] that the map-
ping (w,s,y) — f (s, X, (w),y, K, (w,-)) is P ® B(R)-measurable if K € £*(p). Fur-
thermore, if Y is Prog—measurable process then, (w,s) — f (s, X;_ (w),Ys (w), Zs (w, "))
is Prog—measurable.

Throughout the following theorem we reveal the first main result of this chapter.

Theorem 1.5
Let Hypothesis 1 holds. Then, the BSDEJ (0.2) has a unique solution (Y, Z, K(-))

in B.

To prove the above theorem, we shall start by giving and proving the following lemmas.

Lemma 1.6
Suppose that Hy; holds and f, : Q x [0,T] — R is Prog—measurable, such that f,

is square integrable. Then, the following BSDEJ

Y, = h(Xy) +/ST frdr—/sT Z,dB, —/ST/FKT(G)q(dr, de), (1.1)

has a unique solution (Y, Z, K(-)) € B.

Proof: We break down the proof into two steps.
Step 1: We want to prove that there exists a process (Y, Z, K(-)) satisfying the

equation (1.1). To do so, we consider the following martingale

M,=E Kh(XT) - /0 ' frdr> !F[o,s]] :

The martingale representation property in Proposition 1.2 confirms that there exist

two processes Z € M? and K(-) € L?(p) such that
M, = Mg+/05 ZTdBmL/OS/FKr(Q)q(dr, ) se0,7].
Define the process Y as follows
Y, = M, —/Osfrdr se0,7].

It is worth noting that Y7 = h(X7), then a simple computation shows that BSDEJ
(1.1) is verified. the uniqueness of Y is guaranteed by the uniqueness of Z and K (-).

Mohamed Khider University of Biskra.
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Step 2: We shall show that (Y, Z, K(-)) € B. By taking the conditional expectation

Y, =E Kh()@) « ' frdr> | f[o,s}] ,

squaring both sides of the former equality, taking account of Jensen and Schwarz

n (1.1), we arrive at

inequalities, we obtain

T
Wi < ce| (ool + [ 1aRar) | 7

(1.2)

Using Itd’s formula for semimartingales (see Theorem 32 in [45] to |Y;|* and integrating

on the time interval [s, T7,
) : T T
Vi = )P 2 [ Yigdr = [z dr (13
—2/ Y, Z,dB, — 2/ /YT_K q(dr, d6)

RIS

s<r<T
Due the fact that Y, K, (-) € L(p), one can easily check that the process

(S YooK, (0) g(dr.d6))
the fact that sup,c(o 7y er (¢, 7,T) < 0o, we get

, is an F-martingale. Indeed, from Young’s inequality and

T 1
E/ /|K_]|KT(6)\U(T,XT7d9)dr < Z sup (thE/ v, |2 dr
S I

€[0,T],zel

i IE/ /|K W u(r, X,,d0)dr < co.

Since Y € S? and Z € M2, we can prove that [! Y, Z,dB, is an F-martingale , using

the Burkholder-Davis-Gundy inequality, we get

[/ T 2
] < CE (/S |m2||zr||2dr) ]

T
Elsup / Y, Z.dB,

0<s<T

T 2
< CE| sup |V (/ ||Zr||2dr> ]
0<s<T s

Using the inequality ab < a + =, we obtain

T 2
< [(E sup m) (E/ 12, dr)
0<s<T s

Mohamed Khider University of Biskra.
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In addition, we can rewrite the last term in the equality (1.3) as the following:

> avf = [0 [IK@)F ar.a0) (1.4)

s<r<T
T 2
= [ 1K) adr,d0)
s r
T
+ / / K, (0)]? v(r, X, d0)dr.
s r
Then, from (1.3) and (1.4), we get
2 2 T T 2
A +2/ Y,,f,,dr—/ 12,2 dr (1.5)
T ’ TS
2 / Y, Z,dB, — 2 / / Y, K,(0)q(dr,d0)
s s r
T 2 T 2
[ 1@ atdrd) = [ 15012 dr
Taking the expectation, we obtain
2 T 2 T 2
ENY+E [ 1Z ar+E [ KO

T
—E|Ye*+ ZE/ Y, f,dr,
we deduce using (1.2) and Young’s inequality: 2xy < 222 + %,

T T
BN +E [ 1Zdr+E [ KOl dr

2 T
<E|Yy| +C+2E/ |2 dr.
0
Consequently,

2 T 2 T 2
sup E|Y}| +]E/0 1Z,| dr+E/0 1E,.()|2dr < C. (1.6)

$€[0,7T
Now, we turn back to (1.5) and using the Burkholder-Davis—Gundy inequality together

with 1.6, we obtain

2 T2 r 2
E l sup |Y;] ] +E/ | Z,| d?“—HE/ | K()||5 dr < C.
0 0

0<s<T
Then, we conclude that (Y, Z, K(-)) € B. This achieves the proof of the Lemma. [J
Let us define the following sequence (Y™, Z" K™(-))nen as follows:

VO =2°=K)=0,

Mohamed Khider University of Biskra.
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and (Y"1 ZnH1 K™+1(.)) is the solution of the following BSDEJ
T
VI = () [ XY 27 K () (L7)
T T
- / ZmdB, — / / K" (0)q(dr, df),
s s r

for all s € [0,T7.

Lemma 1.7
Let Hypothesis 1 holds true. Then, (Y" Z" K"(-)) is a Cauchy sequence in the

Banach space B.

Proof: First, let us denote
JYmm ™y gz = gm . gn SR = K7 () — KO(),
and
Of"™ = fr, Xp, YU, 20 K0 ()) — f(r, X0, Y1, 20, KT C)).
Obviously 07 = 0, so Itd’s formula applied to % |§Y 1M+ * shows that

E[eﬁs ’5Y'87L+1,m+1’2]

+BE [ ePr (oY, im 2 dr + B [ e |52 2 dr
+E [T fp e |sKm Lm0 w(r, X, d6)dr

= 2F [T efroyttmls from y,

From the Lipschitz condition on f and the inequality 2zy < o?x? + z—z, we get

T
5Y;n+1,m+1’2] + (ﬁ o BLQZ)E/ eﬁr 5Y;n+1’m+1‘2d7’

2 T
5Zf+1’m+1‘ dT—I—E/ /eﬂr
s r

E[e*
T
—HE/ el

L g Br n,m|2 T Br n,m|2
<~ E/ e’ 1oy ™ dT—I—E/ e’ 1oz | dr
(67 s s

SKMHEm 10 v(r, X,., dO)dr,

‘ 2

+= IE/ /e FISK™™ (0% v (r, X, dB)dr | |
(e s r

Mohamed Khider University of Biskra.
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choosing 3 and « such that 3 — 3La? = 1 and % = %, we obtain

T 2 T
E/ eﬁr 5}/;n+1,m+1‘ dT+E/ e,@r

T
—HE/ / e’
s T

T 2 T 2
[E [emiayrmPar+E [ ooz dr

2
5Zf+1’m+1‘ dr

SKMHEM 1 (0)" v(r, X,., df)dr

’ 2

1
< =
-2

T
+E / / P | (0) 2 v (r, Xr,dﬁ)dr] .
s r

Using again [t6’s formula, Burkholder-Davis-Gundy and Gronwall’s lemma, it follows that
for all m > n, there exists a universal constant M, such that
2 T 2
E[ sup ¢ |0y + E / e |52 dr
s€[0,7T s
r 2
+E / / & SK™™(0))? v(r, X, d6)dr
s r
M
< —.
S o
Hence, (Y™, Z™, K"(-)) is a Cauchy sequence in the Banach space B. [J
Now, we turn out to give the proof of the first main result of this section.
Proof of Theorem 1.5
Existence part: Thanks to Lemma 1.6, the sequence (Y, Z" K™(-)) in (1.7) is well
defined and due to Lemma 1.7 (Y™, Z™, K™(-)) is a Cauchy sequence in the Banach space
B. Set (Y,Z,K()) := lim, (Y™, Z", K"(-)) using classical limit arguments one can
check that (Y, Z, K(+)) is a solution of BSDEJ (0.2).
Uniqueness part: To prove the uniqueness let us consider (Y, Z, K(-)) and (Y, Z, K(-))

as two solutions of equation (0.2), we note:

Y, =Y, -V, K,)=K)-K), Zy=Z,— Z,,
and
fs = f(S>X57}/;7 ZS7K5(')> - f(S,Xs,Y/;, ZT7KS(.))'

Y, ’ gives for all s € [0, 7]

Noting that Y = 0, It6’s formula applied to

2 T _ _
dr = 2F / Y. f.dr.

_ 2 T
E |V, +E/ Z

T

er—i—E/THKT(.)
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Since f is Lipschitz, we obtain

_ 2 T, _ 2 T, _ 2
E|Y;| +E/S 2, dr+E/S |&.0)

T, _ _ _ _
< o0 [ 5] [ [+ [0

J dr.

From the inequality 2zy < o?a? + i’% we get

2

dr

14

Far+ E/ Z[ ar

< 2LE/ ‘Y ar + a

+a2LE/ d dr+§]E/ HK ’

Hence

EF +(1-5) lE/ST‘ZdeE/STHKT(.) :

< 2L (1—{—@2)E/T’Yr’2dr.

If we choose « such that % = l we obtain after a simple computation

‘Y+]E/)Z’dr+ E//]K v(r, X, d0)d

< 2L(1+2L) ]E/ Y[ ar.

The uniqueness of the solution follows immediately using Gronwall’s lemma. [J

Remark 1.8

We get the same result when the Brownian motion Z = 0, for more detail one can see

theorem (3.4) in [19)].

Mohamed Khider University of Biskra.
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1.4 A Comparison Principle

In this subsection, we shall compare the solutions of two BSDEJs whenever we can
compare their inputs which are described by their generators and terminal conditions. To

this end, we consider the following assumptions on the generator f: Hypothesis 2

(H22) There exist two constants a and b, —1 < a < 0, b > 0 such that for every s € [0, 7],
zel,r, zeRand k, ke LT, &, v(s,x,df)), we have

Flss,r. 2, k() = fs,a,r, 2, K0) < [ (kO) = K(O))p(O)v(s,,06),
where ¢ : Q x [0,7] x I' — R is P ® E-measurable and satisfies a < p,(-) < b.

Theorem 1.9

(Comparison Theorem). Let h' and h* be two final conditions £-measurable for

two BSDEJs driven by f* and f? respectively such that flsatisfies H,; —H, 5 and f>
satisfies Hy 1 — Hy 3, Hy 5 and Hy . We denote by (Y, Z1, K1(-)) and (Y2, Z2, K*(-))
the associated solutions in B.

i) If
h'(Xr) < W*(Xr) and f'(s,2,y,2, k() < f(s,2,9,2,k())
ds @ dP-a.s. on [0,T] x €2, then
Y <Y, Vsel0,T], Pas. (1.8)

ii) Assume that the function ¢g(-) defined in Hy 5 is non-negative and for all

(s,2,y,2) €[0,T] x T x R x R, k() € L*(T, &, v(s,z,df)) we have
FA(s, 2,9, 2,k()) = AL+ Jyl + [2] + [ (kes) O)I,) -

Then we get (1.8).
iii) if Yy = Y¢, P-a.s., then Y} = Y2V s € [0,T], P-as., Z! = Z? ds ® dP-a.e.
and K}(0) = K%(0) v(s,x,df)ds @ dP-a.e.

Mohamed Khider University of Biskra.
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Proof: Let us first prove i). We denote Y, = Y! — Y2 0K () = K!() — K2(-),
6Zs=Z}— Z? and 6h = W' (X7) — h*(Xr), thus the difference between the two solutions

can be decomposed as follows

>>)

T

5Y, — 5h+/ (r, X, Y1, 20 KN ) = f2(r, X, Y2, 7

[ (P00 V2L RN - P XYL 2L K2 dr

K (:
+/ (r,X,, Y, Z} K2()) = f2(r, X, Y, 22, K2(") )dr
)dr

+/ f'2 7,, Xr,Kl,ZQ KQ( )) f2(7, XT,Y;Z,ZQ K2

—/ 52,dB, — //5K q(dr, ).

We denote A, = e udu  where
fAHu, X, Y Z0, K2() — 2w, X, Y, Z5, K2())

0 otherwise.

if V1—V2£0

We apply [t6’s formula to A,0Y, between s and T', to get:

AGY. = Ardht /TAT (710 X0, Y, 2L KH) = P X Y 2L KA dr
+/ P, X Y ZE KN — P, X0 Y, 20 K2 () ) dr
+/ f2 (r, X, Y 2L K2() = fA(r, X, Y, 20, K2() ) dr
—/ A3Z,dB, — / /AéK q(dr, ). (1.9)

Using Hs 5 and the fact that
AT6h+/STA,, (fl(r, X, Y ZV KN = Xr,}/;,l,Zj,Kj(.))) dr <0,
we obtain
T T
ASY, < / /AT(SKT 8)on (y)(r, X, d6 dr+>\/ AJ6Z ] dr (1.10)

—//AcSK q(dr, d9) /AéZdB

Set

M, = //cpr q(dr, do) +)\/sgn52)d

Mohamed Khider University of Biskra.
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and

U, — //AcSK drd9+/AéZdB

Thus

U, = //AaK q(dr, d9) //AcSK (), (O)0(r, X, dB)dr

+ / A6 Z,dB, — A / A, (62, dr.
0 0

Girsanov’s theorem (see Proposition 2 in Section 1 Chapter 1) claims that the process
U is a martingale under the probability measure dQ := Er(M)dP, taking the conditional
expectation under the probability measure () on both sides of (1.10), we get A;0Y; < 0
Q-a.s. and thus P-a.s. Then Y} <Y,, V s€[0,7], Pas.
Next, we proceed to prove (ii). Arguing as in the proof of the assertion (i), one can easily

show that

A5Y, <//A

+)\/S Ar|5Zr]dr—/ /AcSK q(dr, d9) — /A(SZdBT,

K (0 ‘KQ D or(Q)v(r, X,.,dO)dr

T
<
_/ /AT|5KT 0)| 0r(0)w(r, X, dB dr—l—/ A, [6Z,] dr

/ /A(SK q(dr, d9) — / A6Z,dB,. (1.11)

Define the new martingale

N, = /0 ) /F sen (65,(0)) o, (0)q(dr, dO) + A /0 “sgn (67,) dB,

Using again Girsanov’s theorem, it is not difficult to see that

/ /A(SK q(dr, d6) — / /A I65,.(8)] 0, (0)0(r, X, dB)dr
+ /0 A6Z,dB, — A /0 A, 82| dr,

is an F-martingale under the probability measure dQ := Ep(N)dP and thus the result
follows immediately by taking the conditional expectation under the probability measure

(@ in,the both sides of the inequality (1.11). To prove iii), we turn back to (1.9) and take

Mohamed Khider University of Biskra.
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s = 0, thus
Ar (% = 1)
F[OA (P XYL ZLENO) — 7 X Y 2L KN dr
= [ A (P XYL ZLEN) - P XY 2L K2 dr
F[OA (P XYL ZLRN0) — P XY, 2 K))

T ro

—/A(SZdB //AcSK q(dr, 4),

by the fact that the right-hand side of the above equality is an F—-martingale under the
probability measure dQ := E7(N)dP, taking the expectation we get

E° [AT <h2 - h1>] =0,
and
ES [/T A (£2(r, X0, Y ZHKN) = 1 X, Y 2 E))) dr] _0.
0

Hence, h? = h! P-a.s. and f! = f? dt®@dP-a.e., which implies that Y! = Y2 P-a.s. for all
s € [0, T]. Therefore Z! = Z? ds @ dP-a.e. and K} (0) = K2(0) v(s,z,df) ds® dP-a.e.
U

1.5 Kolmogorov Equation

In this section, we prove the existence of a unique solution to the Kolmogorov equation
under the Lipschitz condition. We further assume that the jump Markov process X,

defined in section 1 of chapter 1, satisfies the following conditions:
1. PY*(X; =2) =1 for every ¢ € [0,00[, z € T
2. For every 0 <t < s and A € £ the function z — P (X, € A) is E-measurable.

3. Forevery 0 <r <t <s, A€ & we have

P (Xs € A| Fypy) =P(X, € A). P-as
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1.5. KOLMOGOROV EQUATION 25

4. All the trajectories of the pure jump process X have the right limits when I' is
endowed with its discrete topology (the one where all subsets are open). In other
words, for every w €  and ¢ > 0 there exists 0 > 0 such that X (w) = X;(w) for
s € [t,t+4].

5. For every w € Q) the number of jumps of the trajectory ¢t — X;(w) is finite on every

bounded interval, which implies that X is a non-explosive process.

Let

u(t,z) = h(x)+ t Lou(r,x)dr (1.12)

the parabolic differential equation on the state space I' (called Kolmogorov equation)

where L, denote the generator of X of the form

L(p@) = [ ((0) = ¢ @) v (r.2.00),

such that ¢ : I' — R is a measurable function, f and h are two given functions,
u: [0,7] x ' — R is an unknown function such that the function ¢t — w(t,z) is ab-
solutely continuous on [0, 7] such that
(u(s, Xs),u(s,0) —u(s, X, )s€[0,T],0 €T) €S, ®H* and

owu(t,z) + Lyu (t,z) + f(t,x,u(t,x),u(t,.) —u(t,z)) =0,

u(T,z) = h(z).

Now, we give the first lemma in this Section which claims an existence and uniqueness
result under some appropriate bounded conditions on f and h.

Lemma 1.10

Suppose that f and h verify Hypothesis 1 and in addition,

sup (| (z)| +|f (t,2,0,0)]) < oco.
te[0,T),zel

Then the nonlinear Kolmogorov equation has a unique solution in the class of mea-

surable bounded functions.

Proof: see [19]
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Definition 1.2

We say that a measurable function u : [0,7] x I' — R is a solution of the nonlinear
Kolmogorov equation (1.13) if for every t € [0,T], z € I’

i B9 [T ol (r,0) —u (r, X)) P v (r, X, dB) dr < oo,

ii. B [T u (r, X)) dr < oo.

iii. (1.13) is satisfied.

We introduce the following BSDEJ
T
Vi = WX [ X Y KR ) (1.13)

T
- [ [ K= @)alar,a0),
s T
which will play a basic role in this result, under Hypotheses 1 ,Theorem(3.4) in [19]
shows that BSDEJ (1.14) has a unique solution (Y,"*, K1:*(-)) ;1 Note that MARIIT

deterministic. Now we are able to state and prove the main result of this section.

Theorem 1.11

Under Hypotheses 1 the nonlinear Kolmogorov equation (1.13) has a unique solution
u. Moreover for every t € [0,T], x € I" we have

Yi* = (s, Xs).

K:(0) =u(s,0) —u(s, X,-).

so that in particular u (t,z) = Y;"".

Proof of uniqueness: Let u € £3(p) be a solution to (1.13), applying Itd’s formula
to u(s, X5*), we get

T
w(T, X7") — u(s, Xb®) = / (8su(r, X5 + Lou(r, Xﬁ””)) dr
T
- / / (u(r, 0) — u(r, Xﬁf)) q (dr,do) .

s r

Taking account that u satisfies (1.13), we obtain
asu(s7 X;7w) + £su<87 X§7x> —"_ f<87 X‘SVZ‘? Uu (87 X.z,ﬁ) 711/ (87 ) —u (87 X;’x)> = O.
For all s € [t,T], and the fact that u(T, X3") = h(X%"), we arrive at
T
u(87 X;’“") = h(X;lm) + / f(r7 X<§7I‘7 U (S’ Xﬁ7x) ’u (r7 '> —u <S7 X:7m>)d/r

B /ST /r (u(r,0) — u(r, X1%)) o (dr,d6).
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We have (u (s, Xs),u(s,.) —u(s, X5 )) is another solution to the BSDEJ (1.14), theo-
rem 1.5 confirms that BSDEJ (1.14) has a unique solution, hence, we get Y!* = u (s, X)
P4 — a.s. and KY*(0) = u(s,0) — u (s, Xs) v(s,x,df)ds ® dP-a.e for every § € T'. In
particular, u (t, z) = Y,**

Proof of the Existence: Let [ = (fAn)V(—n), k" = (hAn)V (—n) the truncation

of f and h at level n, then we obtain the following family of approximating systems
T
u" (t,x) = h"(x) +/ Lu" (s,x)ds (1.14)
t

* /tT fn(sv z, u” (37 ZE) 7un <S7 ) —u" <S7 x))ds

T
Y < () o [ X I 20 () dr (1.15)
T
= [ [ KGO 0)dt(ar, ao).
s r

From lemma (1.10) there exist a unique bounded solution u™ to the Kolmogorov
equation (1.14) and a unique solution (Y ®®)n K®2)n ()} of BSDEJ (1.15) such that
YEom = (s, X,) P4 — a.s., KED™(0) = u™ (s,0) — u" (s, X, ) v(s,,df)ds @ dP-a.e.
for any 6 € T and Y;"" = u (¢, 2) .

2

Proposition 3.5 in [19] and the monotone convergence leads to
sup E-* dr

2 t,x r
+E |
s€[0,7T s

T
F B [ (K00 = K) ()] 2dr

Y;(t,:c)n . Y;(t,x) Y;(t,x)n o Y(t,x)

T

T
< B |h (Xr) — B (Xp)[? + B / f7(r, X, YO KO dr

T
_ (Rt / Flr, X, Y55, K52 ())dr

— 0.
Then we deduce that

xTLQ
u(t,z) —u" (t,2) = ¥ = v

2
< sup Et,x YZ’I . Y;(t,x)n‘ 0.

s€(t,T]

Mohamed Khider University of Biskra.
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Using the previous convergence and Fatou’s lemma to get

Et,a? /T (
t
T

< lim inf]Et’x/

n—oo

Ystw —u (S’ XS)

LK () —u(s, ) +u(s, X,) ||3> ds

2

ds

Y;t,z o un (S,XS>

t

T
+ lim ianEt’z/ | K5 (0) — u™ (s,0) +u" (s, X,) ||2ds
t

n—00

T
= lim infEt’x/ <
n—oo t

=0.

vir =y (Kb - K007 ()12) ds

Which prove that Y2 = u (s, X)), Kb(0) = u (s,0) —u (s, Xs-).

To prove that u satisfies (1.13), it remains to prove that

T T
/ Lu" (s,z)ds — / Lsu (s, x)ds, (1.16)
¢ ¢

and

T
/ (s, z,u” (s, ), u" (s,-) —u" (s,2))ds (1.17)
¢
T
= [ flsmuls ) uls) — us,2)ds.
t
Using the definition of L, we get

E' |7 Lo (s, X,) ds — [ Lou (s, X.) d
=R ftT fl"(u (57 9) —u (57 Xs) —u” (Sa 9) +u” <S7 XS))Z/(S’ XS’ de)ds
_ Et’x j;gT fr (Ké,x(e) _ Ks(t,a?)n(0>) V(S’ Xs, d@)dS‘
. 3 T
g@—w%@w@am)(Wﬂﬂwﬁm—Kﬁﬂ®%®>
t.x t

— 0.

Y

1=

2

Therefore, there exists a subsection (still denoted u™) such that
T T
/ Lu" (s, X,)ds —>/ Lo (s, X,)ds, P — a.s.
¢ ¢

We have the first jump 77 has an exponential law see [19] hence the set
A:={weQ: T (w) > T}, has positive P»* for each w € A, we have X, (w) = x, then
we get (1.16).
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We pass now to prove (1.17), we have

| [0 o (5,200 0509 — (5, X,)

—f"(s, Xs,u" (s, X)), u" (s,) —u" (s, Xy))ds|

T
_ Rt / f(S,Xs,Ys(t’:C), Kétz)()) _ fn(S,XS,K(t’z)",Két’:E)n('))dS
t

T
SB[ [f(s X YLK 0)) = (s X Y0 K0 () ds
t

B [, X, YO, KI(0) = (s, X, VI, KL 0))] s,
By the monotone convergence theorem, we have
B / ' | £(s, X, YO KED () = f7(s, X, Y0, KW9()| ds — 0.
Since f™ is a truncation of f we can get from the Lipschitz condition

T
B [ [ X YD KD () = 75, X Y0, K97 ds
t

T
S LEt,CE / (
t

< L((T—t)EW/tT

yhe _ Y;W"\ + / ’ Kb () — th@)"(é’)( v(s, X, d0)) ds
N

1
2

}/St,x . Y'S(t,;t)n’Q dS)

=

2

N

+ L (T —1t)
Hence, there exists a subsection (still denoted u™) such that

/tT fn(37 Xsa u" (57 XS) ,un (37 ) —u" (37 XS))ds

— /tT f(s, Xs,u(s, Xs),u(s, ) —u(s, X))ds.

For each w € A, we have X, (w) = x then we get (1.17) which achieves the proof. [

1 T
(supw(t, 1)) (E [ (rle — ) <~>||3ds) 0,
t.x
t
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CHAPTER 2

BSDETs with non-Lipschitz Generators

(Joint work with N. Khelfallah, A. Almualim, and M. Eddahbi. )

2.1 Introduction

In this chapter, we tackle a class of BSDEJs driven by both Wiener and jump Markov
processes with non-Lipschitz generators. In Section 1, we give an existence result to
BSDEJ (0.2) with a continuous coefficient. In Section 2, we show that BSDEJ (0.2) has
either one or a set of countable solutions. In Section 3, we prove that BSDEJ (0.2) with
a left continuous and increasing coefficient has at least one solution. Finally, in Section
4, we apply the result of Section 1 to solve one type of BSDEJ whose generator is of a

quadratic growth in the variable z and terminal condition in L.?

2.2 BSDEJs with Continuous Coeflicients

The purpose of this section is to prove an existence result to BSDEJ(0.2), covering
the case where the generator f is continuous in (y, z), Lipschitz in k(-) and satisfies the
following linear growth type condition:

(H3,) For all (s,w,z,y,2) €[0,T] x QxT'x R xR and k(-) € L*(T, &, v(s, z,db)) we

have

[f(s, 2,9, 2, k()] < AL+ [yl + 2]+ [1(kes) C)IL) -

where the function ¢,(+) is defined in Theorem 1.9 ii) in Chapter 1 Section 3.

30
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Theorem 2.1
Let Assumptions Hy; — Hy 3, H31 and Hsy hold true. Then, BSDEJ (0.2) has at

least a minimal solution (Y, Z, K(+)).

To prove this theorem, we approximate the generator by an increasing sequence
of Lipschitz functions (f,),,~, which will be defined by the following lemma.

Lemma 2.2
For all n > A, we consider (fy),,, defined by

fuls,z,y, 2, k() = (a,é%lé@f(;)x@ {f(s, z,a,b,k(-))+n (|d —y| + ‘b - zD} :

The sequence (fn),>, has the following properties:

For all (s,x) € [0,T] xI" and (y, 2, k(-)), (y,z,k()) ER xR x LT, &, v(s, z,d)).
(A1) There exists n > 0 such that

)fn(S,.%,y,Z, k()) - fn(svxvy,v z, k())‘

<nlly—dl+1z— 2+ k() = kO] -

(A2) fn+1(s>$ay>zak(')) > fn(s,x,y,z,k(-)).

(A3) There exist two constants a and b, —1 < a < 0, b > 0 such that for every

se[0,T), €D, r, z€R and k(-), k(-) € L2(T, &, v(s,x,df)), we have
Fals, 7,2, k() = fals, 2,7, 2, k(1)) < /F(W) — 1(0)) s (B)v (s, x, ),
where p () : Qx [0, T)xI" — R is P@E-measurable and satisfies a < p4(0) < b.
(Ag) [fuls, 2y, 2, k() < AL+ [yl + 2]+ [[EC)es(]],)-

(AB) If (yna Zn) 730 (ya Z) then fn(svxayn7zn7k(')) 730 f(vavyv Zs k())

Proof : The proof can be performed as that of Lemma 1 in [35]. O
We note that for all n > A, the function f,, verifies the Hypothesis 1.1 which implies
that there exists a unique solution (Y™, 2", K"(-)) of BSDEJ with data (f,, h(Xr)). We
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establish priori estimates on the sequence (Y™, Z™ K"(-)).

Lemma 2.3

There exists a constant C' > 0 depending only on h, T, \* such that for all n > 1

T T
sup (E sup |Y7)? +E/O |Zf|2dT+E/O ||Kf()||idr> < C.

n>\ s€[0,T

Proof: From It6’s formula applied to |st|2 , it follows that
Yo = |h (X)) 2+2/TY"fn (r, X,, Y™, Z", K"())dr (2.1)
—2/ / Y K7(0)q(dr, d) — 2/ Y Z"dB,
- [1zear- /s LiEr@F atar,a0) - [ rar
Taking the expectation in both sides of the previous inequality, we obtain
BB [ |2 P [ RN
= EIXDP +2E [ V20 XV 28 KO
Therefore, we obtain from (Ay), Young’s inequality 2zy < 222 + %,
EIY?P+E 2 dr+ LRI dr
2(C +2X°T) + 2 (5 + 432 + 2\) E [T [V dr.
Hence, Gronwall’s lemma yields

n|2 T n|2 T n 2
sup B[/ +E [ |27 dr+E [ | K:()]}dr <C. (2.2)

s€[0,T7]
Now, returning to (2.1), using (A4), Young’s inequality 2zy < 2z% + % and Burkholder-
Davis-Gundy inequality to obtain

E sup |V +E/ Vidk dr+E/ 1K) dr

s€[0,T]

1
< E|h(X7)|* +2X°T + <2+2)\2+2>\)]E/ Y ? dr
0

1 T 12 T n 9
SB[ 1z P ar+E [ O dr

C 2 T 2 T n 2
+4—E [ sup |Ys|" | +4rCE / | Z,| d7’+/ K dr | -
0 0

K s€[0,T]
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Then

(1= a€)BLsup 1Y)+ B (1 120 dr o+ I IO )
<C+ 20T + (3 +450) + (L4202 +20) Jf E sup Y2 dr.
Finally, Gronwall’s lemma gives the desired result.
Proof of Theorem 2.1
We split the proof into the following three steps:
Step 1: In this step we prove that there exists a process Y € S? as the infimum limit

of Y™. Set

9(s, 9,2,k (1) = A1+ |y[ + [2] + | (kes) C)II,,) -

Let (Y,Z,K(-)) be the unique solution of the BSDEJ with data (g, (X7)), there
is insured by Theorem 1.5. Remember that for each n, (Y™, Z", K™(-)) is the unique
solution of BSDEJ with data (f,,h(Xr)). Now, thanks to (Ay) and Theorem 1.9 that
the sequence (YJ"),-, is non decreasing and bounded by Y;. Therefore there exists a

stochastic process Y as the limit of the sequence Y,": Y, = lim,,, Y;". From Lemma 2.3,

we have E[sup (. |Y"’] < C, then, Fatou’s Lemma gives

2

E[sup |V,]’] = E l sup |lim Y} 1
s€[0,T] sefo,1] [P0

< liminfE[ sup Y]] = C,

n—oo s€[0,T7]

which implies that Y € S?. Then, from Lebesgue’s dominated convergence theorem, we

obtain
T 2
E/ V" — Y, [>dr — 0.
0 n—oo

Step 2: In this step, we shall prove that (2", K"(.)),>, is a Cauchy sequence on
M2QLA(T,E,v(.,x,df)). Using [td’s formula and Holder’s inequality, we get for n, m > 1:
EY; =Y +E [ |Z) = 20 dr + E DK () = Kl dr

1 1
<2 (B LTy =P dr)” (B 1l X Y 20 K () dr)’

$2 (BT Yy =Y Pdr)E (BT fulr X, Y 20, KPP dr)
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Thanks to (A4), Lemma 2.3 and (a + b+ ¢+ d)? < 4(a? 4+ b* + ¢* + d?), we obtain

T
E/ |fm(T,XT,Km,Z::n,K:l(-))lsz‘

T T 9 T 9 T 9
SOE[ ar+E[ VPar+E [z +E [ KO
<AN(T+C) = C.

Thus

n m|2 T n m|2 T n m 2
Y - YIP+E [ 120 = 2P+ B [ KA — KRG dr

T 9 2
§O<E/ e —ym| dr) )

n—oo

Therefore, (27, K”(-))n21 is a Cauchy sequence on M?® L*(T', €, v(s, x,df)), and thus,
there exists a process (Y, Z, K(-)) € B as limit of the sequence (Y, Z"™, K"(-)).

Step 3: In this step, we show that (Y, Z, K(-)) satisfies BSDEJ (0.2), we have
(Y™, zm K"(+)) — Y. Z, K(-)) in the space B. Passing to a sub-sequence we get the
convergence dt @ dP a.s. to (Y, Z, K(-)). Then from (Asj), we have

fn(saXS7 anv Z:a Ks()) 730 f(st& Ysa ZS) Ks()) P-a.s.
Set (G, Hs) = sup,,>,(|YS"],[Z7]), then, from (A4) we obtain

sup | f(s, Xo, Y7, 20, K () < AL+ Go + Hy + ||(Kaps) (ll,) € LY ().

n>\

By subtracting and adding f,(r, X, Y., Z" K, (-)), we get

E [ | folr, X0, Y2, 20 KP()) — f(r, X, Yo, Zp K () dre
S ]EfoT ’fn(ra XT: Y;n’ Z;L? Kf()) - fn(r7 X?"> Y;na Z?: KT())F dr
+E J§ | fulr, X, Y2, Z0 K () — f(r, X0, Yy, Z,, K ()P dr

Since f,, is Lipschitz in k() the first term in the right-hand side of the above equality
tends to 0 as n goes to infinity, then the dominated convergence theorem yields the
convergence of the second term to 0. Therefore, there exists a subsection (still indexed
by n) such that

T T
/fn(r,Xr,K”,Zf,Kf(-))drH Fr X, Yo, Zo, Ko(-))dr Poas.
0

n—oo Jo
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Then, Burkholder-Davis-Gundy inequality, we show that

T T
/ ZrdB, — [ Z.dB,.
0

//K" q(dr,dg) - //K q(dr, d6).

It remains to verify that Y, — Y P-a.s.
n—oo

E|Y; - Y[
T
E/fan Y", 20, K- dr—/ Z"dB, — //K” q(dr, d0)

2
—/er,.,Y,q,ZT,K dr+/ 7,dB, +/ /K drd@)‘.

Since (a + b+ ¢)? < 3(a® + b* + %), the above equality becomes

E[Y! - Y,|?
T 2
< BE| [ |fulr, X, Y, 20 K2()) — £(r, X, Yo, Ziy Ko (4))| dr
T 2
+3E|[ (Z"— Z,)dB,
2
+3E K,(0))a(dr,d8)| — 0

Hence, the Theorem is proved.

Remark 2.4

tiOH (Ymax’ Zmax, Kmax(_)) .

Remark 2.5

tel0,7].

Using similar techniques we can prove that BSDEJ (0.2) has at least a maximal solu-

Any solution (Y, Z,K(-)) of BSDEJ (0.2) must satisfy ;"™ <Y, < Y™ a.s., for all
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2.3 On the set of Solutions of BSDEJ

In this subsection we draw our attention to the set of solutions of a one-dimensional
BSDEJ with jumps when the drift term is assumed to be continuous and of linear growth
in (y,z,k(-)). We prove then that there exists either one or uncountably many solu-
tions of the equation (0.2). We note (Y™ zZmax maX(.)) the maximal solution and
(ymin zmingrmin()) the minimal solution of BSDEJ (0.2).

Hypothesis 3.2 We assume that

(Hso) For every s € [0,T], x € I' the mapping r, z, k(.) — f(s,z,7,2,k(-)) is continuous
and there exists L > 0 such that for every r, z € R, k(-), k() e LT, &, v(s, x,dh))

[f s,y 2, k() = fls, 2,7, 2, k()| < LK) = k()b

Theorem 2.6
We assume that Hy; — Hy 3 and Hsy — Hs o hold true. Then, for each ty € [0,T] and

£ € L?(Q,Fy,P) such that Y™™ < & < Y™ as., there exists at least one solution

(Y, Z,K (-)) € B to BSDEJ (0.2),satisfying Y, = &.

Proof: We consider the following BSDEJ for any ¢ € [0, ¢(]
to
Y;fl = €+/ f<T7XT7}/;17Z:7Kr1('))dT
t(f to
- / Z4B, — / / K(0)q(dr, d6).
t t r

From Theorem 2.1 the previous equation has at least one solution

(Y1, Z', K'(-)), we also consider the following SDE for any ¢ € [to, T]
t
V2= e [ fn X Y2 ZE KA () (23
to
t t
+ [ 72B, + / / K2(0)q(dr, d9),
to to JIT

for a fixed Z2, K? € M2 x L*(T', &, v(s, z,d)), let (Yz)te[to,ﬂ be a solution to the previous
SDE.
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Now, we define a stopping time 7 = inf {t > ¢, : V;* ¢ (Y™, V™)1 such that
ymin — ymax and
(Ve Ze Ke) = Ao (Vi 20 K10)) + Lot (V7 22, KEC))
Flr g (V7 285 KE5(0) Ly, ymaxy
1 (}/tmin, Zmin, Ktmin(.)) (v, <ymes),
is a solution to BSDEJ (0.2) with Y7 = h (X7) and Y, = ¢£. O

This result is an extension of the one obtained by Jia and Peng [35] corresponding

to the Brownian setting to BSDEs with jumps.

2.4 BSDEJ with left Continuous and Increasing Co-
efficients

The aim of this subsection is to prove that BSDEJ 0.2 has at least one solution,
which belongs to the Banach space B, assuming that f is only left continuous in y and

bounded. We fix a deterministic terminal time 7" > 0 and we assume further that:

(H32) There exist L > 0 such that for every s € [0,7], z € T, r € R, z, £ € R,
k(), k(-) € LA, &, v(s, 2,df)), we have

[F(sm,m, 2, k() = fls, 2,7, 4, k()| < L (12 = 2+ k() = kOl -
(Hs3) The function y — f(s,x,y, z, k(-)) is left continuous and increasing.

(H34) There exists M > 0 such that for all (s, x,y, z, k(-)),
|[f (s, 2,9, 2, k()| < M.
Theorem 2.7
Let Assumptions (Hy 1) — (Hy3), (Hos) and (Hs) — (Hs4) hold true. Then, BSDEJ
(0.2) has at least one solution (Y, Z, K(-)) € B.

To prove this Theorem we use the classical approximation by convolution on the

generator f. We define (fy),5o by

fo(s,z,y,2, k(1) = n/i f(s,z,r z k() dr.

3=
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The sequence (f,),~, enjoins the following properties:
(Py) There exist C,, > 0 for each n such that

fals @,y 2, k() = falsx, . 2, k()
< Cully =gl + 12 = 2| + k() = k().

() The sequence (f,),~, is increasing.

(P;) There exist two constants a and b, —1 < a < 0, b > 0 such that for every s €
0,7], z €T, r, zeRand k(-), k(-) € L3I, &, v(s, z,df)), we have

fu(s,z,r 2, k(4)) — fn(s,x,r,z,l%(-))
< C/F(k:(e) — 1(6)) s (0)1(s, , d6).

(Py) V¢Ce[0,T] x Rx R x L*(T, &, v(s,x,df)), sup,s; |fn(Q)] < M.
(P5) if (yn,zn) n—>—o>o (y7 Z) then fn(s,x,yn, Zn; k()) n—>—o>o f(s,x,y,z,k(-)).

For all n > 1, the function f, verifies: Hypothesis 2, then from Theorem 1.5 there
is a unique solution (Y, Z", K"(-)) of BSDEJ with data (f,, h(X)). We establish priori
estimates on the sequence (Y™, Z", K"(-)) which will be needed in the sequel.

Lemma 2.8

There exists a constant C' > 0 depending only on h, T" and M such that for alln > 1

n|2 T n|2 T n 2
B sup V7P +E [ 1z ar+E [ IO ar<C

s€[0,7T

Proof: It goes as the proof of Lemma 2.3. [J
Proof of Theorem 2.7:
In a way similar to that in the proof of Theorem 2.1 we deduce that there exists a

process Y € B as the infimum limit of the sequence Y":

T
Y, = lim ¥" and lim E [ [V — Y, |* dr = 0.
n—oo 0
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Now, we show that (Z", K"(-)) is a Cauchy sequence in B, for n, m > 1 we use Itd’s
formula to get
EY; — Y +E N2 = 20 dr + B [DIERC) = K Gl dr
<2E fsT |an - Yrm| |fn(r> X:La Y;nﬂ Z:L’ Krn()’ dr

+2E fsT |an - }/rm| |fm(r7 X;n’ Y;m7 Z;nv Kp()” dr.
By invoking P4 and using Hoélder’s inequality, we obtain

n m|2 T n m|2 T n m 2
BNy —Y/P+E [ 120 = Z7Pdr+E [ K2 ()~ K7 ()l dr

T 3
< AMVT (E/ v - nmyZdr> — 0.
0 n—oo
So (Y™, Z", K"(+)),, is a Cauchy sequence on B, then there exists a process (Y, Z, K(-)) €
B as a limit of the sequence (Y, Z", K™(-)). To prove that (Y, Z, K(-)) verifies (0.2), we

use the same way to that in the proof of Theorem 2.1. [J

2.5 Application to Quadratic BSDEJs

In this section, we aim to go beyond the linear growth condition of the BSDEJ’s
generator. More precisely, we use Theorem 2.1 to show the existence of an unnecessarily
unique solution to one kind of quadratic BSDEJ. We define the following function which
plays a crucial role in the proof of the Theorem 2.9 below. It allows us to eliminate both
the additive quadratic and the exponential terms of the BSDEJ (2.4).

Let 1 be a measurable continuous function that belongs to L' (R). Define the

following function

x Yy
F(x) :/ exp <2/ w(t)dt> dy.
0 0
It was shown in [8] that the function which belongs to C* (R) enjoys the following prop-
erties:
i) for a.e. x, F"(z) — 2¢(z)F'(z) = 0.
ii) F is a quasi-isometry, that is : there exist two positive constants m and M such that,

for any z,y € R

mlr —y| < |F(z) — F(y)| < M|z —y].
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2.5. APPLICATION TO QUADRATIC BSDEJS 40

iii) F' is a one to one function from R onto R. Both F' and its inverse function F~!
belong to C%(R).
Next, we will use Theorem 2.1 to solve the following quadratic BSDEJ
Y, = h(Xr)— / Z,dB, — / /K q(dr,d9) (2.4)

+/ H(r, X,,Y,, Z, K, (-))dr,

where H(r, X,,y, 2, k() = f(r. Xr,y, 2,k () + 0 () 2 + [Kpx, ], and

[ks,w,y]lp =

Fy+k(9)) — F(y) — F'(y)k(9)
/1“ Fly) v(s,z,d0). (2.5)
Theorem 2.9

Assume that h satisfies Hy1 and f satisfies assumptions Hy > and Hy 5. Then the

equation (2.4) has at least one solution.

Proof : Let (Y, Z, K (-))be a solution of BSDEJ (2.4). Then, It6’s formula applied to
F(Y;) shows that

F) = F(X0) + [ F ) f( X, 20, Ky ()dr

+ [ (0 (F, o) (W00 |2 + [ }w)—;F"wsz)dr

- / F'(Y, )Z,dB, — / / F'(Y, ) K, (8)q(dr, d6)
Y (F(Y,) = F(Y,) = F'(Y,-)AY,),

s<r<T

since F'(z)¢(z) — $F"(z) = 0, and

s<r<T

_/ / (Y- + K.(0)) — F(Y,-) — F'(Y,_)K,(0)p(dr,df)),

moreover, by adding and subtracting the same term

/ / Y, ) — F (Y, K, (0)) v(r, X,,d0)dr,
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we obtain

F(Y;) = F(h(X7))
+ [T P f(r X, Y, Z,, K ()dr — [T F(Y,) Z,dB,
L FY) (K| dr = [0 o F/(Y,0) K (B)a(dr, d6)
— [ e (F(Y,— + K (0)) = F(Y,-) = F'(Y,_)K.(6)
+ [ (F(Yo + K (0) = F(Y,0) = F'(Y,_)K,.(0)) v
— [ (Yo + Ko (y) — F(Y,—) — F/(Y,_) K, (6)
this implies

F(Y,) = F(h(Xr))
flr, X, Y, Z., K, ())dr—f F'(Y,)Z,dB,
|:KT,X7>_,Y7~—:| dr—f Jr F'(Y,2)K,(8)q(dr, d6)
Yo+ K. (0)) — F(Y,_) = F'(Y,_)K,(0)) q(dr, df)
Yoo+ K. (y) — F(Y,2) = F/(Y,_) K, (6)) v(r, X, d)dr.

|
—
© S
*—J\
!
—~

According to Lemma 2.3 and the definition of {K,«, Xrﬂyp}w we get,

F(Y) = F(h(Xr)+ / CPY) (XY, 2, K, ())dr
—/ F'(Y,_)Z.dB, (2.6)
—/ / (Yo + K.(0)) — F(Y,_)) q(dr, d6).
If we take
g = F(Y,), 2 = F'(Y, )2, and k,(0) = F(Y,_ + K,(0) — F(Y,_),

and

g(r,z,y, z,k)
= F(F () f(rz, F~ (y + k)

2y

,W,F(F’ (y+k)—F(y))

we can write the previous equation in the following form

s = F(h(X7) + [ 9 (r Xo,yr 2, b () dr (2.7)
- fsT ZrdBr - fsT fF kr(e)q(dra dﬂ))
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Conversely, let (y, z, k(-)) be a solution to BSDEJ(2.7), then Itd’s formula applied to
Y, = F~'(ys) shows that

F'y) = h(Xr)+ / 9 X Yoo 2, b () dr

- / (yr_ )2, d B, — / / q(dr, d9)

(F D" (ye) 12 dr

—iZT( (W) = F 7 (wen) = (F7) () Ay )
then o
Y, = h(XT)—/ST "(yo_)2rd B, — / / q(dr, d6) (2.8)
[ 91, Xo i, 2, kr<~>>>dr—; /f(F () 2 dr
/ [ (F 0+ 1 0) ~ F ) = (F ) (o >kr<e>) p(dr, df)
— h(Xy) — / "(yr_ )2 B, — / / q(dr, d0)
[ 9, X Yoo 2 kr<>>>dr—§/s (FYY' () |2 dr
+f / —F*<y7«,>—<F*1>'<yq«,>kr<e>)u<r,xq«,de>dr

[ F e ke 0) = P ) = (P (e )ke(0)) e, d6).

Notice that

(FY(@) = Fpergyy @nd (7))

(
P oy FYF @)

FE )T = )R

Set Z, = (F7 Y (y,_)zs and K,(0) = F~(ys_ + ks(0)) — F~1(y,_) this implies

L 2 WA
i(F )//(yr) ’ZT‘ = —5 (F’(Yr))3 ((F—l)’(yrf))2 (29)
ds a.e. F" (Y, 2 2
= =y 14 = e )12

and

Jo (F7H e+ K(8) = F (g ) = (F7) (g k() v(r, X, d6) - (2.10)
= J (K.(0) = 5 (F(Y;) = F(Y,.))) v(r, X, d6)
=— | (F(Yr-)—F(YE();T?(YT-)KAG)) v(r, X,,d0) = — [ Knxmm}

¢ )
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and

(F7) (ys=) (g (r, Xo, Yy 20, K (+))) (2.11)
= 0 X P ) iy B 0 4 8 0) = P ()
=  fnX. Y, 2, K, ().

Substituting (2.10), (2.10) and (2.11) in (2.8) we end up with
T
Vo= h(Xr) + [ H(r, X, Ve 2y K ())dr
T ’ T
- / Z,dB, — / / K, (6)q(dr, d6).
s s I

So far we have shown that BSDEJ(2.4) has a solution if and only if BSDEJ(2.7)
has a solution. Therefore, since h satisfies Hy 1 and F' is a Lipschitz function, it is easy
to see that F o h also satisfies H; ;. On the other hand, using the fact F” is bounded and
f satisfies Hy 1, Hy 5 and Hy 5, one can show that g also satisfies assumptions H; 1, Hy o
and Hyo. Therefore, Theorem 2.1 confirmed that BSDEJ(2.7) has at least one solution
(y, 2,k (+)) € B. This implies that BSDEJ(2.4) also has at least one solution (Y, Z, K (-))
which also belongs to B. Indeed, thanks to the Lipschitz continuity of F~! we can easily
show that

Yol < Mlys|, |Zs] < M |z| and [[KC)[l, < M[EC)], -
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CHAPTER 3

On the Solution of Locally Lipschitz BSDE

Associated to a Jump Markov Process

(Joint work with N. Khelfallah)

3.1 Introduction

In this chapter we give an existence and uniqueness result (theorem 3.5) on top
of the stability (theorem 3.8) of the solution to the BSDEJ (0.1) driven by a Markov
jump process with locally Lipschitz generator. These results extend the papers [6, 18]
by involving random measures associated with the jump Markov process in the state
BSDEJ. To exploit the Markov propriety, we apply Theorem 3.5 to prove the existence
of a unique solution to some non-linear variants of Kolmogorov equation with a locally
Lipschitz driver. In fact, we construct this solution via a family of BSDEJs of the type
(0.1) having the existence and uniqueness propriety.

This chapter is organized as follows. In section 1 we give a priori Estimates and
results. In section 2 we study BSDEJs with locally Lipschitz coefficients. In Section 3 we
give a stability result. In Section 4 we give a result of the existence and uniqueness of
Kolmogorov equations.

Throughout this chapter, we will work on the following Banach space Bys :=

S, ® H2, and we need the following assumptions on the coefficients.

44
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Hypotheses 1

(Hy;) Forevery s € [0,T], z €T,y € R, f(s,z,y,) is a function from L*(T, &, v(s,z,dd))
to R.

(Hy.2) For every bounded and £-measurable function & : I' — R, the function

(s,x,y) = f(s,z,y,k()) is B([0,T]) ® £ @ B(R)-measurable.

Hypotheses 2

(Hs.1) The function f is continuous in (y, z) for almost all ¢.

(Ha2) There exist two constant A > 0 and « € [0, 1] such that

[f (5,2, k() < AL+ [y" + [1kC)IL] S a-et € 0,T].

(Hs3) For every integer M > 1, there exist two constants Ly, > 0 and L m > 0 such that,

|f(3,$,y, k()) - f(s,a:,y’,/%()ﬂ < LM|y - y| + LM||k() - ]%()HV?

a.e. t € [0,7] and for all y, ¢, k(), k(-) such that |y| < M, |j] < M, k), < M,
()l < M.

(Hy.4) The function h : I' = R is &- measurable function and satisfies E |h(X7)[> < co.

When f satisfies (Hz1) and (Hj.2), we can define the family of semi-norms (py, (f)),ex

p(n) = (B[ s (k) as) .1

[yl Ik, <n
Noticing that, under Hypotheses 1, Lemma 3.2 in [19] shows that the function
(w,s,y) = [ (5, Xs- (W), y, Ky (w,)) is PQB(R)-measurable, if K € L?*(p). Furthermore,
if Y is Prog'-measurable process then, (w,s) — f (s, X, (w),Y; (w), K (w,-)) is Prog'-

measurable.
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3.2 Priori Estimates and Results

In this section, we give the following useful three Lemmas. They involve some priori
estimates of solutions for BSDEJ (0.1) on top of some estimates between two solutions.

For later use, we denote BSDEJ (0.1) by BSDEJ (f, &) where & :== h (Xr) .

Lemma 3.1
Let (Y, K(+)) be a solution of BSDEJ (f,£). Assume that f satisfies Hypotheses 1

and (Hy3), then we have the following estimates
(i) There exists a positive constant C' := C(\, £, T), such that for every s € [t, T,

we have
2 T 2
B, +E [ KR <C.

. (ii) Moreover, if £ is bounded, then there exists a positive constant C’, such that

sup |Va|* < C.

s€[0,T

Proof : We first prove (i). For the sake of simplicity we drop the superscript ¢ and we
write the results and their proofs in the case t = 0. Using [t6’s formula for semimartingales

(cf. Theorem 32 in [45] to |Y;|* and integrating on the time interval [s,T] we get

VP = g2 /TK«f (1, X0, Vi, Ko () dr (3.2)
-2 Y, K, (0)q(dr,dd AY, | 3.3
// ndf) = 3 AV (3.3)

We can rewrite the last term in the equality (3.3) as the following,
2 T 2
> Ayl = [ [1K0)F plard0) (3.4)

s<r<T
://|K |qdrde+//\K )2 v (r, X, d6)dr.

Keeping in mind that the stochastic processes ¢ is an F— martingale, plugging the

equality (3.4) into (1.3) and taking the expectation, one can get for s € [0, 7]

T T
E(V)+E [ 1K )2 dr = EI&P + 2B [ Yifo(r, X, Yo, Ko ())dr.
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By invoking (Ha ), using the inequality |y|* < 1+ |y| for each « € [0, 1] along with
Young’s inequality, to get

T
E(|Y,]>) <E|&] + 97 + (1 + 3)\2)]}_{1/ 1,2 dr. (3.5)
Thanks to Gronwall’s Lemma, we get
E(|Y.]*) < (E[¢] +18T) exp (14 3X*)T) := Ch. (3.6)
Once again, the inequalities (3.5), (3.6) and Young’s inequality yield
r 2 2
IE/ | ()2dr <2 (E[€f +9T) + T(1+ 9A%)C.

We proceed now to prove (ii). Again, by replacing the equality (3.4) into (3.3), taking
the conditional expectation with respect to Fjo 4, using Assumption (H, ), the inequality

ly|“ <1+ |y| for a € [0, 1] together with Young’s inequality, we deduce

Vi < C 49T+ (207 +2)) /TIE (1% | Fiog) dr.

For any time t < s, using once again E ( | .7-"[07T]> in both sides of the previous in-

equality and Gronwall’s Lemma, to get
E (’Ys‘2 | «7:[0,t]) < [C'+ 9T exp [(2)\2 + 2)\) (T — 3)} —

In particular, if t = s, we immediately find (ii). O

Lemma 3.2
Let f; and fy be two functions, (Y, K' (+)) [resp. (Y2, K?(-))] be a solution of the

BSDEJ (fi1,&1) [resp. BSDEJ (f2,&2)], where & = hy (X7) and & = ho (Xr) are two
final conditions such that hy and hy satisfy (Ha4). If f1 and fs satisfy Hypotheses
1, (Hy1) and (Hys). Then, for every locally Lipschitz function f and

every M > 1, the following estimates hold:
Y, -Y,

E( Y < Bl &Pt R~ fo) + Al — ) (3.7)

0(517 527 )‘>
(L3, + 2L + 2) M0

exp [(4 +4L 4202 ,)(T — 3)] :
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and
1

T ) 2 T 2 2
E [ K () = KOl < C6, &) |E +(E JLa —Wdr) ] (3.8)

Proof : Weset Y =Y — Y’ K()=K () - K'(-),

ﬁ = f1(8>X37Y;17 K}()) - f2(57X87Y;27 KE())7 g: 51 - 52' By Ito’s formula we have

E(|Y,]?) + E/T |, ()|2dr =E|¢] +2E /T Y. fdr selt,T]. (3.9)

For a given M > 1, we use the notations

Duvi= {(510)+ 3 (V2P + IK)E) = M2} Dy = 0D

i=1

to rewrite (3.9) as the following

E(|Y.]") +E [ | ()l[dr = E[E]" +2E [ Y, fLp,,dr

o (3.10)
+2F [T Y. foll, droselt,T],

where 1 pn stands for the indicator function of the set D. We first estimate the last term

in the previous equality

2B [TV, [,y dr < 2B [T Y[ (fi = f) (r, X, Y, KN, dr
+2E [TV, [(f = f2) (r, X, Y2 K2())]1, dr

F2E [TV [f(r, X, Y KNC) = fr, X, Y2 K21, dr
=L+ 1L+

(3.11)

Then, from the definition of the semi-norm (3.1) and by using the inequality 2y < 2?+y?,

one can get
e 2 2
h+ L < 2E [V dr+ o3, (fi = £) + p(f = fo) (3.12)
Since f is Lipschitz in the ball B(0, M), we obtain

, T T o
I < 2LMIE/ |y;|2dr+2LME/ V||, ()], dr
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Then, the inequality 2zxy < 72—2x2 + %y2 for v > 0, leads to

ty < 2L {7 dr ot 57 5 e+ 2B O 0 (3.13)
< (2hy + L) EJT]Y, g (7|5 ar. '
From the inequalities (3.12) and (3.13), one can get
2B [V A, dr < (S~ fo) + i = ) (314
+(2+2Ly +3)EST]Y, 2uE [T

Now, we turn out to estimate the second term in the inequality (3.10). Using the
inequality

2xy < B2x? + g—z for B > 0, we get

}7 ? llDMdT

T

T _ T

% [V, flp,dr < 8E [
2 2 T

+—QZE/

5 i=1 s

A simple computation shows that, using (Hy ) and the inequality (a+b+c)? < 3 (a® + b* + ¢?)

. . 2
fils, X, VI KJ()| iy dr

T T, |2
2]E/ V[, dr < 521@/ V. 1p,,dr
2
60)\ ZE/ {

From Lemma 3.1, Holder’s inequality and the fact that

o i|? 2
Ip,, <M Z[Y )V],
i=1

Ol 1o

e

S

we arrive at

T 20 T 2 “ T 1
E / L, dr < (E / y! dr) (E / ILDMdr> ,
T 2 @ 1 20T 2 2 -
1 7 )
= (E/ Y, dT) W[E;/ e +HKT('>H,,)C17”] )
C
< —
- M20-a)

Applying the same method to each one of the terms B [T |Y2[** 1p,, dr, E [T || Ki(-) ||12jo‘ 1p,,dr

for v =1, 2, we get

0(51;527)‘> (315)

2
dr + 32 M20—a)

T

T T
QE/ Y, flp, dr < 521@/ Y,
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Choosing v* = 2L2%, and 3* = (L?M + 2L + 2) , and plugging the inequalities (3.14) and
(3.15) into (3.10), we find

E(V.[) < B[]+ — ) + ol — f)

C(gla €27 )‘)
(L3, + 2L + 2) M0

, T, _
+(4+4LM+2L§W)E/ 7. ar.

Then (3.7) follows immediately from Gronwall’s Lemma. To prove the second inequal-
ity, we go back to the equality (3.9), and we use Schwartz inequality. This achieves the
proof of Lemma 2. [J
Eemark 3.3

We can allow f in Lemma 2 to be of linear growth in y and of sub-linear growth in

k as long as we consider the boundedness of the terminal data.

The proof of the following can be shown via truncation argument, and we refer
the reader to [7, Lemma 4.4] for its detailed proof.

Lemma 3.4

Let f be a function satisfies Hypotheses 1 and Hypotheses 2. Then, there exists
a sequence of functions f, such that,

(i) For each n, f, is globally Lipschitz function satisfying Hypotheses 1 and
(H,,)-

(ii) There exist tow constants A > 0 and « € [0, 1 such that

sup | fu(s, 2,y 2 () < [f (s, 2,9 2()) S AL+ " + [RC)IL], acee s € [t 1]

(iii) For every M > 1, p3,(fn — f) = 0 as n — .
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3.3 The main Theorems and Results

3.3.1 Existence and Uniqueness

Theorem 3.5
Suppose that Hypotheses 1 and Hypotheses 2 hold true. Assume further that

there exist two positive constant L and L such that Ly < L+ Vlog M and Ly <
L +log M. Then, the BSDEJ (0.1) has a unique solution (Y, K(-)) which belongs to
Bs.o.

Proof:

This proof is enlightened by Bahlali [6] for locally Lipschitz BSDEs driven by contin-
uous Brownian motion. He first proved the result assuming that the Lipschitz constant
Ly is bounded by \/(l—aw , then he extended it to the case where Ly < /log M.
Herein, we give the proof directly and differently without passing by those steps.

Suppose that there exist two solutions of the BSDEJ (f,£): (Y, K'(-)) and (Y2, K*(-)) .
The proof of the uniqueness is straight forward of Lemma 3.2 applied with f; = fo = f,
§1 =6 = h(Xp).

To prove the existence, we define a family of approximating BSDEJs obtained by
replacing the generator f in BSDEJ (0.1 by f,, defined in Lemma 3.4

Y? = h(Xr) +/ 0 X, Y KR () dr—//K” a(dr,d6), setT].

In view of Theorem 3.4 in [19], the above BSDEJ has a unique solution (Y™, K™(+)),
for each integer n. Using similar arguments as in the proof of Lemma 3.1, one can easily

find
n|2 r n 2
supE [ |Y,']"+ [ [|KF()|,dr| <C. (3.16)

We split the remainder of the proof into three steps:

(1=a)
5

Step 1: In this first step, we assume that T is small enough such that T' <
Then, we prove that (Y™, K"(-)) is a Cauchy sequence in the Banach space (Baz. |||, ,)-
For the sake of simplicity we assume (without loss the generality) that L = L= 0, so that
Ly < /Tog M and Ly, < log M. We apply (3.7) in Lemma 3.2 to
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(VLK) 180 = (Y7 K(), f,§) and (Y2, K2(), f2,€2) = (Y™, K™ (1), fm,¢), to ob-

tain

B[ =P < |G = 1)+ ohulf = f)
C(&N) ]

(L3, + 2Ly + 2) M2(1=)

exp [(4+ 4Ly + 2L3)T].

Since Ly, < y/log M and LM < log M, we get

E[Y, —Y,"? < N(M,a)[p3(fu — )+ 23 (f = fm)

O
+ (3log M+2)M2(1—D‘)} ’

where N(M,a) = M1~ exp ( (1-— oz)) . Passing to the limits successively on n, m, M,
we obtain E [V — Y| 0 0. We use (3.16) and the Lebesgue’s dominated conver-
gence Theorem to get E [T |V — Y™|* dr . = __ 0. Therefore, in virtue of the previous
limit and using the (3.7) in Lemma 3.2, we ;)btain E [T KM — K™()| dr oo 0.

Hence, (Y™, K"(-)) is a Cauchy sequence in the Banach space (Bay ||| 5,,)- That is,
3V K () € Bas such that Jim (¥, K"()) — (V. K()) g, =0. (317

Step 2: In this step, we assume that 7' is an arbitrary large time duration. Then,
we will prove (Y, K™(.)) is a Cauchy sequence in the Banach space (Baz ||| 3, ,)- Firstly,
let ([T}, Ti1])i=k be a subdivision of [0, 7], such that for any 0 < i < k, |Tjy1— T3 < 6,

)

where 9 is a strictly positive number satisfy o < { . Now, for s € [Ty_1,Tk], we consider

the following BSDEJ
Y = h(X7) +/ £ X0, Y K- dr—/ /K" q(dr, d9). (3.18)

It is obvious from step 1 that (3.17) remains valid on the small interval time [T}y, T}] .

Next, for s € [Ty_o,Ti_1], we consider the following BSDEJ
Ti_1 Th—1
vy [ e Xy ey [ [ K2 0)atar o). (319)
s s r

Since Ty—1 € [Ty—1, k], Y7, converges to Yz, _, and thus, (Y™, K"(-)) is also a Cauchy
sequence in By o, on the small time interval [T}_o, Tj—1] . Repeating this procedure back-

wardly fori = k, ..., 1, we obtain the desired result on the whole time interval [0, 7.
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Step 3: In this step, we shall prove the convergence of f, (., X, Y™ K"(-)) to f(., X, Y, K(-))
in L' (©,[0,T]). Denoting Y" =YY" —Y, K"(-) = K"(-) — K(-) and we set for M > 1

Ay = {(s,w) : [Vl + KGO, + Y+ Bl = MY, A"y = Q\AG.

First, it is not difficult to see that

]EfsT ’fn(rr? XM}/rnv Kﬁ()) - f(T, XT7 Y;W KT<)>| dr
<SE LS = £) (X, Y KPO)| (Mg, + ag, ) dr
HE ST Fr, X0 Y KR C) = O X Yo Ko()] (g, + ag, ) dr

Using the inequality |y|* < 1 + |y| for each a € [0,1] and the Assumptions (Hs ) and
(Hy3), we obtain

B[l X Y2 KEO) = 05X, Ve Ko ()
T

E sup  |(fo — ) (r, Xy, 2(-))| dr

O JylllzOlI<M

T
F2AE [ [ [V K7L g, dr (3.20)

IN

i T
LnE / Vo

T
dr+LM]E/ |&" ()] ar

v

T
+AC]E/S [6 4 Yo + B G, + V0 GO g, o

Using the inequality 14 < M~ |Ys| + | K ()|, + Y + | K2 ()], Schwarz inequality
and Lemma 3.1 we show the existence of a constant C' which is independent of M such

that the second and the last term in 3.21 are bounded by C'M =2 and thus

E[51fulr, X0, Y K2() = f(r, X, Yy, Ko ()] dr
<EJy  sup  |(fo—f)(r, Xoy, k()| dr

lylllz()ll, <M

+LyE [TV dr 4+ LyE [T

(K", ()| dr+CME
Thanks to Lemma 3.4 (iii) and Schwarz inequality, the first term in the previous
inequality tends to 0 as n goes to infinity. Then, by using Schwarz inequality and step 1,

the second and the third terms tend to be 0. Finally, since the constant C' is independent

of M, the last term goes to 0 by sending M to infinity. The theorem is proved. [J
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Example 3.1
We consider the following BSDEJ

Y, = h(XT)+/tT<2\/1+long+log
[ [ kt)atar.a0),
t r

v1i+4logy, —1 q
r
v1i+logY, +1

where the function h satisfies (Ha 4) . It is easy to see that

VvV1+1 —1
f(y):=2y/1+logy+ log o8y ‘

v1i+logy+1

satisfies Hypotheses 2. And thus, in view of Theorem 3.5, it has a unique solution.

Before claiming the following corollary, we need to state the following hypothesis:

(Hy5) There exist two constants A > 0, and « € [0, 1 such that

(s 2,4, k() S AL+ [yl + 1RGO, aet [0, T].

Corollary 3.1
Let (Hy1), (Hi2), (Ha1), (Ha3) and (Hy5) be satisfied and h : T' — R be a £- mea-

surable and bounded function. Assume further that there exist two positive constants
L, L such that Ly, < L + Vdlog M and Ly <L+ log M. Then, the BSDEJ (0.1) has

a unique solution.

Proof: Arguing as in the proof Theorem 3.5 and using Remark 3.3, we get the desired
result. [
Eemark 3.6

Corollary 3.1 remain true if we replace (Hy5) by
uf (1 K()) < C (14 [y + [yl IC)I,) saet € [0,7) (3.21)

where C' is a positive constant. Indeed, arguing as in the proof of Lemma 1, with the
help of the condition (3.21) and the boundedness of h, we get the boundedness of Y,

and the rest of the proof is similar to that of Theorem3.5.
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Example 3.2
Let h : I" — R be £- measurable bounded function. The following BSDE.J has a unique

solution
T T
Yi=h(Xr) = [ @+ W)logL+Yllar = [ [ K. (8)a(dr, o).
t t

Indeed, it is not difficult to that the generator f(y) := —(1+y)log(1+y) is
locally Lipshitz on Ry and does not satisfy (H, ;) because we have |f (y)| < 141 ly|'
for all ¢ > 0. On the other hand, we have that yf (y) < C (1 +1 |y[1+6), and thus f
satisfies (3.21).

Now we will extend the same result to BSDEJ (0.2) for that we need the following
assumptions on the coefficients.

Hypotheses b

(Hp1) The function f is continuous in (y, z, k) for almost all ¢.

(Hp2) There exist two constants A > 0 and « € [0, 1] such that

[f (s, 2,9, 2, k() < AL+ [y|” + |27 + [KO)I] aet € [0, 7).

(Hp3) For every integer M > 1, there exist two constants Ly, > 0 and L m > 0 such that,

a.e. t€[0,T] we have

(s, k() = f (5,29, 2, k()|
< Larly =gl + Lar |2 = 2 + Lua|[k(:) = k()b

’

and for all y, ¢, z ,k(+), k(-) such that |y| < M, || < M, |z| < M,
4 < MO, < M, (1R, < M.

(Hy4) The function h : I — R is £- measurable function and satisfies E |h(X7)|?> < cc.

When f satisfies (H,.1) and (Hy), we can define the family of semi-norms (py, (f)),,cx

N|=

pn<f>=<E /OT sup |f<s,Xs,y,z,k<~>>|2ds>. (3.22)

lyl.I1z()ll, <n
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Theorem 3.7
Assume that Hy; Hy3 in Chapter 1 and Hypotheses b are satisfied. Assume

also that there exist two positive constant L and L such that Ly < L+ +/logM and
Ly < L+log M. Then, the BSDEJ (0.1) has a unique solution (Y, K(-)) which belongs
to B.

Proof: We can prove this theorem using the same method of the proof of Theorem 3.5.

O

3.4 Stability of the Solutions for Locally Lipschitz
BSDEJs

Next, we will give a stability theorem for the solution to BDSE (f,£). Our starting
point is to define a sequence (f;)nen of Prog-measurable functions, a sequence of Fy )~
measurable and square-integrable random variables (fn)nEN such that for each integer n,
&n := h, (X7). Moreover, we suppose that each BSDEJ (f,,&,) has a (not necessarily
unique) solution which will be denoted by (Y, K"(-)). Assume further that (f,,&,)
satisfies the following assumptions:

Hypotheses 3

(Hs.1) For every M, py(fn — f) — 0 as n — oo.

(Hs) E|&, — &]° = 0 as n — oo.

(Hs33) There exist two constant, A > 0 and « € [0, 1] such that

sup | fu(s, 2,5,k ()| < AL+ " + kG ace. s € 10,7,

and for all y, k(-), such that |y| < M, ||k(-)|, < M.

Theorem 3.8
(Stability Theorem) Suppose that (f, &) satisties Hypotheses 1 and Hypothe-

ses 2, and (f,,&,) satisfies Hypotheses 3. Then we have

. T n 2 n 2 _
i E [ (1Y =Y [)+ K7 ()~ Ko () dr =0,

n—o0
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Proof: We apply Lemma 3.2 to (Y, K'(-), f1,&Y) = (Y, K(.), f,€) and
(Y2 K2(), f2,6%) = (Y™, K"(-), f™, £"), the result follows immediately by passing to the

limits, first on n and next on M. [J

3.5 BSDEJs and Kolmogorov equations

In this section, we shall apply Theorem 3.5 to prove the existence of a unique solution
to the Kolmogorov equation. Let us assume that the pure jump process X satisfies the
assumption 1-4 given in section 4 in Chapter 1, and then we define the following parabolic

differential equation on the state space I' (called Kolmogorov equation)
T
u(t,x) = h(z) +/ Lo (r,z)dr
T
+ [ e ) - ), (3.23)

where s € [0,T], x € ', u: [0,T] x ' = R is an unknown function such that the function
t — u (t,x) is absolutely continuous on [0, 7] such that

(u(s,Xs ), u(s,0) —u(s, Xy )) € Byy, fand h are two given functions.

Definition 3.1

We say that a measurable function u : [0,T] x I' — R is a solution to the Kolmogorov

equation (3.23), if for every (t,z) € [0,T] x T,

T
Et’x/t /F](u (s,0) — u(S,XS))|2V(T,ZL‘,d9) ds < +o0,

T
Et’x/ u (s, X,)|* ds < 400,
¢

and (3.23) is satisfied.

Let us also introduce the following BSDEJ
T
VI = X+ [ XY K ()

[ [ K @)atar, do). (3.24)

Under Hypotheses 1 and Hypotheses 2, theorem 3.5 shows that BSDEJ (3.24) has
a unique solution (Y;»*, K1*(-)) € Bay. Now we are able to state the main result of the

section
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Theorem 3.9
Let Hypotheses 1 and Hypotheses 2 hold. Then, the Kolmogorov equation (3.23) has

a unique solution u. Furthermore, for every (t,x) € [0,T] x T' we have u (t,z) = Y,*".

Proof: It goes as the proof of Theorem 1.11 in Section 4 of Chapter 1. [J
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CHAPTER 4

BSDETs with Logarithmic Growth

( Joint work with N. Khelfallah )

4.1 Introduction

Throughout this chapter, we use a localization procedure to establish an existence
and uniqueness result to a non-necessary locally Lipschitz one-dimensional BSDEJ driven

by jump Markov process whose generator f is defined by
Flta,y, k) = f(t,x,y,/rkw)v(.,x,de)),

and shows a logarithmic growth of the type (|y||In|y|| + [[K(-)||, +/|In]|&(-)]|, |) and the

terminal data is exponentially integrable. This last condition is stronger than the square
integrability one and is enough to ensure the main results of this chapter.

The rest of this chapter is organized as follows. In section 1, we give some auxiliary
results. In section 2, we tackle a result of the existence and uniqueness of solutions to
Logarithmic Growth BSDEJ. In Section 3, we give an application to Quadratic BSDEs.

To begin with, we give the main needed hypothesis in this chapter

Hypotheses 4
(Hy4.1) There exists a positive constant A\ which is large enough such that
E[[¢]* 1] < 400,
(Hyo)
i) f is continuous in (y, k) for almost all (¢, w),
ii) There exists a positive process 1, satisfying E[ [T n¢" +1ds] < 400,

and two positive constants ¢y and C' such that for every ¢, z,y, k:
|tz y k) |< ne+ ClyllInfyl] + co |RC)I], /[ In(lIEC)I],)

59



4.2. AUXILIARY RESULTS 60

(H43) There exists a real-valued sequence (Ajs)a~1 and constants My € Ry, r > 0 such

that:

HVM >1, 1<Ay <M,

iii) For every M € N, z € I" and every y, ¢/, k, k' such that |y|, V'], [|k()|l,,
&' ()|, < M, we have

(y - y/) (f(t,.l’,y, k) - f(t’xvylv k,)

< Msly — /P In Ay + Moly — o/ |(k = K') ()], /In Aps
IDAM

M

2AM

4.2 Auxiliary Results

Lemma 4.1
Let (Y, K (+)) be a solution of the BSDEJ (0.1). Let A > 2C+1. Assume moreover that
(&, f) satisfies conditions (Hy,) and (Hy,). Then there exists a constant C(T, ¢, C),
such that:

i)E(AT|K|eAt+1dS> < O(T Co, )E<|§| >\T+1+/ 775 +1d8>
B[O < o(ned)s e [T s [ o)

Proof: To begin with, we give the proof of 7).

Set u(t, x) := |317|6MJrl and sgn(x) := —l <oy + Liz>0}, we have
0 ¢ 0 '
ai: — AeMIn(|z]) |2/, and (7;‘ — (M4 1) |2 sgn ().

For n > 0, let 7,, be the stopping time defined as follows:

: Lo 2 2e*s
Tn::1nf{t20,|:/(68+1) Y|
0

K(-)||3ds] AR n} AT,
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It0’s formula leads to

e)\(t/\rn) +1

Yine |
= [Ypr T - f A In(|Y;]) Y37 ds
AT (N 1 1) YLl sen(Y;) (s, X, Y, K)ds
— T [+ 1) Vel sgn(Y)) K, (8) q(ds, d6),
— [T e (YA = T = (e + 1) Ve | sen(Ya ) K (8)) p(ds, d6),
< Vanr |7 = R AN In(|Yi]) Y] ds
a0+ 1) Y (ne+ Y (IYa]) + o 1K (), /11K (), ds
— T (€ + 1) Y] sgn(Ya) K (6) a(ds, d6),
— L e (VA = V| = (@ 1) Ve | sen(Yin) K (6)) p(ds, dO).

By Young’s inequality, it holds:
As As s s
(X + DY e S Y7 (M )T

For |Y;| large enough and thanks to the last inequality we have:

A(tATR)+1
|Yt/\Tn|e
AT TA TNy, s
< ‘YT/\Tn‘e/\(T J+1 X )‘s(ln’Y‘)‘Y|(e S4+1) dS+ A |Y;‘e* +1dsg
Tk Tk

B e 1 e>‘5+1 o e 41
+ (e 4 1)° ds + + D|YL|¢ T In(]Y;])ds

tATh tATh

TNATh
+ co(e + 1) Yo B, /I ([ ds

/T/\‘rn /(6)\5 + 1) |Y;|€AS Sgn(YS)KS (9) q(ds, d@)

tATh
T ATy,
J (er
tATh
Note that for A > 2C + 1, we have (Ae® — C(e* 4+ 1) — 1) > 0 and hence; using the

)\5+1

S—

(e + 1) |Ye | sgn(Yeo ) K (9) ) p(ds, d6).

inequality (3.2) in [11, Lemma 3.1], which claims that for every C} > 0 we have ,

Cr(e™ + DY KO, /(1))

< (41 xs 1K ()||V £ 300 — (e +1) — DIn(|Ya]) Va2 (4.1)

Furthermore, for C; = ¢o3¢"", one can easily check that

co(@ + 1) [V 1Ol TI(IE O] < 37 (@ + D™ 16,01
AN = C(e™ + 1) — DIn(Ya)) |Vaf.
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Hence,
eAtATR)
|Y:‘,/\Tn’ i
A TATh s s
< Vpr |7 [ 1) s
tATh
TATn R s
S N Can Y E i Vo0 A
tATh
TNy, A
— [ [+ DY sen(v) K, (6) a(ds, d0)
tATh
T/\’T'n s s s
. /|Y|*+1 Yae | (@ 4 1) Ve |7 sen (Ve )KL(8)) p(ds, d6).
tATh

Next, similar steps as in the proof of Proposition 2 in [37] show that

T AR
[+ 1) I sen(Yo) K, (0)a(ds, d6)

tATh
TATn e 41 er 41 As ers

/A Ll = ™ = (@ 4 1) Y| sen(Yao ) KL(0)) p(ds, o)
TATh s s

< [, ()Y ds

TNATn
_ / ’Y‘e +1 |Y |e +1> (dS de)

Plugging the above inequality in the previous one and taking the expectation we get

ertATn) MTATR) T .
E([Yinr, | ) < E(Yinr |7 (7 + 1) E [

Fatou’s Lemma leads to, by passing to the limits in n

t T T s
E(YI™ ) <B(El™ ) + (@7 + )7 E [ o s

The proof of i) is completed by integrating both sides of the last inequality.

We proceed now to prove ii). Itd’s formula shows that

T
Vil + [N ds
T T
_ |§|2+2/ Y;f(s,XS,YS,KS)ds—2/ /FYS_KS(Q)q(ds,dQ)
t t

<l +2 [ Wil (. + I VDI + o |KONL Vil (T OL)T) ds

—2/ /YK q(ds, df).

Mohamed Khider University of Biskra.




4.2. AUXILIARY RESULTS 63

Since for |Y;| large enough, we have for any ¢ > 0, |Y;|* [In(|Y:])| < |Yi*™¢, we use
again the inequality (3.1) in ([11, Lemma 3.1}, Lemma 3.1) to show the existence of a

positive constant Cy depending up on ¢y and C such that:

1 /T T T
S IEOIEas < g+ [P ds+ [ infds

+(2¢+C) /tT|YS|2+ad32/tT/FYS_KS(Q)q(ds,d@).

Since |Y;[**¢ > |Y,]? for |Y;] and A large enough, then there exists a positive constant

’

Cy = Cy(T, ¢y, C') such that:
T 2 2 T 2 T 2+4¢
[ KOs < Gl + [ InPds+2 [ Pds

= ! / Y;KS(H)q(ds,dH)> |

If we put € = e* — 1 and taking the expectation, we get the desired result. [J

Lemma 4.2

There exists a sequence of functions (f,,) such that,
(a) For each n, f, is bounded and globally Lipschitz in (y,k (-)) a.e. t € [0,T].
(1) sup, |ty )| < e+ Clyl | ()] + o 1EC), o/TITRCIT, ]
a.e. t€0,7].

(¢) For every M, ppy(fnn — f) — 0 asn — o0.

Proof:
We define a sequence of smooth functions with compact support ®,, : R? — R, which
approximate the Dirac measure at 0 and [ ®, (r)dr = 1. We also define a sequence of

smooth functions A, : R? — R, such that 0 < |A,] < 1, and

A, (r)=1for |r| <n
A, (r)=0for |r| >n+1.

Let for n € N*, B, (t,z,y. k) = [ f(t,z,(y, k) —r) P, (r)drA, (y,k(-)) such that
p (n) be an integer where p (n) > n+n®, we see that j,, (t, x,y, k) satisfies the hypothesis
(Hy) _ (Hys), putting fi, := Bpm)n we get the result. [
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Lemma 4.3
Let (Hy1), (Hy2)—(ii) be satisfied. Then, for every 1 < aw < 2

T B , T T )
B Xy Kolas < Ce ([ (2 1P as+ B [ 1RO s).
0 0 0

where o = % and C' is a positive constant.

Proof: Assumption (H,) implies that there exist two positives constants ¢, ¢ and « with

1 < a < 2, such that
[f(t 2y, k)| < ne+clyl® +ellk (4.2)
Using the previous inequality to get

T _
IE/ £ (s, X,, Ys, K,)[3ds

0

T _
SE [+ eVl + 2K ()" ds
_ _ T _ _ _
<3(1+4c"+¢) E/ (nS + [Yal*® + [ KL ()[15%) ds.
0
Since a = %, we obtain

T _
E/ £(5, X, Y, K)|Pds
0
B B T
<3 (14 + ) E/O (12 + VA2 + 1 L()]12) ds < oo,

Putting C' = 3 (1 + ¢® + &), we get the result. O

Lemma 4.4
For every € 1,2, A> 0, (¥)i=1.4a C R, (2)i=1.4j=1.» C R we have,
1 B-1

1 2—-5
AWIIRC) = 512+ =5 Pl kO < 5 A% = P kO

Proof: It goes by using Holder’s and Schwarz’s inequalities [
Arguing as in the proofs of Lemma 4.1, Lemma 4.2 and standard arguments of

BSDEJs, one can prove the following estimates.
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Lemma 4.5
] Let f and £ be as in Theorem 4.8. Let (f,,) be the sequence of functions associated to
f by Lemma 4.2. Denote by (Y™, K"(-)) the solution of equation (E'"). Then, there
exist constants Cy, Cy, Cy such that

a)sup, E [ [|K" ()2 ds < .

b)sup, E [T [v;[¢" +ds < Cy.

¢) sup, B I | fn(s, Xs, Y2, K™)|ads < Cs.

4.3 Existence and Uniqueness of Logarithmic Growth

BSDEJ

Proposition 4.6

For every R € N, 8 €]1,2[, 6 < (# — 1) min (ﬁ,%) and ¢ > 0, there exists
2 2
My > R such that for all M > My and T' < T':

/ n_gemy(.\||2
(T/ =)+ <t<T" ([Yp =Y 24vp) 2

4 Crd1: n m
S 5 + B(ﬁ*l)e M llm Supn,m—H—oo ]E|YT/ - YT/ |B7

where vg = sup {(Ay)"', M > R}, Cyy = %111/\]\/1.

To prove the previous Proposition, we need the following lemma. Let C' > 0 and
for M € N*, we set ¢, := |V — Yy |* 4 (Ay) "L
Lemma 4.7
] Let assumptions of Proposition 4.6 be satisfied and let k := 3 — o — [3. Then, for any

C > 0 we have,
8 T’ 8
eClyhp? +C’/ e“p2ds
t

< oy = PO [T e - K Ol ds

T (2 g
—/t /Fe s <w52 — z/1§_> q(ds,db) + J; + Jo + J3,

where

feCT (T 1

Siio= s @7 (s)| fuls, X, VS KT) = finls, X, YT K| ds,
t
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’ —1 o
Jy: = BeT [2M2+I/1]ﬂ2 [/ sup | (fn = ) (s, X, 9, k) ds
Eyl Ik

I I<M
T/
+/ (fm_f) (Sastyvk)ldS‘| )
tyl, IIk || <M

and

T’ B8_
Js: = 5M2/t eCseh2 l(wslnAMJr\Y” YK () s \/lnAM)

8
Proof: It&’s formula applied to e“*1)? shows that,
8 T 8 , B
ethtz + C/ eCs¢82 ds = GCT w%/
t
T’ B_
8 [ e (T Y (fulls, Xy Y2 KT) = fnls, X YU K)) ds
t
T’ 8_
5 [ [T v = V) (K26 = K2'()) alds, d6)
T/
[ e (= v = e O = Y () — K2()) ) plds, ).

By similar arguments, as in the proof of Lemma 9 in [37], we can rewrite the jump parts

as the following
5 [ e - VI (K2~ K2 (9)a(ds, d6)
[ e (wF —vE e Y (7~ KT 0)) plds, a6)
= [ e (ke O Y (2 — K2 (0))) vl X d6)ds

[ e (5~ v ) atas,an).

< PED (o - K O

-1
)ds

2
(e =i v e = v () )

/ / CS(W 07 ) alds,do).

_ *> /t eCopd T (K — K7 (]2 ds

- /T' [ e (wF = v ) atas, a0).
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By taking account of the above inequality, we get

ot B T cs B
ety +0/ Oy ds
t

= eomyg, - PUZD T comi = acr — k) () ds

T o 8 8 , , , ,
—/t /Fe s (2/152 — 1/152_) q(ds,dl) + Jy + Jo + J5 + Jy,

where
Jioo= 5/tT, O (Y — Y
X (fals, X, Y K") = fin(s, X, Y K) Las)>anpds,
b= [ eE T v

X (fn(sa XS7 }/:9”’ K;l) - f(saX&}/tgna Kg)) ]1{<I’(8)§M}d87

B
5-1

Jooo= 6 i -

X (f(s, X, V' KY) = [, X, Y™, KT')) La(sy<anyds,
R A a0

X (f(s, X, Y, KT ) = fin(s, X, Y™, KT)) W) <anyds,

with the shorthand ®(s) = |Y*| + [Y"| + || K7 (1)]], + | K (+)]|, - By using the fact that

I,
1 , , ,
Y — Y™ <42 a simple computation shows that J; < J; and Jy + J4 < Jo. Finally, by
using assumption (Hy3), we get
, ' B_
J3 S 6M2/ 6081/132 1 “}/sn - Y'Sm’2 IHAM
t

IHAM

HY = VI = K2) OF i+ 0 Mg

< Js.

Which achieves the proof of the lemma. []
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2M3 >
5 jf In Ay, and let v = 2243?5.

We use the definition of J3, making use of Lemmas 4.2, 4.4 and 4.5 one can show that

Proof of Proposition 4.6: Now we choose C' := C); :=

there exists a such that for any 0 > 0 and M > R,

ontf + PO D [T g (7 — K7 ()2 ds

B T’ B B
S €6CIM77D 2/ _/ /GCMS <¢32 _ ¢52_> q(ds,de)

O [T (s X Y KT~ ful XY KT ds,

s [ T
BeéCM[QMQ—i—Vl]T [/ sup | (fu— ) (s, Xy, k)|ds
o fyLlkOllLISM

-
+/t sup | (fn — ) (5, X5, v, /g)|d3] .

[yl Ik, <M

And, thus

T K" — K™ ()|
E|}/tn_Y2m|ﬁ+E ||( s S)()|’;75d8
(Y =Y tvR) T
4 A

< MRV — Y|P 4

p(B—-1)

+(il)4a§ (160 + 7o) ™ (sCu-+61)*
.

F e+ ) 'E o~ )+ = 1)

Taking § < (f — 1) min (# L) , we derive

4MZ° 2rM3pB

A Al — 0,
(AM)§ (Apr)7 M—oo

To finish the proof of Proposition 4.6 we pass to the limits first on n, m and next on
M using assertion (c¢) of Lemma 4.2. [
Theorem 4.8
Assume that Hypotheses 1 in Chapter 3 and Hypotheses 4 are satisfied. Then,
BSDEJ(0.1) has a unique solution in Spxr; @ H?.
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Proof:
Proof of the Existence: Taking successively T’ =T, T = (T—0)", T = (T—20)" =
.. in Proposition 4.6, with the help of Lebegue’s dominated theorem, we show that for
any 3 € ]1,2]
T K™ — K™Y ()2
0

2-p
n,m—-+oo

(1Y =Y |2 +vg) =

Using Schwarz’s inequality we have,

Efo I(K7 = KM ()], ds

Jun

Yo = Yml2 ot up) T

Lemma 4.5 shows that

[E/OT(W YR+ vg) 7 ds

N

< Q.

It follows that

lim E

T
n,m——+0o0 0

(I =yl 4 7 = K2 O, ) ds =0,
Hence, there exists (Y, K(-)) satisfying
r B
B[ (P + 1K) ds < o,

and

lim (1Y, = Yi* + [|(K} = K2) ()]],) = 0.

n——+00
In particular, there exists a subsequence, which is still denoted by (Y™, K"(-)), such

that

lim (Y =Y+ (K" — K,) (-)

n—-+00

)=0 a.e (t;w). (4.3)

I,

It remains to prove that [ [f.(s, Xs, Y7*, K™ — f(s, X, Yy, K,)]ds tends in probability

to 0 as n tends to oco. First, the triangular inequality gives
T
E [ 1fals, X VI K2) = f 5, X Yoo K ds
0
T
SE [ [ (fa= ) (s, X0, YK Olds

T
—HE/ |f(57X87staKg) - f(SanY;?Ks)‘dS
0
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Furthermore, by using the fact that

(Y + 1K OI,) )
M 2—a) g

Lyye gz, >my <

we get
T
E 0 | (fn - f) (S,Xs,Y;n,Kg”dS
T
< E/O | (fo = f) (8, X, Y, KO gy 1)1, < a3 ds

(Y] + IOl

D) ds

T
+E/O | (fo = f) (s, X0, Y2, KD
26_'3% [02 + 6_'1}1_%

< pM(fn - f) + M@2—0a)

Passing to the limit first on n and next on M in the previous inequality, we get,
T
limE/ (o — ) (5, X,, Y K™)|ds = 0.
n 0

Taking account of the limit We use the limit 4.3 and the fact that the function f is

continuous in (y, k (+)) for all (¢,z) € [0,T] x T, we get
lim 1f(s, X, ', KT) — f(s5, X5, Y5, Ks)| = 0. ae. (tw).

Moreover, Lemma 4.3 and the assertions (a) and (b) in Lemma 4.5 show that the

sequence | f(s, X, Y, KI') — f(s, Xs, Ys, K)| is uniformly integrable. Therefore
T
lim]E/ (s, X, Y2, K™) — f(s, X,,Ys, K.)|ds = 0.
n 0

The existence is proved.

Proof of the Uniqueness: Let (Y, K(-)) and (Y, K'(-)) be two solutions of BSDEJ
(0.1). Arguing as the proof of Proposition 4.6, one can show that: for every R > 2,
5 6]17 2[7 0 < (6_ 1) min (@7 W
M > My and every T" < T

) and € > 0, there exists My > R such that for every

—2

BV = /1P + B G ||| (o= K2) O (v2 = Y 4 ) = | s

< e+ e ElYr - Yo |

!

We successively take 7" =T, T" = (T" — §)™, ... one can easily demonstrate that Y; =Y
dP — a.s and K, (-) = K (-) v (t,2,df) dt ® dP — a.e. the proof is finished. O]
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Remark 4.9

To wrap up this section we reveal a possible extension to Theorem 4.8, to a wide class
of BSDE driven by both Brownian motion and a jump Markov process of the type of
BSDEJ (0.2).

For that, we need the following assumptions:
(Hyq1) f is continuous in (y, z, k) for almost all (¢, w),

and two positive constants ¢y and K such that for every t, z,y, k:

| f(t 2y, k) 1< me + Clyll i yll + colzly/| 2] + co R ()1, /1 (IR C)IL)

(Hy,3) Forevery M € N, and every y, ¢/, z, 2, k(-), k' (-) such that

yl, /] =] 121 < M [RC)L, S IR G, < M, we have

(y - y/) (f(t,l‘, Y, k()) - f(ta ZL‘,y,, k/()))

< My —y|PInAy + My —y|lz—2|InAy

In A
+Maly — o' [[(k = k') ()12 \/In Ays + Mo AMM'

Theorem 4.10
ASSUHIG tbat H1.17H1.3 jl’l Chapter l, (H4.1), (H4_2) (11), (H4.3) (i) (ﬁ), (H4.a.1),

(H,..3) hold true. Then, BSDEJ (0.1) has a unique solution in 8" ! @ M? @ H2.

Proof: The proof of the above theorem can be performed as the proof of Theorem 4.8.

O
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4.4 Application to Quadratic BSDEs

In this section, we study the existence and uniqueness of solutions to one kind of
quadratic BSDEJ that shows exponential growth with respect to jump variable, for that

we introduce the following positive predictable process

K] = /F (¢H® — 1 — k(0)) (s, z, d), (4.4)

for a given real number 6 and k in £2(p), noting that this process is a particular case of
(2.5) where F(z) = e”
Our goal is to solve the following quadratic BSDEJ:
T
Y, = h(Xp) +/ (YT + 7,/ |Z. + Y|
+ (eKr —1) Il (X0 = 1)] + Y| (4.5)

\Zy+ rXT)ds—/ Z,dB, — //K a(dr, da).

Let us first consider the following BSDEJ with logarithmic growth which plays an

important role in the sequel

T
v = @O0 [ (gt a4 (Il O dr - (26)
—/ % dB, — //k: a(dr, do).

We pass now to the main result of this section

Theorem 4.11

Let h(Xr) be a £-measurable and square integrable random variable such that
exp(h(Xr)) belongs to L*(Q), then (Y, Z, K (+)) is a unique solution to BSDEJ(4.5) if
and only if (y., 2, k, (0)) = (eYT,eY’"ZT,eY’“(eK”"(e) - 1)) , for any r € [0,T] and 6 € T,
is a solution to (4.6).

Proof: Putting z, = e¥*Z,, k,(-) = ¥ (eKs(') — 1) and applying 1to’s formula to the
function y, = e¥*, the BSDEJ(4.5) transformed to
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T
Yo €h<XT>+/ Y- (ymuzr n|Z,|+ Y|+
+@mw—)¢muﬁr—nmdw+ S+ Ko ] ) dr

T
—/ "~ 2,dB, — // q(dr, d&)—§/ Y- | Z, % dr

_ Z Yro _ oY AY}),

o<r<T

then,
T
o= ey [eYTYr—l—eYTZT [In|Z,] + Y|
pe (50— 1) &%—&H+YH4%(!Z|+[rmDL“

_/ e 7.dB, — // q(dr, d6)

—5/ ¥r ]Z| dr — Z (¥ —e¥r= — e AY}),

o<r<T

which implies

T
e = eh(XT)—f—/ {yrlnyr%—zﬂ/ In |z || + k. (-) y/|In |k, (+)|] dr
dr

|
te (|Z|+[rm0}
—/ "~ Z,.dB, — // q(dr, d9)

— | ez, | dr— > (e¥r — Y= —e¥-AY}),

2 0<r<T

Using (4.4), we get

T
" _aﬂﬂ+/(%mm+@\MMM+bU in . ()] )
T
+/ yr_( Z,* + [K,x,] — |Z| [ TX'“>dS_/ vrZrdB;

—/ /yr_ O — 1~ K,(9)) q(dr, do) //yr_r q(dr, ),

and, thus

T
y, = eMX) +/ <yr Iny, + z\/In|z| + k. () \/In |k, ()\) dr (4.7)
T T
_/ yerrdBr _/ /Fyrf (eKT(H) - 1) q(dr, de)
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Since e"X7) belongs to L?(12), and if we take

Ze = Yp_ Ly kp =y (eKr(e) — 1)
g (7”, XT7 Yrs Zry kr) = Yr lnyr + 2 \/ |ln |Z7’H + k. () |1n |kT <>H7

we can write

Ys = h(XT) +/ 7’ memzmkr) dr

- / 2dB, — / / k. (0)q(dr, d9), (4.8)

it is clear that from theorem (4.8) the above equation has a unique solution (y, z, k (-)).
From (4.7) and (4.8), we get, taking into account that
ys = e’ > 0 for any s € [0, 7]

and

Ys—

KS(-):1n<1+ks(')>.

We deduce that (4.5) admits a unique solution if and only if (4.8) admits a unique solution.

O
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Conclusion

Throughout this Ph.D. dissertation, we aimed to highlight some novel existence and
uniqueness results to backward stochastic differential equations driven by a jump Markov
process. We have either extended some knowledge results on BSDE systems or weakened
the Lipschitz condition on the generator to study a class of BSDEJs driven by a jump
Markov process. The main results of this thesis are summarized as follows

1) In the Globally Lipschitz framework, we proved the existence and uniqueness
of a solution to one type of BSDEJs driven by both a Brownian motion and a jump
Markov process. Then, in the same context, we investigated a comparison theorem which
claims that we can compare the solutions of two BSDEJs whenever we can compare their
inputs. The ideas of the proofs are classical but have been exploited to extend some
results to the case where the generator has less regularity. In particular, the result of
the comparison principle, which is proved using the well-known Girsanov theorem, is
interesting and allows us to construct a suitable sequence of BSDEJ from which we can
extract a convergent sub-sequence.

2) In the non-Lipschitz framework, based on the approximating technique and the
limits argument, we have tackled the following three existence and/or uniqueness results

a) We have used the first result to study the existence of a (minimal) solution for BSDE
when the coefficient is continuous and satisfies the linear growth condition. We have
also proved the existence of a solution for BSDE with a left continuous, increasing, and
bounded generator. Finally, we have applied general results to solve a class of quadratic
BSDEJ.

b) We have established an existence, uniqueness, and stability result in the case
where the underlying BSDEJ’s generator satisfies a local Lipschitz condition. We have
applied a series of technical results to improve existing ones from the continuous case to

the jump setting.
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c) We gave an existence and uniqueness result in the case when the generator is of
a logarithmic growth in y and k£ and the terminal data is exponentially integrable. Note
that, the existence of this type of equation under the square integrability condition on
the terminal data is still an open problem. This result can be considered as a non-trivial
extension of the work of Bahlali et al. [11] to jump case. Roughly speaking, the set of
serious technical difficulties that we have faced came from the Markov Jump part and
required new techniques to get around them. As an application, the main result was used

to prove the existence and uniqueness of the solution to one kind of quadratic BSDEs.
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