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Abstract

Recently, with the appearance of Industry 4.0 (I4.0), machine learning (ML) within
artificial intelligence (AI), industrial Internet of things (IIoT) and cyber-physical sys-
tem (CPS) have accelerated the development of a data-orientated applications such
as predictive maintenance (PdM). PdM applied to asset-dependent industries has
led to operational cost savings, productivity improvements and enhanced safety
management capabilities. In addition, predictive maintenance strategies provide
useful information concerning the source of the failure or malfunction, reducing un-
necessary maintenance operations.

The concept of prognostics and health management (PHM) has appeared as a
predictive maintenance process. PHM has become an unavoidable tendency in smart
manufacturing to offer a reliable solution for handling industrial equipment’s health
status. This later requires efficient and effective system health monitoring methods,
including processing and analysing massive machinery data to detect anomalies and
perform diagnosis and prognosis. Prognostics is considered a key PHM process with
capabilities for predicting future states, mainly based on predicting the residual life-
time during which a machine can perform its intended function, i.e., estimating the
remaining useful life (RUL) of a system. The prognostic research domain is far from
being mature, which is still new and explains the various challenges that must be
addressed. Therefore, the work presented in this thesis will mainly focus on the
prognostic of monitored machinery from an RUL estimation point of view using
Deep Learning (DL) algorithms.

Capitalising on the recent success of the DL, this dissertation introduces meth-
ods and algorithms dedicated to predictive maintenance. We focused on improving
the performance of aero-engine prognostic, particularly in estimating an accurate
RUL using ensemble learning and deep learning. To this end, two contributions
have been proposed, and the results obtained were validated by an extensive com-
parative analysis using public C-MAPSS turbofan engine benchmark datasets. The
first contribution, for RUL predictions, we proposed two-hybrid methods based on
the promising DL architectures to leverage the power of the multimodal and hy-
brid deep neural network in order to capture various information at different time
intervals and ultimately achieve more accurate RUL predictions. The proposed
end-to-end deep architectures jointly optimise the feature reduction and RUL pre-
diction steps in a hierarchical manner, intending to achieve data representation in
low dimensionality and minimal variable redundancy while preserving critical as-
set degradation information with minimal preprocessing effort. The second contri-
bution, in a practical situation, RUL is usually affected by uncertainty. Therefore,
we proposed an innovative RUL estimation strategy that assesses degrading ma-
chinery’s health status (provides the probabilities of system failure in different time
windows) and provides the prediction of RUL window.

Keywords: Prognostics and Health Management (PHM), Remaining useful life (RUL),
Predictive Maintenance (PdM), C-MAPSS dataset, Ensemble learning, Deep learning.



ii

Résumé

A l’époque actuelle, le développement d’applications basées sur les données telles
que la maintenance prédictive (PdM) traverse une évolution remarquable grâce à
l’application de l’industrie 4.0 (I4.0), l’apprentissage automatique (ML), l’Internet
industriel des objets (IIoT) et les systèmes cyber-physiques (CPS). L’application de la
PdM dans le secteur industriel a permis de réduire les coûts opérationnels, d’améliorer
la productivité et de renforcer les capacités de gestion de la sécurité. En outre, les
stratégies de maintenance prédictive fournissent des informations utiles concernant
la source de la panne ou du dysfonctionnement, réduisant ainsi les opérations de
maintenance inutiles.

Le prognostics and health management (PHM) est un processus incontournable
de maintenance prédictive car il offre une solution fiable de gestion de l’état de santé
des équipements industriels. Il nécessite des méthodes efficaces de surveillance de
l’état de santé des systèmes, notamment le traitement et l’analyse de données mas-
sives des machines pour détecter les anomalies et effectuer des diagnostics et des
pronostics. Le pronostic est considéré comme un processus clé du PHM avec des
capacités de prédiction des états futurs, principalement basé sur la prévision de
la durée de vie résiduelle pendant laquelle une machine peut remplir sa fonction
prévue, c’est-à-dire l’estimation de la durée de vie utile restante (RUL) d’un système.
Le domaine de recherche sur le pronostic est loin d’être mature, ce qui est encore
nouveau et explique les différents défis qui doivent être relevés. Par conséquent,
le travail présenté dans cette thèse se concentrera principalement sur le pronostic
des machines surveillées du point de vue de l’estimation du RUL en utilisant des
algorithmes de l’apprentissage profond (AP).

Capitalisant sur le succès de ce dernier, cette thèse introduit des méthodes et des
algorithmes dédiés à la maintenance prédictive. Nous nous sommes concentrés sur
l’amélioration des performances du pronostic des moteurs aéronautiques, en parti-
culier dans l’estimation d’un RUL précis en utilisant l’ensemble learning et appren-
tissage profond. Pour cela, deux contributions ont été proposées, ainsi que les résul-
tats obtenus ont été validés par une analyse comparative approfondie en utilisant
des données publiques de référence de turbomoteurs C-MAPSS. La première con-
tribution consiste à proposer deux méthodes hybrides basées sur les architectures
prometteuses de l’AP pour la prédiction de RUL, en tirant parti de la puissance du
réseau neuronal profond multimodal et hybride pour capturer diverses informations
à différents intervalles de temps et, par conséquent, obtenir des prédictions de RUL
plus précises. Les architectures proposées optimisent conjointement les étapes de ré-
duction des caractéristiques et de prédiction de RUL de manière hiérarchique, dans
le but de réduire la dimensionnalité des données et la redondance des variables,
tout en préservant les informations essentielles. En pratique, le RUL est générale-
ment affecté par l’incertitude. Pour cette raison, dans la deuxième contribution, nous
avons proposé une stratégie d’estimation du RUL qui évalue l’état de santé des ma-
chines dégradées (fournit les probabilités de défaillance du système dans différentes
fenêtres temporelles) et fournit plutôt la prédiction d’une fenêtre de RUL.
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2 Chapter I. INTRODUCTION

I.1 Context and Motivation

Every engineering asset or its critical machinery, during its service Lifetime, is prone
to wear and tear. Its state continuously deteriorates over time until it reaches a break-
down level at which it is unable to perform its intended function, i.e., it fails. Fur-
thermore, according to the Analyst firm Aberdeen Research, the unexpected failure
of physical assets is estimated to result in an average loss of over US $260,000 per
hour in industries such as mining, oil and gas, aerospace, and industrial manufac-
turing. Such industries are known as physical asset-dependent industries, as their
earnings are heavily dependent upon their asset productivity [22]. However, the
failure of assets can not only be a loss in terms of monetary costs resulting from poor
machine reliability but also have significant negative consequences. In various cases,
the malfunction of a machine can even lead to irreversible environmental damage or
safety problems, such as a jet crash caused by engine failure, a rail accident caused
by bearing failure, wasted crude oil and ocean pollution caused by mechanical fail-
ure on an offshore oil platform, and much more [4]. This points out the necessity of
maintaining the most critical machinery before a breakdown can occur.

Availability of such machinery, prevention of unexpected breakdowns, maintain-
ability, optimisation of service, and minimisation of life cycle costs/risks are of major
concern for physical asset-dependent industries. Assets failure has prompted such
industries to continuously monitor the dynamics and condition of physical assets
equipped with multiple sensors that measure different aspects of the behaviour and
operating conditions (e.g. ambient temperature, pressure, flying altitude, operat-
ing speed) of the assets [79, 96]. Prior to the sixties of the last century, maintenance
was only performed after the asset failed. This fail-fix maintenance is called correc-
tive maintenance. Due to the rapid development of the Internet of Things (IoT) and
sensing technology with the increasing complexity and criticality of systems, indus-
trials and researchers have shifted from unplanned corrective maintenance practices
for non-critical machinery toward planned preventive maintenance (PM) (predict-
prevent maintenance) [54, 71, 116]. More specifically, in PM, instead of waiting until
the asset fails, maintenance activities are performed either according to a predefined
schedule or by performing Condition-Based Maintenance (CBM) based on the cur-
rent state of the machinery. Although CBM brought many benefits to industries, it
still could not anticipate failure. Emphasising prognostics in the CBM framework
was the initiative to the emergence of the Predictive Maintenance strategy (PdM),
Prognostics and Health Management (PHM) concept, based on forecasting the evo-
lution of degradation in the future and estimating the remaining useful life (RUL) of
the asset [55].

PdM is the most cost-optimal maintenance strategy, achieving overall equipment
effectiveness (OEE) exceeding 90% [41, 62, 113]. Concretely, PdM maximises an as-
set’s working life and avoids costly breakdowns and lost production time caused
by unplanned downtime. Currently, PdM is the state-of-the-art maintenance strat-
egy, as it provides up-to-date diagnostics, probability of failure, and estimating Re-
maining Useful Life (RUL). The prediction of RUL is at the centre of PHM. RUL is
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a crucial characteristic for prognostics, which is the number of times an asset can
accomplish its intended task before requiring maintenance [55, 56, 121]. The main-
tenance decision within PdM could be based on different characteristics such as the
remaining useful life (RUL), the reliability or the cost function. Therefore, the RUL
form a key element of the PdM in decision-making and maintenance strategies de-
veloped to reduce the cost of maintenance. High-accuracy RUL prediction plays a
critical role in the PdM for many fields, including manufacturing and various indus-
trial cyber-physical systems. Furthermore, if the accurate mechanical asset RUL is
known, manufacturing industries can plan future maintenance in advance and en-
sure a seamless repair and maintenance process. Since its inaccurate estimation can
cause unexpected catastrophic failures.

The increase in complexity of modern physical assets necessitates an increas-
ing number of sensing instruments to accurately measure an asset’s behaviour and
operating conditions during its life cycle. This increase in sensor measurements
translates into large volumes of data representing a great opportunity for the ma-
turity of data-driven PdM methods in industry and academia, mainly relying on
machine learning-based computational methods (e.g. linear or non-linear regres-
sion) to deliver a more effective and efficient maintenance service. Numerous con-
ventional machine learning methods have been used, including artificial neural net-
work (ANN) [75, 89, 143, 166], support vector machines (SVM) [159], random forest
(RF) [25], principal component analysis (PCA) [88] and so on to predict the RUL of
various machines such as bearings, milling cutters, engines and drill pipe. However,
these techniques are often challenging to describe the behaviour of such a complex
engineered system mathematically, it requires the experience of the experts and prior
knowledge of signal processing to manually select and extract meaningful features
for real fault diagnosis and prognostics issues. Conventional frameworks cannot
be updated in real-time and require a great deal of work dealing with large-scale
data sets. Therefore, advanced computational methods, known as deep learning
algorithms or deep neural networks (DNNs), are necessary to adaptively and auto-
matically process highly non-linear and complex feature abstraction from raw asset
data, eliminate the reliance on domain knowledge and manual feature engineering,
and overcome the need for data preprocessing prior to ML-based analysis [133, 199].
In comparison, the deep learning algorithm makes it possible to integrate the PHM
tasks such as feature extraction, feature selection, and classification/regression, into
an end-to-end architecture and jointly optimise all the tasks in a hierarchical fashion.
Nevertheless, applying DL techniques in the context of prognostics is still challeng-
ing, and the performance still needs improvement to make an accurate and effective
maintenance decision. This thesis focuses primarily on developing, implementing
and evaluating automatic and efficient data-driven methods for predicting the RUL
and deals with some problems encountered with improving RUL estimation. These
problems are addressed in the following section.
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I.2 Purpose and Research Questions

Safety, reliability, availability, and maintainability are major concerns and indispens-
able in aeronautical systems that should be addressed due to the harsh working con-
ditions and extended operating hours [33]. The turbofan engine, as an essential and
critical component of aircraft, is a complex, highly sophisticated and precise part
of the thermal asset, its unexpected breakdown is involved with 60% of airplane
issues. Therefore, it is essential to accurately detect upcoming failures, avoiding
catastrophic damage or sudden shutdowns that could result in economic and human
losses [174]. According to statistics, aircraft engine maintenance costs are approxi-
mately 70% of their whole life cycle costs [59]. Therefore, predictive maintenance
and monitoring are necessary to build a cost-effective maintenance strategy that de-
tects upcoming degradation by predicting the RUL engines, preventing unplanned
downtime and reducing maintenance costs. Therefore, we direct our research to-
wards the estimation of the remaining useful life of a turbofan engine.

Indeed, accurate RUL estimations enable improved decision-making for oper-
ations and maintenance of such systems to approach zero downtime, which is a
delicate process influenced by several unknowns challenges related to data quality
and model selection that remain unaddressed. Raw asset sensor data (improper asset
data representation) is rarely usable by data-driven methods, including ML algo-
rithms, due to characteristics such as large number of sensor channels/variables or
even redundant and unnecessary variables and variables with minimal variance (i.e.
low information content) [50, 134]. These characteristics subsequently transform the
data into lower quality with high dimensionality [12]. It is stated that the curse of
dimensionality issue decreases uncertainty [45, 175]. Due to the change of operat-
ing conditions, during the continuous monitoring of the system’s life cycle, gathered
data with wide ranges of measurements is expected to contain discontinuity (Such as
the fleets with multiple operating conditions containing discontinuous sensor mea-
surements with wide ranges of parameter variations and multi-modal distributions
[4]). Furthermore, in the case of fault diagnosis, faulty data tends to be relatively
rare in most situations compared to healthy ones [78]. This latter is an imbalanced
data problem that needs to be addressed. Unfortunately, ML algorithms generally
perform poorly on lower data quality, which can yield high rates of inaccurate fault
identification and/or time-of-failure (RUL) prediction results [96].

Most literary works have neither discussed nor explicitly justified the choice of
suitable architecture to solve specific problems since the optimisation of their hy-
perparameters is based on a trial-and-error approach [2, 6, 7, 73, 97, 99, 131, 172,
188, 194, 195, 200]. However, this approach requires architectural engineering skills
and domain expertise and is time-consuming, error-prone and tedious. Therefore,
searching for an optimal and efficient architecture is still challenging and limited.
Furthermore, some industries are still reluctant to adopt ML/DL algorithms, which
cannot trust something they neither understand nor control due to the "black box"
nature of ML/DL algorithms that impose a lack of understandability and trans-
parency (i.e., their internal computation mechanisms are unexplainable) [133]. This
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enables identifying the key research questions of data-driven prognostics related to
the implementation of a prognostics model that will be addressed in this disserta-
tion:

• RQ1: How to choose an appropriate architecture? How can the prognostic model be
improved to accurately and reliably predict RUL? What about combining a spatial fea-
ture extractor and a temporal feature extractor for improved prediction performance?

• RQ2: Is the performance of the prognostics method strongly influenced by the hyper-
parameter selection? How is the optimum value for the hyperparameters selected?

• RQ3: How can sufficient data quality be achieved? What is the impact of data quality
on RUL estimation performance? How to deal with imbalanced data?

• RQ4: How to deal with complex multidimensional data? How can raw monitoring
data be efficiently processed to obtain relevant features that explicitly and properly
reflect failure progression? Can visualisation techniques be used to assess and analyse
the quality of features and provide a minimum level of transparency?

• RQ5: How to discriminate degradation states and define the threshold setting of states
(classes)? Does it take into consideration the opinion of the expert?

• RQ6: Does reducing the conflict zone (i.e., the boundary between classes) lead to fewer
conflicting decisions for the classification? How can the conflict zone be identified and
reduced?

• RQ7: How to validate the performances of a prognostics model?

Thus, this dissertation aims to introduce methods and algorithms dedicated to
enhancing the estimation of the RUL of a turbofan engine by addressing the chal-
lenges mentioned above. Novel RUL prediction approaches are proposed by apply-
ing advanced deep learning architectures that focus on feature reduction, intending
to achieve data representation in low dimensionality and minimal variable redun-
dancy while preserving critical asset information with minimal preprocessing effort.
The main assumptions and original contributions are discussed in the following sec-
tions.

I.3 Assumptions

The contributions made in this thesis aim to enhanced data-driven prognostics by
addressing the aforementioned issues. However, these contributions are valid for
certain parameters defined by the following assumptions.

• It is assumed that degradation has already been detected.

• Identification of the number of degradation states and adjustment of threshold
parameters under the expert assumption. In our study, three states of degra-
dation are assumed, namely: degrading state, transition state and critical state.
(As a result of the first assumption, the "steady state" was not considered.)
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I.4 Contributions

In this dissertation, the main original contributions are achieved following a thor-
ough literature review on different approaches for prognostics which are as follows:

• Leveraging the Power of Multimodal and Hybrid Deep Neural Network
Techniques for RUL Estimation Enhancement: The first contribution aims
at developing an efficient RUL prediction approach based on advanced end-
to-end deep architectures that jointly optimise the feature extraction/reduction
and RUL prediction steps in a hierarchical manner. The idea of the hybrid neu-
ral network method and the application of parallel multi-model emerged to
leverage the power of different models instead of incorporating a single model
such as CNN (Convolutional Neural Network), DNN or LSTM (Long-Short
Term Memory), which was not previously exploited. It can capture various in-
formation at different time intervals and ultimately boost prognostic accuracy.
Capitalising on the recent success of DL, two proposed hybrid methods based
on promising architectures have been developed, including CNN to capture
spatial features and BDGRU (Bi-directional Gated Recurrent Unit) to capture
bi-directional temporal dependencies features. The first promising proposed
hybrid model adopts CAE (Convolutional Auto-encoder) in an aero-engine
prognostic problem to extract automatically useful features with high-level ab-
stractions in Phase I. In Phase II, these CAE features serve as inputs to train the
two temporal modeling tools simultaneously in a parallel manner (referred to
as the BDLSTM path and BDGRU path) that can capture more robust features
and eventually predict the RUL. Although CAE has been applied to different
tasks, to the best of our knowledge, this is the first use of CAE in RUL’s estima-
tion problem for engine turbofan. For a comprehensive comparison, the sec-
ond hybrid architecture proposed differently from what has been reported in
the literature. It blends the CNN and BDGRU models simultaneously in paral-
lel paths to capture local and temporal features directly from raw sensory data
instead of just using CNN for feature extraction (referred to as CNN-BDGRU).
The outputs from both paths (CNN and BDGRU) are concatenated to obtain
the target RUL. Experiments results will shed light on the impact of combining
deep neural network architectures, and the time complexity for both proposed
methods is also discussed for comparison purposes.

• Hybrid architecture of deep CVAE with an attention mechanism for RUL
prediction: The second contribution focuses on solving the problem of un-
certainty in RUL prediction, as the prediction of a time interval can cover the
whole distribution is more certain (i.e. it has a 100% probability of occurrence)
rather than the prediction of a single deterministic RUL value. A new approach
based on visual data analysis to predict when an in-service machine will fail
is proposed. It consists of Attention Convolutional Variational AutoEncoder
(ACVAE) in combination with a soft voting classifier, which was introduced as
conducive to the predictive maintenance of aero engines. The starting point of
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the proposed method was to automatically extract performance degradation
features from multiple sensors using the Attention Convolutional Variational
AutoEncoder method. ACVAE effectively integrates convolution calculation
with an autoencoder to extract spatial information. Moreover, the power of the
attention layer is in dynamically increasing the weights of the useful features
in the ACVAE encoding phase to make the network pay attention to these vital
features for RUL classes estimation. The primary objective of applying the AC-
VAE is to provide a more structured, disentanglement and lower-dimensional
representation of the data that shows the best class distribution over a 2D latent
space and demonstrates how well the ACVAE generalises. Besides that, the en-
coder, part of the ACVAE, is leveraged for data projection in a 2D visualisation
latent space. The input vectors are encoded and displayed in this 2D space,
which helps the expert visually analyse the spatial distribution of the training
dataset. Under the expert assumption, three degradation classes are then de-
fined according to two thresholds (α1, α2), namely: degrading state, transition
state and critical state. The expert aims to determine the appropriate threshold
setting by minimising the overlapping region between the degradation classes
by analysing the spatial distribution. Following that, the RUL is predicted ac-
cording to the latter degradation classes. The conflict zones are located near
the boundaries between classes, which are identified when the classifiers give
opposite responses for the same input data. Therefore, the soft voting classifier
is used to reduce this conflict zone. It selects the highest probability class by
combining the decisions of different classifiers using the probability classes av-
erage. Furthermore, Automatic Hyperparameters Selection (AHPS) is used to
pick out the best configuration of hyperparameters for our hybrid architecture
without being time-consuming and avoid error-prone. Experiments results
will shed light on the impact of VAE-based architecture compared to the exist-
ing dimension reduction methods (PCA, ISOMAP "Isometric Mapping", and
T-SNE "T-distributed stochastic neighbor embedding"), as well as the impact
of hyperparameters selection and data quality on performance.

The utility of the proposed approaches is evaluated through the application of
four dataset case studies of turbine engines (C-MAPSS NASA) from the PHM’08
challenge that has experienced varying operation conditions and a varying number
of faults. In addition, a comparison with results from recent publications is also
provided (Chapters IV and V).

I.5 Manuscript organisation

The rest of the thesis is organised as follows:

• Chapter II introduces basic definition of predictive maintenance and the Prog-
nostics and Health Management (PHM) paradigm. It also discusses the bench-
marking data sets for system-level prognostics.
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• Chapter III provides a brief overview of the relevant theoretical foundations
needed to understand deep learning and state data-driven prognostic chal-
lenges and issues.

• Chapter IV introduces the first contribution, which aims to develop an effi-
cient RUL prediction approach by testing several deep learning techniques.
We present the proposed deep end-to-end architectures that jointly optimise
the feature reduction and RUL prediction steps in a hierarchical way, intend-
ing to achieve data representation in low dimensionality and minimal variable
redundancy while preserving critical asset information with minimal prepro-
cessing effort.

• Chapter V introduces the main contribution regarding developing an innova-
tive RUL estimation strategy that simultaneously assesses the health status of
degrading machinery and assigns them to estimate the RUL window.

• Chapter VI presents the general conclusion and discusses the future aims.
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Chapter II

Predictive Maintenance and PHM
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II.1 Introduction

Companies strive to be more sustainable and competitive, which must satisfy their
customers with high-quality products delivered on time. Besides, successful op-
erations in industries such as mining, aviation and industrial manufacturing rely
heavily on the continuous operation of complex systems, where unexpected asset
failure results in high maintenance costs, lost profits, reduced human safety and
hazardous environmental impacts. Behind the scenes, a critical process is a main-
tenance, which plays a crucial role in improving a company’s global competitive-
ness. As Mr Gross explains, "the success of the maintenance operation should be
measured in uptime, not in the number of breakdowns repaired [58]". Therefore,
industrials have shifted from unplanned corrective maintenance practices (fail-fix
maintenance) toward planned preventive maintenance (PM) (predict-prevent main-
tenance).

This chapter briefly introduces the basic concepts related to our work. The chap-
ter starts with an overview of Industry 4.0 and maintenance evolution in sections
II.2 and II.3, respectively. Following that, an overview of PHM and the role of prog-
nostics is given in II.4. Different benchmarking datasets for system-level prognostics
are also summarised, and the occupancy dataset is detailed in section II.5. Finally,
section II.6 gives a brief conclusion from what this chapter presents.

II.2 Towards the 4th Industrial Revolution

The emerging of several digital technologies such as Big Data[127], cloud comput-
ing [182] or IoT [42] has characterized the rise of the 21st century. These technologies
have recently entered our daily life and industrial companies. Industrial compa-
nies have evolved rapidly over time through various industrial revolutions, from
the steam engine to digitization technology. In this context, several initiatives have
emerged to manage these technologies, such as smart manufacturing in the United
States, internet+ in China, the industry of the future in France, and Industry 4.0 in
Germany. The terminology «Industry 4.0» has gained ground internationally, which
was first introduced at the Hanover Fair in 2011 [81].

Historically, the invention of steam engines kick-started the « Industry 1.0 » in
the 18th century, basically referred to as the mechanical revolution. It centred around
the transition from purely manual production to machines through the use of steam
and water as a source for power. The industrial revolution (I2.0) (Electrification)
began in the 19th century by discovering electricity and assembly line production.
The third industrial revolution (I3.0) is also called the «Digital Revolution» and
led to the change from mechanical and analogue systems to digital systems. This
revolution focused on the developments of computers, microprocessors (memory-
programmable controls), digital cellular phones, and Internet, therefore, automating
an entire production process without human assistance. Today, we are witnessing
the fourth industrial revolution, which also known as Industry 4.0 [90]. This evolu-
tion is derived from advances in digitization and data analysis disciplines to make
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plants smarter and more efficient. It is the age of the Cyber-Physical Systems (CPS),
Artificial Intelligence (AI), Machine Learning (ML), Internet of Things (IoT), Big Data
and Data Mining, Internet of Service (IoS), and Cloud computing.

II.3 Evolution of maintenance

According to the standard [165], Maintenance is considered a set of all technical,
administrative and management actions during the system’s life cycle, which aims
at maintaining or restoring it to a state that can perform the required function. The
maintenance actions involve activities of control, verification, replacing and repair.

As mentioned above, manufacturing systems have evolved throughout four in-
dustrial revolutions. This industrial evolution has been accompanied by a change
in the manufacturing functions such as the maintenance one. This function was
evolved from Corrective Maintenance to Predictive Maintenance (See Figure II.1).
Techniques for maintenance policies can be categorized into the following main clas-
sifications

FIGURE II.1: The evolution of maintenance paradigm within the in-
dustrial revolutions[121].

• Corrective Maintenance (CM) : is also known as Run-to-Failure (R2F), reactive,
unplanned or breakdown maintenance. It is the oldest and most straightfor-
ward manner of intervention, generally carried out only when a breakdown
or failure has occurred and aims to re-establish the system to an operating
state. This maintenance policy can only be appropriate if the time required for
restoring, costs sustained for downtime and repair or failure consequences are



12 Chapter II. Predictive Maintenance and PHM

insignificant, and if no immediate safety risk is involved. In other words, such
maintenance is suitable for non-critical assets [61]. This strategy leads to two
types of intervention: Curative and Palliative, as shown in the characteristic
graph (Figure II.2).

– Palliative Maintenance: has temporary repair actions intended to restore
an asset to a specified state which does not necessarily imply its initial
state (function provisional). This maintenance may relieve failure without
addressing the causes that curative maintenance should follow.

– Curative Maintenance: has durable repair actions, definitively, intended
to restore the system to its optimal performance (long-term restoration).
This strategy can be decided either immediately following a failure or
after palliative maintenance.

FIGURE II.2: Evolution of performance level in CM.

• Preventive Maintenance (PvM) : is a planned (or proactive) strategy for main-
taining machines, introduced in the 1950s [168]. It is performed based on either
predetermined intervals (usually time or event-based triggers) or according to
prescribed criteria (following the analysis of the monitored evolution of signifi-
cant parameters). This strategy aims to extend or sustain useful component life
by reducing the probability of its failure during use, reducing the occurrence
of unscheduled downtime, and eliminating the causes of serious accidents.
Three main types of preventive maintenance are available for implementing
an activity of failure avoidance:

– Systematic Preventive Maintenance : according to a planned schedule,
this strategy of maintenance is carried out periodically at regular and pre-
defined intervals (time-based maintenance) or based on parameters of the
utilisation of the machinery (hours of operation or kilometres operated)
to ensure that the system retains a sufficient level of dependability, safety
and performance. However, due to preventive action, unneeded mainte-
nance actions are taken (over-maintenance), leading to periodic replace-
ment of parts prematurely without prior check-in, increasing operating
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costs and wasting resources [87]. As depicted in Figure II.3, no inter-
vention can be taken before a predetermined intervention schedule (UT).
Where UT: intervention period at fixed intervals, SPI: systematic preven-
tive intervention.

FIGURE II.3: Systematic preventive intervention.

– Condition-based Maintenance (CBM) : depends upon the actual condi-
tion of the component rather than on the operating time. It is intended
to reduce the number of unnecessary scheduled time-based maintenance
operations, which boots maintenance only when necessary. This method
of maintenance is based on monitoring the performance of the asset and/
or significant indicators [76, 184]. These later give the signalling that the
component is deteriorating and the failure probability is increasing. The
main function is to collect data with the industrial machines under opera-
tion (such as vibrations and temperature), and identify potential anoma-
lies or degradation through historical analysis of similar equipment and
knowledge acquired over time. CBM is based only on the current-state of
the equipment and do not include prediction / forecasting of future states
of the degrading equipment. Therefore, CBM usually cannot be planned
in advance where the date of occurrence of the failure remains uncertain.
As depicted in Figure II.4, intervention can be taken when certain indica-
tors show signs of impending underperformance or failure. Where PCI:
Condition-based maintenance intervention.

– Predictive Maintenance (PdM) : is more dynamic than CBM, where the
maintenance can be scheduled and executed in prior. PdM is carried out
following a forecast of the evolution of the condition of the assets over
time (i.e., prognostics). It is based on the continuous monitoring of the
asset, as like CBM. Furthermore, it utilizes the prediction tools based on
the historical data (such as machine learning methods and statistical in-
ference methods) to project the current state of the asset into the future in
order to estimate the uptime before failure (Remaining Useful Life) [113].
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FIGURE II.4: Intervention of Condition-based Maintenance.

As shown in Figure II.5, estimation of remaining operating life enables
the machinery to run till healthy state, and provides adequate/scheduled
time to plan the required maintenance actions before a breakdown.

FIGURE II.5: Intervention of Predictive Maintenance.

It is required that any maintenance strategy ought to minimize equipment fail-
ure rates, must improve equipment condition, increase equipment operational life /
availability, and reduce maintenance activities and costs. An overview of the main-
tenance classifications is shown in Figure II.1. PdM turned out to be one of the most
promising strategies amongst other maintenance strategies that can achieve those
characteristics [56]. PdM attracts the attention of the industries; hence, it has been
applied in the era of I4.0 because it is capable of optimizing the use and management
of assets [28].
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II.4 PHM paradigm

Prognostics and Health Management (PHM) was introduced in the late 90s - early
2000s by American researchers and industrialists [55, 56]. It has since continued to
progress and gain the attention of researchers and industrial companies over the
few last decades. PHM appears as a complete and integrated approach to meet the
expectations of modern industry in terms of availability, reliability and operational
safety. Indeed, PHM aims to ensure the smooth functioning of critical machinery
and to avoid undesirable events by managing the system based on its past, current
and estimated future conditions.

Historically, PHM started as an improvement of CBM, which based on future
estimated, current and past conditions. However, no consensual definition has yet
been blurred in the literature. The Center for Advanced Life Cycle Engineering1

defined PHM as «the mean to predict and protect the integrity of equipment and
complex systems and avoid unanticipated operational problems leading to mission
performance deficiencies, degradation and adverse effects to mission safety». In
[121], the authors present PHM as «a set of tools that can be used in cascade or
separately to monitor the health state of a system, predict its future evolution and/or
optimize decisions».

PHM process mainly consists of three main aspects: (i) observation process that
contains the data acquisition and processing; (ii) analysis process in which the sys-
tem’s conditions will be assessed, followed by diagnostics and prognostics, and
(iii) action process that involves decision-making and applying through the human-
machine interface. PHM framework are detailed in 7 steps from data acquisition to
the Human Machine Interface (HMI) as described in the Open Standard Architecture
of CBM (OSA/CBM) [56, 92], as shown in Figure II.6. The next items are overview
of PHM modules:

II.4.1 Data Acquisition

After identifying the critical components and defining the physical quantities to be
monitored, and selecting and location of sensors, this module is responsible for data
gathering from traditional and smart sensors or transducers that provide initial mon-
itoring information from machinery.

II.4.2 Data Processing

In most cases, collected data are not readily usable. Each PdM model has different
requirements and these must be taken into consideration when choosing adequate
preprocessing techniques to boost model performance. Some preprocessing tech-
niques are briefly explained in the following:

• Data synchronization is used to gather signals sampled at different times-
tamps to create a time-series/cycle-based data that is easier to handle [170];

1«The Center for Advanced Life Cycle Engineering», https://calce.umd.edu/
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FIGURE II.6: PHM architecture (adapted from [76]).

• Data validation: basic sanity check, handle missing data, handle abnormal
data value;

• Data cleaning removes or interpolates not available and missing values [37];

• Oversampling is applied for imbalance data handling to boost accuracy on
commonly scarce failure data class or to deal with small datasets [43, 53];

• Segmentation splits data in chunks to analyse big datasets and enable paral-
lelisation[80];

• Feature scaling like normalisation or standardisation scales all features to the
same or similar space that enables comparisons [157];

• Data fusion is the process of merging data from multiple data stores. Careful
integration can help to reduce and avoid redundancies and inconsistencies in
the resulting data set.

Moreover, this layer also consists of extracting a relevant feature to be used
as input for models in further stages. It can boost statistical and machine learn-
ing model performance, despite not being compulsory for deep learning models
given these can extract new representative features that fit the problem automati-
cally. Feature extraction refers to signal processing algorithms in time, frequency
and time-frequency domains to transform raw measurement data into the informa-
tive signature of the behavior of the system. Feature selection algorithm removes
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irrelevant and redundant features by selecting the optimal feature subset through
filters, wrappers, or embedded methods [82]. Furthermore, Dimensionality reduc-
tion techniques such as principal component analysis (PCA), Linear Discriminant
Analysis (LDA) and kernel principal component analysis (KPCA) have been widely
adopted to generate a new subset (new space) of lower-dimensional features while
retaining intuitive information of the original features.

II.4.3 Condition Monitoring

The features obtained from the data processing layer require to be combined and/or
merged into a feature that describes the health of the system (i.e. a health indicator).
The condition monitoring layer has responsibility for the construction of the health
indicator (e.g. the degradation model), where the real-time data (extracted descrip-
tors) are continuously compared with the previously constructed models of nominal
behaviours in order to detect anomalies and trigger alarms according to previously
defined thresholds based on criteria (performance, safety, etc.) established by the
system operator [21, 55]. The condition monitoring layer is used to explain what
was happening in a given situation. Estimating the current condition of the system
helps the prognostics phase by determining the starting point along the continuum
of condition.

II.4.4 Diagnostics

Once a failure has occurred, the diagnosis deals with the location and identification
of the causes of anomalies or failures observed in the system (from the effects to the
causes). It provides a more in-depth analysis to answer why this happened?

II.4.5 Prognostics

In engineering, prognostics is considered to be the process of monitoring the health
status of an engineering asset and projecting the current health status of a degrading
machine into the future in order to estimate the RUL (prediction of the lifetime at
which it will no longer perform the required function). It provides a more in-depth
analysis to answer what will happen? Different works in literature have formally
defined the prognostics differently [154]. We provide four alternative definitions.

• the IOS defined prognostics as "prognostics is the estimation of time to failure
and risk for one or more existing and future failure modes". — International
Organization for Standardization [115].

• Goebel et al. stated that prognostics is ”the science of making prediction“ by
estimating how long the system can still fulfill its purpose before failure occur-
rence [51].

• Hess et al. defined prognostics as "predictive diagnostics, which includes de-
termining the remaining life or time span of proper operation of a component".
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• Heng et al. described prognostics as the forecast of an equipment’s condition
to determine its future health state, the remaining time to failure, or the prob-
ability of reliable operations [65].

This module can be considered as "system lifetime prediction" which is respon-
sible for estimating the remaining useful life before failure by modelling the evolu-
tion of degradation and fault progression. Various RUL prediction methods have
been proposed, which can be categorized into three main approaches [54–56]: (1)
physics model-based approach, (2) data-driven approach and (3) hybrid approach.
The physics model-based approach uses the mathematical model that can be a set
of differential or algebraic equations, which are very useful to predict RUL in cases
where the failure data available are insufficient. This approach requires extensive
physical background and knowledge. However, the data-driven approach used to
model the degradation and estimate the RUL for the machine with enough failure
data. The ease of collecting the monitoring data of many industrial systems has moti-
vated many researchers to use data-driven models in estimating the RUL. Moreover,
the hybrid approach integrates physics model-based and data-driven approaches to
estimate its RUL.

The RUL is expressed by taking into account units that correspond to the fun-
damental measure of use of the overall system, such as cycles (i.e., the number of
takeoffs) for commercial aircraft, hours of operation for aircraft engines, and kilo-
meters or miles for vehicles. Whatever unit is to be selected, prognostics facilitates
decision makers with useful information in managing upcoming maintenance and,
therefore, may extend the service life of the machine. To exemplify the task of es-
timating the RUL, consider the left-hand side of Figure II.7 that represent machine
degradation. RUL can be calculated between current time (tc) after degradation has
been detected (tD), and the time at which predicted signal passes the failure thresh-
old (FT) (assumed or precisely set by an expert), i.e., time to failure (tf). The FT does
not necessarily indicate complete failure of the machinery, but a faulty state beyond
which there is a risk of functionality loss, and end of life (EOL) [146]. Beside that,
some confidence to the prediction is also constructed in order to indicate the degree
of certainty of the RUL. The RUL can be described as follows [77].

RUL = t f − tc (II.1)

FIGURE II.7: Illustration of RUL estimates.
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II.4.6 Decision support

Decision support is the process of choosing the optimal maintenance actions. Partic-
ularly, the decisions made in this layer, are based on the use of prognostics informa-
tion such as the remaining useful life, degradation level, and failure probability.

II.4.7 Human-Machine Interface

The HMI is defined as a Graphical User Interface (GUI), which is used to visual-
ize system health status, analyze data, and control the maintenance operations. It
handles the interaction between the PHM system and the user.

II.5 Benchmarking datasets for System-Level Prognostics

To date, several prognostic datasets consisting of "run to failure" time series data
have been published by institutions or companies such as FEMTO and PHM Soci-
ety in an ongoing process. The NASA’s Prognostics Center of Excellence (NASA –
PCoE) collects and shares those prognostics data among the research community to
develop prognostic algorithms, which are available at NASA data repository. Each
available dataset is related to a component-level problem such as a turbofan engine,
bearing, milling cutter, etc. Specifically, the distinct differences between three prog-
nostic datasets related to the RUL prediction are pointed out in Table II.1. Pronostia-
FEMTO Dataset and Milling Dataset have a few assets available for analysis. These
datasets belong to the scope of predictive maintenance, which are described in the
following:

• The PHM08 dataset [144] consists of run-to-failure data from sensors of a fleet of
engines of the same type with multiple regimes. Each engine begins with dif-
ferent degrees of initial wear and manufacturing variation, which is unknown
to users. It subsequently monitors its progress until an anomaly occurs, after
which the engine reaches a failure state.

• The Milling dataset [1] includes acoustic emission, vibration and current sensor
data gathered under different operating conditions for the objective of milling
insert wear analysis.

• The Pronostia-FEMTO dataset [117] is a bearing monitoring dataset that con-
tains run-tofailure and sudden failure data. The used sensors are thermocou-
ples gathering temperature data and accelerometers that monitor vibrations in
the horizontal and vertical axis.

II.5.1 Occupancy data set

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) is a tool
coded in the MATLAB-Simulink ® environment to simulate of a realistic high-bypass
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TABLE II.1: Overview of three publicly available datasets.

PHM08 Dataset [144] Milling Dataset [1] Pronostia-
FEMTO Dataset
[117]

Equipment Turbofan Engine Milling Cutter (Metal
milling machine)

Bearing

Asset (Train:Test) Fleet (218:218) 6 (3:3) 17 (6:11)
Operating condi-
tions (Regime)

6 1 3

Fault conditions HPC degradation, fan
degradation

NA inner race, outer
race, rolling ele-
ment

Data Type Simulation (RTF) Monitoring & Usage
(RTF)

Testbed (RTF)

Sampling Interval Operation Cycle- Flight Operation Cycle- Cut Every 10 min
Variable Type Single Value (Parame-

ter)
Single Value Waveform

Device Used for
Data Acquisition

Multi-sensor (or Op-
erational and sen-
sors) ( or C-MAPSS
tool–multiple sensors)

Accelerometer, Dy-
namometer, acoustic
emission sensor
(acoustic emission
sensor, vibration sen-
sor, current sensor)

PRONOSTIA
platform (rotating
speed sensor,
force sensor,
Speed sensor,
temperature
sensor,vibration
sensors (ac-
celerometers
sensor))

PdM Data Descrip-
tion

Temperature, rotation
speed, pressure

Vibration, force, tem-
perature, federate,
cutting depth

Vibration mea-
surements data
(vibration and
temperature)

Collected signals 21 6 2
Variables 26 8 3

Notation:
Fleet– A large number of assets are considered.
RTF – Run-to-Failure data is provided.
NA - The criteria is neither clearly defined nor important to the problem.

and twin-spool commercial turbofan engine. Figure II.8 shows the rotating sub-
components of the turbofan engine model as defined in the C-MAPSS model docu-
mentation [47]. It consists of six main sub-components: fan, low-pressure compres-
sor (LPC), high-pressure compressor (HPC), combustor or burner, high-pressure tur-
bine (HPT), and low-pressure turbine (LPT), which can be affected by degradation in
flow and efficiency. One of the first synthetic run-to-failure datasets collected from a
turbofan engine simulation model was used for a prognostics data challenge at the
PHM’08 conference, referred to as the PHM08 dataset, as mentioned in Table II.1.
Another set was subsequently published with varying complexity levels, known as
the C-MAPSS dataset. This challenge dataset provides degradation trajectories for
four fleets of aircraft turbofan engines with unknown initial health states for users.
The four fleets are presented into four sub-datasets in C-MAPSS, from #1 through
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FIGURE II.8: Simplified scheme of the turbofan engine model.

#4 sets. The fundamental difference between these sub-datasets is attributed to the
number of simultaneous fault modes and the operational conditions simulated in
these experiments [144]. According to the description provided by [145], each sub-
dataset consists of multidimensional noise-contaminated time series signals describ-
ing the degradation of the different engines within the same fleet by using three sen-
sors to measure varying operating conditions and twenty-one sensors to measure
the engines’ lifecycle behaviour. Details of these sensors are provided in Table II.2.

TABLE II.2: Details of C-MPASS sensors.

Index Symbol Description Unit
Operational Settings
1 alt Altitude ft
2 Mach Mach number -
3 TRA Throttle resolver angle %
Sensor Measurements
1 T2 Total temperature at fan inlet ◦R
2 T24 Total temperature at LPC outlet ◦R
3 T30 Total temperature at HPC outlet ◦R
4 T50 Total temperature at LPT outlet ◦R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure at HPC outlet psia
8 Nf Physical fan speed rpm
9 Nc Physical core speed rpm
10 epr Engine pressure ratio (P50/P2) -
11 Ps30 Static pressure at HPC outlet psia
12 phi Ratio of fuel flow to Ps30 pps/psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass ratio -
16 farB Burner fuel-air ratio -
17 htBleed Bleed enthalpy -
18 N fd Demanded fan speed rpm
19 PCN f Rd Demanded corrected fan speed rpm
20 W31 HPT coolant bleed lbm/s
21 W32 LPT coolant bleed lbm/s

Table II.3 provides a description of the datasets applied. Each fleet dataset is
divided into subsets of training engine data and test engine data. All the engines
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operate correctly at the beginning of each time series, but because some fault occurs
during the series, they start to deteriorate. In the training set, the degradation of each
engine grows in magnitude until failure occurs, while in the test set, the degradation
ends sometime pre-failure. Also, it noted that the life cycle length of all engines vary.
Each fleet dataset of engines is described as follows:

• The subsets FD001 and FD003 include 100 turbofan engines in both training
and testing sets. As shown in Table II.3, these engines have experienced one
operation condition and each has varying life cycles. The FD001 is character-
ized by deterioration of failure owing to a failed HPC, whereas the FD003 is
characterized by deterioration of failure owing to a failed HPC and fan.

• he subsets FD002 and FD004 are more complicated than the other two subsets.
The FD002 and FD004 include 260 and 248 training samples and 259 and 249
testing samples, respectively. These two sub-datasets comprise six different
operational conditions. The turbofan engines have varying life cycles length.
The FD002 is characterized by deterioration of failure owing to a failed HPC,
while the FD004 is characterized by deterioration of failure owing to a failed
HPC and fan.

TABLE II.3: Overview of the C-MAPSS dataset.

Data set FD001 FD002 FD003 FD004
Train trajectories 100 260 100 248
Test trajectories 100 259 100 249
Operating conditions 1 6 1 6
Fault conditions HPC(1) HPC HPC, fan(2) HPC, fan
Maximum life span (Cycles) 362 378 525 543
Minimum life span 31 21 38 19
Average span in training set 206 213 247 246
Average span in test set 131 131 166 166
(1)HPC represents HPC degradation. (2)Fan represents fan degradation.

Due to changing operating conditions, different sensor measurements correspond-
ing to the operating parameters may be produced by the engine. It is expected that a
dataset representing such a system with sequential observations and wide measure-
ment ranges will contain discontinuities (discontinuity in C-MAPSS data), as shown
in Figure II.9. The C-MAPSS datasets (FD001, FD002, FD003, FD004) are well-tested
in the PdM domain. They are reliable examples of high-dimensional and discontin-
uous asset data due to multi-sensor measurements and the wide range of parameter
variations during continuous sensor measurements.

Mathematically, the whole data can be defined as Eq.II.2. Considering that there
are N machines of the same type, such as the turbofan engine, each engine contains
maxTi, i ∈N run to machine end of life (cycles) collected by multiple sensors.

Dataset = {(Xi, Yi)}, i = 1, 2, 3, ..., N (II.2)



II.5. Benchmarking datasets for System-Level Prognostics 23

FIGURE II.9: A comparison between the feature space (sensor mea-
surement, remaining cycles, operating condition) and correspond-
ing feature distribution of the run-to-failure life cycle observation of

CMAPSS FD001 (a), FD002 (b), FD003 (c) and FD004 (d).

Where Xi denotes the gathered sensor measurements matrix of an engine in which
Yi corresponds to the equipment operation cycles, as shown in Eq.II.3 and Eq.II.4,
respectively.

Xi = [x1, x2, xt, ..., xmaxTi ] ∈ Rm×maxTi (II.3)

Yi = [y1, y2, ..., ymaxTi ] ∈ R1×maxTi (II.4)

where maxTi is the total operation cycles of the i-th engine and xt = [x1
t , x2

t , ..., xm
t ] ∈

Rm×1 is an m-dimensional vector of sensor measurements at time t.
RUL can be calculated between the current time (yt) after degradation has been de-
tected and the failure time (T). The RUL can be described as follows [77].

RULi
t = {maxTi − yi

t}, t = 1, 2, ..., maxTi (II.5)
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II.6 Conclusion

Throughout history, maintenance strategies have evolved continuously to ensure
asset safety, reliability, availability, and maintainability. Currently, the commonly
applied strategies can be classified as corrective maintenance, systematic preventive
maintenance, condition-based maintenance, and predictive maintenance. Predictive
maintenance is the most cost-optimal maintenance strategy, achieving overall equip-
ment effectiveness exceeding 90%. Concretely, it maximises an asset’s working life
and avoids costly breakdowns and lost production time caused by unplanned down-
time. Currently, PdM is the state-of-the-art maintenance strategy, as it provides up-
to-date diagnostics, probability of failure, and estimating Remaining Useful Life.
The prediction of RUL is at the centre of PHM. RUL is a crucial characteristic for
prognostics, which is the number of times an asset can accomplish its intended task
before requiring maintenance.

This chapter introduced comprehensive basic concepts related to our thesis. The
chaptethesis began with an overview of Industry 4.0 and maintenance evolution.
Next, an overview of PHM and the role of the prognostics process is a crucial en-
abler to ensure the mission achievement of systems while reducing costs and risks.
Finally, the chapter summarised the benchmarking data sets for system-level prog-
nostics with the occupancy dataset. The following chapter briefly overviews the the-
oretical foundations to understand deep learning and state data-driven prognostic
challenges and issues.
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III.1 Introduction

With the growing volume of industrial data and computational power, industry at-
tention has turned to artificial intelligence and machine learning techniques in order
to develop advanced data-driven frameworks for fault diagnosis and remaining life
assessment. The direction of machine learning research has shifted to more complex
models such as ensemble methods and deep learning, given their greater accuracy
in processing larger datasets. This thesis chapter provides a brief overview of the
relevant theoretical foundations needed to understand deep learning. We begin by
defining what machine learning is and describing some learning scenarios in Sec-
tion III.2. An overview of prevailing deep learning-based architectures as well as
detailed regularization techniques for DL are provided in Section III.3, followed by
deep Learning frameworks in Section III.4. Next, data-driven prognostic challenges
and issues is also summarized III.5. Finally, section III.6 gives a brief conclusion
from what this chapter presents.

III.2 Machine Learning Basics

Machine Learning (ML) was originally developed as a core subarea of Artificial In-
telligence (AI) focused on developing computational learning methods. ML is also
closely related to other fields, especially computational statistics, with which it of-
ten overlaps. The term "Machine Learning" was coined first by Arthur Lee Samuel.
However, there is no universally accepted definition of ML. Different researchers
have formally defined the term differently. We provide three alternative definitions.

• In Arthur L. Samuel’s influential paper, ML is defined as "the field of study
that gives computers the ability to learn without being explicitly programmed
[138, 139]." — Arthur Lee Samuel, IBM scientist and AI pioneer, 1959.

• Tom M. Mitchell provided a widely quoted, more formal definition: “A com-
puter program is said to learn from experience E with respect to some tasks T
and performance measure P, if its performance on T, as measured by P, im-
proves with experience E [112].” — Tom Michael Mitchell, ML Professor at
Carnegie Mellon University, 1997.

• Ron Bekkerman et al. define ML as Machine learning that focuses on con-
structing algorithms for making predictions based on data without program-
ming it to perform the task. The ML task aims to identify (to learn) a function
f : X → Y that maps the input X (of data) into the output Y (of possible pre-
dictions). Function f is chosen from a specific function class, dependent on the
type of learning algorithm used (Section III.2.1). [11] — Ron Bekkerman, CTO
at Cherre, 2011.
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III.2.1 Learning scenarios

Different machine learning scenarios can be classified mainly by the type of training
datasets used as experience, among which the most common are briefly explained in
the following sections, including (1) supervised learning, (2) unsupervised learning,
(3) semi-supervised learning, (4) reinforcement learning, (5) Multitask learning, and
(6) transfer learning [114].

III.2.1.1 Supervised learning

Typically, a supervised scenario involves learning a deterministic function f (x, w)

that maps inputs to outputs based on a labeled training set made up of input-output
couples (x, y) ∈ x × y. The aim is to reduce the magnitude of the prediction error
(loss) as close to zero as possible and make predictions for unseen instances. There
are two classic supervised learning tasks: (i) classification and (ii) regression tasks
[11].

(i) Classification: the output domain is a finite and discrete set of possible out-
comes (called classes, targets, labels, or categories), Y ∈ {C1, ..., Ci}. The clas-
sification task can be a binary or multi-class classification depending on the
number of output classes. Furthermore, other variants of the classification
task predict the probability distribution over classes instead of categories. The
learner model is called a classifier.

(ii) Regression: the output domain is the set of real numbers (continuous output
values), Y ∈ R. Besides, the learner model is called a predictor.

In general, there are several supervised algorithms for learning the same task, such
as Linear Regression (LR), Logistic Regression, Support Vector Machines (SVM),
Neural Network (NN), K-Nearest Neighbours (KNN), Decision Tree (DT), and Naïve
Bayes (NB). Though these single algorithmic models are generally successful, they
might not be enough to achieve the highest potential accuracy with some prob-
lems. Ensemble methods [48] are meta-algorithms for minimizing generalization
errors, both bias (boosting approach) and variance (bagging approach), and im-
proving predictions (stacking approach) by combining several individual models
(combining all weak learners or well-chosen strong and diverse learners), also called
base-predictors or base-learners, into one predictive model. Ensemble learning tech-
niques can be broadly classified into two categories: sequential ensemble and paral-
lel ensemble. Both are depicted in Figure III.1 and are defined as follows:

(i) Sequential Learning Methods (sequential ensemble) : have the advantage
of the dependence between the base learners where the base-predictors are
trained sequentially. These methods are commonly known as Boosting meth-
ods, including Stochastic Gradient Boosting (SGB), Gradient Boosting Machine
(GBM), Adaptive Boosting (AdaBoost), LightGBM, and Extreme Gradient Boost-
ing (XgBoost).
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FIGURE III.1: (A) Parallel vs. (B) sequential ensemble learning.

• Boosting: is the process of building correlated homogeneous learners (are
generated sequentially), each of which learns to fix the prediction errors
of a prior model in the sequence of models and combines them following
a deterministic strategy to achieve an intense learner with lower bias.

(ii) Independent Learning Methods (parallel ensemble) : the base-predictors are
as uncorrelated as possible with each other and are trained in a parallel way.
Parallel modeling has the advantages of simultaneous predictions, using sev-
eral CPU cores to carry out the models simultaneously, and exploiting the
characteristics of independence among them. The following discusses several
methods that have been proposed to train a set of base-predictors indepen-
dently.

• Bagging (a name derived from bootstrap aggregating): reduces the vari-
ance of an estimate by taking the mean of multiple homogeneous mod-
els (typically of the same type, with some minimum variations) [23, 52].
There are three basic steps to performing bagging. As a first step, gener-
ate multiple random, although overlapping, sub-samples of the training
dataset (bootstrapping). The second step is to build and train multiple
models independently on each bootstrapped sub-sample (parallel train-
ing). The third step takes all the predictions’ averages (for regression) or
majority votes (for classification) to make a final overall prediction (ag-
gregation). One of the common ML algorithms that apply the bootstrap
aggregating process is a Random Forest.

• Stacked Generalization (Stacking): is a method introduced by David H.
Wolpert in 1992 [155, 179], in which a meta-model (a high-level model) is
used to combine a set of heterogeneous or homogeneous models (lower-
level models) learned in parallel using the k-fold cross-validation tech-
nique to achieve greater predictive accuracy. A significant variation of
stacking is called Blending, which uses a one-holdout set instead of k-
fold cross-validation.
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• Voting ensemble: the same mechanism is used in bagging, which com-
bines multiple heterogeneous models (typically of differing types) using
simple statistics, such as voting or averaging. In the case of regression,
this involves calculating the average of the predictions from the base-
learners, expressed in Equation III.1. In the case of classification, this in-
volves predicting the class with the most considerable sum of votes (Hard
Voting, also known as majority voting, see Equation III.2) or with the most
considerable summed probability from models (Soft Voting, see Equation
III.3). A voting ensemble can offer a lower variance in the predictions
made than individual models [24].

Ŷ =
1
n

n

∑
j=1

hj(x) (III.1)

Ŷ = Cargmax
i

n

∑
j=1

hi
j(x) (III.2)

Ŷ = Cargmax
i

n

∑
j=1

Pi
j (III.3)

• Bucket of Models: is an ensemble method in which a model selection
algorithm chooses the best model for each problem. In this technique,
heterogeneous or homogeneous models are trained on the given training
dataset. Finally, the model that best performs on the test set is chosen
for future use. The most common approach used for model selection is
cross-validation selection (sometimes called a "bake-off contest") [5].

III.2.1.2 Unsupervised learning

Unsupervised learning uses algorithms to analyze and cluster unlabeled datasets or
discover hidden patterns without human intervention by investigating the similari-
ties and differences in information. The most common unsupervised learning tasks
are (i) clustering analysis, (ii) association rules, (iii) anomaly detection, and (iv) di-
mensionality reduction.

(i) Clustering analysis: involves discovering natural groupings (called clusters)
for unlabeled data based on similarities or differences in information. Typi-
cally, data is partitioned into homogeneous clusters

⋃K
k=1 Ck, with K being the

set of cluster indices that share common characteristics. The most commonly
used clustering algorithms are K-means and hierarchical clustering.

(ii) Association Rule: is a rule-based method for finding relationships or associ-
ations between variables in a dataset. The apriori algorithm is known to be
used for association rule learning problems [10].

(iii) Anomaly detection: is the process of detecting an anomalous point or pattern
in a dataset that does not conform to expected behaviour. These nonconform-
ing points are called anomalies, outliers, or discordant observations [31].
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(iv) Dimensionality reduction: refers to compressing data onto a lower-dimensional
subspace or manifold while preserving as much of the variation in the dataset
as possible. Various methods are available for dimensionality reduction, in-
cluding Principal Component Analysis (PCA), Singular Value Decomposition
(SVD), Isometric Mapping (ISOMAP), Kernel PCA (KPCA), t-Distributed Stochas-
tic Neighbor Embedding (t-SNE), and Autoencoders (AE). It brings many ad-
vantages, including:

• Prevent the overfitting problem.

• Improve the ML performance through less misleading and redundant
data.

• Mitigate the curse of dimensionality, theorised by Bellman.

• Reduce time and space complexity.

• Data visualisation and interpretation were made more accessible.

III.2.1.3 Semi-Supervised learning

Semi-supervised learning can be described as a hybrid approach between super-
vised and unsupervised learning. It is mainly relevant in scenarios where the dataset
comprises a mixture of labeled and unlabeled data. Unlabeled data could be plenti-
ful in the real world, such as in a medical image analysis task. Besides, annotating
medical images individually is challenging due to the need for domain expertise.
Therefore, some images are manually labelled, resulting in a substantial amount of
unlabeled data. Consequently, in this case, semi-supervised learning is useful for
labeling the unlabeled portion of the training set (known as "pseudo-labelling") in
order to transform the unlabeled data to labeled data completely [167].

III.2.1.4 Reinforcement learning

The reinforcement learning algorithm (called an agent) is a trial-and-error approach
that allows a model to continuously learn using a feedback loop between the sys-
tem and its experiences. This type of learning is based on reward or penalty, and
its ultimate goal is to use observations gathered from the interaction with the envi-
ronment (known as an environment-driven approach) to take optimal actions that
would maximize the reward or minimize the risk (by “rewarding” good behaviour
and “punishing” bad behaviour) within a particular environment. Reinforcement
learning algorithms have been used in sophisticated systems such as robotics and
self-driving cars. The popular reinforcement learning models are Q-Learning, State-
Action-Reward-State-Action (SARSA), Deep Q Network (DQN), and Deep Adver-
sarial Networks. [20]

III.2.1.5 Multi-Task Learning

Multi-Task Learning (MTL) is a learning paradigm that has first been proposed by
Caruana [27], in which individual models for performing potentially related tasks
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are learned jointly to leverage such domain-specific information and commonali-
ties across tasks. The simultaneous learning of multiple related or auxiliary tasks
has been demonstrated, both theoretically and empirically, in enhancing individual
task generalization. This form of learning is required in a wide range of real-world
applications when various datasets are sufficiently similar or cannot be treated as
independent, and also addresses the lack of training data issue.

MTL is focused on a neural network architecture consisting of a shared network
and a task-specific network. A shared network is usually achieved with either hard
or soft parameter sharing of hidden layers [39]. Hard parameter sharing is typically
applied by sharing the hidden layers between all tasks, while task-specific networks
are made independent to separate the information of individual tasks. Under soft
parameter sharing, each task has its own model with its own parameters. The dis-
tance between the model parameters of different tasks is added to the joint objective
function. Though there is no explicit parameter sharing, there is an incentive for the
task-specific models to have similar parameters.

III.2.1.6 Transfer Learning

Transfer learning is an approach in which the knowledge learned by various pre-
trained models on large benchmark datasets is transferred to other applications in
order to tackle the undersized training dataset problem. In other words, the idea be-
hind TL is to fine-tune pre-trained models for new tasks in the target domain. Hence,
the new model can be initialized by transferred parameters instead of developing or
training from scratch. This addresses the challenge of the enormous computational
and storage resources required to develop deep learning models [123].

III.3 A brief overview of deep neural network architectures

In the 1940s, feed-forward Artificial Neural Networks (ANNs) were inspired by the
biological neural networks in human brains, which are composed of interconnected
neurons. From a mathematical point of view, ANNs consist of a non-linear trans-
formation y = ∑n

j=1 f (wjxj) of the input x. A new term has been given to a more
complex ANN called Deep Neural Networks (DNNs) [148, 191], consisting mainly
of an input layer, multiple hidden layers, and an output layer, as depicted in Figure
III.2. (a). The most distinct difference between the two terms, ANNs and DNNs,
lies in the complexity of the network architecture. In ordinary ANN networks, a
few layers are typically used, and each neuron is fully connected to all neurons in
adjacent layers. In contrast, in DNNs learning architectures (deep architectures in
NNs), higher complexity functions are used with more layers beyond shallow 1- or
2-layer networks, which construct deep hierarchical models that can automatically
learn high-level representations of large-scale data and eliminates the reliance on do-
main knowledge and manual feature engineering . The simplest and uncomplicated
deep architecture is the multi-layer perceptron (MLP) network shown in Figure III.2.
(a) [133].
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FIGURE III.2: Typical deep architectures.
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Beginning in 2006, when the concept of Deep Learning (DL) was coined [29, 67],
various DL algorithms have emerged and applied to a variety of data and have been
embraced by various areas such as image analysis, natural language processing,
health care, computer vision, machine health monitoring systems, and automatic
speech recognition [14, 66, 132, 199]. This new area of research is growing rapidly,
with new and advanced architectures being developed every few months. In fact,
DL is not a new idea, which even dates back to the 1960s [29, 93, 118, 148]. The DL
is gaining in popularity for the following reasons: (i) Increasing Computing Power:
the rise in processing capabilities (like the GPU units), and the decreased hardware
costs all significantly reduce the uptime of deep learning algorithms. (ii) Increas-
ing Data Size: the huge amount of data can offset the complexity increase behind
deep learning and improve its generalization capability. (iii) Feature Engineering
Power: advanced DL algorithms have gained increasing interest from researchers
due to their inherent ability to learn salient features from raw data automatically
and can be considered an end-to-end framework without the need for features de-
signed by human engineers. Deep learning approaches have also proven suitable
and adequate for various application domains [118, 199].

A brief introduction is provided only to the relevant deep learning algorithms
applied in machine health monitoring. In the following subsection, three deep archi-
tectures, including recurrent neural networks (RNN), convolutional neural networks
(CNN), and autoencoder (AE), and their corresponding variants are reviewed, re-
spectively. In addition, a comparison is provided among these deep architectures.

III.3.1 Recurrent Neural Network

RNN [137] contains feedback loops to remember or save the state derived from pre-
vious inputs of the network, which are the most suitable for time series and sequen-
tial data, such as natural language and time-series data. Unlike the typical neuron,
the RNN consists of a series of recurrent neurons that use backpropagation through
a time algorithm [178] to propagate the network’s error to previous time instances.
However, the RNNs suffer from vanishing or exploding gradient issues throughout
the training process in long-term periods [60]. Therefore, Long-Short Term Memory
(LSTM) [70] and Gated Recurrent Unit (GRU) [36] were introduced to alleviate the
issues mentioned above by incorporating gating functions into their state dynamics
to extract dependencies on different time scales. LSTM or GRU is one of the main
reasons behind the success of RNNs in recent years [137, 187]. The schematic dia-
gram of RNN, LSTM, and GRU cells is depicted in Figure III.3. The simplest one is
vanilla RNN, whose mathematical equation is given as follows:

ht = δ(Wxt + Hht−1 + b) (III.4)

A hidden vector h is updated at time step t, where W and H represent matrices of
transformation, and b is the bias vector. δ denote the nonlinear activation function
such as sigmoid and tanh functions. As shown in Figure III.2.(b), RNNs can be
stacked to create deeper networks by using the hidden state h as an input to the next
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FIGURE III.3: Schematic diagram of RNN, LSTM, and GRU cells.

recurrent layer, described as:

hl
t = δ(Whl

t−1 + Hhl−1
t ) (III.5)

In addition, the bidirectional RNN structure [149] is an upgraded version of
RNN that can process the sequence information in two directions, specifically, the
forward and backward paths with two disconnected hidden layers, depicted in Fig-
ure III.2.(c). The following equations represent the function of the hidden layer and
the → and ← indicate forward and backward processes, respectively.

−→
ht =

−→
H (xt,

−−→
ht−1) (III.6)

←−
ht =

←−
H (xt,

←−−
ht+1) (III.7)

Afterwards, the final vector hT is the concatenated vector of the outputs of the
forward and backward processes as follows:

hT =
−→
ht ⊕

←−
ht (III.8)

As depicted in Figure III.3.(b), LSTMs change the structure of hidden units from
“sigmoid” or “tanh” to memory cells, referred to as the long-term state C(t) and the
short-term state H(t). Secondly, three control gates along the state path are inserted
to regulate the cell states, namely the forget gate, the input gate, and the output
gate. These gates control the flow of information to hidden neurons and preserve ex-
tracted features from previous timesteps [70]. The mathematical equations of LSTM
are as follows:

ft = δ(W f xt + H f ht−1 + b f ) (III.9)

it = δ(Wi xt + Hi ht−1 + bi) (III.10)

ot = δ(Wo xt + Ho ht−1 + bo) (III.11)

gt = tanh(Wg xt + Hg ht−1 + bg) (III.12)

Ct = ( ft ⊗ Ct−1) ⊕ (it ⊗ gt) (III.13)

ht = tanh(Ct ⊗ ot) (III.14)

Where W*, H*, and b* denote the trainable weights and biases for each gate
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indicated by *, respectively. Also, the δ is the sigmoid activation function. xt is the
current input, and i, f, o are the input, forget, and output gates, respectively. ht−1

denotes the previous iteration’s hidden state, whereas ht corresponds to the current
hidden state. The cell states Ct, Ct−1 are defined as the hidden states.

Similar to the LSTM unit, the GRU [36] has arisen as an upgraded LSTM structure
network, which combines the forget and the input gates into a single update gate,
and mixes cellular state and hidden state into one state. The number of gates in GRU
is mainly reduced from 4 in LSTM to 2, called update and reset gates. The block
diagram of a GRU cell is shown in Figure III.3.(c), and the equations to compute the
GRU cell’s state at each time step are as follows:

zt = δ(Wz xt + Hz ht−1 + bz) (III.15)

rt = δ(Wr xt + Hr ht−1 + br) (III.16)

gt = tanh(Wg xt + Hg (rt ⊗ ht−1) + bg) (III.17)

ht = zt ⊗ ht−1 + (1− zt)⊗ gt (III.18)

Where r and z are the rest and update gates, respectively.
Researchers and engineers usually attempt both GRU and LSTM to determine

which one works better for their use case [137].

III.3.2 Convolutioanl Neural Network

CNN is a subtype of the deep discriminative architecture, which first came to the
spotlight through the work of LeCuN in 1989 for processing gridlike topological
data (images and time-series data) [93]. The success of CNNs has captured attention
beyond academia. In the industry, companies such as Google, Microsoft, and Face-
book have created active research groups to explore new CNN architectures [40].
The hierarchical structure of deep CNN gives it the ability to learn complex repre-
sentations at different levels of abstraction. The critical difference between CNNs
and shallow architectures is that CNNs benefit from parameter sharing, which al-
lows the network to look for specific features at different positions [52].

A schematic of a typical CNN usually consists of three main neural layers (or so-
called multi-building blocks), as depicted in Figure III.2.(d), whose convolutional
layers alternate with pooling layers, eventually accompanied by some fully con-
nected layers. In addition to different mapping functions, different regulatory units
such as batch normalization and dropout are also incorporated to optimize CNN
performance. The arrangement of CNN layers plays a crucial role in constructing
new architectures and thus leads to improved performance [83]. We will briefly in-
troduce and discuss the function and role of each layer.

A. Convolutional layer: utilizes various kernels to convolve the raw input data
as well as the intermediate feature maps to generate invariant local features
and several feature maps. The convolutional layer is usually linear and is fol-
lowed by applying an activation function to produce a non-linear output [150].
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The convolution operation is the essence of the CNN architecture, which can
be performed on one-dimensional or two-dimensional data by utilizing a slid-
ing convolutional filter that slides vertically and horizontally to capture useful
features. The convolution operation can be defined as introduced in Equa-
tion III.19 [83].

f k
l (p, q) = ∑

c
∑
x,y

ic(x, y).ek
l (u, v) (III.19)

where, (x,y) element of cth channel of an input tensor ic, which is element
wise multiplied by ek

l (u, v) index of the kth convolutional kernel kl of the layer
lth. Whereas output feature-map of the kth convolutional operation can be
expressed as Fk

l = [ f k
l (1, 1), . . . , f k

l (p, q), . . . , f k
l (P, Q)] , where P and Q total

number of rows and columns of feature matrix, respectively.

There are three main characteristics of the convolution operation: sparse inter-
actions, weight sharing and invariance representations [189]. These character-
istics are described as follows:

• Weight sharing indicates that the same weight is used for more than one
location, which leads to a decrease in the number of parameters.

• Sparse interactions refer to sparse connectivity or sparse weights that
learn correlations among neighbouring pixels. They reduce the storage
requirements of the parameters and the model’s runtime, which require
fewer operations for computing the output.

• The invariance representations mean that the output changes in the same
way if the input changes.

B. Pooling layer: Pooling or down-sampling usually follows a convolutional layer,
which can reduce the dimensions of feature maps and the number of param-
eters, which leads to better robustness against noise. Similar to convolutional
layers, pooling layers also define shift-invariant features due to their computa-
tions taking neighbouring pixels into account. It sums up similar information
in the neighborhood of the receptive field and outputs the dominant response
within this local region. Equation III.20 shows the pooling operation in which
Zk

l represents the pooled feature-map of lth layer for kth input feature-map Fk
l ,

whereas Gp(.) defines the type of pooling operation such as max, average, etc.
[147].

Zk
l = Gp(Fk

l ) (III.20)

C. Dropout: introduces regularization within the network, which will randomly
remove some of their neurons or connections while a training process with a
predefined probability of dropped [52].

D. Fully-connected layer: most architectures have final Fully-Connected (FC)
layers that perform like a traditional neural network, commonly located af-
ter alternating the two mentioned layers. The FC layer maps the data to a 1D
feature vector, which a classifier or predictor can use.
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III.3.3 Auto-encoders

As a feed-forward neural network, an AE is also called an auto-associator, first intro-
duced in the 1980s by Hinton and the PDP group [136]. It is designed for unsuper-
vised learning and is used for efficient data compression, dimensionality reduction
for data visualization, extracting useful features, and filtering out useless informa-
tion [9, 15, 46, 68, 69, 186]. As shown in Figure III.2.(e), auto-encoder comprises
two phases, including the encoder and the decoder, both of which are multilayered
NNs parameterized with two weight vectors, ϕ and θ. Theoretically, θ should be the
transpose of ϕ. It is trained to reproduce its inputs x ∈ Rm where the dimension of x
is denoted by m ∈ N. As a result, the output vectors have dimensions similar to the
input vector, while fewer units are used in the latent space.

In the coding process, the input data x is transformed into a lower-dimensional
latent representation z via a non-linear mapping, formulated as:

z = fϕ(x) (III.21)

Then, in the decoding process, the latent representation z is converted back into
the original feature to obtain an approximation or reconstruction of the real data x̂
as follows:

x̂ = hθ(z) (III.22)

To reduce the reconstruction error between x and x̂, the optimization parameters
(ϕ, θ) are adopted and used Mean square errors (MSEs) in order to calculate the
reconstruction’s performance.

III.3.3.1 Variations of AEs

In the following, we briefly explain some of the variants of the proposed auto-
encoder and briefly summarise their characteristics. The following variations are
obtained by applying regularisation and modifying AE types.

• Stacking Structure: generally, a single layer cannot extract high-level repre-
sentative features from raw data. The architecture of the deep auto-encoder
(stacked auto-encoder, Figure III.2.(f)) has more than one hidden layer that
helps to learn high-level representations, where the output of each hidden
layer is connected to the input of the successive hidden layer.

• Addition of Sparsity: the addition of sparsity constraints on the hidden units
targets captures sparse features from raw data. The sparsity of the representa-
tion can be achieved either by penalizing the hidden unit biases or by explic-
itly penalizing the output of hidden unit activations through the addition of
the Kullback-Leibler (KL) divergence term to the cost function to completely
prevent AE from learning the identity [91, 107, 161].

• Addition of Denoising: Instead of adding the penalty to the cost function, the
denoising auto-encoder (DAE) deliberately adds noises to the training data, as
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the AE trains with these corrupted data to reconstruct/denoise the clean input
x from its corrupt sample x’. Adding the noise helps to learn the robust fea-
ture and to avoid the auto-encoders from learning the identity by copying the
input to the output. The standard and most popular utilized noise is dropout
noise/binary or gaussian noise, which sets a random fraction of the input fea-
tures to zero [171].

• Variational AutoEncoders (Generative models): a VAE proposed by Kingma
et al. has the same functions as the AE in the sense that it is composed of
an encoder and a decoder Figures III.2.(g) and III.4. VAE becomes a popular
generative model by combining bayesian inference and the efficiency of the
NNs to obtain a nonlinear low-dimensional latent space ([140], [26], [95], [198]).
The Bayesian inference is obtained by an additional layer used for sampling
the latent vector z with a prior specified distribution p(z), usually assumed
to be a standard Gaussian N(0, I), where I is the identity matrix. Standard
Gaussian is not the only distribution used for latent variables in VAEs, but the
choice depends on the type of data we are modelling. Such as the multivariate
Gaussian distribution is used in the case of real-valued data and the Bernoulli
distribution is applied in the case of binary data [84]. Each element zi of the
latent layer Z is obtained as follow:

zi = µi + σi.ϵ (III.23)

where µi and σi are the ith components of the mean µ and standard deviation
σ vectors, ϵ is a random variable following a standard Normal distribution (ϵ
∼ N(0, 1)).

Unlike the AE which generates the latent vector z, the VAE generates vector
of means µi and standard deviations σi. This allows to have more continuity
in the latent space than the original AE. The VAE loss function given by the
Equation III.24 has two terms. The first term Lrec is the reconstruction loss
function (Equation III.25). Usually the negative expected log-likelihood (e.g.,
the cross-entropy function) is used ([72], [95], [173], [160], [26]) but the mean
squared error can also be used [198]. The second term LKL (Equation III.26)
corresponds to the Kullback-Liebler (KL) divergence loss term that forces the
generation of a latent vector with the specified Normal distribution ([84],[85]).
The KL divergence is a theoretical measure of proximity between two densities
q and p and it is noted by KL(q ∥ p). The dissimilarities between these densities
are asymmetric (KL(q ∥ p) ̸= KL(p ∥ q)), non-negative and are minimized
when q(x) = p(x) ∀x [19]. Thus, the KL divergence term measures how close
is the conditional distribution density qϕ(z | x) of the encoded latent vectors
from the desired Normal distribution p(z). The value of KL is zero when two
probability distributions are the same, which forces the encoder of VAE to learn
the latent variables that follow a multivariate normal distribution over a k-
dimensional latent space.

L = Lrec + LKL (III.24)
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where
Lrec = −Eqϕ(z|x)(log(pθ(x|z))), (III.25)

LKL = KL(qϕ(z|x) ∥ p(z)) (III.26)

with pθ(x|z) is the conditional distribution density of the decoded latent vec-
tors. When the VAE is trained, each function (i.e., the encoder and the decoder)
can be used separately, either to reduce the space dimension by encoding the
input data, or to generate synthetic samples by decoding new variables from
the latent space (Figure III.4).

FIGURE III.4: The VAE loss function. The first term Lrec is the re-
construction loss function. The second term LKL corresponds to the
Kullback-Liebler divergence loss term that forces the generation of a

latent vector with the specified Normal distribution.

III.3.4 Regularization for Deep Learning

Regularization is a set of techniques used to train more robust models that can pre-
vent overfitting and improve the generalization of deep neural networks [52]. In
this section, we will briefly describe the most popular and widely used regulariza-
tion techniques that are intended to reduce their generalization errors, possibly at
the expense of increased training errors.

• Data augmentation: is the process of artificially expanding the training dataset’s
size and increasing the data’s diversity by generating synthetic (fake) samples.
This technique is a data-space solution for any limited-data issue, as well as
for overfitting issues and reducing the variance of the model by making it gen-
eralize better [153].
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• Early Stopping (ES): is a very efficient hyperparameter selection algorithm
(the number of training steps) and the most commonly used form of regu-
larization in deep learning. Its idea is to find model parameters for the best
validation error since its use requires the choice of a performance measure to
monitor, a trigger to stop training, and a selection of the model weights to use.
The training process can be stopped when the performance of the model on the
validation set begins to degrade. The popularity of ES is due to its effectiveness
and simplicity.

• Parameter Sharing: in specific models, such as the CNN, a significant advan-
tage of parameter sharing over regularizing the parameters to be equal is that
only a subset of the parameters (the unique set) needs to be stored in memory
instead of learning a separate set of parameters at each location. This technique
can lead to a significant reduction in the memory of the model [189].

• Dropout: provides a computationally inexpensive but powerful method to
regularize models. The dropout layers will randomly removes some of their
neurons while a training process with a predefined probability of dropped.
Dropout may also be combined with other forms of regularization to yield fur-
ther improvement [52].

• Bagging and Other Ensemble Methods: combining several models into an
ensemble is an efficient way to expand the capacity of a model and reduce
the bias (boosting method) or variance (bagging method). The latter has a
regularization effect by reducing the generalization error [48].

• Multi-Task Learning: simultaneously handles multiply related tasks to im-
prove generalization and reduce overfitting by leveraging the domain-specific
and auxiliary information contained in the training signals of related tasks
through shared representations [27].

We briefly summarize their disadvantages, and advantages of the three major
classes in deep learning. Different properties listed in Table III.1.

In details, Difficulty indicates the hardness of model’s structure and implemen-
tation, such as the function of layers ; Memory usage refers to the amount of memory
consumption for training a deep neural network; Time series indicates the ability to
learn a model of time series prediction problems; Generalization is used to refer
the effectiveness of method in diverse media such as images, texts, and audio; Un-
supervised learning indicates the capability to learn a model without pre-existing
labels; Feature learning indicates that features can be learned automatically based
on a data set; Invariance mentions whether the method has demonstrated its pow-
erful for transformations such as rotation, scale and translation; Parameter Sharing
mentions to the capability to share the weights by all neurons in a particular feature
map; The pros and cons of the method are its advantages and disadvantages.
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TABLE III.1: Comparisons between three classes of deep learning.

Deep Learning AE RNN CNN
Difficulty +++ ++++ +++++
Memory usage +++ ++++ +++
Time series No Yes Yes
Generalization Yes No Yes
Unsupervised learning Yes No No
Feature learning Yes Yes Yes
Invariance No Yes Yes
Parameter Sharing No No Yes
Temporal Feature No Yes Yes
How it works -Dimensionality re-

duction in latent space
keeping maximum
input data variance.
-Non-linear feature
engineering and health
index calculation.

-Model time-series and
sequential data by prop-
agating state informa-
tion through time.

-Automatic feature
extraction.
-Univariate or multi-
variate convolutions of
input.
-Combined with pool-
ing methods to reduce
dimension.

Pros -Useful information is
retained, while Irrele-
vance is removed.

-Temporal dependen-
cies are extracted in
sequence data.

-Simple yet effective.
-Takes advantage of
neighbourhoods.
-Minimized parameter
number so less training
time through weight
sharing.
-Can outperform LSTM.

Cons -Requires high process-
ing time.
-Extracted features not
specific for the task.

-Difficult to save the
long-term dependence
(vanishing gradient
problem).
-Need more resources.

-High computational
complexity for high
hierarchical model
training.

Note: ‘Yes’ refers to the class has ability in the characteristic; otherwise, they will be marked by ‘No’.

III.4 Deep Learning frameworks

With the great success of deep learning, there are many well-known companies and
institutions, such as Google and University of Montreal, which have released DL
frameworks. This section compares the widely popular open-source libraries for DL,
namely TensorFlow, Keras, PyTorch, DeepLearning4J (DL4J), and Theano. We high-
light these frameworks’ essential standards and characteristics as shown in Table
III.2, showing the supported platforms, programming languages, and each strong
point. Table III.2 shows that each framework supports and is adequate for differ-
ent pre-constructed DL algorithms. Then, the history of GoogleTrends1 is depicted
in Figure III.5. According to Google trend history results, we can conclude that the
Keras library is prevalent within the users’ community. Based on the characteristics
of the frameworks set given in [177], some are more suitable for academic use, and
some are more biased towards industry, as shown in Figure III.6.

III.5 Data-driven prognostic challenges and issues

The prognostic research field is still considered recent and immature, which is the
reason for the various challenges and issues that have not yet been tackled. There-
fore, it provides great opportunities for further research. This section highlights

1https://trends.google.com/trends/explore?q=TensorFlow,Theano,keras,PyTorch
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FIGURE III.5: Google Trends history.

TABLE III.2: Comprehensive comparison of DL frameworks.

TensorFlow Keras PyTorch DL4J Theano
Creator Google Brain team François Chollet Adam Paszke et

al., Meta AI
Skymind engi-
neering team

Y. Bengio, Univer-
sity of Montreal

API Python, C++, Java,
JavaScript

Python, R Python, ONNX Java, Scala, Clo-
jure or Koltin

Python

License Apache 2.0 MIT BSD Apache 2.0 BSD

Supports
model

DNN,RNN,LSTM,
CNN,Bi-LSTMs

DNN,RNN,LSTM,
CNN,Bi-LSTMs

DNN,RNN,LSTM,
CNN,Bi-LSTMs

DNN,RNN,LSTM,
CNN

DNN,RNN, CNN

Written in C++, Python Python Python,C C++, Java Python

Popularity Very High
Growing very fast

High
Growing very fast

Medium
Growing very fast

Medium-low
Growing low

Medium-low
Growing low

CUDA
Support

Yes Yes Yes Yes Yes

Parallel
Execution

Yes (Most fexible) Yes (with the Ten-
sorFlow backend)

Yes Yes Yes (Not perfect)

Platform Linux, OSX, Win Linux, OSX, Win Linux, OSX, Win,
Andr.

Linux, OSX, Win,
Andr. (Crossplat-
form)

Cross-platform

Stars in
github

167k 56k 58.4k 12.6k 9.6k

Contributors 3.1k 1k 2.4k 61 351

Website tensorflow.org keras.io pytorch.org deeplearning4j.org deeplearning.net/
software/theano

Comment 1.The most pop-
ular library with
complete func-
tionality and
several interface
support.
2. Interfaces and
documentation
may be less ex-
plicit.
3.Debugging diffi-
culties.

1. High-level API
integrating with
TensorFlow, and
Theano.
2. Documentation
is complete.
3. Easy to learn
and easy to use.
4. Updates
quickly.

1. Pre-trained
models are avail-
able. However, no
visualization tool
available.

1. Speeds up
training by in-
tegrating with
Apache Hadoop
and Spark.
2. Using Keras
API bridges the
gap between JVM
languages and
Python.

1.High level of
flexibility.
2. No longer
supported after
release 1.0.0.
3.The debugging
error message is
quite tough to
comprehend.
4. It is difficult to
learn how to use
it.

some of the significant challenges and issues related to data and model, grouped
into two main aspects.

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://deeplearning4j.org/
http://deeplearning.net/software/theano
http://deeplearning.net/software/theano
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FIGURE III.6: Suitable frameworks for academic research vs indus-
trial applications.

III.5.1 Data-related challenges

Many data-driven frameworks generally demand extensive historical event data,
such as the time of failures. In real-world applications, industrial communities and
asset owners disallow their components or systems to run to failure (RTF). Most of
the time, these components are replaced or overhauled in the presence of the first
fault. Therefore, the gathered data, referred to as "suspended data," characterizes
the degradation evolution until the first fault without reaching the asset’s failure
(RTF data deficiency). As a result, the replacement/overhaul times are treated as
failure times that conflict with the primary objective of the fault prognosis, leading
the model to produce biased estimates (underestimation) of the time to failure. Fur-
thermore, in the case of fault diagnosis, faulty data tends to be relatively rare in most
situations compared to healthy ones. This latter is an imbalanced data problem that
needs to be addressed.

In other situations, in industrial 4.0, the industry is moving toward the era of
big industrial data due to the evolution of smart sensors and IoT technologies. In
this context, big industrial data means more missing and incomplete data, noise
and outlier data, or even redundant and unnecessary measures. This subsequently
translates into lower data quality and high-dimensional data. It is stated that the
curse of dimensionality issue decreases uncertainty [45]. Therefore, feature extrac-
tion, reduction, and selection are major challenges in the observation phase and are
of significant importance and should be considered to enhance the results as well
as computational efficiency. In addition, data compression could also assist in the
analysis of the data to provide a better understanding of the information. These del-
icate processes select the most relevant features that would properly distinguish and
separate the machine’s health states.

III.5.2 Model-related challenges

Due to the exponential increase in computing power and the growth of industrial
data, data-driven machine learning publication trends have turned towards more
complex models, including ensemble methods and deep learning for three principal
PHM tasks: fault detection, diagnostics, and prognostics. Deep learning methods
have achieved excellent performance in real-world fault diagnosis and prognostics
applications due to their inherent capability to overcome drawbacks of traditional
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algorithms dependent on hand-designed features that require the experience of the
experts and prior knowledge of signal processing. However, several challenges still
hinder its widespread adoption and need to be developed and improved. Most
literary works have not discussed nor justified explicitly the choice of suitable archi-
tecture to solve specific problems. Until now, most of the proposed architectures
have been created manually by human experts, requiring architectural engineer-
ing skills and domain expertise. This implies a time-consuming, error-prone, and
tedious trial-and-error process. Therefore, the search for an optimal and efficient
architecture is still challenging. It is crucial to automate the model selection task
in terms of hyperparameter and architecture selection for large-scale real industrial
data to discover more efficient and complex architectures.

Many companies are still particularly reluctant to adopt DL techniques, as they
cannot trust something they neither understand nor control. The difficulty resides in
the "black box" nature of DL algorithms, which imposes a lack of understandability
and transparency on the model, i.e., their internal computation mechanisms are un-
explainable. Therefore, effective visualization techniques are necessary to provide
a minimum level of transparency and to open the black box so that an expert can
intervene to modify some parameters and facilitate the building and configuration
of intrinsically DL architectures for complex machine health monitoring problems.

III.5.3 Synthesis: Toward enhanced data-driven prognostics

III.5.3.1 Issues to be addressed

The prognostic research domain is far from being mature, which is still new and
explains the various challenges that remain unaddressed. Therefore, it offers many
research perspectives. We realize that we cannot expect to face many challenges si-
multaneously. Hence, small cumulative contributions to the scientific development
of new disciplines are needed. Hence, the work presented in this thesis will mainly
focus on the prognostic of monitored machinery from RUL estimation point of view
using DL models. According to the aforementioned challenges, the critical issues of
data-driven prognostics to be addressed in this thesis can be pointed out as follows,
as research questions.

• Although there are a large variety of proposed prognostic methods, the se-
lection of architecture and the progress in building an effective and efficient
prognostic approach is still challenging and limited. RQ1: How to choose an
appropriate architecture? How to improve the prognostic model to accurately and re-
liably predict the RUL? What about combining spatial feature extractor and temporal
feature extractor for improved prediction performance?

• RQ2: How is it possible to attain sufficient data quality? What is the impact of data
quality on RUL estimation performance? How to deal with imbalanced data?

• RQ3: Is the performance of the prognostics method strongly influenced by the hyper-
parameter selection? How is the optimum value for the hyperparameters selected?
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• RQ4: How to obtain features that explicitly and properly reflect failure progression?
There is no way to ensure that the relevant features selected are the ones that
can lead to better RUL estimates. RQ5: Do visualization techniques evaluate and
analyze the quality of the features and provide a minimum level of transparency?

• RQ6: How to discriminate degradation states and define threshold setting of states
(classes)? Does it take into consideration the opinion of the expert?

• RQ7: Does reducing the conflict zone (i.e., the boundary between classes) lead to fewer
conflicting decisions for the classification? How can the conflict zone be identified and
reduced?

• RQ8: How to validate the performances of a prognostics model?

The issues highlighted above further emphasize the need to improve the data-
driven prognostic method. Therefore, the main assumptions, objective and contri-
butions of this thesis are discussed in the following sections.

III.5.3.2 Assumptions

The contributions made in this thesis aims to enhanced data-driven prognostics by
addressing the aforementioned issues. However, these contributions are valid for a
certain parameters defined by the following assumptions.

• It is assumed that degradation has been already detected.

• Identification of the number of degradation states and adjustment of threshold
parameters under expert assumption. In our study, three states of degradation
are assumed, namely: degrading state, transition state and critical state. (As a
result of the first assumption, the "steady state" was not considered.)

III.5.3.3 Objective and contributions

Dealing with the aforementioned issues and assumptions, the objective of this thesis
is to develop and validate an enhanced data-driven prognostics approach that can
estimate the RUL with an acceptable level of accuracy. Therefore, developments are
focused on data-processing and prognostics modeling steps. According to that, the
main contributions/chapters of this thesis are as follows.

• Provide a brief overview of benchmarking datasets for system-level prognos-
tics (Chapter II) as well as the relevant theoretical foundations needed to un-
derstand deep learning and state data-driven prognostic challenges and issues
(Chapter III).

• An end-to-end hybrid deep network architecture that jointly optimizes the
feature reduction and RUL prediction steps in a hierarchical way. This ap-
proach handles the raw data with minimum preprocessing efforts and results
in a lower-dimensional continuous representation with minimal variable re-
dundancy that accurately describes asset life cycle degradation (Chapter IV).
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• Development of an innovative strategy for RUL estimation that performs a
simultaneous assess the health status of degrading machinery (provides the
probabilities of system failure in different time windows) and assigns them to
the RUL window estimation (Chapter V).

• To investigate the effectiveness of the proposed prognostic approaches, a case
study on turbofan engine data (C-MAPSS NASA) from the PHM’08 challenge
is presented, and a comparison with results from recent publications is also
provided (Chapter IV and V).

III.6 Conclusion

With many successful applications of deep learning in areas such as computer vi-
sion and medical image analysis, deep learning continues to gain attention for rep-
resentation learning, classification and prediction of time series in the field of PHM
for fault diagnosis and RUL prediction of engineered systems. Deep learning has
shown promising results in interpreting condition monitoring signals such as vi-
bration, acoustic emission, and pressure due to its ability to extract complex repre-
sentations from raw data. This chapter provided details on the relevant theoretical
foundations needed to understand deep learning including existing DL-based ar-
chitectures as well as identifying the critical issues and challenges for data-driven
prognostics that need to be addressed in this thesis.

The following chapter aims to present the first contribution of this thesis, which
leverages the power of multimodal and hybrid deep neural network architectures
for RUL estimation enhancement. This work is constructing and selecting the ap-
propriate DL model from a set of candidate models based on experimental trials
once and once with a strictly theoretical background.
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Chapter IV

Leveraging the Power of
Multimodal and Hybrid Deep
Neural Network Techniques for
RUL Estimation Enhancement
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IV.1 Introduction

Improving the availability and reliability of critical engineered assets while reduc-
ing untimely expenditures and safety risks is a critical challenge facing industrial
and manufacturing systems. For this reason, prognostics is considered an essential
PHM process with future capabilities, which mainly focuses on predicting the resid-
ual lifetime during which a machine can fulfil its intended function, i.e., estimating
the RUL of a system. RUL is an important real-time performance indicator of oper-
ating systems under working conditions. Indeed, accurate RUL estimations enable
improved decision-making for operations and maintenance of such systems with the
goal of approaching zero downtime, which is a delicate process and is influenced by
several unknowns related to the chosen model. The latter has inspired researchers
to develop a variety of approaches to predict RUL. However, the choice of architec-
ture and progress in building an effective and efficient prognostic approach is still
challenging and limited. Therefore, while building a prediction model it is impor-
tant tackle following issues. How is it possible to attain sufficient data quality? How
to handle complex multidimensional data? How to choose an appropriate architec-
ture? How to improve the prognostic model to accurately and reliably predict the
RUL?

To account for such challenges, novel RUL prediction approaches are proposed
by applying advanced deep learning architectures that focus on feature reduction,
aiming to achieve a data representation with low dimensionality and minimal vari-
able redundancy while maintaining the critical asset information needed for data-
driven analysis. The principal contributions of this chapter are summed up as fol-
lows:

• An end-to-end deep network architecture that jointly optimizes the feature ex-
traction/reduction and RUL prediction steps in a hierarchical way, which han-
dles the raw data with minimum preprocessing efforts.

• Convolutional Auto-encoder integrates convolutional calculation with autoen-
coder to effectively extract spatial and useful degradation features.

• Capitalizing on the recent success of multi-model deep learning techniques,
hybrid deep neural network approaches for RUL estimation are proposed.

• Multi-model assists to leverage the power of different models in a parallel to
capture various information through different time intervals.

• Selection and construction of the appropriate DL model from a set of candidate
models based on experimental trails once and once with a strictly theoretical
background.

This chapter presents the first contribution in this thesis which aims to leverage the
power of multimodal and hybrid deep neural network architectures for RUL esti-
mation enhancement. The chapter’s remainder is structured as follows: Section IV.2
reviews recent applications of deep learning models on the C-MAPSS dataset. Sec-
tion IV.3 describes the proposed hybrid methods for RUL estimation of a turbofan
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engine. The experimental results and discussions that demonstrate the effectiveness
and superiority of the proposed hybrid models are considered in Section IV.4. Fi-
nally, we close the chapter with conclusion and future works in section IV.5.

IV.2 State-of-the-art Deep Learning Methods for Engines RUL
Estimation

In recent years, the use of deep learning for representation learning, classification
and prediction of time series in PHM has attracted increasing attention. The indus-
trial dataset is possible to gather due to industrial IoT, which has promoted opportu-
nities for industry and academia to leverage advanced data-driven techniques (DL-
based architectures). Indeed, NASA’s C-MAPSS turbofan time-to-failure dataset
have been extensively analyzed with RUL estimation as a primary focus. In this
section, we survey works that applied to the C-MAPSS dataset and have leveraged
deep learning methods to tackle the task of RUL estimation. The selected works are
presented in the following excerpts, which either applied the CNN, LSTM, or DNN
using auto-encoders.

IV.2.1 CNN

Within the deep learning architecture, the first implementation of CNN for RUL es-
timation of aircraft engines was proposed by Babu et al., where the input data is
segmented into sliding windows and afterward normalized. The CNN structure’s
ability to learn a higher-level abstract representation along with the multi-channel
time series through its convolutional and average-pooling layers is shown. A lin-
ear regression layer is attached to the top layer to perform RUL predictions. The
results showed the superiority and effectiveness of the CNN model over other ma-
chine learning models such as the Multilayer Perceptron (MLP), the Support Vector
Machine (SVM), and the Relevance Vector Machine (RVM) [7]. In a similar study, Li
et al. proposed a novel deep CNN-based approach for RUL forecasts of aircraft tur-
bofan engines. The authors employ a time window strategy for data processing to
improve feature extraction via deep CNN. The normalized sensor data are directly
utilized as the model inputs. Besides, they use the dropout technique to prevent
overfitting. This model achieves the most accurate estimation of RUL and the low-
est Root Mean Square Error (RMSE) than 13 other data-driven methods. The authors
also highlighted that optimum performance is achieved through 5 convolution lay-
ers and a time window length of 30 [99].

IV.2.2 RNN and its variants

The Recurrent Neural Network (RNN) retains internal memory to process sequential
data. However, RNNs had the vanishing gradient problem arising in long sequence
input, which cannot keep the previous information, except the latest one. To handle
this issue, Zheng et al. suggested an engine RUL prediction method based on deep
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LSTM, capable of capturing long-range dependencies of different time scales. The
model consists of two LSTM layers combined with two Feed-forward Neural Net-
work (FNN) layers and the output layer [200]. Results reveal that deep LSTM out-
performs CNN presented by other researchers [7] based on RMSE. Similarly, Hsu et
al. proposed an LSTM to address the RUL prediction problem for turbine engines,
which can effectively to extract temporal dependencies from historical data [73].
Liao et al. have used LSTM, relying on the bootstrap procedure for uncertainty esti-
mation of RUL. The bootstrap method is a good solution to obtain uncertainty pre-
diction without any sensor data distribution [100]. The proposed approach achieved
higher accuracy than CNN, and LSTM discussed by [7] and [200], respectively. Ad-
ditionally, Yuan et al. proposed an LSTM to determine the fault location and estimate
the RUL of the aero-engine in cases of complicated operations, hybrid failures and
intense noises [188]. More recently, Wu et al. proposed a new deep LSTM approach
for discovering the hidden long-term dependencies among sensor time-series sig-
nals to predict RUL. The grid search was also applied to tune the hyper-parameters,
thereby obtaining the best network structure [181]. This method showed enhanced
performance compared to other methods in the literature.

Another variant of LSTM used by Wang et al. is Bi-directional LSTMs that can
learn the bi-directional temporal dependencies from sensor data for Aircraft Engine
RUL estimation. It can capture long-range information in both futures (forward)
and past (backward) contexts of the input sequence simultaneously [99]. In an-
other study, a new bi-directional LSTM model was presented by Zhang et al. to
identify the system degradation performance and subsequently predict RUL [195].
The proposed model consists of two BDLSTM layers and achieved promising re-
sults compared to LSTM, bi-directional RNN (BDRNN), MLP, and CNN reported
by [7]. Another main variant of RNN that is recently utilized for RUL estimation
and enhanced LSTM-model with few parameters, the Gated Recurrent Unit (GRU),
is presented by Chen et al. [32]. The authors proposed a new approach for RUL es-
timation of a nonlinear degradation process, using Kernel PCA (KPCA) as the first
phase for dimensionality reduction and nonlinear feature extraction. The second
phase uses GRU to prevent the problem of long-term dependency and allows each
recurrent unit to extract dependencies of different time scales adaptively.

IV.2.3 DNN using auto-encoders

In addition to the CNN and RNN architectures, AE is another main structure that
is essentially a feature extractor for reducing data monitoring conditions performed
in an unsupervised manner. Many studies have shown the leverage of using AE
alongside another machine learning method for estimating the RUL of a turbofan
engine [105, 158]. Song et al. proposed a new hybrid model integrating the ad-
vantages of AE and bidirectional LSTM to enhance the RUL’s prediction accuracy
[158]. The main idea is that the encoding part of AE (bottleneck) acts as input for
the BDLSTM to produce the expected output. The results demonstrate that the com-
bination of AE and BDLSTM outperformed the other methods, such as MLP, CNN,
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LSTM, BDLSTM, and Autoencoder-LSTM. In this work, Ma et al. also proposed a
novel end-to-end deep architecture based on a stacked sparse Autoencoder (SAE)
and logistic regression. This study utilized the grid search procedure to optimize
the hyper-parameters of the SAE model [105].

Inspired by these previous studies, the idea of the hybrid approach and applying
a parallel multi-model emerged to leverage the power of different methods, which
have a high potential to boost prognostic accuracy instead of incorporating only a
single model such as CNN, DNN, or LSTM. Accordingly, capitalizing on the recent
success of DL, this work presents a framework driven by an end-to-end ML system
that introduces two new hybrid RUL prediction approaches to capture various infor-
mation through different time intervals. Previous studies have shown the advantage
of using AE alongside another machine learning method for estimating the RUL of
the turbofan engine. Traditional AE uses a fully connected layer as reported in the
literature, while the CAE model has promising feature extraction and dimensional-
ity reduction capability through convolutional layers.

Aligning with Convolutional Auto-Encoders’s power, the first promising pro-
posed hybrid model adopts CAE in an aero-engine prognostic problem to extract au-
tomatically useful features with high-level abstractions. These CAE features serve as
inputs to train the two temporal modeling tools simultaneously in a parallel manner
(referred to as BDLSTM path and BDGRU path) that can capture more robust fea-
tures and eventually predict the RUL. Although CAE has been applied to different
tasks, to the best of our knowledge, this is the first use of CAE in RUL’s estimation
problem for engine turbofan.

For a comprehensive comparison, the second hybrid architecture proposed dif-
ferently from what has been reported in the literature. It consists of CNN and BD-
GRU models simultaneously in parallel paths to capture local and temporal fea-
tures directly from raw sensory data instead of just using CNN. The outputs from
both paths (CNN and BDGRU) are concatenated to obtain the target RUL. The GRU
has appeared as an enhanced LSTM model with few parameters for improving the
training phase’s speed and model performance. Besides, we used a BDGRU for the
bi-directional temporal feature extraction and to prevent the long-term dependency
problem. The superiority of the two proposed hybrid models is demonstrated using
the public NASA’s C-MAPSS dataset and compared with all its counterparts and the
most robust results in the literature.

IV.3 Proposed Hybrid Deep Neural Network architectures

This section introduces the relevant hybrid deep learning approaches proposed in
this contribution for the RUL prediction of an aircraft engine. Figure IV.1 describes
the proposed approach for RUL estimation, which consists of two main stages. In the
entirely offline training stage, the recorded historical data from sensors flow through
the components of the training stage. Ultimately the degradation model for the RUL
estimation is constructed based on deep learning methods. In the online predic-
tion stage, the obtained current data is stored in the dataset and processed to obtain
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normalized sequence data, where the trained model is applied to predict the RUL.
Based on the RUL values, a maintenance action will be applied to the system at the
exact scheduled moment.

FIGURE IV.1: The proposed approach for RUL estimation.

Deep learning methods are proposed (φ) in this thesis to address the non-linearity
function. Let Xi denote its input, and the observed RUL is as its output (formulated
in Chapter II, Section II.5.1 ).

ˇRULi
= φ(xi, RULi) (IV.1)

To minimize the error between the predicted RUL value and the observed target
RUL at time t.

Minimize : { ˇRULi
t, RULi

t} (IV.2)

IV.3.1 Convolutional Auto-encoder with BDGRU-BDLSTM Hybrid Model

As illustrated in Figure IV.2, our proposed hybrid model comprises two main stages:
The first one is CAE, which is used to automatically extract performance degrada-
tion features while lowering the dimension of multiple sensors in an unsupervised
manner. The second stage is the temporal modeling tool, which combines BDGRU
and BDLSTM models simultaneously and in a parallel way to provide the RUL’s
estimation. The full details of the two main stages are described as follows.

A. Stage 1: CAE module

The CAE architecture consists of two parts, an encoder and a decoder, two
symmetrical and reversed structures. The encoder network part comprises six
convolution layers with the same filter size (10×1) and one max-pooling layer.
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FIGURE IV.2: The first proposed hybrid model based on CAE with
BDGRU-BDLSTM.

Precisely in this work, two pairs of convolution layers are stacked, where the
number of filters is set to 8 and 18, followed by one Max-pooling layer with
filter size (1×2). The third and fourth CNN layers consist of 32 and 64 filters,
respectively. After every two pairs of convolution layers, a dropout layer is
added to reduce overfitting and avoid repeatedly extracting identical features.
The final convolution layer’s filter is defined by one to obtain a unique feature
map. All convolution layers used Rectified Linear Unit (ReLU) as the activa-
tion function. Furthermore, the zero-padding operation is used to maintain
the feature map unaltered.
The operations of un-pooling and de-convolution are used in the decoder part
of CAE to reconstruct the input instead of convolution and max-pooling oper-
ations used in the encoder part.

B. Stage 2: BDGRU-BDLSTM hybrid module

The useful features learned from CAE are used as input to the multi-model
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structure that can maintain good generalization performance. The proposed
multi-model is a temporal modeling tool, which is based on the combination
of BDGRU and BDLSTM models simultaneously. This combination aims to ob-
tain more robust features and eventually predict the RUL. Both paths (BDGRU
and BDLSTM) share the same configuration, where two layers are stacked with
50 nodes. The layers use the hyperbolic tangent (tanh) as an activation func-
tion. A dropout technique is applied with a rate of 0.25 per layer. In the end,
to estimate the RUL, the outputs from both paths are concatenated and will be
inserted into a fully connected layer; this layer has one neuron and uses the
exponential activation function.

IV.3.2 CNN-BDGRU Hybrid Model

As shown in Figure IV.3, the proposed hybrid model is based on the combination
of CNN and BDGRU in a parallel manner for regression. The CNN path acts as a
spatial feature extractor, while simultaneously, the BDGRU path is utilized for the
bidirectional temporal feature extraction. Although there is no correlation between
the two pathways, their outputs are concatenated to obtain the RUL’s overall pre-
diction.
Specifically, the BDGRU structure is designed to handle each sequence of data in
two directions, through the GRU cells forward for prediction and backward direc-
tion for smoothing the prediction and relieving the noise impact. Below, we detail
the structure of three major components of our hybrid model:

A. The CNN path

In our proposed model, CNN is exploited to capture spatial features by stack-
ing the convolutional kernels. CNN is composed of five convolution layers,
which have the same filter size (10×1). The first and second CNN layers con-
sist of 18 filters, while the third and fourth layers contain the same number of
32 filters. The final convolution layer is used with a single filter to fuse all the
previous feature maps to obtain a unique feature map. The ReLU is applied
along with zero-padding for all convolution layers. In this way, a high-level
representation is obtained for each raw collected feature.

B. The BDGRU path

The BDGRU is selected to learn the long-rang dependencies of features. Through
this path, both forward direction and backward direction are computed in two
separate GRUs independently. Their outcomes are fused and distributed to the
next layer. Two BDGRU layers are stacked within the same configuration as
the first proposed method used.
Besides, the BDGRU and GRU share the same cell architecture that allows for
addressing the vanishing gradient problem. Furthermore, the hidden state of
the BDGRU cell is expressed as follows:

hT = (
−→
hT
⊗←−

hT) (IV.3)
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FIGURE IV.3: The second proposed hybrid model based on CNN and
BDGRU.

Where→ and← symbolize forward and backward process, respectively.

C. The fusion path

The final prediction at each time step is achieved by concatenating the out-
puts from both paths (CNN path and BDGRU path). This fusion layer has one
neuron and uses the exponential activation function.

IV.4 Experiment study

In this section, the performance of the deep learning-driven prognosis approaches
is evaluated on a prognostic benchmarking problem (C-MAPSS simulated turbofan
engine dataset, Chapter II Section II.5.1). It starts with data processing which in-
cludes the data normalization, the masking, and the padding phase. Followed by
evaluation metric and prediction procedure in Section IV.4.2 and IV.4.3, respectively.
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Finally, the details of the results and comparisons with several architectures to pro-
vide a comprehensive examination of the proposed models are discussed in Section
IV.4.4.

IV.4.1 Data pre-processing

The subsets FD001 and FD003 exhibit constant sensor measurements and three op-
erational settings throughout the lifetime of the engine; which could not be useful
for RUL estimation. However, all three operational sensor settings and all sensor
measurements can provide useful information about the deterioration of a turbofan
engine in FD002 and FD004. Consequently, unlike works [99], [105] [172] excluded
the three operational settings and selected 14 sensors out of the 21 sensors. In the
proposed methods, all three sensor settings and all sensor measurements are picked
as input features for all sub-datasets. The goal is to avoid designing features manu-
ally by proposing flexible models of an End-to-End ML system using Deep Learning.

It is essential to prepare the data before training the models. Therefore, the data
normalization, the masking, and the padding phase are used in this contribution.

IV.4.1.1 Data Normalization

According to the differentiation issue of feature range scales, several normalization
methods have been proposed to ensure the same range scale of all features [125].
The Min-Max normalization given in Eq.IV.4 is used to map the raw features within
the range of [0,1].

x′i =
xi −min(xi)

max(xi)−min(xi)
(IV.4)

Where xi is the time sequence of the ith sensor measurements, Min and Max are the
minimum and maximum values in xi given its range, and the x′i is the normalization
input data. Figure IV.4 illustrates FD002 testing data before and after normalization.

IV.4.1.2 Masking and padding

The engines have varying length cycles; hence, the shorter sequences than the maxi-
mum length of cycles in the whole dataset are padded with zeros to obtain the same
length. Consequently, mask zero is used in the training phase to record if the time
step already exists or is just padding.

IV.4.2 Evaluation Metric

In this work, the RMSE and scoring function are used for evaluating the model’s
performance. The formulation of RMSE is defined in Eq.IV.5 to measure the effec-
tiveness of the RUL prediction methods. The RMSE function penalizes both early
(underestimate) and late (overestimate) predictions.

RMSE =

√√√√(1/N)
N

∑
i=1

(∆2
i ) (IV.5)
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FIGURE IV.4: An illustration of FD002 testing data before and after
normalization.

where N represents the total number of data samples. ∆i = RUL′i − RULi , ∆i

is the error between the predicted RUL′ value and the true RUL for the ith test sam-
ples.
The scoring function adopted by the international conference on PHM data chal-
lenge is shown in Eq.IV.6

S =
N

∑
i=1

Si

Si =

e−∆i/13 − 1, if ∆i < 0

e∆i/10 − 1, if ∆i ≥ 0

(IV.6)

This scoring function takes into account the impact of the maintenance costs, in
which a higher penalty is imposed when the RUL is overestimated. Under this esti-
mation, the maintenance will be scheduled after the appropriate time.

IV.4.3 Prediction procedure

For both proposed methods, first, the C-MAPSS sub-datasets are pre-processed where
the data are normalized and padded. Next, the training sub-datasets are split into
training and validation sets; 80% of the engines in sub-dataset are randomly selected
for the training, while the remaining 20% are designated as validation set.
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IV.4.3.1 CNN-BDGRU Training procedure

The flowchart of the proposed CNN-BDGRU is described in Figure IV.5. The hybrid
model receives as inputs the normalized training set and the RUL values adopted as
the target outcomes. The shape of the BDGRU input is a 3D tensor ([Min_Batch_size,
Time_series_length, Feature_size ]). On the other side, the shape of the CNN in-
put is a 4D tensor ([Min_Batch_size, Time_series_length, Feature_size, 1]), where
Min_Batch_size is the number of engines in mini-batch size equal to 128. Time_series
_length equal to the maximum length of cycles in the whole dataset, and Feature_size
equal to 24.

FIGURE IV.5: The flowchart of the proposed CNN-BDGRU model.

In the training process, a gradient based optimization algorithm adjusts the weights
in the network based on the minimization of the objective function. Specifically, the
Root Mean Square propagation (RMSprop) optimizer method is used to optimize
the training model, with the learning rate set at 0.001 to achieve stable convergence
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[135]. Besides, the Mean Square Error (MSE) serves as the loss function, which is
expressed as,

MSE = (1/N)
N

∑
i=1

(∆2
i ) (IV.7)

Where ∆i = RUL′i − RULi.
The maximum number of training epochs is 1000. For each training epoch, the

samples are segmented into mini-batches. To avoid overfitting, the early stopping
technique of regularization introduced. Its principal idea is that in the absence of the
improvement in performance, the training process is discontinued.

Finally, the testing data samples are fed into the hybrid training model to esti-
mate the RUL and obtaining the RMSE accuracy in the test set.

FIGURE IV.6: The flowchart of the proposed hybrid model based on
CAE and BDGRU-BDLSTM.

IV.4.3.2 CAE with BDGRU-BDLSTM Training procedure

The process of training the proposed hybrid CAE with the BDGRU-BDLSTM model
consists of two modules: a CAE model as the first phase and the BDGRU-BDLSTM
method in the second phase. Both modules used the RMSprop optimizer and the
MSE as a cost function. The whole process of training the proposed deep hybrid
CAE with the BDGRU-BDLSTM model is summarized in Figure IV.6.

The whole CAE network is trained in an unsupervised manner that takes the
normalized training set as input to reconstruct it; the encoder part represents the
more robust deterioration features. The CAE network’s weights updated iteratively
during training through a gradient-based optimization algorithm based on the min-
imization of reconstruction errors (MSE), expressed in Eq.IV.7, where ∆i = X′i − Xi,
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∆i is the error between the reconstruction X′ and the original input X for the ith

test samples. Besides, the samples are grouped into mini-batches for each training
epoch, with a limit of 1000 training epochs.

After the CAE network’s training process, the second step is to train the multi-
model (BDGRU-BDLSTM) for the RUL estimation, where the encoder parameters
are frozen during the multi-model training step. The extracted CAE features are
fed to the multi-model (BDGRU-BDLSTM) as inputs, and the RUL values of the
training set are used as the target outputs. Backpropagation through time (BPTT) is
the training algorithm applied to update the weights for minimizing the error using
RMSprop, with the learning rate set at 0.001. Furthermore, MSE is utilized as the loss
function, which is expressed in Eq.IV.7, Where ∆i = RUL′i− RULi. The total number
of training epochs is 1000, with the application of the early stopping technique.

Finally, the convolutional encoder is used jointly with the BDGRU-BDLSTM model
for the RUL estimation and obtained the RMSE accuracy on the test set in the oper-
ating phase.

IV.4.4 Results and Discussions

IV.4.4.1 Prediction performance

In this section, the obtained prediction results from applying each of the proposed
hybrid models to the turbofan engines datasets are presented. The purpose of this
approach is to make a thorough comparison of the different DL approaches for RUL
predictions. The actual and predicted RUL values during the whole life-time of the
two randomly selected engines out of several testing engine units across the four
datasets (i.e., FD001-FD004) for both methods are depicted in Figure IV.7 - IV.10.

It is worth noting that the RUL prediction results for all engine units over the
four sub-datasets are precisely predicted, especially for RUL’s estimation at the last
cycles of the engine unit is more reliable and closer to the true RUL than at the early
cycles. Besides, it can be observed that when the RUL engines are large, the accuracy
prediction is noticeably higher conversely to the smaller RUL engines (as shown in
Figure IV.7 (b) engine 47). The reason is that when the engine degradation reaches
failure, the fault features increase, and that can be extracted through the proposed
methods and obtain better perdition results. The RUL’s engine is linearly decreasing
with time until the degradation engine samples are available. Moreover, accurate
estimation of the late period in the engine life cycle plays a crucial role in enhancing
operational reliability and system availability, maintaining workplace safety, and
reducing maintenance costs.

According to Figure IV.11, we can easily observe from the distribution of box
plots for experiments that the performance of the proposed hybrid model (CAE
with BDGRU-BDLSTM) generally performs well on all four sub-datasets, in partic-
ular, FD002 and FD004 that are very complicated and the existing models typically
fail to provide accurate prediction results for these sub-datasets. Hence, the CAE
with the BDGRU-BDLSTM model achieves a good result on FD001 and FD003, the
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FIGURE IV.7: Predicted full life cycles of two testing engine units in
FD001 dataset for both hybrid methods: (a) engine #81, and (b) engine

#47.

FIGURE IV.8: Predicted full life cycles of two testing engine units in
FD002 dataset for both hybrid methods: (a) engine #45, and (b) engine

#218.
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FIGURE IV.9: Predicted full life cycles of two testing engine units in
FD003 dataset for both hybrid methods: (a) engine #39, and (b) engine

#99.

FIGURE IV.10: Predicted full life cycles of two testing engine units in
FD004 dataset for both hybrid methods: (a) engine #40, and (b) engine

#216.
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simplest sub-datasets. Table IV.1 shows the results of both proposed hybrid mod-
els in terms of the values of RMSE and score, where IMP is the improvement of the
proposed CAE with BDGRU-BDLSTM model over the CNN-BDGRU model. It is
defined as IMP= (1-(CAE with BDGRU-BDLSTM / CNN-BDGRU)) × 100. From
the IMP values, we can observe that the CAE with BDGRU-BDLSTM hybrid model
consistently obtains RMSE values lower than the CNN-BDGRU model, which has
improved the performance in term of RMSE to 14.208%, 6.83%, 3.967%, and 5.537%
for group FD001, FD002, FD003 and FD004, respectively.

FIGURE IV.11: Box plot of the RMSE for both proposed hybrid mod-
els over the NASA turbofan engines datasets.

TABLE IV.1: RMSE and score values of the proposed methods on C-
MAPSS dataset

Methods FD001 FD002 FD003 FD004
CAE with
BDGRU-
BDLSTM

RMSE 9.51 15.35 13.41 17.57

Score 213 1274 350 1528.18
CNN-
BDGRU

RMSE 11.085 16.476 13.964 18.60

Score 245 1198.42 387 1592
IMP RMSE 14.208% 6.83% 3.967% 5.537%

Score 13.06% -6.3% 9.56% 4.19%

In term of Score values, the proposed hybrid model (CAE with BDGRU-BDLSTM)
achieved the lowest Score than the CNN-BDGRU model on FD001, FD003 and FD004,
while on FD002, it was a slightly higher Score (worst results). The IMP in term of
Score values is around 13.06%, 9.56%, 4.19% for group FD001, FD003 and FD004,
respectively.
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IV.4.4.2 Computational Cost Analysis

The time complexity for both proposed methods (CAE with BDGRU-BDLSTM, CNN-
BDGRU) is discussed in this section. The complexity of the pooling and the Fully
Connected layers (FC) takes 5-10 % of the overall computational time [63]. There-
fore, their complexities are not involved in the total time complexity of the proposed
models.

The complexity of the CNN layers is calculated as: ∑d
l=1 nl−1 s2

l nl m2
l , where l

is the index of a convolutional layer, d is the number of convolutional layers, nl is
the number of filters in the l-th layer, nl−1 is the number of input channels of the l-th
layer, sl is the spatial size of the filter, and ml is the spatial size of the output feature
map.

Considering that LSTM is local in both space and time, which means that for each
time step LSTM’s storage complexity does not depend on the input sequence length
[70]. We conclude that LSTM’s complexity per time step and weight is estimated
just as O(1). Therefore, the overall complexity of all LSTM layers per time step is
equal to: ∑d

i=1 Wi, where W is the number of weights, i is the index of a LSTM layer,
d is the number of LSTM layers. The time complexity of GRU and FC is similar
to an LSTM. While the BDLSTM or BDGRU’s runtime complexity is increased by
twice ( ∑d

i=1 2 Wi). Furthermore, W equals KH + KCS + HI + CSI for LSTM or GRU
architecture. On the other hand, for FC, W equals IH + HK. Where I is the number
of inputs units, K is the number of outputs, H is the number of hidden units, C is the
number of memory cell blocks, S is the size of the memory cell blocks.

(A) Computational Complexity of CNN-BDGRU architecture
The CNN-BDGRU complexity per time step can be calculated as the sum of
the complexities of the convolutional layers and the BDGRU layers.

O(
5

∑
l=1

nl−1 s2
l nl m2

l +
2

∑
i=1

2 Wi) (IV.8)

For all the training processes with a function of the input length (x) and epochs
(e), the total time complexity is equal to:

O([
5

∑
l=1

nl−1 s2
l nl m2

l +
2

∑
i=1

2 Wi] x e) (IV.9)

(B) Computational Complexity of CAE with BDGRU-BDLSTM
To determine the time complexity of the proposed method that integrates the
CAE with BDGRU-BDLSTM, we need to compute the time complexity of con-
volutional layers, the BDLSTM layers, as well as BDGRU layers. Therefore,
its overall time complexity is estimated as Eq.IV.10, as a function of the input
length for all the training process.

O([(
10

∑
l=1

nl−1 s2
l nl m2

l )x e] + [(
2

∑
i=1

2 Wi +
2

∑
i=1

2 W ′i ) x′ e′]) (IV.10)
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We can conclude that the computation time of CNN-BDGRU model is less than
the second proposed model (CAE with BDGRU-BDLSTM) in terms of time complex-
ity.

IV.4.4.3 Compared with other approaches

Various prognostic popular methods are performed for comparison purposes, in-
cluding DNN, RNN, LSTM, GRU, and CNN (as shown in Figure IV.12). We tried
different structures for these methods, and we picked the best ones as follows:

1) DNN : contains two hidden layers, which have 50 neurons in each hidden
layer and, ultimately, one neuron is attached for RUL estimation.

2) RNN : consists of two recurrent layers with hidden units of 50 nodes. Dropout
is employed with a rate of 0.25 in each RNN layer.

3) LSTM : is implemented with a similar configuration to the RNN method to
extract the long-term dependencies.

4) GRU : We use the same configuration of LSTM for the GRU structure for com-
parison purposes.

5) CNN : Five convolution layers are stacked with the same configuration of the
CNN path of the proposed CNN-BDGRU method. At the end of this method,
one neuron is attached for RUL estimation.

FIGURE IV.12: Box plot of the RMSE for both proposed hybrid mod-
els compared to the other architectures on the NASA turbofan en-

gines datasets.

The average performance of DNN, RNN, LSTM, GRU and CNN on each C-
MAPSS sub-datasets have been reported in Figure IV.12 as a RMSE box plot. Among
all methods, DNN and RNN performed worse (higher RMSE) than the remaining
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methods on all four sub-datasets. CNN achieved slightly lower RMSE values than
other comparing methods on single operating condition datasets, i.e. FD001 and
FD003. On the other hand, GRU and LSTM achieved a lower RMSE than other com-
paring methods on multiple operation condition datasets, i.e. FD002 and FD004.
These results demonstrate powerful of our proposed models, which achieve observ-
able lower average RMSE values (better) in all subsets than other architectures. Be-
sides, the obtained performance from FD002 and FD004 is slightly lower RMSE pre-
diction accuracy, and the reason is that these sub-datasets are more complicated than
the FD001 and FD003.

To analyze the results in more detail and to demonstrate the powerful of the
proposed CAE as an advanced feature extractor method, the three different features
are introduced for comparison purposes. The first kind of features is only raw data
with normalization, the second features constructed from the PCA method, and the
last features created from the proposed CAE method.

For PCA, the principal components explaining 99% of the data variance were
chosen as most appropriate in this study; the original features are reduced to 15
principal components. Considering that Xp ⊂ Xm, where m is the number of original
features, and p is the number of principal components, with p<m. The curve of the
cumulative sum of variance with the principal components for FD003 using the PCA
method is shown in Figure IV.13.

FIGURE IV.13: The curve of the cumulative sum of variance with N°
of principal components of the C-MAPSS sub-dataset FD003.

Figure IV.14 shows the distribution box plots of the RMSE testing of multi-model
BDGRU-BDLSTM with different features. The proposed BDGRU-BDLSTM multi-
model is based on the combination of BDGRU and BDLSTM models simultaneously
and in a parallel manner to predict the RUL. “None” indicates that the normalized
raw data were used as input. Overall, when trained BDGRU-BDLSTM model on the
normalized raw data showed the worst performance over the C-MAPSS datasets.
Interestingly, the performance of BDGRU-BDLSTM improved with feature extrac-
tion methods. Among the three feature extraction methods, the CAE method can
learn robust features than the remaining methods, which gives the best and mini-
mum RMSE values with BDGRU-BDLSTM layers in all sub-datasets.
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FIGURE IV.14: Box plot of the RMSE for BDGRU-BDLSTM method
with different features on C-MAPSS dataset.

IV.4.4.4 Effect analysis

To demonstrate the effectiveness of multiple-model DL techniques, we present the
effect of combining two DL methods CNN and BDGRU in sequential versus paral-
lel, shown in Figure IV.15. The comparison result is quantified using RMSE of RUL
prediction, and we can notice that the combination of CNN-BDGRU in parallel path-
ways achieved promising results compared to CNN-BDGRU in a sequential way.

FIGURE IV.15: Box plot of the RMSE for CNN-BDGRU in sequential
versus parallel.

To verify the validity of the CAE with BDGRU-BDLSTM structure, three ex-
periments are conducted for comparison purposes. In the experiments, we merge
CAE once with BDGRU and once with multi-models BDGRU-BDLSTM. According
to Figure IV.16, we can observe that the combination of CAE with the multi-model
BDGRU-BDLSTM has achieved good results on all C-MAPSS sub-datasets.

IV.4.4.5 Comparison with the latest works

Many scholar research has been reported on all sub-datasets C-MAPSS and used in
more than 60 publications. Recent studies on the C-MAPSS dataset have been taken
into account for comparison to show powerful of the proposed models. Table IV.2
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FIGURE IV.16: Box plot of the RMSE for CNN-BDGRU in sequential
versus parallel.

recapitulates the results of recent studies of the advanced DL methods on the RUL
estimation problem extended to all C-MAPSS sub-datasets.

TABLE IV.2: Performance comparison with the recent DL methods
for RUL estimation on the C-MAPSS Dataset.

CAE
with
BDGRU-
BDLSTM

CNN-
BDGRU

CNN [7] LSTM
[200]

CNN
[99]

BDLSTM
[172]

BDLSTM
[195]

AE-
BDLSTM
[158]

LSTM
[181]

FD001 RMSE 9.51 11.085 18.44 16.14 12.61 13.65 15.42 13.63 18.33
Score 213 245 1.2867×103 3.38

×102
273.7 2.95×102 / 2.61×102 655

FD002 RMSE 15.35 16.476 30.29 24.49 22.36 23.18 / / /
Score 1274 1198.42 1.3570×104 4.45×103 10412 4.13×103 / / /

FD003 RMSE 13.41 13.964 19.81 16.18 12.64 13.74 / / 19.78
Score 350 387 1.5962×103 8.52×102 284.1 317 / / 828

FD004 RMSE 17.57 18.60 29.15 28.17 23.31 24.86 / / /
Score 1528.18 1592 7.8864×103 5.55×103 12466 5.43×103 / / /

Table IV.2 shows that the proposed hybrid methods have achieved promising
results compared to the recent studies on all C-MAPSS sub-datasets quantified using
the RMSE and score metrics. Especially for the complicated datasets FD002 and
FD004, the Score and RMSE prediction accuracy obtained from both methods higher
than the existing methods. Except on the sub-dataset FD003, the DCNN method [99],
and Deep Bidirectional LSTM [172] are slightly higher Score and RMSE (worse) than
both our proposed hybrid methods. However, our proposed methods used all three
sensor settings and all sensor measurements as input without manually designing
features, unlike works [105], [99], and [172] that picked 14 sensors data and excluded
the three operational settings. Amongst these recent studies, it is worth mentioning
that our proposed method that used CAE is the first attempt to adopt CAE in aero-
engine prognostic problem in order to extract useful features that serve as inputs for
the two separate and parallel pathways (referred to as BDLSTM path and BDGRU
path) to obtain more robust features. Furthermore, the reason why our methods are
proposed is exhibited superior performance among the most existing methods and
for capitalizing on the recent success of multiple-model deep learning techniques
and aligning with the power and the success of Convolutional Auto-Encoders to
extract automatically useful features with high-level abstractions from complex data.
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We want to point out that the CAE with DBGRU-BDLSTM results are better than
our CNN-BDGRU results about 14.208%, 6.83%, 3.967%, and 5.537% in terms of the
RMSE values, for FD001, FD002, FD003, and FD004, respectively. However, the time
cost of the CAE with BDGRU-BDLSTM is higher than the CNN-BDGRU according
to the time complexity metric.

IV.5 Conclusion

This chapter presented our first contribution that consist of developing an efficient
RUL prediction approach by testing several deep learning techniques. The proposed
deep end-to-end architectures could be considered as a first step to optimise the fea-
ture reduction and subsequently RUL prediction as second step, in a hierarchical
way, with the aim of achieving data representation in low dimensionality and min-
imal variable redundancy while preserving critical asset information with minimal
preprocessing effort. Besides, the idea of hybrid methods emerged to leverage the
power of various methods, and ultimately enhancing and obtaining a more accurate
prediction. Firstly, we proposed a CAE with a temporal modeling tool that combines
BDGRU and BDLSTM models in a parallel manner for degradation features extrac-
tion and RUL prediction. We found that the CAE is more suited for data extraction
and reduction rather than conventional approaches. Secondly, a hybrid architecture
consisting concurrently of CNN and BDGRU models is developed and applied to
capture local and temporal features for the RUL estimation.

In this work, it was clearly observed that the obtained results show significant
improvements in the RUL prediction compared with previous similar works. In the
following chapter, we focus on predict an interval of time that covers all the distri-
bution rather than providing only a single deterministic predicted value of the RUL
that has a zero probability of being accurate. Besides, we seek to solve such issues
related to data quality as well as model selection task in terms of hyperparameter
and architecture selection. Furthermore, further research is required to speed up
training time.
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RUL Prediction using a fusion of
Attention-based Convolutional
Variational AutoEncoder and
Ensemble Learning Classifier
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V.1 Introduction

Most studies have treated the prognostics as a regression problem, providing only
a single deterministic predicted value of the RUL (estimating the exact time of fail-
ure), which has a zero probability of being accurate. Whereas predicting an interval
of time that covers all the distribution is more certain (i.e., has a 100% probability of
occurrence) [21]. Therefore, this chapter introduces an innovative approach based
on visual data analysis that provides system failure probabilities in different time
windows. In constructing this new RUL estimation approach, we faced several chal-
lenges related to data quality and model selection, which need to be developed and
improved.
The data quality challenges include: How can adequate data quality be achieved?
What is the impact of data quality on RUL estimation performance? How to deal
with imbalanced data? How do features that explicitly and properly reflect fail-
ure progression be obtained? There is no way to ensure that the relevant features
selected are the ones that can lead to better RUL estimates. Do visualization tech-
niques evaluate and analyze the quality of the features and provide a minimum level
of transparency? How to discriminate degradation states and define threshold set-
ting of states (classes)? Does it take into consideration the opinion of the expert? The
model selection challenges include: How is a suitable architecture picked? How to
improve the prognostic model to accurately and reliably predict the RUL? Is the
performance of the prognostic method strongly influenced by the hyper-parameter
selection? How is the optimum value for hyperparameters selected? Does reduc-
ing the conflict zone (i.e., the boundary between classes) lead to fewer conflicting
classification decisions? How can the conflict zone be identified and reduced?

The major contribution of this work is a new methodology that addresses the
aforementioned challenges and which can be summarized as follows:

• Leveraging the power of the VAE architecture in the disentanglement of latent
space.

• Attention Convolutional Variational Autoencode (ACVAE) integrates convo-
lutional calculation with autoencoder to effectively extract spatial features.

• Attention mechanism is embedded to make the network pay attention to the
useful features.

• ACVAE is more aimed at improving dimensionality reduction capability and
achieving better spatial distribution and overall visualization.

• The approach aims to predict the probability that the machine will fail within
different time windows (three degradation classes).

• The task of defining the three degradation classes takes into consideration the
opinion of an expert.

• Ensemble learning is applied using the voting classifier to predict the class
labels by averaging the class probabilities in order to reduce the conflict zone.
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• Automatic Hyperparameters Selection (AHPS) is used to pick out the best con-
figuration of hyperparameters for our hybrid architecture.

This chapter presents the main contribution, which aims to develop an innova-
tive RUL estimation strategy that simultaneously assesses the health status of de-
grading machinery (provides the probabilities of system failure in different time
windows) and assigns them to the RUL window estimation. The remainder of this
chapter is organized as follows. An overview of the related work as well as of the
research gap, is given in section V.2. Section V.3 provides the problem formulation
and the description of the proposed RUL estimation method. In section V.4, the anal-
ysis of the results is given. Finally, we close the chapter with a conclusion and future
works in section V.5.

V.2 Related work

This section analyzes recent research by focusing on four main challenges: architec-
ture selection, dimensionality reduction and visual explanation techniques, atten-
tion mechanism, and model hyperparameter optimization that can improve prog-
nostic performance.

V.2.1 Data-driven methods for RUL estimation

The industrial dataset is possible to gather due to industrial IoT, which has pro-
moted opportunities for industry and academia to leverage advanced data-driven
techniques. Indeed, NASA’s C-MAPSS turbofan time-to-failure data set has been
extensively analyzed with RUL estimation as a primary focus. Many previous data-
driven methods for machine status monitoring and RUL estimation, including two
main methods, conventional machine learning and deep learning, have been applied
and seen great success recently [86, 129]. Some studies [74, 75, 89, 143, 166] have
used the promising Artificial Neural Network (ANN) approach to predict the RUL
of various machines, such as bearings, milling cutters, engines, and drill pipes. In
order to keep the optimum set of features, [88] applied Principal Component Anal-
ysis (PCA) as the first phase, with ANN as the second phase, to predict the RUL of
the roller ball bearings. In [128], the authors also proposed a method to predict RUL
based on neuro-fuzzy. However, this conventional ML cannot address sequential
data. Besides, the biggest limitation of the PCA approach lies in its linear projection.

Recently, burgeoning DL approaches have been widely applied in various re-
search for prognostic and diagnostic tasks, known for their ability to process highly
non-linear and varied data in their raw form without any human intervention. Within
the deep learning architecture, recurrent neural networks can mainly handle tempo-
ral data analysis, which prompted researchers to applied it to the industrial PHM
process. Some researchers [64, 108, 109] have proposed RNN-based methods for the
prognostic issue. However, RNNs has a vanishing gradient or exploding problem
arising in long sequence input, which means it cannot keep the previous informa-
tion except the latest one. In order to handle this issue, Long-Short Term Memory is
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the upgraded variant of RNN in which different gating mechanisms are proposed.
[188] proposed an LSTM to determine the fault location and estimate the RUL of the
aero engine. More recently, several works [6, 73, 119, 162, 181, 200] have suggested
LSTM-based approaches for RUL estimation, showing the efficacy of performing
LSTM over RNN. As an improvement, another variant of LSTM was used by [172]
is Bi-directional LSTM (BLSTM), which can learn the bi-directional temporal depen-
dencies from sensor data for aircraft engine RUL estimation. Therefore, it can simul-
taneously capture long-range information in the input sequence’s future (forward)
and past (backward) contexts. Moreover, a new BLSTM model was presented by
[195] for identifying the system degradation performance and subsequently predict-
ing RUL. However, recurrent networks increase computational burdens.

Although convolutional neural network are one of the most dominant methods
for image processing [14, 101, 130, 142, 163], CNNs have also been explored for
RUL prediction by [7, 99] on the multi-channel time series. CNN architectures are
designed to extract features through weight-sharing filters and show a noticeable
improvement in prediction accuracy. Hybrid deep neural network models have also
been reported in the literature [2, 97, 131] to leverage the power of different DL
methods, which integrate CNN and LSTM models simultaneously to extract tempo-
ral and spatial features.

V.2.2 Dimensionality Reduction and Visual Explanation techniques

Massive and large-dimensional data often contain uninformative or redundant fea-
tures, making data analysis difficult and increasing the processing time. Besides,
reduced data visualisation is crucial to understanding better how data is distributed
and interpreting and analysing classifier performance. Some classical data visu-
alisation and dimensionality reduction methods such as PCA, Isometric Mapping
(ISOMAP), and T-distributed Stochastic Neighbor Embedding (T-SNE) have been
used and reported in academic research [3, 106, 124]. Additionally, several studies
have shown the advantage of using Auto-Encoder (AE) to decrease the data dimen-
sion and automatically extract the performance degradation features from multi-
ple sensors, which is suitable for enhancing predictive accuracy and reducing the
model’s complexity. In [158], the authors proposed a new hybrid model integrat-
ing the advantages of AE and BLSTM to enhance the RUL’s prediction accuracy. A
similar study was suggested by [105] for RUL estimation based on a stacked Sparse
Auto-Encoder (SAE) and Logistic Regression (LR).

Most generative applications deal with image processing, as in [72], where a VAE
was also trained to generate face images with much clearer and more natural noses,
eyes, teeth, and hair textures, as well as good backgrounds. The ML algorithms’
black-box nature imposes the industry’s unwillingness to adopt them. More re-
cently, in nonlinear process monitoring, the deep Variational Autoencoder method
has been successfully applied to address both the curse of dimensionality and the
scarcity of interpretability and transparency by projecting the high-dimensional pro-
cess data into a lower-dimensional space ([30, 35, 95, 110, 111, 140, 173, 176, 192–194,
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197, 198]). This latter is argued upon and supported by [52]; the ability to map
a lower-dimensional space could increase a model’s generalization capabilities. In
[192–194], the authors propose a VAE architecture as a 2D-Visualisation tool of latent
space to understand how data is distributed. This latter can help to get a better idea
of how the model interprets the data.

Attention Mechanisms (AM) have recently been widely applied in neural net-
work architectures. It has been proved successful in natural language processing for
machine translation tasks ([8, 104]), fault detection [102], RUL estimation tasks [34,
38, 164], and various computer vision tasks such as facial expression recognition [98]
and fruit classification [183]. The attention mechanism can make the neural network
allocate more attention to useful features. [38] used a soft attention mechanism to
provide visualisation of the learned attention weights at each RUL prediction step
to gain its interpretability besides retaining the predictive power of LSTM networks.
[102] employed a convolutional autoencoder with AM to enhance the local features
of samples.

V.2.3 Model’s Hyperparameters optimization

Deep learning models are full of hyperparameters in terms of architecture and train-
ing parameters (such as the number or type of layers and the learning rate). Their
optimization by most of the reviewed papers is based on a trial-and-error approach
[2, 6, 7, 73, 97, 99, 131, 172, 188, 194, 195, 200]. However, this approach can be
time-consuming and error-prone due to a lack of understanding of the impacts of
parameters. In order to overcome these challenges, automatic hyperparameter selec-
tion has been proposed, such as grid search [17], random search [16], and Bayesian
optimization [152, 156]. They typically carry out the research by discretizing the hy-
perparameter space. The grid search is the most applied strategy that tests all possi-
ble combinations (exhaustive searching) [38, 105, 158, 181]. Although this approach
can theoretically obtain the optimal global parameters, it is extremely computation-
ally expensive and suffers from the curse of dimensionality. The reason is that the
number of combinations grows exponentially with the number of hyperparameters.
Compared with grid search, random search eliminates the need for an exhaustive
search of all possible combinations by picking them randomly. Bayesian optimiza-
tion is an efficient hyperparameter tuning method for complex DNN methods ([18,
80, 180]). Its principle is to pick parameter combinations in a well-thought-out way
based on a probabilistic model. This probabilistic model uses previous evaluations
to obtain the posterior predictive distribution using the Bayesian formula. There-
fore, we aim to apply Bayesian Optimization (BO) based on Gaussian Process (GP)
to reduce the time spent on hyperparameter tuning, which disregards certain areas
of the parameter space that are unlikely to yield the best results.

V.2.4 Research Gaps and Contribution

As summarised in Table V.1, many contributions are proposed for the RUL predic-
tion of turbofan engines using various DL architectures. Nevertheless, applying DL
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techniques in the context of prognostics is still challenging, in addition to the fact
that RUL prediction is frequently affected by uncertainty in a practical context and
may cause problems. Inspired by these previous studies, this work focuses on six
main points: architecture selection, Dimensionality Reduction, Visual Explanation
techniques, Attention Mechanism, Model’s Hyperparameters optimisation, and en-
semble learning method that can improve prognostics performance. By analysing
Table V.1, a novel approach for predicting RUL based on visual data analysis is pro-
posed. Attention Convolutional Variational AutoEncoder is used to extract perfor-
mance degradation features from multiple sensors automatically. ACVAE effectively
integrates convolution calculation with an autoencoder to extract spatial informa-
tion.

Moreover, the attention layer is embedded between the encoder and decoder,
which is used to dynamically increase the weights of the useful features in the en-
coding phase to make the network pay attention to these vital features for RUL class
estimation. The primary objective of applying the ACVAE is to provide a more
structured, disentanglement and lower-dimensional representation of the data that
shows the best class distribution over a 2D latent space and demonstrates how well
the ACVAE generalises. The encoder, part of the ACVAE, is leveraged for data pro-
jection in a 2D visualisation latent space. The input vectors are encoded and dis-
played in this 2D space, which helps the expert visually analyse the spatial distri-
bution of the training dataset. Three degradation classes are then defined according
to two thresholds (α1, α2). The expert aims to determine the appropriate threshold
setting by minimising the overlapping region between the degradation classes by
analysing the spatial distribution. Following that, the RUL is predicted according to
the latter degradation classes.

V.3 Methodology

V.3.1 Problem Formulation

To address the uncertainty in RUL, we propose to use φ(.) for dimensionality reduc-
tion capabilities, which provides a better latent space distribution Z. Let Xi denote
its input (formulated in Chapter II, Section II.5.1 ), sequential sensor measurement.
Zi is a latent representation generated by the encoder function Zi = fφ(Xi), whereas
X̂i is an approximation or reconstruction of the real data Xi (see Eq. (V.1)).

Zi, X̂i = φ(Xi) (V.1)

The error between the Xi and reconstruction X̂i is minimized as follows:

Minimize : {X̂i, Xi} (V.2)

Thus, the RUL values are divided into three RUL degradation classes Yclass according
to two thresholds (α1, α2) that are defined based on the spatial distribution analyse
with the expert.
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In order to address the non-linearity function, the ensemble ML method is proposed
(θ) for RUL class estimation. Let Zi symbolise its input, and the observed Yi

class
symbolise its output (formulated in Chapter II, Section II.5.1 ). The predicted RUL
classes are given as follows.

Ŷi
class = θ(Zi, Yi

class) (V.3)

The prediction accuracy between the predicted RUL classes Ŷi
class and the observed

Yclass is maximized as follows:

Maximize : {Ŷi
class, Yi

class} (V.4)

V.3.2 Remaining useful life estimation based on CVAE with attention
mechanism

The RUL class estimation methodology is shown in Figure V.1. The VAE approach
can generate new data (through continuity) as well as it has been demonstrated as
a promising tool for dimensionality reduction in the context of machinery fault di-
agnosis [126, 140]. However, VAE must be fully explored for fault diagnosis and
prognosis. In this work, we propose ACVAE which is a VAE based architecture for
predicting RUL classes. It is composed of an encoder and a decoder, which are two
symmetrical and reversed structures. Both the encoder and the decoder have two
convolutional layers. We utilized the same padding and a 6× 1 kernel for convolu-
tional layers in the encoder. The stride was 1× 1 for the first convolutional layer and
2× 2 for the second. The convolutional layer’s output is expressed as follows:

Ci = f (∑ X⊙ wi + bi) (V.5)

Where f is the activation function, ⊙ is the convolution operation, wi and bi repre-
sent the weight parameter and bias of ith convolutional kernel, respectively. The final

convolution will generate an output Hc = {h1, h2, ..., h WL
2
}where Hc ∈ R

m×WL
2 . Given

input data of sequence length WL with m number of features (sensor variables).
Moreover, the attention layer is also embedded in the encoding part, which is

used to dynamically increase the weights of the useful features to make the network
pay attention to these vital features [104, 185]. The attention computational is given
as follows:
The attention weights:

αi = so f tmax(Wa · hi) (V.6)

The context vector:
ci = ∑

i
αi · hi (V.7)

The attention vector:
ai = tanh(Wc[ci; hi]) (V.8)
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FIGURE V.1: A framework of RUL estimation using the soft voting
classifier with MLP (Multi-layer perceptron), RF (Random forest),

and GB (Gradient Boosting). D f is the final class label.

Where hi is the features extracted by the encoder.

The latent two-dimensional space is represented by two 2D-layers for the en-
coder, the mean and the standard deviation layers (i.e., µ and σ). One 2D-sampling
layer (Z) for the decoder.

The first step was to train the whole ACVAE architecture for reconstructing the
input vector using the deconvolutional operation (decoder part), as shown in Eq. (V.9).

Di = f (∑ Z⊗ w̄i + b̄i) (V.9)
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⊗ is the deconvolution operation, w̄i and b̄i represent the weight parameter and bias
of ith deconvolutional kernel, respectively.

Training the ACVAE does not need the label information of the input data. The
whole ACVAE is trained to attain a coupling optimization of both the reconstruction
and disentanglement quality (See Algorithm 1). The training loss of ACVAE is de-
fined as the sum of the reconstruction loss and the similarity loss (See Eq. (III.24)).
The used reconstruction loss is the Mean Squared Error (MSE), which measures how
close the decoder output is to the original input, as expressed in Eq. (V.10).

Lrec = 1/N
N

∑
i=1

(Xi − X′i)
2 (V.10)

The similarity loss is the KL divergence between the latent space distribution
and the standard Gaussian (zero mean and unit variance), which regularizes the
distribution of the latent space (given in Eq. (V.11)).

LKL = −1/2
N

∑
i=1

k

∑
j=1

(1 + log(σ2
ij)− σ2

ij − µ2
ij) (V.11)

Where N is the number of samples, Xi denotes the real data, X′i is its reconstruction,
and k is the size of the latent vectors.

Algorithm 1 ACVAE training algorithm.
Input: Sliding window training data Xtrain = {(xi)}, i = 1, 2, 3, ..., N

Output: Probabilistic encoder fφ, Probabilistic decoder gθ

1: φ, θ ← Initialize parameters randomly
2: repeat
3: for i=1 to N do
4: L samples from ϵ ∼ N(0, 1)
5: z(i,l) = fφ(ϵi, xi) ▷ Compute zi via reparametrization trick
6: end for
7: E = 1/L ∑L

l=1(log pθ(xi|z(i,l)))−∑N
i=1−KL(qφ(z|xi)|| pθ(z)) ▷ Compute the loss

8: φ, θ← Update parameters using gradients of E
9: until convergence of parameters φ, θ

In this work, we aim to predict the probability that the machine will fail within
different time windows. To do this, the expert faced a challenging problem: how to
select the most appropriate thresholds α1 and α2 that are used to label the data (three
degradation classes)? Three degradation classes are then defined according to two
thresholds (α1, α2) as follows:

• Degradation class 0 (Deg 0): RUL > α2,

• Degradation class 1 (Deg 1): α1 < RUL ≤ α2,

• Degradation class 2 (Deg 2): RUL ≤ α1.

When the training process of the ACVAE is successfully done, the encoder part is
then used as a 2D-Visualisation tool by a human expert in order to analyse the spatial
distribution of the data set that has been separated into three distinct degradation



80 Chapter V. Hybrid architecture of ACVAE for RUL prediction

classes. The expert has made assumptions about picking out the values of thresh-
olds α1 and α2, experimenting with different thresholds values (α1 = {10, 20}, α2 =

{20, 30, 70, 90}). Each couple (α1, α2) will generate a particular overlapping situation
between the degradation classes, which is easily visualised and examined by the ex-
pert in the 2D-latent space. By analysing the spatial distribution of different couples
(α1, α2), the expert tries to choose the appropriate threshold setting that minimises
the overlapping region between the degradation classes. Indeed, the appropriate
thresholds give thinner conflict areas (the boundaries) between classes, thus fewer
instances (Zi points) within boundaries, which gives fewer conflicting decisions for
the classification.

The second step is to train the ensemble of classifiers for the RUL class estima-
tion. The encoder parameters obtained by the previous step are frozen during the
classifier training step. Algorithm 2 represents the active learning classifier that is
used to construct a high-performance classifier by starting learning with a small
training set. Via the incremental learning process, the misclassified points (uncer-
tainty points) from X2D

validation are actively added into the training set X2D
train based on

a threshold of probability (As shown in [94, 120, 151, 201]).
Finally, in the operating stage, the convolutional encoder is used jointly with

soft voting-based ensemble classifiers to estimate the degradation of RUL classes (as
shown in Figure V.1).

Algorithm 2 Train the classifier.

Input: Sliding window training data Xtrain, Ytrain = {(xi, yi)}, i = 1, 2, 3, ..., N
Output: Trained classifier β

Train the ACVAE on Xtrain ▷ Algorithm 1
2: X2D

train = fφ(Xtrain) ▷ Use the encoder to extract the 2D-latent space
X2D

train, X2D
validation, Ytrain, Yvalidation= split(X2D

train, Ytrain)
4: Randomly Initialize β

for i=1 to Q do ▷ Number of query
6: Train the classifier β on X2D

train
Validate the classifier with X2D

validation
8: Sort misclassified examples by error score X2D

misclas
X2D

train = X2D
train ∪ X2D

misclas ▷ Add the misclassified examples to train
10: X2D

validation= X2D
validation - X2D

misclas ▷ Remove misclassified from validation set
end for

V.4 Results analysis

For the purpose of evaluating multiple experimental results, the various perfor-
mance measures are first highlighted in Section V.4.1, followed by the data prepro-
cessing section V.4.2, including feature selection, data normalisation, sliding win-
dow, and data rebalancing. Finally, the details of the results and comparisons with
several architectures to comprehensively examine the proposed model are discussed
in Section V.4.3, including data preprocessing parameters analysis, visualisation of
latent vectors and identification the conflict zone, and performance analysis. In this
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work, we only used the failure set FD001 of the C-MAPSS dataset from the NASA
repository to validate the proposed method.

V.4.1 Evaluation metrics

To fairly evaluate the proposed model’s performance on the test dataset, a range
of various performance metrics is adopted (Eq. (V.12) - (V.17)). These metrics in-
volve accuracy, precision, sensitivity, specificity, F-score, G-mean, Receiver Opera-
tion Characteristic (ROC), and Area Under Curve (AUC) [57]. The below formulae
metrics could be assessed with |TP| the number of the true positive, |TN| the num-
ber of the true negative, |FP| the number of the false positive ( i.e. a false alarm), and
|FN| the number of the false negative (i.e. a missed alarm).

• Accuracy: refers to the ratio of the total correct predictions. It is formulated as:

Accuracy =
|TP|+ |TN|

|TP|+ |FP|+ |FN|+ |TN| (V.12)

• Precision: expresses the ratio of correctly predicted positive instances. For-
mally, it can be expressed as:

Precisionmacro =
1
n

n

∑
i=1

|TPi|
|TPi|+ |FPi|

(V.13)

• Recall or Sensitivity: measures how much a classifier can recognize positive
instances correctly identified by the classifier. It is computed using the follow-
ing equation:

Sensitivitymacro =
1
n

n

∑
i=1

|TPi|
|TPi|+ |FNi|

(V.14)

• Specificity: calculates how much a classifier can recognize negative instances
correctly identified by the classifier. The equation gives it:

Speci f icitymacro =
1
n

n

∑
i=1

|TNi|
|TNi|+ |FPi|

(V.15)

• F1-score: to maximize both precision and recall, the F1-score metric is the har-
monic mean of the precision and recall. This combination reaches its highest
possible value at 1, indicating perfect precision and recall, and its lowest pos-
sible value at 0, if either the precision or the recall is zero. It can be formulated
as:

F1− score = 2× Precision× Sensitivity
Precision + Sensitivity

(V.16)

• G-Mean: measures the trade-off between sensitivity (true positive rate) and
specificity (true negative rate) by the following:

G−Mean =
√

Sensitivity× Speci f icity (V.17)
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Only when both sensitivity and specificity are high can the G-mean attain its
maximum, which indicates a better classifier.

• ROC curve: is a graphical plot showing the performance of a classification
model at all classification thresholds. This curve plots two parameters: True
Positive Rate and False Positive Rate.

• AUC: is the fraction of the total area under the ROC curve. AUC provides a
single value for assessing the performance of the classifier and an examination
of the classifier’s stability and consistency.

V.4.2 Data preprocessing

Before applying the proposed model, it is essential to prepare heterogeneous data
adequately. The specific steps are described as follows:

V.4.2.1 Feature selection

In the FD001 dataset, there are three operating indicators, and 21 different aircraft en-
gine sensors plotted on a histogram to observe the variations throughout the whole
lifecycle of engines (See Figure V.2). The sensors 1, 5, 6, 10, 16, 18, and 19 exhibit
constant values throughout the engine, which cannot provide relevant degradation
information to accomplish the task and only increases the training time of neural
networks. Therefore, 14 of the 21 sensors were selected, with indices of 2, 3, 4, 7, 8, 9,
11, 12, 13, 14, 15, 17, 20, and 21. Besides, the three operational settings are removed
because these datasets are exposed to a single operating condition. Besides that, the
same features were confirmed using the prognosability measure, also called consis-
tency or failure consistency (the equation is given in V.18). It assigns a numerical
value that measures the variability of condition indicators at failure on a scale of
zero to one. A high-ranking feature more accurately monitors the degradation pro-
cess and is consequently more appropriate for training the RUL prediction model,
as shown in Figure V.3.

Prognosability = exp

(
−

stdj
(
xj
(

Nj
))

meanj
∣∣xj(1)− xj

(
Nj
)∣∣
)

, j = 1, . . . , M (V.18)

V.4.2.2 Data Normalization

The sensor measurements have a varied range of values. Therefore, many differ-
entiation issue normalization methods guarantee the same range scale of all sensor
measurements [157]. This work uses the Min-Max normalization given in Eq. (V.19)
to map the selected features within the range of [0,1].

x′i =
xi −min(xi)

max(xi)−min(xi)
. (V.19)
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FIGURE V.2: FD001 Data Analysis.

FIGURE V.3: Feature selection using the prognosability metric.
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V.4.2.3 Sliding Window

The multivariate time-series sensor signals can provide more degradation informa-
tion, which leads to an accurate prediction. Therefore, the Sliding Window (SW)
method segments the data samples into a sliding time window along the engine life
span (as shown in Figure V.4).

The extracted data by SW each time is a 2D matrix WL × W f , WL as the length
of the sliding time window, and W f as a number of the selected prognosis feature.
Moreover, the SW is moved with only one data point. Thus, the number of sliding
time windows generated from data is ∑n

i=1 maxTi −WL, where maxTi is the engine
lifespan and n number of engines.

FIGURE V.4: One training sample using the sliding window method.

V.4.2.4 Data rebalancing

The problem of class imbalance is faced when one of the classes is underrepresented
over others. It is challenging to train classifiers on imbalanced data, as they become
biased towards a set of classes. A widely applied approach to dealing with imbal-
ance is resampling, either using different algorithms from undersampling (removing
some majority-class data points) or over-sampling (adding more minority-class data
points). The under-sampling can cause the wastage of important information. On
the other hand, the Synthetic Minority Oversampling TEchnique (SMOTE) is one
of the dominant oversampling methods in literature [13, 44]. Consequently, in this
work, the SMOTE-based K-Nearest Neighbors (KNN) method is implemented to
handle the class imbalance problem.

Figure V.5 depicts the class distribution bar charts, where the blue bar refers to
real data showing that the data used was highly imbalanced. The red bar indicates
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synthetic instances in minority classes that follow the original distribution utilizing
the SMOTE-KNN algorithm. Instead of excessively increasing the number of syn-
thetic instances in the minority classes (equal to the majority class), we experimented
with different oversampling thresholds and picked the best ones (see Figure V.5).

Deg0 Deg1 Deg2
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

16,931

7,000

10,000

16,931

2,000
1,100

Real
Generated

FIGURE V.5: Data rebalancing using a SMOTE-based KNN on train-
ing set FD001.

V.4.3 Results

V.4.3.1 Data Pre-processing Parameters Analysis

Several sliding window sizes (WL) were tested and evaluated according to different
degradation thresholds α1 and α2, which are the most sensitive pre-processing pa-
rameters. Table V.2 reflects the performance of our proposed approach obtained for
each test through evaluation measures, with different WL and thresholds (α1, α2). In
our experiments, we considered values of WL in {6, 16, 26}, taking into account the
minimum engine life span available in the test dataset. The values of thresholds (α1,
α2) are in {(10,20), (10,30), (10,70), (10,90), (20,30), (20,70), (20,90)}.

Table V.2 shows that the proposed method with a sliding window equal to six
timesteps (WL = 6) yields the best performing scores overall. We should point out
that if the thresholds are α1=10 and α2=20, the classifier maximizes the recall (Sensi-
tivity) with low precision in the WL = 16 compared with WL = 6. The model with
WL = 16 gives us a 58%, 77%, 97%, 61%, and 97% for precision, recall, specificity,
F1-Score, and accuracy accordingly. On the other hand, the model has achieved 71%,
73%, 96%, 63%, and 98% for precision, recall, specificity, F1-Score, and accuracy, re-
spectively, with WL = 6. The high recall and low precision indicate that most of the
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faults are correctly recognized, but there are a lot of false alarms (as in WL = 16).
Contrarily, a low recall and high precision appear that some faults are missed, but
those real faults are flagged, and there are no false alarms (as in WL = 6). In addition,
The classifier with a high specificity shows fewer false alarms (as in WL = 16).

The critical goal is to get the best classifier that maximizes both precision and
recall (Best F1-score) with a modest specificity. It is also observed that the result ob-
tained by the sliding window WL=6 showed up a higher accuracy with these thresh-
olds (α1 = 10, α2 = 20) and (α1 = 10, α2 = 30). On the other hand, based on the F1-score,
a better estimation is obtained by the sliding window WL=6 with α1 = 10 and α2 = 30.
Note that the sliding window WL=26 obtains the worst result with the thresholds α1

= 10 and α2 = 30.

TABLE V.2: Results of our approach on test set FD001 vs. (WL) and (α1,α2).
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WL=6 α1 = 10, α2 = 20 0.71 0.73 0.96 0.63 0.99 0.98 0.84
α1 = 10, α2 = 30 0.71 0.83 0.91 0.76 0.99 0.98 0.87
α1 = 10, α2 = 70 0.62 0.79 0.84 0.67 0.93 0.89 0.82
α1 = 10, α2 = 90 0.61 0.79 0.81 0.66 0.88 0.83 0.80
α1 = 20, α2 = 30 0.69 0.73 0.95 0.64 0.98 0.96 0.84
α1 = 20, α2 = 70 0.67 0.77 0.84 0.71 0.92 0.87 0.81
α1 = 20, α2 = 90 0.64 0.75 0.81 0.68 0.88 0.80 0.78

WL=16 α1 = 10, α2 = 20 0.58 0.77 0.97 0.61 0.99 0.97 0.86
α1 = 10, α2 = 30 0.60 0.76 0.93 0.66 0.98 0.96 0.84
α1 = 10, α2 = 70 0.61 0.78 0.85 0.65 0.91 0.89 0.81
α1 = 10,α2 = 90 0.57 0.77 0.8 0.61 0.87 0.82 0.79
α1 = 20, α2 = 30 0.62 0.72 0.93 0.62 0.97 0.94 0.82
α1 = 20, α2 = 70 0.67 0.72 0.85 0.69 0.91 0.87 0.78
α1 = 20, α2 = 90 0.62 0.73 0.80 0.66 0.86 0.77 0.77

WL=26 α1 = 10, α2 = 20 0.47 0.64 0.94 0.50 0.98 0.97 0.78
α1 = 10,α2 = 30 0.55 0.72 0.91 0.61 0.97 0.96 0.81
α1 = 10, α2 = 70 0.61 0.79 0.85 0.64 0.92 0.89 0.82
α1 = 10, α2 = 90 0.59 0.76 0.82 0.61 0.89 0.83 0.8
α1 = 20,α2 = 30 0.60 0.70 0.91 0.60 0.96 0.93 0.8
α1 = 20, α2 = 70 0.68 0.71 0.85 0.70 0.90 0.88 0.78
α1 = 20, α2 = 90 0.66 0.72 0.82 0.68 0.87 0.82 0.77

The confusion matrices are depicted in Figure V.6, where the ordinate shows the
reference label while the abscissa represents the predicted one. We mention that
classifier fails to predict the last class (Deg 2) when the thresholds of α1 and α2 are
too near. Even with the SW size variation, the predicted degradation 2 is almost
nonexistent for α1 = 10 and α2 = 20. Furthermore, the performance of the RUL
prediction is improved with the increase of the gap between the two degradation
thresholds. The good results are obtained by the slide window WL = 6 with α1 = 10,
α2 = 30 and WL = 26 with α1 = 10, α2 = 70. For WL = 26 with α1 = 10, α2 = 70, the
proportion of the true positive classification for the degradation classes 0, 1 and 2 are
respectively 95%, 60% and 82%. On other hand, for WL = 6 with α1 = 10, α2 = 30,
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FIGURE V.6: Confusion matrices of test set FD001 vs. (WL) and
(α1,α2).
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the proportion of the true positive classification for the degradation classes 0, 1 and
2 are respectively 98%, 73% and 76%.

Based on the results, one remarks that our approach is entirely adapted for RUL
estimation. To be more precise, all the false positive predictions belong to the less
critical degradation class. The following performances can be observed in the con-
fusion matrix generated by the sliding window WL= 6 and (α1 = 10, α2 = 30):

• Deg 0: 98% are correctly classified as degradation 0, and 2% are incorrectly
classified as degradation 1.

• Deg 1: 73% are correctly classified as degradation 1, and 24%, 3% are incor-
rectly classified as degradation 0, degradation 2, respectively.

• Deg 2: 76% are correctly classified as degradation 2, and 24% are incorrectly
classified as degradation 1.

Table V.3 gives the detail of the ACVE architecture used. The optimal ACVE
parameters have been selected using AHPS based on Bayesian Optimization with a
Gaussian Process model [169], which is handled by the Keras-tuner library [122], as
described in Algorithm 3. The acquisition function used is Upper Confidence Bound
(UCB), for more details can be found [196]. The hyperparameter range detailed in
Table V.4, along with the values selected by BO. These most sensitive hyperparam-
eters are chosen due to their highest impact on performance.

TABLE V.3: The Proposed Hybrid deep convolutional variational
auto-encoder architectures with attention mechanism.

Layer Type Neurons Kernels
Encoder

0 Input vector WL × 14 ×1 -
1 Convolution WL × 14 × 64 6 × 1
2 Convolution 3 × 7 × 128 6 × 1
3 Convolution 3 × 7 × 1 6 × 1
4 Reshape 3 × 7 -
5 Attention vector 128 -
6 Mean layer 2 -
7 Standard deviation layer 2 -

Decoder
0 Sampling layer 2 -
1 Deconvolution 3 × 7 × 128 6 × 1
2 Deconvolution WL × 14 × 64 6 × 1
3 Output vector WL × 14 × 1 -

Ensemble learning
0 Sampling layer 2 -
1 Gradient Boosting Estimators=500 -
2 Random Forest Estimators=32 -
3 Multi-layer Perceptron 10 -
4 Output 3 -
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Algorithm 3 Hyperparameter Tuning using Bayesian Optimization with Gaussian
Processes

Required: D : Hyperparameters combination, u : Acquisition f unction
Initial Settings: Randomly Initialize D
for n = 1 to T do ▷ T represents the maximum trial run.

Find xt by minimizing u over GP :
xt = argminx u(x|D1:t−1)

4: Evaluate the objective function yt = f(xt).
Augment the observation set D = D ∪ (xt, yt), update the posterior of func-

tion f .
end for
return Choosing the best hyperparameters combination

TABLE V.4: Description of the hyperparameters, their range and the
selected values.

Name Range Selected
N° of convolutional layer Min=1, Max=3, Step=1 2
N° of filters per layer Min=8, Max=256, Step=8 (64,128)
Filter size Min=1, Max=16, Step=1 6×1
Learning rate Min=1e-4, Max=0.5, Sampling=LOG 0.001
Batch size Min=32, Max=1024, Step=32 128
Activation function relu, tanh, sigmoid, softplus, softsign,

selu, elu
elu

Optimizer Adam, Adadelta, Adamax, SGD, RMSprop,
Adagrad, Nadam, Ftrl

RMSprop

V.4.3.2 Visualisation of latent vectors and identification of the conflict zone

To quantitatively assess the proposed method’s performance, we have compared the
visualisation performance of the ACVAE method with three state-of-the-art dimen-
sion reduction methods, including PCA, ISOMAP, and T-SNE. Figure V.7 displays
the 2D-space distribution of six different dimensionality reduction methods. As a
recall, going from the green to the red colour point means a decrease in the health
state of the engine machine (colours indicate the three degradation classes). In look-
ing at Figure V.7, it can be deduced that ACVAE seems to be able to cluster the
dataset more effectively according to RUL degradation reasoning. It can also be ar-
gued that the ACVAE resulted in a more compacted spatial distribution compared
to the covered areas by other methods. The horizontal and vertical axis extends from
approximately 0.002 to 0.012 and -0.8 to 0.6, respectively.

Indeed, the best average accuracy was gained by ACVAE and ACAE, around
98%. The worst result obtained by the T-SNE method is approximately 78% accu-
racy, as shown in Table V.5. The quantitative results showed that the precision of
degradation classes 1 and 2 are almost non-existent with ISOMAP, PCA, and T-SNE.
Besides, the T-SNE method shows a low precision of 0%, a sensitivity of 2%, a F1-
Score of 1%, and an AUC of 42% for degradation class 2, making degradation class
2 unpredictable. The performance of CVAE is slightly improved when the attention
mechanism is added across all measures except the sensitivity, with 8%, 1%, 6%,
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FIGURE V.7: The 2D-visualisation using five dimensionality reduc-
tion methods: ISOMAP, ACVAE, CVAE, PCA, ACAE and T-SNE.

TABLE V.5: Comparison of the proposed ACVAE with other methods:
ISOMAP, PCA, TSNE, ACAE and CVAE based on test set FD001.
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CVAE With AM

Deg 0 0.99 0.98 0.77 0.99 0.98
Deg 1 0.55 0.73 0.984 0.62 0.98
Deg 2 0.59 0.76 1.00 0.67 1.00
Mean 0.71 0.83 0.917 0.76 0.99 0.98 0.87

CVAE Without AM

Deg 0 0.99 0.98 0.743 0.99 0.982
Deg 1 0.49 0.66 0.981 0.56 0.978
Deg 2 0.42 0.88 0.998 0.57 0.998
Mean 0.63 0.84 0.907 0.70 0.986 0.97 0.87

CAE With AM

Deg 0 0.99 0.99 0.617 0.99 0.978
Deg 1 0.60 0.55 0.99 0.57 0.975
Deg 2 0.40 0.71 0.998 0.51 0.999
Mean 0.66 0.75 0.868 0.69 0.98 0.98 0.81

ISOMAP

Deg 0 1.00 0.94 0.95 0.97 0.985
Deg 1 0.21 0.61 0.942 0.31 0.932
Deg 2 0.12 1.00 0.99 0.21 0.998
Mean 0.44 0.85 0.960 0.50 0.971 0.93 0.90

PCA

Deg 0 1.00 0.95 0.958 0.97 0.99
Deg 1 0.12 0.44 0.95 0.19 0.92
Deg 2 0.11 1.00 0.99 0.19 0.998
Mean 0.41 0.80 0.966 0.45 0.969 0.94 0.87

T-SNE

Deg 0 1.00 0.79 0.92 0.88 0.88
Deg 1 0.00 0.02 0.92 0.01 0.42
Deg 2 0.01 1.00 0.85 0.02 0.93
Mean 0.34 0.60 0.896 0.30 0.743 0.78 0.73
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0.4%, 1%, for Precision, Specificity, F1-Score, AUC, and Accuracy, respectively. The
CVAE with AM gave us the highest performance compared to the other dimension-
ality reduction methods.

Besides, we can observe that our proposed VAE-based architecture outperforms
an attention convolutional autoencoder (AE-based architecture), as these results prove
its effectiveness in extracting useful performance degradation features. It is also in-
teresting to see the difference between the distribution and the clustering of degra-
dation classes in both VAE-based architecture (ACVAE) and AE-based architecture
(ACAE). Our approach seems to be able to map degradation features into a less
disentangled latent space (as shown in Figure V.7). These results hypothesise that
the standard autoencoder would suffice in the case of dissimilar data classifica-
tion. Therefore, the power of the VAE architecture comes with similar-looking data
(degradation features) that usually overlap in some areas where AE fails to disen-
tangle. According to these results, we can visually perceive them by analyzing the
clusters obtained by the worst and best methods, concentrated in different areas.
T-SNE distribution seems to cover more area with the horizontal and vertical axis
extending from approximately -100 to 150 and -150 to 100, respectively.

The 2D-latent space representation of three training engine units is presented to
visually appreciate the effect of our proposed ACVAE method on the spatial distri-
bution (See Figure V.8). We can approximately see that spatial distribution seems to
be the RUL engine degradation, where the RUL’s engine is linearly decreasing with
time until the degradation engine reaches failure.

FIGURE V.8: The 2D-latent representation of three training engine
units in FD001 using our proposed hybrid architecture: (a) engine

#1, (b) engine #6, and (c) engine #100.

Figure V.9 (a) shows the conflict zone obtained by the learning process described
by Algorithm 4. This conflict area is represented by black points when the classifiers
gave opposite responses for the same input data I. These are considered samples
with uncertain classification in the boundary between classes. As indicated in Al-
gorithm 4, several classifiers β j were trained with the 2D-latent space X2D

train. If two
classifiers for each input sample I of the X2D

train give two opposite responses, β j and
βk with j ̸= k, a sample I is regarded as part of the conflict zone (uncertain samples).
This conflict area is reduced by applying a soft voting classifier that combines the
decisions of different classifiers by averaging the class probabilities (Figure V.9 (b)).
The soft voting classifier selects the class with the highest average probability.
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Algorithm 4 Identification and reduction of the Conflict Zone

Input: Sliding window training data Xtrain = {(xi, yi)}, i = 1, 2, 3, ..., N
Output: Conflict Zone

Step1: Identification of the conflict zone
3: Train C classifiers β j on X2D

train as follow :
for j=1 to T do

6: Train the classifier β j on X2D
train ▷ Algorithm 2

Save the parameters of β j
9: end for

for Each input sample I of the X2D
train do

12: for Each two classifier β j and βk with j ̸= k do
if ψj(I) ̸= ψk(I) then ▷ ψj is the output class obtained by the classifier β j

15: The I is considered to be part of the conflict zone
end if

end for
18: end for

Step2: Reduction of the conflict zone
21: for Each input sample I of the X2D

train do ▷ So f t Voting in Ensemble Learning
Pf = Averageclasses

i=1 ∑C
j=1 Pij ▷ Pij is probability o f each target variable

D f = argmax Pf
24: end for

FIGURE V.9: Identification and Reduction of the conflict zone: (a)
2D-visualisation for the conflict zone where black points indicate the
samples with uncertain classification (b) 2D-visualisation of the soft

voting classifier results.

V.4.3.3 Performance analysis

In this section, a comparison of the soft voting classifier with other powerful existing
models has been conducted using different evaluation metrics. Table V.6 depicts the
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performance of the different ML classifiers on the FD001 subset, with and without
oversampling method. It can be concluded from Table V.6 that all classifiers with
and without oversampling method show a high accuracy, that is, 98%. Therefore,
the performance of classifiers has to be investigated on other measures, such as Pre-
cision, Sensitivity, Specificity, F1-Score, and G-mean.

TABLE V.6: Comparison of the soft voting classifier with other pow-
erful ML models, with and without SMOTE.
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With SMOTE

LR

Deg 0 0.99 0.98 0.77 0.99 0.98
Deg 1 0.51 0.69 0.98 0.59 0.98
Deg 2 0.37 0.76 1.00 0.50 1.00
Mean 0.63 0.81 0.916 0.69 0.986 0.98 0.86

GD

Deg 0 0.99 0.99 0.75 0.99 0.978
Deg 1 0.54 0.67 0.985 0.60 0.977
Deg 2 0.42 0.82 1.00 0.56 0.999
Mean 0.65 0.83 0.91 0.72 0.985 0.98 0.867

MLP

Deg 0 0.99 0.98 0.76 0.99 0.98
Deg 1 0.51 0.69 0.98 0.59 0.98
Deg 2 0.44 0.82 1.00 0.57 1.00
Mean 0.65 0.83 0.91 0.72 0.987 0.98 0.87

RF

Deg 0 0.99 0.99 0.707 0.99 0.98
Deg 1 0.53 0.63 0.985 0.58 0.97
Deg 2 0.41 0.88 0.998 0.56 1.00
Mean 0.64 0.83 0.896 0.71 0.98 0.98 0.86

KNN

Deg 0 0.99 0.98 0.74 0.99 0.96
Deg 1 0.51 0.67 0.98 0.58 0.956
Deg 2 0.44 0.82 1.00 0.57 0.97
Mean 0.65 0.83 0.91 0.71 0.96 0.98 0.866

Voting Classifier

Deg 0 0.99 0.98 0.77 0.99 0.98
Deg 1 0.55 0.73 0.984 0.62 0.98
Deg 2 0.59 0.76 1.00 0.67 1.00
Mean 0.71 0.83 0.917 0.76 0.99 0.98 0.87

Without SMOTE

LR

Deg 0 0.99 1.00 0.57 0.99 0.9836
Deg 1 0.71 0.53 0.99 0.61 0.981
Deg 2 0.64 0.41 1.00 0.50 0.998
Mean 0.78 0.65 0.85 0.70 0.987 0.98 0.74

GB

Deg 0 0.99 1.00 0.52 0.99 0.9776
Deg 1 0.70 0.50 1.00 0.58 0.975
Deg 2 1.00 0.24 1.00 0.38 0.999
Mean 0.90 0.58 0.839 0.65 0.98 0.98 0.695

MLP

Deg 0 0.99 0.99 0.57 0.99 0.983
Deg 1 0.69 0.54 0.99 0.61 0.981
Deg 2 0.80 0.47 1.00 0.59 0.999
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TABLE V.6: Continued.

Mean 0.83 0.67 0.85 0.73 0.987 0.98 0.755

RF

Deg 0 0.99 0.99 0.54 0.99 0.959
Deg 1 0.62 0.51 0.99 0.56 0.9558
Deg 2 0.75 0.35 1.00 0.48 0.997
Mean 0.79 0.62 0.84 0.68 0.971 0.98 0.72

KNN

Deg 0 0.99 0.99 0.542 0.99 0.949
Deg 1 0.65 0.51 0.992 0.57 0.945
Deg 2 0.83 0.29 0.999 0.43 0.998
Mean 0.82 0.60 0.84 0.67 0.964 0.98 0.7124

Voting Classifier

Deg 0 0.99 0.99 0.57 0.99 0.9828
Deg 1 0.70 0.55 0.99 0.61 0.981
Deg 2 1.00 0.41 1.0 0.58 0.999
Mean 0.90 0.65 0.85 0.73 0.987 0.98 0.745

Table V.6 indicate a trade-off between precision and sensitivity (Recall). Our
model cannot simultaneously have high sensitivity and high precision, either in
adding synthetic samples or not (although we do aim for high precision and high
recall value). When applying the oversampling SMOTE method (adding synthetic
samples in both Deg 1 and 2), the performance of classifiers is slightly improved
with 18%, 6.7%, 3%, and 12.5% for sensitivity, specificity, F1-Score, and G-mean, re-
spectively, except for the Precision (SMOTE has a negative effect in both degradation
class 1 and 2 Precision rate). There is a cost associated with getting lower sensitivity
or precision. Ideally, in this case, we aim to avoid machine failure situations, reduce
the probability of unscheduled downtime (due to the high cost), and eliminate the
causes of serious accidents (safety). Therefore, we choose to maximize sensitivity
rather than precision, where the classifier can catch many faults (predicting failure)
but end up with many false alarms. In other words, we can endure if a non-failure
is flagged as a failure, but a failure should not be labelled as a non-failure. Addition-
ally, we compared the obtained results using F1-score that conveys both precision
and sensitivity into one coherent metric, where it can be concluded that our pro-
posed method with SMOTE showed up a higher F1-score rate than without SMOTE.
We can clearly observe from Table V.6 that the method of combining classifiers (soft
voting classifier) has achieved maximum precision and F1-Score value of 71% and
76%, respectively, compared to other prevailing ML algorithms.

As depicted in Figure V.10, the true positive classification obtained without over-
sampling SMOTE gave us the lowest accuracy, which means that the soft voting
classifier fails to predict the least critical degradation classes (Deg 1 and 2). Figure
V.11 represents the ROC curve of our proposed approach ACVAE with a soft voting
classifier over sliding windows WL=6 and α1 = 10, α2 = 30. This curve plots the true-
positive rate (sensitivity) against the false-positive rate (specificity), which assesses
the AUC of the degradation classes. In [119], the authors used the LSTM approach
for temporal features extraction and predicted the probability that the equipment
will fail within a prespecified time window. It can be seen that the sensitivity of Deg
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1 (true positive classification of Deg 1) is improved by increasing the gap between
the two thresholds (α1, α2). Contrarily, the sensitivity of Deg 0 is decreasing. We
mention that this approach fails to predict Deg 1 when the thresholds α1 and α2 are
too near.

FIGURE V.10: The confusion matrices were obtained on the test set
FD001 for the soft voting classifier, (A) with SMOTE and (B) without

SMOTE.

FIGURE V.11: ROC cure of our proposed approach over sliding win-
dows WL=6 and α1 = 10, α2 = 30.

We also compared the obtained results from the proposed approach with two
published works that have used the same subset for the same objective (See Ta-
ble V.7). In [194] and [119], authors have used the confusion matrix as the only
performance evaluation. Table V.7 represents the proportion of the true positive
classification obtained on the test sets FD001, as well as the mean sensitivity metric.
Note that Deg 0 refers to low degradation, Deg 1 indicates medium degradation,
and Deg 2 points out to high degradation. The latter triggers various maintenance
interventions. As it can be seen from the results, our proposed method delivers bet-
ter results with different alpha values than the existing methods, as it showed up a
higher sensitivity rate (as shown in Table V.7).

As shown in Table V.8, when the machine belongs to the state Deg 0, the mean
confusion probability that the machine belongs to Deg 2 is not negligible. The worst
case is 3.06%, where α2 = 20. From a maintenance viewpoint, all the false positive
predictions belong to high critical degradation (such as the Deg 1 belongs to Deg
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TABLE V.7: Comparison with previous work.

Probability confusion matrix
α1 = 10, α2 = 20 α1 = 10, α2 = 30 α1 = 10, α2 = 70 α1 = 10, α2 = 90

[119]

Deg 0 94.25 88.74 66.67 46.19
Deg 1 0.39 14.45 67.46 77.33
Deg 2 99.98 99.98 99.97 99.99
Mean 64.87 67.72 78.03 74.5

[194]

Deg 0 100 99 98 91
Deg 1 7 46 46 60
Deg 2 94 75 75 69
Mean 67 73.33 73 73.33

ACVAE

Deg 0 97 98 95 91
Deg 1 85 73 60 52
Deg 2 47 76 82 94
Mean 76.33 83 79 79

TABLE V.8: Comparison with previous work, confusion matrix.

Probability confusion matrix
α1 = 10, α2 = 20 α1 = 10, α2 = 30 α1 = 10, α2 = 70 α1 = 10, α2 = 90

Deg 0 Deg 1 Deg 2 Deg 0 Deg 1 Deg 2 Deg 0 Deg 1 Deg 2 Deg 0 Deg 1 Deg 2

[119]

Deg 0 94.25 2.7 3.06 88.74 9.81 1.44 66.67 33.18 0.16 46.19 53.78 0.03
Deg 1 0 0.39 99.61 0.04 14.45 85.51 3.8 67.46 28.74 3.94 77.33 18.73
Deg 2 0 0.02 99.98 0 0.02 99.98 0 0.03 99.97 0 0.01 99.99

[194]

Deg 0 100 0 0 99 1 0 98 1 1 91 9 0
Deg 1 45 7 48 45 46 9 53 46 1 38 60 2
Deg 2 0 6 94 0 25 75 0 25 75 0 31 69

ACVAE

Deg 0 97 3 0 98 2 0 95 5 0 91 9 0
Deg 1 7 85 8 24 73 3 37 60 3 47 52 1
Deg 2 0 53 47 0 24 76 0 18 82 0 6 94

2). This estimation leads to early maintenance and significant lost costs. Contrary to
their approach, all the false positive predictions of our approach belong to the less
critical degradation class. This latter can have a positive effect in some situations
and a negative effect in others. Considering a more compacted time interval leads to
more precise maintenance decisions. Thus, assuming that the expert or the mainte-
nance managers are interested in the machine’s probability of deteriorating in three
different time ranges where α1 and α2 are too near (it is also assumed by [119] for
the decision making). To be more precise, we assume that the expert is interested
in α2 ≤ 30. We should point out that the predicted degradation of class 1 is almost
nonexistent for α2 ≤ 30 in [119], therefore, in order to prevent this lot of false alarms
(early maintenance), our proposed approach maximizes the probability of predicted
degradation of class 1. It can also be argued that with α2 = 30, both critical degra-
dation classes (Deg 1 and Deg 2) were correctly predicted using our approach com-
pared to both related works. The proportion of the true positive classification for the
degradation classes 0, 1, and 2 are 98%, 73%, and 76%, respectively.

Furthermore, the proposed method significantly reduces the maintenance cost
rates, where the continuity in the latent space leads to the machine belonging to the
state Deg 0 (low degradation) not belonging to Deg 2 (high degradation). On the
other hand, in our approach, it can be seen that the sensitivity of Deg 2 is improved,
and the sensitivity of Deg 1 decreases with increasing α2. Contrarily, in [194], the
sensitivity of Deg 1 is improved as well as the sensitivity of Deg 2 decreases with
increasing α2.
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Future Works: In this work, it was clearly observed that the obtained results
show significant improvements in the RUL prediction compared with previous sim-
ilar works. However, many future works could focus on : i) optimizing conflict
zones by identifying outliers and omitting them, ii) giving a formal approach to
define the suitable thresholds (α1, α2, . . . , αi), iii) combining a maintenance strategy
with our RUL prediction approach could be useful in the decision-making process,
and IV) improving generation performance of synthetic samples using our ACVAE
method combined with a generative adversarial network (GAN) [190], V) leverag-
ing the power of the pruning algorithm in the model selection algorithm to stop
unpromising trials at the early stages of the training, referred to as automated early-
stopping, VI) incorporating an automated method that detects the fault time step of
each engine to tackle the problem of RUL that is ill-defined in healthy operation.

V.5 Conclusion

In this chapter, a new strategy for RUL prediction based on ACVAE jointly with a
soft voting classifier has been presented as conducive to the predictive maintenance
of aero-engines. This approach performs a simultaneous assess the health status of
degrading machinery (provides the probabilities of system failure in different time
windows) and assigns them to the RUL window estimation. It starts with an auto-
matic extraction of performance degradation features from multiple sensors using
the ACVAE method. In this model, the power of the attention layer is to dynam-
ically increase the weights of the useful features in the ACVAE encoding phase to
make the network pay attention to these vital features for RUL classes estimation.
As articulated in the results section, it was also demonstrated that the ACVAE could
cluster the dataset more effectively according to RUL degradation reasoning. In this
context, 2D-latent space of ACVAE behaves better than the existing dimension re-
duction methods (PCA, ISOMAP, and T-SNE), which resulted in a more compacted
and better spatial distribution compared with the covered areas by other methods.
The conflict zones, which are located near the boundaries between classes, are identi-
fied when the classifiers give opposite responses for the same input data. Therefore,
to reduce this conflict zone, the soft voting classifier is used. It selects the highest
probability class by combining the decisions of different classifiers using the proba-
bility classes average.
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Chapter VI

Achievements and Conclusions
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This chapter summarizes the contributions of this thesis and presents several research
directions that require further investigations in the future.

VI.1 Thesis aims

Predictive maintenance is an essential tool for asset management at all levels of op-
eration in many so-called asset-dependent industries, such as oil and gas, aerospace
and industrial manufacturing. It reduces system downtime, improves operational
safety and saves on operational costs. The maintenance decision within PdM could
be based on different characteristics such as the remaining useful life (RUL), the re-
liability or the cost function. Therefore, the RUL form represents key element of
the PdM in decision-making, which is the number of times an asset can accomplish
its intended task before requiring maintenance. Indeed, accurate mechanical asset
RUL enable manufacturing industries plan future maintenance in advance and en-
sure a seamless repair and maintenance process with the goal of approaching zero
downtime. Whereas an inaccurate estimation of RUL can lead to irreversible envi-
ronmental damage or safety problems, such as a jet crash caused by engine failure, a
rail accident caused by bearing failure, wasted crude oil and ocean pollution caused
by mechanical failure on an offshore oil platform, and much more.

The increase in complexity of modern physical assets necessitates an increasing
number of sensing instruments to accurately measure an asset’s behaviour and op-
erating conditions during its life cycle. This increase in sensor measurements trans-
lates into large volumes of data representing a great opportunity for the maturity
of data-driven PdM methods in industry and academia, mainly relying on machine
learning-based computational methods (e.g. linear or non-linear regression) to de-
liver a more effective and efficient maintenance service. The data acquired from
such machinery can be usually high-dimensional or even redundant and unneces-
sary variables and variables with minimal variance (i.e.low information content) due
to multi-sensor measurements, discontinuous due to the wide ranges of parame-
ter variations during continuous sensor measurements and, therefore, estimation of
RUL is usually a challenging task. Unfortunately, ML algorithms generally perform
poorly on lower data quality, which can yield high rates of inaccurate fault identi-
fication and/or time-of-failure (RUL) prediction results. Therefore, the direction of
machine learning research has shifted to more complex models i.e. deep learning,
given their ability to process highly non-linear and varied data in their raw form
without any human intervention. Although there are a large variety of deep learn-
ing prognostic methods that have shown promising results in the context of prog-
nostics, building an effective and efficient prognostic approach is still challenging
and limited. This thesis focuses primarily on developing, implementing and evalu-
ating automatic and efficient data-driven methods for predicting the RUL and deals
with some problems encountered with improving RUL estimation.
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VI.2 Thesis Contributions

The problems treated in this thesis gave birth to two main contributions. These
contributions can be summarized as follows:

VI.2.1 First Contribution

The first contribution was concerned the leveraging the power of multimodal and
hybrid deep neural network techniques for RUL estimation enhancement instead of
incorporating a single model. The main objective of this study is to focus primarily
on developing, implementing and evaluating automatic and efficient data-driven
methods through testing several deep learning techniques. This work proposes two
deep end-to-end architectures that jointly optimise the feature reduction and RUL
prediction steps in a hierarchical way, intending to achieve data representation in
low dimensionality and minimal variable redundancy while preserving critical as-
set information with minimal preprocessing effort. Firstly, we proposed a CAE with
a temporal modeling tool that combines BDGRU and BDLSTM models in a parallel
manner for degradation features extraction and RUL prediction. We found that the
CAE is more suited for data extraction and reduction rather than conventional ap-
proaches. Secondly, for a comprehensive comparison, a second hybrid architecture
consisting concurrently of CNN and BDGRU models is developed and applied to
capture local and temporal features for the RUL estimation. The GRU has appeared
as an improved LSTM model with few parameters to increase the training stage’s ef-
ficiency and speed. Besides, for the extraction of bidirectional temporal features and
to prevent the long-term dependency problem, we used a BDGRU. The proposed hy-
brid models’ evaluated results indicate significant improvements over their counter-
parts and the most robust literature results in terms of RMSE on the C-MAPSS public
NASA dataset. We pointed out that the CAE with DBGRU-BDLSTM outcomes reli-
ably performs higher for FD001, FD002, FD003, and FD004 than our CNN-BDGRU
outcomes, in terms of the RMSE value around 14.208%, 6.83%, 3.967%, and 5.537%.

VI.2.2 Second Contribution

Based on the limitation of the first contribution, we treated the prognostics as a re-
gression problem, providing only a single deterministic predicted value of the RUL
(estimating the exact time of failure), which has a zero probability of being accurate.
The second contribution focuses on developing an innovative RUL estimation strat-
egy that simultaneously assesses degrading machinery’s health status (provides the
probabilities of system failure in different time windows) and assigns them to the
RUL window estimation (predict an interval of time that covers all the distribution
that could be more certain). This new RUL prediction approach based on ACVAE
jointly with a soft voting classifier has been presented as conducive to the predic-
tive maintenance of aero-engines. The starting point of the proposed method was to
automatically extract performance degradation features from multiple sensors using
the ACVAE method. The primary objective of applying the ACVAE was to provide a



VI.3. Perspectives 101

more structured, disentanglement and lower-dimensional representation of the data
that shows the best class distribution over a 2D latent space and demonstrates how
well the ACVAE generalises. As articulated in the results section, it was also demon-
strated that the ACVAE could cluster the dataset more effectively according to RUL
degradation reasoning. In this context, this 2D-latent space of ACVAE also behaved
better than the existing dimension reduction methods (PCA, ISOMAP, and T-SNE),
which resulted in a more compacted and better spatial distribution compared with
the covered areas by other methods. The conflict zones are located near the bound-
aries between classes, identified when the classifiers give opposite responses for the
same input data. Therefore, the soft voting classifier was used to reduce this conflict
zone. It selects the highest probability class by combining the decisions of different
classifiers using the probability classes average. Furthermore, Automatic Hyperpa-
rameters Selection was used to pick out the best configuration of hyperparameters
for our hybrid architecture without being time-consuming and avoid error-prone.

VI.3 Perspectives

Although this PhD process culminates with the contributions presented in this dis-
sertation, obviously, no model is perfect. However, the proposed developments on
prognostics modeling show good potential and improved performances compared
to conventional methods. Future work will include testing the applicability of the
proposed methods to other prognostic and real-world applications. Besides, the cur-
rent developments of this thesis will be further extended as follows:

• Quantifying uncertainty in DL/ML models: Several sources of uncertainty
often affect the estimation of RUL, either due to gathered data (e.g. due to lack
of sufficient quantities of run-to-failure data, sensor noise, and unknown envi-
ronmental and operating conditions) or degradation mechanisms (e.g., choice
of the model’s type, estimating its parameters). Therefore, knowing how con-
fident the model is in its own RUL predictions is essential. Besides, decision-
making should be based on the bounds of the RUL confidence interval rather
than a single value. Furthermore, in future work, we intend to propose a
method for assessing, measuring and quantifying the uncertainty in the neural
network’s prediction to produce reliable classifiers/regressors [49, 103, 141].

• Anomaly detection triggered RUL estimation: The remaining useful life of in-
dustrial machinery is ill-defined in the absence of degradation (during healthy
operation). To address this issue, we aim to use anomaly monitoring during
RUL estimator training and deployment, which incorporates an automated
method that detects the fault time step of each engine and is considered the
starting point of the degradation.

• Imbalanced data: Imbalanced data is one of the most critical data problems
for data analysis tasks. Many techniques to deal with this issue have been
proposed in the literature, including data-level techniques, algorithmic-level
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methods, cost-sensitive methods and classifier ensembles. In our work, we
focused only on the data-level method and chose the simple method called
SMOTE. In future work, we aim to compare and integrate the very promising
approach, such as generative adversarial network (GAN), as a data-level or
cost-sensitive method in order to be able to solve precision/recall trade-off
problems.

• Optimisation of the conflict zones: The conflict zones are located near the
boundaries between classes, which are identified when the classifiers give op-
posite responses for the same input data. Therefore, future developments may
focus on the optimisation of the conflict zones, where it is recommended to
identify the outliers and omit them from the training dataset, which may help
improve the classifier’s predictions. Besides that, one could think about is to
propose an approach that can automatically determine the number of states
(clusters) from multidimensional data or propose a formal approach to setting
the appropriate thresholds (α1, α2, . . . ,αi) without the human assumption that
minimise the conflict zones.

• Post-prognostics decision-making: The decision process results from the prog-
nosis module, as stated in the PHM architecture, which is supposed to use
available prognostic information (RUL estimation). This raises the direct ques-
tion of how this information is integrated into the decision-making process. We
intend to extend our work on the whole PHM process by integrating our RUL
prediction approach with the decision-making process (some condition-based
maintenance strategies ).
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