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Abstract

This PhD study is a part of the field of image segmentation and is particularly interested in
the issue of automatic segmentation of skin lesions from dermoscopy images. Automated
and accurate segmentation of skin lesions is an important step in Computer-Aided
Diagnosis systems (CADs) for melanoma detection. Although numerous methods have
been proposed in the literature, this task is still a challenging issue due to various factors
related to the captured image of the skin, such as the presence of hair and blood vessels,
low contrast of lesion and its surrounding healthy skin. Some lesions have fuzzy borders,

wide variations in sizes and colors, and complex textures.

Recently, we have witnessed great success of using deep learning and especially
convolutional neural networks (CNNs) in semantic segmentation and medical image
analysis. To deal with the challenge of skin lesions segmentation, we propose models based
on CNNs and specifically U-Net architecture (encoder-decoder). To demonstrate the
robustness and effectiveness of the proposed methods compared to the state-of-the-art deep
learning models, experimental results are reported on three datasets, including the IEEE

International Symposium on Biomedical Imagng (ISBI) 2017, ISBI 2016, and PH2.

Keywords: Skin lesion segmentation, Dermoscopy, Deep Learning, CNN, Encoder—
decoder, U-Net, Dilated convolution, Pyramid pooling, FCN, Atrous Spatial Pyramid
Pooling.
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1.1 Introduction

Malignant melanoma is the most deadly type of skin cancer, and its incidence rate has been
steadily increasing in the world for the past decade [1, 2]. For example, in the USA for
2023, approximately 97.610 new cases of melanoma will be diagnosed, and about 7.990
people are expected to die [3]. However, early diagnosis and careful treatment can increase
the survival rate. Dermoscopy is one of the most popular techniques in the early diagnosis
of melanoma. Dermoscopy is a non-invasive imagng tool that provides a magnification of
the images, and allows a better visualization of deep skin structures when compared to
conventional clinical mages [4]. Accurate analysis of dermoscopy images using the naked
eye alone is time-consuming, complex, subjective, and not reproducible. Therefore,
Computer-Aided Diagnosis systems (CADS) can be used to help dermatologists for
melanoma detection [5]. These tools are generally comprised of the four following steps
namely: image acquisition, lesion segmentation, feature extraction, and finally the

classification.

1.2 Problematic

Lesion segmentation is the process of isolating skin lesion from its surrounding healthy
skin (background). It is an important task since it affects the accuracy of the subsequent
steps of the diagnosis system (CADS) [6, 7]. Automatic segmentation of skin lesions is a
challenging task due to various factors related to the captured image of the skin, such as
the presence of hair and blood vessels, low contrast of lesion and its surrounding skin, the
fact that some lesions have fuzzy borders, vary in sizes and colors, have complex textures.

Some of these challenging situations are illustrated i Fig. 1.1.
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(c) (d)
Figure 1.1. Some challenging examples of ISBI 2017 dataset, such as low contrast (a, b, ¢, d),

presence of hair (a), ink marks (b, ¢), and irregular boundaries (b, d). Green contours represent the

lesions segmented by dermatologists

Existing unsupervised techniques, such as thresholding, clustering, edge-based,
region-based and classical supervised methods [8] rely on low-level handcrafted features
(appearance information). Consequently, these traditional methods have limitations and
fail to solve the challenging situations, such as low contrast and the presence of hair [5, 9,
10]. Additionally, these methods require pre-processing steps, such as illumination

correction and hair removal.

Recently, methods based on deep learning, especially convolutional neural networks
(CNNs), have achieved great success in computer vision and medical image analysis

(classification, detection, segmentation, etc.) [11, 12]. This success is mamly due to the
2
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availability of large amount of labeled data (ImageNet [13]...), powerful computational
resources, such as graphic processing units (GPUs), and open source libraries and
frameworks (Tensorflow, Keras, PyTorch, etc.). Deep learning based methods have been
applied to the skin lesion segmentation task and outperformed the traditional methods. This
is due to the fact that deep learning methods can extract low-level local information as well
as high-level semantic nformation in a hierarchical representation from the mput images.
However, in terms of processing time, these methods are computationally expensive, even
with using a powerful hardware (GPU). The second issue is the generalization capability
(the capability of a tramed model to yield good results on an independent dataset).

Therefore, the main objective is to build an accurate, fast, and robust deep learning
based segmentation model to assist the subsequent steps of the CAD system for melanoma

detection.

1.3 Thesis Contributions

In this thesis, three deep learning approaches based on the state-of-the-art U-Net
architecture [14](encoder-decoder) are proposed to segment skin lesions from dermoscopic
mmages. In the first approach [15], we use dilated convolution [16] and pyramid pooling
modules (PPM) [17] to enhance the segmentation results. This approach is tested on the
ISBI 2016 dataset and compared to U-Net as a baseline. In the second approach, we
propose a novel fully convolutional network called FCN-MASPP. The novel module
MASPP (modified atrou spatial pyramid pooling), which is inspired from DeepLab [18-
20] and PSPNet [17], is used at every level m both the encoder and the decoder. We
compare the results of FCN-MASPP on the ISBI 2017 dataset to the equivalent structures
(a basic FCN and U-Net). The third approach [21] is the main contribution of the thesis. In
this approach, we propose an improved scheme that adopts as the encoding path (encoder):
10 standard convolutional layers, followed by a pyramid pooling module (PPM) and a
dilated convolutional block (DCB). The dilated residual blocks (DRBs), which consist of
dilated convolutional layers with residual connections, are introduced i the decoding path
(decoder) to further refine the segmentation maps. So the main contributions of this

approach can be summarized in these points:

3
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1. Proposing an encoding path, which consists of the first 10 convolutional layers of
the VGG16 network [22], followed by a pyramid pooling module (PPM) and a
dilated convolutional block (DCB). This combination enables more representative
of extracted feature maps and preserves more spatial resolution.

2. Instead of using conventional convolutional layers like U-Net, we mtroduce dilated
residual blocks (DRBs) in the decoding path to extract more context information for
dense prediction.

3. We experiment on three public datasets, including ISBI 2017, ISBI 2016, and PH2.

4. We compare the performance of our proposed model agamnst state-of-the-art models
FCN [23], SegNet [24], U-Net [14], and U-Net ++ [25] as baselines, and other
recently published methods.

1.4 Thesis outline

This thesis is organized as follows. Chapter 2 discusses the background concepts for deep
learning, including supervised machine learning, artificial neural networks (ANNs), and
therr traimning strategy. Deep convolutional neural network architectures (DCNNs) and
some popular state-of-the-art CNNs based semantic segmentation models are introduced
in chapter 3. Chapter 4 will focus on Skin lesion segmentation methods for dermoscopy
images. Chapter 5 presents experimental results. Finally, chapter 6 concludes the thesis

and discusses some future works.
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2.1 Introduction

Deep learning (DL) is a subfield of machine learnng (ML). It attempts to learn
automatically multiple levels of representations with multiple levels of abstraction from
raw nput data [26]. It is basically built on deep neural networks. The key aspect of deep
learning is that it skips the feature extraction step designed by human engineers [26, 27].
As fillustrated in Fig. 2.1, the model takes raw input data (images, for example), and the
learned features of the lower level layers detect trivial patterns in the mput data (ie. lines,
edges). These elementary detected patterns are used to encode more complex features (ie.
corners, contours). Finally, the features of the next level layers operate with the most

abstract representations combining the obtained corners and contours into object parts [27].

Handcrafted Machine 1 :
Input Images »| Feature Extraction o oo HaE £ > Qutput
: Classifier
Algorithms
(a) Traditional feature extraction and machine learning
- Intermediate
Simple Features Abstract Features
Input Images (e.g., edges) »| Features *| (c.z. object parts) [ * Output
T (e.g., corners)
(b) Deep Learning

Figure 2.1. Machine Learning (a) and Deep Learning (b) approaches. From [27]

In the following, we give a brief introduction to machine learning and supervised
learning. Then, we detail the artificial neural networks (ANNSs), the training methodology,

and some regularization techniques.

2.2 Machine learning and supervised Learning

Machine Learning (ML) is a subfield of artificial intelligence (AI) aiming to give
computers the ability to learn from data. Tom Mitchell has described that the field of ML
is concerned with the question of how to construct computer programs that automatically

improve with experience [28]. There are different types of learning n ML systems:
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Supervised learning, Semi supervised learning, Unsupervised learning, and Remnforcement

learning. This thesis will only focus on supervised learning,

In Supervised Learning (SL), the model (computer) is presented with training
examples and therr corresponding labels (Fig. 2.2).

[ [
[ [
e . Supervised | ;
Training inputs J_ - learning “ Training labels
L |
Input > Model > Output

Figure 2.2. Supervised learning. From [29].

Let’s assume a training dataset D = {(x,y @), ..(x™,y ™)}

x@ y® are the nput and the desired output (label) of the (i-th) example, respectively.
The output label can be either contmuous or discrete. For the first case, we talk about
regression, while the second case is called classification. A training phase is performed to

learn a model/function (from labeled training data) that best predicts nputs:

y=/fo(x) 2.1)
y: Denotes the predicted label by the model
0: Denotes the model parameters to find by minimizing a loss function. This function,

which is also called the ‘cost function’, measures the error between the predicted output

and the desired (true) label
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After the training phase, the learned model can be used to measure its generalization
ability on separate (unseen) data. This is called test phase. In conventional ML, features
are first extracted from raw mput data (e.g., images, videos, sounds, etc.) to transform it in
some sense. Then these features are used for model learning, while DL aims at learning

automatically features representation from raw data.

2.3 Artificial neural networks

Artificial Neural Networks (ANNs) are a set of algorithms inspired from the biological
neurons, which are the nerve cells composing the human bramn. Artificial neurons are
arranged in layers and linked by weights in a similar way to synapses linking biological

neurons.

2.3.1 Biological neuron

The biological neuron is shown mn Fig. 2.3. It consists of:

Dendrite

Axon Terminal

Node of »
Ranvier

’ Il

Axon Schwann cell

Cell body

Myelin sheath
Nucleus

Figure 2.3. Biological neuron. From [29]

e Dendrites (nput terminals): receive mput mnformation from sensors or other

neurons.
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e Cell body (also called soma): contains the nucleus of the neuron, which processes
the information.

e Axon: carries the produced nformation to the axon terminal (synapse).

e Axon terminals (output terminals or synapses): are the transition between the axon

and dendrites of other neurons.

2.3.2 Artificial neuron

In 1943, McCulloch and Pitts [30] proposed the first mathematical model of the biological
neuron. This model performs a dot product with the mput (x;) and its weights(w;), then
adds the biais b and applies an activation function f, as can be described with the following

equation:

y=fQiwix;+b) (2.2)

This first model (original) did not learn (the weights are random numbers), f is just a sign
(threshold) function. The artificial neuron is illustrated in Fig. 2.4.

L0 Uy

*® synapse
axon from a neuron
wo g

cell body

Z: w;e; +b

f (E wiT; + r})

output amﬁ

activation

Wols function

Figure 2.4. Artificial neuron. Extracted From [31]

2.3.3 Perceptron

In 1958, Rosenblatt [32] mtroduced the learning algorithm based on the artificial neuron,
and called perceptron. The algorithm is the following:

8
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Perceptron algorithm.

Initialize the weights (w;)and biais (b) to small random numbers.

While (i < number ofiterations or predefined error threshold ) do
Calculate the output of the classifier (model) using the equation (2.2).
Update the weights according to: wt*D = w® + n(y — $)x

end

In 1969, Minsky and Papert [33] published the lmitations of the perceptron and
demonstrated that the logical gate XOR cannot be expressed with one layer perceptron,
which always performs a linearly separable problem. To overcome this limitation, the
model was extended to Multi-Layer Perceptron (MLP) [34].

2.3.4 Multilayer Perceptron (deep neural networks)

An MLP is a deeper network based on the perceptron unit. It consists of three types of
layers where each neuron in a layer is fully connected to each neuron in the subsequent

layer:
An input layer, where its neurons are fed with the mput data.

An output layer, which corresponds to model outputs. For multi-class classification, the
softmax function can be used to compute the final predictions (class probabilities) as

follows:

softmax(x;) = (2.3)

e
% e"
Hidden layers (intermediate layers between mput and output layer). Each one consists of
multiple neurons. If a multilayer perceptron contains multiple hidden layers, it will be
called deep neural network, hence the term “deep learning”. An illustration of a multilayer
perceptron with two hidden layers is shown n Fig. 2.5.
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input layer
hidden layer 1 hidden layer 2

Figure 2.5. An example of a multilayer perceptron [31]. Each neuron in a layer is connected to each

neuron in the next layer.

Formally, we calculate the output of each neuron (called activation) in a hidden

layer as follows:

x, D = FEm wy P+ b)) (2.4)

Where x;(FD, xj(l) are the activation of neuron i of the (I + 1)-th layer and the activation

of neuron j of the (I)-th layer, respectively. w; j are the weights associated to the neuron

x; "D nindicates the number of neurons in the (1)-th layer.

In MLP, to perform non-linearity to the network, non-linear activation functions are
used, instead of a sign function. Some of these activation functions are illustrated n Fig.
2.6, including the hyperbolic tangent(tanh), sigmoid and rectified linear unit (ReLU).
ReLU is widely adopted rather than the other activation functions, as it reduces the

vanishing gradient and accelerates the training process.

10
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g Enhi{x)={exp(xj-expl-L) ) explxi+exnpl-x)}
— sgmoidix)=1/{1+expi-x}]
41 — relu{x)=max(x,0)
3 4
2
1 4
|}-
. 4
4 2 0 2 4
X

Figure 2.6. Some nonlinear activation functions.

2.3.5 Training ANNs

The goal of the training process is to estimate the model parameters that best predict the
mput by minimizing a loss function (error) L(y,y). This error can be any differentiable
function measuring the mismatch between the predicted outputs by the model and the true
labels. For example, binary cross entropy (BCE) (equation 2.5), categorical cross entropy
(CCE) (equation 2.6), and mean square error (MSE) (equation 2.7) are used for two-class

classification, multi-class classification (with K classes), and regression problems,

respectively.

BCE = =3I, (v;log §; + (1 — ylog(1 — §,)) 2.5)
CCE = =3¢ 1Y logy,; (2.6)
MSE = L3I, (v = 9))° 2.7)
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Chapter 2: Background concepts for Deep Learning

Before starting the training process, all parameters are randomly intialized. In
addition to the loss function, other hyperparameters are established, such as the activation
function, number of layers, etc. The process of learning used for adjusting the model

parameters (weights) is referred to as the backpropagation method [35].

2.3.5.1 Backpropagation and stochastic gradient descent

The backpropagation algorithm starts at the last layer by computing the error between the
predicted output by the model (during the forward pass) and the expected output (true
label). Then, this error is propagated back through the network towards the mputs. For each
layer (during the backward pass), the gradients of the error are computed using the chain
rule, and applied using an optimization algorithm such as stochastic gradient descent
(SGD) to update the model parameters (weights) (Fig. 2.7). SGD is the process of randomly
extracting a small subset called mini-batch of sizec m from the entire training set, computing

error and then the gradients to update the parameters © as

1 ~
E = ZZ?% L(y,y:) (2.8)
0=0-nL=0—nVE (2.9)
20
© = {W,B}, where W is a set of weights and B a set of biases.

n is a hyperparameter called the learning rate, which controls the speed of the training
process. It is often thought of as one of the most important hyperparameters that we will
have carefully tune [36]. A learning rate that is too large can cause an oscillation around
the suboptimal solution; whereas the too small value causes slow convergence (see Fig.

2.8).
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gradients

Figure 2.7. An illustration of backpropagation. From [31]. The green direction indicates the
forward pass (prediction), while the red direction indicates the backward pass, where the

gradient is computed using the chain rule and propagated back to update the weights.
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Figure 2.8. Effect of learning rate. From[37]

The training process takes several epochs to allow the model to learn and finally
converge. An epoch is when the entire traning dataset is passed forward and backward

through the neural network exactly once. The number of mini-batches needed to complete

one epoch is called iterations.

In the following, we will outlne some of the other sophisticated optimization

algorithms, including Momentum, Adagrad, RMSProp, and Adam.
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Momentum

Momentum [38] is a variant of SGD, designed to reduce the noise produced by SGD and
accelerate the convergence by adding a fraction of the previous update to the current

update. Introducing momentum yields the following update equations:
v =yv —nVE (2.10)
O=0+v (2.11)

v 18 known as velocity. It accumulates movement in the direction of the minimum, thus

leading to faster convergence. yis a momentum coeflicient and commonly set to 0.9.

=

(a) (b)

Figure 2.9. SGD. (a) without momentum. (b) with momentum that reduces oscillations. From [39]

Adagrad

In SGD, the learning rate is the same for all parameters and for each iteration. Adaptive
Gradient [40], another variant of SGD, adjusts the learning rate for each parameter by using
the gradients from previous iterations (an accumulation of the historical gradients),
allowing larger updates for less frequent parameters and smaller updates for frequent

parameters. The update equations in Adagrad are

-0 =1_
0=0--LvE 2.12)
s =s+ (VE)? (2.13)

s is the sum of the previous squared gradients until the current iteration. € is used to prevent

division by zero.
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RMSProp

The problem with Adagrad is the decaying learning rate, which becomes infinitesimally
small afier a considerable number of iterations, and eventually no progress can be made
(the model can not learn new knowledge). To deal with this problem, RMSProp (Root
Mean Squared Propagation) [41] restricts the number of previous gradients to some fixed
size rather than using the full set of previous gradients. In RMSProp optimization
algorithm, the learning rate is computed using an exponential average of past squared
gradients instead of a naive accumulation of past squared gradients. The updates to the

gradient accumulation and parameters are as follows:

s=vys+ (1 —y)(VE)? (2.14)
a1

0=0--LVE (2.15)

Adam

Adam (adaptive moment estimation) [42] is another optimization algorithm that its learning
rate changes adaptively for each parameter. This algorithm is currently one of the most
popular and preferred optimizer for deep learning. Adam is a combination of Momentum
and RMSProp. It estimates the first moment of the gradient v (similar to Momentum) and

the second moment of the gradient s (similar to RMSProp) using exponential moving

average:
v=3v+ (1-3,)(VE) (2.16)
s=B,s+ (1 —B,)(VE)? (2.17)

B, B, are the decay rates of the first moment and the second moment of the gradients,
respectively. However, these estimations are biased towards zero, especially in the nitial
steps for small decay rates. At each iteration t, the following equations can be used to

remedy this bias:
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~ 'Ut
V=103t (2.18)
A St
$= (2.19)

Finally, the update rule for Adam is as follows:

0=0--Lo (2.20)

2-3-6 Reduce overfitting in ANNs

When the model performs well on the training dataset, but poorly on an unknown testing
dataset, this problem is called overfitting. This issue can occur when complex networks are
used to solve simple problems. Several regularization techniques are then used to mitigate
the overfitting issue and mmprove the generalization of the model. Some of the techniques
we will use n our experiments include early stopping, dropout [43], batch normalization

[44], and data augmentation.

Early stopping

In practice, we split the dataset into a training set and a validation set. The training set is
used to update the model parameters (weights), while the validation set is used to determine
the model performance. During training, we measure the error on traming and validation
sets, and when the error on an unseen validation set starts to increase (the model begins to
overfit), then the network training is stopped and thus the computational cost of the training
process is reduced. This strategy is known as Early stopping (see Fig. 2.10).

Dropout

Dropout layer is commonly used to reduce overfitting. During training, this layer randomly
drops some neurons and their connections with a probability p, which ranges from 0 to 1.

At test time, all dropped neurons will be active. This concept is depicted in Fig. 2.11.

16



Chapter 2: Background concepts for Deep Learning
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Figure 2.10. Overfitting and Early stopping strategy
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Figure 2.11. Dropout. From [43]. During training phase, some neurons are disactivated

Batch normalization

Batch normalization helps gradient propagation in the model training and accelerates the
learning process. Also, it is another technique, which can be used as a regularizer to reduce

overfitting, It normalizes the nputs to a layer for each mini batch to reduce the internal
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covariate shift (change in the distribution of mternal nodes during tramning). The procedure

of batch normalization is described as follows:

1- Normalize the batch B = {x,x,,...x,,} using the mean and the variance of the
batch calculated as:

1
Mg =—Xil1 X (2.21)
1
0p° = oy Ly — up)? (2.22)
s — Xi“HB
7 = (2.23)

Where ug, 0z% X; are the batch mean, the batch variance, and the normalized
values, respectively.

2- Apply linear transformations to the normalized values X;:

yi=vX;+PB (2.24)

y and f are learnable parameters that correspond to the scaling and shifting

in the transformation.

Data augmentation

Data augmentation is often used to augment the training samples using various
transformation. For example, for image data, various geometric transformations such as
rotation, flipping, and zooming might be used. The goal is that at training stage, the model
will never see the exact same picture twice, and this helps the model to generalize better

[45].
2.4 Deep learning architectures

There are several deep learning techniques currently used in several domains (speech
recognition, robotics and control, medical imaging, bioinformatics, natural language
processing, etc.). These include unsupervised learning such as auto-encoders (AEs), deep

belief networks (DBNs), and generative adversarial networks (GANSs); and supervised
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learning such as recurrent neural networks (RNNs), long short-term memory (LSTM), and
convolutional neural networks (CNNs). The following chapter presents CNNs, which are
used through this thesis.

2.5 Conclusion

In this chapter, we presented a basic introduction to artificial neural networks (ANNs) and
deep learning, which are essential for the understanding of later chapters. We described the
artificial neuron (the first mathematic model of the biological neuron), the perceptron (the
learning algorithm based on the artificial neuron), and the multilayer perceptron (a deeper
network based on the perceptron unit). The process of learning in a multilayer perceptron
is achieved using the backpropagation algorithm based on SGD optimization method or its
variants such as the well-known Adam. Also, we presented some regularization techniques
to reduce the overfitting. For further details and extensive presentation of the field, the
readers can refer to [46] [47].
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Chapter 3: CNNs for semantic image segmentation

3.1 Introduction

Semantic segmentation, also called (pixel-wise classification or dense prediction) aims to
assign a class (category) label to each pixel in an image. It is a common task and one of the
key problems in natural images for visual scene understanding, and medical image analysis
for lesion assessment and disease diagnosis. In this chapter, we present some popular state-
of-the-art CNN based semantic segmentation models. First, we present a convolutional
neural network (CNN) with some popular architectures. The typical usage of CNN is the
image classification task. Then, we describe how to make this network suitable for
segmentation.

3.2 Deep Convolutional Neural Networks (DCNNs)

CNNs [48] are a particular class of ANNs, where the networks perform convolution
operations instead of matrix multiplication. CNNs are used for processing data with a
spatial grid-like topology, such as images, which can be thought of as a 2D or 3D grid of
pixels. The mspiration of the CNNs comes from the brain’s visual cortex [49], where each
neuron only responds to stimuli around a limited region of the visual field known as the
receptive field. These networks have achieved great success in computer vision and
medical image analysis. A schematic representation of a typical CNN is shown n Fig. 3.1.
It contains subsequent layers of convolution (with activation functions) and pooling

operations, and a fully connected layer.

Featuremap  Fully-connected

Input layer Convolutional layer Paooling layer Convolutional layer Pooling layer )
P Y Y Chaed Y & 1y flattening layer
) ) y

Pooling  Filter CONVOlution

Filter convolution Py andactivation T O°Mn8 Pooling
and activation Pooling window window
; Pocled ] Pooled Flattened
Input Feature maps Feature maps Output

feature maps feature maps feature maps

Figure 3.1. A typical CNN. From [50]
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3.2.1 Convolutional layers

A convolutional layer is a set of convolutional kernels. Each kernel is convolved with an
mput tensor or a set of feature maps to produce a feature map. Given an mput image [ of
size HXW XD , akemel K of size N XN X D; where H, W, N are spatial dimensions,
and D is the channel dimension. So, the convolution kernel is run along all the pixels in the
mput image, multiplying the surrounding pixel values with the kernel and adding them.

The resulting output feature map O = I x K (* denotes convolution) is defined as:

0@, ) =Xh o XN _o XN oI +a,j+ b KK, j k) (3.1)

Every convolutional layer is usually followed by an activation function to perform
nonlinearity to the network. Some of these activation functions are already described earlier
like the most popular ReLU. Unlke a fully connected network (MLP) where each input
neuron is fully connected to each output neuron in the previous layer, CNN neurons have
the so-called local (sparse) connectivity. This means that each neuron only depends on a
spatially local subset of inputs in the previous layer (each neuron only has a local receptive
field). By exploiting a local substructure within the image, features that are more
representative can be gradually learnt. Limiting the number of connections of each neuron
means that computing the output requires fewer operations [47]. Another particularity of a
CNN is the weight sharing that refers to using each kernel (smaller than the mput image)
with its fixed weights across different positions of the entire nput image. Weight sharing
allows reducing the number of learnable parameters (weights) and thus building a deeper

network with fewer parameters.

3.2.2 Pooling layers

The pooling layers downsample the extracted feature maps by convolutional layers and
thus increase the receptive field of the network. The commonly used one are 2 X 2 max —
pooling and average pooling. Max — pooling only retains a pixel with the maximum
value among the neighboring four pixels, while the average pooling calculates the
average value instead of just choosing the maximum value. The poolng layer has no

learnable parameters and is useful for controlling the number of parameters and overfitting,
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Figure 3.2. Convolution operation. From [51]

Furthermore, the pooling layer has the propriety of mnvariance to small translations, which

is useful when a feature is present is more important than its precise location.

3.2.3 Fully connected layer

The last layer in a CNN is the fully connected layer. Similar to an ANN, each neuron in

the fully connected layer is connected to all of the neurons in the previous layer.

max pooling

20 | 30
1T12 37
121201 30| O
8 |12]| 2 O
24 |70l 37| 4 | average pooling
112100 25_12 13| 8
79| 20

Figure 3.3. Pooling operation. From [51]
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3.3 Training CNNs

The training process of CNNs is exactly the same as that of ANNs (previous chapter). First,
all kernels (model parameters) are intialized according to different inttialization
techniques (for example, random initialization, He mitialization [52], etc.). The process of
learning used for adjusting these kernels is still the backpropagation algorithm, which
computes the error (loss function to minimize). Then, this error is propagated back through
the whole network. The gradients of the error are computed and applied using an
optimization algorithm (SGD, Adam, etc.) to update the model parameters. Usually,
traming a CNN from scratch requires a proper initialization of parameters (weights) and
can consume a lot of time. Instead, it is often recommended to mitialize the parameters
with a pretrained network (fine-tuning) and start the training from the point where the pre-
traned network stopped its training [53]. This can help speed up the traming since the

model has already been trained on a large dataset and has thus learned reliable parameters.

3.4 Popular CNN architectures
In this subsection, we provide a brief description of some well-known CNN models.
LeNet (1998)

Lecun et al. [48] developed the first CNN architecture (LeNet) for automatic recognition
of handwritten digits. As shown in Fig. 3.4, the LeNet architecture takes an image of size
32 x 32 as mput (a grayscale image) and passes it through a convolutional layer C1 (with
6 kernels of size 5 X 5 and sigmoid as the activation function) to produce 6 feature maps
of size 28 X 28. Then, a pooling layer S2 (subsampling) is performed to reduce the size of
the produced 6 feature maps to14 X 14. The next layer is again a convolutional layer C3
(with 16 kernels of size 5 X 5) that produces 16 feature maps of size 10 X 10. The
produced 16 feature maps are again downsampled, followed by two fully connected layers
of 120 and 84 units (neurons), respectively. Finally, the output layer is composed of 10
Euclidean Radial Basis Function units (RBF) corresponding to the 10 digits.
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Figure 3.4. LeNet network. From [48]

AlexNet (2012)

AlexNet [54] won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
2012 competition [55]. This competition used a subset of ImageNet database of around 1.2
million images of 1000 classes for traning and 150,000 images belonging to 1000 classes
for testing. AlexNet was the first CNN to realize the potential of deep learning on large
datasets. As illustrated in Fig. 3.5, the input to the network is an image of size 224 X 224 X
3 and the output is a softmax function for classification. The network has a simple
architecture, which consists of five convolutional layers that used ReLU activation
functions, three max-pooling layers, and three fully connected layers. The convolutional
layers used kernels of different sizes (11 X 11 for the first, 5 X 5 for the second, 3 X 3 for
the third, fourth and fifth convolutional layers). To reduce overfitting, AlexNet adopted
several regularization techniques, such as Dropout and data augmentation. AlexNet was
tramed on two GPUs (GTX 580 GPU with 3 GB memory) for fast computation.
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Figure 3.5. Anillustration of AlexNet architecture. From [54].

VGGNet (2014)

This network won the first place in the localization task, and the second place in the
classification task of the (ILSVRC) 2014 competition. It was developed by Simonyan and
Zisserman [22] from the University of Oxford. VGGNet utilizes very small 3 X 3 filters
rather than an assortment of larger filters. This work demonstrated that the stacked
convolutions to increase the depth of the architecture (16 or 19 layers) by using these small
filters reduces the parameter space and achieves higher performance. For example, two
convolutions with filters of size 3 X 3 have an effective receptive field of 5 X 5, but the
amount of parameters to estimate decreases from 25 to 18 , and three convolutions with
filters of size 3 X 3 have an eflective receptive field of 7 X 7, but the amount of parameters
is reduced from 49 to 27. As shown in Fig. 3.6, there are 13 convolutional layers and three
fully connected layers. Although the network is slow to train (because it has 138M
parameters), it remains very popular. This is largely because it still performs well on image

classification tasks, and has a simple structure that is easy to modify [56].
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Figure 3.6. The architecture of VGG16. From [57].

GoogleNet (2015)

Szegedy et al. [58] from Google mtroduced GoogleNet architecture with the objective of
reducing the number of parameters in the network compared to previous architectures, and
capturing complex features at multi-levels. Instead of stacking convolutional and pooling
layers in traditional CNNs to increase the depth of the network, the authors used new sub-
networks called inception modules as multi-scale feature extractors to increase the width
of the network. An inception module is shown in Fig. 3.7. It consists of 1 X 1, 3 X 3, and
5 X 5 convolutions and pooling layer. The outputs of these four layers are concatenated
and fed into the next layer in the network. The extra 1 X 1 convolutions serve as bottleneck
layers to reduce the dimensionality of feature maps. The network won the (ILSVRC) 2014
challenge. Other versions and extensions of inception modules are proposed n (BN-

Inception [59], Inception-ResNet [60], and Xception [61]).
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Figure 3.7. Inception module. From [58].

ResNet (2016)

He et al. [62] proposed ResNet architecture (see Fig. 3.9) that uses new building modules

called residual blocks. The residual block stacks convolutional layers with residual

connections (shortcut connections) as shown in Fig. 3.8. These residual connections in

residual blocks alleviate the vanishing gradient problem and facilitate the training of very

deep networks since a residual block learns a function with reference to the layer mputs,

mstead of learning unreferenced functions.
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Figure 3.9. Architecture of ResNet34. From [62].
DenseNet (2017)

Huang et al. [11] proposed DenseNet, which consists of several dense blocks (Fig. 3.11).
Within each dense block and via concatenation, the output feature maps of each layer are
directly connected with the output feature maps of all successor layers, as illustrated in Fig.
3.10. This strategy makes the training process easier and improves the classification

performance.
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Figure 3.10. A dense block. From [11].
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Figure 3.11. DenseNet with three dense blocks. From [11].
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3.5 CNNs based semantic segmentation

In recent years, the state-of-the-art semantic image segmentation methods have been based
on CNNs. This chapter presents the most popular state-of-the-art CNNs based semantic
image segmentation architectures. The typical usage of a CNN is the image classification
task. There are several methods how to make this network suitable for segmentation. In the

following, we describe these, including sliding-window, fully convolutional networks,

29



Chapter 3: CNN s for semantic image segmentation

encoder-decoder models, dilated convolution and DeepLab models, and pyramid pooling

networks.

3.5.1 Sliding-window approach

In this approach, the segmentation can be performed by dividing the image into patches
(square windows) and passing them into a CNN classifier to obtain a label for the central
pixel of each patch [63]. However, this method has some drawbacks. First, it is very slow
since it can only predict one pixel label by once forward computation. Secondly, there is a
trade-off between computational cost and the use of context. Large patches require more
computational time but allow the network to use more contextual information, whereas

small patches can only use small context, but the computation costis low.

MRI Patch-wise CNN Segmentation

Input M convolutional / Fully Connected
B 4ctivation i Pooling il Output

Figure 3.12. Illustration of sliding-window approach. Extracted from [64].

3.5.2 Fully convolutional networks (FCNs)

In 2015, Long et al. [23] introduced the first FCN to image segmentation task. They adapted
the classification CNNs pre-trained on ImageNet (AlexNet, VGG-16, and GoogleNet) into
FCNs by converting the fully connected layers to convolutional layers. The resulting fully
convolutional network (FCN) can take nput of any size and produce a probability map for
each pixel with a single pass that is much more efficient than output for a single pixel
predicted by sliding-window approach. However, because of consecutive pooling layers or

striding convolutions, the resolution of the output is far lower than the mput. To recover
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the original mput resolution, upsampling layers such as unpooling, max-unpooling, and up

convolution (transpose convolution) can be used [65] (see Fig. 3.13).
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Figure 3.13. Upsampling techniques. (a) unpooling, (b) max-unpooling, (c) transpose
convolution. From [65].
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In FCN [23], the authors upsampled the last convolutional layer to the size of the mput
image (FCN32). To enhance the segmentation, the upsampled feature maps were summed
with the corresponding feature maps skipped from the encoder m one (FCN16) or two
(FCNB) levels (Fig 3.15).

forward /inference

backward /learning

Figure 3.14. FCN. From [23].
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Figure 3.15. Skip connections via addition. From [23].
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3.5.3 Encoder-decoder models

Most state-of-the-art CNNs adopt encoder-decoder architectures, such as DeconvNet [66],
SegNet [24], U-Net [14], and FC-DenseNet [67].

DeconvNet

Noh et al. [66] proposed a deep encoder-decoder network (DeconvNet). The encoder part
corresponds to a feature extractor that has the same topology as VGG16 [22] excluding the
last classification layer. The contribution of DeconvNet lies in the decoder part (deep
deconvolution network) that takes as input the feature representation and generates a map
of pixel-wise probabilities. Unlike FCN, the decoder part is composed of multiple series of

unpooling and deconvolution layers to construct dense pixel-wise class prediction map.
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Figure 3.16. DeconvNet architecture. From [66]

SegNet

Badrinarayanan et al. [24] developed a symmetric encoder-decoder segmentation network
called SegNet (see Fig. 3.17). Similar to DeconvNet, the encoder part has the same
topology as VGG16, but without any fully connected layers, which makes the encoder part
smaller and easier to train than DeconvNet. The SegNet encoder consists of 13

convolutional layers that extract deep feature maps, and the same layers are mirrored in the
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decoder part. The decoder part consists of convolution and upsampling layers that use

pooling indices computed in the max-pooling from the corresponding encoder part.

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image I conv + Batch Normalisation + RelU Segmentation
B Pooling I Upsampling Softmax

Figure 3.17. SegNet. From [24].
U-Net

U-Net [14] is the most well-known and commonly used in medical image segmentation.
Similar to FCN, DeconvNet, and SegNet, U-Net contains two components: an encoding
path (encoder) and a corresponding decoding path (decoder). The encoding path is
composed of convolutional and pooling layers to extract high-level semantic information
(deep features), and the decoding path is composed of transposed convolutional and
convolutional layers to perform segmentation (dense prediction). To help recover the
missing detail lost by pooling layers, U-Net concatenates the low-level feature maps of the
encoding path with the corresponding feature maps of the decoding path. Several
extensions of U-Net have been developed in nearly for all imaging modalities [68]. For
example, Zhou et al. [25] proposed a nested U-Net architecture (U-Net ++) where the
encoder and the decoder sub-networks are connected through a series of nested, dense skip
pathways. They conducted experiments on four medical imaging datasets of different
modes. Ibtehaz et al. [69] proposed MultiResUNet model that replaces the sequence of two
convolutional layers and skip connections with the proposed MultiRes block and Res paths,
respectively. MultiResUNet has also been applied to a repertoire of multimodal medical

images.
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Figure 3.18. Architecture of U-Net. From [ 14].

FC-DenseNet

Jégou et al. [67] extended the classification network DenseNet to a fully convolutional
network for semantic segmentation (FC-DenseNet). As illustrated in Fig. 3.19. The
downsampling path (encoder) comprises convolution, dense blocks, and Transitions Down
(TD). On the other hand, the upsampling path (decoder) mncludes Transitions Up (TU), skip
connections, and convolution. Note that in the encoder, the iput to a dense block is

concatenated with its output, except for the last one, which is used as a bottleneck.
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Figure 3.19. FC-DenseNet architecture. From [67]

3. 5.4 Dilated convolution and DeepLab models
Dilated convolution

Instead of downsampling feature maps, Yu and Koltun [16] developed a convolutional
network module using dilated convolutions to aggregate multiscale contextual information
for dense prediction. Dilated convolutions enlarge the receptive field of the network
without reducing spatial resolution by inserting “zeros” in the convolution kernels (Fig.
3.20). Fig. 3.21 summarizes the proposed context modules (basic and large), which were
plugged into the front-end network. The latter is a truncated VGG16 obtained by removing
the last two pooling and striding layers.
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2 2 2 2

Fig 3.20. Dilated convolution with dilation of 2. From [70].

| Layer | 1 [ 2 | 3 [ 4 | 5 ] 6 | 7 l 8 |
Convolution 3x3 | 3x3 | 3x3 3x3 3x3 3x%3 33 1x1
Dilation 1 | 2 4 8 16 1 1
Truncation Yes Yes Yes Yes Yes Yes Yes No
Receptive field | 3x3 | x5 | 9x9 | 1Tx17 | 33x33 | 65x65 | 67x67 | 67x67
Output channels
Basic C o c C (8] [ C C
Large 2C 2C 4¢' 8C' 16C 32C 32C C

Fig 3.21. Convolutional network module. From [16]. By using different dilations, information in

multiple scales can be sampled and then concatenated.

Since the use of dilated convolution can cause gridding artifacts, Yu et al. [71]
developed a scheme that uses residual connections and called dilated residual networks

(DRN) to alleviate these artifacts and further increase the performance.
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Figure 3.22. DRN architectures. From [71]. The bold green lines represent the down-sampling. The

output feature maps were upsampled to full resolution using bilinear interpolation.
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DeepLab models

Chen et al. [18] presented a DCNN called DeepLab for semantic segmentation. In their
network, they replaced the last two max-pooling operations from the VGG16 network by
dilated (atrous) convolutions to maintain the feature resolution unchanged to incorporate
larger context. To improve the localization of object boundaries, they appended their

pipeline with the fully connected conditional random field (CRF) (see Fig. 3.23).

DCMNMN Aercplane Coarse

- Score maj
Atrous Convolution
0 m i C

Final Output

Fig 3.23. DeepLab model illustration. From [18]

An improvement of DeeplLab, which is DeepLabv2, introduced the atrous spatial
pyramid poolng module (ASPP), where parallel dilated convolutions with different

dilation rates were performed to segment objects at multiple scales.
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Figure 3.24. Atrous Spatial Pyramid Pooling module (ASPP). From [18].
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Based on the DeepLabv2 network, DeepLabv3 [19] revisited atrous convolution and
designed modules that employ atrous convolution in cascade or in parallel, and included
batch normalization within ASPP. Furthermore, global average pooling was added to

encode the global context to further boost the segmentation performance.
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Figure 3.25. Improved ASPP. It consist of 1 X 1 convolution, three 3 X3 convolutions with

differents dilation rates, all with batch normalization, and image-level features (global average

pooling). From [19].

Lately, to refine the object boundaries, Chen et al [20] added a decoder path to
DeepLabv3 and called it DeepLabv3+. In order to build a faster and stronger network, they
employed the Xception model [61] as the network backbone and mtroduced depthwise

separable convolution into ASPP and decoder modules.
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Figure 3.26. DeepLabv3+. From [20].
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3.5.5 PSPNet

PSPNet [17] provides an effective global prior representation for pixel-wise scene parsing.
As shown m Fig. 3.27, the authors proposed a pyramid pooling module (PPM) at the end
of the backbone network. This PPM used four pooling layers with different kernel sizes:
1x1, 2x2, 3x3, and 6 X 6. As a result, levels of information (feature maps) were
collected. To reduce the number of feature maps, 1 X 1 convolutional layer was used after
each pyramid level. Then, these low-dimension feature maps were upsampled (via bilinear
mterpolation) to the original sizes and concatenated with the origmal input features.
Finally, this final feature representation was fed into convolutional layer to get the pixel-

wise prediction.
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(a) Input Image (b) Feature Map (c) Pyramid Pooling Module (d) Final Prediction

Figure 2.27. Overview of PSPNet. From [17].

3.6 Conclusion

This chapter focused on CNNs, which are the most commonly used in computer vision and
medical image analysis, and achieved the state-of-the-art performance. We presented some
popular CNN based models for semantic image segmentation. Other CNN based models
and a comprehensive review of deep learning based architectures for semantic

segmentation of natural and medical images can be found n several surveys [72-80]. The
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success of CNN encouraged us to orient this thesis to tackle the problem of skin lesion

segmentation using this network as the backbone of the proposed approaches.
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4.1 Introduction

In recent years, dermoscopy has been widely used for melanoma detection. Dermoscopy
(also known as epiluminescence light microscopy, dermatoscopy, or skin surface
microscopy) is a non-invasive imaging technique that uses optical magnification, liquid
mmersion, and a light source or cross-polarization of a light source to make the contact
area (epidermis) translucent, consequently increasing the visbility of subsurface structures
of the skin [10, 81]. Various methods have been developed for melanoma detection, such
as the ABCD rule (Asymmetry, Border, Color, and Differential structure) [82], the Menzies
method [83], the 7-pomt checklist [84], the CASH algorithm (Color, Architecture,
Symmetry, and Homogeneity) [85], and pattern analysis [86]. However, manual analysis
of dermoscopy images is time-consuming, subjective, and poorly reproducible. In this
regard, computer aided diagnosis systems (CADS) can be used to enhance the diagnosis
performance. One of the most important steps in CAD systems is the automated and
accurate segmentation of skin lesions. This task is a very challenging issue due to the
various factors, such as the presence of hair, blood vessels, and bubbles; some lesions have
irregular and fuzzy boundaries, very low contrast between the lesion and the surrounding

healthy skin, wide variation regarding sizes and colors.

Figure 4.1. A dermoscope. From [87]

The rest of this chapter is organized as follows: the next section provides an overview
of skin anatomy and diseases. Then, we present the datasets and metrics used for skin lesion
segmentation in section 4.3 and section 4.4, respectively. The skin lesion segmentation

methods, including unsupervised methods, traditional supervised methods, and especially

42



Chapter 4: skin lesionsegmentation methods for dermoscopy images

deep learning-based methods are described in section 4.5. Finally, the section 4.6 concludes

the chapter.

4.2 Skin Anatomy and diseases

Skin is the largest organ in the human body in terms of both surface and weight. It has a
surface area of 2m? and a weight of 3.6 kg for an adult [88]. It mainly acts as a barrier to
the exterior environment. It protects the deeper body tissues from mnjury, helps regulate
body temperature, protects the body from harmful effects of UV radiation, synthesizes
vitamin D, and provides sensory information (pressure, pain, heat, and cold). The skin
consists of three layers of tissue (Fig. 4.2): the epidermis, the dermis, and the hypodermis
(subcutis), all with different thicknesses and functions. The epidermis is the outermost
layer of skin and is made up of five sub-layers: stratum corneum (the top layer), stratum
lucidum, stratum granulosum, stratum spmnosum and stratum basale (the base layer). The
epidermis contains melanocytes. These cells produce melanin, which gives the skin its
color to protect against UV radiation. In addition to melanocytes, the epidermis also
contains other specialized cells, such as keratinocytes (the majority of cells in it) that
produce keratin, Langerhans cells that have an immunologic function, and sensory
recipient cells that called Merkel cells. The dermis is the middle layer (under the
epidermis). It contains different types of cells, such as collagen fibers, blood vessels, and
fibroblasts. It gives the skin toughness, strength, and flexibility and nourishes the
epidermis, which has no blood vessels [89]. The third layer is the hypodermis, which is a
fatty layer. It functions as a reserve source of energy and forms the link between the skin
and the rest of the body [89]. Skin disease is one of the most common diseases that occur
all over the world. There are various types of skin diseases according to their origin and
degree of malignancy [90] (Fig. 4.3). The common malignant skin diseases are basal cell
carcmoma (BCC), squamous cell carcmoma (SCC), and the most deadly type called

melanoma. The main cause of these cancers is due to increased ultraviolet (UV) exposure.
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Basal cell carcinoma

It is the most common but the least malignant type of skin cancer. It starts in the stratum
basale (basal cells), which is the deepest layer of the epidermis. This cancer usually

develops on areas of skin that are exposed to the sun, such as the face, head, and neck.
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Figure 4.2. Structure of the skin. Image from [91]
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Figure 4.3. Skin diseases types. From [90]

BCCs grow slowly and rarely spread to other parts of the body. But if allowed to grow, it

can be dangerous and mvade the bone or other tissues beneath the skin [92][93].
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Squamous cell carcinoma

This cancer is the second most common type of skin cancer. It starts in the squamous cells
located above the stratum basale. SCCs commonly occur on sun-exposed areas of the body.

Untreated SCCs can become mvasive, and spread to other parts of the body [94].

Malignant melanoma

This cancer is the least common, but the deadliest type of skin cancer. Melanoma arises
when melanocytes (the cells in the epidermis that produce melanin) begin to grow out of
control. It can develop on areas of the body that are never exposed to the sun. Melanoma
is characterized by its high metastasis rate, and thus the treatment would be complicated
and deadly [95]. Therefore, early detection of melanoma is essential because it can increase

the survival rate of patients.

4.3 Dermoscopic lesion segmentation datasets

In this subsection, we present the common publicly available datasets for skin lesion
segmentation from dermoscopic images. For a more detailed overview of other datasets
used for skin disease diagnosis, including three types of modalities (dermoscopic images,

clinical images, and pathological images), the readers may refer to [50, 95, 96].

PH2 dataset

The PH2 dataset [97] is provided by the Universidade do Porto, Tecnico Lisboa, and the
Dermatology Service of Hospital Pedro Hispano i Portugal. This dataset contains 200
dermoscopy images and their ground truths (160 non-melanoma and 40 melanoma), and
were acquired under the same conditions through Tuebinger Mole Analyzer system using
using a magnification of 20 X. All images are §8-bit RGB in BMP format with size varies
from 553 X 763 pixels to 577 X 769 pixels.

ISIC Dataset

In recent years, the well-established public benchmark datasets used in the literature have
been provided by the International Skin Imaging Collaboration (ISIC) archive [98], which
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contains dermoscopic images collected from a variety of different leading mternational
clinical centers, acquired from various devices used at each center. ISIC organizes yearly
a challenge named skin lesion analysis toward melanoma detection at the IEEE
International Symposium on Biomedical Imaging (ISBI). The goal of the challenge is to
provide a dataset of dermoscopic skin images to boost the performance of melanoma
diagnosis. For the segmentation task, three datasets were provided from 2016 to 2019 as

follows.

e ISBI 2016 dataset [99] contans 900 training annotated mmages (727 non-melanoma
and 173 melanoma). For evaluation, another set of 379 images (304 non-melanoma
and 75 melanoma) and therr ground truths were provided. These images are 8-bit
RGB i JPG format with size varies from 566 X 679 pixels to 2848 x 4228
pixels.

e The ISBI 2017 dataset [100] contams 2000 traming dermoscopy images and their
ground truths (1626 non-melanoma and 374 melanoma), 150 annotated images
(120 non-melanoma and 30 melanoma) for validation, and another set of 600
annotated images (483 non-melanoma and 117 melanoma) for evaluation (testing).
All mages are 8-bit RGB mn JPG format with different sizes from 540 X 722
pixels to 4499 X 6748 pixels; while the ground truths are binary masks in PNG

format.

e The ISBI 2018 dataset [101, 102] consists of 3694 RGB dermoscopic images with
2594 training annotated images, 100 images in the validation set and 1000 in the

testing set; and both of them without corresponding segmentation masks. Image

size varies from 576 X 768to 6748 X 4499,

The distribution of these datasets is summarized in Table 4.1, while Fig. 4.4 illustrates
some images in the PH2 and ISBI 2017 datasets.
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Dataset Lesion type Training data Validation data Test data

PH2 [97] Common Nevi - - 80
Atypical Nevi - - 80
Melanoma - - 40

ISBI 2016 [99] Melanoma 173 - 75
Non-melanoma 727 - 304

ISBI 2017 [100] Melanoma 374 30 117
Seborrheic Keratosis 254 42 90
Benign Nevi 1372 78 393

ISBI 2018 [101, 102] - 2594 100 1000

Table 4.1. The distribution of PH2, ISBI2016, ISBI2017, and ISBI 2018 datasets.
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Figure 4.4. Examples of skin lesion images in PH2 (the first row), ISBI 2017 (the second row).
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4.4 Performance evaluation metrics

The performance of the segmentation algorithms is assessed by several metrics. The
commonly used are: Jaccard index (JAC), dice coeflicient (DIC), sensitivity (SEN),

specificity (SPE), and accuracy (ACC). As a result of automatic segmentation, there are
four possible outputs, which represent the elements of the confusion matrix (Fig. 4.5) and

are used to calculate the aforementioned metrics:

True positives (TP): the number of lesion pixels that were correctly segmented.

True negatives (TN): the number of non-lesion pixels (background, healthy skin) that were
correctly segmented.

False positives (FP): the number of non-lesion pixels that were incorrectly segmented.
False negatives (FN): the number of lesion pixels that were incorrectly segmented.
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Figure 4.5. Confusion matrix (b) contains the output results given by the classifier (a) (the black

circle) on a dataset with two classes. From [103].

Jaccard index (JAC) and dice coeflicient (DIC) are the most common evaluation metrics.
They measure the similarity between the predicted segmentation mask (PR) and the ground
truth (GR), and are defined as:

JAC = [PRNGRI

" |PR| +|GR|-IPRNGR|

@.1)
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__ 2%|PRNGR|

bic = |PR| +|GR| 4.2)
At pixel level, they can be also calculated as:
TP
JAC = TP+FP+FN 43)
pICc = —2% (4.4)
2TP+FP+FN

Sensitivity (SEN) : this is the proportion of lesion pixels that were correctly classified. It
is defined as:

TP
TP+FN

SEN = 4.5)

Specificity (SPE) : this is the proportion of non-lesion pixels (healthy skin) that were

correctly classified. It is given as:

TN
TN+FP

SPE =

(4.6)

Accuracy (ACC) : this is the proportion of pixels that were correctly classified (both TP
and TN). It is expressed as:

ACC = —2TN 4.7

TP+FP+FN+TN

4.5 SKkin lesion segmentation methods

To address the problem of automatic skin lesion segmentation, various methods have been
proposed, and they can be categorized into three groups [10]: unsupervised methods,

traditional supervised methods, and deep learning-based methods.

4.5.1 Unsupervised methods

These techniques do not require training data and generally fall into one of the following

groups.
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Thresholding techniques

These techniques have been widely used in literature. They use the histogram of the mnput
image to separate the lesion from the background (skin) by the determination of one or
more threshold values [7, 104]. Celebi et al. [104] proposed an automated method for
detecting lesion borders in dermoscopy images. In their work, they fused the results
provided by an ensemble of thresholding methods such as Huang threshold [105], Kapur
threshold [106], Kittler threshold [107], and Otsu threshold [108]. Yuksel and Borlu [109]
mtroduced a method that uses type-2 fuzzy logic techniques [110] to automatically

determine the threshold value for accurate segmentation of dermoscopic images.

Clustering techniques

They attempt to partition the color space of dermoscopy images into homogeneous regions
[111]. Zhou et al. [112] presented a new mean shift based fuzzy c-means method that
incorporates a mean field term within the standard fuzzy c-means objective function. The
proposed segmentation method required less computational time than other fuzzy c-means
(FCM) algorithms. Furthermore, it provided superior performance. Castillejos et al. [113]
proposed a novel approach for dermoscopic image segmentation based on wavelet
transform (WT) for k-means, fuzzy c-means (FCM), and cluster preselection fuzzy c-
means (CPSFCM) techniques.

Edge-based methods

They utilize edge operators. An edge in image processing is an area with abrupt changes
in the intensity value (gray level). In edge-based methods, segmentation is done by
identifying the discontinuities to detect boundaries in the image. Abbas et al [114]
presented an automated method to detect lesion borders in dermoscopy images. Their
method started with a pre-processing step where artifacts were removed using
homomorphic transform filtering [115], a weighted median filter and an exemplar-based
object removal algorithm [116]. Then a least-squares method (LSM) [117] was performed
to acquire edge points. Finally, the dynamic programming (DP) technique [118, 119] was

used to find the optimal lesion border.
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Region-based methods

These techniques utilize region splitting, which partitions the image mto several sub-
regions having similar characteristics (the neighboring pixels within one sub-region are
similar, with respect to a set of pre-defined criteria), region merging, or both [7, 120].
Celebi et al. [120] introduced a technique to detect lesion borders in dermoscopy images
using the statistical region merging (SRM) algorithm [121], which is based on region
growing and merging. Lately, Ahn et al. [122] mtroduced Saliency based method to detect
skin lesions by incorporating background detection coupled with iherent color
characteristics in the dermoscopic images. In addition, they used hair removal as a pre-
processing step. Bi et al. [123] presented a multi-scale superpixel with cellular automata
(MSCA) to perform the segmentation of a skin lesion. As a pre-processing step, they
adopted hair removal. Pennisi et al. [124] presented an approach called ASLM, which
comprised four steps: 1) Artifact removal, 2) Skin detection, 3) Lesion segmentation, and
4) Merging the two images generated in steps 2 and 3 to produce the final segmentation

map.

Active contours methods

They use curve evolution techniques through appropriate deformation to detect object
contours [7]. Erkol et al. [125] developed a technique based on gradient vector flow (GVF)
[126] to segment skin lesions in dermoscopy images. Zhou et al. [127] presented a new
type of dynamic energy for skin lesion segmentation that combines a mean shift term [128]
within the standard GVF model.

4.5.2 Traditional supervised methods

These methods need training data. They focus on extracting representative features, such
as color, shape, or texture, by using several pre-processing techniques such as hair removal

and illumination correction, and then train classifiers, such as support vector machines

(SVMs) [129], wavelet network (WN) [130], to segment skin lesion.

Further details of all these techniques (unsupervised and traditional supervised
methods) and other methods recently published are presented in [8, 131-139]. However,
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the aforementioned methods do not capture high-level semantic mformation and only rely
on low-level hand-crafted features (appearance information). Consequently, these
techniques are still not robust and have difficulty for segmenting the challenging cases of

low contrast, complex textures, and the presence of hair [5,9,10].

4.5.3 Deeplearning-based methods

Deep learning-based methods, specifically CNNs, have recently become more popular for

skin lesion segmentation.

Yu et al. [140] used a two-stage approach based on very deep residual networks (more
than 50 layers), to acquire richer and more meaningful features, for the segmentation of
skin lesions followed by classification. They evaluated their network on ISBI 2016 and
were ranked second in segmentation and first in classification. Although the study obtained
promising results, there were still some failure samples in situations such as low contrast,

iregular shapes, and the presence of hair.

Bi et al. [141] proposed a multi-stage FCN to predict the results of segmentation in
multiple stages. They used the parallel integration (PI) technique that enables the fusion of
these segmentation results to better detect the lesion boundaries. By using post-processing
techniques, such as morphological operation and connected thresholding, they achieved

state-of-the-art results on the ISBI 2016 and PH2 datasets.

Yuan et al. [5] presented a FCN model with the introduction of a new loss function,
based on the Jaccard distance to replace the conventionally used cross-entropy. They
compared the segmentation performance using some key components of their model, such
as input image size, data augmentation techniques, optimization method, and loss function.
As post-processing operations, they used the dual-threshold method and morphological
dilation. Theirr model outperformed the state-of-the-art methods on the ISBI 2016 and PH2

datasets. Despite these good results, there were some cases with suboptimal results.

Yuan et al [142] mtroduced deep convolutional-deconvolutional neural networks

(CDNN). In addition to the RGB channels, they have used additional channels from
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multiple color spaces, of which three channels were from the HSV color space and other
channel, which is the lightness channel (L) from the CIELAB color space. By using a
bagging-type strategy to average the outputs of six models, they obtained the first place n
the ISBI 2017 challenge.

Almasni et al. [9] used the full resolution features without the down-sampling path.
Furthermore, they generated HSV images in additon to the RGB. Their approach
outperformed other recent deep learnng methods on ISBI 2017 and PH2 datasets.
However, in terms of traning times, this method was computationally expensive that took

about 17.5 h even with using a powerful hardware (GPU of NVIDIA GeForce GTX 1080).

Mirikharaji et al. [143] proposed a deep auto-context fully convolutional neural
network. They trained a sequence of FCNs in a consecutive manner, where the mput of
each network is the original image concatenated with the predicted segmentation map of

the previous network.

Bi et al. [10] proposed three segmentation models, to segment non-melanoma,
melanoma, and a last one for both non-melanoma and melanoma. They utilized a step-wise
mtegration method to combine the segmentation results derived from each learning model.
They used post-processing operations including morphological dilation and connected
thresholding, to refine the binary segmentation result. They validated their method on ISBI
2017, ISBI 2016, and PH2 datasets, and achieved the superior performance compared to
the existing works. However, training three models are computationally expensive, where

each one took about 48 h using Nvidia Maxwell Titan X GPU.

Tang et al. [144] proposed a Separable-U-Net architecture, which uses the separable
convolutional block i both the encoder and the decoder paths. To solve the overfitting

problem, they itroduced the stochastic weight averaging scheme as a solution.

Sarker et al. [145] introduced an encoder-decoder model. The encoder network
consists of a dilated residual and a pyramid pooling network. They formulated a new loss
function, which comprised Negative Log Likelhood (NLL) and End Point Error (EPE
[146]) terms.
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Shahin et al. [147] proposed an encoder-decoder network that uses pyramid pooling
modules in the deep skip connections. They trained and validated their model using the

ISIC 2018 dataset.

More recently, Hasan et al. [148] proposed an encoder-decoder called the dermoscopy
skin network (DSNet). To minimize the number of network parameters, they used depth-

wise separable convolution instead of standard convolution.

Oztiirk and Ozkaya [149] presented improved FCN (iIFCN) structure. They used the
elemental powers of different color spaces to eliminate the effect of disturbing factors, such

as the presence of hair, illumination problems, and indistinct boundaries.

Xie et al. [150] mtroduced a novel CNN architecture, which generates high-resolution
feature maps to preserve details, and adopted attention mechanism to highlight

representative features while suppressing noise.

In [151], the authors proposed a segmentation model based on CNNs with using image
representations from transform domain to improve the performance. In addition, CIELAB

color space was concatenated with the input to provide more information for the model

Zafar et al. [152] designed Res-Unet, which combines two networks, the U-Net and
the ResNet. Moreover, they used image impainting for har removal, to improve the

segmentation performance.

Jiang et al. [153] presented an end-to-end framework based on U-Net structure and
composed of the proposed CSARM modules (Channel and Spatial Attention Residual
Module), multi-scale mput layer, and side output layers. The new attention module
CSARM combines channel attention mechanism, spatial attention mechanism, and residual

learning to improve the model performance.

Several other CNN architectures have also been proposed in [154-170]. The following
table (Table 4.2) presents implementation details of some of these methods, including

datasets used, mput image sizes, loss functions, and optimizers; and results in terms of JAC.
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Ref.  Year Input Loss function Optimizer ~ Dataset JAC
[5] 2017 192 x 256 based on Jaccard Adam ISBI 2016  0.847
PH2 -
[142] 2017 192 x 256 based on Jaccard Adam ISBI 2017  0.765
[167] 2021 120 x 160 Cross entropy (CE) SGD ISBI 2018 0.820
[169] 2021 192X 256 Dice loss Adam ISBI 2017 0.7765
[166] 2021 256 x 256 Dice loss Adam ISBI 2018 0.8399
ISBI 2017 0.7427
ISBI 2016 0.8623
[170] 2019 - CE SGD ISBI 2016 0.845
[159] 2021 224 x 224 CE Adam ISBI 2018 0.8330
[161] 2021 256 x 256  Dice loss +CE Adam ISBI 2017 0.7692
[148] 2020 192 x 256 CE+ID Adadelta ISBI 2017 0.775
PH2 0.870
[150] 2020 512x 512  Weighted CE Adam ISBI 2017 0.783

ISBI 2016 0.858

PH2

0.857

Table 4.2. Implementation details of some CNN architectures.

4.6 Conclusion

In this chapter, we briefly described dermoscopy, the principal layers of skin, and the

common types of skin diseases. Then, we presented the common publicly available datasets

of dermoscopy images, including ISBI 2018, ISBI 2017, ISBI 2016, and PH2, and the

evaluation metrics for the segmentation task. Fmally, we provided a comprehensive

overview of methods used in skin lesion segmentation, including unsupervised methods,

traditional supervised methods, and deep learning-based methods. In recent years, CNNs

have attracted much attention and achieved promising results.
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5.1 Introduction

In this chapter, we will describe our approaches, which are based on U-Net structure. The
first approach is evaluated on ISBI 2016 dataset and compared to U-Net as a baseline. The
second approach is evaluated on ISBI 2017 dataset and compared to the equivalent
structure, a basic FCN (U-Net without skip connections) and U-Net as baselines. The third
approach, which is the improvement of the first approach, is the main contribution of this
thesis. It is evaluated on three datasets, including ISBI 2017, ISBI 2016 and PH2. This
approach is compared to several state-of-the-art models, such as FCN, U-Net, SegNet, and
U-Net++ as baselines and other latest existing methods in the literature.

5.2 Our approaches
5.2.1 A Modified U-Net for Skin Lesion Segmentation

In this approach, for skin lesion segmentation, we propose an encoder-decoder based on
U-Net structure. The model employs dilated convolutional layers in both the encoder and
the decoder to enlarge filter’s field-of-view, in order to capture multi-scale information
[20]. This network also uses pyramid pooling modules (PPMs) [17], which fuse features

under multiple levels for more representativeness.

5.2.1.1 Network Architecture

The proposed model for automatic skin lesion segmentation is shown i Fig. 5.1b. The
mput is an RGB image, and the output is a probability map. Our model, like U-Net, is
made up of two parts: a contracting path (encoder) for extracting abstract features and an
expanding path (decoder) for recovering spatial resolution. The encoder comprises
convolutional layers and max-pooling operations with a stride of 2. Convolutional layers
extract the feature maps from the input image by convolving the latter with a set of kernels
of size 3 X 3. We use dilated convolutional layers (with different dilation rates) to enlarge
the receptive field of kernels. This strategy allows incorporating larger context without
increasing the number of parameters associated with kernels. Max-pooling operations
(downsampling) are used to reduce the size of the extracted feature maps by only retaining

a pixel with the largest value among the neighboring four pixels. This aims to be efficient
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mn memory albeit with a loss of the spatial resolution of the feature maps. The last level of
the encoder contains two standard convolutional layers followed by a pyramid pooling
module (PPM) and two other standard convolutional layers. The PPM collects information
at multiple levels for more representation of features [17]. On the other hand, the decoder
is built by alternating of 3 X 3 deconvolution (transposed convolution) that halves the
number of features maps, a skip connection, and two 3 X 3 dilated convolutions (except
the second level, which has three 3 X 3 dilated convolutions). Deconvolution is used to
increase its mput size (upsampling). Similar to U-Net, to recover the spatial information
lost by pooling operations, we use skip connections. These concatenate the low-level
feature maps of the contracting path with the corresponding feature maps of the expanding
path, except for the third encoding stage, where the feature maps are first input into the
PPM block, and then the output features are concatenated with the corresponding feature
maps of the decoder. These concatenated feature maps are then convolved with a set of
kernels of size 3 X 3 to produce dense feature maps. To generate the output segmentation
map, the decoder is then followed by a 1 X 1 convolution and the sigmoid layer as a pixel-
wise classification. A Batch Normalization (BN) layer [44] and a Rectified Linear Unit
(ReLU) activation function, follow each 3 X 3 convolution to alleviate the vanishing

gradient problem, and accelerate the training process.

A. Dilated convolution

In semantic segmentation, downsampling causes loss of spatial information of feature
maps. To overcome this lmitation, Yu and Kotlun [16] adopted the dilated convolutions
to aggregate multi-scale contextual information without reducing spatial resolution. The
main idea of the dilation is to upsample convolutional kernels by mnserting “holes” (zeros)
between kernel values, thus enables to maximize features extraction ability with an
enlarged receptive field, and without extra parameters. Fig. 5.2 illustrates the different
dilation rates adopted (D = 1,2,4) to increase the receptive field of our model. The
receptive field of kernel k with a size N X N can be defined as

R,=N+ (N—-1)(D-1) (5.1)
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Figure 5.1. Overview of the U-Net (a) and the proposed architecture (b). The number of feature

maps is denoted at the bottom of each convolutional layer. Layers with the same color correspond
to the same dilation rate.
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In this work, N = 3 (we fixed the size of kernels). D is the dilation rate specifying the

number of zeros between kernel values. Note that m normal convolution, D = 1.

D=1 D=2 D=4

Figure 5.2. Dilated convolution with different dilation rates D. Note thatin cases of D =1,D = 2,
and D = 4, the receptive field of a kernel of size of 3 X 3 will be 3, 5 and 9, respectively. Dilated

convolution expands the receptive field, without losing spatial resolution, and without extra

parameters

B. Pyramid Pooling Module

Inspired by PSPNet [17], n order to obtam more contextual information, we perform
pooling operations at multiple grid scales. We integrate the pyramid pooling module (PPM)
at the skip connection in the third encoding stage, and between the encoder and the decoder
as shown i Fig. 5.1b. As illustrated in Fig. 5.3, the PPM has four levels in parallel. Each
level employs a pooling layer with a different ratio. As a result, feature maps with different
sizes are obtained. Note that the pooling sizes and the number of pyramid levels can be
modified, depending on the size of the feature maps fed into the PPM. We use a 1 X 1
convolutional layer after each pyramid level to reduce the number of feature maps to 1/4
of the mput features (there are 4 levels). Then, we upsample the low-dimension feature
maps to the original sizes via transposed convolution. The latter uses a set of trainable
kernels to gather more mformation. Fmally, upsampled feature maps of all levels are
concatenated with the original nput features. For the PPM at the skip connection, the
pooling sizes in the four levels are 1 X 1 max-pooling, 2 X 2 max-pooling, 4 X 4 max-

pooling, and 8 X 8 max pooling, respectively. For the other PPM, in the four levels, we use
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1 X1 max-pooling, 2 X 2 max-pooling, 3 X 3 max-pooling, and 6 X 6 max-pooling,

respectively.

Concatenation

11— miconv |[—»O

1X1 Max Pool

—»| 1xiconv |—P

2X2 Max Pool

—»| 1xiconv | >

—»| Deconv [—>

3X3 Max Pool

1X1Conv |—™

6X6 Max Pool

Figure 5.3. Pyramid Pooling Module (PPM) with four levels in parallel and deconvolutional layer

(3 x 3 transposed convolution) for upsampling

C. Loss Function

The loss function measures the error between the predicted segmentation maps and their
ground truth labels. To alleviate the problem of class imbalance (small foreground lesions

i a large background skin), we use a loss function based on Jaccard distance [5], which is

described as:

2ij (tipij)
L. =1— A L3 5.2
a; Zi,jfij2+2i,j pij2 = Xy (tijpij) (5:2)

Where ¢;; and p;; denote the ground truth and the predicted class of pixel (i, /), respectively.
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5.2.1.2 Experiments
A. Database

We experimented on ISBI 2016 [99], Skin Lesion Analysis Towards Melanoma Detection
Challenge dataset. The training set consists of 900 images. We used 80% for traming (720
mmages) and 20% for validation (180 images). For evaluation, another set of 379 images
and therr ground truths were provided. All images were resized to 192 X 256 pixels to
reduce the computational cost, and normalized to values between 0 and 1. To reduce model
overfitting, we augmented the training images using various geometric transformations,

such as rotation, horizontal flipping, vertical flipping, and zooming.

B. Baseline

The performance of our model was compared with that of the U-Net as a baseline. For U-
Net, We employed in the first layer 32 kernels instead of 64 in the orignal version [14].
To evaluate our model, we used Jaccard index (JC) as the main metric of ISBI 2016. We
also employed Dice (DIC), sensitivity (SEN), specificity (SPE), and accuracy (ACC)

metrics to calculate the segmentation results.

C. Implementation

We mplemented our model and U-Net using Keras, with Tensorflow backend and trained
on Google colab! with Tesla K80 GPU. We used the Adam optimizer [42] as the
optimization algorithm with an initial learning rate of 0.0001 and then decreased it by half
each time encountering 5 epochs without improvement on the validation set. We also
employed “he-normal” scheme [52] to randomly initialize the model weights and early
stopping mechanism on the validation set. The batch size was set to 16 and the epoch to

150.

D. Results

1 https:colab.research.google.com

61



Chapter 5 : Experimental Results

We monitored the progress of Jaccard index with the number of epochs. The result on the
training data is shown in Fig. 5.4a. The performance on the validation data is shown in Fig.
5.4b. It can be noted that for both cases, our model shows better performance when

compared to the U-Net.

training data validation data

laccard
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o
wn

= LtNet training 0 = LkNet validauon
04 I | = DOUR_training 145 4 = QUR validation |
=T =T | | ™ T T T T T ™
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Epochs Epochs
(a) (b)

Figure 5.4. Performance on training data (a) and validation data (b)

The quantitative results on the test data is shown in Table 5.1. We compared the proposed
model to the U-Net (the baseline) and another published method on the official ISBI 2016
test set (ranked third), with respect to the evaluation metrics of ISBI 2016 including Jaccard
index , Dice , sensitivity , specificity , and accuracy . From the Table 5.1, it can be observed
that our model provides better results than the other methods in terms of three evaluation

metrics (JAC = 82.7,DIC = 89.6, SEN = 92.0).

Data Methods Year | JAC | DIC | SEN [ SPE | ACC
Rahman et al [171] | 2016 | 82.2 | 89.5 [ 88.0 | 96.9 | 95.5

ISBI U-Net (Baseline) 2019 | 82.3 | 89.4 | 91.7 | 95.5 | 93.7
2016

Our model 2019 | 82.7 | 89.6 | 92.0 | 95.2 | 93.9

Table 5.1. Quantitative results on test data.
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Qualitative results of some challenging samples from the test set of ISBI 2016 (without
any post-processing) are shown in Fig. 5.5. From the left to right, each column represents
the mput image, the ground truth, the segmentation map generated by U-Net, and the
segmentation map generated by our model, respectively. The first and second rows show
the success cases of our model over U-Net (the results of our model have smaller sizes of
false negative gaps). The third and fourth rows show the failure cases of the proposed
network over U-Net (the results of our model have bigger sizes of false positive gaps).

Input image ground truth U-MNet ours

- RIIEd
| | &
s ol

CFYTY

Figure 5.5. Qualitative results of some challenging samples.
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5.2.2 FCN-MASPP: Fully Convolutional Network with Modified Atrous Spatial

Pyramid Pooling modules for skin lesion segmentation.

Motivated by the success of U-Net structure [14], the ASPP module [18, 19, 20], and the
PPM [17], we propose a novel fully convolutional network called FCN-MASPP. The main
idea is to integrate the MASPP module into each level of both the encoding and decoding

paths to learn features that are more representative.

5.2.2.1 Overview

Inspired by the original U-Net structure [14], the proposed model is a symmetric
architecture and has five levels, as illustrated n Fig. 5.6. It consists of encoding and
decoding paths followed by a sigmoid activation function as a pixel-wise classification.
The encoding path comprises 5 MASPPs, 10 convolutional layers (3 X 3 convolution), and
4 pooling layers (2 X 2 max-pooling). On the other hand, the decoding path is composed
of 4 upsampling layers (2 X 2 transposed convolution), 4 MASPPs, and 8 convolutional
layers. Batch normalization (BN) and rectified linear unit (ReLU) activation follow each
3 X 3 convolution. As shown in Fig. 5.6, our network shares a similar architecture to the
original U-Net, but with some differences. First, instead of using only 3 X 3 convolutional
layers like U-Net, we add MASPP module and integrate it as mput into each level of both
the encoder and decoder. Second, unlke U-Net, the proposed FCN-MASPP has no skip
connections between the encoder and the corresponding decoder. We note that the skip
connections between the encoder and the decoder were tested but without further

improvement.
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Figure 5.6. The structure of the proposed FCN-MASPP. The input is an RGB image and the output
is a probability map. The number of kernels assigned to each level of the MASPP is shown above
each MASPP box. The number of output feature maps is shown below each box. Note that like U-

Net, each 2x2 transposed convolution halves the number of feature maps.

A. MASPP

Inspired by DeepLab [18], to capture multi-scale contextual information at each level of
the network, we propose a modified atrous spatial pyramid pooling (MASPP) module,
which is integrated at each level of both the encoding and decoding paths, as shown in Fig.
5.6. The original atrous spatial pyramid pooling (ASPP) proposed by DeepLab is shown in
Fig. 3.24. It consists of multiple levels of dilated (atrous) convolution in parallel with
different dilation rates. The proposed MASPP has four levels of atrous convolution in
parallel, where the dilation rate in the four levels is 1, 2, 4, and 8, respectively. The number
of kernels assigned to each level of the MASPP is 8, 8, 16, 32, and 64 for the five encoder
levels, respectively, while it is 32, 16, 8, and 8 for the four levels of the decoder,
respectively. Note that the dilation rate, the number of kernels applied at each level of the
MASPP, and the number of MASPP levels can be modified. We choose this configuration
to reduce the parameter space. As a result, multi-scale contextual feature maps are obtained.
Inspired by PSPNet [17], these features are concatenated with the original nput features
and fed into a next layer, as illustrated in Fig. 5.6.
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5.2.2.2 Results and Discussions

A. Dataset

We used the well-established public benchmark ISBI 2017 dataset [100] in the evaluation
of the proposed model.

For the preprocessing, we first resized all the images nto 192 X 256 pixels and
normalized each RGB pixel value to [0, 1]. At the testing stage, the output segmentation
maps were resized to the size of the original images to perform a quantitative comparison

according to the evaluation metrics.
B. Evaluation metrics

We adopted the evaluation indicators suggested by ISBI 2017 challenge, including Jaccard
index (JAC) as the main metric for ranking, dice coefficient (DIC), sensitivity (SEN),
specificity (SPE), and accuracy (ACC).

C. Implementation

The experiments were conducted n a desktop computer with the following configuration:
Intel® Core (TM) 17-8700K CPU @ 3.70 GHz, with 16 GB RAM, and GPU NVIDIA
GeForce GTX 1070. The proposed model FCN-MASPP and baselines were implemented
with python 3.6.10, Using Keras, and Tensorflow backend.

To address the class imbalance issue, we traned all models using Tversky loss (TL)

[172, 173] defined as:

TL=1— 2ij Dqijtyij)+e
2ij 1ijtri)+alij @oijt1i))+B Xij P1ijtoij)+e

(5.3)

Where t,;;, py;; are the ground truth and the prediction probability of pixel (i,j) being in
a lesion region; and to;;, po;; represent the ground truth and the prediction probability of

pixel (i,j) being in a healthy skin region. & and B (where a + f = 1) are adjustable
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parameters that control the magnitude of penalties for FNs and FPs, respectively. € is added

to avoid zero in denominator. In this work, we set (@ = 0.7, = 0.3, = 1077).

We used Adam [42] as the optimization algorithm with an initial learning rate of
0.0001. Then, during training, the learning rate was decreased by half that of the previous
one (until: 1.25*10-%) if no improvement has been noticed for 10 epochs on validation data.
The network parameters (weights) were initialized using a “he normal” scheme [52]. We
adopted the not additive data augmentation technique by using geometric transformations
to augment the training set online. These geometric transformations included rotation,
horizontal flipping, vertical flipping, and zooming. The batch size used was 8 and the
epochs were set to 200. Finally, to accelerate the traning stage, early stopping mechanism
on the validation set was performed. This strategy interrupts training when no progress is

made after 40 epochs.

D. Analysis of results

The quantitative results obtained are shown i Table 5.2. We used the U-Net, the basic
FCN (U-Net without skip connections) as baselines. As shown, the proposed model with a
powerful module MASPP has better results in all metrics, except in SEN, when compared
to baselines (basic FCN and U-Net).

Model JAC DIC SEN SPE ACC parameters
Basic FCN 0.7622 0.8484 0.8763 0.9591 0.9322 6,982,625
U-Net 0.7615 0.8472 0.8820 0.9563 0.9315 7,765,985

FCN-MASPP (ours) 0.7769 0.8587 0.8795 0.9608 0.9387 10,137,665

Table 5.2. Results on ISBI 2017 test dataset.

As shown in Table 5.2, due to the use of MASPP modules, the proposed model has a

higher size of parameter space, but this amount of parameters is acceptable.

Qualitative results of some challenging examples are shown in Fig. 5.7 and Fig. 5.8.
As can be observed, FCN-MASPP exhibits superior performance when compared to a basic
FCN and U-Net. Figs. 5.7a-c and 5.7d-h demonstrate the capability of the proposed model

to segment with smaller sizes of FNs and FPs, respectively.
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Figure 5.7. Segmentation results of some challenging examples of ISBI 2017 test dataset.

Figure 5.8. Comparison of segmentation results. The green, red, blue, and white contours represent
the ground truth, the result of a basic FCN, the result of U-Net, and the result of FCN-MASPP,
respectively.

5.2.2.3 Conclusion

In this approach, we proposed a novel FCN called FCN-MASPP, for skin lesion
segmentation. The main component of FCN-MASPP is the novel MASPP, which is
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mtegrated mto each level of both the encoder and decoder. The mtegration of MASPP as
such further enhances the features extraction ability by learning multi-scale context
mformation at each level of the network. The proposed FCN-MASPP outperformed the
equivalent structure, a basic FCN and U-Net on the challengng ISBI 2017 skin lesion
dataset.

5.2.3 An Improved and Robust Encoder—Decoder for Skin Lesion Segmentation

In this approach, we propose major modifications to the state-of-the-art U-Net structure to
further mprove its capability in skin lesion segmentation while keeping its efficiency in
terms of computational time for both the traning and testing stages. These modifications
are presented in both the encoding and the decoding paths. Instead of using only standard
convolutional layers like U-Net, the proposed encoding path consists of 10 standard
convolutional layers, which are mspired by the Visual Geometry Group (VGG16) network
[22], followed by a pyramid pooling module and a dilated convolutional block. This
combination enables to learn better representative feature maps and preserve more spatial
resolution. Furthermore, dilated residual blocks are introduced in the decoding path to
further refine the segmentation maps. The experimental results on three datasets, including
the IEEE International Symposium on Biomedical Imaging (ISBI) 2017, ISBI 2016, and
PH2, showed that our proposed method has better performance than the basic U-Net [14],
FCN [23], SegNet [24], and U-Net ++ [25], and achieves the performance of state-of-the-

art segmentation techniques with minimum pre- and post-processing operations.

5.2.3.1 Overview of the Proposed Method

The proposed segmentation model is shown in Fig. 5.9. This architecture is composed of
two parts: an encoding path and a corresponding decoding path, followed by a sigmoid
layer as a pixel-wise classification. The encoding path extracts abstract features from the
mput RGB image, while the decoding path gradually recovers features spatial resolution.
The proposed network is different from U-Net n both the encoding and decoding paths.
U-Net is a symmetric architecture in which both the encoding and the decoding paths
consist of a sequence of two standard convolutional layers, while the encoding path in our

model contains three different components: the first 10 convolutional layers of VGG16
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[22], a pyramid pooling module (PPM) [17], and a dilated convolutional block (DCB). On
the other hand, we replace the standard convolutional layers in the decoding path with the
dilated residual blocks (DRBs) to further refine the segmentation map. In the following,

we will discuss about the proposed encoding and decoding paths.
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Figure 5.9. Overview of the proposed architecture. The encoding path starts with the first 10
convolutional layers of the VGG16 network (left side). The input is an RGB image (192 X 256 X
3), while the output is a probability map (192 X 256 X 1). The number of feature maps is

denoted at the bottom of each convolutional layer

A. The Encoding Path

The first component of the encoding path consists of 10 standard convolutional layers,
which are mnspired by the VGG16 network. A Rectified linear unit (ReLU) activation
function follows each 3 X 3 convolution, and 2 X 2 max-pooling operation is sometimes
performed between convolutional layers. In our method, we just choose the first 10 layers

of VGG16 network to reduce the parameter space and preserve acceptable spatial
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mformation of feature maps. To learn more representative features, these 10 convolutional
layers are followed by a pyramid pooling module (PPM) and a dilated convolutional block
(DCB). Finally, we add a dropout layer with a probabilty p = 0.2 to reduce model
overfitting. During the training process, this layer randomly drops some nodes and their

connections to alleviate overfitting to the training images.

PPM

To capture information at multiple levels and detect lesions of different sizes, we perform
multi-scale pooling operations. As illustrated m Fig. 5.3, the PPM consists of four levels
in parallel, where the pooling size in the four levels is 1 X 1 max-pooling, 2 X 2 max-
pooling, 3 X 3 max-pooling, and 6 X 6 max-pooling, respectively. The output feature
maps of the PPM are fed into a DCB to further capture multi-scale contextual information.

Dilated Convolutional Block (DCB)

The used DCB illustrated in Fig. 5.9, groups three dilated convolutional layers with batch
normalization (BN) and ReLU activation in each one. BN [44] normalizes each training
mini-batch to reduce the internal covariate shift. To alleviate the “gridding issue” [71, 174-
176], the dilation rate D is exponentially increased with values of 1, 2, and 4 for the three

convolutional layers, respectively.

B. The Decoding Path

The decoding path is built by alternating of 3 X 3 transposed convolution (that halves the
number of feature maps), a skip connection, 1 X 1 convolution, and dilated residual block
(DRB). Transposed convolution with learnable parameters is used for upsampling. Similar
to U-Net, to restore the spatial information lost by pooling layers, skip connections are
performed by concatenating the low-level feature maps of the encoder with the
corresponding feature maps of the decoder. Then, we use 1 X 1 convolution as a
bottleneck to reduce the number of feature maps. Finally, the dilated residual block (DRB)
is proposed to extract more context information and further refine the segmentation map.
The DRB stacks dilated convolutional layers with residual connections. These residual

connections alleviate the vanishing gradient problem and facilitate the traning process,
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smce a DRB learns a function with reference to the layer mputs, instead of learning

unreferenced functions [62].

The DRBs are shown in Fig. 5.10, where each one (DRB1 and DRB2) can be expressed as

follows:

For DRBI:

X1o = Hy(x) + x5, (5.4)
For DRB2:

X,, = H,(ReLU(x4,)) + x;,, (5.5)

Where x;,, x4,, X,, are the mput, the output of the DRBI1, and the output of the DRB2,
respectively. The residual function H, consists of two 3 X 3 dilated convolutional layers.
The first layer (with D = 1) is followed by (BN) and a ReLU activation function, whereas
the second layer (with D = 2) is only followed by BN. H, is a 3 X 3 dilated convolutional
layer (with D = 4) followed by BN. The DRB2 comprises two skip connections (via
addition) to further ease the information propagation during the back pass of back-

propagation.
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Figure 5.10. Dilated Residual Blocks (DRBs). DRBI1 includes two dilated convolutional layers,
and one skip connection (via addition), while DRB2 consists of three dilated convolutional layers

and two skip connections (via addition)

5.2.3.2 Materials and Implementation Details

The proposed model was implemented with python 3.6.10 using Keras, and Tensorflow
backend. The experiments were conducted in a desktop computer with the following
configuration: Intel® Core(TM) 17-8700 K CPU @ 3.70 GHz, with 16 GB RAM, and
GPU NVIDIA GeForce GTX 1070.

A. Datasets

We used three public benchmark datasets to evaluate our proposed method. These are
ISBI 2016, ISBI 2017, and PH2.

B. Evaluation Metrics

To evaluate the proposed model, we used the following standard evaluation metrics of

ISBI 2016 and ISBI 2017 challenges, including Jaccard index (JAC) , dice coeflicient
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(DIC) , sensitivity (SEN) , specificity (SPE), and accuracy (ACC). In addition, we
calculated the Matthew correlation coefficient (MCC), which is defined as:

TP.TN—FP.FN (56)

MCC =
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

C. Training and Testing

The objective of the training is to find model weights that best predict mnput images by
minimizing a loss function. We used a loss function based on Jaccard distance [5]. As an
optimization algorithm, we used Adam [42] to adaptively adjust the learning rate based on
the first and the second moments of the gradient. To speed up the training process, the
mitial learning rate was set to 0.0001. For better optimization, the learning rate was then
decreased by half (unti: 1.25*%107), each time encountering 10 epochs without
mprovement on the validation set. The only pre-processing applied is that all mput images
were resized nto 192 X 256 and normalized. The aim of resizing is to reduce the
computational cost and deal with memory constraints. We chose this resolution to preserve
the aspect ratio, since most of the images in the traming datasets have an aspect ratio
(height-to-width) of 3:4. Resizing was carried out using bilnear and nearest interpolations
for images (training, validation, and test datasets) and their ground truths, respectively. On
the other hand, the goal of normalization is to bring the mput pixel values to the same range
(values between 0 and 1) by dividing them by 255. The standard convolutional layers of
the network were initialized using the pre-trained weights on ImageNet dataset [55], while
we employed a “he normal” scheme [52] to randomly initialize the rest of the model

parameters (weights).”he_normal” scheme takes samples from a zero-mean truncated

normal distribution with a standard deviation (std) of \/Z/—m, where m is the number of
mnput units in the weight tensor. We adopted online data augmentation to augment the
training images using various geometric transformations including rotation, horizontal
flipping, vertical flipping, and zooming. This technique is not additive and just replaces the
original training images with the randomly transformed. The batch size was set to 8 to keep
balance between memory consumption and computation cost, while the epochs were set to

200. Early stopping mechanism on the validation set was performed to interrupt training
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when no further mmprovement was noticed after 40 epochs. The model mputs are the
batches of training and validation datasets (with corresponding ground truths for each one).
For experiments using the 2017 dataset, we adopted the specified training and testing
dataset (2000 images for training, 150 images for validation, 600 images for testing), while
the pre-trained model on ISBI 2017 was used for the evaluation on the ISBI 2016 test and
PH2 datasets. As the batches of the training are selected, a set of geometric transformations
are applied at runtime. Training continues until the early stopping mechanism is satisfied.
At each fiteration, the model parameters are updated using Adam optimizer via back-
propagation. After each epoch, the loss function is measured on the validation dataset, and
the model weights are saved if an improvement is noticed. When training is complete, the
final saved weights are used at the testing stage. Due to the use of an early stopping
mechanism, the training took about 2.64 h over 84 epochs for the ISBI 2017 dataset.

At the testing stages, a threshold of 0.5 was applied to the output segmentation map.
Then, a morphological dilation and erosion were used for ISBI 2017 test dataset and PH2
dataset, respectively. These post-processing operations improved the results on ISBI 2017
test dataset (in terms of JAC, DIC, SEN, and ACC) and PH2 dataset (in terms of JAC, DIC,
SPE, and ACC) as shown in Tables 5.4 and 5.6. For ISBI 2016 test dataset, we did not
apply any post-processing since no improvement was noticed. This may be due to that ISBI
2016 dataset is less challenging than ISBI 2017 and PH2 datasets. Fmally, resizing to the

size of the original image was carried out by using the nearest interpolation.
5.2.3.3 Experimental Results
In our experiments, to investigate how the VGGI6 convolutional layers affect the

performance of the model, we implemented 3 models, defined as:

Model-7: the model just has the first 7 standard convolutional layers of VGG16 network

i its encoding path.

Model-10 (proposed): the model has the first 10 standard convolutional layers of VGG16

network i its encoding path.
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Model-13: the model uses all VGG16 convolutional layers (13 layers) in the encoding
path.

The results summarized n Table 5.3 show that the Model-13, which has the highest
number of parameters (37.5 M), achieved the best performance on ISBI 2017 with JAC of
0.7812. It was ranked third when tested on the ISBI 2016 and PH2 dataset, with JAC of
0.8597 and 0.8514, respectively. The Model-7, which has the lowest number of parameters
(10.7 M), had a higher performance on ISBI 2016 with JAC of 0.8714. When tested on the
PH2 and ISBI 2017 test datasets, it was ranked second with JAC of 0.8514 and third with
JAC of 0.7471, respectively. The Model-10 obtained the superior performance on PH2 with
JAC of 0.8616. Furthermore, it achieved the second best performance on other datasets,
with overall JAC indices of 0.7789 and 0.8639 on ISBI 2017 (after Model-13) and ISBI
2016 (after Model-7) test datasets, respectively. These results indicate the robustness and

generalization capability of the proposed model (Model-10).

Method JAC DIC SEN SPE ACC Mcc Parameters
Model-7 0.7471 0.8335 0.8345 0.9721 0.9278 0.8024 10,712,577
ISBI 2017 Model-10 0.7789 0.8601 0.8745 0.9621 0.9375 0.8262 21,792,897
Model-13 0.7812 0.8636 0.8808 0.9601 0.9379 0.8290 37,528,449
Model-7 0.8714 0.9278 0.9273 0.9748 0.9647 0.8958
ISBI 2016 Model-10 0.8639 0.9233 0.9311 0.9676 0.9621 0.8902
Model-13 0.8597 0.9208 0.9354 0.9623 0.9594 0.8863
Model-7 0.8533 0.9167 0.9280 0.9630 0.9417 0.8640
PH2 Model-10 0.8616 0.9222 0.9459 0.9551 0.9470 0.8738
Model-13 0.8514 09158 0.9507 0.9441 0.9438 0.8643

Bold values indicate the best results

Table 5.3. Influence of the VGGI16 layers on the performance of the model.

A. Ablation study
In order to assess the contributions of our network and justify the design choice, the

following ablation studies have been conducted on the most challenging dataset ISBI 2017:

1) We used as the backbone architecture the encoding path (the 10 conventional
convolutional layers + PPM + DCB), with the corresponding decoding path that
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replaces the DRBs with conventional convolutional blocks (CCBs), without
residual connections. The model is denoted as ’Backbone-CCBs’’ in Table 5.4.
2) We removed the residual connections in DRBs. As such, the decoding path consists
of dilated convolutional blocks (DCBs), and the model is referred to as‘’Backbone-
DCBs”’in Table 5.4.
3) The final proposed model, which uses DRBs in the decoding path, is denoted as
“Backbone-DRBs’’ in Table 5.4.

Method JAC DIC SEN SPE ACC mcc

Unet32 (baseline) 0.7524 0.8389 0.8470 0.9678 0.9290 0.8053
Backbone-CCBs 0.7673 0.8506 0.8476 0.9681 0.9335 0.8176
Backbone -DCBs 0.7783 0.8605 0.8642 0.9715 0.9362 0.8279
Backbone -DRBs 0.7789 0.8601 0.8745 0.9621 0.9375 0.8262

Bold values indicate the best results

Table 5.4. Ablation study for each contribution on the ISBI 2017 test dataset.

As shown in Table 5.4, the proposed model (Backbone-CCBs) provided better results
than U-Net. This indicated that by using the PPM and DCB, the proposed model was able
to further extract high-level features (semantic information) with high resolution when
compared to U-Net. Introducing DCBs in the decoding path mnstead of CCBs (Backbone-
DCBs) improved the overall performance. Using DRBs in the decoding path (Backbone-
DRBs) further increased the Jaccard index (JAC), the sensitivity (SEN), and the accuracy
(ACC), while decreased the dice coefficient (DIC), the specificity (SPE) and the (MCC).
These results showed that using DCBs or DRBs in the decoding path helped to produce
dense feature maps by extracting more context mformation, which boosted the
segmentation performance. We adopted “Backbone-DRBs” as the final model regarding
its best result in JAC index, which is the main metric of the ISBI 2017 and ISBI 2016

challenges.

B. Comparison with baselines and state-of-the-art methods

The quantitative results obtained are shown in Tables 5.5, 5.6, and 5.7. Our proposed model

is compared to FCN, SegNet, U-Net, and U-Net++ as baseline models (under the same
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conditions) and some latest existing methods. For U-Net, we started with 32 kernels (U-
Net32) at the first layer of the network instead of 64 (U-Net64) in the original paper, since
we noticed that U-Net32 performed better than U-Net64.

Reference Year JAC DIC SEN SPE ACC mcc
DSNet [148] 2020 0.775 - 0.875 0.955 - -
Res-Unet [152] 2020 0.772 0.858 - - - -

iFCN [149] 2020  0.7834 0.8864 0.8544 0.9808 0.9530 -
Xieetal. [150] 2020  0.783 0.862 0.870 0.964 0.938 -
Pouretal. [151] 2020  0.782 0.871 0.883 0.981 0.945 -
CSARM-CNN [153] 2020  0.7335 0.8462 0.8022 0.9940 0.9585 0.8232
FCN (baseline)* 0.7267 0.8239 0.7943 0.9713 0.9275 0.7890
FCN (baseline) 0.7373 0.8320 0.8282 0.9664 0.9291 0.7960
SegNet (baseline)* 0.7646 0.8488 0.8266 0.9738 0.9341 0.8178
SegNet (baseline) 0.7704 0.8540 0.8593 0.9674 0.9352 0.8215
U-Net32(baseline)* 0.7457 0.8333 0.8138 0.9739 0.9276 0.8006
U-Net32(baseline) 0.7524 0.8389 0.8470 0.9678 0.9290 0.8053
U-Net++(baseline)* 0.7506 0.8353 0.8170 0.9765 0.9268 0.8046
U-Net-++(baseline) 0.7498 0.8368 0.8459 0.9702 0.9277 0.8047
Model-10(Proposed) * 0.7775 0.8579 0.8441 0.9694 0.9370 0.8253
Model -10 (Proposed) 0.7789 0.8601 0.8745 0.9621 0.9375 0.8262

* Without any post-processing operations. Bold values indicate the best results

Table 5.5. Comparison of segmentation results on the ISBI 2017 test dataset.

Reference Year JAC DIC SEN SPE ACC MccC
DCL-PSI[10] 2019  0.8592 09177 0.9311 0.9605 0.9578 -
Xieetal. [150] 2020 0.858 0918 0.870 0.964 0.938 -
Pouretal.[151] 2020 0.852 0.921 0.974 0.949 0.961 -

FCN (baseline)* 0.8355 0.9045 0.9166 0.9490 0.9519 0.8637
SegNet (baseline)* 0.8421 0.9068 0.9226 0.9588 0.9530 0.8720
U-Net32(baseline)* 0.8345 0.9011 0.9394 0.9494 0.9512 0.8654
U-Net-++(baseline)* 0.8403 0.9059 0.9239 0.9605 0.9540 0.8709
Model-10 (Proposed)* 0.8639 0.9233 0.9311 0.9676 0.9621 0.8902

* Without any post-processing operations. Bold values indicate the best results

Table 5.6. Comparison of segmentation results on the ISBI 2016 test dataset.
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Reference Year JAC DIC SEN SPE ACC Mcc
DSNet [148] 2020 0.870 - 0.929 0.969 - -
Res-Unet [152] 2020 0.854 0.924 - - - -
iFCN [149] 2020 0.871 0.9302 0.9688 0.9531 0.9692 -
Xieetal. [150] 2020 0.857 0.919 0.963 0.942 0.949 -
CSARM-CNN [153] 2020 0.7909 0.8832 0.8854 0.9945 0.9523 0.8553
FCN (baseline)* 0.8131 0.8940 0.9585 0.9159 0.9321 0.8291
FCN (baseline) 0.8322 0.9056 0.9324 0.9383 0.9389 0.8451
SegNet (baseline)* 0.7987 0.8806 0.9531 0.9255 0.9273 0.8244
SegNet (baseline) 0.8199 0.8940 0.9269 0.9513 0.9349 0.8430
U-Net32(baseline)* 0.8183 0.8913 0.9443 0.9390 0.9287 0.8373
U-Net32(baseline) 0.8329 0.8999 0.9124 0.9630 0.9333 0.8511
U-Net++(baseline)* 0.8147 0.8931 0.9538 0.9387 0.9303 0.8364
U-Net-++(baseline) 0.8393 0.9079 0.9277 0.9633 0.9368 0.8565
Model-10 (Proposed) * 0.8333 0.9052 0.9701 0.9272 0.9377 0.8497
Model-10 (Proposed) 0.8616 0.9222 0.9459 0.9551 0.9470 0.8738

* Without any post-processing operations. Bold values indicate the best results

Table 5.7. Comparison of segmentation results on the PH2 dataset.

Results on the ISBI 2017 test dataset

Table 5.5 shows the quantitative results on the ISBI 2017 test dataset (600 images). From
the table, it can be observed that the proposed model (Model-10) achieved superior
performance compared to the baseline models (FCN, SegNet, U-Net, and U-Net++).
Furthermore, it achieved competitive results especially in terms of JAC (0.7789) and SEN
(0.8745), when compared with latest state-of-the-art techniques.

Results on the ISBI 2016 test dataset

Table 5.6 displays the quantitative results on the ISBI 2016 test dataset (379 images).
Because some state-of-the-art methods were not evaluated on this dataset, they are omitted
m this table. The results show that the proposed model without any post-processing

operations obtained superior segmentation performance i all metrics, except for SEN.

Results on the PH2 dataset
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The quantitative results on the PH2 dataset (200 mmages) were compared against other
methods, as shown in Table 5.7. The table shows that our model outperformed the baseline
models and achieved state-of-the-art segmentation performance. It can be observed that the
proposed Model-10 outperformed the latest state-of-the-art methods Res-Unet [152], Xie
et al. [150], and CSARM-CNN [153] in terms of JAC (0.8616).

5.2.3.4 Discussion of the obtained results

To address the challenging task of automatic skin lesion segmentation, we proposed a
simple encoder-decoder structure, which uses as the encoding path the VGGI16 standard
convolutional layers, followed by a PPM and a DCB, while uses DRBs in the decoding
path. The number of VGGI16 convolutional layers (in the encoder) is the key hyper-
parameter in the proposed model because it controls the model parameters and
segmentation performance. As shown in Table 5.3, the proposed model with 10 VGG16
convolutional layers (Model-10) performed better than Model-13 (with 13 layers) on both
the PH2 dataset and the ISBI 2016 test dataset; and Model-7 on the PH2 and ISBI 2017
test datasets. Some segmentation results are displayed in Figs. 5.11 and 5.12. However,
these figures show that both our model and others had the same performance on the normal
examples (Fig. 5.11), while our model segmented better than others on the challenging
examples, such as low contrast (Fig. 5.12).

Tables 5.5, 5.6, and 5.7 show that the proposed model performed better than baseline
models (FCN, SegNet, U-Net, and U-Net++) on three public benchmark datasets under the
same conditions. In terms of JAC index, our model achieved an increase of 4.16%, 0.85%,
2.65%, and 2.88% on the ISBI 2017 test dataset; an increase of 2.84%, 2.18%, 2.89%, and
2.36% on the ISBI 2016 test dataset; and an increase of 2.94%, 4.17%, 2.87%,and 2.23%
on the PH2 dataset, when compared with FCN, SegNet, U-Net, and U-Net++, respectively.
We attribute this mprovement to the fact that the embedded PPM and DCB enable more
and better representative of feature maps, while the DRBs further refine the prediction.

As shown in Tables 5.5, 5.6, and 5.7, the proposed model achieves state-of-the-art
performance on the three public benchmark datasets ISBI 2017, ISBI 2016, and PH2. As
it can be observed, our model provided better results than latest state-of-the-art techniques:

DSNet [148], Res-Unet [152], and CSARM-CNN [153] in terms of JAC, and DIC metrics
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on ISBI 2017 test dataset. On ISBI 2016 test dataset, it yielded the highest score in all
metric except for SEN. On PH2 dataset, our network obtained higher performance than
Res-Unet [152], Xie et al. [150] and CSARM-CNN [153] in terms of JAC index.
Furthermore, the proposed model achieved competitive results in other metrics on three
datasets. This stability of results indicates the robustness and consistency of the proposed

method for skin lesion segmentation.

In addition, the computational time for both the traming and testing stages is given i
Table 5.8. As it can be seen, the processing time per epoch during the training stage of the
proposed model was 106 s. This result was the third-best performance after U-Net and U-
Net++. For the testing stage, like the model baselines, the computational time of our model
took less than 2 s to process each image. Overall, compared to the baseline models (FCN,
SegNet, U-Net, and U-Net++) and current state-of-the-art techniques (FrCN, iFCN, and
DSNet), the proposed model is fast in both the training and testing stages. This fast

processing time should make our model applicable for clinical practice.

Method Year Training time(sec.) Test time (sec.)
per epoch per image

FrCN [9] 2018 315 9.7

DSNet [148] 2020 - 0.595

iFCN [149] 2020 4323 8

FCN 120 1.587

SegNet 119 1.356

U-Net 28 1.664

U-Net++ 88 1.253

Model-10 (Proposed) 106 1.728

Table 5.8. Processing time during training and testing stages.

Although the proposed model has achieved satisfactory results on challenging cases
(Fig. 5.12), there are some samples where the model had difficulty to correctly detect
lesions, as shown m Fig. 5.13. It can be clearly seen that these examples are very
challenging cases due to the very low contrast of lesions and theirr surrounding skin. For
further improvement, the addition of other post-processing techniques, such as conditional

random field (CRF) can enhance the model generalization.
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Original Ground truth

Figure 5.11. Segmentation results without difficulty of some normal samples of ISBI 2017 dataset.

Original Ground truth

Figure 5.12 Segmentation results of some challenging samples of ISBI 2017 dataset.
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(b)

Figure 5.13. Some failure cases. (a) Under-segmentation, (b) over-segmentation. The green, red,

orange, white, blue, and yellow contours represent the ground truth, the segmentation result of our

method, FCN, SegNet, U-Net, and U-Net++ respectively.

5.2.3.5 Conclusion

Automatic skin lesion segmentation is a challenging and important task in the field of
computer-aided decision systems. We proposed an encoder-decoder model based on the
U-Net architecture with major modifications. The idea behind the encoding path is to
integrate the pyramid pooling module (PPM) and dilated convolutional block (DCB) to the
top of the first 10 convolutional layers of the VGG16 network. The PPM is used to capture
nformation at multiple levels, while the DCB further maximizes features extraction ability
with an enlarged receptive field. By using the proposed encoding path, our model was able
to learn better representative features and outperformed U-Net on the very challenging
ISBI 2017 dataset (Table 5.4). On the other hand, we introduced dilated residual blocks

(DRBs) in the decoding path to replace the standard convolutional layers used in U-Net.
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The DRBs, with their residual connections, facilitate the traming process and further refine
the segmentation maps. The experimental results showed that our model achieved the state-
of-the-art performance on three public datasets, including ISBI 2017, ISBI 2016, and PH2.
Although using a simple architecture with mmimum pre- and post-processing operations,
our method is robust to low contrast, and the presence of hair (Fig. 5.12). In addition, the

proposed method is fast n both the training and testing phases.
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6.1 Conclusion

The incidence of skin cancer has been increasing in the world for the past decade. However,
early diagnosis is essential for increasing survival chance and reducing mortality rate.
Dermoscopy is one of the major tools in the early diagnosis. Generally, the manual analysis
of dermoscopy images (visual interpretation) can be time-consuming, subjective and not
reproducible. Therefore, computer aided diagnosis systems (CADs) can be used to
minimize the diagnosis errors of manual analysis. Segmentation, an important step m CAD
systems is a very active research area. This task is still a challenging issue due to the
similarity between different lesions and complex visual characteristics that may be
presented in the images. Recently, the state of the art techniques are based on deep learning,
especially convolutional neural networks (CNNs). However, these methods require high
computational time. In addition, some of these techniques use pre-processing and post-
processing operations to obtain high performance. In this thesis, we addressed the problem
of automatic skin lesion segmentation from dermoscopy images using CNNs. The
proposed approaches are based on the state-of-the-art U-Net architecture. In the first
approach, we used dilated convolution and pyramid pooling modules (PPM) to enhance
the segmentation results. The second approach proposed a modified atrous spatial pyramid
pooling (MASPP) module and integrated it as an mput into each level of both the encoder
and decoder. This strategy allows capturing multi-scale contextual information at each
level of the network and thus leading for a better representative of feature maps. In
the third approach (our main contribution), the proposed model adopted 10 standard
convolutional layers followed by a pyramid poolng module (PPM) and a dilated
convolutional block (DCB) as the encoding path, while dilated residual blocks (DRBs)
were introduced in the decoding path. The results on several datasets, including ISBI 2017,
ISBI 2016, and PH2 showed that this model outperformed U-Net, FCN, SegNet, and U-
Net++, and achieved the performance of state-of-the-art segmentation techniques, with
minimum pre- and post-processing operations. Furthermore, the proposed model is

efficient in terms of computational time for both training and testing stages.
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6.2 Future works

For future research directions, we will explore the results of a combination of three models:
Backbone-CCBs, Backbone-DCBs, and Backbone-DRBs (from the Table 5.4); and model-
7, model-10, and model-13 (from the Table 5.3) to produce the final segmentation maps.
It would be interesting to conduct extensive experiments to study the impact of other loss
functions and optimizers on the performance of the proposed models. Furthermore, we will
integrate the classification task in the third approach (the main contribution), which will be
explored on different color spaces, in addition to RGB color channels. Lastly, we will apply

our proposed networks to other medical imaging datasets.
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