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Notations and Symbols

Initially, we need to define the abbreviatons and symbols employed throughout

this recollection.

SDE Stochastic differential equations

BSDE Backward stochastic differential equations

(Ω,F ,P) Probability space

(Ω,F ,P, {Ft}) Filtered probability space

Wt Brownian motion

P−a.s Almost sure

SMP Stochastic maximmum principle

E[.] Expectation

V ar[.] Variance

(.)⊗ (.) Tensor product

Tr (.) The trace

B (.) Borel σ−algebra

L2
F ([0, T ],Rn) The set of all {F}t≥0−progressive processes x(.)

such that E
∫ T

0
|x(t)|2 dt <∞

|.| The Euclidean norm in Rn.

E[./.] Conditional expectation
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Introduction

A
stochastic differential equation includes two parts, the first describes the

deterministic part of the system and the second describes the random

part of the system. The stochastic differential equation is typically rep-

resented by a wiener process or a Brownian motion, which is a continuous-time

random process that has the properties of being non-differentiable and having in-

dependent and identically distributed increments. The existence and uniqueness

of solutions to stochastic differential equations(SDEs) are important properties

that must be established before we can use them to model real-word systems.

The first results on the existence and uniqueness of solution to SDE are due to

the work of Kiyoshi Itô, where the coeffi cients satisfy certain growth conditions on

top of lipschitz continuity in 1944, in his paper“Stochastic integral”a lot research-

ers have tried to study how to weaken the assumptions, we can mention among

them, Y Lin and X Bai [7]. Recently, in 2013, Orrieri studied the case where

the coeffi cients of SDE satisfy dissipative assumption. Throughout this thesis,

we will be interested in studying existence and uniqueness of solutions to SDE in

case where the drift and diffusion terms satisfy respectively the dissipativity and

lipschitz conditions as well as the stochastic maximum principle (SMP) for such

systems. In 1940s engineers and mathematicians began to apply optimal con-

trol theory in order to solve some control problems related to engineering fields
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Introduction

such as aircrafts, missiles, and other mechanical issues. The early pioneers in

this field include Richard Bellman, who introduced the dynamic programming

method for solving optimal control problems, and Lev Pontryagin, who developed

the maximum principle, a powerful analytical tool for solving certain types of

optimal control problems. That deals with finding the best control strategy for

a given systems, with the aim of minimizing a certain cost or maximizing a cer-

tain performance measure. The stochastic control problem that we will focus on

throughout this thesis is described by the following controlled SDE

 dx (t) = b (t, x (t) , u (t)) dt+ σ (t, x (t) , u (t)) dW (t) t ∈ [0, T ]

x (0) = x0

(1)

where b : Ω× [0, T ]×Rn×U −→ Rn, σ : Ω× [0, T ]×Rn×U −→ Rn×d and x0 ∈ R

and the functional cost is given by

J (u (.)) = E
[∫ T

0

f (t, x (t) , u (t)) dt+ h (x (T ))

]
. (2)

The aim of this thesis is to investigate the necessary as well as the suffi cient

conditions of optimality for the control problem (1,2), in the case where the drift

of SDE (1) is dissipative with respect to the stat variable and the diffusion satisfies

the lipschitz condition and the controls domain is convex. In other words, we first

want to prove the necessary condition of optimality for the control problem (1,2)

which claims that, if
−
u is an optimal control minimizing a cost functional (2) in

the sense that

J(
−
u) = inf

u(.)∈U [0,T ]
J(u(.)) (3)

2



Introduction

we have the following necessary condition for optimality

∂H

∂u

(
t,
_
x(t),

_
u(t), p(t), q(t)

) (
u (t)−

_
u(t)

)
≤ 0 (4)

where H(t, x, u, p, q) = pb (t, x, u) + Tr
[
qTσ (t, x, u)

]
− f(t, x, u) stands for the

Hamiltonian functional, (p(.), q(.)) is the solution of the following backward stochastic

differential equations arising as adjoint equations


dp(t) = −

[
Dxb(t,

_
x(t),

_
u(t))Tp(t) +

∑d
j=1Dxσ

j(t,
_
x(t),

_
u(t))T qj(t)

−Dxf(t,
_
x(t),

_
u(t))

]
dt+

∑d
j=1 qj(t)dW (t)

p(T ) = −Dxh(
_
x(T ))

such that p(.) is the adjoint process and
_
x(t),

_
u(t) are the optimal trajectory and

the optimal control process, secondly we want to prove under some extra convexity

conditions on the Hamiltonian and the cost functional, the suffi cient condition for

optimality every admissible control satisfies the necessary condition of optimality

(4) is in fact an optimal control.

The content of this thesis is divided into three chapters.

Chapter 1 (General of Stochastic Calculus): This chapter is essentially an

introductory sort, aiming to highlight the tools of our study, we will present a

host of definitions, propositions,theorems made without proofs and basic results

of stochastic calculus such as stochastic processes...etc.

Chapter 2 (Existence and Uniqueness Solutions of SDEs and BSDEs

with Dissipative Coeffi cients): The purpose of this chapter is the definitions

of SDE and BSDE, theorems of existence and uniqueness of the solutions along

with their proofs. All this done in the in the dissipative framework.

Chapter 3 (A Stochastic Maximum Principle with Dissipativity Con-

3
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ditions): In this chapter we study the stochastic maximum principal (SMP)

represented by Necessary Conditions. We further state and prove the Suffi cient

Conditions of optimality.
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Chapter 1

General of Stochastic Calculus

T
he aim of this chapter is to introduce the main tools of stochastic

calculus and some of the results and theorems used throughout this

thesis. We are particularly interested in some of the basic concepts of

stochastic processes. The content of this chapter is mainly based on this references

[12].

Let W =
{
W 1(t), ...,W d(t)

}
t≥0

be a standard d−dimensional Brownian motion

defined on some complete probability space (Ω,F ,P) . We denote by {Ft}t≥0the

natural filtration as associated to W , satisfying the usual conditions. We suppose

that all the processes are defined for times t ∈ [0, T ]. Then we denote by P the

σ−algebra on Ω× [0, T ] generated by progressive processes.

1.1 Stochastic processes

Definition 1.1.1 (σ−algebra): If Ω is a given set, then a σ−algebra F on Ω

is a family of subsets of Ω with the following properties.

5



Chapter 1. General Reminder of Stochastic Calculus

(i) Ø∈ F .

(ii) F ∈ F =⇒F c ∈ F , where F c = Ω/F is the complement of F in Ω.

(iii) A1, A2, ... ∈ F =⇒A =
∞
∪
i=1
Ai ∈ F .

Definition 1.1.2 (Random variables): Let (Ω,F) and (E,B) be measurable

spaces, then X : Ω −→ E is a E− valued random variable if for all B ∈ B we

have

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F .

Definition 1.1.3 (σ−algebra): Given a random variable on the probability space

(Ω,F ,P) taking values in a measurable space (E,B) we define the σ−algebra gen-

erated by the random variable X as

σ(X) = σ(
{
X−1(B)/B ∈ B

}
).

Definition 1.1.4 (Filtration): Given an indexing set T , a filtration of σ−algebras

is a set sigma algebras {Ft}t∈T such that for all t1 < ... < tm ∈ T we have

Ft1 ⊂ ... ⊂ Ftm .

Definition 1.1.5 (Stochastic processes): A stochastic process is a paramet-

rized collection of random variables {Xt}t∈T defined on a probability space (Ω,F ,P)

and assuming values in Rn.

Remark 1.1.1 :

1. For each t ∈ T fixed we have a random variable ω −→ Xt(ω), ω ∈ Ω,

2. When we fixing ω ∈ Ω we can consider the function t −→ Xt, t ∈ T which

a path of Xt.

6



Chapter 1. General Reminder of Stochastic Calculus

Definition 1.1.6 (Adapted): Let {Ft}t≥0be an increasing family of σ−algebras

of subsets of Ω. A process g (t, ω) : [0,∞)× Ω −→ Rn is called Ft−adapted if for

each t ≥ 0 the function

ω −→ g (t, ω)

is Ft−measurable.

Definition 1.1.7 (progressively measurable): A stochastic process {Xt}t≥0

on (Ω,F ,P, {Ft} ) is called progressively measurable, if for any t ≥ 0, Xt(ω)

viewed as a function of two variables (t, ω) is B[0,t] ⊗ Ft−measurable, where B[0,t]

is the Borel σ−algebra on [0, t] .

Definition 1.1.8 (Predictable process): A stochastic process X = (X)t≥0 on

a filtered probability space (Ω,F ,P, {Ft}) is called predictable if it is measurable

with respect to a σ−algebra P on
_

Ω = Ω × [0,∞) generated by F-adapted left-

continuous processes when viewed as a mapping X :
_

Ω −→ R.

1.1.1 Martingale:

Definition 1.1.9 (Martingale): {Xt} is a martingale with respect to a filtra-

tion {Ft} if for all t > s we have

i) Xt is Ft−measurable.

ii) E [|Xt|] <∞.

iii) E [Xt/Fs] = Xs.

Similarly: Xt is aFt−supermartingale [Ft − submartingale] is it satisfies condition

7



Chapter 1. General Reminder of Stochastic Calculus

i) and ii) above, and

E [Xt/Fs] ≤ Xs, [E [Xt/Fs] ≥ Xs] P− a.s.

Proposition 1.1.1 : Let Xt be a stochastic process such that for any stopping

time T, XT is integral and

E [X0] = E [XT ] ,

then Xt is a martingale.

Definition 1.1.10 (Local martingale): An adapted process Xt is a local mar-

tingale if there exists a sequence of stopping times {Tn} such that

lim
n7−→∞

Tn (ω) =∞ P−a.s,

and the stopped process XTn∧t is a martingale for all n.

1.1.2 Brownian motion:

Definition 1.1.11 (Brownian motion): Standard Brownian motion {Wt} is

a stochastic process on R such that

1. W0 = 0 almost surely (i.e : P({ω ∈ Ω : W0 6= 0}) = 0) .

2. Wt has independent increments for any t1 < t2 < ... < tn Wt1 ,Wt2 −

Wt1 , ...,Wtn −Wtn−1 are independent.

3. The increments Wt −Ws are Gaussian random variables with mean 0 and

variance given by the length of the interval

V ar(Wt −Ws) = |t− s| .

8



Chapter 1. General Reminder of Stochastic Calculus

4. The paths t −→ Wt(ω) are continuous with probability one we define in

particular a process satisfying assumption (3) above as continuos.

Theorem 1.1.1 : Let Wt be a stochastic process such that the following condi-

tions hold:

i) E (W 2
1 ) =constant.

ii) W0 = 0 almost surely.

iii) Wt+h −Wt is independent of {Ws : s ≤ t} .

iv) The distribution ofWt+h−Wt is independent of t ≥ 0 (stationary increments).

v) (Continuity in probability) For all δ > 0 :

lim
h−→0

P [|Wt+h −Wt| > δ] = 0.

then Wt is Brownian motion. When E[W (1)]2 = 1 we call is standard

Brownian motion.

1.1.3 Itô processes

Definition 1.1.12 (Itô processes): Xt(ω) is an Itô processes if there exist

stochastic processes b(t,Xt) and σ(t,Xt) such that

i) b(t,Xt) and σ(t,Xt) are Ft−measurable.

ii)
∫ t

0
|b| ds <∞ and

∫ t
0
|σ|2 ds <∞ almost surely.

iii) X0(ω) is F0−measurable.

9



Chapter 1. General Reminder of Stochastic Calculus

iv) With probability one the following holds

Xt(ω) = X0(ω) +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs.

Theorem 1.1.2 (Itô formula):

The first formula: Let f ∈ C2(R) (the set of twice continuously differentiable

functions on R) and W be a standard brownian motion, then for any: t > 0,

f(Wt) = f(0) +

∫ t

0

f ′(Ws)dWs +
1

2

∫ t

0

f ′′(Ws)ds.

The second formula: Let (t, x) −→ f(t, x) be a real function twice differentiable

in x and once differentiable in t and X be an Itô process

f (t,Xt) = f (0, X0) +
∫ t

0
f ′x (s,Xs) dXs +

∫ t
0
f ′s (s,Xs) ds

+1
2

∫ t
0
f ′′xx (s,Xs) d < X,X >s .

Theorem 1.1.3 (Integration by parts):

Suppose f(s, ω) = f(s) only depends on s and that f is continuous and of bounded

variation in [0, t] . Then

∫ t

0

f(s)dWs = f(t)Wt −
∫ t

0

Wsdfs.

1.2 Useful results:

Lemma 1.2.1 (Gronwall inequalities): Let y(t) be a non negative function

that satisfies the following condition for some T ≤ +∞ there exist constants

10



Chapter 1. General Reminder of Stochastic Calculus

A,B ≥ 0 such that for all 0 ≤ t ≤ T

y(t) ≤ A+B

∫ t

0

y(s)ds < +∞,

then

y(t) ≤ A exp (Bt) .

Theorem 1.2.1 (Fixed Point ): Let f be a contraction on a complete metric

space X. Then f has a unique fixed point x ∈ X (such that f(x) = x).

Theorem 1.2.2 (Hölder’s Theorem for integrals): Let k > 1 and 1
k
+ 1
k′ = 1.

Let fk, gk
′
: I −→ R be integrable. Then fg is integrable and

∫
fgdx ≤

(∫
fkdx

) 1
k
(∫

gk
′
dx

) 1
k′

,

equality holds if and only if there are two constants A,B, not both zero, such that

Afk ≡ Bgk
′
.

11



Chapter 2

Existence and Uniqueness of

Solutions of SDEs and BSDEs

with Dissipative Coeffi cients

I
n this chapter we consider the result of existence and uniqueness solution

of SDE and BSDE. Under some assumptions including the dissipative ([13],[11]).

We prove this result.

2.1 Notation:

I S2(Rn) : Denotes the set of Rn−valued, adapted and cadlag process {Xt}t∈[0,T ]

such that

||X||S2 = E[sup
t
|Xt|2]1/2 < +∞.

I M2(Rn): Denotes the set of (equivalent classes of) predictable processes {Xt}t∈[0,T ]

12



Chapter 2. Existence and Uniqueness Solutions of SDEs and BSDEs with
Dissipative Coeffi cients

with values in Rn such that

||X||M2 = E[(

∫ T

0

|Xr|2 dr)]1/2 < +∞.

I C ([0, T ] ;Lp(Ω,Rn)): The set of all{Ft}t≥0 −progressive processes x(.) such

that the map t 7−→ x(t) ∈ Lp(Ω) is continuous and

sup
t∈[0,T ]

E |x(t)|p <∞.

2.2 Stochastic Differential Equation (SDEs):

An SDE is essentially a classical differential equation which is perturbed by a

random noise. This type of stochastic differential equations is used as a modeling

tool in several sciences such as telecommunication, economics, finance, biology,

and quantum field theory. The Ornstem-Uhlenbeck process [8] and the Bessel

processes [5] can be defined as solution to stochastic differential equation with

drift and diffusion coeffi cients. The general form of such an equation is: For any

t ∈ [0 T ] 0 ≤ s ≤ t

 dx(t) = b(t, x(t))dt+ σ(t, x(t))dWt

x(0) = x0

, (2.1)

or equivalently

x(t) = x0 +

∫ t

0

b(s, x(s))ds+

∫ t

0

σ(s, x(s))dW (s),

with b : Ω× [0 T ]× Rn 7−→ Rn and σ : Ω× [0 T ]× Rn 7−→ Rn×d and x0 ∈ R.

13



Chapter 2. Existence and Uniqueness Solutions of SDEs and BSDEs with
Dissipative Coeffi cients

It is well known that the strongest condition ensure the existence and uniqueness

for SDEs of Itô’s type is Lipschitz condition along with the linear growth condition

(i.e. b(t, x) and σ(t, x) are lipschitz and of linear growth). In the sequel, we will

trade of the Lipschitz condition by a weaker one called a dissipative condition.

2.2.1 Existence and Uniqueness of Solution of SDE with

Dissipative Condition:

We will discuss the existence and the uniqueness of a solution of SDE via the

following assumptions.

Assumptions 1

i) The drift term b : Ω × [0, T ] × Rn → Rn is P ⊗ B(Rn) measurable where P

is the progressive σ−algebra. The map x → b(t, x) satisfies the so-called

α−dissipativity condition in the sense that there exists a constant α ∈ R,

such that

(b (t, x)− b (t, x′)) (x− x′) ≤ α |x− x′|2 , t ∈ [0, T ] , x, x′ ∈ Rn.

ii) The diffusion coeffi cient σ : Ω×[0 T ]×Rn → Rn×d is measurable with respect

to P ⊗ B(Rn) moreover the map x −→ σ(t, x) there exists a constant c > 0

such that P− a.s.

|σ (t, x)− σ (t, x′)| ≤ c |x− x′| , t ∈ [0, T ] , x, x′ ∈ Rn.

Theorem 2.2.1 Under assumptions i),ii) SDE (2.1) has a unique solution in

14



Chapter 2. Existence and Uniqueness Solutions of SDEs and BSDEs with
Dissipative Coeffi cients

C ([0, T ] ;L2 (Ω,R)) , i.e a progressive process x(t) satisfying

sup
t∈[0,T ]

E |x(t)|2 <∞.

Proof. To simplify the notation we drop the dependence on the control, the

case of controlled equation can be treated exactly in the same way, by fixing

γ ∈ C([0, T ] ;L2 (Ω,Rn)) we want to show that the problem

dx(t) = b(t, x(t))dt+ σ(t, γ(t))dW (t) x(0) = x0,

admits a unique solution J(γ) which belongs to C ([0, T ] ;L2 (Ω,Rn)) . The exist-

ence part follows from the fact that the initial problem can easily reformulated as

a differential equation with random coeffi cients of the from

d

dt
η(t) = b(t, η(t)) + dωγ(t).

Where the quantity

ωγ(t) :=

∫ t

0

σ(s, γ(s))dW (s),

is well defined thanks to the linear growth assumption. Since b(.) is continuous,

we know that there is a local s olution which can be easily extended to the whole

[0, T ] , by the dissipativity assumptions. Now we have to verify that the operator

J : C ([0, T0];L2 (Ω,Rn)) −→ C ([0, T0];L2 (Ω,Rn)) is a contraction.

• Step01: T0 is small enough for any γ1, γ2 ∈ C([0 T ];L(Ω,Rn)), t ε[0 T ]

d | Jt(γ1)− Jt(γ2) | = |(b(t, Jt(γ1))− b(t, Jt(γ2)))dt + (σ(t, γ1(t))

−σ(t, γ2(t)))dWt| .

15



Chapter 2. Existence and Uniqueness Solutions of SDEs and BSDEs with
Dissipative Coeffi cients

Applying Itô’s formula to | Jt(γ1)− Jt(γ2) |2, we obtain

d | Jt(γ1)− Jt(γ2) |2 = 2 | Jt(γ1)− Jt(γ2) | d | Jt(γ1)− Jt(γ2) |

+d < J(γ1)− J(γ2) >t .

By taking the expectation we get

E | Jt(γ1)− Jt(γ2) |2 = 2E
∫ t

0
(b(s, Js(γ1))− b(s, Js(γ2))

(Js(γ1)− Js(γ2))) ds+ E
∫ t

0
‖ σ(s, γ1(s))− σ(s, γ2(s)) ‖2

2 ds

≤ 2α
∫ t

0
E | Js(γ1)− Js(γ2) |2 ds

+c2
∫ t

0
E | γ1(s)− γ2(s) |2 ds

.

Thanks to Gronwall’s lemma, we have

E | Jt(γ1)− Jt(γ2) |2≤ c2e2αt

∫ t

0

E | γ1(s)− γ2(s) |2 ds.

Finally,

sup
tε[0,T ]

E | Jt(γ1)− Jt(γ2) |2≤ c2e2αTT sup
tε[0,T ]

E | γ1(s)− γ2(s) |2 .

So if we get T0 such that c
√
T0e

αT0 < 1 we prove that J is a contraction

then there exists a fixed point such that this point is the solution.

• Step02: In this step, we assume that T is an arbitrary large time duration.

Firstly, let ([Ti, Ti+1])i=ki=0 be a subdivision of [0, T ] such that for any 0 ≤ i ≤

k, |Ti+1 − Ti| ≤ δ, where δ is a strictly positive number.

For t ∈ [0, T0]

x(t) = x0 +

∫ t

0

b(s, x(s))ds+

∫ t

0

σ(s, x(s))dW (s). (2.2)

16



Chapter 2. Existence and Uniqueness Solutions of SDEs and BSDEs with
Dissipative Coeffi cients

It is obvious from step01 that (2.2) remains valid on the small interval time [0, T0].

Next, for t ∈ [T0, T1] we consider the following SDE

x(t) = x
T0

+

∫ t

T0

b(s, x(s))ds+

∫ t

T0

σ(s, x(s))dW (s). (2.3)

Since [T0, T1] is small enough according to step 1 x is solution to (2.3). Repeating

this procedure forwardly for i = 0, ..., n, we obtain the desired result on the whole

time interval [0, T ] .

2.3 Backward Stochastic Differential Equation:

Backward stochastic differential equation (BSDEs) are stochastic differential equa-

tion with terminal value. The theory of BSDEs has found wide application in sev-

eral areas such as stochastic optimal control, theoretical economics and mathemat-

ical finance problems. A general BSDE can be written as: ∀t ∈ [0, T ] 0 ≤ s ≤ t

 −dYt = f(t, Yt, Zt)dt− ZtdWt

YT = ξ
, (2.4)

or equivalently

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, (2.5)

where ξ is the terminal condition and f the coeffi cient (also called the generator),

linear backward stochastic differential equations were first studies by Bismut and

the general non linear backward stochastic differential equations have been in-

troduced by Pardoux and Peng (1990), they proved an existence and uniqueness

result under the following assumption f is lipschitz continuous in both variables

Y and Z and the data ξ and the process {f(t, 0, 0)}t∈[0,T ] are square integrable.
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Chapter 2. Existence and Uniqueness Solutions of SDEs and BSDEs with
Dissipative Coeffi cients

From the article by Pardoux and Peng, many researchers tried to study how to

make the assumptions concerning the regularity of the generator with respect to

(y, z), one of these results Orrieri and al. [13] who studied BSDE whose generator

is dissipative.

2.3.1 Existence and Uniqueness of Solution of BSDE with

Dissipative Condition:

Now we will proof this results based on the following assumptions:

Assumptions 2:

A coeffi cient f : Ω× [0, T ] ,Rk × Rk×d −→ Rk real numbers µ and K > 0

H1) f (., y, z) is progressively measurable, ∀y, z.

H2) For ϕ : R+ −→ R+,

|f(t, y, 0)| ≤ |f(t, 0, 0)|+ ϕ (|y′|) ,∀t, y, a.s.

H3)

E
∫ T

0

|f (t, 0, 0)|2 dt <∞.

H4) |f(t, y, z)− f(t, y, z′)| 6 K ||z − z′|| , ∀t, y, z, z′,P−a.s., where ||z|| = [Tr (zz∗)]1/2 .

H5) 〈y − y′, f(t, y, z)− f(t, y′, z)〉 6 µ |y − y′|2 ,∀t, y, y′, z,P−a.s.

H6) y −→ f(t, y, z) is continuous, ∀t, z,P−a.s.

A solution of the BSDE(2.5) is a pair {(Yt, Zt) ; 0 ≤ t ≤ T} of progressively meas-

urable processes with values in Rk × Rk×d such that

18
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Dissipative Coeffi cients

(j) E
∫ T

0
||Zt||2 dt <∞

(
i.e. Z ∈ (M2 (0, T ))

k×d
)
, E
(

sup
0≤t≤T

|Yt|2
)
<∞.

(jj) Yt = ξ +
∫ T
t
f (s, Ys, Zs) ds−

∫ T
t
ZsdWs.

Note that the progresive measurability of {Yt} implies in particular that Y0 is

deterministie.

Proposition 2.3.1 Given V ∈ (M2 (0, T ))
k×d, there exists a unique pair of pro-

gressively measurable processes {(Yt, Zt) ; 0 ≤ t ≤ T} with values in Rk × Rk×d

satisfying (j),and

Yt = ξ +

∫ T

t

f (s, Ys, Vs) ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T.

Proof. Pages (512-516) in [11].

Theorem 2.3.1 Under the assumptions (H1)-(H6), the BSDE (2.4) has a unique

solution satisfying (j),(jj).

Proof. Uniqueness part:

Let (Y, Z) and (Y ′, Z ′) be two solution of (2.4)

Yt = ξ +

∫ T

t

f (s, Ys, Zs) ds−
∫ T

t

ZsdWs

Y ′t = ξ +

∫ T

t

f (s, Y ′s , Z
′
s) ds−

∫ T

t

Z ′sdWs,

It follows from Itô’s formula for |Yt − Y ′t |
2 we get

d |Yt − Y ′t |
2

= 2 |Yt − Y ′t | d |Yt − Y ′t |+ d < Y − Y ′, Y − Y ′ >t .

19



Chapter 2. Existence and Uniqueness Solutions of SDEs and BSDEs with
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So

d |Yt − Y ′t |
2 = 2 |Yt − Y ′t | [f (t, Yt, Zt)− f (t, Y ′t , Z

′
t)] dt

−2 |Yt − Y ′t | ||Zt − Z ′t|| dWt + ||Zt − Z ′t||
2 dt.

Then, we take the expectation to obtain

E |Yt − Y ′t |
2 + E

∫ T
t
||Zs − Z ′s||

2 ds = 2E
∫ T
t

((Ys − Y ′s )

(f (s, Ys, Zs)− f (s, Y ′s , Z
′
s))) ds

≤ 2E
∫ T
t

[
µ |Yt − Y ′t |

2

+K |Yt − Y ′t | ||Zs − Z ′s||] ds

≤ (2µ+K2)E
∫ T
t
|Yt − Y ′t |

2 ds

+E
∫ T
t
||Zs − Z ′s||

2 ds.

Hence

E |Yt − Y ′t |
2 ≤

(
2µ+K2

)
E
∫ T

t

|Yt − Y ′t |
2
ds,

and from Gronwall’s lemma we get

E |Yt − Y ′t |
2

= 0, 0 ≤ t ≤ T,

and then we have also that

E
∫ T

0

||Zt − Z ′t||
2
dt = 0.

Existence part: We first note that (Y, Z) solves the BSDE (2.4) if

(_
Y t,

_

Zt

)
:=
(
eλtYt, e

λtZt
)
.
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Solve the BSDE (2.4) where

f ′ (t, y, z) := eλtf(t, eλty, e−λtz)− λy,

if we choose λ = µ, then f ′ satisfies the same assumptions as f , but with (H5)

replaced by

(H5’) 〈y − y′, f (t, y, z)− f (t, y′, z)〉 ≤ 0.

Hence we shall assume until the end of this proof that f satisfies (H1)-(H5) and

(H6), let us admit for a moment the using proposition (2.3.1), we can construct a

mapping Φ from B2 = S2⊗M2 into itself as follows. For any (U, V ) ∈ B2, (Y, Z) =

Φ (U, V ) is the solution of the BSDE

Yt = ξ +

∫ T

t

f (s, Ys, Vs) ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T.

Let (U, V ) , (U ′, V ′) ∈ B2,

(Y, Z) = Φ (U, V ) ,

(Y ′, Z ′) = Φ (U ′, V ′) .

We shall use the notations

(_
U,

_

V
)

= (U − U ′, V − V ′)(_
Y ,

_

Z
)

= (Y − Y ′, Z − Z ′) .

It follows from Itô’s formula for eγt
∣∣∣_Y t

∣∣∣2 for each γ ∈ R we have
deγt

∣∣∣_Y t

∣∣∣2 = γeγt
∣∣∣_Y t

∣∣∣2 dt+ 2eγt
∣∣∣_Y t

∣∣∣ d ∣∣∣_Y t

∣∣∣+ d <
_

Y >t .
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Then we get

eγtE
∣∣∣_Y t

∣∣∣2 + E
∫ T

t

eγs(γ
∣∣∣_Y s

∣∣∣2 +
∣∣∣∣∣∣_Zs

∣∣∣∣∣∣2)ds

= 2E
∫ T

t

eγs
_

Y s (f (Ys, Vs)− f (Y ′s , V
′
s )) ds

≤ 2KE
∫ T

t

eγs
∣∣∣_Y s

∣∣∣× ∣∣∣∣∣∣_V s

∣∣∣∣∣∣ ds
≤ E

∫ T

t

eγs(2K2
∣∣∣_Y s

∣∣∣2 +
1

2

∣∣∣∣∣∣_V s

∣∣∣∣∣∣2)ds.

Hence, if we choose γ = 1 + 2K2, we have that

E
∫ T

0

eγt(
∣∣∣ _Yt∣∣∣2 +

∣∣∣∣∣∣_Zs

∣∣∣∣∣∣2)dt ≤ 1

2
E
∫ T

0

eγt
∣∣∣∣∣∣_V t

∣∣∣∣∣∣2 dt
≤ 1

2
E
∫ T

0

eγt
(∣∣∣ _Ut∣∣∣2 +

∣∣∣∣∣∣_V t

∣∣∣∣∣∣2) dt.
Consequently, Φ is a strict contraction on B2 equipped with the norm

||(Y, Z)||γ =

[
E
∫ T

0

eγt(
∣∣∣ _Yt∣∣∣2 +

∣∣∣∣∣∣_Zs

∣∣∣∣∣∣2)dt

]1/2

.

So ∣∣∣∣∣∣(_Y , _Z)∣∣∣∣∣∣
γ

=
1

2

∣∣∣∣∣∣(_U, _V )∣∣∣∣∣∣
γ
,

and it has a unique fixed point, which is the unique solution of our BSDE.
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Chapter 3

A Stochastic Maximum Principle

with Dissipativity Conditions

I
n this chapter we will study the necessary condition of optimality (often

called the stochastic maximum principal) as well as the suffi cient condition

of optimality for a controlled stochastic differential equation in the case where

both the drif and diffusion coeffi cients are controlled and the control domain is

convex. We get the main results of this chapter under the dissipativity condition

on the drift instead of the Lipschitz one.

3.1 Preliminaries and Problem Formulation

Let W =
{
W 1(t), ...,W d(t)

}
t≥0

be a standard d−dimensional Brownian motion

defined on some complete probability space (Ω,F ,P) . We denote by {Ft}t≥0the

natural filtration associated to W , satisfying the usual conditions. We suppose

that all the processes are defined for times t ∈ [0, T ]. Then, we denote by P the

σ−algebra on Ω × [0, T ] generated by progressive processes. For any p ≥ 1 we
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Chapter 3. A Stochastic Maximum Principle with Dissipativity Conditions

define the following spaces

I L1
(
[0 T ] , Rd

)
: The space of adapted real valued process (x(t))t∈[0,T ] such as

E
[∫ T

0

|xt| dt
]
< +∞.

I L2
(
[0 T ] , Rd

)
: The set of all {F}t≥0−progressive processes x(.) such that

E
∫ T

0

|x(t)|2 dt <∞.

I C ([0, T ] ;Lp(Ω,Rn)) : The set of all{Ft}t≥0 −progressive processes x(.) such

that the map t 7−→ x(t) ∈ Lp(Ω) is continuous and

sup
t∈[0,T ]

E |x(t)|p <∞.

I The class of admissible controls is defined by requiring that they are progress-

ively measurable with respect to {Ft}t≥0 , more precisely

U [0, T ] :=
{
u(.) : [0, T ]× Ω −→ U : u (.) is {Ft}t≥0 − progressive

}
.

We will denote by |.| the Euclidean norm in Rn.

Now, we define the following stochastic control problem

 dx (t) = b (t, x (t) , u (t)) dt+ σ (t, x (t) , u (t)) dW (t) t ∈ [0, T ]

x (0) = x0

, (3.1)
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Chapter 3. A Stochastic Maximum Principle with Dissipativity Conditions

with a cost functional given by

J (u (.)) = E
[∫ T

0

f (t, x (t) , u (t)) dt+ h (x (T ))

]
. (3.2)

If x (.) is a solution of (3.1) and u (.) ∈ U [0, T ] then we call (x (.) , u (.)) an

admissible pair. The control problem can be formulated as a minimization of the

cost over U [0, T ] , more precisely a control
−
u is optimal if

J(
−
u) = inf

u(.)∈U [0,T ]
J(u(.)). (3.3)

Assumptions 3:

(A1) The drift term b : Ω×[0, T ]×Rn×U −→ Rn is P⊗B (Rn)⊗B (U)−measurable,

whereP is the progressive σ−algebra. The map x 7−→ b (t, x, u) isC1 (Rn,Rn)

and satisfies an α−dissipativity condition in the sense that there exists a

constant α ∈ R such that P−a.s

(b(t, x, u)− b (t, x′, u)) (x− x′) ≤ α |x− x′|2 , u ∈ U, t ∈ [0, T ] , x, x′ ∈ Rn.

(A2) The diffusion coeffi cient σ : Ω × [0, T ] × Rn × U −→ Rn×d is measurable

with respect to P ⊗ B (Rn) ⊗ B (U) . Moreover the map x 7−→ σ (t, x, u) is

C1
(
Rn,Rn×d

)
and there exists a constant C1 > 0 such that, P−a.s.

|σ (t, x, u)− σ (t, x′, u)| ≤ C1 |x− x′| , u ∈ U, t ∈ [0, T ] , x, x′ ∈ Rn.
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(A3) (Polynomial Growth) There exist h ≥ 0, C2 > 0 such that, for j = 0, 1,

P−a.s.sup
u∈U

sup
t∈[0,T ]

∣∣Dβ
xb (t, x, u)

∣∣ ≤ C2

(
1 + |x|h

)
, |β| = j.

In addition we shall assume there exist C3 > 0, such that, P− a.s

|σ (t, 0, u)| ≤ C3 u ∈ U , t ∈ [0, T ]

(A4) f : [0, T ] × Rn × U −→ R and h : Rn −→ R are measurable and the

maps x 7−→ f(t, x, u) and x 7−→ h (x) are C1 (Rn,R) . Moreover there exists

C5 > 0, m ≥ 0, l ≥ 0 such that for j = 0, 1, we have,

P− a.s.sup
u∈U

sup
t∈[0,T ]

∣∣Dβ
xf (t, x, u)

∣∣ ≤ C5

(
1 + |x|l

)
, |β| = j.

∣∣Dβ
xh (x)

∣∣ ≤ C5 (1 + |x|m) , |β| = j.

(A5) The control domain U is a convex subset of Rn. If ϕ = b, σ, f, the maps

u 7−→ ϕ (t, x, u) are C1(U) and their derivatives satisfy a polynomial growth

such as

|Duϕ (t, x, u)| ≤ C
(

1 + |x|k
)
, for some k ∈ N.

Remark 3.1.1 (i) It is easy to see that the assumption (A1) implies that the

derivative of b (t, x, y) with respect to x satisfies a dissipativity condition,

P−a.s, for all y in Rn

(Dxb (t, x, y) y) y ≤ α |y|2 , t ∈ [0, T ] , u ∈ U.
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(ii) It is worth mentioning that under assumptions (A1)-(A3), the assumptions

i), ii) of Theorem(2.2.1) in chapter 2 are also satisfied. Therefore, the SDE

(3.1) admits a unique solution which belongs to C ([0, T ] ;L2 (Ω,R))

3.2 Stochastic Maximum Principle (SMP)

We have to deal with the backward stochastic differential equations arising as

an adjoint equation with terminal condition in the formulation of the SMP. The

adjoint equation has the following form


dp(t) = −

[
Dxb(t,

_
x(t),

_
u(t))Tp(t) +

∑d
j=1Dxσ

j(t,
_
x(t),

_
u(t))T qj(t)

−Dxf(t,
_
x(t),

_
u(t))

]
dt+

∑d
j=1 qj(t)dW (t)

p(T ) = −Dxh(
_
x(T ))

, (3.4)

where p(.) is the adjoint process and
−
x(t),

_
u(t) are the optimal trajectory and the

optimal control process. Where H is the Hamiltonian and it is defined by

H(t, x, u, p, q) = pb (t, x, u) + Tr
[
qTσ (t, x, u)

]
− f(t, x, u). (3.5)

It is worth mentioning that assuming conditions (A1)-(A3), the assumptions (H1)-

(H6) of theorem(2.3.1) presented in chapter 2 are also met. As a result, the

adjoint equation (3.4) possesses a unique solution that falls under the described

set (p(.), q(.)) ∈ L2
F ([0, T ] ;Rn)× (L2

F ([0, T ] ;Rn))d.

Now, we will discuss a version of the SMP where controls take values in a closed

convex subset U of Rn.

27



Chapter 3. A Stochastic Maximum Principle with Dissipativity Conditions

3.2.1 Necessary Condition of Optimality

Let u(.) be a arbitrary element of U , then for 0 ≤ θ ≤ 1, we define a perturbed

control as follows
_
u(.) + θ

(
u(.)−

_
u(.)

)
, (3.6)

since the actions space being convex, it is clear that (3.6) is an admissible control

and we set xθ (t) the trajectory corresponding to the perturbed control. The

optimality of
_
u(.) guarantees that

J
(_
u(.) + θ(u(.)−

_
u(.))

)
≥ J(

_
u(.)).

We have to prove that J (.) , considered as a functional on L1
F ([0, T ] ;Rn) , is

Gâteaux differentiable. Then, we will write

J ′(
_
u)
(
u(.)−

_
u(.)

)
≥ 0 ∀u(.) ∈ U [0, T ] .

And we will deduce a form of the SMP. If we define a new process y as a solution

of the stochastic differential equation


dy(t) =

[
Dxb(t,

_
x(t),

_
u(t))y(t) +Dub(t,

_
x(t),

_
u(t))u(t)

]
dt

+
[
Dxσ(t,

_
x(t),

_
u(t))y(t) +Duσ(t,

_
x(t),

_
u(t))u(t)

]
dW (t)

y(0) = 0

. (3.7)

We can state the following

Lemma 3.2.1 The functional J(.) is Gâteaux differentiable, moreover the deriv-
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ative has the form

d

dθ
J
(_
u(.) + θu(.)

)
|θ=0= E

[
Dxh

(_
x(T )

)
y(T ) + ζ(T )

]
, (3.8)

where ζ is the solution to


dζ
dt

= Dxf(t,
_
x(t),

_
u(t))y(t) +Duf(t,

_
x(t),

_
u(t))u(t)

ζ(0) = 0
.

Proof. We denote xθ the trajectory corresponding to the perturbed control and

set
_
xθ(t) =

xθ(t)−
_
x(t)

θ
− y(t).

The idea of the proof is to show that
∣∣ _xθ(t)∣∣2L2(Ω)

−→ 0 when θ −→ 0. In fact, this

is crucial in order to show that

1

θ
E [h (xθ(T ))− h (x(T ))] −→ E

[
Dxh

(_
x(T )

)
y(T )

]
.

We start by writing the equation for
_
xθ(t)



d
_
xθ(t) = 1

θ

[
b
(
t,
_
x(t) + θy(t) + θ

_
xθ(t),

_
u(t) + θu(t)

)
−b(t,

_
x(t),

_
u(t))− θDxb(t)y(t)− θDub(t)u(t)

]
dt

+1
θ

[
σ(t,

_
x(t) + θy(t) + θ

_
xθ(t),

_
u(t) + θu(t))

−σ(t,
_
x(t),

_
u(t))− θDxσ(t)y(t)− θDuσ(t)u(t)

]
dW (t)

_
xθ(0) = 0

.
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Then using Taylor expansion, we obtain

d
_
xθ(t) =

∫ 1

0

Dxb
(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

) _
xθ(t)dλdt

+

∫ 1

0

[
Dxσ

(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
_
xθ(t)dλ

]
dW (t)

+

∫ 1

0

[
Dxb

(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Dxb(t)

y(t)dλ] dt

+

∫ 1

0

[
Dxσ

(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Dxσ(t)

y(t)dλ] dW (t)

+

∫ 1

0

[
Dub

(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Dub(t)

]
u(t)dλdt

+

∫ 1

0

[
Duσ

(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Duσ(t)

u(t)dλ] dW (t),

applying Itô’s formula to the function
_
xθ 7−→

∣∣ _xθ∣∣2 , we have
d
∣∣ _xθ∣∣2 = 2

_

|xθ|d
_
xθ + d

〈 _
xθ
〉
.
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Taking the expectation we get

E
_

|xθ|
2

≤ KE
∫ t

0

_

|xθ(s)|
2

ds

+KE
[∫ T

0

[
|y(t)|2∫ 1

0

∣∣Dxb
(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Dxb(t)

∣∣2 dλ] dt]
+KE

[∫ T

0

[
|u(t)|2∫ 1

0

∣∣Dub
(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Dub(t)

∣∣2 dλ] dt]
+KE

[∫ T

0

[
|y(t)|2∫ 1

0

[Dxσ
(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Dxσ(t)]2dλ

]
dt

]
+KE

[∫ T

0

[
|u(t)|2∫ 1

0

∣∣Duσ
(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Duσ(t)

∣∣2 dλ] dt]
= KE

∫ t

0

_

|xθ(s)|
2

ds+ ρθ,

thanks to the polynomial growth of Dxb, Dxσ,Dub,Duσ and the Young inequality.

Now, let us estimate the second term of the right hand side of the above inequality.

If θ 7−→ 0 then also

E
∫ 1

0

∣∣Dxb
(
t,
_
x(t) + λθ(y(t) +

_
xθ(t)),

_
u(t) + λθu(t)

)
−Dxb(t)

∣∣2 dλ −→ 0

due to the polynomial growth and the continuity of Dxb with respect to (x, u) .

For the remaining terms, we apply the same argument, so we can conclude that
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if θ −→ 0 also ρθ −→ 0. Finally, by applying Gronwall’s inequality we get

E
_

|xθ|
2

≤ Kρθ −→ 0 if θ −→ 0.

Then, in order to prove formula (3.8) we compute the following

(i) E1
θ

[
h(xθ(T ))− h(

_
x(T ))

]
−→ EDxh(

_
x(T ))y(T ),

(ii) E
(

1
θ

∫ T
0

[
f
(
t, xθ,

_
u+ θu

)
− f(t,

_
x,
_
u)
]
dt
)
−→ Eζ(T ).

But (i) can be rewritten in the form

E
∫ 1

0

(
Dxh(

_
x(T ) + λ

(
xθ(T )−

_
x(T )

)
)
) ( _
xθ(T ) + y(T )

)
dλ

≤
∫ 1

0
E(
∣∣Dxh(

_
x(T ) + λ

(
xθ(T )−

_
x(T )

)
)
∣∣2)

1
2 (E

_

|xθ(T )|
2

)
1
2dλ

+E
∫ 1

0
Dxh(

_
x(T ) + λ

(
xθ(T )−

_
x(T )

)
)y(T )dλ,

where we have used Hölder inequality. Passing to the limit with θ −→ 0 we can

conclude.

Now we can state the maximum principle also in this particular case, where con-

trols assume their values in a convex subset.

Theorem 3.2.1 Suppose (A1)-(A5) hold and let
(_
x(.),

_
u(.)

)
be an optimal pair

for the control problem (3.3). Then there exist p, qj ∈ L2
F ([0, T ] ;Rn) which are a

solution of the BSDE (3.4), such that

∂H

∂u

(
t,
_
x(t),

_
u(t), p(t), q(t)

) (
u (t)−

_
u(t)

)
≤ 0 dP×dt a.e., u ∈ U,

(3.9)

where H is the Hamiltonian (3.5).

Proof. The existence and uniqueness of a solution to the BSDE (3.4) is guaran-

teed, due to (2.3.1) of chapter 2. Moreover, thanks to (3.7) and lemma (3.2.1) we
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Applying Itô formula on p(t)y(t) we get

dp(t)y(t) = y(t)dp(t) + p(t)dy(t) + d < p, y >t

=
[
−y(t)Dxb

(
t,
_
x(t),

_
u(t)

)
p(t)−Dxσ

(
t,
_
x(t),

_
u(t)

)
q(t)y(t)

+Dxf(t,
_
x(t),

_
u(t))y(t) + p(t)Dxb(t,

_
x(t),

_
u(t))y(t)

+Dub(t,
_
x(t),

_
u(t))u(t)p(t) + q(t)Dxσ

(
t,
_
x(t),

_
u(t)

)
y(t)

q(t)Duσ
(
t,
_
x(t),

_
u(t)

)
u(t)

]
dt+

[
y(t)q(t) + p(t)Dxσ

(
t,
_
x(t),

_
u(t)

)
y(t)

+Duσ
(
t,
_
x(t),

_
u(t)

)
u(t)p(t)

]
dW (t).

Then

E [d 〈p(t), y(t)〉] = E

[
Dxf(t)y(t) + p(t)Dub(t)u(t) +

d∑
j=1

qj(t)Duσ
j(t)u(t)

]
dt.

And we know that with 〈p(0), y(0)〉 = 0

−EDxh(
_
x(T ))y(T ) = Ep(T )y(T )

= E
∫ T

0

[Dxf(t)y(t) + p(t)Dub(t)u(t),

+

d∑
j=1

qj(t)Duσ
j(t)u(t)

]
dt.
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Hence from lemma (3.2.1)

0 ≤ d

dθ
J(

_
u+ θu) |θ=0

= E
∫ T

0

[Duf(t)u(t)− p(t)Dub(t)u(t)− q(t)Duσ(t)u(t)]

= E
∫ T

0

[(
∂

∂u

[
f
(
t,
_
x(t),

_
u(t)

)
− p(t)b(t,

_
x(t),

_
u(t))

−Tr
(
q(t)σT

(
t,
_
x(t),

_
u(t)

))])
u(t)

]
dt

= −E
∫ T

0

∂H

∂u

(
t,
_
x(t),

_
u(t), p(t), q(t)

)
u(t)dt.

And we have

E
∫ T

0

−∂H
∂u

(
t,
_
x(t),

_
u(t), p(t), q(t)

)
u(t)dt ≥ 0, (3.10)

as the admissible control u(.) check condition
_
u(.) + u(.) ∈ Uad, then there is an

admissible control v (.) such that v (.) =
_
u(.) + u(.). The inequality (3.10) is then

written

E
∫ T

0

−∂H
∂u

(
t,
_
x(t),

_
u(t), p(t), q(t)

)
(v (.)−

_
u (.))dt ≥ 0,∀v (.) ∈ Uad.

Now, let F be an arbitrary element of Ft and we set

π (t) = v (t)1F −
_
u (t)1Ω−F ,

it is clear that π (.) is an admissible control. Applying the same technique as in

[2],[3],[4] one can easily get the necessary condition of optimality

∂H

∂u

(
t,
_
x(t),

_
u(t), p(t), q(t)

)
u(t) ≤ 0
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3.2.2 Suffi cient Condition of Optimality

We have to make the following assumption:

(A6) h(.) is a convex function and the Hamiltonian H (t, ., ., p(t), q(t)) is concave

for all t ∈ [0, T ] , P−a.s.

Theorem 3.2.2 Let assumptions (A1)-(A6) hold. Let
(_
x(.),

_
u(.)

)
be an admiss-

ible pair, (p(.), q(.)) be solution to (3.4) such that the necessary condition (3.9) is

satisfied. Then,
(_
x(.),

_
u(.)

)
is an optimal pair of the control problem (3.1)and(3.3) .

Proof. Let
(_
x(.),

_
u(.)

)
be an admissible pair candidate to be optimal which

satisfy (3.9) and (x(.), u(.)) is any adimissible pair. From the definition of the

cost function (3.2), we have

J
(_
u (.)

)
= E

[∫ T

0

f
(
t,
_
x (t) ,

_
u (t)

)
dt+ h

(_
x (T )

)]
,

and

J (u (.)) = E
[∫ T

0

f (t, x (t) , u (t)) dt+ h (x (T ))

]
.

It follows, using the fact that h (.) is a convex function and p(T ) = −Dxh(x̄(T ))

J(u)− J(
_
u) = E

[∫ T
0

[
f (t, x(t), u(t))− f

(
t,
_
x(t),

_
u(t)

)]
dt
]

+E
[
h(x(T ))− h(

_
x(T ))

]
≥ E

[∫ T
0

[
f (t, x(t), u(t))− f

(
t,
_
x(t),

_
u(t)

)]
dt
]

+E
[
−p(T )(x(T )−

_
x(T ))

]
(3.11)

Applying Itô’s formula to p(.)(x(.)−
_
x(.)), we get

d
[
p(t)

(
x(t)−

_
x(t)

)]
= p(t)d

(
x(t)−

_
x(t)

)
+(x(t)−

_
x(t))dp(t)+d < p, (x−

_
x) >t .
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Then, by taking the expectation and using the fact that p(0)(x(0) −
_
x(0)) = 0,

we have

E
[
p(T )(x(T )−

_
x(T ))

]
= E

[∫ T
0
b(t, x(t), u(t))p(t)dt−

∫ T
0
b(t,

_
x(t),

_
u(t))p(t)dt

−
∫ T

0
(x(t)−

_
x(t))Dxb(t,

_
x(t),

_
u(t))p(t)dt

−
∫ T

0
(x(t)−

_
x(t))Dxσ

(
t,
_
x(t),

_
u(t)

)
q(t)dt

+
∫ T

0
(x(t)−

_
x(t))Dxf

(
t,
_
x(t),

_
u(t)

)
dt

+
∫ T

0
q(t)σ (t, x(t), u(t)) dt−

∫ T
0
q(t)σ(t,

_
x(t),

_
u(t))dt

]
.

(3.12)

By replacing (3.12) in (3.11), we obtain

J(u)− J(
_
u) ≥ E

∫ T
0

[f (t, x(t), u(t))− b(t, x(t), u(t))p(t)− q(t)σ(t, x(t), u(t))] dt

+E
[∫ T

0

[
−f
(
t,
_
x(t),

_
u(t)

)
+ b(t,

_
x(t),

_
u(t))p(t) + q(t)σ(t,

_
x(t),

_
u(t))

]
dt
]

+E
[∫ T

0

[
Dxf(t,

_
x(t),

_
u(t))(x(t)−

_
x(t)) + (x(t)−

_
x(t))Dxb(t,

_
x(t),

_
u(t))

p(t) + (x(t)−
_
x(t))Dxσ

(
t,
_
x(t),

_
u(t)

)
q(t)

]
dt
]

= E
[∫ T

0

[
H(t,

_
x(t),

_
u(t), p(t), q(t))−H(t, x(t),

_
u(t), p(t), q(t))

+H(t, x(t),
_
u(t), p(t), q(t))−H(t, x(t), u(t), p(t), q(t))

+∂H
∂x

(
t,
_
x(t),

_
u(t), p(t), q(t)

)
(x(t)−

_
x(t))

]
dt
]
.

Now, by invoking Assumption (A7),

J(u)− J(
_
u) ≥ −E

[∫ T

0

∂H

∂u

(
t,
_
x(t),

_
u(t), p(t), q(t)

) (
(u(t)−

_
u(t))

)
dt

]
dt.

By taking account of the necessary condition (3.9), we get

J(u)− J(
_
u) ≥ 0.
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Conclusion

The main objective of this thesis is to present two results. The first is related to the

existence and uniqueness of the solution for both (backward-forward) stochastic

differential equations in the case when we change the Lipschitz condition with

a weaker condition called dissipative condition, our work relied heavily on the

references ([11],[13]). The second result is related to the study of the stochastic

maximum principle (SMP) which is a fundamental concept in stochastic optimal

control theory. We provide necessary and suffi cient conditions for the optimal

control of (SDEs) with control-dependent coeffi cients b and σ under some condi-

tions.

In the last years the researchers concentrated on the easy and applicable methods

to deal with the problems of optimal control, they were able to link this subject

with deep learning techniques. This later can be applied to approximate the max-

imum principle and solve optimal control problems by learning control policies,

value functions, or Hamiltonian functions from data. This integration of deep

learning with the maximum principle provides a promising avenue for addressing

complex control problems in various domains. In our future researches, we will

focus on the use of the deep learning techniques to solve numerically some control

problems via stochastic maximum principle [9] [16].
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                                                          الملخص                                                                
لكل من المعادلات التفاضلية  لالح وحدانية  هدف هذه الأطروحة هو دراسة نتيجتين. النتيجة الأولى تتعلق بوجود و

. النتيجة الثانية تركز على  المبدأ الأقصى زايديالت الشرط في حالة و المعادلات التفاضلية العشوائية التراجعية العشوائية 

.ة الضرورية والكافية للتحكم الأمثل في المعادلات التفاضلية العشوائي الاحتمالي العشوائي، حيث نحدد الشروط  

المبدأ  ،ئية التراجعيةالمعادلات التفاضلية العشو ، يةالتفاضلية العشوائ المعادلات ، التزايديالشرط  : الكلمات المفتاحية

                                                                                                               . الأقصى الاحتمالي العشوائي

                    

  

        Résumé                                                                                               

    Notre objectif dans cette thèse est d'étudier deux résultats. Le premier concerne 
l'existence et l'unicité des solutions pour les équations différentielles stochastiques 
(rétrograde) dans le cas dissipatif. Le deuxième résultat se concentre sur l'étude du principe 
maximum stochastique. Nous établissons les conditions nécessaires et suffisantes pour le 
contrôle optimal des EDS avec  une dérive dissipative 
Mot clés :condition de dissipative , les équations différentielles stochastiques,  principe 
maximum stochastique, conditions nécessaires et suffisantes 

 

 

 

 

 

Abstract    

    Our aim of this thesis is to study two results. The first is the existence and uniqueness 

of solutions for both (backward-forward) stochastic differential equations in the 

dissipative case. The second result focuses on investigating the stochastic maximum 

principle (SMP), we establish necessary and sufficient conditions for optimal control of 

stochastic differential equations (SDE) with dissipative drift 

Key words: Dissipative condition , stochastic differential equations, stochastic maximum 

principle, necessary and sufficient conditions 


