
Available online at www.sciencedirect.com
www.elsevier.com/locate/sse

Solid-State Electronics 52 (2008) 73–77
Determination of the density of localized states in semiconductors
from the pre-recombination transient photoconductivity

H. Belgacem *, A. Merazga

Laboratory of Metallic and Semiconducting Materials, Faculty of Science and Engineering, University Mohamed Khider, BP 145, 07000 Biskra, Algeria

Received 6 December 2006; received in revised form 1 July 2007; accepted 17 July 2007
Available online 31 August 2007

The review of this paper was arranged by Prof. Y. Arakawa
Abstract

In this paper we present a new transient photoconductivity (TPC) inversion method for the determination of the density of localized
states (DOS) energy distribution g(E) in thin film semiconductor materials with exact matrix solution for g(E). The method, derived from
the multiple trapping model, is based on prior determination of the exact transient trap occupation function and applies to the pre-
recombination time range of the TPC. It is demonstrated by application to simulated TPC data that high energy resolution can be
achieved for the case of continuous DOS distribution, appropriate to amorphous semiconductors, as well as for discrete level DOS such
as in crystalline semiconductors.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Information on localized states distribution in both
amorphous and crystalline semiconductors is important
for the understanding of their fundamental electronic prop-
erties. Since the TPC in thin film semiconductors is strongly
influenced by the energetic distribution of localized states
in the band gap, several spectroscopy techniques for the
DOS extraction from the TPC have been developed [1–
10]. The continuous distribution of localized states results
in simultaneous interactions of excess free carriers with a
wide range of these states. If an excess carrier density is cre-
ated by means of a short light pulse in samples with copla-
nar electrode configuration, the subsequent TPC decay
contains useful information on the DOS distribution in
the material. Unfortunately, most of the techniques can
only detect indirectly the DOS.
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A series of projects have been devoted to the investiga-
tion of the relationship between the DOS g(E) and the
number of excess free carriers n(t) that is often obtained
from transient photocurrent experiments.

A first spectroscopic interpretation of multiple trapping
transport in amorphous semiconductors was offered by
Tiedje and Rose [11], and independently by Orenstein
and Kastner [12] (this work as a whole is sometimes
referred to a TROK). It requires a continuous and suitable
broad (e.g., exponential) band tail and the absence of car-
rier losses by recombination or completion of transit. Ther-
malization is envisaged as occurring such that, at time t
after optical excitation of N0 excess carriers, most of these
are concentrated in states close (within an energy range kT)
to a ‘‘thermalization energy’’, Eth. This is defined as the
depth at which states have a release time constant equal
to the elapsed time: Eth = kT ln(mt), where m is the
attempt-to-escape frequency for the localized states, T is
the temperature, and k is Boltzmann’s constant. All energy
values are measured downwards from the conduction band
mobility edge, Ec.
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With various approximations, this model yields a den-
sity of localized states at energy Eth of the form

NðEthÞ ¼ C
nðtÞt, where the constant C ¼ N0NðEcÞ

m , with N(Ec)

being the effective density of states at the mobility edge.
Later, a general approximate relation between g(E) and

n(t) has been established by Michiel, Adriaenssens and
Marshall [13]. In their approach, the DOS is linked to
the transient photocurrent via a Volterra integral equation
of the first kind, the solution of which requires the use of
complex numerical methods.

We develop in this article a new method that improves
our previous work [14] to extract the DOS distribution
without approximations by a direct inversion of the pre-
recombination TPC. In contrast to existing Fourier and
Laplace transform related techniques [4,7], the inversion
is performed here in the time domain. The method uses
the exact transient trap occupation function calculated
with accuracy from the TPC. It is shown that this transient
spectroscopy reconstructs pre-proposed arbitrary DOS
models from the associated simulated TPC with high
energy resolution and without the influence associated with
the temperature broadening of the carrier distribution.
2. Transient trap occupation function

The transient occupation function of localized states in
amorphous semiconductors was calculated by Benyuan
and Zhengyi from a recombination free transient photocur-
rent of a power-law time variation, n(t) = At�(1�a), that is
usually observed in undoped a-Si:H and a-As2Se3 materials
[15]. The authors used this transient trap occupation func-
tion to derive a relationship between the DOS g(E) and the
density of excess free carriers n(t) in the form of a Volterra
integral equation of the second kind [16]. By solving this
equation, they have shown that the DOS is expressed by
a single exponential function with a steepness characteristic
temperature T 0 ¼ T

a extending over a wide energy range
below Ec.

In the present work, the transient trap occupation func-
tion is calculated more rigorously from the pre-recombina-
tion TPC data simulated using a rather arbitrary DOS
distribution. We consider that the transport is due to elec-
trons in extended states. The excess free carriers can be
repeatedly trapped and released from the localized states.
Thus the photocurrent response is governed by the follow-
ing equations, for the free n(t) and the trapped nt(E, t) elec-
tron densities, respectively,

nðtÞ ¼ N 0 �
Z Ec

Ef

gðEÞ½1� f ðEÞ�ftðE; tÞdE; ð1Þ

ontðE; tÞ
ot

¼ �mðEÞntðE; tÞ þ CnnðtÞ½gðEÞdE � ntðE; tÞ�: ð2Þ

N0 is the pulsed electron density, the excess free electron
density at the initial time t = 0. m(E) is the mean release rate
from a trap at energy E, given by
mðEÞ ¼ m0 exp
E
kT

� �
for E 6 0;

where m0 is the attempt-to-escape frequency of the release
process related to the capture coefficient Cn via m0 =
N(Ec)Cn. We set the conduction band mobility edge at
Ec = 0, so that E is negative. The integral in Eq. (1) ex-
presses the excess-trapped charge. The thermal equilibrium
occupied DOS g(E)f(E) is subtracted from the total DOS
g(E), since only the empty states intervene in the excess
carrier capture, where

f ðEÞ ¼ 1þ exp
E � Ef

kT

� �� ��1

ð3Þ

is the Fermi distribution, with Ef the dark Fermi level. The
transient trap occupation function ft(E, t) is then related to
nt(E, t) by

ntðE; tÞ ¼ gðEÞ½1� f ðEÞ�ftðE; tÞdE: ð4Þ
Inserting Eq. (4) into Eq. (2), the rate equation controlling
the transient trap occupation function is

oftðE; tÞ
ot

þ ½CnnðtÞ þ mðEÞ�ftðE; tÞ ¼
CnnðtÞ

1� f ðEÞ ; ð5Þ

with ft(E, 0) = 0 for E > Ef.
ft(E,0) denotes the thermal equilibrium occupation func-

tion for the trapping states before photoexcitation.
For any n(t), the solution of Eq. (5) after discretisation

can be expressed as a matrix element

ftðEi; tjÞ ¼
ftðEi; tj�1Þ þ CnnðtjÞðtj�tj�1Þ

1�f ðEiÞ

1þ ½CnnðtjÞ þ mðEiÞ�ðtj � tj�1Þ

for
i ¼ 1; . . . ;M

j ¼ 2; . . . ;N
; ð6Þ

with ft(Ei, t1) = 0 for i = 1, . . . ,M, the initial condition and
where M and N are, respectively, the number of discrete
levels between Ec and Ef and the number of data time
points. Fig. 1c shows the time-dependent energy distribu-
tion of the calculated ft(E, t) (symbol o) at 350 K for an
exponential distribution of localized states gðEÞ ¼
gðEcÞ expð E

kT c
Þ, where g(Ec) = 1021 cm�3 eV�1 and Tc =

300 K (Fig. 1a) using the simulated TPC curve shown in
Fig. 1b based on a finite difference technique [17,18]. The
occupation function deduced from the simulation as the
fraction ntðE;tÞ

gðEÞ½1�f ðEÞ�dE is also presented in Fig. 1c (solid line).

The calculated and simulated curves ft(E,t) are completely
superimposed.

The previous work [14] consisted of the determination of
the transient occupation function ft(E,t) from a transient
photocurrent n(t) and consequently the determination of
the density of localized states g(E). This transient occupa-
tion function was postulated by Schiff [19] as
ftðE; tÞ ¼ F ðtÞ

1þexp
E�Et

kTð Þ where Et = �kT ln(m0t) and

F(t) = Cntn(t). For energy levels deeper than Et, ft(E,t)
reduces to F(t), assumed to be independent of energy. It
is only an approximation and is only valid for an exponen-
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Fig. 1. (a) Exponential DOS model with characteristic temperature
Tc = 300 K. (b) Simulated TPC at 350 K for the DOS of (a). (c) Transient
trap occupation function at six different times: calculated using Eq. (6)
(symbol �), and simulated as ftðE; tÞ ¼ ntðE;tÞ

gðEÞ½1�f ðEÞ�dE (solid line).
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Fig. 2. Transient occupation function at six different times: postulated by
Schiff (symbol �), and simulated as ftðE; tÞ ¼ ntðE;tÞ

gðEÞ½1�f ðEÞ�dE (solid line).
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tial distribution of localized states and for a measurement
temperature less than or equal to characteristic tempera-
ture Tc. For instance, Fig. 2 shows the time-dependent
energy distribution of this transient occupation function
(symbol o) at 400 K for the density of localized states of
Fig. 1a using the associated simulated photocurrent. The
occupation function deduced from the simulation as the
fraction ntðE;tÞ
gðEÞ½1�f ðEÞ�dE is also presented (solid line). One can

see that both curves are not completely superimposed.

3. Density of localized states g(E)

Written in a discrete form, Eq. (1) yields

bðjÞ ¼
XM

i¼1

NtðiÞAðj; iÞ for j ¼ 2; . . . ;N ; ð7Þ

where j and i are the time and energy indexes, respectively,
and Nt(i) = g(Ei)dEi Æ g(Ei) is the density of states at the ith
localized level below the mobility edge. dEi is the spacing of
the set of M discrete levels so that the energy at the ith level
is Ei = Ec � (i � 1)dEi. The vector elements b(j) and the
matrix elements A(j, i) are, respectively,

bðjÞ ¼ N 0 � nðjÞ;

Aðj; iÞ ¼ 1þ exp
Ef � Ei

kT

� �� ��1

ftði; jÞ;

where ft(i, j) is obtained from Eq. (6).
The DOS vector is then given by

Nt ¼ A�1b: ð8Þ
This expression constitutes the basis of the pre-recombina-
tion transient method that returns for the occupation func-
tion ft(i, j) (i.e., the TPC data) a DOS distribution g(E) of
localized states. Eq. (8) is a Fredholm integral equation of
the first kind which may arise from an ‘ill-conditioned
problem’ and, consequently, needs a special resolution
method. The resolution method used here is an exact ma-
trix solution for g(E) based on Tikhonov regularization
[20]. The basis of the method we used was developed by
Hansen [21], but this method has been modified to give
an iterative procedure.

4. Application to simulated TPC

To evaluate the proposed method, we compute n(t)
for several representative distributions of traps. We then
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calculate the density of states from the n(t) data using Eqs.
(6) and (8) successively.

4.1. Continuous DOS distribution

In Fig. 3, we show the reproduced g(E), for three differ-
ent temperatures, when the original distribution is an expo-

nential tail gðEÞ ¼ gðEcÞ exp E
kT c

� �
with the characteristic

temperature Tc = 300 K. The temperatures used in the sim-
ulation are, respectively, 250, 300 and 350 K. It can be seen
that the reconstructed DOS is an accurate representation of
the original DOS independently of T.

In Fig. 4, we show the reproduced g(E) when the origi-
nal distribution is an exponential distribution of character-
istic temperature Tc = 300 K to which the following
Gaussian distribution is added:
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Fig. 3. Exponential DOS distribution with Tc = 300 K, recovered from
computed TPC, n(t), at three different temperatures (symbols). The solid
lines indicate the model DOS distribution. For clarity, the curves are
multiplied by the factors 1, 10 and 102, from bottom (250 K) to top
(350 K).
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Fig. 4. Exponential plus Gaussian distribution of states with Tc = 300 K,
gg = 1018 cm�3 eV�1, Eg = �0.3 eV and Ew = 25 meV recovered from
computed n(t) at 350 K (circles). The solid line indicates the model DOS
distribution.

third discrete level at depth �0.35 eV with a lower density 10 cm .
gðEÞ ¼ gðEcÞ exp
E

kT c

� �
þ gg exp � E � Eg

Ew

� �2
" #

;

where gg, Eg and Ew are, respectively, the peak value, the
energy position from the mobility edge and the energy
width of the Gaussian distribution. The temperature used
in the simulation is 350 K. It can be seen here also that
the proposed method recovers very precisely the original
DOS.
4.2. Discrete level DOS

In Fig. 5, we test the method using two discrete levels of
equal density 1017 cm�3, at depths �0.2 and �0.5 eV,
flanking a third discrete level of lower density 1016 cm�3,
at depth �0.35 eV. The temperature used in the simulation
is 350 K. We note that the discrete levels are represented
now by broadened g(E) distributions, which when inte-
grated should represent the same total density. It is clear
that the method gives a fairly sharp reproduction of the
discrete levels distribution, allowing ready identification
of the centre level. The energy positions are recovered with
high accuracy.

The following physical quantities appropriate to amor-
phous and crystalline semiconductors were used in the
computation: N0 = 1012 cm�3, Cn = 10�8 cm3 s�1 and
m0 = 1012 s�1.
5. Conclusion

We have developed and examined a direct pre-recombi-
nation TPC inversion for determination of the localized
states density distribution g(E) in semiconductors using
accurate calculations by Tikhonov regularization method.
High accuracy and energy resolution are noticeable. The
method is based on a prior determination of the exact tran-
sient trap occupation function. It has been tested by apply-
ing it to simulated TPC data. It recovers precisely the
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actual pre-proposed DOS in the cases of featured continu-
ous or discrete distributions.

Acknowledgement

The authors thank the Algerian Ministry of Higher Edu-
cation and Research for financial support.

References

[1] Michiel H, Adriaenssens GJ. Philos Mag B 1985;51:27.
[2] Marshall JM, Berkin J, Main C. Philos Mag B 1987;56:641.
[3] Main C, Merazga A, Kristensen IK, Berkin J. Solid State Commun

1990;74:667.
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