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Abstract Induction motor driven by vector control
method makes high performance control of torque and
speed possible. The decoupling of flux and electromag-
netic torque obtained by field orientation depends on the
precision and the accuracy of the estimated states. Rotor
asymmetries lead to perturbations of air gap flux patterns in
induction machines. These perturbations in flux compo-
nents affect the electromagnetic torque, as well as stator
currents and voltages. This paper first investigates the
control of the induction motor using an extended Kalman
filter (EKF) for a direct field-oriented control. It then
studies the broken rotor bars (BRBs) fault by the
monitoring the rotor resistance. The hypothesis on which
the detection is based is that the apparent rotor resistance of
the motor will increase when a rotor bar breaks. The rotor
resistance is estimated and compared with its nominal
value to detect BRBs fault. The EKF estimates the rotor
flux, speed and rotor resistance on line by using only
measurements of the stator voltages and currents. Simula-
tion results show the effectiveness of the proposed method
in the cases of load torque perturbation and speed
reversion.

Keywords induction motor, vector control, broken rotor
bars (BRBs) diagnostic, extended Kalman filter (EKF)

1 Introduction

AC induction motors (IMs) have been widely used in
industrial applications such as machine tools, steel mills
and paper machines owing to their good performance
provided by their solid architecture, low moment of inertia,
low ripple of torque and high initiated torque. Some
control techniques have been developed to regulate these
induction motors drives in high performance applications.
One of the most popular techniques is the field-oriented
control (direct and indirect) method.
Direct and indirect vector control methods for the speed

and torque control of IM have found intensive application
through the last three decades. For the indirect control of
IM, in addition to the rotor speed, accurate knowledge of
the slip frequency (calculated as a function of IM
parameters) is required. On the other hand, direct control
of IM necessitates accurate information on the rotor speed,
as well as rotor flux referring to the stator stationary frame
[1,2].
Accurate speed information is necessary to realize high

performances and high precision speed control of an
induction motor. The speed is achieved by using mechan-
ical sensors such as shaft encoder or resolver. However
these sensors are usually expensive, bulky and degrade the
system reliability, especially in hostile environment. Thus
the sensorless control (involving an estimation of speed)
becomes a major subject and an attractive task to industrial
applications. Since 1980’s, speed sensorless control
methods of induction motors using the estimated speed
instead of the measured speed have been studied. They
have estimated the speed from the instantaneous values of
stator voltages and currents using the induction motor
model.
Model reference adaptive systems (MRASs) [3] are

methods that have a good performance over a large speed
range. Their disadvantage is the strong influence of
parameter deviation at low speed and standstill operation.
Also, the use of PI controllers with complicated gains
creates difficulties in their implementation using digital
signal processor (DSP) or microcontrollers.
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Artificial intelligence methods [4] that use artificial
intelligence techniques such as fuzzy logic and neural
networks are very promising candidates to be robust to
parameter deviation and measurement noise, but they need
long development times and an expertise in several
artificial intelligence procedures.
Adaptive sliding-mode observer [5] seems to have a

very good performance over the full speed range because
of the sliding-mode technique; however, the calculation of
several gains is needed. Besides, the use of very small gain
values results in serious problems during implementation.
The electromagnetic torque of an induction motor can be

computed by the knowledge of some variables on the
motor such as stator currents and stator flux, stator currents
and rotor flux. Stator flux can be evaluated using line to
line voltages of the power supply. On other hand, the rotor
flux can be evaluated using currents and voltages of the
power supply with the knowledge of the mechanical
rotation speed [6].

Critical induction motor applications are found in all
industries and include all motor horsepowers. It has been
found that many of the commercial products to monitor
induction motors are not cost-effective when deployed on
typical low-to-medium horsepower induction motors.
Advances in sensors, algorithms, and architectures should
provide the necessary technologies for effective incipient
failure detection [7].

This paper, first presents an extended Kalman filter
(EKF) for the direct filed-oriented control of an IM. This
observer estimates the rotor flux and speed. It, then, uses
the observer for the motor rotor resistance estimation in
order to perform online BRBs fault monitoring and
detection.

2 Induction motor model

The fourth order dynamic model for induction machine
developed in stationary reference frame (α, β) is as follows
[8,9]:

_x ¼ Axþ Bu,

y ¼ Cx,
(1)

where x ¼ ½isα   isβ   ψrα   ψrβ�T, u ¼ ½usα   usβ�T, y ¼
½isα   isβ�T, with x, u, and y being the state vector, the input
vector and the output vector, respectively.
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3 Extended Kalman filter for rotor flux,
speed and rotor resistance estimation

The EKF can be used for combined state and parameters
estimation by treating selected parameters as extra states
and forming an augmented state vector. Since Ω is the
parameter to be estimated, Ω is augmented into x which
becomes

x ¼ ½isα   isβ   ψrα   ψrβ  Ω�T:
Considering the inherent stochastic characteristic of

PWM, treating the fundamental as the deterministic input u
and all the higher order harmonics as white Gaussian noise
w, and considering the measurement noise v, the dynamic
behaviour of the induction motor can be modelled as
follows [10]:

x ¼ f ðx,uÞ þ w,

y ¼ hðxÞ þ v,
(2)

where
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h xð Þ ¼ isα   isβ
� �T,

w and v are assumed to be stationary, white, and Gaussian
noise, and their expectation values are zero.
The covariance matrices Q and R of these noises are

defined as

Q ¼ covðwÞ ¼ Eðww0Þ, R ¼ covðvÞ ¼ Eðvv0Þ,
where Eð⋅Þ denotes the expected values.
To use the extended Kalman filter with nonlinear plant
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models, such as Eq. (2), the model must be linearized about
a nominal state trajectory to produce a linear perturbation
model.
The EKF estimator, in the discrete form, can be

summarized as follows [6,7,11]:
Step 1: Prediction
▪Prediction of the state vector

x̂ðk þ 1=kÞ ¼ f x̂ðk=kÞ,uðkÞð Þ: (3)

▪Prediction covariance computation

P k þ 1=kð Þ ¼ F kð ÞP kð ÞF kð ÞT þ Q, (4)

where

F kð Þ ¼ ∂f xðkÞ,uðkÞð Þ
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Step 2: Filtering
The second step (Filtering) corrects the predicted state

estimate and its covariance matrix trough a feedback
correction scheme that makes use of the actual measured
quantities; this is realized by the following recursive
relations:
▪Kalman gain computation

Kðk þ 1Þ ¼ Pðk þ 1=kÞHðkÞT

$
�
HðkÞPðk þ 1=kÞHðkÞT þ R

� – 1
: (5)

▪State vector estimation (filtering)

x̂ k þ 1=k þ 1ð Þ ¼ x̂ k þ 1=kð Þ

þK k þ 1ð Þ y k þ 1ð Þ –Hx̂ k þ 1=kð Þð Þ:
(6)

▪Estimation covariance computation

Pðk þ 1=k þ 1Þ
¼ Pðk þ 1=kÞ –Kðk þ 1ÞHðkÞPðk þ 1=kÞ, (7)

where
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and k/k denotes a prediction at time k based on data up to
time k. Similarly, (k+ 1)/k denotes a prediction at time k+
1 based on data up to time k.

The EKF can be used for combined state and parameters
estimation by treating selected parameters as extra states
and forming an augmented state vector. Since Rr is the
parameter to be estimated, Rr is augmented into xðkÞwhich
becomes

xðkÞ ¼ ½isαðkÞ  isbðkÞ  ψrαðkÞ  ψrbðkÞ  RrðkÞ�T

¼ ½x1ðkÞ  x2ðkÞ  x3ðkÞ  x4ðkÞ  x5ðkÞ�T: (8)

The dynamic behavior of three-phase can be modeled as

xðk þ 1Þ ¼ f xðkÞ,uðkÞð Þ þ wðkÞ,
yðkÞ ¼ h xðkÞð Þ þ vðkÞ,

(9)
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4 Simulation results

The EKF is applied to an induction motor direct field
oriented controlled as shown in Fig. 1. This observer first
estimates the rotor flux and speed of a reliable variable
speed drive, and then the induction motor rotor resistance
for BRBs fault diagnosis.
The dynamic behavior of the sensorless controller

with speed reversal from 100 to – 100 rad/s at 0.4 s for
unloaded induction motor is illustrated in Fig. 2, which
shows the real and estimated speed, the speed estimation
error, the real and estimated flux in (α,β) reference frame,
the real and estimated flux modulo and its estimation error,

the torque and fluxes in (d,q) reference frame. It can be
noticed that the acceptable speed estimation error is in a
steady state. In starting and reversing times, this error is
also negligible. The flux estimation is done with a good
accuracy. Therefore, this observer demonstrates and
guarantees good performances of regulation and a high
stability of the global system.
EKF implementation needs the best choice of the

covariance matrices Q and R. The noise covariance R
accounts for the measurement noise introduced by the
current sensors and quantization errors of the A/D
converters [2]. The increase in R indicates stronger
disturbance of the current. The noise is weighted less by
the filter, causing also a slower transient performance of
the system. The noise covariance Q reflects the system
model inaccuracy, the errors of the parameters and the
noise introduced by the voltage estimation [6]. Q has to be
increased at a stronger noise in driving the system,
entailing a more heavily weighting of the measured current
and a faster transient performance. An initial matrix P0

Fig. 1 Speed control of an induction machine using direct field-oriented control method based on an EKF
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represents the matrix of the covariance in knowledge of the
initial condition. Varying P0 affects neither the transient
performance nor the steady state condition of the system.
In this study, the value of these elements is tuned
“manually”, by running several simulations. This is
probably one of the major drawbacks of the Kalman filter.
The sensorless controller characteristics for speed step

response of 100 rad/s with 0.4 and 0.8 s applied load of 10
and 25 N$m respectively are depicted in Fig. 3, which
shows the estimation error of speed and flux modulo, the
real and estimated torque and the flux angle. From Fig. 3, a
good estimation of the motor speed can be noticed with a
few rad/s errors in transient state and when load is applied
but globally the robustness and accuracy are well achieved.
The tracking of the rotor resistance variations, when the

rotor resistance value of the IM is changed linearly when
Rr tð Þ ¼ Rrnt þ 1:3  Ωð Þ is demonstrated in Fig. 4. The
Kalman filter capability to track linear profile has been
tested. This fact presents a slowly failure (damage) of the

rotor bar. It can be noticed that the estimation accuracy is
quite satisfactory for monitoring purposes.
Figure 5 displays the tracking of the rotor resistance

variations, when the rotor resistance value of IM is
changed abruptly: stepped-up by 50% of its initial value in
1 s and by 100% of its initial value in 2 s. This result
suggests that even if the rotor resistance changes abruptly,
the EKF still gives a good estimation of this parameter. As
it is well known, the BRBs can increase abruptly the rotor
resistance. Therefore, the EKF can be used to diagnose the
motor by monitoring the change in the rotor resistance.

5 Conclusions

The detailed design procedure for the extended Kalman
filter has been presented and used for the speed sensorless
direct vector control of an induction motor. It can be
concluded from the simulation results that the estimation of

Fig. 2 Dynamic behavior of the sensorless controller with speed reversal from 100 to – 100 rad/s at 0.4 s for unloaded induction motor
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Fig. 3 Dynamic behaviour of the sensorless controller with maximum speed reference equalling 100 rad/s and applied
load torque equalling 10 N$m at 0.4 s and 25 N$m at 0.8 s

Fig. 4 Induction motor rotor resistance estimation with a rotor resistance linear profile variation for a full loaded motor
(a) Real and estimated resistances; (b) estimation error

Fig. 5 Induction motor rotor resistance estimation with a rotor resistance step profile variation for a full loaded motor
(a) Real and estimated resistances; (b) estimation error
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rotor flux and rotor speed has been done satisfactory. The
global system drive is stable and robust against load
perturbation and speed reversion. The EKF has been also
used to estimate the rotor resistance in order to perform an
online diagnosis of the induction motor. Given that the
increase in the rotor resistance gives information regarding
the condition of motor rotor, rotor resistance is estimated
and compared with its nominal value to detect broken bars.
Simulation results have shown good performances of rotor
resistance estimation for both linear and step variation
profiles. The proposed EKF method provides a reliable
BRBs fault diagnosis.

Appendix

The induction motor used for the simulation studies has the
following parameters:
Type: Three-phase, 4 kW. 220/380 V, squirrel-cage

induction motor.

Rs ¼ 1:2 Ω;  Rr ¼ 6:3 Ω;  Ls ¼ 0:1554 H; 

p ¼ 2;  Lr ¼ 0:1568 H;  Lm ¼ 0:15 H; 

J ¼ 0:07  kg⋅m2;  f r ¼ 0:001 N⋅m⋅s=rad;

T l ¼ 25 N⋅m; Ω ¼ 150  rad=s:

The following values have been chosen for Q and R
matrices:
Covariance matrices

Q ¼ ½1e – 5   1e – 5   1e – 5   1e – 5   1e – 1�,

R ¼ ½1   1�, Ts ¼ 1e – 4 s:

Notations
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isαβ ¼ isα þ jisβ α,βð Þ stator current vector
usαβ ¼ usα þ jusβ α,βð Þ stator voltage vector
w,v State and output noise vectors

yðkÞ Output matrix of the linearised augmented model

Ce Electromagnetic torque

FðkÞ System matrix of the linearised augmented model

G Observer gain matrix

J Shaft inertia

K kð Þ Optimal Kalman gain matrix

Lm Magnetising inductance

Lr Rotor self inductance

Ls Stator self inductance

P Number of pole pairs

PðkÞ State estimation error covariance matrix

Q, R State noise and output noise covariance matrices

Rr Rotor phase resistance

Rs Stator phase resistance

T l Load torque

Ts Sampling time

σ Total leakage factor

ψrαβ   ¼ ψrα   þ jψrβ   α,βð Þ rotor flux vector

ωr Electrical rotor speed

Ω Mechanical rotor speed
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