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Abstract

This thesis is composed of two parts. The first part is devoted the study of backward
stochastic differential equations (BSDEs) under Lipschitz conditions in both multidimen-
sional case, we prove an existence and uniqueness result for BSSDE’s in this case. After,
we give an existence result for a BSDE where the coefficients are assumed to be only
continuous. In The second part, we prove the existence of the solution where is forced
to stay above a given stochastic process, called the obstacle. We prove the existence and
uniqueness under Lipischitz coefficient. In the case where the coefficient is continuous we
prove the existence only.

In the second part , we present some new results in the theory of backward doubly
stochastic differential equations (BDSDEs), In first, we give the result the existence and
uniqueness under some Lipshitz assumption on the coefficients, finally we establish ex-
istence and uniqueness results for a reflected BDSDE with one barriers and with two

barriers, study the case Lipschitz and Continuous.



Résumé

Cette these se compose de deux parties. La premiere partie est consacré a ’étude des
équations différentielles stochastiques rétrogrades (EDSR), sous les conditions de Lip-
ischitz en prouve l'existence et l'unicité, mais avec coefficient continu, nous donnons
un résultat d’existence pour une EDSR. Nous étudions dans chapitre 2, une classe des
équations différentielles stochastiques rétrogrades.

Dans la deuxieme partie, nous présentons de nouveaux résultats dans la théorie des
équations différentielles doublement stochastiques rétrogrades (EDDSR), on commence
par les résultats classique sur cette classe des équations. Et enfin en définie les équations
différentielles doublement stochastiques rétrogrades réfléchies (EDDSRR). D’abord, sous
la condition de Lipshitz sur les coefficients nous établissons l'existence et 1'unicité pour
une EDDSR réfléchie. Ensuite, un résultat d’existence de la solution dans le cas ou les

coeflicients sont continus a croissance linéaire.



Introduction

It was mainly during the last decade that the theory of backward stochastic differential
equation took shape as a distinct mathematical discipline. This theory has found a
wide field of application as in mathematical finance, the theory of hedging and non-
linear pricing theory for imperfect markets (see El Karoui, Peng and Quenez [14]) and
at the same time, in stochastic optimal control and stochastic games (see Hamadéne and
Lepeltier [23]), and they provide probabilistic formulae for solutions to partial differential
equations (see Pardoux and Peng [34]).

The Linear backward stochastic differential equation :

T T
Y, =&+ / (YifBs + Zsvs + ¢s)ds — / 7. dWs. (1)

have been introduced by Bismut [8] and [9] when he was studying the adjoint equations
associated with the stochastic maximum principle in optimal control. However, the first

published paper on nonlinear BSDE’s (see Pardoux and Peng [34])

T T
Yt:§+/t f(s,YS,ZS)ds—/t Z,dW,. (2)

In [34], Pardoux and Peng have established the existence and uniqueness of the solution
of equation 2 under the uniform Lipschitz condition, i.e. there exists a constant K > 0
such that

|f(t,y,2) - f(t’y/7zl)| < K(ly - y,| + |Z - Z,|>

for all y,9 € R?, 2,2 € R Note that, since the boundary condition is given at the
terminal time 7', it is not really natural for the solution Y; be to adapted at each time ¢ to
the past of the Brownian motion W before time t. The presence of the process Z; seems
superfluous. However, we point out that it is the presence of this process that makes it
possible to find adapted process Y; to satisfy equation (2). Hence, a solution of BSDE
(2) on the probability space of Brownian motion , as mentioned above, is a pair (Y, Z) of

adapted processes that satisfies (2) almost surely.
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In [27], Lepeltier and San Martin have prove the existence of a solution for one-dimensional
BSDE’s where the coefficient is continuous, it has a linear growth, i.e assume the for fixed
t, w, f(t,.,.) os continuous, and there exists a constant K > 0 such that for all ¢,y, z we

have
|f(t oy, 2)| < K1+ [y + |2]).

Kobylanski in [26] prove existence and uniqueness results for BSDE’s (2) in one dimen-

sional when the generator (f(¢,y, z) has a quadratic growth in Z.
[ty 2)] < C(L+Jy| + |2]).

These results are inspired by the analogous one for quasilinear partial differential equations
and hold for processes (Y, Zt)o<i<r such that (Y;)o<i<r is bounded. K.Bahlali in [2]
we deal with multidimensional BSDE’s with locally Lipschitz coefficient and a square
integrable terminal data. We study the existence and uniqueness, as well as the stability
of solutions. We show that if the coefficient f is locally Lipschitz in both variables y, 2
and the Lipschitz constant Ly in the ball B(0, N) is such that Ly = o(y/log N), then the
BSDE 2 has a unique solution.

In the case where the solution is forced to remain above an obstacle, El Karoui et al.
[15] have derived an existence and uniqueness result for Reflected BSDE’s with Lipschitz
coefficient by Picard iteration method as well as a penalization argument. In this case,

the solution is a triple (Y, Z, K), where K is an increasing process, satisfying

T T
Vime+ [ f6Yaz)ds+ Ko — K- [z, )
t t

Note that the study of Reflected BSDE’s on one barriers has been primarily motivated
by the evaluation of an American option in a market constrained, which may be a market
where interest rates are not the same if we wants to borrow or invest money. Indeed, it
has been proved that the price of a American contingent action is a solution of a reflected
BSDE’s that the barrier is given by the payoff and the optimal time of exercise is the
first time when the price reaches the payoff (see [16]). Other application is in mixed
stochastic control see [20]. In the paper of Matoussi [29] he will be inspired by the works
of El Karoui [15] and Lepeltier [27] to establish existence of Reflected solution of one-
dimensional BSDE’s with continuous and linear growth coefficient.

Recently, a new class of BSDE’s, called doubly stochastic, has been considered by Pardoux
and Peng (1994) (see [35]). This new kind of backward SDE’s seems to be suitable to
give a probabilistic representation for a system of parabolic stochastic partial differential
equations (SPDE’s). We refer to Pardoux and Peng (1994) [35] for the link between



SPDE’s and BDSDE’s in the particular case where solutions of SPDE’s are regular. In
[35] Pardoux-Peng study existence and uniqueness of the solution to a backward doubly

stochastic differential equations as follows
T T _ T
Vgt [ fevaz)dst [ gls Yo 2)dB. - [ Zaw, @
t t t

where the dWW integral is a forward [to’s integral and the dB integral is a backward [to’s
integral, we prove under the conditions f and g are Lipschitz, the BDSDE 4 has a unique
solution.

In [41]. Shi et al., we shall prove the comparison theorem of BDSDE’s (4). Then we study
the case where the generator are continuous with linear growth. We show the existence
of the minimal solution of (4). This method is due to [27].

In this thesis, we present some new results in the theory of Backward Doubly Stochastic
Differential Equations.

First, we study the case where the solution is forced to stay above a given stochastic pro-
cess, called the obstacle. We obtain the real valued reflected backward doubly stochastic

differential equation :

T T — T
Yt:§+/ f(s,YS,Zs)ds—i—/ g(s,Ys,ZS)st+KT—Kt—/ Z.dW..  (5)
t t t

We establish the existence and uniqueness of solutions for equation (5) under uniformly
Lipschitz condition on the coefficients [4]. In contrast to classical reflected BSDEs, the
section theorem can not be easily used for RBDSDESs. Indeed, it is not possible to prove
that the solution stays above the obstacle for all time, by only using the classical BSDEs
technics. This is due to the fact that the solution should be adapted to a family (F)
which is not a filtration. We give here a method which allows us to overcome this difficulty
in the Lipschitz case. The idea consists to start from the penalized basic RBDSDE with
f and ¢ independent from (y,z). We transform it to a RBDSDE with f = g = 0, for
which we prove the existence and uniqueness of solution by penalization method. The
section theorem is then only used in the simple context where f = g = 0 to prove that
the solution of the RBDSDE (with f = g = 0) stays above the obstacle for each time.
A new type of comparison theorem is also established and used in this context. The
(general) case, where the coefficients f, g depend on (y, z), is treated by a Picard type
approximations.

In the case where the coefficient f is only continuous, we establish the existence of a max-
imal and a minimal solutions. In this case, we approximate f by a sequence of Lipschitz

functions (f,) and use a comparison theorem which is established here for RBDSDEs.



Other new result, we generalize the above result to the case of two reflecting barrier pro-

cesses, we obtain the real valued double reflected backward doubly stochastic differential
equation (in short DRBDSDE):

T T - T T T
Vi—er [ revazydst [ gevaz)aBe [ [Cakc- [ zaw, o<isr
t t t t t
(6)
We establish the existence and uniqueness of solutions for equation (6) under uniformly
Lipschitz condition on the coefficients. In the case where the coefficient f is only contin-

uous, we establish the existence of a solutions.

The thesis is organized as follows.
The first part of this thesis is on the Backward Stochastic Differential Equation

T T
Vi€t / F(5, Yo Z,)ds — / Z.dW,. (7)

In Chapter 1, we present, an existence and uniqueness theorem for solution of
BSDE’s (7) where the coefficient is Lipuschitz, and we give the comparison result in
this case and we prove the existence it the case where the generator are continuous with
linear growth.

In Chapter 2, we prove existence and uniqueness results of solution of reflected backward

stochastic differential equation

T T
Yi=¢+ / f(s,Ys, Zg)ds + Ky — Ky — / Z.dBs. (8)
t t

where the coefficient is Lipischitz and existence only in the case where the generator are
continuous with linear growth.

The second part of this thesis is on the Backward Doubly Stochastic Differential Equation

T T - T
Y,=¢ +/ f(s,Ys, Zs)ds +/ 9(s,Ys, Zs)dB s — / ZdW. 9)
t t t

In Chapter 3, we give a background on BDSDE’s, we prove existence and uniqueness
results of solution of BDSDE (9) where f and g are Lipischitz, and the generalize this
case where f is continuous with linear growth and we prove also the result comparison
for BDSDE's.

In Chapter 4, in this chapter we establish a new result of BDSDE’s, is when the solution

is forced to stay above a given stochastic process, called the obstacle. We obtain the real



10

valued reflected BDSDE
T T - T
}/t :§+/ f(S,Y;,ZS)dS—f—/ g(SaY:sazs)st+KT_Kt_/ stWs- (10)
¢ ¢ ¢

We prove the existence and uniqueness of solutions for equation (10) under uniformly Lip-
schitz condition on the coefficients. In the case where the coefficient f is only continuous,
we establish the existence of a maximal and a minimal solutions.

In Chapter 5, we give other new result is for double reflected backward doubly stochastic
differential equation (in short DRBDSDE):

T

T T
dKj—/ dK;—/ Z,dW,, 0<t
t t
(11)

We establish the existence and uniqueness of solutions for equation (11) under uniformly

T T
Yt=§+/ f(s,Ys,Zs)dH/ g(s,Ys,Zs)dBS+/
t t t

Lipschitz condition on the coefficients. In the case where the coefficient f is only contin-

uous, we establish the existence of a solutions.



Part 1

BACKGROUND ON BACKWARD
STOCHASTIC DIFFERENTIAL
EQUATIONS.
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Chapter 1

Existence result of backward

stochastic differential equation

We prove the existence and uniqueness of solution for backward stochastic differential
equation with lipschitz generator and squared integrable terminal condition, we prove

moreover the existence of a solution when the generator is merely continuous.

1.1 Introduction

Backward stochastic differential equations (BSDEs) have been first introduced by E. Par-
doux and S. Peng [39] who proved existence and uniqueness of adapted solutions for these
equations under suitable Lipschitz and linear growth conditions on the coefficients. The
principal interest of BSDE is that they provide a useful framewark for formulating many
problems as in finance theory, stochastic control and in the games theory.

Following the idea of J.P. Lepeltier and J. San Martin [27], we use an approximation
argument to prove the existence of a solution of one dimensional BSDE with a continuous

coefficient.

1.2 BSDE with Lipschitz coefficient

Let consider a filtered space (2, 3§, P,§:, Wi, t € [0,1]) be a complete Wiener space in
R™jie. (,F,P) is a complete probability space, (§;,¢t € [0,1]) is a right continuous

12



Section 1.2. BSDE with Lipschitz coefficient 13

increasing family of complete sub o — algebras of §, (W, t € [0, 1]) is a standard Wiener
process in R” with respect to (§¢,t € [0, 1]). We assume that

S =0o[Ws,s <t]VN,

where AN denotes the totality of P-null sets. Now, we define the following two objects :
(H1.1) A terminal value £ € L*(Q, §1, P).

(H1.2) A function process f defined on Q x [0,1] x R* x R¥*" with values in R* and
satisfies the following assumptions :

(i) for all (y,2) € RF x RF*": (w,t) — f(w,t,y, 2) is Fi-progressively measurable.

(ii) E [, |f(,0,0)2dt < oo

(iii) for some K > 0 and all 3,9’ € L*, 2z, 2/ € R¥*" and (w,t) € Q x [0, 1]

‘f(watay’ 2) - f(wat>y,72/)‘ < K(|y - y/| + ’Z - Z/|)'

Let us consider the following kind of space of variable or processes.

(1) LZ(R¥) is the space of all Fr-measurable random variables X : Q — R* satisfying
IX* = E(X]*) < oo.

(2) H2(R*) is the space of all the predictable process ¢ : Q x [0,7] — R* such that
|62 = E(fOT |¢|2dt) < oco. Such processes are said to be square integrable.

Let us now introduce our BSDE : Given a data (f,§) we want to solve the following

backward stochastic differential equation:
T T
Y, :§+/ f(s,YS,Zs)ds—/ ZdW,, 0<t<T. (1.1)
t t

Definition 1.2.1. A solution of equation (1.1) is a pair of processes (Y, Z) progressively
measurable and satisfying : fOT(\f(S,Y;, Z)| + | Z||*)ds < oo, and equation (1.1).

We now make more precise the dependence of the norm of the solution (Y, Z) upon

the data (&, f).

Proposition 1.2.2. Let assumptions (H1.1) and (H1.2) hold. Then there exists a con-
stant C', which depend only on K, such that

T T
E(supo<i<r|Yi|*) + E( / | Z,2dt) < CE(|€]* + / | £(t,0,0)[%dt)
0 0
T
Vi < B0 + / 26D £(s,0,0)[2ds/3.).
0

where o = 1 + 2K + 2K2.
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Before proving proposition (1.2.2), let us first prove the inequality

T
Esup0§s§T|Y;|2 + E(/ ]Zs‘QdS) < 00. (1.2)
0
Define for each n € N, the stopping time
r=inf{0 <t < T:|Y;| > n}.

and the processes
Y;fn = }/t/\Tn'

By noting
Z{ = 1107, Z,

we have
T T
Y"=¢ +/ Lo (8)f(s, Y, Z3 )ds — / ZrdWs, 0 <t <T.
¢ t

If we apply It6’s formula to the process |Y;"|?, then

T T T
VP [Nz Pds = I 2 [ Lo (V0T A Y2 Z0ds — [ v ziaw,
t t t

which implies

T T
E(Y!P + / ZPds) < B¢ + E / (1£(5,0,0)2ds + (1 + 2K +22%)|Y7[?)ds
t

t

K
+ —|Z"ds.
17
If we take % < %, we get

1 T T

E|Y* + 5E/ |Z™?ds < C(1 + E/ Y )ds.
t t

Now it follows from Gronwall’s lemma that

sup sup E|Y"|* < C.
neN 0<t<T

On the other hand,
T
supE/ | Z"*ds < oo.
neN t

From Fatou’s lemma, we can see that

sup ElY|* < c0.
0<t<T
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Burkholder-Davis-Gundy inequality implies that
Esupo<i<r|Yi|* < oc.

It follows that 7 T 1" a.s. Using again Fatou’s lemma, we obtain

T
E/ |Z,2ds < .
0

Proof. (of proposition 1.2.2) Since (Y, Z) satisfies equation (1.1) and (2.12), E LT<§Q, ZdWs) =
0, because the local martingale, {F ftT(YS, ZydWs), 0 <t < T} is uniformly integrable
from the Burkholder-Davis-Gundy’s inequality for stochastic integrals see (barlow and
protter) and the fact that

T t
E sup | [ (Yo)'ZdW,| < C(E sup |Yi[H)Y3E sup | | ZdW,|})Y?,

0<t<T Jy 0<t<T 0<t<T Jo

and from Doob’s inequality, we obtain

T
E sup | [ (Yo ZdW,| < C(E sup |Yi>)Y*(E sup / | Z,|ds)"? < o0,

0<t<T t 0<t<T 0<t<T

From It6’s formula, (H1.2)(iii) and schwartz’s inequality,

T T T
VP + / \Z,2ds < |€? + 2 / (Y2) (s, Y, Zo)ds — 2 / Y, Z.dW)
t t t
2 g 2 2 2, L0
Il + [ (175, 0,00 + (1 4+ 2K + 2K2)Vif? + 1] ZP)ds
t

T
s / Ve, 2.4V,
t

Taking expectation and using Gronwall’s lemma we get

T T
sup E|Yt|2+E/ 7.2t < CE(]§|2+/ 1£(s,0,0)[2d¢) < o
0 0

0<t<T

Then the result follows from the Burkholder-Davis-Gundy inequality. The second result

follows by taking the conditional expectation in the following inequality

1 T T T
e™|Yi? + 5/ ™| Zy|?ds < e™T|¢)? + 2/ e f(s,0,0)|*ds — 2/ e (Yy, Z,dW,).
t t t
O

We shall now prove existence and uniqueness for BSDE (1.1) under conditions (H1.1)
and (H1.2).
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Theorem 1.2.3. (Pardouz-Peng) Under conditions (H1.1), (H1.2), there exists a

unique solution for equation (1.1).

Proof. Existence.First, let us prove that the BSDE

Y, =§+/tTf<s>ds - /tTZSdWS,

has one solution. Let
T
V= B+ [ fs)ds/5)
0

and {Z;, 0 <t < T} is given by Itd’s martingales representation theorem applied to the
square integrable random variable & + fOT f(s)ds, that is

T T T
§+/0 f(S)ds:E(€+/0 f(S)ds)+/0 ZJdW,, 0<t<T,

Taking the conditional expectation with respect to §;, we deduce that

T T
Yt=§+/ f(s)ds—/ Z dW,, 0<t<T,
t t

ie. (Y,Z) is a solution of our BSDE. Let us define the following sequence (Y, Z™),en
such that Y = Z% = 0 and (Y™, Z"*!) is the unique solution of the BSDE

T
(1) Z""'is a predictable process andE(/ | ZI2dt) < oo,
0
T T
(2) Y —¢ +/ F(s,Y", Z%)ds — / Zmaw,, 0 <t <T.
¢ ¢

We shall prove that the sequence (Y, Z") is Cauchy. Using It6’s formula, we obtain for

every n > m
T T
eat|Y2n+1 _ Y;m—‘r1|2 +/ eas|z;z+1 o Zgn+1|2d8 + Oé/ 6a5|YSn+1 _ Y;m+1|2d8
t t
T
=2 [ e Y (YT 22— Y 2
t
T
+ 2/ 6as(Y'Sn+1 o }/;m+1)*<Z;L+1 . Z;H—H)dWS,
t
and then,
T T
Eeat|y;n+1 _ Y;m+1|2 +E/ €a8|Z§L+1 _ Z:1+1|2d8 +OZE/ 6a8|Y;n+1 _ Y;m+1|2d8
t t

T
< 2KE/ ¢S [Y L _ Y[y — Y| 1|20 — 27 ds
t
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which implies

T
EeatlY;n+1 _ Km+1‘2 +E/ eas’Z;1+1 _ Z;nJrl‘ZdS
t

T T
2
< ({;(252 _ Oé) E/ €a8|’fsn+l o ]rstrl‘ZdS . E/ 60[8|"/‘STL o ]fsm‘st
t & t

2 T
+ —E/ |21 — Z™|*)ds.
t

e2

Choosing « and ¢ such that E% = % and o — 4K? = 1, then
T
Eeat‘}/;n-&-l _ Y'tm—i-l‘2 +E/ 6as|Z;H-1 _ Z;n+1|2d$
t
1 T T
<GB [y yrPas v B [ iz - 20 pas)
t ¢

It follows immediately that

T T C
E/ Y — Y™ [2ds + E/ |22 = 2 Pds < o
0 0
Consequently, (Y, Z"),en is a Cauchy sequence.
Let

Y =IlimY", and Z = lim Z".

n—oo n—o0

It is easy to see that (Y, Z) is a solution of our BSDE.
Uniqueness.Let {(Y;,7,); 0 <t < T} and {(Y;,Z,); 0 <t < T} denote two solutions
of our BSDE, and define

{(AY;,AZy), 0<t<T}={(V-Y',Z, - Z",), 0<t<T}
It follows from Itd’s formula that

T T
EHAYt|2+/ |AZS\2ds]:2E/ (AY,, f(5,Ys, Zs) = f(s,Y, Z,))ds.

’) T80 s
t

Hence

T T T
E[|AYt|2+/ |AZ,|ds] gCE/ |AYS|2ds+fmc12E/ |AZ,|?ds.

t t t

the result follows from Gronwall’s lemma. ]

The following proposition shows, in particular, the existence and uniqueness result for
linear backward stochastic differential equation. Such a way is well-known in mathemati-
cal finance, where the solution of a linear BSDE is in fact the pricing and hedging strategy

of the contingent claim £ (see [14]).
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Proposition 1.2.4. Let (3,7v) be a bounded (R, R™)-valued progressively measurable pro-
cess, ® be an element of HA(R), and & be an element of L2(R¥). Then the Linear BSDE

T T
Y, — ¢+ / (@, + Yo + Z77.)ds — / Z.dW. (13)
t t

has a unique solution (Y, Z) in HA(R) x H2(R™) given explicitly by :

T
AtY;g = E[SAT +/ AS(I)SdS/St], (14)
t

where Ay is the adjoint process defined by the forward linear stochastic differential equation,

t t
At:1+/ Asﬁsder/ AgyrdWs,
0 0

Proof. By theorem1.2.3, there exists a unique solution to the BSDE (1.3). Using Ito’s

formula we obtain

t t t
MY+ / As®yds = Yy + / AYyrdW, + / AY, Z5dW.,.
0 0 0

Since sup,.r |Ys| and sup,.p |A,| are square integrable, therefore the local martingale
{AY, + fg As@gds, t €[0,T]} is a uniformly integrable martingale, whose ¢-time value is

the §;-conditional expectation of its terminal value. O

1.3 Comparison theorem

We state in the one dimensional case a comparison theorem (first obtained by Peng,[38]).

Theorem 1.3.1. (Comparison theorem)Let (f', ') and (f%, &%) be two data of BSDE's,
and let (Y, ZY) and (Y?, Z?) be the associated solutions. We suppose that £&8 < & P a.s.,
and f1(t,y,2) < f2(t,y,z) dt x P a.s. Then we have Y} <Y? P — a.s.

Proof. We use the follows notation
0Y) =Y, =Y?, 8(Z) = 2, — Z}, 8(&) = & — &
We obtain the follows BSDE
00 = 0(€) + [ (716,22 — P62 Zs = [ a(zgaws, o< e<T,
¢ ¢
we can write

0(Y1) = 0(&) +/t (asd(Ys) + Bs0(Zs) + (s, Y2, Z2) = [*(s, YL, Z2))ds

T
- / §(Z)dW,, 0<t<T,
t
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where {a; 0 <t < T} is defined by

Uy = e ) Y £ Y,
' O, if Ytl — Y;Z.

and the R" valued process {;, 0 <t < T} as follows. For 1 <i <mn, let Zt(i) denote the

n-dimensional vector whose components are equal to those of ZZ, and whose n — i last

components are equal to those of Z}. With this notation, we define for each 1 < i < n,
gi o [ FEYRZT) = P ZTN6E) T 4 # 27
Y ot Zk =z
Since f is a Lipschitz function, o and 3 are bounded processes, for 0 < s <t < T, let

¢ t 2
[yt = exp[/ (B, dW,) +/ (o — |ﬁ;| )dr].

We have for 0 < s <t < T,
02 = a4 + [ (P02, 22) = £ ¥2, 20— [ L0024 5,500,
Hence

) = BILS00) + [ Turl 02 2) — P V2 2/

The result follows from this formula and the negativity of §(§) and (f*(r,Y? Z2%) —
f2(r, Y2 Z2)). O

) T T

1.4 BSDE with continuous coefficient

Now we prove the existence of a solution for one dimensional backward stochastic differen-
tial equations where the coefficient is continuous, it has a linear growth , and the terminal
condition is squared integrable. we also obtain the existence of a minimal solution. First
let us consider the following assumption :

(H1.3) (4) The function f is R-valued.

(i7) there exists a constant C' > 0 such that P —a.s., |f(t,y,2) < C(1+ |y| + |z|) for any
(t,y,2) € 10,T] x R*4

(17i) P — a.s. for any t € [0, 7], the function which with (y,z) — (¢, y, z) is continuous.

Then we have the following result:
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Theorem 1.4.1. (Lepeltier-San Martin [27]).The BSDE associated with (f,&) has

a mazimal solution (Y, Z), i.e., we have

Y € 8% Z € H*(RY),

T T (1.5)
Y, =&+ f(s,Ys, Zs)ds — / ZdWs.
t t

and if (Y, Z") is another solution for (1.5) then P —a.s., Y > Y.

The idea of the proof is to give an approximation of the coefficient f by a Lipschitz
sequence of functions f,,, and establish that the limit of the sequence (Y Z™) of corre-
sponding solutions for BSDE (&, f,,) is a solution of BSDE with parameter (¢, f) .

Lemma 1.4.2. Let g : R — R be a continuous function with linear growth, that is there
exists a constant K < oo such that Vo € R?P |g(z)| < K(1 + |z|). Then the sequence of

functions
{gn)m=1)(x) = inf{g(y) + nlz —y|}
yeQ

15 well defined for n > K and it satisfies :
(i) linear growth Nx € R, |g,(z)| < K(1+ |z|);
(1) monotonicity in nNv € R, g,(z) 1;
(iii) Lipschitz condition : ¥ x ,y € R, |gn(z) — gn(y)| < nj|z —y,

(iv) Strong convergence : if x,, which converge to x € R we have,

lim,, oo gn(zn) = g(x), ds a.e,

Proof. By the linear growth hypothesis on g, g, is well defined for n > K. Also it follows

at once that g, < g. Again, from the linear growth condition on g, we obtain

g()>mf1(-mm+Kh—y| K(1+ |z|)

from which (i) holds. Property (ii) is evident from the definition of the sequence (g,).
Take € > 0 and consider y. € Q such that

gn(x) 2 g(ye) + nlz —ye| —

> g(y:) +nly — ye| +nlz —y| —nly —y| — ¢
> g(ye) +nly —ye| —nlr —y| —¢
> g(ye)

y:) —nlr —y| —e.
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Therefore, interchanging the roles of x and y, and since ¢ is arbitrary we deduce that

|90 () — gu(y)| < nfz —yl.

In order to prove (iv), consider lim, .., x, = z. Take for every n, y, € Q such that
9(Tn) = gn(wn) > g(yn)+n|$n—yn|—%. Since (g(x
we deduce that (y,) is bounded, and so is (g(y»))-

and in particular y, — x. Moreover

) is bounded and ¢ has linear growth,

n)
Consequently, lim sup n|y, — z,| < oo,

1
from which the result follows. =

Proof. (of theorem 1.4.1) Forn > 0, let (Y™, Z") be the solution of the BSDE associated
with (f,,€). On the other hand let (Y, Z) be the solution of the BSDE associated with
(—C(1+4y| +12]),&). The comparison theorem (1.3.1), implies that for any n > 0, Y >
Y™l > Y. It follows that P — a.s. for any t < T, Y” — Y; and the sequence (Y"),>o
converge in H?(R) to a process Y which also upper semi-continuous.

Now by It6’s formula with (Y™)?, using the inequality |ab| < elal® + L[b|* for any € > 0
and a,b € R and since |f,,(t,y, 2)| < C(1+ |y| + |z|) we deduce that the sequence (Z™),>o

is uniformly bounded in H?(R).
Next let n,m > 0. Then using It6’s formula yields:

T T
07 =Y [Nz 2 Pds =2 [ = VP Y22~ s Y 20
t tT
2 [ ez - zmaw, <
t

Then the sequence (Z"),,>0 is of Cauchy type in H?(R?) and converges to a process (Z;);<
which belongs to H?(R?). Now the pair of processes satisfies,

T
Y =€+ fnsY” Z")ds—/ ZmdW,
/fnsY” Zm) /Z”dWs,t<T

But for any stopping time v we have lim, .. E(|Y;" = Y,|) = 0, lim, .. E(] [, (Z7 —
Zs)dWy|) = 0 through Bulkhoder-Davis-Gundy inequality. Finally

v T
E(‘/O (fn(sjy;‘”, Z;L) - f(S,Y;, ZS))dSD < E(/O |fn(57}/sn= Z:) - f(S7YS= ZS)|1[|YS”|+\Z$|Sk]dS)

T
B / a5, Y Z0) = F(5,Yar Zo)\ Ly oz i)
0
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But there exists a subsequence which we still denote by n such that the first term in the
rights converges to 0 as n — oo since P —a.s. and for any t < T, (f,.(t,y, z))n>0 converges
uniformly to f(t,%,2) on compact subsets of R1*¢. The second term is majorities by a
constant d, which converges to 0 as k — oo. Henceforth the left converges to 0 as n — oo.

It follows that for any v a stopping time we have :
Y, =Y, - / f(S7Yt97 Zs)ds +/ stWs-
0 0

Finally the optional section theorem (see [10], page220) implies that (Y, Z) is a solution
for (1.5). Now if (Y, Z’) is another solution for (1.5), then comparison theorem implies
that Y™ > Y’ since f,, > f. Therefore taking the limit we obtain Y > Y’ and then Y is

maximal. ]

Remark 1.4.3. In the same way as previously has we used an increasing approximation

of f we would have constructed the minimal solution of (1.5).



Chapter 2

Reflected Backward Stochastic

Differential Equations

We study reflected solutions of one-dimensional backward stochastic differential equations.
We prove uniqueness and existence by approximation via penalization, we show that when
the coefficient has Lipschitz, and we prove the existence of a solution of RBSDE with

continuous and linear growth coefficient.

2.1 Introduction

In this section, we study the case where the solution is forced to stay above a given
stochastic process, called the obstacle. An increasing process is introduced which pushes
the solution upwards, so that it may remain above the obstacle. The existence is estab-
lished via approximation is constructed by penalization of the constraint, we prove also a
comparison theorem, similar to that in [14], for non-reflected BSDE’s. Finally we prove
the existence of a reflected solution of one-dimensional backward stochastic differential

equations with continuous and linear growth coefficient.

2.2 Reflected BSDE’s with Lipschitz coefficient

Along with this section the dimension is equal to 1. So we are going to deal with solutions
of BSDE’s whose components Y are forced to stay above a given barrier.
Let {B;,0 <t < T} be a d-dimensional brownian motion defined on a probability space

23
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(Q,5,P). Let {§:, 0 <t < T} be the natural filtration of {B;}, where F, contains all
P—null sets of § and let P be the o—algebra of predictable subsets of Q x [0, T.

Let us introduce some notation.
L = {¢ is an §r — measurable random variable s.t. F(|¢|?) < oo}
T
H? = {{¢;,0 <t <T} is a predictable process s.t. E(/ i |?dt) < oo}
0

S? ={{p;,0<t <T} is a predictable process s.t. E<oiu£T o) < oo}
t
and we define :
(I) a terminal value ¢ € L2
(IT) a coefficient f, which is a map : f : Q2 x [0,7] x R x R? — R such that V(y, z) €
R x R, f(.,y,2) € H2,
(III) for some K > 0 and all y, 5 € R, 2,2’ € R% a.s.

|f<t,y,Z> - f(taylaz/)| < K(|y - y/| + |Z - Z/|)

(IV) An obstacle {S;,0 < ¢ < T}, which is a continuous progressively measurable real-
valued process satisfying : E(supg<,<7(S;7)?) < co.
We shall always assume that Sy < € a.s..

Definition 2.2.1. The solution of RBSDE is a triple {(Y;, Z;, K;), 0 < t < T} of §;
progressively measurable processes taking values in R,RY and R, respectively, and satis-
Jying:

(V) Z € H?, in particular EfOT | Zy|2dt < o0

(V)Y € 82 and Kr € L2

(VI) Yi=¢+ [! f(5,Ys, Zo)ds + Kr — K, — [ ZdB,, 0<t<T

(VII) Y, > S;, 0<t<T

(VIII) { K.} is continuous and increasing, Ko =0 and fOT(Y; — Sy)dK; = 0.

Our main result in this section is

Theorem 2.2.2. (EL karoui et al.[15]) Under the above assumptions, in particular
(1), (11), (111) and (IV), the RBSDE with (V), (VI), (VII), (VIII) has a unique solution
Y, 2, K).

Our prove based on approximation via penalization. In the following ¢ will denote a

constant whose value can vary from line to line.
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Proof. Foreachn € N, let {(Y™, Z™);0 <t < T} denote the unique pair of §, progressively

measurable processes with values in R x R? satisfying £ fOT |Z"|?dt < oo and

T T T
Ve [ g znasen [ or-syas— [ zan, @
t t t

where £ and f satisfy the above assumptions. We define

s

t
Kt”:n/(Y"—Ss)ds, 0<t<T.
0

We now establish a priori estimates, uniform in n, on the sequence (Y, Z" K™).

Indeed using I[t6’s formula with (Y™)? and taking expectation yields :

T T T
E|Y"]? + E/ |Z"?ds = E|¢)* + 2E/ f(s, Y, ZMY ] ds + ZE/ Y'dK
t t

t

T T
< BIEP+2E [ (7(.0.0) + KV + KIZIDY?|ds + 28 [ 8K
t t

3
1
+ —E( sup (5)%) + aB(K} — K}')?,

Q@  0<t<T

T 1 T
Sc(1+E/ \Y'S”]st)—i——E/ |27 2ds
t t

but for any ¢t < T we have,

T T
Kr—K'=Y—¢— / F(s, Y™, ZM)ds +/ Z"dB,.
t t

Hence

T

E|(Kp — K7)*| < {B(IY"]?) + El¢)* + 1+ E(/ (Y[ + 122 *)ds)

t

choosing a = (1/3c¢), we have
2 n|2 1 g n|2 g n|2
§E(|Yt | )—I—gE |Z2%ds < c(1+ E [ |Y]|*ds).
t t
From Gronwall’s lemma it follows that

T
sup E(Y?P)+ E / ZPds + EI(K2)?] < ¢, ¥n € N.
t

0<t<T

Using again equation (2.1) and the Burkholder-Davis-Gundy inequality, we deduce that

T
E( sup |Y;"? —i—/ |Z2?ds + [(K})?|) < ¢, ¥n € N. (2.2)

0<t<T ¢
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We define
fult,y,2) = f(t,y,2) +n(y — S,
fn(tayvz) S fn-‘rl(tvy?Z)a

and it follows from the comparison theorem (for nonreflected BSDE’s see ([34])) that
Y <Y 0<t<T, as Hence Y 1Y, 0<t<T, a.s.

and from (2.2) and Fatou’s lemma,

E(sup Y?) <e.
0<t<T

It then follows by dominated convergence that

T
E/ (Y, = Y")?dt — 0 as n — oo. (2.3)
0

Now we prove lim, .o E(sup,<p [(Y;" — ;)|

proof of our result. Let (Y, Z™) be the solution of the following BSDE :

= 0, this property is the key point in the

T T
Tr—¢ [ (e zn (T - S)ds - [ Zias,
t t

By comparison we have P —a.s. Vt < T, Y* > ?t", for any n > 0. Now let v be an
§:—stopping time such that v < T. Then,

Y = El¢exp(—n(T —v)) + / {f(s, Y7, Z2) + nS.} exp(—n(s — v))ds/F.}]

Since S is continuous then £exp(—n(T — v)) + fVT nSsexp(—n(s — v))ds — Elg—ry +

Suliy<ry P — a.s. and in mean square. On the other hand

v 2n 0

) — Elip=ry + Sulpery € L? as n — oo

v

and then Y, > S, a.s. From that and the section theorem (see [10]), it follows that
P —a.s., Yt € [0,T], V; > S; and then (Y — S;)~ \, 0, t < T, P — a.s. Now Dini’s
theorem implies that sup,.p(¥;" — S;)~ — 0 as n — oo. Finally the conclusion stems

from the dominated convergence theorem since for any n > 0, Yt1 -5 < Y," — S; and
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then (V" — S;)~ < |V, + S/
Now it follows from It6’s formula that for any m >n >0
T

T
E(Y! —Y"P)+ E / 20— Z7ds = 2B / (.Y, ZM) = f(s, Y, ZM](YD — Ym)ds
t tT
Y / (Y7~ YMA(EK? — KT
t

T
< 2KE/ (Y =Y P+ Y = Y| 20 — Z7)ds
t

S

T T
+ 2E/ (Y — ) dK™ + 2E/ (Y™ — §,)dK™
t t
(2.4)

Since m > n, then ftT(Ks,” —Y")(dK? — dK]") < sup,p (Y — Y)")” K7, and using the
estimate (2.2) and the fact lim, .o E(sup,< [(¥Y;" — S¢)7|* = 0 yield

T T
E/ |Z" — Z™*ds < CE/ Y — Y™ |?ds + 2E sup(Y]" — S,)"KJ' — 0 as n — o0
t t

t<T
henceforth there exists a process (Z;);<r which belong of H?(R?) and which is the H?(R?)—limit
of (Z™),.
Next going back to (2.4), taking the supermum and using Burkholder-Davis-Gundy in-
equality to obtain
T

B sup (V= VPV E [ 120 - 27 Pds < 28] sup (V7 - S K + < sup [V VP

t<s<T t t<s<T t<s<T

1 T T
+ —E/ 2} — ZPds + cE/ Y] — Y *ds

€ Nt t
where € > 0. We chose ¢ < £ implies that E supg<,<(¥;" — Y{™") — 0 as n,m — oo and
then Esupyc,;<r(Y" —Y;) — 0 as n — 0o, moreover Y = (Y}),<r is a continuous process.

Now since for any n > 0 and t < T
t t
Kp=yp -y~ [ gzt [z,
0 0

then we have also, E supg<,<p |K'—K!"|* as n,m — oo. Hence there exists an §—adapted
non-decreasing and continuous process (K;);<r, Ko = 0 such that Esupy..p K] —
K> —0asn— oo.

Finally we prove the limiting process (Y, Z, K) = (Y3, Zt, Ki)i<r is the solution of the
reflected BSDE associated with (f, ¢, S).

Obviously the processes (Y:, Z;, Ky)i<r satisfy :

T T
Y; :g+/ f(s,Y;,Zs)ds+KT—Kt—/ Z.dB,, Vt<T.
t t
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On the other hand since lim,, o Elsup,<p((Y;—S;)7)?] = 0 then P—a.s., Vt < T, Y, > S,.
We have also fOT(Yt — S¢)dK; = 0 since the sequences (Y"),>o and (K"),>¢ converge
uniformly respectively to Y and K and thanks to

T T
/ (Y = S5)dKY = —n/ (Y = 5,)7)%ds < 0.
0 0

2.3 Comparison theorem for RBSDE

We prove a comparison theorem, similar to that of [34] for non-reflected BSDE’s.

Theorem 2.3.1. Let (¢, f,9) and (€, f',S") be two Reflected BSDE’s, each one satisfying
all the assumptions (I), (II), (III) and (IV), and suppose in addition the following :

1) € <€ as.

2) f(t,y,2) < f'(t,y,z) dP x dta.e., ¥(y,z) € R x R?,

8) S, <S8, 0<t<T, as.

Let (Y, Z,K) be a solution of the RBSDE (&, f,S) and (Y', Z', K') a solution of the RB-
SDE (&, f',S"). ThenY, <Y/, 0<t<T a.s.

Proof. Applying It6’s formula to |(Y; — Y/)T|?, and taking expectation, we get
T T
E|(Y, = Y))" "+ E / Loyl Zs = Zif*ds < 2 / (Y, =Y [f (.Y Z) = ['(5, Y, 2,
T
28 [ (V.- YD) K, - K.
t
Since on {Y; > Y/}, Y, > 5 < S, we have
T T
| o= viyran, - = - [ - vt
t t
Assume now that the Lipschitz condition to f. Then
T
B Y+ B [ o2 - 2
t
T
<28 [ (V= Y5, Ve Z2) ~ £(5. Y. Z0)Nds
t

T
SME/(K—KVMK—KNH%—lws
t

T T
< E/ Loyl Zs — Z2)Pds + CE/ (Y, — Y))T|?ds.
t t

)lds
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Hence

T
E|(Y, — Y})*]? < cE / (Y, — Y2)* 2ds.

t

and from Gronwall’s lemma, (Y; —Y/)" =0, 0 <t <T. O

2.4 Reflected BSDE with continuous coeflicient

We are given three objects :
1) a terminal value & € L2(Q2, 37, P).

2) a coefficient f which is a map
0T xQxRxR =R

such that :
i) V(y,2) € Rx RY, (t,w) — f(t,w,y,2) is P—measurable.
ii) P—a.s. Vt € [0,T], f(t,w,y, z) is continuous in (y, z) on R x R%. Moreover there exists
a constant C' > 0 such that for any (¢,y,2) € [0, T]xRxR?, |f(t,w,y,2)] < C(1+]y|+]|z|)
3) An obstacle {S;, 0 <t < T}, which is continuous and §;— progressively measurable
process satisfying :

E( sup (S;)%) < .

0<t<T

We shall always assume that S < € a.s.

Theorem 2.4.1. (A.Matoussi)[29]. Let (&, f,S) be a triple satisfying the above as-
sumptions 1)-3). Then there exists a §i—progressively measurable triple{(Y:, Z;, K;), 0 <
t <T7%} solution of the reflected BSDE :

T T
t t

such that :
i) B [V (Y2 + | Z?)dt < oo,
W)Y, > S, 0<t<T,

iii’) {Ky, 0 <t <T} is a continuous and increasing process, Ky =0, and

T
| = soar o
0

To prove theorem (2.4.1), we need an important result which gives an approximation

of continuous functions by Lipschitz function (see [27]) f,(x) = inf eo{f(y) + n|z — y|}.
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Proof. Consider, f, define below. Then f,, is a measurable function as well as a Lipschitz
function. Moreover, since £ € L? and {S;, 0 <t < T} satisfy 3), we get from El karoui
et al. [15] that there is a unique solution (Y;*, Z*, K}'), 0 <t < T for RBSDE

T T
yn— ¢ +/ fuls, Y2, Z0)ds + K3 — K7 — / ZrdB, (2.6)
t t
satisfying equation 2.6 and:

T
B [ (VP12 < oc,
0

VP> S, 0<t<T,

{K}'", 0<t<T} is a continuous and increasing process, K; =10
and /OT(Yt” — Sy)dK} = 0.
Using the comparison theorem of RBSDE’s in El karoui et al. (1996)[15], we obtain
Vn>m>K, Y">Y™ dt ®dP — a.s. (2.7)

The idea of the proof of theorem (2.4.1) is to establish that the limit of the sequence
(Y™, Z" K") is a solution of the RBSDE (2.6) with parameters (f,&,.5).

From now on the proof will be divided into four steps.

Step 1: There exists a constant C, such that Vn > K, E(supg<;<r |Y{"]* + fOT |Z"2ds +
(K7)?) <C.

C > 0 denote a constant, whose value may vary from line to line. From Ito’s formula
applied to (Y;*)?, it follows that

T T T T
(Ytn)z + / |Z§b|2 =&+ 2/ (s, Y, ZY M ds + 2/ Y'dK — 2/ Y,'Z"dB;,
t t t t

Taking expectation, and using the fact that fOT Y,*Z'd By is uniformly integrable(see [15])
and used the identity fOT(Y;” — S1)dK} = 0, we deduce

T T T
B/ + E/ 27 = BE + QE/ (s, Y™, ZMY " ds + 2E/ S.dK™.
t t t
using the uniform linear growth of f,, and the inequality 2ab < a—; +eb?, Ve > 0,
T T 1 T
mw%+E/\4%§cu+E/\QW@H5E/\@&m
t t t

+ 1E( sup (ST)?) + eE((K} — K}')?).

€ o<i<T
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Now from (2.6), we get
T
E((Kp— K7)*) < C(E(Y;") + EE + 1+ E/ (V) +1Z717)ds).
t

Choosing o = we obtain

L
3C

T T T
SEOPP3E [P <COvE [ (s, BT < COAE [ (7). (28)
t t t

It then follows from Gronwall’s lemma that : supy<,<p F|Y;"|* < C, and from (2.8) and

the last inequality we get
T
E/ |Z%ds < C, E(K})* < C.
0

The result of step 1 then from equation (2.6), the above estimates and the Burkholder-
Davis-Gundy inequality.

Step 2.We should prove that the sequence of processes Z" converge in H?(R).

We have from (2.7) and the result of step 1. Y < V"™, 0 <t < T, P—a.s. and
Esupy<r(|Y{"?) < C. Hence ¥* 1 Y;, 0 <t < T, P—a.s., and from Fatou’s lemma,
we have F(supy<,<7 |Y|?) < C.

It then follows by the dominated convergence theorem that
T
E/ Y, = Y;"|?dt — 0 as n — oc. (2.9)
0

For alln > p > nyg > K, from Ito’s formula for ¢ = 0, and using the fact Y,” > S, we

obtain
T T
BIYy ~ VPP 4B [ 120 = ZiPar <2 | (7 =YD YT Z0) ~ (e, Y2, 20
0 0
T T
+ ZE/ (Y" = SpdK + 2E/ (Y — S;)dK?,
0 0
From the identity fOT(Y;” — Sp)dK] = 0, and using the Hélder inequality, we have
T T T
B[ |z - ziPar <2(E [ v - YPPa B [ IR 2D - Y720
0 0 0

Now, using the uniform linear growth on the sequence (f,), and the fact ||[(Y™, Z")| is
bounded, we obtain the existence of a constant C' depending only on K, T, E&? and
E(supy<;<7(S;)?) such that

Vn,p > ng, [|[Z" = 2P| < CIIY" — Yle/Q.
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Then from (2.9), (Z") is a Cauchy sequence in H?(R?), and there exists a §;—progressively

measurable process Z such that Z" — Z in H?(R?), as n — oo. Hence,
T
E/ (Y = YPP2+ |2 — ZP|*)dt — 0 as n,p — oo. (2.10)
0

Step 3.We prove that E(supgci<p [Y;" —Y/?) = 0 as n,p — oc.

From It0’s formula, we have

T T
Ve PP [ 1Z0 -z =2 [0 Y2 Y Z2) — fyls Y2 ZD))ds
t

t

T T
w2 [T YR - dKY) ~2 [ Y222 - 2B,
t t
From the above proof, we have Vn > p, LT(YS” —YP)(dK"™ — dKP) < 0. Then
T T
Yr VPRS2 [ O7 YD Y2 < s VI Z)s 2 [ (V2 - Y2)(22 - Z)dB.
t t

from which we deduce

T T
B(sup [V = Y7P) S 2B [V YIPA) (B [ Sl Y02~ Syl Y2, Z0)ds)
0<t<T 0 0
T
F2E(sup | [ (Y7 - YP)(Z0 — Z2)dB,)).

0<t<T t

Using again the uniform linear growth on the sequence (f,,) and the fact that ||(Y,, Z,)||

is bounded, we deduce
T
(B [ s Y220 = pls 2,200 < C 2.1)
0

Afterwards, from the Burkholder-Davis-Gundy inequality, we obtain
T 1 T
2E( sup | [ (V7 = Y220 - ZDAB.) < SE(sw [V ~Y7P)+ CE [ |20 - 22
0

o<t<T Jt 0<t<T

Hence, from (2.11) and the above inequality

T T
B(sw 7= y7P) <0 (8 [ o vipa o p [z - z2Pas)
0 0

0<t<T

Then from (2.10), we have

E(sup Y =Y/|*) =0, as n,p — oo, (2.12)
0<t<T
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from which we deduce that P — a.s., Y™ converges uniformly in ¢ to Y and that Y is a
continuous process.

Step 4. Now according to (2.6), we have for all n,p > ny > K,

E( sup |K}' — Kf*) < E|Yy' = Y{? + E( sup [V = Y/)
0<t<T 0<t<T
T
+CE [ 1 Y020) = (s Y2 Z2) s
0

T
+E(sup | | (2" — ZP)dB,]?). (2.13)

o<t<T Jy
We need to show that the sequence of processes (f,,(., Y™, Z")), converge to f(.,Y,Z) in
H?(R). This is deduce from the following facts :
a) Y" 1Y in H*(R) and dt ® dP — a.s.
b) Since Z" — Z in H?(R) then there exists a process Z’ in H?(R?) and a subsequence
such that Vn, |Z" < Z', Z" — Z, dt @ dP — a.s.
Therefore, from the lemma (1.4.2) we get f,,(¢,Y,", Z}') — f(t, Vs, Zi), dt—a.s.as n — o0
and |fo(t, Y1, Z0)| < K(1+ Y] + Y| + 7).

Thus, it follows by the dominated convergence theorem that
T
B [ V(s Y222 — 5. Z0Pds 0 a8 0= oc, (2.14)
0

From Burkholder-Davis-Gundy inequality and (2.12)-(2.14) we obtain
E(sup |K"— KF|*) - 0as n,p— oo.
0<t<T

Consequently, there exists a progressively measurable process K with value in R such that

E(sup |K!'— K,*) - 0as n— oo, (2.15)

0<t<T

and then {K;, 0 < ¢ < T} is clearly an increasing ( with Ky = 0) and a continuous
process.
Taking limit in the RBSDE (2.6) we obtain that the triple {(Y;, Z;, K;), 0 <t < T} is
a solution of the RBSDE (2.5). Now from Step 1., we have EfOT(\Yt”]Q + 2P ) dt < C,
taking limit in this inequality, we obtain ') EfOT(|Y§;|2 +|Z:?)dt < C.
On the other hand, we have Vn > K, Y;* > S;, Vt € [0,T], taking limit we have clearly
it").
From (2.12) and (2.15) we have fOT(Yt” — S)dK]' — fOT(Y} — S))dK;, P,.s. as n — o0,
using the identity fOT(Y;” — S4)dK? = 0, we obtain

T
| = soar o
0
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Chapter 3

Background on backward doubly

stochastic differential equations

In this chapter, a new class of backward stochastic differential equations is investigated.
which allows us to produce a probabilistic representation of certain quasi-linear stochastic
partial differential equation, we prove the existence and uniqueness of a solution where the
coefficient is Lipschitz, after we obtain a comparison theorem of these Backward Doubly
SDE’s. As one of its applications, we prove the existence of a solution for BDSDE’s with

continuous coefficients.

3.1 Introduction

This new kind of backward SDEs seems to be suitable to give a ”probabilistic” repre-
sentation for a system of parabolic stochastic partial differential equations (SPDE). We
refer to Pardoux and Peng (1994)[35] for the link between SPDEs and BDSDEs in the
particular case where solutions of SPDEs are regular. In section 1, we study existence and
uniqueness of the solution where the coefficient is Lipschitz, in section 2 and 3, we shall
prove the comparison theorem of BDSDE’s. Then we study BDSDE’s with continuous

coefficients as an application of the comparison theorem.

35
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3.2 Backward doubly stochastic differential equations

with Lipschitz coefficients

3.2.1 Notation and assumptions

Let T be a fixed final time. Throughout this part {WW;, 0 <t < T} and {B;, 0 <t <T}
will denote two independent d-dimensional Brownian motions (d > 1), defined on the
complete probability space (2, F,P) . Let N denote the class of P-null sets of F. For
each t € [0, 7], we define

FoEFY @ F VN,

In other words the o-fields F;, 0 < t < T, are P-complete. We notice that the family of
o-algebras F = {F,},.,.r is neither increasing nor decreasing; in particular, it is not a

filtration. For any n > 1, we consider the following spaces of processes:

1. The Banach space M? (F,[0,T];R"™) of all equivalence classes (with respect to the
measure dP x dt) where each equivalence class contains an n-dimensional jointly

measurable random process {¢;, t € [0,7]} which satisfies:

(i) E [ |gi]?dt < oo;

(ii) ¢ is Fi-measurable, for dt-almost all ¢ € [0,7]. Usually an equivalence class

will be identified with (one of) its members.

2. §%(F,[0,T]; R") is the set of continuous n-dimensional random processes which
satisfy:

(i) E sup |pe]* < oo
o<t<T

(ii) ¢ is Fr-measurable, for a.e t € [0, 7.
We consider coefficients (f, g) with the following properties:

f:Qx[0,T] x R* x R™% — R,
g:Qx[0,T] x R" x R4 — R™4,

such that there exist Fi-adapted processes {fi, g:: 0 <t < T} with values in [1, +00)
and with the property that for any (¢,v,2) € [0,T] x R™ x R**¢  the following hypotheses

are satisfied for some strictly positive finite constant L and 0 < o < 1 such that for any
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(y1721)7 (92722) € Rn X RnXd7 :

f(t,y,z), g(t,y,z) are Fi-measurable processes ,

(H3.1) 1) [f oy, 21) = f(t Y, 22) ’2 <c (‘yl - y2]2 + 1|21 — 22"2) )
(11) |g (taylv Zl) —4g (t7y27z2) |2 < Clyl - y2|2 + a||Zl - ZQHQ'

We point out that by C' we always denote a finite constant whose value may change

from one line to the next, and which usually is (strictly) positive.

3.2.2 Existence and uniqueness theorem

Suppose that we are given a terminal condition ¢ € L* (Q, Fr,P)
Definition 3.2.1. By definition a solution to a BDSDE (&, f,q,) is a pair (Y, Z) €
S%(F,[0,T]; R™) x M?(F,[0,T]; R™*), such that for any 0 <t <T
T T - T
Y, =¢ —|—/ f(s,Ys, Zs) ds +/ g (s,Ys, Zs) dBy —/ ZgdWs. (3.1)
t t t
Here c<l—Bs denotes the classical backward Ito integral with respect to the Brownian motion
B.
Our main goal in this section is to prove the following theorem.

Theorem 3.2.2. Under the above hypothesis (HS3.1) there exists a unique solution for the
BDSDE (3.1).

Let us first establish the result in Theorem 3.2.2 for BDSDESs, where the coefficients
f, g do not depend on (y,z). More precisely, let f, and g : Q x [0,T] — R™*? satisfy
(H3.1), and let £ be as before. Consider the equation:

Yt:§+/tTf(s)ds+/tTg(s)cTBs—/tTZSdWS. (3.2)

Then we have the following result.

Theorem 3.2.3. Under the hypothesis (H3.1), there exists a unique solution to equation

(3.2).

Proof. Existence. To show the existence, we consider the filtration G; = F}V @ FF and

the martingale

M, =E [§+/0Tf(8) ds+/0Tg<s>Zl_Bs/Gt], (3.3)
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which is clearly a square integrable martingale by (H3.1). An extension of Itd’s martingale
representation theorem yields the existence of a G;-progressively measurable process (Z;)

with values in R"*? such that
T T
IE/ | Z:|]?dt < oo and My = M, —|—/ ZsdWs. (3.4)
0 t
. t t rr=. . . .
We subtract the quantity [, f(s)ds + [, g (s)dB, from both sides of the martingale in

(3.3) and we employ the martingale representation in (3.4) to obtain

T T T . T
Y;:§+/ f(s)ds+/ h(s)dks+/ g(s)st—/ ZdWs,
where . .
Ytzﬁ[5+/ fo)ds+ [ g(s)eTBs/gt]

It remains to show that (Y;) and (Z;) are in fact Fi-adapted. For Y;, this is obvious since
for each t,
Y, =E(0/F Vv FB)

Where O is F; V FP measurable. Hence FP is independent of F; V o(0), and
Y, =E(6/F).

Now
T T T —
/ stW8:§+/ f(s)ds+/ g (s)dBs — Y,
t t ¢

and the right side is ;" V F/%. measurable. Hence, from It6’s martingale representation
theorem, Z,,t < s < T is F)V V F/ adapted. Consequently Z, is F}¥ V F[, measurable,
for any t < s, so it is F)¥ V F} measurable.

Uniqueness. Is immediate, since if (Y, Z) is the difference of two solutions,

— T —

Y}+/ Zg dWs =0, 0<t<T.

t
Hence by orthogonality
— T ——
E(I:]*) + E/ Tr(ZZ¥ds = 0,
t

and Y; = 0 Pa.s., Z, = 0 dtdPa.e. O

We will also need the following It6-formula.
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Lemma 3.2.4. Leta € 52( [0, T;R™), B € M2 (F,[0,T);R"), v € M2 (F, [0, T]; R™9),
and § € M? (F ( Xd) be such that:

t t t
o = o + Bsds + / vsdBg + / 0sdW.
0 0 0

Then, for any function ¢ € C* (R™,R)

t

ola) = () + /0 (Vo (0n) B ds + /0 (Vo () 7B, )

! 1 ! /! * 1 ! /! *
+/0 (V¢(a5),5SdWs)—§/0 Tr[¢" (as) vs 2] ds + 2/0 Tr[¢" (as) 05 0%] ds.

In particular,

t

t t
alf = \040|2+2/ (as,ﬁs>d5+2/ <as,%st>+2/ (g, 6sdWs)
0

/ Ill2ds + / 16.%ds.

Proof. See [35]. O

Next, we establish an a priori estimate for the solution of the BSDE in (3.1). for that
sake, we need an additional assumption on g.

(H3 2) {there exists ¢ such that for all(t,y, z) c [O,T] « R* % kad’
99" (t,y, 2) < 22"+ c([lg(t, 0, 0)[* + [y*) L.

Proposition 3.2.5. Assume, in addition to the condition of Theorem(3.2.3), that (H3.2)
holds and for some p > 2, £ € (0, F, P,R*) and

T
E / (17(t,0,0) + [l9(t,0,0)|P)dt < oc.
0

Then

0<t<T

T
E(sup [YilP + ( / 1ZIP)2) < oc.
0

Proof. By lemma 3.2.4 applied to ¢(z) = |z|P, we obtain that

T T
ip+ b [z + B -2 [ vz s
t

t

T T
= |€|p+p/ Yo[P=2(f (5, Ys, Z5), Ys)ds +p/ YP=2(Ys, 9(s, Yz, Z)dBy)
t

t

p T
o[l vz s
t

T T
B2 [ VP Hog (5. Yo ZOYe Vs —p [ VPV 2.
t

+ 2 t
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Taking the expectation, we get

T T
E([Y2]") +§E/ !KI”QHZsIIZdSJrg(p—?)E/ Yo"~ Z,ZYs, Ye)ds
t

t

T T
<B(EP) 4B [ VP (Y 2) Yids + BB [Vl (s, 2) s

t t

+

N3

T
=D [ VPt ag' (s Yo 2V, Vs
t
We can conclude from (H3.1) that for any a < o/ < 1, there exists ¢(a’) such that

lg(t.y.2) [I< e(a)(1y I+ 1 9(£.0,0) [*) + o' | = |*

11— 2
But from (H3.1), (H3.2) and the fact that 2ab < 5 T2t ] ¢ b2, ¢ > 0, it follows
c -«

that there exists a constant 8 > 0 and ¢ such that

T
E(Y,") + 6E / AIPAL
t

T
< E(¢) + B / (YAlP + £ (5.0,0) [P + g (5,0, 0) [[P)ds

Then, from Gronwall‘'s Lemma we obtain

T
sup B (1Y + [ P 1zdfar) < o0
0

0<t<T

Applying the same inequalities we have already used to the first identity of the proof, we
deduce that

T
VP < IeP e [N+ 175, 0.00P + (s, 0.0))ds
t
T T
o [P Y g5 Y Z0dB) —p [ VY Zaw)
t t
from the Burkholder-Davis-Gundy inequality, we get

T
E(supo<i<r|Yi[”) < E[E[” + CE/ (IYal” +1£(s,0,0)[" + llg(s, 0,0)[[P)ds
0

T
+CE\// |Y|2P=4(gg* (s, Ys, Zs)Ys, Ys)ds
0

T
+cE\/ / YL Z, 25V, Vi) ds
0
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We estimate the last term as follows :

T
E\// Y[~ Z:25Ys, Ve dss SE(Ytp/z\// =0Ty [P=2[| 2|2t
0

1 e
< sBlsumactl Vi) + 4B [ Vi 2z P
0

we deduce that
E(supo<i<r|Yi|) < 00

Now we have
T T T
| nzda =1 - P42 [z v [0, 20a8)
0 0 0
T T
+ [ ot i zolPar -2 [ v ziawy
0 0
Hence for any § > 0,
T T T
([ Nz <@ 8| ot Y ZoPany’ + @il + Mol + | [ (56 Y5 20, Ve
0 0 0
T T
n / (Vi gt Y, Z)dBYP? + | / Vi, Z,dW,) 7]
0 0
Passing to expectation
T T
B([ 1ZIPay < (14 6PaE([ | ZIPd + ¢ Gup)
0 0
T T
@B IZIVid? + G pEI [ P12
0 0
T
<+ 0Pab( [ |ZIPa + (6p)
‘ T T
+ G pE(sumastl P |20+ ([ 1Z0Pdry
0 0
T
<[+ 0Pt L+ SIE( [ |zl + o 60,
0

The second part of the result now follows, if we choose § > 0 small enough such that

(1+8)a+(1446) <1

We can now turn to the proof of theorem 3.2.2
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Proof. 3.2.2 Uniqueness.Let (Y,!, Z}) and (Y%, Z?) be two solutions. Define
Y. =Y'-Y? Z,=Z' -7} 0<t<T
Then
B T T T
Vo= [ UYL 2D - s Y2225+ [ lals. Y2 2D ~ gl Y2 Z2)aB. ~ [ Z.
t t t

Applying Itd’s formula to |Y|? yields :

T T
BV 4B [ 22 =28 [ (5, Y2.22) = f(5,Y2,22). ¥ ds
t

t

T
+E/ lg(s, Y2, Z1) — g(s, Y2, 22)|ds.
t

Hence from (H3.1) and the inequality ab < 2(1 3 a? + 1*76%2,

_ r _ T _ -« L g
BV +E [ 2 < c0)E [ [Vufds+ =5 2F [ |ZPds +ab [ |Z.]Pds
t t t t
where 0 < a < 1 is the constant appearing in (H3.1). Consequently
- l—a T T,
E|Y.|* + TE | Zs]|°ds < c(a)E Y s|"ds.

t t
From Gronwall’s lemma, E(|Y|?) =0, 0 <t < T, and hence EfOT 1Z,])? = 0.

Existence.We define recursively a sequence (Y}, Z!"),—o1.. as follows. Let Y =

0, Z? = 0. Given (Y, Z"), (Y,"*!, Z*1) is the unique solution, constructed as in theorem

(3.2.3), of the following equation :

T T T
et =g [ ezt [ gz [ zav. @)
t t

—n+1 A —n+1 A

Let Y, Y/ —ypr Z,

proof of uniqueness yield :

T
—n+1l 9 —n+1 n n n— n— —n+1
E(Y, )+ / 1Z; | d8=2E/ (f(s, Y, Z20) = f(s, Y71, 2070, Y, )
t

t

Zt’“L1 — 7', 0 <t <T. The same computation as in the

T
HB [ gl Y22 — gl 20 s
t
Let § € R. By integration by parts, we deduce
E(|Y)2e%) + BE / Y 2efds + B / 1Z7 126 ds

n+1

T
-y / (s, Y2 Z0) — f(s, YIL, 2070, 70 eds
t

T
+ E/ lg(s, Y, Z2) — g(s, Y71, Z0 ) ||2ePeds.
t
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There exists ¢,y > 0 such that
—n+1 —n+1 s —n+1 s
BT o) 4 (3-8 [ (7 Peras 4 b [ 17 Peas
t t
T
1
<8 [ (VI + 52z s

Now choose = v+ =< 1+ , and define ¢ = 12TC’

—ntl N+l 9 —n+1 s

BT o) 4 8 [ @ s
t

I+«

T
< 50B [ @VIP |z

t

It follows immediately that
—n —=n 1 r
/ A e A e AR AR
t t

and, since ¢ < 1, (Y,", Z]")n=0,1,... is a Cauchy sequence in M?(0, T; R*) x M?(0, T'; R**).
It is then easy to conclude (Y;"),—o1. . is also Cauchy in S?([0,T]; R*), and that
(Y;b Zt) = limn—NDO(Y;fnv ZZI)

solves equation (3.1). O

3.3 Comparison Theorems of Backward doubly stochas-

tic differential equations

In this section, we only consider one-dimensional BDSDEs. We consider the following
BDSDEs: (0<t<T)

T T T
V=g [ peyizise [ gsvizhas- [ zaw. 50
t t t

T T T
Y2 - et / (s, Y2, 22)ds + / o(s,Y2, 2%)dB, — / 224w, (37)
t t

t
where BDSDEs (3.6) and (3.7) satisfy the conditions of theorem (3.2.2). Then there exist
two pairs of measurable processes (Y, Z') and (Y2, Z?) satisfying BDSDEs (3.6) and
(3.7), respectively. Assume
&>¢, as,

{fl(t,Y,Z) > fA(t,Y,Z), a.s.,

Then we have the following comparison theorem.

(H3.3)
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Theorem 3.3.1. Assume BDSDEs (5.6) and (3.7) satisfy the conditions of theorem
(3.2.2), let (Y1, Z') and (Y?, Z?) be solutions of BDSDEs (3.6) and (3.7), respectively.
If (H3.3) holds, then Y,;' > Y72, a.s, Vt € [0,T].

Proof. The pair (Yt1 — Y?, Zt1 — Zf) satisfies the following BDSDE.
T
VYR (@ - [ (P2 - P Y ZD)s
. t
+ [ oY 2 = s, Y2, 22))aB,
tT
—/ (Z:—Z%)aw,, 0<t<T.
t
Applying 1t6’s formula to |(V;' — Y;2)7|?, we get
T
07 =) P = 1€ =€) P =2 [ (00 =¥ (P62 - Y2 2
t
T
2 [0SV (gl Y22 - g(s. Y2 Z2)aB,
T
T / Lyacyzlg(s, Y2, Z1) = g(s, Y2, 22)ds
' T T
+ 2/ Y} —YH(z! - Z2Haw, — / Lyiey2|Zy — Z2|ds. (3.8)
t t
From (H3.3), we have ' — &2 > 0, so
(€' =) )P=0.
Since (Y1, Z') and (Y2, Z?%) are in S?([0, T];R) x M?(0, T} Rd) it easily follows that
T
B[00y (2 - 2w =
tT
B[00 = Y2 (ol Y20~ gl Y2, 22)dB. =0
t

Let

Y YR (P YD Z) - PR Z)ds

T

(Y;l - szz)_(fl(ta Y?? Zsl) - fl(t7Y:92? Zsz))ds

A=—2
= -2

J
J

T
9 / (V2= Y2) (fU (Y2, 22) — (1 Y2 Z22)ds

= A1+ Ay,



Section 3.4. BDSDEs with continuous coefficients 45

where
T
Bu= -2 [ 00V (P2 - YR 2
o
Bo= =2 [ (VYA (022D - P Z)ds <0
t
From (H3.1) and Young’s inequality, it follows that

T
A<A < 20/ Y =Y (V) = Y2 +|Z: — Z2|)ds
t
C«Q

11—«

T T
< (2C + )/ (V) =Y ds + (1 a)/ Lyy<vz|Z; = ZJ]ds,
t t

Using the assumption (H3.1), again, we deduce
T
[ tvrevslats. v, 28 — gls. 2 22) P
t
T
< [ taclcly! - Y2P +alz - 221
t
T T
_ c/ v) - Yf)\zdera/ Lyrys|Z) — 22ds.
¢ ¢
Taking expectation on both sides of (3.8), we get
T
BV Y2y P <CE [ (! - v2) s
t
By Gronwall’s inequality, it follows that
E|(Y, —Y7)"*=0 vte[0,T].

That is, Y, > Y2, a.s., Vt € [0,T]. O

3.4 Backward doubly stochastic differential equations

with continuous coefficients

In this section we study BDSDEs with continuous coefficient. We consider coefficients
(f,g) with the following properties:

f:Ox[0,T] xR xR — R,

g:Qx[0,T] xR xR — R,
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such that there exist Fi-adapted processes { f,¢: : 0 < ¢ < T'} with values in [1, +00) and
with the property that for any (¢,y,2) € [0,7] x R x R?, the following hypotheses are
satisfied for some strictly positive finite constant K, L and 0 < a < 1 such that for any

(y1,21), (Y2, 22) € R x Rd, :

f(t,y,z), g(ty,z) are Fi-measurable processes,
(H3.4) (i) [fty2) | <K 1+ |yl +1z]),
(11) |g (ta Y1, Zl) -9 (t7y27 22) |2 <c |y1 - y2|2 + Oé”Zl - ZQ||2‘
Theorem 3.4.1. Under the above hypothese (HS.4) and if € € L2, there exists a solution

for the BDSDE (3.1). Moreover, there is a minimal solution (Y, Z) of BDSDE (3.1) in
the sense that, for any other solution (Y, Z) of BDSDE (3.1), we have Y <Y .

We still assume that | = d = 1. Before giving the proof of Theorem 3.4.1, we define,
as the classical approximation can be proved by adapting the proof given in J. J. Alibert
and K. Bahlali [1], the sequence f,(t,vy, z) associated to f,

Falt,2) = in [F(t0,2) +nly = o +12 = <))

then for n > N, f, is jointly measurable and uniformly linear growth in y, 2 with constant
N. We also define the function.

Fty,z) = N1+ [yl +Z])

Given ¢ € IL?, by theorem (3.2.2), there exist two pair of processes (Y™, Z") and (U, V),
which are the solutions to the following BDSDESs, respectively,

T T T
Y =¢ +/ fu(s, Y, ZM)ds —|—/ g(s, Y, Z1)dBs — / ZrdW (3.9)
t t t

T T T
U =¢ —I—/ F(s,Ug, Vs)ds + / g(s,Us, Vs)dBs — / VsdW (3.10)
¢ t ¢
From theorem (3.3.1) and lemma 1 (see [27]), we get
Vn>m>N, Y"<Y"<U, dt ®dP — a.s. (3.11)

Lemma 3.4.2. There exists a constant A > 0 depending only on N, C, «, T and &, such
that
V=N,V <A [[Z"] <4 U <A V<A
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Proof. First of all, we prove that ||U|| and ||V are all bounded. Clearly, from 3.11 there
exist a constant B depending only on N, C, «, T and &, such that

T T
([ 1¥rPas< B, (8 [ (0P < B, V] < B
0 0
Applying Ito’s formula to |U|?, we have
T T
U = l¢]* + 2 / UsF (s, Uy, Vi)ds + 2 / Usg(s, Us, Vs)dB,
T ' T ' T
2 [ ovaws [Clgtsvavopas - [ v (3.12)
t t t
From (H3.1), for all & < o’ < 1, there exists a constant C'(a’) > 0 such that
l9(t, u, v)]* < C(a)([ul* +1g(¢,0,0)*) + o'|v]” (3.13)
From 3.12 and 3.13, it follows that
T T T
|Ut|2+/ V. [2ds < |¢|? +2N/ Usl(1 + [Us| + !Vs|)d8+2/ Usg(s, U, Va)dB,
' T ' , T ' , T
_ 2/ UV.dW, + Cla )/ (UL + lg(2,0,0)2)ds + a / 1V [2ds
t l t . t
<[+ NAT = 1)+ C(@) [ 1o(t,0,0)Pds
t

1+a [F
+ +a / Ws\zds
2 ¢

W 2N% T
+ (142N +C(a) + ] a,)/ U, 2ds
- t

T T
+2/ @ﬂ&MJ@M%—2/ U,V,dW,.
t t

Taking expectation, we get by Young’s inequality,

/

11—«

1Tl + =

T T
/ IValPds < E(€[? + N°T + C(a) / 19(1,0,0)[2ds)
t t

.\ 2N? T
+(1+2N+C(a)+1 a,)E/ \U,|*ds
- t

T T
+2F sup | Usg(s,Us, Vs)dBg| + 2E sup | U VidWy.

0<t<T Jt 0<t<T Jt

(3.14)
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By BDG’s inequality, we deduce

T T
E(Sup0§t§T| / Usg(sa U57 Vts)stD S CE(/ |Us|2|g<87 Usa ‘/s)|2d8)1/2
t

0

T
< cB((supocaer|Ui?)( / (g5, Uy, V2)[2ds)/2)
0

T T
< 220(a ) B / U 2ds + / 19(s,0,0)[2ds)
0 0
1 /
+ é||U||§ + 2% | V3. (3.15)

In the same, way, we have
T 1 ,
B(sumercr| [ UNVAW.) < gIUJE + 2% |V, (3.10
t

From 3.15, 3.16 and 3.14, it follows that

1— : ’
VI, < 2ABIP + NT + O+ AE [ glt0,0)Pds)
0

UlI? + ——
1012+ =

2N?

’
—

T
+2(142N + : +O(a’)(1+4c2))E/ \U,|*ds
0
+82(1+a)|V?
T
< 2(E|§|2+N2T+C(o/)(1+402)E/ 19(£,0, 0)[2ds)

0
2

+C(a)(1 +4¢%) + 4c*(1 4 ') B

2N
+2(1—|—2N—|— ,
l—«
1—a
— B,Q.
5 (B)

that is
IUI2< B, |V, <B.
From 3.11, it easily follows that
Y*|ls < B'.

Next, we prove that bound of ||Z"||,,. Applying It6’s formula to |Y;"|?, it follows that

T
VP = e + 2 / YIf (s, YT, Z7)ds

t

T T
+2/ Y:g(s,m,zg)st—Q/ Y Zr AW,
t t

T T
+/ |g(s,YS",Z§)|2ds—/ |Z§|2ds.
t t
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Taking expectation, we have

T T
B(Y/P)+ B [ 1Zds = BIEP + 2B [ ¥2fu(s Y2, Z2)ds
t

t

T
B [ lgs. v 20
t

From the well-known Young’s inequality, it follows that

T / r 1—a r
BV +E | |ZPds < BP+C'B [ ViPds+ =% F [ 120ds
t

t t

T T
+K2(T—t)+0(o/)E/ |g(s,o,0)|2ds+o/E/ 12 2ds.
t t

where C' =1+ 2K + C(a) + 12%;, and we know 0 < o' < 1 from 3.13. Then

T
1272, < —2—(C'T(B)? + K°T + E|¢]* + (o) E / 19(s,0,0)[2ds)

1—a

= (A)2.

Lemma 3.4.3. The sequence (Y™, Z") converge in S*([0,T]; R) x M*(0,T; R).

Proof. Let ng > K. Since (Y") is increasing and bounded in S*([0,T]; R), we deduce
from the dominated convergence theorem that Y™ converges in S?([0,7]; R). We shall
denote by Y the limit of Y. Applying It6’s formula to |Y;* — Y|, we get for n, m > nq,

B(YS - YPP)+ B [ T\27 - 27ds
0
T
= 2E/ (st - szm)(fn(s’nnv Z;L) - fm(s7}/sm7 Z;n))ds
0
T
L E / 9(s, Y, Z0) — gls, Y™, 2 Pds
0
T T
<o(E / Y7 - Y Pds) (B / Fu(5, Y 20 — fouls, Y, Z0)Pds) 2
0 0
T
+E [ (N7 YR+ alzy - 27 Pds
0

Since f, and f,, are uniformly linear and (Y, Z") is bounded, similarly to lemma 3.4.2,

there exists a constant K > 0 depending only on K, C,a, T and &, such that

T
E(Y] —Y7P)+ E / T|Z" — Z7Pds < E / RV — Y™+ ol 2" — 20 P)ds
0 0
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So
T TK
B[ z0 -2 < B s V7 -
0 — Q&  0<t<T
Thus (Z") is a Cauchy sequence in M?(0,T’; R), from which the result follows. ]

Proof. (of theorm 3.4.1) For all n > ny > K, we have Y < Y™ < U, and (Y") converges
in §2([0,T); R), dt ® dP — a.s. to Y € S§%([0,T]; R). On the other hand, since (Z")
converges in M?(0,T; R) to Z, we can assume, choosing a subsequence if needed, that
7" — Z, dt @ dP — a.s. and G = sup,|Z"| is dt ® dP integrable. Therefore, from (i)

and (iv) of lemma 1 in [27], we get for almost all w,

&, Y 20 — f(t, Yy, Zy), n— oo dt — a.e.

|fu(8, Y], Z0)] < K (1 + supn|Y,"[ + supa|Z7'))
= K(1+ supa || + Go) € L([0, T db).
Thus, for almost all w and uniformly in £, it holds that
T
| sy zds = f6.¥ 2, n— o
t

From the continuity properties of the stochastic integral, it follows that

T T
sup | ZTdWg — / ZsdWg| — 0 in probability,
o<t<T Jy ¢
T T
sup | g(s, Y, Z7)d B —/ 9(s,Ys, Zs)dBs| — 0 in probability.
0<i<T Jt t

Choosing, again, a subsequence, we can assume that the above convergence is P — a.s.

Finally,

T
Y - Y| < / a8,V Z0) = fuls, Y, 20| ds
t

+\/ (s,Y, ZM)dB, — g(s, Y™, Z™)dBy|

+\/ ZrdW, — /Zde|

and taking limits on m and superemum over t, we get

T
sup |Y;5n_Y;f| < / ’fn(s,}/;n,zg)—f(S,Y;,ZS)‘dS
0<t<T 0
T
+ sup | [ g(s, Y], Z7)dBs — g(s,Ys, Zs)dB,|
0<t<T t
T T
+ sup | ngWs—/ ZydWy|, P — a.s.
t

0<t<T t
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from which it follows that Y™ converges uniformly in ¢ to Y (in particular, Y is a con-
tinuous process). Note that Y™ is monotone; therefore, we actually have the uniform
convergence for the entire sequence and not just for a subsequence. Taking limits in equa-
tion (3.9), we deduce that (Y, Z) is a solution of equation (3.1).

Let (Y, Z) € S8*([0,T]; R) x M?(0,T; R) be any solution of equation (3.1). From compar-
ison theorem 3.3.1, we get that Y <Y, Vn and therefore Y <Y proving that Y is the

minimal solution. O



Chapter 4

Reflected Backward doubly

stochastic differential equations.

In this chapter, we prove existence and uniqueness of a solution for Reflected Backward
Doubly Stochastic Differential Equations (RBDSDEs) with one continuous barrier and
uniformly Lipschitz coefficients. We establish moreover the existence of a maximal and a

minimal solution when the generator is merely continuous.

4.1 Introduction

In this section, we study the case where the solution is forced to stay above a given
stochastic process, called the obstacle. We obtain the real valued reflected backward

doubly stochastic differential equation :

T T T
YtZE—l—/ f(s,Ys,Zs)ds—i-/ g(s,Y;,Zs)st+KT—Kt—/ ZdW,, 0<t<T.

t t t (41)
We establish the existence and uniqueness of solutions for equation (4.1) under uniformly
Lipschitz condition on the coefficients. In the case where the coefficient f is only contin-
uous, we establish the existence of a maximal and a minimal solutions. We give here a
method which allows us to overcome this difficulty in the Lipschitz case. The idea con-
sists to start from the penalized basic RBDSDE where f and g do not depend on (y, 2).
We transform it to a RBDSDE with f = ¢g = 0, for which we prove the existence and

uniqueness of a solution by penalization method. The section theorem is then only used

52
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in the simple context where f = g = 0 to prove that the solution of the RBDSDE (with
f = g =0) stays above the obstacle for each time. A new type of comparison theorem is
also established and used in this context. The (general) case, where the coefficients f, g
depend on (y, 2), is treated by a Picard type approximation.

In the case where the coefficient f is continuous with linear growth, we approximate f

by a sequence of Lipschitz functions (f,) and use a comparison theorem which is estab-
lished here for RBDSDEs.

4.2 Assumptions and Definitions

We consider the following conditions,

H4.1) f:Qx[0,T]xRxR=Rand g:Q x [0,7] x R x R’ R are two measurable
functions such that for every (y,2) € R x RY f(.,y,2) € M?(0,T,R) and g(.,y,2) €
M?(0, T, R).

H4.2) There exist constants L > 0 and 0 < o < 1, such that for every (t,w) € Qx [0,
and (y,2) € R x RY,

|f(ty,2) = f &y ) < L(ly—y[+|z =)
|g (t,y72’) - g(tay/7zl)|2 S L |y - y/|2 + o |Z — Z/|2 .

H4.3) The terminal value ¢ is a square integrable random variable which is Fr—mesurable.
H4.4) The obstacle {S;,0 <t < T}, is a continuous F;—progressively measurable real-
valued process satisfying E (SUPogth (St)Z) < oo and Sy <€ a.s.

Definition 4.2.1. A solution of equation (4.1) is a (]R x RY x R+) -valued F;—progressively
measurable process (Yi, Zy, Ki)yeioqp which satisfies equation (4.1) and such that

i) (Y, Z,K7) € 8 x M2 x L2(Q).

ii) Y, > S,

iii) (Ky) is continuous nondecreasing, Ko =0 and fOT (Y, = S;) dK, = 0.

4.3 Existence of a solution of the RBDSDE with Lip-

schitz condition
Theorem 4.3.1. Under conditions, H4.1), H4.2), H4.8) and H}.4), the RBDSDE
(4.1) has unique solution.

Remark 4.3.2. In the sequel C' will denotes a constant which may changes from line to

line.
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Lemma 4.3.3. Let ('), (n?) be two square integrable and Gr-measurable random vari-
ables and h', h? : [0,T] X 2 x R — R be two measurable functions. For i € {1,2}, let
(Y, Z%) be a solution of the following BSDE :

Yi=n'+ [T hi(s,Yi)ds — [ ZidW,
B(super Vi + T | Zi%ds) < oc.
Assume that,
i) For every Gi-adapted process {Y;,0 < t < T} satisfying E(sup;<rY;?) < 00, hi(t,Y;) is
Gi-adapted and satisfies EfOT(hi(S, Y,))%ds < oo.
i) h' is uniformly Lipschitz in the variable y, uniformly with respect (t,w).
iwi) nt <n? a.s.
w) hY(t,Y72) < h3(t,Y?) dP x dt a.e.
Then,
VI<Y? 0<t<T as.

2
Proof. Applying Itd’s formula to )(Yt1 - YtQ)Jr‘ and using the fact that n' < n?, we obtain
1 2\ +|? g 1 22
(7 - v +/ Lyisvay |2 = 25" ds
t
T T
< 2/ (Y= Y2) (0 (s, YD) = 12 (5,Y2)) ds — 2/ (! - v2)t (2} - 22) aw,.
t t

Using the fact that h' is Lipschitz and Gronwall’s lemma, we get (Y,! — Y;2)™ = 0, for all
0 <t < T as. Which implies that Y;! <Y? forall 0 <t < T, a.s. O

We first consider the following simple RBDSDE, with f, g independent from (Y, 7).

Yt > S, Vt<T, a.s. (4.2)
[ (Ve — S,) dK, = 0.

Proposition 4.3.4. There ezists a unique process (Y, Z, K) which solves equation (4.2).

Proof. By [35], for n € N, let (Y;", Z]")o<,p denotes the unique pair of processes, with
values in R x R satisfying: (Y™, Z") € S x M? and

T T T T
Y," ::§+/ f(s)ds+n/ (SS_}/;n)+dS+/ g(s)st—/ ZrdWs,.
t t t t

We define
=+ [ f ds+f0 (s) dB,
St = St + fO dS + fO (8) dBS
Y, = Y”+f0 (s)ds+ [, g(s)dB,.
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we have,

o _ T N T
Y?:§+n/ (Ss—-Y3) ds—/ ZdW,.
t

t

25

(4.3)

Let A, = B9 [E \% supnggs]. Then there exists a G;-predictable process v € L2([0, T] x

Q,R9) such that
T
A, = Ay —/ e,
t

Since (S, — A)T = 0, we have

T T
AN = A7+ n/ (Sy — Ay)Tds — / Vs dWs.
t t

By Lemma 4.3.3, we have for all n € N

Y, =E%[f] <Y, <V, <A = B9 [EV sup,rS] .

Set Y,:=sup,Y, and Y;:=sup,Y/

Since A; > S, we then have for every n,

(Se =Y ) (A =Y) = (Ss = V)T (A =8 + (Ss =Y )" (S, = V,) >0
Therefore, using It6’s formula, we obtain
A= TIP [ - ZiPds = A = €~ 20 [ (5= VI - Vs
t . _nt
2 [ (A =T, - 2,
t

T
<|Ar—EP—2 / (A = 7Y (3 — 20V,
t

Passing to expectation we get

T
B [ - 22ds < Blsup(S. - ©)'P
0

s<T

Coming back to equation (4.3) and using equation (4.4) we obtain
T T
n/ (Ss —Y") " ds = n/ (S, =Y *ds
0 —: . ;
(V3 -9+ | zzaw,
<@-9+ [ zaw,
0

. _ T
< (Rr-0)+ / (27— 7)dW,

(4.4)

(4.5)

(4.6)
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which yield that

n YY) Ap — )2 g "~ )2ds
</0<ss yryrds)? < 2(R s>+2/0<zs )2

Passing to expectation

E(n /OT (S, — Y™ " ds)? = E(n /OT (S5 — ?Z)* ds)?

Hence, there exist a nondecreasing and right continuous process K satisfying E(K?%) < oo
such that for a subsequence of n (which still denoted n) we have for all ¢ € L*(Q;C([0,T))),

T T
limE/ osn(Ss — Y ds = E/ 0sd K.
" 0 0
Let N € N* and n,m > N. We have
T T
(Y —Ym)? < 2/ (Ss =Y M) n (S, —Y") " ds+ 2/ (Ss =Y )m (Ss — Y/ ds
T T
2 [z ez -ymaw.- [z - zrp s
t t
By BDG inequality, there exists a constant C' such that

T T
lim sup <E <sup (Y, — Y;m)2> + E/ \zn — Z2m ds) < QCE/ (S, = YY) dK,.
n,m t<T 0 0
Letting N tends to oo, by using a Lebesgue’s theorem we obtain
T T
lim sup (E (Sup (Y — th)z) + E/ \zn — Zm)? ds) < 2CE/ (S5 — Ys) dK.
n,m t<T 0 0
Let
V= S+ n/ (58 - YS”) ds — / Zrdw.,.
t t

Since St < €, the comparison theorem (Lemma 4.3.3), shows that, for every n we have,
vte[0,T], Y, >Y" as.
Let o be a G;—stopping time, and 7 = o AT. We have

T
Y;n — Eg-r |:§Ten(TT) +n/ gsen(sﬂds‘| )
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It is not difficult to see that Y™ converges to S; a.s. Therefore Y, > S, a.s., and hence
Y, >S5S, a.s.
Using section theorem [10], we get, a.s. for every t € [0,T], Y; > S;, which implies that

T
lim sup (E (sup (Y, — Y;m)Q) + E/ |Z7 — Z;”|2ds> =0
0

n,m t<T

T
and E/ (Ss —Y,)dK;=0
0

We deduce that (Y, K) is continuous and there exists Z in IL? such that Z" converges
strongly in IL? to Z. Finally, it is not difficult to check that (Y, Z, K) satisfies equation
(4.2) O

Proof of Theorem 4.3.1. Existence. We define a sequence (Y}", Z}", Ki') < <y as follows.
Let Y2 =S, Z? =0 and for t € [0,7] and n € N*,

Yot =e [T f(s, Y 20 ds + [1 g (s,YP, Z2) dB, + [T dK — [ Z7+dw,
}/;n—‘rl 2 St a.s.
[ (Yo — 8 dK ! =0,

S

Such sequence (Y, Z™, K™),  exists by the previous step.

—n+1

Put Y =YY"l —Y" By Ito’s formula, we have,

g /T ‘7”“ i
T 1 t T_ 1
+/ YTLJr (dKn+1 dK;L) + 2/ Yn+ (g (8, }/;"7 Z;L) —g (87 Y;”—l’ Z:'_l)) st

s
t t

T T
+2/ vz aw, +/ l9(s, Y2, 20) =g (s, Y, 207 1) [ ds.
t

t

’—nJrl

T
7 ds =2 / Vo (F (s, Y0 20 = f (s, Y070, 207 ) ds
t

Therefore, Ito’s formula applied to |y\2 ePt shows that :

2 TL
‘ et — ﬂ/ H ﬂsds—i—/ e’

T
=2 / PV (F (s, YD Z0) — f (s, Y 207N ) ds + / PV (AR — dKY)

t

n+1 2

7, ’ds

T T
- 2/ Vi (g (s, Y2, 20) = g (s, Y21, Z2071)) dB, + 2/ sy Z aw,
t

t

T
+ / e g (s, Y2, Z0) — g (5, Y2, 207) [P ds,
t
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Using the fact that ftT BBSYZ—H (dK™ — dK") < 0 and taking expectation, we get for

every 6 > 0:
T T
(‘Y"+1 ) e’ — BE (/ ‘YSH eﬁ5> ds+E/ s
t t

T T
< 2L6E/ VI s + %E/ (172 + [Z0)°) e as
t t

T T
n LE/ o V72 ds + aE/ 7" 2 e ds
t t
This implies that,

—n+1 T —n+1 2 r —n+1 2
( ) — (B+2LO)E (/ ‘Ys ﬂ5> ds+E/ )ZS
t t
2L 2L r_,
S(L—FT) / |Y‘ eﬁsds—l—(oz—i-T)E/ ‘Zs‘zeﬂst
t
Choose § = C=-X 1+a (L+ ),andﬁ: —2L6 — C, we have
E/ ( ‘Y"H‘ +|7 )eﬂSds
1 12 1112
s( ;O‘> E/ (C ! +(Zi‘)eﬂ8ds
t

Since £ < 1, there exists (Y, Z) in M? x M? such that (Y, Z™) converges to (Y, Z) in
M? x M?. Tt is not difficult to deduce that Y™ converges to Y in S2.

—n+1]2

Zg ‘ds

ds

(1-a)”

It remains to prove that (Y, Z, K) is a solution to RBDSDE (4.1). By Proposition
4.3.4, there exists (Y, Z, K) which satisfies,

T T T
?t:§+/ f(s,Ys,Zs)derKT—KtJr/ g(s,Ys,Zs)st—/ Z AW, (4.7)
t t t

(Y,Z,Kp) € S? x M? x L2, Y, > S,, (K,) is continuous nondecreasing, K, = 0 and
[ (Y= S;) dK; = 0.
We shall prove that (Y, Z) = (Y, Z). By Itd’s formula we have

T
(Y;n—H - ?t)Q o / |an+1 o 75’2(18
t

T
=2 (Y"' =Y )(f(s, Y ZM) — f(s,Ys, Zs d5+2/ (Y Y ) (K™ — dK,)

%5\
N

T

+ [ (YT =Y ) (g(s, Y, Z1) — g(s, Y, Z,))dBy +2/ (Y — V) (20 — Z,)dw,

T

+ [ g(s, Y, Z0) — g(s, Yy, Zy)|ds.

J
J
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Taking expectation and using the fact that ftT(Y"Jr1 —Y,)(dK"! — dK,) <0, we get

s

T
B —Y,)* + E/ |Zm — Z|ds

t

T T
<oF / (VI V(s YD, Z0) — f(s, Y, Z0)ds + B / 19(s, Y7, Z7) — g(s, Ye, Z)ds
t t

T T
<C (E/ [yt —75|2ds+E/ b —Y;|2ds+E/
t 0 0

T

|Z" — ZS|2ds> :

Using Growall’s lemma and letting n tends to oo we obtain Y, =Y, and Z, = Z,, dP x dt

a.e.

Uniqueness. It follows from the comparison theorem which will be established below.
O

4.4 RBDSDE’s with continuous coefficient

In this section we prove the existence of a solution to RBDSDE’s where the coefficient is
only continuous.

We consider the following assumption

H4.5) i) for a.e (t,w), the map (y, z) — f(t,y, z) is continuous.

ii) There exist constants x > 0, L > 0 and « €]0, 1[, such that for every (t,w) € Q2 x [0, T
and (y,2) € R x RY,

‘ 2

\f(ty,2)] <k (1+]yl+ |2])
gty 2) — gty 2 ) < Lly—y)*+alz—2

Theorem 4.4.1. Under assumption H4.1), H4.3), H4.4) and H4.5), the RBDSDE
(4.1) has an adapted solution (Y,Z, K) which is a minimal one, in the sense that, if
(Y™, Z*) is any other solution we have Y <Y* P —a.s.

Before giving the proof of Theorem 4.4.1, we recall the following classical lemma. It

can be proved by adapting the proof given in J. J. Alibert and K. Bahlali [1].

Lemma 4.4.2. Let f:[0,T] x Q x R? —— R be a measurable function such that:

(a) For almost every (t,w) € [0,T] x Q, x — f(t, ) is continuous,

(b) There exists a constant K > 0 such that for every (t,z) € [0,T] x R |f(t,z)] <
K(1+|z|) a.s.

Then, the sequence of functions

fult,x) = inf {f(ty) +nlv —yl}
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is well defined for each n > K and satisfies:

(1) for every (t,x) € [0,T] x RY, |fu(t,z)| < K(1 + |z]),

(2) for every (t,z) € [0,T] x RY, n — f,(t,) is increasing,

(3) for everyn > K, (t,z,y) € [0,T] x R x RY, | f.(t,z) — fo(t,v)] < n|z -y,
(4) If x, — x, as n — oo then for every t € [0,T] fu(t,x,) — f(t,x) as n — oo.

Since £ satisfies H4.3), we get from Theorem 4.3.1, that for every n € N*, there exists
a unique solution {(Y;", Z}", K}'), 0 <t < T} for the following RBDSDE

Y=+ [1 fuls, Y, Z0)ds + Kit — Kp + [ g(s, Y, Z2)dBs — [ Z0dW,, 0 <t <T,
" >S5, Vt<T, a.s.
Jo (vr =8y dKz =0,

(4.8)
We consider the function defined by

it u,v) = k(1 + |u| + |v]).

Since, | f1(t, u,v)—f1(t,u',v")| < k(|lu—u'|+|v—2']), then similar argument as before shows
that there exists a unique solution ((Us, Vi, Ks),0 < s < T') to the following RBDSDE:

Ut = f + ftT fl(su Us7 ‘/S)ds + KT - Kt + ftTg(Sv Us; ‘/s)st - ftT ‘/des
Ut Z St, Vt S T, a.s. (49)
[ (U, — S,) dK, = 0.

We need also the following comparison theorem

Theorem 4.4.3. Let (&, f,9,5) and (&, f',g9,S5") be two RBDSDFEs. FEach one satisfying
all the previous assumptions H4.1), H4.2), H4.3) and HY.4). Assume moreover that

i) €< as.
i) f(t,y,2) < f'(t,y,z) dP x dt a.e. ¥ (y,z) € R x R
iii) Sy <S;, 0<t<T a.s.
Let (Y, Z, K) be a solution of RBDSDE (&, f,g,5) and (Y', Z', K') be a solution of RBDSDE
(€, f,9,5") . Then,
; <Y/, 0<t<T as.
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Proof. Applying Ito’s formula to ‘(Yt -Y/ )+‘2, and passing to expectation, we have
9 T
E ‘(Yé - Yt')+’ +E/ Lvsvyy
t
T / J’» / /
26 [ (Y- v)) £z - 1 (s70.2.) ) ds
t

T N+
+2E/t (Y—Y> (dK, — dKY)

12
ZS—ZS‘ ds

T , )
+E/ ‘9(37}/5725) — g (573/5,2;> 1{y5>y5/}d8.
t

Since on the set {Y; > Y/}, we have Y; > S} > S;, then

4 At 4 At
[ (e=v)) am -y = - [ (vi-v) <o
t t
Since f is Lipschitz, we have on the set {Y; > Y/},
2
ds

2 T ,
B =) + B [ 1o |2 2,
t

1 T
< (3L+ —LQ) E/
€ t

+(€+Oz>E/tT

,12
Y, =Y, | lyvisvnyds

12
Zs — ZS 1{Ys>Ys'}dS‘

We now choose ¢ = 1_70‘, and C' = 3L + %L2, to deduce that
L2 = T L2
Blvi-vy | <or [0 -v) ] as
t
The result follows now by using Gronwall’s lemma.

Lemma 4.4.4. Let (Y™, Z") be the process defined by equation 4.8. Then,
i) For everyn € N*, YO <Y <Y <U, Vt<T, a.s.
i) There exists Z € M? such that Z"™ converges to Z in M?.

Proof. Assertion ¢) follows from Theorem 4.3.1. We shall prove ).
It0’s formula yields

T T T
E|Y0”\2+E/ 127 |2ds :Eyg\2+2E/ }/;”fn(s,}/;”,Z;"‘)ds+2E/ S,dK"
0 0 0

T
> / 9(s, Y™, 20 ds
0
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2
But, assumption H4.5) and the inequality 2ab < @ + rb? for r > 0, show that :
r

1
2V fo(s, Y, Z0) < =YD A v fu(s, Y, Z0)
T

IN

1
Y (s Y2 122D)
and

1
l9(s. Y ZOP < (L)LY P+ (L4 e)al Z0* + (1 + ) lg(s,0, 0)[*.

Hence
T T T
E/ 1Z7?ds < C + (re® + (1 +€)a) E/ | Z"*ds + QE/ S, dK!"
0 0 0
T
<C+ (re? + (14 e)a) E/ | Z7ds + BE(K})?.
0
On the other hand, we have from (4.8)
T T T
Kl=Y'—¢—- / fu(s, Y, Z7)ds — / g(s,Y]", Z7)dB; +/ ZrdWs, (4.10)
0 0 0
then
T
E(K})? < C (1 + E/ |ZS”]2ds>
0
which yield that
T T
E/ |Z}Pds < C + (r&” + (1 + ¢)a + BC) E/ | Z"|ds.
0 0

Choosing r=e¢ =03 = m, we obtain
T
E/ | Z7|*ds < C.
0
For n,p > K, Ito’s formula gives,

T T
E(Y) —YIP + E / 2" — 7ds =2 / (V2 = YP)(fuls, Y2, Z0) — f(s, Y2, Z2))ds
0 0

T T
2B [ vnany w28 |7 - vaR?
0 0

T
+E/ |g(s7Y$",Z;‘)—g(s,Ysp,Zf)|2.ds.
0
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But
T T
B[ or-vnar: = [ (s~ v2aK: <o
0 0

Similarly, we have B [/ (Y? — Y*)dK? < 0.

S

Therefore,
T T
B[ |2 - 2rPis 2B [ (V< Y2 (Fuls Y2 20) < fls. V2. ZD)is
0 0

T
B [ gl Y22 = gls. v, 220 s
0
By Holder’s inequality and the fact that g is Lipschitz, we get

T
E/ |z — ZP|ds
0

T > T 2
< (& [ o -voras) (& [ vz - sz zyas)

0 0

T T
+CE/ |Y:—1fsp|2ds+aE/ 2 — 77 |2ds.
0 0

Since sup,, EfOT |fn(s, Y™, Z™)|? < C, we obtain,

T T 3
E/ |70 — ZP|?ds < C (E/ (Y — Ysp)zds) :
0 0
Hence
T
E/ |Z" — ZP|*ds — 0; as n,p — oo.
0

Thus (Z"),>1 is a Cauchy sequence in M?(R%), which end the proof of this Lemma. [J

Proof of Theorem 4.3.5. Thanks to Lemma 4.4.4, we can define Y; := sup,Y,". The argu-
ments used in the proof of the previous Lemma allow us to show that (Y™, Z™) — (Y, Z)
in M? x M?. Then, along a subsequence which we still denote (Y, Z"), we get

(Y",z")— (Y.Z), dt®dP a.e

then, using Lemma 4.4.2, we get f,(¢,Y;", Z]') — f(t,Y:, Z;) dPdt a.e.
On the other hand, since Z" — Z in M?(R?), then there exists A € M?(R) and a
subsequence which we still denote Z™ such that Vn, |Z"| < A, Z" — Z, dt ® dP a.e.

Moreover from H4.5), and Lemma 4.4.4 we have

[fa(t. Yy, Z0)] < k(14 sup [V + Ay) € L*((0,T], dt), P —a.s.
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It follows from the dominated convergence theorem that,

T
E/ | fo(s, Y, Z) — f(s,Ys, Z)Pds — 0, n — oo. (4.11)
0
We have,
T
E / 9(, Y7 Z7) — g(s, Y, Z,)|ds
0
T T
< C’E/ Y — Y, |2ds + a]E/ |Z" — Z,?ds — 0, asn — oo.
0 0
Let

T T T
?t = £+/ f(Svi/:%ZS) d5+KT - Kt+/ g(Sai/;;Zs) st - / ESdWS, (412)
t t t

ZeM*Y eSS KreL? Y, > S, (K,) is continuous and nondecreasing, K, = 0 and
fOT (Yt — St) dK; = 0. By Itd’s formula we have

(¥~ V)P =2 / V=T (al, Y Z2) — (5, Vi Zu)ds +2 / v - TR — dE)

S S

T T
[ OV Y2 = s, Y Z)aB 2 [ (07 = V(22 - Zu)aw,
t ¢
T T B
s [l vz - s o Z0Pas— [ |2z~ Z s
t ¢
Passing to expectation and using the fact that ftT(YS” ~Y,)(dK" — dK,) <0, we get

T T
EY) ~ V) +E / 20— Z,Pds < 2E / (V7 = V) (fals. Y7, Z0) — f(s,Ya, Z,)ds
t t

T
L E / 9(s, Y, Z0) — g(s, Y, Z)ds
t

Letting n goes to oo, we have Y, =Y, and Z, = Z, dP x dt a.e.
Let (Y*, Z*, K*) be a solution of (4.1). Then, by Theorem 4.3.1, we have for every n € N*,
Y™ < Y*. Therefore, Y is a minimal solution of (4.1) O

Remark 4.4.5. Using the same arguments and the following approximating sequence

fn(t7x> = sup{f(y) - 7L|ZL' - y|}7

yeqQr

one can prove that the RBDSDE (4.1) has a mazimal solution.



Chapter 5

Existence result of Double barriers
Reflected backward doubly

stochastic differential equation

We prove the existence and uniqueness result for solution of Backward Doubly Stochastic
Differential Equations with two reflecting barriers and uniformly Lipschitz coefficients.

We prove moreover the existence of a solution when the generator is merely continuous.

5.1 Introduction

In this Chapter, we generalize the result of K. Bahlali et al. ([4]) to the case of two
reflecting barrier processes, we obtain the real valued double reflected backward doubly
stochastic differential equation (in short DRBDSDE):

T T T T T
Vi—er [ pevizydst [ gvazyabe [ aki- [Caxc- [ zaw, o<e<r
t t t t t
(5.1)
We establish the existence and uniqueness of solutions for equation (5.1) under uniformly
Lipschitz condition on the coefficients. In the case where the coefficient f is only contin-

uous, we establish the existence of a solutions.

65
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5.2 Assumptions and Definitions

We consider the following conditions,

H5.1) f:Qx[0,T]xRxR=Rand g:Q x[0,7] x R x R~ R are two measurable
functions such that for every (y,2) € R x R, f(.,y,2) € M?(0,T,R) and g(.,y,2) €
M?(0, T, R).

H5.2) There exist constants L > 0 and 0 < a < 1, such that for every (¢t,w) € Q x [0, 7]
and (y,z) € R x R,

1f oy 2) = fy 2 < Lly =y + 2= 2)
|g (t,y72’) - g(tay/7zl)|2 S L |y - y/|2 + |Z — Z/|2 .

H5.3) The terminal value ¢ is a square integrable random variable which is Fr—mesurable.
H5.4) The obstacles {L;,U;,0 <t < T}, is a continuous JF;—progressively measurable
real-valued process satisfying E (supy,<r (Lt)z) < 00, E(Sup0§t§T<Ut)2) < oo and
Ly <& < Ura.s.

Definition 5.2.1. A solution of equation (5.1) is a (R x R? x Ry x R+) -valued Fy—progressively
measurable process (Y}/, Zy, K", K{)0<t<T which satisfies equation (5.1) and such that

i) (Y, Z, K}, K;) € 82 x M? x L2(Q) x L?(Q).

i) Uy > Y, > L.

iii) (K, K;) is continuous nondecreasing, Ky = 0 and fo — L) dK; = fo —-Y)dK; =
0,

5.3 Existence of a solution of the DRBDSDE with

Lipschitz condition

Theorem 5.3.1. Under conditions, H5.1), H5.2), H5.3) and 5.4), the DRBDSDE

(5.1) has unique solution.

Remark 5.3.2. In the sequel C' will denotes a constant which may changes from line to

line.
We first consider the following simple RBDSDE, with f, ¢ independent from (Y, 7).

=¢+ [T f(s)ds+ [T di; — [TdK; + [T g(s)dB, — [ Z,dW,
U >2Y, > L, Vi<T, a.s. (5.2)
¥, = L) dES = [ (U, - Y.) dK; = 0.



Section 5.3. Existence of a solution of the DRBDSDE with Lipschitz condition 67

Proposition 5.3.3. There exists a unique process (Y, Z, K™, K~) which solves equation
(5.2).

Proof. By ([4]), for n € N, let (Y;”, z7, K;r)0<t<T denotes the unique pair of processes,
with values in R x R? satisfying: (Y", 2" K;") € §? x M? x L? and

T T T T T
Y" ::§—|—/ f(s)ds+/ dKjds—n/ (Y;”—US)’Lds—k/ g(s)st—/ ZrdWs.
¢ ¢ ¢ ¢ ¢

We define
=&+ [ fls)ds+ [, dK++f0 s)dB
Lyi=Li+ [y dK} + [y f(s)ds+ [, g(s)d
U, _Ut+f0dK++f0 ds+f0 (s)d
Y= Y"+f0 dK++fo d3+f0 (s)d
we have,

T T
V=t [(@-Tyras [ zraw, (53)
t t

By ([4]) we get
Vi =&—nf (V.- T)tds— [ Zraw,
L<Y,
SV, = L)(dK)T =0
have the solution.
Let A, = E9 [§ N infeerU } Then there exists a Gi-predictable process v € L?([0, T x
Q,RY) such that

T
At = AT — / ’}/deS. (54)
t

Since (Ay — U,)™ = 0, we have

T T
Ay =Ap — n/ (A, —U,)t — / ~sdWs. (5.5)
¢ t
By comparison result of ([4]), we have for all n € N
Vi=E9 [ >V, >V > A = E9 [E NinfocrU,) .

Set Y, := infnyf and Y, :=inf, Y}".

N - r —n r

Vi =) =€) —n [ (F=Tpras— [((zz-maw. 69

¢ ¢

Using It6’s formula, we obtain

T T T
Vi-Af+ [ |Zronfds = -l -2n [ (V100 (Vi =A)ds— [ (220 -A)aw,
t t t
(5.7)
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Since A, < U,, we then have for every n,
(?: - 78)+(?: - As) = (7: - E)+(Us - As) + (?: - U,
Therefore
—n T . T
Vi AP [ 120 Pds < E - ArP -2 (20 =0T - A,
t t
Passing to expectation we get
T p— —
E/ |21 — vs[?ds < Elsup(§ — Us)™|? (5.8)
t s<T

Coming back to equation (5.3) and using equation (5.4) we obtain
T T
n/ (Yr —U)tds = n/ Y. —U,)*ds
0 0
o T
=(E-Yy) - / Z}dW,
0
o T
<@-T)- [ zaw,
0
o T
<@-Tn- [ (2 -aw,
0

Passing to expectation

E(n / (¥ — U)*ds)? = E(n / (V" —T.))tds)?

Hence, there exist a nondecreasing and right continuous process K satisfying E(K?%) < oo
such that for a subsequence of n (which still denoted n) we have for all ¢ € L*(Q;C([0,T))),

T T
limE/ osn(Y = Uy)Tds = E/ psd K.
n 0 0

Let N € N* and n,m > N. We have

S

T
Y7 —¥™) = —n / (Y7 — U,)*ds
t

T T
+ m/ (Y —U,)Tds — / (Z) — Z1")dWs
¢ ¢
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by Ito’s formula, we get

S

T
(07 =Y = = [ = Oy - s
T r
o [ U = Yds =2 [y - iz - Zaw,
L t
- [ 1z zrpas
Yo T
< 2/ (YN —U)n (Y] - Us)+ds+2/ YN —U)m Y™ —U,)"ds
L )
2 ez -vmaw- [z - 2P s
t ¢
By BDG inequality, there exists a constant C' such that
T T
lim sup (E (Sup (Y, — th)Q) + E/ |z — Zm? ds) < QCE/ (YN -U,) dK,.
n,m t<T 0 0
Letting N tends to oo, by using a Lebesgue’s theorem we obtain
T T
lim sup (E (sup (Y," — Y;m)Q) + E/ \zn — Zm? ds) < 2C’E/ (Ys — Us) dK.
n,m t<T 0 0
Let
Y =TUr+ n/ (Yg - US> ds — / Zrdw..
t t
Since ¢ < Uy, the comparison theorem ([4]), shows that, for every n we have, V¢ €

0,T], Y, <Y/ a.s.
Let o be a G;—stopping time, and 7 = o A T. We have

T
Y = EY97 [UTe"(TT) + n/ Use”(ST)ds] )

It is not difficult to see that Y™ converges to U, a.s. Therefore Y, < U, a.s., and hence
Y, <U, a.s.
Using section theorem, we get, a.s. for every t € [0,T], Y; < Uy, which implies that
T
lim sup (E (sup (Y, — th)z) + E/ \zn — Z™)? ds) =0
0

n,m t<T
T
and E/ (Vs —Us)dKs =0
0
We deduce that (Y, K) is continuous and there exists Z in IL? such that Z" converges

strongly in IL? to Z. Finally, it is not difficult to check that (Y, Z, K) satisfies equation
(5.2) O
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Proof of Theorem 5.3.1. Existence. We define a sequence (Yt", VA S Kt"’)
follows. Let Y, = L;, Z? = 0 and for ¢t € [0,T] and n € N*,

Yot =e o [T (s, Y2, 20 ds + [ g (s, Y, Z0) dB, + [ dK{™D*
. LT dKS(n—‘,-l)— . J;T Zg+1dWs

U >Y" > L, as.

[yt — LYy dRSTY = [T (U, - Y dESTDT =0,

S

Such sequence (Y, Z", K", K"")  exists by the previous step.

—n+1

Put Y =YY"l —Y" By Ito’s formula, we have,

T
‘_n+1‘ +/ ‘Zm 2 2/ VI (f (s, Y Z0) = (s, Y2, 2071 ds
t

T T
+2/ v (dED+ — dK) — 2/ (dK (n+1)—
t t

S

T
+ 2/ Yo (g (5,2, 20 — g (s, Y21, Z07Y)) dB,
t
T
+2/ Yn+1Zn+1dW5 +/ ‘g(S’Y;n,Z:) -9 (S7Y:9n_1’Zg_1)|2d8'
t t

Therefore, Itd’s formula applied to |y|* e® shows that

T ont)? T
eﬂt—ﬁ/ eﬂsder/ el
t

2
—n+1
Zs

—n+1
‘ ds

70

as

0<t<T

— dKT)

=2 / SV (F (Y2 Z0) — f (5. Y2 207N ds + 2 / VL (KT — AR
t

t
T
—2/ VI (KT — a7
t

—n-‘rl —n+1

T T
+2/ Pyt (g(s,Ys”,Zg)—g(s,YS”_l,Z;‘_l))dBS—i—2/ Y. Z) AW,
t t

T
+/ e’ ‘g (s, Y, Z0)—g (S,YS”_l, Zg_l) ‘2(13.
t

Using the fact that ftT 6557 (dK”Jrl dK!) < 0and f eﬂsdnﬂ(sz(nH)_ —dK?™) >

and taking expectation, we get for every 6 > 0:

n+1 T ns1)2 r
(‘Y ) e’ — BE (/ ‘YS eﬂs> ds + E/ s
t t

T
§2L5E/ o[ s + 2o / (72 + |Z2]7) e as
t

—n+1 2

A

s

ds

T
+LE/ e’ \?Z|2ds+aE/ Z2 | Pods
t t

0
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This implies that,

—'n+1 T —n+1 2 Bs r —n+1 2
(B+2LO)E / ‘Ys ds+E/ )Zs
t t
< (L+TL) / V7| e%ds + (a—|—2—> / Z2 | ePeds

C=:(L+%5%),and § = 2L — C, we have

E/ ( ‘Y"H‘ +‘Z"+1’ )eﬂSds
112 112
§(1—ga> E/ (C’ i +‘Zi‘)eﬁsds
t

Since ¢ < 1, there exists (Y, Z) in M? x M? such that (Y™, Z") converges to (Y, Z) in
M? x M?. Tt is not difficult to deduce that Y™ converges to Y in S2.

Choose § = (1 a),

It remains to prove that (Y, Z, K+, K7) is a solution to RBDSDE (5.1). By Proposition
5.3.3, there exists (Y, Z, K+, K~) which satisfies,

T T T
Y, _5+/ f(5,Ya 2,) ds+(K7T—Kj)—(KT—K[)+/ g(S,YS,ZS)dBS—/ Z.dW.,
t t t (5.9)
(Y, Z, KT, K7) € S?xM?*xL*xL* Y, > S, (K;")and (K, ) is continuous nondecreasing,
Kf=0,Ky =0and [ (Y, — L) dK; = [} (U, —Y;)dK; =0.
We shall prove that (Y, Z) = (Y, Z). By Itd’s formula we have

T
(Y;n+1 o ?t)Q . / |Z;L+1 o 73|2d8
T t_ T —
=2 [ V(Y2 - fls Ve Zods w2 [ (S V@RS - di)
tT B t
_2/ (Y;n+1_Y)<dKn+1 dK )
T B T B B
+/ (Y =Yo)(g(s, Y ZY) — g(s,Ys, Z,))dBs + 2/ (Y =Y (2 = Z,)dW,
t t
T
+/ ’9(57}2”72?) —Q(S,szs)’%s'
t

Taking expectation and using the fact that j;tT(Y”Jrl — Y )K" —dK) <0, and

s
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[P BV AR T — dKS) > 0 we get
T
B —Y,)* + E/ |20 — Z|ds
t
T o T
<28 [ V(Y2 fs Yo Z)ds + B [ lg(s. Y0 22) — g(s. Ve Z) P
t t

T T T
<C <E/ Y — Y |?ds + E/ Y — Y, |2ds + E/ |z — ZS]2d5> :
t 0 0

Using Growall’s lemma and letting n tends to oo we obtain Y, =Y, and Z;, = Z,, dP x dt
a.e.

Uniqueness. It follows from the comparison theorem from [4]. O

5.4 Double barrier BDSDE with continuous coeffi-

cient

We consider the following assumption

H5.5) i) for a.e (t,w), the map (y, z) — f(t,y, z) is continuous.

ii) There exist constants £ > 0, L > 0 and « €]0, 1, such that for every (t,w) € Q2 x [0, T
and (y,2) € R x RY,

|ty 2)] < w (L4 |yl +[z])
9 (ty,2) =gty 2P <Lly—y) +alz— 2]
Theorem 5.4.1. Under assumption H5.1), H5.3), H5.4) and H5.5), the RBDSDE
(5.1) has an adapted solution (Y, Z, KT, K™).

We now give a comparison theorem, which allows us to compare the solution of double

barriers reflected backward doubly stochastic differential equations.

Theorem 5.4.2. Let (&, f,g9,L,U) and (¢, f',g,L",U") be two DRBDSDFEs. FEach one
satisfying all the previous assumptions H5.1), H5.2), H5.3) and H5.4). Assume more-
over that :

i) €< as.

i) f(ty, 2) < f(ty z) dP x dt a.e. V(y,z) € R x R%

i) Ly <L, 0<t<T a.s.

w) Uy <U/, 0<t<T a.s.

Let (Y, Z, K*,K™) be a solution of DRBDSDE (&, f,q9,L,U) and (Y',Z', K™, K™') be a
solution of DRBDSDE (¢, f',g,L',U"). Then,

; <Y/, 0<t<T as.
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Proof. Applying Ito’s formula to ‘(Yt -Y/ )+‘2, and passing to expectation, we have

2 T 12
FE ‘(Y;g - Y;/)Jr’ + E/ 1{YS>YS’} ZS — Zs’ ds
t

=2E/tT (VoY) (s (% z) — 7 (s.1,.2)) ) ds
T +

+2F / (Y-Y) (dK — dKF)
tT . )

—2E/t (Y—Y) (dK, — dK;")

T , )
+ E/ ‘g (S,Y;, Zs) — g (5,}/8,2;) 1{ys>ys/}d8.
t

Since on the set {Y; > Y/}, we have Y; > L; > L;, then

T At T At
[ () k- amy == [ (v ) ks <o
¢ ¢
Since on the set {Y; > Y/}, we have U} > U; > Y/, then
T N T
/ (Y—Y) (dE; — dK[) =/ (Us = Y))TdE; >0
t ¢
Since f is Lipschitz, we have on the set {Y; > Y/},
2
ds

2 T ,
E ‘(Yt - YN‘ + E/ Livsvyy |Zs — Z4
t

1 T
< (3L+—L2)E/
€ t

T
+(6+@)E/
t

We now choose ¢ = 1’70‘, and C' = 3L + %LZ, to deduce that

, 2
Y=Y, | liy,svnds

;12
ZS — Zs 1{Ys>YS'}dS'

Bl -v)"

2 T L2
<ce [ |-y as
t
The result follows now by using Gronwall’s lemma. [

we get from Theorem 5.3.1, that for every n € N* there exists a unique solution
{(Y, 2, K}), 0 <t <T} for the following RBDSDE

n T n n mn n n— n—
Y, :f+ft fu(s, Y9, Z0)ds + (Kp+ — Ki') — (K3~ — K{'7)
+ [T g(s, Y2, Z0)dB, — [ Z2dW,, 0 <t < T,

U >2Y"> Ly, Vt <T, a.s.

Jy 07 = L) dRr = [ (U, = Y7 dKy =0,

(5.10)
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And (ps, 05, 117, 11) the solution of the following DRBDSDE

po=€— [T KL+ |pg| + 16:])ds + (I — 1) — (117 — IT;)
+ [T g(s,ps,0,)dB, — [T 0,dW,, 0 <t <T,
pi = Ly, Vt < T, a.s.
foT (Ps - Ls) dlly = 0.

(5.11)

Lemma 5.4.3. (1)For everyn € NY? > Y > Y"1 > p, Vt <T, a.s.
(2) There exists Z € M? such that Z" converge to Z in M?>.

Proof. (1)By comparison theorem (5.4.2) implies that (Y™),,>1 (resp. (dK™),>1) is a non-
increasing (resp. non-decreasing) sequence of processes and ¥n > 1, Y;O > YY" > Yt’”rl >
pe, Vt < T a.s.

Applying Ito’s formula to |Y™|?,

we get
T T T
Yep o+ [ 1z =€z (s vz, Yias 2 [ YRR - K
t . t t
s [ gt v znpas (5.12)
' T T
w2 [gle 2 YAB+ [z YW,
t t
Since ff(g(s,Ys", Z7), Y dBs and ftT(Zg, Y")dW; is a martingale, we have
T T T
E\Yt”|2+E/ \Zgy2ds:E|g|2+2E/ <fn(s,YS”,Z§),Y;”)ds+2E/ Y(dK™ — dK™)
t t t

T
LB / 9(s, Y7, Z0)2ds (5.13)
t

But, assumption (H5.5) and the inequality 2ab < "6—2 +¢b?, and g is lipischitz, show that :

Y 2
2t V2DV < PEE el o 2
n|2
<Py oo oy 122

and

1
(s, Y 201 < (U)LY + (1 +e)alZ7 [+ (1+ ) |g(s,0,0).

On the other hand, we have from (5.10)

T T T
Kt — Kn :YO”—g—/O fn(s,i/s”,zg)ds—/o g(s,y;”,zg)st+/0 ZrdW,, (5.14)
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then

T
E(Ki —Krm )2 <C (1 + E/ |Z§|2ds)
0

we obtain

T
E/ |Z7)?ds < C Vn>1
0

For n,m > N, Ito’s formula gives,

T

T T
EYJ — Y)Y+ E / 2" — ZmPds =2E / (V7 = Y)Y (fo (5, Y Z0) = (s Y, Z))ds
0
E

T
+2 / — Y™MdK" +2E / (Y — Y)dK™
0 0
T
+2F / — YK
T
+2F / — Y™K
t

T
LB / 9(s, Y2, Z0) — (s, Y™, 2 ds.
0

But
T T
B[ or-ymary = [ (Lo yrars <o
0 0

—Y)dK™ <0, B [ (Y,

S

—YM)dK? <0and B [/ (Y]~

s

Similarly, we have F fOT(YS
Y™ dK! <0.
On the other hand we also have,

T

T
E(YJ — Y)Y+ E / 2" — Z"Pds < 2F / (V7 =YY (fou(5, Y Z0) — (s, Y, Z7))ds
0 0

T
+ E/ lg(s, Y, Z7) — g(s,Y]", Z;”)|2 .ds.
0

By Holder’s inequality and the fact that g is Lipschitz, we get

T
E/ |z — Z2ds
0
T 3 T 1
s(E / o@“—nm)?ds) (E / <fn<s,Y:,Z:>—fm<s,nm7zgﬂ>>2ds)
0 0

T T
+CE/ |y9"—YSmy2ds+aE/ |z — Z72ds.
0 0
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Since sup,, EfOT |fu(s, Y, Z™)|? < C, we obtain,

T T 3
E/ |Z" — ZP|?ds < C (E/ (Y — Y;’)st) :

0 0

Hence
T
E/ |Z" — Z"2ds — 0; as n,m — oo.
0

Thus (Z"),>1 is a Cauchy sequence in M?(R?), which end the proof of this Lemma.

O

Proof of Theorem 5.4.1. we can define Y; := sup, Y,". The arguments used in the proof of
the previous Lemma allow us to show that (Y™, Z") — (Y, Z) in M? x M?. Then, along

a subsequence which we still denote (Y, Z"), we get
(Y",zZ") — (Y.Z), dt®dP a.e

then, using Lemma 4.4.2, we get f,(¢,Y;", Z]') — f(t,Y,, Z;) dPdt a.e.
On the other hand, since Z" — Z in M?(R?), then there exists A € M?(R) and a
subsequence which we still denote Z™ such that Vn,|Z"| < A, Z" — Z, dt ® dP a.e.

Moreover from H5.5), and Lemma 4.4.2 we have
(6, Y) Z0)] < K(1+sup [V + A) € L2((0, 7], dt), P —a.s.

It follows from the dominated convergence theorem that,

T
E/ | fuls, Y, Z™) — f(s,Ys, Zo)|Pds — 0, n — oo. (5.15)
0
We have,
T
]E/ l9(s, Y, ZY) — g(s,Ys, Zo)Pds
0
T T
< CE/ Y — Y,|?ds + a]E/ | Z" — Z,)?ds — 0, asn — oo.
0 0
Let

T

T T
7t25+/ f(s,YS,ZS)ds+(K;—K;“)—(KE—Kt_)+/ g(s,Ys,ZS)dBS—/ Z AW,
¢ ¢ ¢
(5.16)



7

ZeM?Y€eS? Kfel? U >Y,> L, (K}, K;) is continuous and nondecreasing,
K{ =K, =0 and fOT (?t — Lt) dK; = fOT(Ut — Y t)dK; = 0. By Ito’s formula we have

T T
(V-T2 =2 / (V2 = V) (a5, Y2, Z0) = (5. Y, Z2)ds +2 / (Y~ V) WKI — dKY)

s

S

o [ VR - k)

T T
[0 =Tl Y2 ~ gl Yo Z)B 2 [ (V7 = V(22 - 2,
tT . B t
s [ otz - gl v Z)Pas — [ 122 - Z s
t t

Passing to expectation and using the fact that ftT(YS” — Y )(dK"™ — dK}) < 0 and
[H(Yr =Y )(dKr —dK;) > 0, we get

s

T T
EY"-Y,)*+ E/ |Z — Z2ds < 2E/ (Y =Y ) (fuls, Y, Z) — f(5,Ys, Zo)ds
t

t

T
LB / 19(s, Y7, Z1) — gls, Yo, Z)2ds
t

Letting n goes to oo, we have Y, =Y, and Z, = Z, dP x dt a.e. O
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