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0.1 Introduction

In this thesis we consider the optimal stochastic control problems, where the sys-
tems are dynamic, namely, they evolve over time. Moreover, they are described by It6’s sto-
chastic differential equations, and are sometimes called diffusion models. Since the systems
are dynamic, the relevant controls, which are made based on the most updated information
available to the controllers, must also change over time. The controllers must select an
optimal decision among all possible ones to achieve the best expected result related to their
goals. Historically handled with Bellman’s and Pontryagin’s optimality principles, the re-
search on control theory considerably developed over these last years, inspired in particular
by problems emerging from mathematical finance.

The Dynamic Programming Principle. We first consider standard control
problem on finite horizon [0, 7] as follows: Let (€2, F, P) be a probability space, let (F}), be
a filtration satisfying the usual conditions, and B a d-dimensional Brownian motion defined
on the filtered probability space (€, F), P), we consider a model in which the time evolution
of the system is actively influenced by another stochastic process ug, called a control process.

In this case we suppose that x, satisfies a stochastic diffurential equation of the form
dxs =b(s,zs,us)ds + o (s, s, us) dBs, (1)

with initial data 2; = x, the coefficients, b : [0, T|xR"xU — R", ¢ : [0, T]xR"xU — R™"*4,
satisfies the usual conditions in order to ensure the existence and unicity of solution to SDE
(1), this is typicaly satisfied when b, and o satisfies a Lipschitz condition on z, uniformly
in a, with linear growth condition. The control process us is a progressively measurable

process valued in the control set AC R", satisfies a square integrability condition. We note



that, for each constant control v, the state process x? is Markov with infinitesimal generator
£". One must also specify what kind of information is available to the controller of time s,
the controller is allowed to know the past history of states x,, for r < s, when control u
is chosen. The Markovian nature of the problem suggests that it should suffice to consider
control processes of the form w (s, z), such a control u is called a Markov control policy.
Formally, we expect that if us = u (s, xs), zs should be a Markov process with infinitesimal
generator acting on function ®, coincides on Cl? (R™ R) with partial differential operator
n n
£ =3 b (0, (52) By + 5 D iy (0, (,2)) Bae @)
i=1 ij=1
where aij:(o'aT)ij denotes the generic term of the matrix oo’ . The control problem on a

finite time interval [t,T] is to minimize the functional

T
J(tz,u) = E / f (5,20 us)ds + g (ar) | 3)

we call f a running cost function and g a terminal cost function. We always assume that
f and g are continuous, together with further integrability assumptions needed to insure
that J is well defined. If g () = 0 then the problem is said to be in Lagrange form. If
f (t,x,u) = 0, the problem is in Mayer form. The starting point for dynamic programming
is to regard the infimum of the quantity .J, being minimized as a function V (¢, x) of the
initial data

V(t,x)= 7Litrellfjt](t,az,u) (4)

where x; = x, is the initial state given at time ¢. the infimum being over the class of
controls admitted, V is called the value function. The first step is to obtain Bellman’s

optimality principle, and also called the dynamic programming principle. This states that



fort<t+h<T

t+h
V(t,x) = in(i}E /f(s,:cs,us)ds+V(t+h,:ct+h) , (5)

ue
t

not that, the expression in brackets represents the sum of the runing cost on [t, ¢ + h], withe
(t + h,z¢4p) as initial data. The proof of the dynamic programming principle is technical
and, has been studied by different methods, we refer the reader to Krylov [83], Lions [87],
Fleming and Soner [51], and Yong and Zhou [121]. For using dynamic programming, we
are naturally led to vary the probability spaces and so to consider the weak formulation of
the stochastic control problem, for which one shows the dynamic programming principle.
Next, by assuming that the value function is C12 ([¢t, 7] x R"), applying It6’s for-
mula to V/ (s, X§I> between ¢ and ¢ + h, and then sending h to zero into (5), The classical
HJB equation associated to the stochastic control problem (3) and (4) is given becomes a

partial differential equation of second order for V'

_% (t,z) —sup [£°V (t,x) + f (t,2,v)] =0, on [0,T) x R", (6)
vEA

where £7 is the infinitisimal generator associated to the diffusion X with constant control
v, given by (2). Equation (6) is to be considered in [0,7] x R™ whith the terminal data
V(T z)=g(z).

The classical verification theorem consists in finding a smooth solution to the HJB
equation, and to check, if W is a classical solution of the HJB equation, then W equals the
minimum total expected cost among an appropriately defined class of admissible control
systems. The proof is quite simple, but the assumption that W is a classical solution is

quite restrictive.



In the singular cas the state evolves according to the d-dimensional stochastic

differential equation

dXs =b(s,xs,us)ds+ 0 (s, xs,us)dBs + G (s)d (s), forse[t,T], -
X =z,
where b, o, and G are given deterministic functions, x is the initial state, the control variable
is a suitable process (u, &) where u: [0,7] x Q2 — A} C R £:[0,T] x Q — Ay = ([0,00))™

are B[0,T]® F measurable, (F}) adapted, and ¢ is an increasing process, continuous on the

left with limits on the right with {; = 0. The cost functional has the form

T

T
Tw&) =B | [ £l Xouyde+ [k()de ) +9 (X)) (8)

t

As is well known, the Bellman’s dynamic programming pinciple is satisfied for the classical
stochastic control problem (without the singular control), and under certain regularity con-
ditions the value function it satisfies the HJB equation. This is still the case for singular
stochastic control where the HJB equation is a second order variational inequality, we refer
the reader also to Fleming and Soner [51]. Haussmann and Suo [66], discusses the dynamic
programming principle fo this problem in the case where the coefficients are Lipschitz con-
tinuous in the state variable. By the compactification method, it was shown that, the value

function is continuous and is the unique viscosity solution of the HJB variational inequality
max {sule (t,:c, W, 0;W, D,W, D*W, u) yHo (t,x, D,W,u),l =1, ..,m} =0, (3.3)
u
with Hi, and Hy are given by

Hy (t, x, W, 0,W, D,W, D>W, u) = aavtv (t,x) + LW (t,z) + f (t,2,u),

"L oW
Hy (t,z, DoW,u) =) S (62) Ga (8) + ku (2).
i=1



D, W and D2W represent respectively, the gradient and the Hessian matrix of W.
Stochastic dynamic programming was introduced into continuous time finance
by Merton [91,92], who construct explicit solutions of the single agent consumption and
portfolio problem. He assumed that the returns of assetin perfect markets satisfy the
geometric Brownian motion hypothesis, and he considered utility functions belonging to
the hyperbolic absolute risk aversion (HARA) family. Under these assumptions he found
explicit formulae for the optimal consumption and portfolio in both the finite and infinite
horizon case. A martingale representation technology has been used by Karatzas, Lehoczky
and Shreve [74] , to study optimal portfolio and consumption policies in models with general
market coefficients. The cas of the Merton problem with a general utilities was analyzed
by Kratzas et al. in [73,74], who produced the value function in closed form. Models with
general utilities and trading constraints were subsequently studied by varios authors, see
Karatzas et al. [75], Zariphopoulou [122]. The notion of recursive utility was first by Duffie
and Epstein [39], Duffie and Skiadas [42] have considered the optimization problem when
the utility is nonlinear. Using BSDE techniques, El karoui et al. [47] have generalized
the characterization of optimality obtained by Duffie and Skiadas [42]. Recall that these
BSDE have been introduced by Pardoux and Peng [97] and that theire applications to
finance have been developed by El Karoui, Peng and Quenez [48]. Variations of the one-
dimensional singular problem have been studied by many authors. It is shown that the
value function satisfies a variational inequality which gives rise to a free boundary problem,
and the optimal state process is a diffusion reflected at the free boundary. Bather and

Chernoff [13] where the first to formulate such a problem. Benés, Shepp and Witsenhaussen



[14] explicitly solved a one dimensional example by observing that the value function in
their example is twice cotinuously differentiable, since this regularity of the value function
reduces to a condition at the interface, this regularity property is called the principle of
smooth fit. The optimal control can be constructed by using the reflected Brownian motion
see Lions and Sznitman [89] for more detail. see also Baldursson and Karatzas [10] for the
"social planner’s" problem with the associated "small investor’s" problem, when the authors
considered the capital stock dynamics, corresponding to the cumulative investment process
&. The stochastic control problems that arise in models with transaction costs are of singular
type and their HJB equation becomes a variational Inequality with gradient constraints.
This problem was formulated by Magil and Constantinides [90], who conjectured that the
no-transaction region is a cone in the two-dimensional space of position vectors. See., also
Constantinided [30, 31] . Note that in these models, because there is a single risky asset, the
value function depends only on two state variables, say (z,y), with « and y special form
of the power utility functions. Davis and Norman [36] obtained a closed form expression
for the value function employing the homogeneity of the problem. They also showed that
the optimal policy confines the investor’s portfolio to a certain wedge-shaped region in the
wealth plane and they provided an algorithm and numirical computations for the optimal
investment rules. The same class of utility functions was later further explored by Shreve
and Soner [105], who relaxed some of the technical assumptions on the market parameters
of Davis and Norman and provided further results related to the regularity of the value
function. The cas of general utilities was examined through numirical methods by Tourin

and Zariohopoulou [110,111,112] who built a coherent class of approximation schemes for



investment models with transaction costs. We refer the reader to @ksendal and Sulem [96]
for the same problem with jump diffusion. For further contributions concerning the singular
stochastic control problem and its applications the reader is referred to [12, 24,28, 65].

As it is well-known, it does not follow directly that the value functionis smooth,
and there is not in general a smooth solution of the HJB equation, especially when the
diffusion coefficient is degenerate, one is forced to use a notion of weak solution such as
viscosity solutionsintroduced by Grandall and Lions [34], in the first order cas and by
Lions [87] in the second order case. Lions proved that any viscosity solution is the value
function of the related stochastic optimal control problem. Jensen [71] was first to prove
uniqueness result for a second orde PDE. Another important step in the development of the
second-order problems is Ishii’s Lemma [68]. For a general overview of the theory we refer
to the "User’s Guide...." by Grandall, Ishii and Lions [32], and the book by Fleming and
Soner. Viscosity solutions in stochastic control problems arising in mathematical finance
were first introduced by Zariphopoulou [122] in the context of optimal investment decisions
with trading constraints, see., also Davis, Panas and Zariphopoulou [41], Shreve and Soner
[105], Barles and Soner [12], Duffie et al. [40].

The characterization of the value function as the unique viscosity solution is given
in [121].

The Stochastic Maximum Principle. An other classical approach for control
problem is to derive necessary conditions satisfied by an optimal solution, the argument is
to use an appropriate calculus of variations of the cost functional J (u) with respect to the

control variable in order to derive a necessary condition of optimality. The maximum prin-



ciple initiated by Pontryagin, states that an optimal state trajectory must solve a Hamilton
system together with a maximum condition of a function called a generalized Hamilton.
The Pontryagin’s maximum principle was derived for deterministic problems as in calculus
of variation.

In stochastic control, the measurability assumptions made on the control variables
and the nature of solutions of the underlying SDE, play an essential role in the statement
of the maximum principle. The first version of the stochastic maximum principle was
established by Kushner [80] (see also Bismut [19], Bensoussan [15] and Haussmann [58]).
However, at that time, the results where essentially obtained under the condition that o
independent of control is as follows: assume that b, o, f and g are bounded, continuously
differentiable in the space variable with the first order derivative satisfying the Lipschitz
condition, we confine ourselves to (F})-atapted controls u;. The basic idea is to perturb an
optimal control and to use some sort of Taylor expansion of the state trajectory around
the optimal control, by sending the perturbation to zero, and by martingale representation,
the maximum principle is expressed in term of an adjoint process. Let p;, q: be processes
adapted to the natural filtration of B, and satisfying the backward stochastic differential

equation

dpy = —Hj (t, x4, ug, pr) + qd By,
(10)

Pr = —9gx (:L’T) )

where the Hamiltonian H is defined by

H (t,z,u,p) = p.b(t,z,u) — f(t,z,u). (11)



The maximum principle then states that, if (I, 4¢) is an optimal pair, then one must have

max H (t,i"t,ut,pt) = H(t,i‘t,’&t,pt) a.e. t e [O,T], P-a.s. (12)

u

The first version of the stochastic maximum principle when the diffusion coefficient o de-
pends explicitly on the control variable and the control domain is not convex, was obtained
by Peng [98], in which he studied the second order term in the Taylor expansion of the
perturbation method arising from the Itd integral. He then obtained a maximum principle
for control-dependent diffusion, which involves in addition to the first-order adjoint process,
a second-order adjoint process.

In deterministic control, some efforts have been made to derive optimality nec-
essary conditions with differentiability assumptions on the data weakened or eliminated,
many authors have developed optimality necessary conditions, incliding Warga [114] . The
most powerful of these results remains the maximum principle developed by Clarke, based
on a differential calculus for locally Lipschitz functions.

Recently, in the stochastic case the smoothness conditions on the coefficients have
been weakened, in this case the first result has been derived by Mezerdi [93], in the case
of a SDE with a non smooth drift, by using Clarke generalized gradients and stable con-
vergence of probability measures. The method performed by Bahlali-Mezerdi-Ouknine in
[9] is intimately linked to the Krylov estimate, they proved that (10) and (12) remain true
when the coefficients are only Lipschitz but not necessarily differentiable and the diffusion
coefficient is uniformly elliptic. However, If b, ¢ are Lipschitz continuous and f and g are
C' in space variable, Bahlali-Djehiche-Mezerdi [5] proved a stochastic maximum principle

in optimal control of a general class of degenerate diffusion process, this case is treated
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by using techniques introduced by Bauleau and Hirsch [20,21], this property (on absolute
continuity of probability measures) was the key fact to define a unique linearized version
of the stochastic differential equation (1). The objective of the paper Chighoub, Djehiche
and Mezerdi [27] is to extend the results of [7] to the case where f and g are only Lipschitz
continuous, how prove the analogue of (10) and (12) holds. The idea is to define a slightly
different stochastic differential equation defined on an enlarged probability space, where the
initial condition « will be taken as a random elements.

The difficulty to get the stochastic maximum principle for the control problems
for systems governed by a forward and bakward SDE for controled diffusion and non-covex
control domain is how to use spike variation method for the variational equations with
enough higher estimate order and use the duality technique for the adjoint equation. Peng
[99] firstly studied one kind of FBSDE control system which had the economic background
and could be used to study the recursive utility problem inthe mathematical finance. He
obtained the maximum principle for this kind of control system with the control domain
being convex . Xu [119] studied the nonconvex control domain case and obtained the
corresponding maximum principle. But he assumed that the diffusion coefficient in the
forward control system does not contain the control variable, see., also Shi and Wu [118]
for the same problem for fully coupled FBSDE. El Karoui, Peng and Quenez [47] consider
a portfolio consumption model where the objective is to optimize the recursive utility of
consumption and terminal wealth.

The maximum principle for Risk-sensitive control problems have been studied by

many authors including Whittle [115, 116] and Hibey [25] . In [17, 18] the maximum principle
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for bouth full observation and parial observation problems are obtained. In [25], a measure-
valued decomposition and weak control variations are used to obtain a minimum principle
for the partial observation problem, see also Lim and Zhou [86] for a new type of the Risk-
sensitive maximum principle by using an approach based on the logarithmic transformation
and the relationship between the adjoint variables and the value function, for this subject,
a kind of portfolio choice problem in certain financial market is given by Wang and Wu
[113].

The first version of the stochastic maximum principle that covers singular control
problems was obtained by Cadenillas and Haussmann [22], in which they consider linear
dynamics convex cost criterion and convex state constraints. The method used in [22] is
based on the known principle of convex analysis, related to the minimization of convex,
Géateaux differentiable functionals defined on a convex closed set. A first order weak max-
imum principle has been derived by Bahlali and Chala [2], in which convex perturbations
are used for both absolutely continuous and singular components. Another result about the
second order stochastic maximum principle for nonlinear SDEs with a controlled diffusion
matrix were obtained by Bahlali and Mezerdi [8], extending the Peng maximum principle to
singular control problems, this result is based on two perturbation of the optimal control,
the first is a spike variation, on the absolutely continuous component of the control, and
the second one is convex on the singular component. A similar approach has been used by
Bahlali et al. in [5] to study the stochastic maximum principle in relaxed-singular optimal
control in the case of uncontrolled diffusion. Bahlali et al. in [3] discusses the stochastic

maximum principle in singular optimal control to the case where the coefficients are Lip-
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schitz continuous in x, provided that the classical derivatives are replaced by the generalized
one.

Both maximum principle and dynamic programming can be regarded as some
necessary coditions of optimal controls, under certain conditions they become sufficient ones,
the relationship between the maximum principle and dynamic programming is essentially
the relationship between the value function, and the solution of the adjoint equation along
an optimal state, see e.g. [121] in the classical case. More precisely, the solution of the
adjoint process can be expressed in terms of the derivatives of the value function, a vertion
of the SMP and DPP still holds true. However, a weaker notion superdifferential and
subdifferentiel are needed, see., Yong and Zhou [121].

Chapter 01 and chapter 02: This introductory chapters is intended to give
a through description of the maximum principle. Some basic facts, which are widely used
throughout the thesis, are also presented.

Chapter 03: The results of this chapter were the subject of the following paper
Chighoub, Djehiche, and Mezerdi: The stochastic maximum principle in optimal control of
degenerate diffusions with non-smooth coefficients, Random Oper. Stochastic Equations,
17, (2009) 35-53

The objective of this chapter is to derive necessary conditions for optimality in sto-
chastic control problems, where the state process is a solution to a d-dimensional stochastic
differential equation, whose coefficients are non smooth. For this model, we use an approxi-
mation argument in order to obtain a sequence of control problems with smooth coefficients,

and we apply Ekeland’s principle in order to establish the necessary conditions satisfied by a
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near optimal control, to pass to the limit, we will use Egorov and Portmanteau-Alexandrov
Teorems, we will use also the notion of extention of the initial filtered probability space,
defined by Bouleau and Hirsch.

Chapter 04: The results of this chapter were the subject of the following papers

Bahlali, K., Chighoub, F., Djehiche, B., Mezerdi, B.: Optimality Necessary condi-
tions in singular stochastic control problems with non smooth data, J. Math. Anal. Appl.,
355, (2009) 479-494

Chighoub, F., Djehiche, B., Mezerdi B.: A stochastic maximum principle in singu-
lar control of diffusions with non smooth coefficients (To appear in Australian J. of math.
Anal. and Appl.)

Chapter 05: The results of this chapter were the subject of

Bahlali, K., Chighoub, F., Mezerdi, B.: On the relationship between the SMP and

DPP in singular optimal controls and its applications (Preprint)



14

Chapter 1

The Dynamic Programming

Principle

In this Chapter we present the HJB equation which arise in the optimal control of
diffusion processes in R"™. We introduced the standard class of stochastic control problem,
the associated dynamic programming principle, and the resuting HJB equation describing
the local behavior of the value function of the control problem. Throughout this first
introduction to HJB equation the value function is assumed to be as smooth as required.
Further , we established the continuity of the value function when the controls take values
in a bounded domain, we showed how the HJB equation can be written rigorously in the

viscosity sense without any regularity assumption on the value function.

1.1 The Bellman principle
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Let (Q, F, P) be a filtered probability space with filtration (F}),, satisfying the
usual conditions. Let (Bt);>, be a Brownian motion valued in R? defined on (Q, F, Fy, P).
We denote by A the set of all progressively mesurable processes {“t}tzo valued in U C R¥.
The elements of A are called control processes. We consider the state stochastic differential

equation, for each control process u;
dry =05 (t, T, ut) dt +o (t, Tt, ’LLt) dB;, t € [0, T] , (11)

where b: [0, T]xR"xU — R ¢ : [0, T] xR* xU — R™*? be two given functions satisfying,

for some constant M

|b(t7$7u) - b(ta Y, u)‘ =+ ’0- (t,x,u) - U(ta yvu)‘ S M|£L‘ - y‘ ) (12)

b(t,z,u)| + |o(t,z,u)] < M(1+ |z]). (1.3)

Under (1.2) and (1.3) the above equation has a unique solution z, for a given initial data.

We define the cost functional J:[0,7] x R® x U — R, by

T

J(u) = B /f(t,xt,ut)dt—i—g(m;p) , (1.4)

where E%? is the expectation operator conditional on z; = x, and f : [0,T] x R" x U — R;

g :R" — R, we assume that

F (ta,w)l+ g @) < M (1+[2f?), (15)

for some constant M. The quadratic growth condition (1.5), ensure that J is well defined.

The purpose of this Section is to study the minimization problem

V(t,x) = inlf]J(t,:B,u), for (t,z) € [0,T) x R", (1.6)

ue
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which is called the value function of the problem (1.1) and (1.4).

The dynamic programming is a fundamental principle in the theory of stochastic
control, we give a version of the stochastic Bellman’s principle of optimality. For mathe-
matical treatments of this problem , we refer the reader to Lions [87], Krylov [83], Yong
and Zhou [121], Fleming and Soner [51].

Theorem 1.1 Let (¢,x) € [0,7) x R™ be given. Then, for every h € (0,7 —t),
we have

t+h
V(tz) = uig(f]Et”” /f(s,q:s,us)ds—l- V(t+h, )| - (1.7)

t

Proof. Suppose that for h >~ 0, we given by 45 = 4 (s,x) the optimal feedback

control for the problem (1.1) and (1.4) over the time interval [¢t,T] starting at point x4 p,.

i.e.
J(t+h,xpp, Ugrn) =V (E+ hyxin), as. (1.8)
Now, we consider
u (s, x), for s € [t,t + h|,
ﬁ pu—
(s, ), for s e [t+h,T].

for some control u. By definition of V' (¢,z), and using (1.4), we obtain

V (t7 SU) S ‘] (t7 $7 /&/) 9
t+h T
= Et’w /f(s,ms,us)ds—l—/f(s,xs,ﬂs)ds—l—g(xT) )
t

t+h
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h, t,x
By the unicity of solution for the SDE (1.1), we have for s >t + h, z5" = :c?r P then
[t+h T
h h,
J(tai) = E /f — ds—l—/f< t+ iyl A)ds—}-g( t+ xt+h> 7
t+h
[t+h
= E /f(s,xs,us)ds—i—E /f(s,xs,as)ds—kg(xT)/xifh ,
t t+h
[t+h
= FE / f(s,xs,us)ds+V <t+h,mt+h)

So we get
t+h

V(t,x) <FE / f(s,xs,us)ds+V (t + h,mif}) , (1.9)
t

and the equality holds if @ = @, which proves (1.7). =

1.2 The Hamilton Jacobi Bellman equation

Now, we introduce the HJB equation by deriving it form the dynamic programming
principle under smoothness assumptions on the value function. Let G : [0, T]x R x R x R"*¢

into R, be defined by
1
G (t,a,rp A) =b(tw,w) p+ 3Tr oo (to,w) Al + f(ba,w),  (110)

we also need to introduce the linear second order operator £L" associated to the controlled

processes x¢, t > 0, we consider the constant control u
u T 1 T 2
LY (t,x) =b(t,z,u)” Dyp(t,x) + QTT [oo" (t,z,u) Dp (t,2)] . (1.11)

where D, D?_ denote the gradient and the Hessian operator with respect to the z variable.

Assume the value function V € C ([0,7],R"™), and f (.,.,u) be continuous in (¢, z) for all
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fixed u € A, then we have by [to’s formula

t+h t+h
V(t+h,zppn) = V(t,x)—i—/ (%Z—l—[,ﬂ/) 5, 25%) ds+/ DV ( (S7$§x’u) dB.,
t
by taking the expectation, we get

t+h
EV (t+h,zip)] =V (t,x) + E /<%V+£UV>( t7) ds | |

t

thenm, we have by (1.9)

0<E h/(%v+£uv)( L) 4 f (5,2 ) ds |

t

we now send h to zero, we obtain

0< %(t,x)—I-EuV(t,:B)—i-f(t,x,u),

this provides

oV
T (t,z) — ;22 [LYV (t,z) + f (t,z,u)] <0, (1.12)
Now we shall assume that 4 € U, and using the same procedure as above, we conclude that

ov
E (ta .T)

— LYW (t,z) — f (t,z,u) =0, (1.13)

by (1.12), then the value function solves the H.JB equation

ov
_E (t’ :L“)

- ing1 LYV (t,z) + f(t,z,u)] =0, V(t,z)€0,T] xR. (1.14)
ue

We give sufficient conditions which allow to conclude that the smooth solution of

the HJB equation coincides with the value functionm this is the so-called verification result.

Theorem 1.2 Let W be a C*2([0,T),R*)NC ([0, T],R™) function. Assume that

f and g are quadratic growth, i.e. there is a constant M such that

\f (£, 0)] + |g ()] < M (1 v W) , for all (t,z,u) € [0,T) x R" x U.
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1) Suppose that W (T,.) < g, and
(1) g

aa‘f (t.2) + G (£, W (t,2), DaW (£,2) , DaaW (£,2)) > 0, (1.15)

on [0,7) x R™, then W <V on [0,T) x R".

(2) Assume further that W (T,.) = g, and there exists a minimizer 4 (t,z) of
LYV (t,x) + f (t,z,u),

such that

0 = T (02) 4 G ba, W (52), DV (1,2), DeaW (1)),
= aavz/(t,a:)—i—Eﬁ(t’x)W(t,a:)—i—f(t,a:,u), (1.16)

the stochastic differential equation
drs =b(s,zs,U(s,x))ds+ o (s,xs,0(s,z))dBs, (1.17)

defines a unique solution x; for each given initial data x; = x, and the process 4 (s,x) is
a well-defined control process in U. Then W =V, and 4 is an optimal Markov control
process.

Proof. The function W € C*2([0,7),R") N C ([0,T],R™), then for all 0 < t <

s < T, by Ito6’s Lemma we get

W (t,at%) + / <68Vtv + ﬁurw> (r,zl®) dr + /DxW (r, xj’w)Tg (r, 2", u,) dB;,
t t

S
T
the process / DWW (7‘, :rix) o (r, b uT> is a martingal, then by taking expectation, it

t
follows that

S
BIW (o) =W (t) + B | [ (TG0 cow) (ot i
t
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by (1.15), we get

a;/ (ry ™) + LYW (r,23%) + f (r, 2%, ur) >0, Yu € A,

then

E [W (s,xi’w)] >Wi(t,z)— E /f (r, :Efjx,ur) dr|, Yu € A,
t

we now take the limit as s — T, then by the fact that W (T") < g we obtain

T

E[g (acffr)} >Wi(t,z)— E /f(r,:cf:x,ur) dr|, Yu € A,
t

then W (t,z) < V (t,z), V(t,x) € [0,T] x R™. Statement (2) is proved by repeating the
above argument and observing that the control 4 achieves equality at the crucial step (1.15) .

We now state without proof an existence result for the HJB equation (1.14),
together with the terminal condition W (T, z) =g (z). m

Theorem.1.3 assume that

3C = 0/¢To0T (t,x,u)€ > ClEf?, for all (¢,z,u) € [0,T] x R" x U.
U is compact,
b,o and f are in C;’Z ([0,T] x R™),

g€ Cy (RY).

Then the HJB equation (1.14), with the terminal data V (T,z) = g (z), has a unique
solution V' € C’;’Q ([0,T] x R™) ..

Proof. See Fleming and Rischel [52]. m

we conclude this section by reviewing briefly the celebrated Merton’s optimal man-

agement problem.
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Example 1 We consider a market with two securities, a bond whose price solves
dsp = rSPdt, SY = s, (1.18)
and a stock whose price process satisfies the stochastic differentiel equation
dSy = uSidt + 0 S¢dBy. (1.19)

The market parameters i and o are, respectively, the mean rate of return and the volatility,
it is assumed that p > r = 0, and o = 0. The process B, is a standard Brownian motion
defined on a probability space (0, F, P). The wealth process satistfies X5 = p? + ps, with the
amountes u® and us representing the current holdings in the bond and the stock accounts.

The state wealth equation is given by
dXs =1Xsds + (n— 1) usds + ousdBy. (1.20)

The wealth process must satisfy the state costraint

Xs>0,aet<s<T. (1.21)

The control ug, is admissible if it is Fs—progressively measurable, it satisfies E ftT u?ds <

00, and it is such that the state costraint (1.21) is satisfied. We denote the set of admissible

policies by A. The value function is defined by
1
V (t,z) =sup & [’VX%/Xt = x] ) (1.22)
A

Using stochastic analysis and under appropriate regularity and growth conditions on the
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value function, we get that V solves the associated HJB equation, for x > 0, and t € [0,T],
(
1
Vi + max 502u2Vm +(u—r)Vy| +rzV, =0,
u
V(T,2) = L, (1.23)
gl

V (t,0)=0,t € [0,T].

The homogeneity of the utility function and the linearity of the state dynamics with respect
to both the wealth and the control portfolio process, suggest that the value function must be
of the form

V(T,z) = :f:f(t), with f (T) = 1. (1.24)

Using the above form in (1.23), and after some cancellations, one gets that f must satisfy

the first order equation

fH(6)+Af () =0,

F(T)=1.
where
)\:7"7—1—2( )02 (1.25)
Therefore,
2l
V(t,z) = %ek(T—t). (1.26)

Once the value function is determined, the optimal policy may be obtained in the so-called
feedback form as follows: first, we observe that the mazimum of the quadratic term appearing

in (1.23) is achieved at the point

(1.27)

or, otherwise,

(1.28)
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where we used (1.26). Next, we recall classical Verification results, which yield that the

candidate solution, given in (1.26) is indeed the value function and that, moreover, the

(p—r)

th*, 1s the optimal investment strateqy. In the other words,
os(l—=7

policy u* (t,z) = —
1_ . .
V(t,x) =sup F [XTW/Xt = x} .
A Y

where X¥ solves

ax = (g BT gy 20 e (1.29)
N P R T TR

The solutionof the optimal state wealth equation is, for X; = x,

<r+((,u7‘)2 _ (N*T)2 )(S—t)—l-MBs—t

X =
S T eXp 1_,}/)0.2 2(1_7)202 0(1_7)

The Merton optimal strategy dictates that it is optimal tokeep a fixed proportion, namely

(p—r)
o2(1—7)’

of the current total wealth invested in the stock account.
Next, we recall the notion of viscosity solutions for non-linear second order partial

differential equation (The HJB equation). For more detail we refer the reader to Crandall,

Ishii and Lion[32], and Fleming and Soner [51].

1.3 Viscosity solutions

It is well known that the HJB equation (1.14) does not necessarily admit smooth
solutios in general. This makes the applicability of the classical verification theorems very
restrictive and is a major deficiency in dynamic programming theory. In recent years,
The notion of viscosity solutions was introduced by Crandall and Lions [34] for first-order

equations, and by Lions [87] for second-order equations. For a general overview of the
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theory we refer to the User’s Guide by Crandall, Ishii and Lions [32] and the book by
Fleming and Soner [51] In this theory all the derivatives involved are replaced by the so-
called superdifferentials and subdifferentials, and the solutions in the viscosity sense can
be merely continuous functions. The existence and uniqueness of viscosity solutions of the
HJB equation can be guaranteed under very mild and reasonable assumptions, which are
satisfied in the great majority of cases arising in optimal control problems. For example,
the value function turns out to be the unique viscosity solution of the HJB equation (1.14).

Definition 1.5 . A function V € C ([0,7] x R™) is called a viscosity subsolution
of (1.14), if V (T, z) < g (z), Vo € R™, and for any ¢ € C12([0,T] x R"), whenever V — ¢

attains a local maximum at (¢,z) € [0,7) x R™, we have

_9 (t,z) +sup G (t,x,u, —Dyp (t,x) , —Dypp (t,x)) < 0. (1.30)

ot uclU
A function V € C (]0,T] x R™) is called a viscosity supersolution of (1.14), if V (T, z) <
g (z),Vz € R", and for any ¢ € C*2 ([0, T] x R"), whenever V — ¢ attains a local minimum

at (t,z) € [0,T) x R™, we have

_aif (ta ZL’) + sup G (t7 z,u, _D$90 (tv $) ) —DmSO (ta :L‘)) Z 0. (131)

9 uel
Further, if V € C([0,T] x R™) is both a viscosity subsolution and viscosity supersolution
of (1.14), then it is called a viscosity solution of (1.14).
Theorem. 1.6 Let (1.2) and (1.3) hold, then the value function V is a viscosity
solution of (1.14).
Proof. For any ¢ € C%2([0,T] x R"), let V — ¢ attains a local maximum at

(s,y) € [0,T) x R". Fix a u € U, let x; be the state trajectory with the control u; = u.
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Then by the dynamic programming principle, and Itd’s formula, we have for § > s, with

5 — s > 0 small enough

0 < 7 EV(sy)—wlsy) — V(525 +¢ (515l
< sm [ remaa - e o
8t 2 (5,y) — G (5,94, — Do (t,2) , —Dyaip (¢, 7)) -
This leads to
Oy
8t (8 y) +G(S Yy, u, D;B(P(S,y),—D;pxSO (37y)) S O,VU S U
Hence
~ 7 (5,9) + sup G (,y,u, —Dap (8,) , —Daatp (5,y)) < 0,Vu € U. (1.32)
uelU

On the other hand, if V' — ¢ attains a local minimum at (s,y) € [0,7) x R", then for any

€ =0, and § >~ s with § — s = 0 small enough, we can find a u; = u§ € U, such that

0 > E[V(Say)_w(svy) —V(§,x§)+<p(§,$§)],

v

_6(3_3)+E[/;f(taxtaut)dt—i-@(gvmé)_‘P(&y)]7

dividing by (§ — s), and applying It6’s formula to the process ¢ (t,z;), we get

§— S

1 5
e = B | [ Pt + Gt D (1)~ Dus (1))
S

< = 1 E {/ —aﬁ (t,x¢) +sup G (t, ¢, u, —Dypp (t,24) , —Daap (t, 24)) dt]
§—s s Ot uel
0
s = = (L) +sup G (5,9,u,~Dap (5,9) . ~Dawtp (5.1)) (1.33)

uelU

Combining (1.32), and (1.33) , we conclude that V' is a viscosity solution of the HJB equation

(1.14).
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The following Theorem is devoted to a proof of uniqueness of the viscosity solution
to the HJB equation m

Theorem 1.7. Let V,W € 02’2([0, T xR™). We suppose that V' is a supersolution
of (1.14), with V(T,z) < W(T, ) for all z € R" then V (t,z) < W(t,x)V(t,z) € [0,T] x R™.

Proof. Let, for (o, M, N) € R x R™*™ x R™™" we define
G(x,M)=—tr [A(m)A(x)TM] )
then, we obtain

Gy, N)— Gz, M) = tr [A(;c)A(a;)TM}—tr [A(y)A(y)TN},
= tr|A@)A@) M- Ay Aly)" N,

< 3alA(z) - Ay)f,

because the matrix

is a non negative matrix, we have

M 0
tr A(m)A(m)TM—A(y)A(y)TN] = tr |C ,
0 —-N
L, —I,
< Batr |C ,
-1, I, )
< Satr [(A@) - AW) (A@" - AW")].

IN
w
R
N
~—
|
b
—~~
<
~
o
—~~
=
w
e~
~—
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now, we consider the function
n n 1 2
F:R* xR = F(z,y) =V (2) -W(y) - o_lz -y,
with € > 0. Suppose that there exists a point (Z,y) such that F' attaints a maximum at
(Z,y), then z — F (z,y) attaints a maximum at z, hence
1 2
r—Vx)——|lr—g
— V(@)= 5o -]
attaints a maximum at . Moreover, y — —F (Z,y) attaints a minimum at g, then we have
Lo e
y—Wiy) -5 lz—yl
€
attaints a minimum at g. By the definition of viscosity subsolution at point Z, we obtain

1
|z — | we get

{—b(f,u) (x - g) _ %tr <aaT (7, ) <_€1>> _ f(:z,u)} <0

9
TR

for V with ¢ () 5
€
€

by the definition of viscosity subsolution at point § , we obtain for W with ¢ (y)

2
EW@) +21€1§{—b(y,u) <9«“Zy> — 5tr <0‘0'T (7, u) <_61>> _f(g,u)} >0
Hence
& w@-wm) <
igg{lb(w,U)—b(y,U)‘jeg‘ﬂf(a:,u)—f(y,u)y

€

2

el () wlram (D))
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the functions b, f,co’ are Lipshitz on = uniformly on v then by (1.34), we get

V@) - W@ < v -we-
< V(@) -W(). (1.35)
Because F' (z,y) > F (z,), we get
— —12
v -wm - T s v - we). (1.36)
then
W (z) — W (9) ’”“;?"2 >0, (1.37)
Moreover, F' (z,y) > F (y,y), then
v v -2 (1.38)
2 '
This proves that
- —12
‘x_ey‘ S(VHW) (@)~ (V+W) (@), (1.39)
z — gl

V,W are bonded, then

< ¢, which means that
€

m (n) =sup{|(V + W) (2) = (V+ W) W)l |z —y[ <n}:mn) 0.

by (1.39), we get

<m(z—7)). (1.40)
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under (1.38), on has

17— g <m(eVe). (1.41)

N |

combining (1.39),(1.40) and (1.41), we obtain

0V @) W (@) < et et m(eve).

finally, by (1.35) on has

Vi(z) =W (y) <V (z) = W(5) — 0, forall z € R".

hence

Definition 1.8. Let V € C (]0,7] x R™), the right superdifferential (resp., subdifferential)

of V at (t,x) € [0,T) x R™, denoted by Dtl,erV (t,x) (resp., Dg,ffV (t, ZL‘)) , is a set defined

by
I
DAYVt z) = {(p,¢,Q) eRXR"xR™/ lim sup (5,9) 5 <05,
7 yomsst s — 1| + |y —
s€[0,T)
I
DYV (ta) = {(p,g.Q) ERXR"xR™™/ lim YR
’ yomsot s —t[ + [y — x|
s€[0,T)
where
1
I(s,9) =V (s,9) = V(ta) —q(s—t) = (py—2) = S (y—2)' Ply—a).

Definition 1.9 A function V' € C ([0, 7] x R™) is called a viscosity solution of the
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HJB equation (1.14) if

—p+supG(tz,u,q,Q) < 0, V(pqQ)€ D2V (ta), V(tz) € [0,T] xR",
uwelU

—p+sup G (t,z,u,q,Q) > 0,Y(p,q,Q) € D"V (t,x), V(tx) € [0,T] x R",
uelU

V(T,z) = g(z), Yz € R™
Lemma. 1.10 The value function V satisfies
V()= V(s <C (1t —s* +]a—yl).

Proof. See Zhou [121]. =

Corollary.1.11 We have

inf {Ip— G (tz,u,q,Q)] = 0,¥(t,z) € [0,T) x R"}. (1.42)
(.q.Q)ED 2TV (tx)xU

Proof. See Zhou [121]. m
Lemma 1.12. Let g € C'[0,T]. Suppose that there is p € L [0, T] such that for

sufficiently small h > 0,

gt+h)—g(t)
h

<p(t), ae tel0,T]. (1.43)

Then

g(t)—g(0) g/ot Tim Q(Hh})l_g(r)dr, vt € [0, 7). (1.44)

h—0+

Proof. First fix t € [0,T), By (1.43) we can apply Fatou’s Lemma to get

fe—g(r+h)—g(r) bg(r+h)—g(r)

i dr > 1 d
o hoOr h S e h "
h+t
e fh+ g(r)dr—fgg(r)dr
h—0+ h ’
h h
R thg(T)dr—fO g(r)dr
h—0+ h ’
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This proves (1.44) Vt € [0,T7], finally, the ¢ = T' case is obtained by continuity. m
Theorem (verification)1.13. Let W € C ([0,T] x R™) be a viscosity solution of
the HJB equation (1.14), then
(1) W (s,y) < J (s,y;u) for any (s,y) € [0,T] x R™ and any u € U.
(2) Let (Z,u) be a given admissible pair for the problem (1.1) — (1.4). Suppose

that there exists
(A,q, Q) € L2 (s, T;R) x L2 (s, T;R") x L% <3,T;R”Xd> ,
such that for a.e. t € [s,T],
(A (t),4(6),0 (t)) € DE2YW (t,44), P-aus., (1.45)
and

_]5 (t) + G (tv j"tv ﬁ*ta Cjta Qt) = O, P—a.s., (146)

then (Zy, 4) is an optimal pair for the problem (1.1) — (1.4).

Proof. Part (1) is trivial since W = V in view of the uniqueness of the viscosity
solutions. We prove only part (2) of the Theorem, set ¢ (t, 2, 0) = @ (t), for ¢ = b,0, f,
ect., to simplify the notation. Fix ¢ € [0,7") such that (1.45) and (1.46) hold. Choose a
test function ¢ € C ([t, T] x R™") N C12 ((t, T] x R™")as determined by <]5 t),q(t),Q (t)) €

Dt{f#W (t,2¢) and Lemma (1.10). Applying Ito’s formula to ¢, we have for any h > 0,

w (t + h, i't-l-h) -Ww (t7 i't) <¢ (t +h, ﬁjt-i-h) —¢ (ta i‘t)

h+t . 1
- / {¢t (ry &) + ¢y (1, 2) b (1) + itr [&T (r) g (7, 81) .G (7’)] } dr. (1.47)
h

It is well known by the martingale property of stochastic integrals that there are constant
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C, indepedent of ¢,such that

Eld, —&><Clr—t|  ,Vr>t, (1.48)
E | sup |z, < C(a) Vo >T. (1.49)
s<r<T

hence, in view of Lemma (1.10), we have

A ~ 12
sup |éy (rin)l? < C? sup E |14+ 2 =% ¢ (1.50)
s<r<T s<r<T r—t

or

sup E|¢, (r,2,)| < VC,

s<r<T

Moreover, by Lemma 1.12, assumption (1.2) and (1.3), one can show that

sup E |, (r,Zy) b (r) + %tr [6T (r) by (r,ZT) .G (r)] < C.
s<r<T

It then follows from (1.48) that for sufficiently small h > 0,

E[W (t+h,&n) — W (t,24)]

<C. 1.51
; < (151)
Now we calculate, for any fixed N > 0,
1 [htt 1 [ht
[ Pea)—s@lar = ¢ [ Eleean-so1, ]

| [ht o
+h/h E [(@ (r,2r) = (1)) 1|£r—i't|§N|r_t|%:| ar

= I, (N,h)+ 1 (N,h).

By virtue of (1.49) and (1.51), we have

1
2

/hh+tE [‘@ (r. ) —ﬁ(t)ﬂ 2 [P <|56r — & = Nr —t]%ﬂ dr

Il(Nah) S

S| =

IA
={le

— 0, uniformly in h > 0 as N — oc.



33
On the other hand, for fixed N > 0, we apply Lemma 1.12 to get

lim  sup |(¢(r, @) —p(t))1 — 0, as h — 0+, P-as.

N R 1
h—0+ t<p<tth |£r—2¢|<Nlr—t|2

Thus we conclude by the dominated convergence theorem that
hlirél Iy (N,h) — 0, as h — 0+, for each fixed N.
—0+

Therefore, we have proved that

lim — E ¢, (r,2,)]dr — E[p(t)]. (1.52)

~- E [q (t).b (t)} : (1.53)

hlir&% /h h+tE[;tr[AT(T)ém(r,ﬁrr).&(r)]]dr = EBtr [UT(t)cbm(t,fct).&(t)]]
_ E[;tr o™ 1@ &(t)H

Consequently (1.48) gives

lim
h—0+ h -

e BW (4 h @) = W (53] _ E[
= —Elg@), (1.54)

where the last equality is due to (1.47). Noting (1.52) and applying Lemma 1.10 to the

g(t)=E[W (t,2¢)], we arrive at

T
EW (T,i7) — W (s,9)] < / E g (1) dt, (155)



34

which leads to W (s,y) > J (s,y; @) . It follows that (&,4) is an optimal pair for (1.1) and
(14). =m

Remark 1.14. In view of Corollary (1.11), the condition (1.47) impllies that
(]5 #),qt),Q @) ,dt> achieves the infimum of p — G (¢, T, u, ¢, Q) over Dtlﬂ’f’JrV (t, &) x U.

Meanwhile, it also shows that (1.46) is equivalent to

p(t) < G (Lan i p(1),0(0),Q (1) (1.56)

Remark 1.15. The condition (1.47) implies that

O

max G (&, p (1),4(1),Q (1)) = G (t1, 9.5 ()4 1),

uelU

(t)) . (1.57)

This easily seen by recalling the fact that V' is the viscosity solution of (1.14) ,hence

_ﬁ (t) + Squ (ta f:ta u7ﬁ(t) a(j(t) 7@ (t)) < Oa
uelU

which yields (1.57) under (1.47).
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Chapter 2

The Stochastic Maximum Principle

The optimal control problems we are interested in, consists to find an admissible
control 4 that minimizes a cost functional subject to an SDE on a finite time horizon.
If @ is some optimal control, we may ask how we can characterize it, in other words,
what conditions must 4 necessarily satisfy? These conditions are called the stochastic
maximum principle or the necessary conditions for optimality. The original version of
Pontryagin’s maximum principle was derived for deterministic problems, as in classical
calculus of variation. The first version of the stochastic maximum principle was extensively
established in the 1970s by Bismut [19], Kushner [80], and Haussmann [62], under the
condition that there is no control on the diffusion coefficient. Haussmann [59] developed
a powerful form of the stochastic maximum principle for the feedback class of controls by

Girsanov’s transformation, and applied it to solve some problems in stochastic control.

2.1 The first-order maximum principle



36

Throghout this section, let us suppose that & € U is an optimal control and denote
by Z the corresponding optimal trajectory, i.e. the solution of the SDE(1.21) controlled by
4. The maximum principale will be proved as follows, first we define a family of perturbed
controles u¢ ,where u€ is spike variation of the optimal control 4 on a small time interval,
further we use some sort of Taylor expantion of the state trajectory and the cost func-
tional around the optimal control. By sending the perturbation to zero, one obtains some

inequality

then by It6’s representation theorem of martingale Brownian, the maximum prin-
ciple can be expressed in terms of an adjoint process.

We suppose that a d-dimensional Brownian motion B is define on a complete
probability space (2, F, (F}), P). where (F}) is the p-augmentation of the naturel filtration

(F) defined by F = o0(Bs:0 < s <t)Vte[0,00]. Let us consider the SDE
dﬂj’t = b(t,xt,ut)dt—}— O'(t,l’t)dBt. (21)

where b: [0,7] x R* x U — R", 5 : [0,T]x R” — R* ® R? | are given

The control problem which we will be studying is of the form

T
J(u)=FE [/ f(t, ze,u)dt + g(xr)| - (2.2)
0
where f:[0,T] xR x U — R, and g : R - R
We might consider strong solution whose existence is given by the work of Ito,

under the condition that b, and ¢ are Lipschitz continuous in z, The following assumptions
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will be in force throughout this chapter:

b,o, f, g are continuously differentiable with respect to =z, (2.3)
They and all their derivatives by, 04, fz, g» are continuous in (z,u), (2.4)
The derivatives b,, f, are bounded uniformly in wu, (2.5)
The derivatives o4, g, are bounded, (2.6)
b, o are bounded by C (1 + |z| + |u]), (2.7)

The problem is to minimize the functional J (u) over all u € U, i.e. we seek @ such that

J(a) = z116151] (uw), (2.8)

such controls @ are called optimal controls, Z is the corresponding solution of the SDE (2.1).
Under the above hypothesise, the SDE (2.1) has a unique strong solution, such that for any
p >0,

E

sup |mt\p] < 0. (2.9)
0<t<T

and the functional J is a well defined.

The stochastic maximum principle is given by the following theorem.

Theorem 2.1. Let 4 be an optimal control minimizing the cost J over U, and
let & be the corresponding optimal trajectory. Then there exists a unique pair of adapted

processes

(p,q) € L? ([O,T] ;RnXd) x 2 ([O,T] ;Rnxd>

which is the solution of the BSDE
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{_dpt - [fl‘(ta j:ta ﬁt) + bgj(ta 'i.ta /&/t) + Ug(ta i“t)Qt]dt - QtdBt;
pr = g:v(j:t)y

such that for all a € A,

H(tw%taavpt) S H(tw%hﬂtapt)ap —a.e,

2.1.1 Approximation of trajectories.

To obtain the variational inequality in the stochastic maximum principle, we

define the strong perturbation of the control, sometimes called the spike variation

v iftelr,7+¢€,
up = (2.11)
Ut otherwise,
where 0 < 7 < T is fixed, € > 0 is sufficiently small, and v is an arbitrary A—valued,

F,—measurable random variable such that E[[v|?] < +oco. If x{denoted the trajectory

associated with u€, then

.’,U; = I, t S T,
dzi = b(t,xf,v)dt +o (t,x5)dBy, T <t <T+e,
dz; = b(t,xf,u)dt+o(t,z;)dBy, T+e<t<T.

Lemma 2.2. under the assumption (2.3)-(2.7). We have

limFE

e—0

sup |xf — 22| = 0. (2.12)
te[0,T
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Proof. By squaring and taking the expectation we get

t
Eflaf — &) < 3E [/ |b(s,x§,u§)—b(s,fcs,ug)|2ds}
0

2
+3E ]

t
/ b(s,&s,us) —b(s,&s,Us)ds
0

+3E [/Ot 0 (5,2) — o (s,ﬁs)|2ds] .

2
] sup |i't|] )
te[0,T

C?(1+ M)*E.

by (2.7) we obtain

2

62

E

IN

t
/ b(s,Ts,us) —b(s,Ts,Us)ds
0

C(HE

IN

Since b, o are Lipschitz in z, then
t
B (laf ~ ) < KB | [ Jag - a.Pas) + &
0

Finally, by using Burkholder-Davis-Gundy inequality and Gronwall Lemma we conclude,
since 4 is optimal, then

dJ(u)
de

J(a) < J(u) =J(u) +e |, + o(€),

if the indicated derivation exists, thus necessary condition for optimality is that

The first of this subsection is devoted to the computation of this derivative. Note
that since b(t,x,u) and f(t,z,u) are sufficiently integrable, then the following property

holds:

1 t+e
lim — E[|h(s, s, us) — h(s, x5, us)|*Jds = 0, ds — a.e, (2.13)

e—0€ Jy



where h stands for b or f.
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Choose 7 such that (2.13) holds. We define y as the solution of the linear SDE

dyr = by (s, x5, us)ysds + 04 (s, xs)ysdBs, 7 < s < T,
yr = b(1,2-,0) — b(T, T, ur).

and define ¢ by

dsi = fo(s, Ts, us)ysds, 7 < s <T,

St = f(T7xTuv) - f(TVrTvuT)'

We are now able to obtain the following differentiation results,

Lemma 2.3. under the assumption (2.8)-(2.7). We have

2
]:07
1

T
‘6/7 (f(t, 2e,ug) — f(t, ¢, 0))dt — s

CC;-JA?t

limF

e—0

— Yt

limFE

e—0

.

Proof. Denote

then, we have for ¢t € [7, 7 + €]

1
diy = - [b(t, &4 + € (ye + &5) ,v) — b(t, Ty, Ur) — €by(t, Ty, Uy )ye] dt

1 N e . .
+E lo(t,T¢ + € (ys + T7)) — o(t, T¢) — €0 (t, Z¢)ye] dBy,

e = —[b(r,&r,v) = b(T,Zr,0r)],

(2.14)

(2.15)

(2.16)
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or also
1 T+e€
. = - / [b(s, s+ €(ys + T$),v) — b(s, &s,v)] ds
T
1 T+e 1 Tte
+- / [b(s, Ts,v) — b(T,Zr,v)]ds — — / [b(s, Zs,Us) — b(T,Z7,Ur)] ds
€ €
T+e€
1 N e .
-l-; / [o(s,&s + €(ys +Z5)) — o(s,Z5)] dBy
T
T+€ T+e€
— / by(s, &, Us)ysds — / 04(8,Z5)ysdBy.
T T
from which we can deduce
E‘:i‘jJre}Z < KE| sup |of—&/*| +KE| sup |&— d,|?
te[r,m+¢ te[r,7+¢

T+e€ K T+e€
+KE [ [ |yt|2dt] +—FE [ [ 1b(t, &, i) —b(T,:i'T,aT)|2dt].
T € T

by the choice of 7 and Lemma (2.2) the last term tendes to 0.

Now, for 7+ e <t <T,

e 1 . U . .
dz; = - [b(t,Z¢ + € (ye + Z5) , Ue) — b(t, Ty, Uy) — €by(t, Ty, W) ye] dit

+

a | =

[U(tu f:t +e€ (yt + :E;)) - U(ta i‘t) - Eo-ft(t7 jt)yt] dBta

Il
O—

1
bx(t, Ty + Ae (yt + ZI?;) ,ﬂt)i‘gd)\dt + f O'x(t, Ty + Ae (yt + i‘g))iﬁgd)\dBt
0

Therefore,

T
[ 1% ds
T+e€

E|#)* < Eli,. )"+ KE

tE { } sl -

T+€

1
f (bz(s,Ts + Ae (x§ — Ts) , Us) — by(s, T, Us)) dA
0

2
ds] ,

2
ds}

T

+E | [yl
_T+€

1
{ (02(8,Ts + Ae (x5 — T5)) — 0x(S,Ts)) dA
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by, o, are bounded by the Lipschitz constant, we conclude by Lemma (2.2), and Burkholder-

Davis-Gundy inequality that
lim sup FE [[5:;]2} =0,.
€0 pe<t<T

(2.16) can be proved by the similar way. m

2.1.2 Adjoint process and variational inequality

Corollary 2.4. Under the assumption (2.3)-(2.7). We have

dJ (uc)
de

| —o = Elgu(zr)yr + 7] (2.17)

.Let us introduce the adjoint process and the first variational inequality from (3.6). Let

®(t,7) be the solution of the linear SDE

dq)(t? T) = bx(t7 :%tv at)(P(ta T)dt + 0z (ta j25)(p(t7 T)dBt7 t> T,
(2.18)
O(r,7) = 1.

This equation is linear with bounded coefficients. Hence it admits a unique strong solution

which is invertible, and its inverse ¥; is the unique solution of

d\IJt = [O’x(t,l’t)‘lth';(t,.It) — ‘Iitbx(t,@,ut)]dt — \I’tO'x(t,.fL't)dBt ,t > T y
(2.19)
U(r, 1) =14
Morever ®(t,7) satisfies a semigroup property; that is, if ¢ > s > 7 then ®(t,r) =
®(t,s).®(t,r), which implies in particular that ®(¢,7) = ®;. V., where ®(t) = ®(¢,0) and
U(t) = V(t,0).

By applying the 1t6’s formula to process Wy, it is easy to check that

yr = @(t, 7)(b(T, Zr,v) — (T, &7, 7))



Then replacing y; with its value in (2.17), it holds that

dJ(uc)
de

T
L = E U Fal(5, 80, 1) D (5, 7)(b(T, 0 0) — b(, dor 112)) s
+E [92(2,).9(T, 7)(b(7, Z7,v) — (T, T+, Ur))]

+E [f(Ta j7’77)) - f(T7JA37-,'LAL7-)} .
Now if we define the adjoint process by
T
b= B [T gn(en) + [ 8(s.0fa(si80 005/ F].
t
it follows that
dJ (us,§)
€
If define the Hamiltonian H from [0,7] x R™ x A x R™ into R by
H(t’ $7 U’p) = f(t7 $7 U) + p'b(t’ m? U)?
Then we get from the optimality of & the variational inequality
0 < FE[H(T,z+,v,p:) — H(T,Zr,Ur,ps)],dT — a.e.
We now look for an equation satisfied by the adjoint process (2.20), one has

T
E [(I)Tgm<“%T) +/ (I)sfw(syi'safLS)ds/Ft}
t

T t
= K |:(pqu;<iT> +/ (psfx(syj57ﬁs)d5/Ft:| _/ (Esfx(syi's;ﬁs)ds‘
0 0

The term

T
E |:<I>ng(i’T) +/0 q)sfx(373557ﬂs)d5/Ft:|

lco = Elpr Ab(7,2r,0) = b(7, 87, 0r) } + {f(7,27,0) — f(7,27,07)}]

43

(2.20)

(2.21)
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is a square integrable F;—martingale, then by the It6 representation of Browanian martin-

gales, we get
¢
E {Q’*Tgx(i’T) +/ ihy(t, @t,ﬁt)dt/Ft]
0
t t
— B|vialon + [ sinanag] + [ Qap.
0 0
where @ is an adapted process. Next, by applying 1t6’s formula to
T
p=VLE @)+ [ Bha(o.d i)t ]
t
it is easy to see that p; satisfies the linear BSDFE

—dpy = [fo(t, &, 0s) + b3 (L, &4, Ug)pe + 0 (¢, Tt) qi) dt — qd By, (222)

pr = Gz (UCT)

Where ¢; € L2([0.T];R™*9), is given by
@ = ViQy — o (t, T)pe-

Theorem 1.5. (the stochastic maximum principle).Let @ be an optimal control
minimizing the cost J over U, and let & be the corresponding optimal trjectory. Then there

exists a unique pair of adapted processes
(p,q) € L2 ([0, 7] R™?) x L2 ([0, 7); R™*7)
which is the solution of the BSDE () such that for all a € A,
H(t,z¢,a,p) — H(t,x¢,a,p1) >0, P — a.e,
of Theorem 2.1. From (2.21) we get

E [H (t7jt7v>pt) - H(t,fift,’&t,pt)] Z 07 dt — a.e,
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for every bounded A-valued, Fi-measurable random variable v such that F |v|*> < 4o0. Let
a € A be a deterministic element and F' be an arbitrary element of the o-algebra F}, and
set

wy = alp + lo_F.

it is obvius that w is an admissible control Applying (2.21) with w we get
E[1p(H (¢, 2¢,a,pr) — H (¢, 24,10, 1)) 2 0, VF € B,
which implies that
E[(H (t,2¢,a,p) — H (t, &, 0, p1)) /Fi] > 0.

The quantity inside the conditional expectation is Fy-measuranle, and thus the result follows

immediately. m

2.2 The near maximum principle

Near optimal controls is as important as exact optimal controls for both theory
and applications, Indeed, optimal controls may not even exist in many situations, while
near optimal controls always exist. This section concerns necessary conditions for near
optimality or the maximum principle in near optimal controls, for systems governed by
the Ito stochastic differential equations with diffusion-independant, and the system are
allowed to be degenerate. It is shown that any near optimal control nearly maximizes the
Hamiltonian. The proof is based on some stability and continuity of the cost functional
and the adjoint process with respect to the control variable, together with the Ekeland’s

principle.For more detail for this subject we refer the reader to Mezerdi [93],Zhou [123].
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Definition 2.5. For a given € > 0, an admissible control u¢, is called € — optimal
(or near optimal) if J (u) < J(u)+e. forallu e U

In this section we derive necessary optimality conditions for near optimal controls.

This result is based on Ekeland’s variational principale which is given by the
following.

Lemma 2.6 (Ekland principle). Let(S,d) be a metric space and p : S — R U
{+0o0} be lower-semicontinuous and bounded from below .For € > 0,suppose u¢ € S satisfies

p(u€) < infyueg p(u) + €. Then for any X > 0, there exists u* € S such that

p(u) < p(uc).

p(u) < p(u) + ;d(u, u?), for all u € S.

define a matric on U by

d(u,v) = P{(t,w) € [0,T] x Q:u(t,x) £v(tz)}

where P is the product measure of the Lebesgue measure and P. Since A is closed,
it can be shown similarly to [50], that U [0,T] is a complete metric space under d.

This Lemma is mainly devoted to investigating certain continuity of the controlled
SDE, the functional J, and the adjoint process (p, q) with respect to the metric d.

Lemma 2.7.
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(1) For any p > 0, there is a constant C' > 0 such that, for any u,v € U, along

with the corresponding trajectories %, x”, it holds that

N|=

E 1P| < Cd (u,v)

sup |z} — 7
t€[0,T)]

(2) There is a constant C' > 0 such that for any u, v € U along with the corre-

sponding adjoints processes p“, p it holds that

[NIES

T
E rp”;—p52+/\qr—qf\2dt < Cd(u,v)3 .
0

(3) The cost functional J : (U,d) — R is continuous. More precisely, there is a

constant Cy > 0 for any u, v € U such that

N

|/ (u) = J (v)| < Cad (u,v)

Proof. For(1) and (3), see Mezerdi [93], Zhou [123].
(2) Applying Ito’s formula to [p — p?|?, it holds that
2 r 2 2
= pi [ et = gt ds = lgw (aF) — s o)
¢
T
+2/ <pg — Pg; Fu (87 $Z7pg7 qya us) - Fv (37 xgapga qg7 US)> dS
t
T
+/ (ps — Py, a5 — q5) dWs,
t
where

F (s, 25,05, 45 us) = o (s,25,us) ps + 0a (5,25) g5 + [ (s, 25, us) ,

FY(s,20,p5,45,vs) = bo(5,25,0s) PS4 00 (5,27) 45 + f (5,25, vs) 5
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by using the Young’s inequality and taking expectations in bouth sides, we get

T
Bl =t [t - aias| < B [l (o) g2 (e
t

T
+a’E U Ip —p’élzdS}
t

) T
58| [P st aton) - P (st s

2 r 2
50| [P atbato) - P (satabati o) s
t

T
< Ellos o) - 0o )] + 2B | [t - piP s
t

9 T
58| [ b (st wd Bk = i+ o (s R ot - ot s
t

2 T
+?E [/t bz (5,25, us) — by (37x27v8)‘2 ‘pZ‘Q ds
T
[ o) - o <s,x:>\2\qsw2ds}
t

9 T
+$E |:/ ‘f$ (S7xgau8)_fx (vag)vs)|2d5:| .
t

The result follows from (1), the fact that by, 0., fr and g, are Lipschitz continuous in z

and Gronwall’s Lemma. =

Define the Hamiltonian H into R by
H(t,x,u,p) =p.f (t,x,u) +q.o(t,2) + f (t,2,u), (2.23)

where (py, q;) is the adjoint equation corresponding to (u, z) .
Theorem 2.8. For any € > 0, let (p%,q°) the solution to (2.22) corresponding to
(uf,z%) an e—optimal pair of the problem (2.1) — (2.2), then for any v € [0,1,73), there

exists a constant C () > 0, such that

E[H (t,z5,u,p;) — H (t,x5,v,p;)] > Ce, Yv € A. (2.24)
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Proof. By lemme 2.7 and the Ekeland’s principle with A\ = 6%, there is an admis-

sible pair (@€, 2¢) such that
d(uf,a) < eg, and J (@) < J (u) for any u € U,

where

J(w) = J (u) + €3d (u, @) ,

this means that @€ is an optimal control for the system (2.1), with a new cost function J.
Next, we use the spike variation technique to derive a maximum principle for 4€. To this

end, let 7 € [0,T] and v € A be fixed. For any 6 > 0, define a%Y € U, by

; ug ift € [0, )\ 7,7+ €,
sl = (2.25)
v iftelr,7+¢€,

the fact that J (a€) < J (71679) , and d (ﬁﬁ’e,ﬁe) < 0, imply that
J (aﬁﬂ) _J (@) > —€30,

therefor the map 6 — J (ﬂe’(’) is differentiable at § = 0, and that

dJ (as?)

g lomo= ELH (85,5, 5)] — B [H (1,3, 0,5)) + €5 20,

€

Now, we are derive an estimate for the terme E [H (t,Z§, us, p§) — H (¢, &5, v, p§ )] with all the

z¢, 1€ and p° replaced by x¢, u€ and p°. To this end, we first estimate the following difference

T
E [/ ﬁ;{b(t,i‘i,u)—b(t,fe?,ﬁf)}dt -
0

T
/pg.{b(t,x{f,u)—b(t,xi,ug)}dt =11 + I + I3,
0
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where
L= E / (55 — 55} {b (8,3 u) — b (1 fc;,amdt},
I, = F / p; {b(t, x5, u) — b(t,a:‘t:’,u)}dt],
L/ O
r pT
no-B|f p;{b@,gz;,a;)_b@,x;,u;)}dt],
L/ O
so that

wo< fe][Nm-wral) (o] [ beso-veamral)
.{CE UOT (14 |£§|)2dt] }; <ce.

Next, by the Schwartz inequality, one has

T i T i
E[/ p:|2dt] E [/ |b<t,a:~:,u>—b(t,m:,u>\2dt] |
0 0

NI

< Cd(u,a)

I; <
T 2
< E[/ \fri—xﬂzdt} |
0
< Od(uf,@€)i = Ce

Further,

T
Iy = E[/ pg{bu,fz;,a;)—b(t,azi,u@}dt}
0
T
B [ | vt - b(t,x:,umdt] ,
0

1
2

1
T 2 T
E[/O !pi!zdt] E[/0 b (1,35, 5) — b (t, 55, u§) ® X puglt]| + CE,

IN

Cd (uf, 716)% +C€,

IN

IN

Ce' +C6.
Similarly,

[/ (F () — f (35, 0)) — (F (b2, u) — F (8,25, 0)) ) db| < O,
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2.3 Peng’s maximum principle

The main difficulty when facing a general controlled diffusion is that the It6 integral
term is not of the same order as the Lebesgue term and thus the first-order variation method
fails. This difficulty was overcomed by Peng [98], who studied the second-order term in
the Taylor expansion of the perturbation method arising from the It6 integral. He then
obtained a maximum principle for possibly degenerate and control-dependent diffusion,
which involves in addition to the first-order adjoint process, a second-order adjoint process.

In this Section we consider the stochastic maximum principle in stochastic control
problems of systems governed by a SDE with controlled diffusion coefficient, Let (2, F, F}, P)
be a probability space with filtration. Let B; be an R"-valued standard Wiener process.
We assume that F; = 0 {B; : 0 < s < t}. Consider the following stochastic control system:

dxy = b (t,x,ue) dt + o (t, x4, up) dBy, for t € [0,T7],
(2.26)

o = Q&
where, b: [0,7] x RE x U x Q — R? ¢ : [0, T] x R? x Q@ — R4 An admissible control v.

is an Fj-adapted process with values in U such that

sup E |v|™ < 00, m > 1.
0<t<T

where U is a nonempty subset of R¥. We denote the set of all admissible controls by U,qg.
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Our optimal control problem is to minimize the following cost functional over U,

T
J(u)=F {/0 f(t,xeue)dt +g(xr)| . (2.27)

where f:[0,T] xR x U x Q = R, g: R? x Q — R, satisfy the following
(H) b,0, f,g are twice continuously differentiable with respect to z. They and
all their derivatives by, byz, 0xy Ouzs frs fows Gzs oz, are continuous in (z,v). by, byz, 04,

Ouzs frs foxs 9z, gz are bounded, and b,o, f;, g, are bounded by C (1 + |x| + |v]).

2.3.1 Second-order expansion

The second order maximum principle is studied by Peng [98] for a general case,
where the diffusion coefficient can contain the control variable and the domain can be non
convex. In this section we treat this problem by the second order expantion method based
on a kind of variational equation and variational inequality, becausethe usual first order
expansion method does not work here. Let (Z,4) be an optimal solution of the problem.
It is classical to construct a perturbated admissible control in the following way (spike

variation)

vift e [r,7+¢€,

1 otherwise,

Where 0 < 7 < T is fixed, € > 0 is sufficiently small, and v is an arbitrary -measurable
random variable with values in U, such that sup,cq |v (w)|. Let 2¢ be the trajectory of
the control system (2.26) corresponding to the control u¢. We would like to derive the

variational inequality from the fact that

J (u€) — J (@) > 0.
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To this end, we need the following estimation.

Lemma.2.9 We suppose (H). Then the following estimate holds

E | sup |& —xf — & — %,)?| < CE. (2.28)
0<t<T

where Z;, X; are solutions of

diy = {b(Z,ul) — b (¢, 0g) + by (D¢, Uy) T4} dt (2.29)
+ {0’ (@t, U;) — 0 (i’t, 'llt) + Oy (.’i‘t, 'llt) i’t} dBt,

d¥; = {bx (Zg, ) %4 + ibxx (&4, wy) l‘tfvt} dt
+ {Ux (l‘t, Ut) Xt + §Gm (mt, Ut) iCtxt} dB;
+ {bg; (.ff?t, ’U,E) + bx (fi’t, 'LALt)} ftdt
+ {0z (&4, uf) + 00 (T4, ) } £d By, (2.30)

Proof. See Peng [98]. m

Lemma.2.10 Under the assumption (H), we have

T 1
o(e) < E [/ {fac (&4, g) (& + %¢) + ifa:a: (&4, Ty) i“tft} dt]
0
+E [Qx (@) (&7 + %7) + %gm (@) SéTifT]
T
i [ | # ) - 7 i) dt] . (231)
0

Proof. See Peng [98]. m
Remark.2.11 In the case where ¢ does not contain the control variable v, the

relation (2.31) can be reduced to

O(e) < E [/OT {fo (B¢, ) &1+ } dige (@T)iT}

+E [/OTf (G, u) — f (i:t,at)dt} . (2.32)
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Thus we need only the first-order variational equation (2.29).

2.3.2 Adjoint processes and variational inequality

Equation (2.29) and (2.30) are called the first order and the second order varia-
tional equations. We introduce the first-order and second-order adjoint processes for (2.29)
and (2.30). With these processes, we can easily derive the variational inequality from (2.31).
The linear terms in the inequality (2.31) can be treated in the following way For simplicity,

we let

Sx (t) =Sz (ta T, ﬂt) , and Ggp (t) = Szzx (t)jtyat) , for ¢ =10,0, f7g'

Consider a linear stochastic system

dzy = (by (t) 2z — @ (t)) dt + (04 (t) 2¢ + 2 (t)) dt, z0 = 0, (2.33)

(6 (), 0 () € L3(0,T;R™) x (L3(0, T;R™)?,

where ¢ (.) = (¥1 (.) .y 104 (1), and L4(0,T;R™) is the space of all R™-valued adapted

processes such that
T
E/ 6 ()| dt < co.
0

We can construct a linear functional on the Hilbert space L2(0,T;R") x (L2(0,T;R")) as

follows:
T
I<¢<.>,w<.>>—E[/O Fo (1) 2t + g, (T) 22 -

It is easy to verify that I(.,.) is continuous. Then by the Riesz Representation Theorem,

there is a unique

(p(),q(.) € L*(0,T;R") x (L*(0,T;R™)%, ¢ = (q1, -, qa) ,
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such that

T d
E /0(p(t),ﬁb(t))+Z(qz'(t),1/1¢(t)) dt| =I(¢(),¢ (), (2.34)
j=1

Vo (), () € LE(0,T;R™) x (L4(0,T;R™))4. With (2.29) and (2.30), we can apply this

result to some of the terms of (2.31)

E[/Ofo(t)x'tdt+gx(T)iT} = E/ (pe, (b (&g, ul) — b (&, 0y))) dt

+E/ tr o (T¢,uf) — o (-%tvﬂt))) dt.

|:/ fm T, Ut> X dt + [ (T XT:| E/ pt .%'t, ut) by (i’t, ﬁt)) Tedt

+E / th 0% (i, uf) = o} (1, )
0

+E/ Pibax (Te, Uy +th Ohe (L1, W) | Do | dt,
j=1

Then we can rewrite (2.31) as

o(e) < E/ (Z¢, ug, Dty @) — H (T4, Ug, pr, q)) dt

2 [ e i)
0

L, NN

where the Hamiltonian H is defined by
d
H<xauaptaqt) :f($au)+(pab($au>)+Z<QJ7 (.CL' u))
j=1

The interesting thing is that the quadratic terms of (2.35) can still be treated by applying

the Riesz Representation Theorem. Indeed, applying Ito’s formula to the matrix-valued
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processes Xy = &4}

d

dXt = thg(it,’&t)-f-b (ast,ut Xt ZOJXtO'J (xt,ut) dt
7j=1

+{ X[ 0y (B4, 1) + 04 (B4, ) X[ + % (8) } dBy + ¢ (t) dt

where ¢° and ¢° are adapted processes given by

¢ (t) = F¢(b(E,uf) — b (@, )" + (b(Eeuf) — b (@, ) &7
t0u (B4, ) B4 (0 (e, u5) — 0 (&4, 1))
+ (0 (1, u5) — 0 (&4, 00)) ] 0 (21,00
+ (0 (&1, uf) — 0 (&,04)) (0 (1, uf) — 0 (&, 1))

1/)6 (t) = ‘i‘t (U (intv U;) -0 (ita at))T + (U (:Etv uzef) -0 (j:h th)) fzv

0
T

E [ ¢ (t)dt <
0

56

(2.36)

T
el sewma < E/ o (0, uE) — 0 (0, 1)) (0 (0, 1) — o (0, )T dt + 0 (),

Consider the following symmetric matrix-valued linear stochastic differential equations:

d
dZy = $ ZibY (r,iig) + by (B0, 10) 2]+ 05,205 (a4, 4) p dt
j=1
+{Z] 00 (&1, 0) + 00 (&1, 0) Z{ + 4 (t)} dBy + ¢ (t) dt

Zo = 0.

(¢ () P ()) S L%'<07T7Rnxn) X (L%<07T7Rnxn))d7w = (¢1, "'ﬂbd) :

where R™*™ is the space of all nan real symmetric matrices with the following scalar product:

(Al, Ag)* =tr (Al, AQ) , VAl,AQ S R™*™,
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Now, let us construct a linear functional via (2.36):

T
M($(), 4 () =E /0 (%1, Hyo (), dt + B [(Zr, 9o (57)).]

Obviously, M((.),(.)) is a linear continuous functional on
LE(0, T;R™M) x (L0, T3 R™ ™))
thus there exists a unique (P, Q) € L2(0,T;R™") x (L2.(0,T;R™"))?, such that

d
M (6(.) E/ (P, & *+Z( 7 g (t ) dt. (2.37)

7j=1
Since for all z € R", A € R™™" (zx*, A), = tr [(xx*) A] = 2* Az, from (2.36) and (2.37) we
can rewrite (2.35) as

T
o(e) < E/ (H (24, ug, pt, qt) — H (D, Uty pe, qr)) dit

d

+- E/ (P, ¢* *+Z( b (¢ ) dt. (2.38)

Jj=1

From the definition of,¢® and ¢, we obtain
T
€) < E/ (H (%4, ug, Pty qr) — H (T4, U, pr, r)) dt
+= E/ tr o (Zp,uS) — 0 (24, 1)) Py (0 (B4, u) — 0 (&, 1)) | dt,

Finally, we have

0<H (i"‘rvvapﬂ%') -H (i‘T7/&T’pTv(:IT) (239)

5t (0 (dr,0) = 0 (br, 1) Py (0 (Br,0) — 0 (i)}
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for all v € U, a.e.,a.s., or, equivalently

1
0 < H(&r,v,pr,qr — Pro(Zr,0,)) + 5757“ (gO—T (%, 0) PT)
S S 1 S
—-H (x7'7u7'7p7'7q7' - Po (:177'7 UT)) + itr (UUT (xTyuT) P’?’) )

Yo € Ua.e.,a.s.

Where the first-order adjoint process (p, q) is the unique solution of the folowing BSDE

d X .
—dp = (bx (Zea) pe+ S ob (2, a0) @) — fo (aet,at>> dt

j=1

+qdBy, (240)

7= —gz (T1).

\
The second-order adjoint process (P, Q) is the unique solution of the folowing BSDE

;

d . .
—dP; = by (4, @t)T P, + Piby (24, Uy) + Z 2 (T, Ut) P,o%, (@, Ug)

ol (2, 0)" QJ + Z QtO’x (#¢, )" + Hyg (&4, G, ry qr) dt

+

<
Il
-

(2.41)
QldB,

<
Il
—

+

L PT = —YGaxx (JA:T) .
Now we are ready to state The stochastic maximum principle

Theorem 2.12. Let (H) hold. If (&,14;) is a solution of the optimal control

problem (2.26), (2.27), then there exists a first order (resp a second order) adjoint process

(p(),q()) € L*0,T;R™) x (L*(0,T;R™)),
(P(.).Q () € LEO,T;R™™) x (LE(0, T; R™™))%,

which are, respectively, solutions of (2.40), (resp(2.41)) such that the variational inequality

(2.39) holds.
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2.4 Connection to dynamic programming principle

It is known that is a relation between the maximum principle and dynamic pro-
gramming this relation is essentially connection between the value function and the solution
of the adjoint equation in the optimal state. In this section we treat two cases, the first

when the value function V € C12([0,T] x R"), we prove that
(e at) = (Do V (L, 21), DIV (8, 84)0 (8, 2y, Te)).

But the value function is not in general C*2([0,T] x R™), then by the viscosity solutions
notion can replace the casical derivatives of the value function by superdifferentials.
Let us recall the stochastic optimal control problem formulated in Chapter 1.

Consider the stochastic controlled system

dxy = b (t,x,up) dt + o (t,x¢,u) dBy,  for t € [0,T7],
(2.45)

s =Y,

along with the cost functional

T
J(u)=FE {/0 f(t,xeue)dt +g(xr)| . (2.46)

We denote by U {[s, T]} the set of all (2, F, F}, P), satisfying: (92, F, P) is a complete prob-
ability space, {Bi}, is a d-dimensional standard Brownian motion defined on (£, F, P)
over [s,T], with By =0 a.s., and I} = o {x,;s <71 < t}.

The optimal control problem can be stated as follows: For given (s,y) € (0,T] xR"

minimize (2.46) subject to (2.45) over U {[s,T]}. The value function is defined as

— inf
V (s,9) ;gUJ(s,y,u),
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Recall that the HJB equation associated with the optimal control problem (2.45) and (2.46)

is as follows

_ac‘)‘t/ (t,x) +sup G (t,x,u,— D,V (t,x), — DV (t,)) = 0, (2.472)
uelU

with the terminal condition

V(T,z) =g(x),Vz € R". (2.47b)
where the Hamiltonian G is defined by
1 T
G (t,x,u,p, P) = itr (0’ (t,z,u)” Po(t,z, u)) +pb(t,x,u) — f(t,z,u).

On the other hand, let (p, ¢) be a solution of the BSDE (2.40) associated with the

optimal pair (i, ). We suppose in this Section all conditions of the Chapter 1 are satisfied.

2.4.1 The smooth case.

We first study the case where the value function V is sufficiently smooth.

Theorem 2.5. Let (t,z) € [0,T] x R™ be fized, let (u,%) be an optimal solution
of the problem (2.45) — (2.46), and W be a classical solution of the HJB (2.47a) — (2.47b),
suppose that W € C13 ([0, T] x R R). Then the solution of the BSDE (2.40) is given by

(pt, qt) (D W( ) D2W (t,.i‘t) g (t,i‘t,@t)) . P-a.s.

oW
Proof. Since W € C3 ([0, T] x O;R), we may apply the Itd’s rule to . (t,2¢),

T
we obtain
oW oW g OPW T
T ) = — (t. 7 d 5 d %
amk( 1) Bxk(’mt)+ 8585% S+/Z;8xk8xl 5, 8s) d2; (s)
t t !
1 e PW
+2/]Zla” (S,xs,us)m(s,xs)ds
t BI=
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Therefore
ow g n 92W
7TA As ) 7A33A37 7As
axk( o) = axk +/{688x s:z:)+2b(sa: u)ﬁxkﬁxi 5 %s)
t i=
+12n:a“(8§: Us) rw (s,Zs,0 ds—l—/z o (s, Ts, ufPdiB)
2 52 i (8,85, ) Oxp0;07; s ls) &ckax >
On the other hand, define
oW ~ oW
A(t,r,u) = (%(tax)ﬂL;bz’(t,%U)ém(ta-f)

w
+- Za”t:cua amj(,x)—l—f(t,a:,u).

If we differentiate A (¢, x,u) with respect to xj, and evaluate the result at (z,u) = (T4, )
we get
oW, :%)Jrzn:b-(t b))+ 5 S g (i) 2 (1)
(9t(9:16k s Lt < 1 \Uy Lty Ut 3:8/.33:17@ y Lt 2 = 1 \Uy Lty UE axkaxlaxj s Lt
8W . 1 & Oaij . . . W .
- Z (t, &y, Tig %(t,xt) — 2”21 Fo (0, ) 55— — 0T, (t,2)
0 A
_6:;}](]; (t, Tty ut) . (249)
Finally, substituting (2.49) into (2.48) which simplifies to
ow . Ob; ow
d <8$k (t7xt)> = — { 8 (t xt, Ut) aigjl (t7$t)
1 - 8a,-j 82W 8f
— t, Ty, ) ——— (¢, @ t dt
i 22,; Doy (LT ) g (b3 + o (b B )
2
w
0 (2.50)

+> - (t,2¢) o (t, &y, 0) dBy.

For each k£ =1, .., n. Clearly,

" ob; . OW Bl
oz (t, 2, Ut) Tm(t’xt) o (t, &4, Ug) DWW (t, 24)
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and
1 1 az] 82W 1 - 0 & aZW
5 Z: t :Bt;ut a a (t,l‘t) — szzlm ;O—ihajh (t :L‘taut) M (t,f[ft)
) T
= tr ‘;(t,fct,at)Dg%W(t,atﬂao(t,:?:t,m))-
k

Then (2.50) given by the form

ow T
d (a:ljk (t,.’l?t)) == {am (t xt,ut)D W(t It)

folead . 0 SN
+ tr <5;-k (t {L’t, ut) D w (t .fCt) (t,fL’t,Ut)) + 8.7?; (t,xt,ut)} dt
"L oW
8$k8$2 (t IL‘t) g; (t :Et, ut) dBt (251)

Now, by definition of the Hamiltonian H we get

OH ov” do” of
(¢ = (¢ tr | =— (¢ =L (¢
o () = g ()t or (G (o)) + 2 (),
and define pf the kth coordinate of the column vector p; by
OH
dpf = - (t, &1, s, 1, qr) dt + qfdBy,  for t € [0, T,
k
g .
br = 873% (eTT) )

with qdet: > fthf, for K = 1,..,n. Hence, by the uniqueness of the solution to
1<h<d

(2.40) and (2.51), we obtain

and

Z axkax, (t, Z¢) oip (t, Ty, Uy)

qfh the khth element of ¢, for k = 1,..,n, and h = 1,..,d. In particular, note that (p, q)

represents

(DLW (t,8¢), D2W (t,3¢) 0 (t, &4, )
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where 2; is the optimal solution of the controlled SDE (2.45). =

Exemple 2.16. Consider the following control problem U = [—1,1],n =m = 1.

dX; = 2udt + ﬂth, for t € [0, T] R

(2.52)
XS =Y,
the cost functional is given by
T
J(s,y,u) =F [/ (uf + 1) dt —logch (X7)| , (2.53)

for any fixed (s,y,u) applying Itd’s formula to the process logch (X;),
1
d (logch (X)) = th (X;) dX; + §ch_2 (X1)d (X, X),
then

T T
logch (X¢) = logch(y) +/ th (X) [2utdt+\@th] +/ ch™2 (X;)dt

S S

T T
= IOg ch (y) + / {2utth (Xt) + Ch_2 (Xt)} dt + / \/§th (Xt) th,
combining with (2.53), we get

T
J(s,y,u) +1logech(y) = E/ [(uf + 1) — 2uyth (Xy) — ch™2 (Xt)} dt
ST
_ E/ (g — th (X,))2 dt > 0,
because
1 —ch™2(z) =th(x),

and

E/T (ug — th (X))*dt > 0
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hence

Vis,y) = —logeh(y)
1 _
= —log <2 (Y +e y)) )
with uf = th (X]) is an optimal control, and X satisfies

dX} =2th(X})dt+v2dW;, forte[0,T],

(2.54)
Xg =0,
applying Ito’s formula to the process th (X})
1 th (X})
d(th(X])) = ———dX;/— ——2d(X", X"
( ( t)) Ch2 (X;) t Ch2 (X;) < ) >t7
1 2th (X})
= ———— (2th(X])dt 2d — ———=dt
chZ (X]) (20 (X7)de + V2dW;) = xH ™
V2
= ————dW;.
ch? (X7) !
then
d (th (X})) = V2[ch (X)) 2dW,, fort e [0,T], (2.55)
The uniqueness of the adapted solution (p, q) to the adjoint process (2.40) yields
pr =th(X/)dt, forte|0,T],
(2.56)

@ =V2[ch(X)] 2, fortel0,T].

2.4.2 The non smooth case.

Next, we drop the differentiability condition on the value function. It is clear that
the method used earlier will no longer be valid. Now, the idea is based on the viscosity
solution theory for second order PDE; to study the relationship between the maximum

principle and dynamic programming.principle
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1. Differentials in the spatial variable. Let us first recall the partial superdif-
ferentials and subdifferentials of the value function in the the spatial variable x. Therefore,

we need the following notations

I
DIV (t,x) = {(1% P) e R" x R™" / lim sup 2t 2 S O} ’
yoe s =t + |y — =
I
D:7V (t,x) = {(p, P) € R" x R™" / lim inf 1(5,9) 2 2 O}’
yoe s =t + [y —
where
1
Li(s,y) =V (s,y) =V (tz) = (py— ) —i(y—x)TP(y—x)-

Theorem.2.17 Let (t,z) € [0,T) x R™ be fixed, let (4,%) be an optimal solution of the
problem (2.45)—(2.46) , and W be a viscosity solution of the HJB equation (2.47a)—(2.47D) .

Then the solution of the BSDE (2.40) along an optimal trajectory, satisfied

{—pi} x [P, +00) C D>TV (t, %), Vt € [5,T], P-ass.,

D%_V (ti) g {_pt} X [—OO, _Pt)a Vit € [SvT] ; P-a.s.

Proof. See Zhou [121]. =
2. Differentials in the time variable. Now, Let us recall the partial superdif-

ferentials and subdifferentials of the value function in the time variable ¢

I
DtlfV(t,x) = <qg€eR/ lim sup (s, y)<0 ,
slt |s — ¢
s€[0,T')
lev(t _ ( y)
it ,x) = geR/ hm inf p— >0,
SG[OT)

where

Iy (s,y) =V (s,y) =V (t,x) = (¢,5 — t).
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Define the function H by
H(t,az,u) = G(t,aj,u,p,P) 7'157"(0'(2?,1‘,’&) [q - PO'(t,.’%,@)]),

where p, ¢, and P are the solution to (2.40), and (2.41), associated with the optimal pair
(Z,u) . Therefore, the following result appears rather natural.

Theorem.2.18 Under the assumptions of Theorem (2.14), we have
H (t,d4,04) € DTV (8,3), ae. t € [s,T], P-as.

Proof. See Zhou [121.]. m
Now, let us combine Theorem 2.17, and Theorem 2.18, to get the following result.

Theorem. 2.19 Under the assumptions of Theorem (2.17), we have
[H (t, 34, 11),00) X {—pi} x [~Pr,+00) C Dy2tV (t,3y), ace. t € [s,T], P-as.
and

D27V (t,d0) € (=00, H (t, &, @) x {—pi} x (—o0, =Py, ae. t € [s,T], P-as.

2.5 The SMP in singular optimal controls

In this section we consider the maximum principle in stochastic control problems
of systems governed by a SDE with uncontrolled diffusion coefficient (see Bahlali et. al [5]),
where the control variable has two components, the first being abselutely continuous and
the second singular, we suppose that an optimal control exists. The expected cost to be
minimized over the class of admissible controls is given by (2.58) . For this subject, the first

version of the stochastic maximum principle that covers singular control was obtained by
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Cadenillas and Haussmann in [22], the first order weak maximum principle has ben derived
by Bahlali and Chala [2], see, also Bahlali and Mezerdi [8] for the general maximum principle
in singular controls problem. Our objectif in this section is to establish the optimality
necessary conditions of this kind of problems. First, we formulate the control problem and
describe the assumptions of the model.

Let (2, F, F}, P) be a filtered probability space satisfying the usual conditions, on
which a d-dimensional Brownian motion (B;) is defined with the filtration (F}). Let T be
a strictly positive real number, A; is a non empty subset of R and Ay = ([0,00))™. Uy
is the class of measurable, adapted processes u : [0,T] x Q@ — Aj, and U; is the class of
measurable, adapted processes ¢ : [0,T] x Q — As.

Definition 2.20. An admissible control is a pair (u,£) of A; x Ag-valued, mea-

surable Fi-adapted processes, such that

Definition 2 1. w is absolutely continuous, and £ is of bounded variation, non decreas-

ing left-continuous with right limits and £, = 0,

2. F

sup |ug|® + |£T|2] < 0.
te€[0,7

We denote by U = Uy x U, the set of all admissible controls.

For (u,&) € U, suppose the state z; = $§u,§) € R” is described by the equation

dﬂl‘t = b(t,xt,ut) dt+0(t,$t) dBt +G(t) df (t) 5 fort € [O,T] s
(2.57)
xo =,

Where, b: [0,T] x R x A — R, ¢:[0,T] x R*" - R*®R% G : [0,T] — R?® R™, are

given. Suppose we are given a cost functional J (u, &) of the form
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T T
@& =B | [ fmu)dt+ [k©dew +glr)| (259)
0 0
where, f:[0,7] xR x A; - R, g:R? - R, and k: [0,T] — ([0,00))™, with k (¢) d¢ (t) =

NIE!

ky (t)d&; (t) . The following assumptions will be in force throughout this section:

N
Il
—_

b,o, f, g are continuously differentiable with respect to z, (2.59)
They and all their derivatives b,, 0., fz, g, are continuous in (z,u), (2.60)
The derivatives by, f, are bounded uniformly in w, and o, g, are bounded(2.61)
b, o are bounded by C (1 + |z| + |ul), (2.62)

G, k are continuous and G is bounded. (2.63)

The problem is to minimize the functional J (u, &) over all (u,§) € U, i.e., we seek

<ﬂ,é> € U such that

J <ﬁ,€> = sup J(u,§), (2.64)

(u,§)eU

such controls (fo, E) are called optimal controls, x(ug) is the corresponding optimal solution
of the SDE (2.57). Under the above hypothesise, the SDE (2.57) has a unique strong

solution, such that for any p > 0,

E

sup |xt\p] < 00, (2.65)
0<t<T

and the functional J is a well defined.
The maximum principle will be proved in two steps. First we define a family of
perturbed controls (u€, é), where u€ is a spike variation of the absolutely continuous part @

on a small time interval [7, 7 + €]. The first variational inequality is derived from the fact
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that

The second step is to introduce another family of perturbed controls (4, £¢) , where £° is
a convex perturbation of £&. The second variational inequality is then obtained from the

inequality

S

J(@,€) = J(@,€) = 0.

The stochastic maximum principle in its integral form is given by the following
Theorem.

Theorem 2.21 (The strict stochastic maximum principle in integral form). Let
(@, é’ ) be a strict optimal control minimizing the cost J over U, and let & be the corresponding

optimal trjectory. Then there exists a unique pair of adapted processes
(b,a) € L2 ([0, 7] ") x L2 ([0, T);R™7)
which is the solution of the BSDE (3.18), such that for all a € A;, and n € Uy,

H(tvmhaapt) - H(t’ Tt, atvpt) > Oa P — a.e.,

T
B [+ Gimdn - € 2 0
0
2.5.1 The first variational inequality

To obtain the first variational inequality in the stochastic maximum principle, we

define the strong perturbation of the absolutely continuous parts of the control, sometimes
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called the spike variation

. (v,é’t) ift er,7+¢€,
(ug, &) = (2.66)

(g, &) otherwise,

where 0 < 7 < T is fixed, € > 0 is sufficiently small, and v is an arbitrary A;—valued,

F;—measurable random variable such that E \v|2 < +o00. Note that the singular part is not

() ;

affected by the perturbation. If z; denoted the trajectory associated with (u€, &), then

(

o) =y, t <,

dxgue’é) =b (t,wt(ue’f),v> dt + o (t,wtue’g)) dB; + thét, T<t<T+e,

de{" 9 = b (62" ) dt + o (4,2 ) dB + Gy, THe<t<T,

It is easy to check by standard arguments that

limFE | sup \a:,ﬁ“é’é) — 2| =0, (2.67)
=0\ ¢efo,17]

Arguing as in the section 1, we define y as the solution of the linear SDE

dyt = bx(s)ﬁjsa '&s)ysds + O-x(sa is)ysst T S S S T’
(2.68)

Yr = b(T7 '/%Ta U) - b(T) -/%Ta aT)
Let ¢ be defined by

dse = fo(s, Ts, Us)ysds, T < s <T,

St :f(T7:i.T7/U) _f(Tu'fTvﬁT)-

We can prove the following approximation result

Lamma 2.22. Under the assumptions (2.59) — (2.63) , we have

(u8) 2
T Y — &
imE |[|-L——T | | =0,
e—0 €

lim F

e—0

T
! / (b deruf) — £t i)t — or

€

.
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Proof. Since x(Tu o8 Z7 does not depend on the singular part, the proof follows
that of Lemma 2.2. m

Corollary 2.23 Under the assumptions (2.59) — (2.63) , we have

dJ(uf,§)

de l—o = El92(Z7).y7 + <7

Proof. By using the estimate (2.67), the result follows by mimicking the same
proof as in corollary (2.4). m
Let us introduce the adjoint process and the first variational inequality from corol-

lary 2.22. We proced as in section 01. Let ®(¢,7) be the solution of the linear equation

dD(t, 7) = by(t, &y, ) DL, T)dt + 0o (t, 20)B(t, 7)dBy, t > T,

(2.69)
q)(T, T) = Id.
By the uniqueness property, it is easy to check that
y(t) = @(t, 7)(b(7, &7,v) — b(7, &7, 7)),
if we define the adjoint process by
T
b= B U hg,(or) + 0] [ 8 folsdai)ds /| (270)
ts

then we get from the optimality of (4, ¢ ) the first variational inequality
0 < E[H(T,%r,v,p;) — H(T,%7,1U7,pr)],dT — a.e.,
where the Hamiltonian H is given from [0, 7] x R™ x A; x R" into R by

H(t,z,v,p) = f(t,z,v) + p.b(t,x,v). (2.71)
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2.5.2 The second variational inequality

To obtain the second variational inequality of the stochastic maximum principle,

we introduce the convex perturbation applied on the singular part of the control process

(i, &) = (, & + €(n, — &), (2.72)

where 0 > 0 and 7 is an arbitrary element of Us. Note that the first part of the control is
not affected by the perturbation . Since (, é) is an optimal control, we’ll derive the second

variational inequality from the fact that
0 < J (1,6 = J(@,€).

Lemma 2.24. Let xgﬂ’gé) be the trajectory associated with (u,£). then the fol-
lowing estimation holds:

lim E

e—0

P 2
sup ’xgug ) :%t‘ = 0.
te[0,7

Proof. From assumption (2.60)-(2.61) and by using the Burkholder-Davis—Gundy

inequality for the martingale part, we get

E

P 2
sup ‘:c,gu& ) i“t‘ < 6KFE
te[0,T

A e 2
xgu,g ) _ :i't‘ ds]

t
/ sup
0 a€l0,s]
) .2
+3MEE UnT - gT‘ ] .
From Definition 2.20 and using Gronwall’s inequality, the result follows immediately by
letting € go to zero. m

Lemma 2.25. Under assumption (2.60) and (2.61), the following estimation

holds:
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where z the solution of the integral equation

t t t
- / b (5, g, i) 2edls + / 00 (5,) 200 By + / Gud(n — ©).. (2.73)
0 0 0

Proof. From Definition 2.20 and assumption (2.60)-(2.61), it is easy to verify by

Gronwall’s inequality that

E | sup |z]*| < . (2.74)
te[0,7
Let
. x£u756) _ i‘t
M= A

It is easy to see that
t| rl . »
Epi® < 3/ / b (.20 4 A [a6) — 2] i) 150
0 1Jo

+3 /Ot /01 " (s,a:gﬁ’fe) +A [mff’&e) - :ﬁs} ,?ls) YsdA

+3E o5,

2
ds

2
ds

where pf is given by
t rl . .
p; = / / Zs [bm <s,xg“’5 ) 1\ {ng‘g ) _ :2‘3} ﬂs) — bx(s,fﬁs,as)] d\ds
0 Jo
t pl
+ / / 2 [aw (s,xgﬂ@ + A [xgﬁ»@ - xSD . ax(s,:es)} d\dBs.
0 Jo
Since b,, 0, are bounded, it holds that
t
B <6 [ Bl a3 |,

By using Lemma 2.24 and (2.74),together with the Dominated Convergence theorem, we
obtain

lim E |pf|*> = 0.
e—0
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We conclude by applying Gronwall’s lemma and letting € go to zero. m

Lemma 2.26 The following inequality holds:

0 < E [QI(SCT)ZT + E/ t I‘t,ut)tht + E/ ]{Jt 77 f)t (275)

Proof. From the second variational inequality, we have

0 < %E [ (#4849) — gen)] + E/ o) 4,) — (b1, 0)) di
+8 [, &),
_ E/< o ) , (a0 (o459 — a7) ) an
e /( AT 1 (e (- ) ) r
+E /0 ked(n — €);.

Since the derivatives g, and f, are continuous and bounded, by letting € go to 0, we see
that the result follows from Lemma 2.24 and Lemma 2.25. By the same method as in the
last subsection, we are able to derive the second variational inequality from (2.75). If ®(¢, s)

denotes the solution of (2.69), it is easy to check that z; is given explicitly by

t A~
2 :/0 O(t,s)Gsd(n —§)s.

Replacing z; with its value, we obtain the second variational inequality

T N
0< E/o (ke + Gipe)d(n — )1,

where p; is the adjoint process defined in the last subsection by (2.70). m

2.5.3 The adjoint equation and the stochastic maximum principe
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Applying It6’s formula to p; given by (2.70), it is easy to see that p; satisfies the

linear backward SDE

—dpy = { folt, e, ) + UL (¢, 24, t)pe + 0L (¢, 34) @ } dt — qud By, 0.76)

br = gz(mT)-

where ¢; € L? ([O.T] ;R”Xd) , is given by
@ =V Qi —of (t,z)pr,
and @ is given by the It representation Theorem of Browanian martingales

t t
/OQSst = E[ééggx(@TH/o @ffw(t,it,at)dt/ﬂ]

¢
-8 |0fg.(on) + [ o flt.dnanar].
0
The stochastic maximum principle in its integral form is given by the following Theorem.

Theorem 3 2.27 (The strict stochastic mazrimum principle) Let (1, é) be an optimal
control minimizing the cost J over U, and let & be the corresponding optimal trajectory.

Then there exists a unique pair of adapted processes
(p,q) € L2([0, T];R") x L*([0, T]; ™),

which is the solution of the BSDE (3.18), such that

H (t,Z¢, Uy, pr) = mgl H (t,Z¢,a,p),dt — a.e., P—a.s., (2.77)
acAy
P{vt € [0,T),isks (1) + G} () py > 0} = 1, (2.75)

P {Z Likw+artp>otaes = 0} =1 (2.79)
=1
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Proof. To prove (2.78) and (2.79) we follow [5]. Since (i,£&) is optimal, the
inequality
T ~
B [+ Gimdt -8 > 0
0

holds for every n € Us. In particular, let € Us be defined by

0 ifki(t)+G*(t)p >0,

dni=9
d¢; otherwise.
then
T . T X
E/O (ke + Gip)d(n =€) = B Z/O (e®) + G (1) 20) Lt sz (1)
i=1

and relation (2.79) follows immediately.

Let us prove (2.78). For each i € {1,2,...,m}, let

Al = {weQ:k(t)+ G (t)p <0},

A = {(tw) € [0,T] x Q: ki (£) + G () pr < 0},

and define
. t
m=@+41NQM%,

It is easy to see that n, = (n%, ne, ..., n{”) is in Uy. Moreover

T ~
E/(h+@MMm£h=E
0

mo T
> [ a0+ Op0 L] <0,

which contradicts (2.78), unless for every i = 1,2,...,m, dt ® P(A?) = 0. This proves the

desired result since k, G, and p are continuous. m
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Chapter 3

The SMP For Degenerate
Diffusions With Non Smooth

Coeflicients

For a controlled stochastic differential equation with a finite horizon cost func-
tional, a necessary conditions for optimal control of degenerate diffusions with non smooth
coefficients is derived in this chapter. The main idea is to show that the SDEg admit a
unique linearized version interpreted as its distributional derivative with respect to the ini-
tial condition, defined on an enlarged probabilty space, where the initial condition « will
be taken as a random element, we use technique of Bouleau-Hirsch on absolute contunuity
of probability measures in order to define the adjoint process on an extension of the initial

probability space.
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3.1 Assumptions and main result

In this section we will make some preliminaries. First of all, besides the Euclidean
space R?, for any z,y € R%, we use 2.y to denote the inner product of these two vectors. We
put 9 = (ai])j:1 o and note that if 1 : R — R then 0,1 = (aszpi)m:lwd e Réxd,

From now on, we let Q = Cj (R+,Rd) be the space of continuous functions w
such that w (0) = 0, endowed with the topology of uniform convergence on compact subsets
of Ri. F is the Borel o-field over €2, P is the Wiener measure on (Q, F), (F);5, is the
filtration of coordinates augmented with P-null sets of F. We define the canonical process
B (w) = w(t), for all ¢ > 0. Thus, (Q,F, (Ft)io0, P, Bt) is a Brownian motion. Let T
be a fixed strictly positive real number, we consider stochastic optimal control problems
by the set of admissible controls U we mean the colluction of (Q,F s (Ft)tZO,P, Bt> and
A-valued Fj-adapted measurable process u. = {u; : 0 <t <T}. A is a given closed set in
some Euclidean space R?, we denote (Q, F,P,B,u) € U the set of all admissible controls,
but occasionall we will write only u € U if no ambiguity arises. Now, for each u € U let x

be the solution of the controlled stochastic differential equation

dxy = b(t,z,uy) dt + o (t,x4) dBy, for t € [0,7T],

(3.1)
To = &,
and the objective is to minimize over controls u € U the cost functional
T
J(u)=E [/ [t zyu)dt + g ()| - (3:2)
0

We introduce the standing assumptions:
Maps b : [0, T]xRIxUxQ — R o : [0, T]xRIxQ — R4 £ [0, T|xRIXUxQ —

R, g : R? x Q — R, satisfy the following: b, f are B ([0,7] x R x U) ® Fr-measurable,
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o is B([0,T] x RY) ® Fr-measurable, and g is B (R?) ® Fr-measurable, where B (G) is
the Borel o-field of the metric space G. There exist M > 0, such that for all (¢,z,y,a) in

Rt xRIxRIx A

b(t,z,a) = b(t,y,a)| + o (t,x) — o (t,y)| < Mz —yl, (3.3)
f (t,2,a) = f(ty,a)l +19(z) —g (W) < M|z —y], (3.4)
b(t,2,a)| + o (t,z)] < M (1+|x]), (3.5)
|f (2, a)| +|g ()] < M (1+ |z]), (3.6)
and
b(t,z,a) and f (t,x,a) are continuous in a uniformly in (t,z). (3.7)

Assumptions (3.3) and (3.5) guarantee the existence and uniqueness of strong solution for

(3.1), such that for any p > 0,

E | sup |z/"

0<t<T

< +oc0.

Since b, o7 (the j** column of the matrix ), f and ¢ are Lipschitz continuous functions
in the state variable they are differentiable almost everywhere in the sense of Lebesgue
measure (Rademacher Theorem). Let us denote by b, 0, fr and g, any Borel measurable

functions such that

0:b(t,x,a) = by (t,x,a) dz-a.e.,
O f (t,x,a) = fy(t,x,a) dz-a.e.,
00 (t,x) = o5 (t,x) dz-a.e.,

09 (x) = gz (x) dz-a.e.
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It is clear that these almost everywhere derivatives are bounded by the Lipschitz constante
M. Finally, assume that b, (t,z,a), fz (t,x,a) are continuous in a uniformly in (¢,z). We
assume throughout this paper that an optimal control % of the control problem assosiated

with (3.1) and (3.2) exists. That is

J(u) = inf J (u).

uelU

Let h be a continuous positive function on R? such that [k (z)dz =1 and [ |22 h (z) dz <

0 0
0o. We set D = {f € L? (hdz), such that % cL? (hda:)} , where % denotes the deriv-
J J

ative in the distribution sense. Equipped with the norm

1715 = /f2hd:c+ > /(ax) ,

1<y <d

D=

D is a Hilbert space, which is a classical Dirichlet space (see [21]). Moreover D is a subset
of the Sobolev space H, lloc (Rd) .
Let Q = R% x Q, and F the Borel o-field over Q and P = hdz @ P. Let By (z,w) =
B; (w) and F} the natural filtration of B, augmented with ]B—negligible sets of F. It is clear
that (fl, ﬁ, (ﬁt>t20 , ﬁ, Et) is a Brownian motion. We introduce the process Z; defined on
the enlarged space (SNZ, ﬁ, <ﬁt>t20 , ﬁ, Et) solution of the stochastic differential equation
dZy = b (t, &, Gy) dt + o (¢, %) dBy,
(3.8)
To = «,
associated to the control @ (x,w) = us (w). Since the coefficients b and o are Lipschitz
continuous and grow at most linearly, equations (3.8) has a unique E—adapted solution

with continuous trajectories. Equations (3.1) and (3.8) are almost the same except that
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uniqueness of the solution of (3.8) is slightly weaker, one can easily prove that the uniqueness
implies that for each ¢t > 0, Ty = x4, P-as.

The main result of this paper is stated in the following Theorem.

Theorem 3.1. (Stochastic mazimum principle) Let (i, &) be an optimal pair for
the controlled system (3.1) and (3.2), then there exist an F-adapted process (the adjoint

process) satisfying
T
pi=—F /cp* (8,8) fu (8,80, B) ds + @7 (T, ) gz (27) /F | | (3.9)
t
for which the following stochastic maximum principle holds:

H (t, &, U, pt) = maj(H (t,Zt,a,pr) dt-a.e, P-as., (3.10)
ac

where ® (s,t), (s > t) is the fundamental solution of the linear equation
dD (s,t) = by (s, s, s) @ (s,8)ds + S o (s,2).D (s,t) dB,

1<j<d (3.11)
B (t,1) = Id.

where the Hamiltonian H is defined by
H (t,z,u,p) =p.b(t,z,u) — f (t,x,u). (3.12)

Here ®* denotes the transpose of the matriz ®.

3.2 Proof of the main result

Let us recall some preliminaries and notation on the Bouleau-Hirsch method which
will be applied in this paper to establish the stochastic maximum principle of the controlled

system (3.1), (3.2).
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Theorem 3.2. (The Bouleau-Hirsch flow property) For P-almost every w

(1) For all t >0, &; is in D?.

(2) There exists a Fy-adapted GLg (R)-valued continuous process (&)t>t20 such
that for every t > 0

— (2% (w)) = Dy (,w)  da-a.e.

Ox
0 L .
where 2 denotes the derivative in the ditribution sense.
x

(8) The distributional derivative ‘I’t 1s the unique fundamental solution of the linear

stochastic differential equation

dD (s,t) = by (s, &s, Us) @ (s, 6)ds + S ob (s,2s).® (s,t)dBI, s>t
1<j<d (3.13)

® (t,t) = Id,
where b, and o are versions of the almost everywhere derivatives of b and o7.

Remark 3.3. [t is proved in [21] that the image measure of P by the map T is
absolutely continuous with respect to the Lebesgue measure.

From now on, let us assume that the initial time s = 0 and initial state a of the

system are fixed. Define a metric on the space U of admissible controls
d(u,v)=P{(t,w) €[0,T] x Q:us(w) # v (w)}, (3.14)

where P is the product measure of the Lebesgue measure and P. Since A is closed, it can

be shown similarly to [50], that U [0,7] is a complete metric space under d.

3.2.1 The maximum principle for a Family of perturbed control problems
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Now, let ¢ be a non negative smooth function defined on R?, with support in the

unit ball such that / ¢ (y)dy = 1. For n € N” define the following smooth functions by

Rd
convolution
b tma—n/b ¢ (ny) dy,
X twa—n/f o (ny) dy,
oI (1, 2) = nf / o7 (6, — ) p (ny) dy.
]Rd
g" (z) = nd/g (z —y) ¢ (ny) dy.

R4

In the next Lemma we list some properties satisfied by these functions.

Lemma 3.4. (1) The functions b™ (t,x,a), o¥™ (t,x), f*(t,z,a), and g" (z) are
Borel measurable bounded functions and Lipschitz continuous with constant K in x.

(2) There exists a constant C positive independent of t, x and n such that for

every t in [0,T

|bn (t,l’, a) - b(t,x,a)| + ‘o-jm (t,l’) - U] (

IA
s1Q

z)
[f" (t,2,0) = f (t,z,0)| + 19" (z) — g (2))] g%

(3) The functions b" (t,z,a), f*(t,z,a), o?™ (t,x) and g" (x) are C®-functions

in z, and for all t in [0,T], we have

lim b7 (t,z,a) =by (t,x,a) dz-a.e.,

n—-+o0o

lim f"(t,z,a) = fy (t,z,a) dz-a.e.,

n—-4oo

lim ol" (t,z) = o’ (t,x) dz-a.e.,
n—-+oo

lim g7 () = gz (x) dz-a.e.

n—-4o0o
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(4) For every p>1 and R >0
lim // sup |b2 (t,z,a) — by (t,z,a)|P dzdt = 0,
n—oo a A
<o)

lim // sup|f (t,z,a) — fz (t,z,a)|P dedt = 0.

n—oo
x[0,7]

where B (0, R) denotes a ball in RY of radius R.
Proof. Statements (1), (2) and (3) are classical facts (see [53] for the proof).
(4) is proved as in [7]. =
Now, consider the process y;, t > 0, solution of the stochastic differential equation,

defined on the enlarged probability space <S~), ﬁ, (ﬁt> " ﬁ, Et) by
t=>

dy, = b" (t, UYt, ut) dt 4+ o™ (t, yt) dét,

(3.15)
Yo = &,
and define the cost functional
T
) = E | [ 1 G de " )] (3.16)
0

where b", o™, f™ and ¢" be the regularized functions of b, o, f and g.

The following result gives the estimates which relate the original control problem
with the perturbed ones.

Lemma 3.5. Let (x¢) and (y:) the solutions of (3.1) and (3.15) respectively,
corresponding to an admissible control u. Then there exists positive constants My and Mo
such that:

(1) E

sup |z — yé‘l2] < M. (en)?.
0<t<T

(2) 17" () — J (w)| < Moen, where e =
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Proof. This lemma follows from standard arguments from stochastic calculus and
lemma 3.4. ®

Let 4 be an optimal for the original control problem (3.1) and (3.2). Note that @
is not necessarily optimal for the perturbed control problem (3.15) and (3.16) . However, by
Lemma 3.5 we obtain the existence of (d,,) = (2Ma.€, ), a sequence of positive real numbers
converging to 0 such that:

J™ (@) < inf J" (u) + Oy

uelU
That is 4 is d,-optimal for the perturbed control problem. According to Lemma 3.5 it is
easy to see that J™ (.) is continuous on U endowed with the metric d defined by (3.14) . By

2
the Ekeland principle for o with A\, = d;3, there is an admissible control «™ such that

and

J§ (u") < J§ (u), for any u € U,

where

TP () = J" (u) + 63 (u,u) .

This means that " is an optimal for the perturbed system (3.15) with a new cost function
J§'. Denote by z™ the unique solution of (3.15) corresponding to ", and let ®" (s,t) (s > t),

be the fundamental solution of the linear equation

do™ (s,t) = b (s, 2", u?) . ®" (s, t)dt + 5 ob" (s,2").®" (s,t)dBY,
1<j<d (3.17)

o (t,¢) = Id.
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Remark 3.6. Since u™ is optimal for Jg', and the functions b", o", f" and g"

are smooth, we can use the spike variation technique to derive a maximum principle for u™.
Proposition 3.7. For each integer n, there exists an admissible control u™ and a

(ﬁt> -adapted process q;' given by

T

G =5 / ST (5,1) 7 (5,27, ul) ds + BT (T,8) g («3) /Fo |,
t

(3.18)
and a Lebesgue null set N such that for t € N°

E[Hn (t7x?7u?7q?)] > E[Hn (t7x?707q?)] -0

Sl

Y

for every A-valued Fi-measurable random variable v, where the Hamiltonian H™ is defined

by

H" (t,x,u,p) = p.b" (t,x,u) — f" (t, z,u). (3.19)

Where ®™* denotes the transpose of the matrixz ®™.

Proof. Let ¢ty € [0,7] and v a A-valued Fi-measurable random variable. For any

e > 0, define u! € U by
t € [to,to +¢l,

t €10, 7]\ [to, to + €.
The fact that

and

imlpy that

1
Jh(ul) = J" (u") > =3 €.
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However, according to Lemma 3.5 the data defining the perturbed control problem (3.15),

(3.16) are differentiable, therefore the map ¢ — J" (u?) is differentiable at ¢ = 0, and that

)

dJ" (ug)

~ ~ 1
D o= B(H (107w qf)] — B H™ (1,27, 0,07)) + 03 2 0,

for every A-valued Fi-measurable random variable v. ®

Remark 3.8. This inequality can be proved for every mear optimal control ug,
using the stability of the state equation and adjoint process with respect to the control variable
(see Zhou [123]).

Let @™ (s,t) (s > t) the d x d-matriz valued process, satisfying the following linear

equation

A" (s,t) = b (5,27, 05) .®" (s, £)dt + S ob™ (s,27).®" (s,t) dBY,
1<j<d (3.20)

where T} is the unique solution of (3.15) corresponding to the optimal control G

Ay = 0" (t, 27, 0g) dt + o™ (t,27) dBy,

(3.21)
Ty = a.
Corollary 3.9. there exists an (ﬁt> -adapted process satisfying
T
ppi=—F /cp"’T (5,8) . fo (5,27, 005) ds + DT (T,t) .9z (27) /Fy | (3.22)
¢
and a Lebesgue null set N such that, for t € N€,
~ ~ 1
EH" (¢, 2,1, pi')] =2 E[H" (, 2, v,p;')] — 0, (3.23)

for every A-valued Fi-measurable random variable v.
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3.2.2 Passing to the Limit

Our aim is no

w to give a maximum principle of diffusion processes with Lipschitz

coefficients (problem (3.9) and (3.10)). To pass to the Limit in (3.24) and (3.25). We will

use Egorov and Portmanteau-Alexandrov Theorems, we will use also the notion of extension

of the initial filtered probability space, defined by Bouleau and Hirsch.

Lemma 3.10. We have

lim E | sup |®" (s,t)—q>(s,t)2] =0, (3.24)
n—+00 s<t<T

lim E | sup |p?—pt|2] =0, (3.25)
n—+00 0<t<T

lim E[|H" (t, &7, g, pl) — H (t, &, 0, p;)|] = 0, (3.26)
n—-+o0o

where ®, p; and H are determined by the fundamental solution (3.11), the adjoint process

(3.9) and the associated Hamiltonian (3.12), corresponding to the optimal pair (Z,4). @},

py and H™ are determined by the fundamental solution (3.20), the adjoint process (3.22)

and the associated Hamiltonian (3.19), corresponding to the approximating sequence Iy,

given by (3.21).

Proof. In vie

w of the Burkholder, Schwartz inequalities and the Gronwall Lemma,

we have
E sup ’(I)n (Sat) _(I)(Sat)’2 <
t<s<T
1 1
. 2 . T 2
ME | sup |®" (s,t)* E | [ b2 (8,0, 1) — by (¢, &, 1) |* dt
t<s<T 0

+ Y E

1<j<d

0

Jlod™ (t,a0) —op (tag] dt| o,
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since the coefficients in the linear stochastic differential equation (3.21) are bounded, it is

casy to sce that E | sup |®" (s,t)|*| < +oo. To derive (3.24), it is sufficient to prove the

t<s<T
following
_[r
B | [ (b0 (t, &7, i) — by (t, 30, 0)[ dt| — 0 asn — +oo,
0
and
f‘O'J’ (t, &%) — o? | dt]%O asn — 4oo, j=1,2,......d.

Let us prove the first Limit. We have

Ir
B fuﬁ(aiaao-—m«afhaoﬁd4 <M+ I,
0
where
| T "
I = E | [sup |b} (t,2},a) — by (¢, 2}, a)|" dt| ,
0 acA
and
_[r
I3 = E | [ sup b, (t, 27, a) — by (£, 8, a)| " dt | ,
0 acA

Since the law of Z} is absolutely continuous with respect to the Lebesgue measure, let p} (y)

its density. Then

h—//m% (t,y,a) — by (3, @)|* o (1) dyd.
0 Rd
Let us show that, for all ¢ € [0, 7]

hm /sup|b (t,y,a) — by (t,y,a)[* o (y) dy = 0.

a€A

For each p > 0, E | sup |27

0<t<T

< 0o. Thus, lim P [ sup |&7|> R | = 0, then it is
R—+o00 0<t<T

enough to show that for every R > 0,

lim /sw%@%@ e (L y, @) o0 () dy = 0.

n—-400 aCA
B(0,R)
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According to Lemma 3.4

sup [V (t,y,a) — by (t,y,a)|* = 0 dy-a.e,
ac€A

at least for a subsequence. Then by Egorov’s Theorem, for every ¢ > 0, there exists a
measurable set F' with A (F') < 0, such that sup |b? (¢,y,a) — by (¢,y,a)| converges uniformly
acA

to 0 on the set F'°. Note that, since the Lebesgue measure is regular, F' may be chosen closed.

This implies that

lim [ sup b} (£,y,a) — b (t,y,a)|* o' (y) dy
n 7 acA

< lim | sup sup |b] (t,y,a) — by (tayaa)|4 = 0.
n \yeFcacA

Now, by using the boundness of the derivatives b?, b, by the Lipschitz constant M, we have

/supwg(t,y,a) o (6, a)tpf (y) dy

acA
F

_ B [sug 0 (1,57 @) — by (0,40 )| xgaper
ae

< 2M*P (2} € F).

Since (Z}') converges to &; in probability, then in distribution. Applying the Portmanteau-

Alexandrov Theorem, we obtain

lim [ sup |b? (t,y,a) — by (t,y,a)[* o} (y)dy < 2M*limsup P (2} € F)
n—+o00 acA
F

< 2M*P (& € F)

= 2M4/pt(y)dy<6.

F

where p, (y) denotes the density of Z; with respect to Lebesgue measure.



91

Now, since

/sup|bz<t,y,a> e (ty.a)|* o () dy

acA

B(0,R)

_ /sup\bz;(t,y,a) o (b, a)* o7 () dy

acA

F

+/su3\bz<t,y,a> o (1,9, )[* 7 (9) d,
ae

FC

we get lim 17 = 0.
n—-—+o00

Let k > 0 be a fixed integer, then it holds that I < C (JF + J§ + J§) , where

4
by (t?:%?v ’llt) - b’;: (t?igv at)} dt] )

NF
1
tm
O—N o—|HN o—|~N

k k !
bar: <t7 :%?7 at) - bar: (t7 it? ﬁt)‘ dt ’

4
VE (t, &y, t1y) — by (L, 21, ﬂt)‘ dt] .

Applying the same argements used in the first limit (Egorov and Portmanteau-

Alexandrov Theorems), we obtain that lim JF = 0. We use the continuity of b* in

n=-+oo
and the convergence in probability of #% to @7 to deduce that b% (¢, #},4;) converges to
bk (t,4¢,74) in probability as n — oo, and to infer by using the Dominated convergence
Theorem that ngmm J2 = 0. Since b%, b, are bounded by the Lipschitz constant and by
using the absolute continuity of the law of &; with respect to the Lebesgue measure, the
convergence of b¥ to b, and the Dominated convergence Theorem, we get lim J3 =0.

n—-4o0o

Next, let use prove the limit (3.25) . Clearly

E o} —pi] < C1 (o} + ),
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where
T

ot =E / (O (5,8) f7 (5,87 its) — DT (,2) fo (5,85, 1)) | ds
t

and

of = B [|0"T (T,1) g2 (#F) — O (1) .90 ()]

Since f; is bounded by the Lipschitz constant M, and applying the Schwartz inequality, we

obtain for all n € N

1 1
2 . T 2
sup [@"7 (s,0)ds|'| .E [/ rf;L(s,f?,as)—fx<s,aes,as>r4ds]
t<s<T 0

o) < CE

+CM.E

sup ‘@”’T (s,t) — D (s, t)|2]
t<s<T

sup }@”’T (s,t) ds|4
t<s<T

It is easy to see that E < 400. Applying the same arguments used

in the first Limit (Egorov and Portmanteau - Alexandrov Theorems) it holds that

1
2

T
lim E [/ |f2 (8,87, 1) — fo (5,2, t1s)|* ds] =0.
n—-+00 0
On the other hand, since g, is bounded by the Lipschitz constant, and applying the Schwartz
inequality we get
JER 1
= 2 = A~ ~ 2
oy < c{E[lonT @ o'} {E Iz @) - g0 20))'] }
+OM.E [\@”T (T,t) — &7 (T, t)ﬂ ,

where M is a positive constant.

Let k£ > 0 be a fixed integer, then it holds that

]|

9k (37) — ga (i‘T)H :

N k/a
9z (&) — g (27)

B[los @) - ga '] < B|

+E[
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The law of &7 is absolutely continuous with respect to the Lebesgue measure, let p7. (y)
it is density, and by the same fashion (by applying Egorov and Portmanteau - Alexandrov
Theorems), we get

g () — gt )| o () dy = 0.

lim B {gz (&2) — g (&)

n—-+00

4
]: lim

n—-+00

We use the continuity of g¥ in 2 and the convergence in probability of 27 to T to deduce
that g% (2%) converges to g¥ (Zr) in probability as n — oo, and to infer by using the

Dominated convergence Theorem that

lim E[

n—-+4o0o

sk @) - ok )| =0

Since
k 4
9z (Y) — 9z (y)’ pr (y) dy,

d

g*, g, are bounded by the Lipschitz constant, and g¥ converges to g, da-a.e, we conclude

gs (&7) — ga (@T)H = /Rd

by the Dominated convergence Theorem that

lim E[

n—-+o0o

9% (@r) — g (i'T))4:| = 0.

Finally, by using Burkholder-Davis-Gundy inequality, we obtain (3.25).

Now, let use prove that

lim EHH” (ta‘%?aﬂtap?) - H(t,i't,ﬂt,pt)” =0.

n—-+o0o

Applying the Schwartz inequality we get

1

L 1
B{IH" (t,a} s, p}) — H (t, 30, 10,00 < {E lpp = el )7 { B " (827, 20) |
1

1 ~ 1 -
+{BW (t,a7,a0) — b @)} B} + B @000 - f (b b))
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Lemma 3.4 and (3.25) imply that the first expression in the right hand side converges to 0

as n — 00. Since

E’fn(t7j?7at)_f(tufi;tuat” < E|f”(t,ﬁl,ﬁt)—fn(tafft,ﬂt)!

+E |fn (t7;%t7ﬂt) - f (t,.’i?t,’llt” )

f™ being continuous and bounded, Z}' converges uniformly in probability to ¢, we conclude

by the Dominated convergence Theorem that

lim E |fn (t,.’j??,at) - fn (t,.’j?t,'llt” = 0.

n—-+4o0o

Using Lemma 3.5 and the Dominated convergence Theorem to conclude that

lim E |f™ (t, ¢, 0e) — f (£, ¢, 1) | = 0.

n—-+00
The convergence of the second term in the right hand side can be performed in a similar
way. W

Proof of Theorem 3.1.. Use the Corollary 3.9 and the Lamma 3.10. m
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Chapter 4

The SMP for singular optimal
control of diffusions with non

smooth coefficients

Our aim in this Chapter is to extend the stochastic maximum principle in singular
optimal control to the case where the coefficients b, o, f and g are Lipschitz continuous in
x, we prove that the analogue of the section 6 of chapter 2 holds, provided that the classical
derivatives are replaced by the generalized one. We approximate the initial control problem
by smooth ones, and we apply Ekeland’s principle to derive the associated adjoint processes
and use Krylov’s inequality to prove the convergence in the uniformly elliptic case. In the
degenerate case, we use techniques of Bouleau-Hirsch on the differentiability of the solution
of an SDE with Lipschitz coefficients with respect to initial data, in the distribution sense,

and we use Egorov and Portmanteau-Alexandrov Theorems to prove the convergence of the
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derivatives.

4.1 Assumption

Let (2, F, F}, P) be a filtered probability space satisfying the usual conditions, on
which a d-dimensional Brownian motion (B;) is defined with the filtration (F}). Let T be
a strictly positive real number, A; is a non empty subset of R and Ay = ([0,00))™. Uy
is the class of measurable, adapted processes u : [0,7] x Q — Aj, and Us is the class of
measurable, adapted processes ¢ : [0,T] x Q — As.

Definition 4.1. An admissible control is a pair (u,&) of Ay X Ag-valued, mea-
surable Fi-adapted processes, such that w is absolutely continuous, and & is of bounded
variation, non decreasing left-continuous with right limits and £y, = 0.

We denote by U = U; x Uy the set of all admissible controls. For (u,&) € U,

suppose the state xz; = xﬁ“’ﬁ) € R? is described by the equation

dr; =0 (t, Tt, ut) dt +o (t, l’t) dB; + thgt, for t € [0, T] R ( )
4.1

i) = Q,
Since d¢, may be singular with respect to Lebesgue measure dt, we call £ our singular
control. and the process u is our absolutely continuous control. Suppose we are given a

cost functional J (u,§) of the form

T T

J(u,§)=F /f (t, ¢, ug) dt + /ktd§t +g(zp) |, (4.2)

0 0

Where b: [0,T]xR¥x A; — R 7 :[0,T]xR? — RI@R?, f:[0,T] xRIx A; — R,

g:RT =R, G:[0,T] - R'@R™, and k : [0,T] — ([0,00))™ . Satisfy the following: b, o,
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f and g are Borel measurable and bounded functions and there exist M > 0, such that for

all (t,z,y,a) in RT x RY x R? x A;

b(t,z,a) =b(t,y,a)| + o (t,2) =0 (t,y)| < M|z -y, (4.3)
If (tz,a) = [ 6y, a)l +1g () =g (y)] < M|z —yl, (4.4)
b(t,x,a) and f (t,x,a) are continuous in a uniformly in (¢, ), (4.5)
Je > 0,Y¢ € RLY (¢, 2) € [0,T] x R, o (t,2) o* (t,2) ¢ > |, (4.6)
and
G, k are continuous and bounded. (4.7)

Find (4,€) € U such that

J(,&) = (ungl)irelUJ(u,é),

any (@, €) satisfying the above is called an optimal control of problem (4.1), (4.2), the
corresponding state process & is called an optimal state process, and @ (resp é) is called
absolutely continuous (resp singular) optimal control.

Under the above hypothesise, the SDE (4.1) has a unique strong solution x; and

the cost is a well defined from U into R. Such that for any p > 0,

E | sup |z’ | < +oo.

0<t<T

Since b, 07 (the j"* column of the matrix o), f and g are Lipschitz continuous
functions in the state variable they are differentiable almost everywhere in the sense of

Lebesgue measure (Rademacher Theorem). Let us denote by b, 0., fr and g, any Borel
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measurable functions such that
0:b(t,x,a) = by (t,x,a) dz-a.e.,
O f (t,z,a) = fy(t,z,a) dx-a.e.,
Ogo (t,x) = o4 (t,z) dz-ae.,
09 (x) = gz () dz-a.e.

It is clear that these almost everywhere derivatives are bounded by the Lipschitz

constant M. Finally, assume that b, (¢, z,a) and f, (¢,x,a) are continuous in a uniformly in

(t,z)

4.2 The non degenerate case

4.2.1 The main result

The main result of this section is stated in the following Theorem.
Theorem 4.2. (Stochastic maximum principle) Let (a, é) be an optimal control
for the controlled system (4.1), (4.2) and let & be the corresponding optimal trajectory.

Then there exists a measurable Fi-adapted process p; satisfying
T

pi=F /@T (5,8) .fu (5, &5, 1s) ds + ®T (T, 1) .g. (27) /Fy | , (4.8)
t

such that for all a € Ay and n € Us
0 < H(t,Z¢,a,pt) — H (t, T4, Uy, pr) dt-ae, P-as., (4.9)

and

ogE/OT (k:t+GtTpt)d(n—é>t (4.10)
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where the Hamiltonian H associated to the control problem is
H(t,z,u,p) = pb(t,z,u) + f (t,z,u), (4.11)

and @ (s,t), (s > t) is the fundamental solution of the linear equation

A (s,1) = by (s, &, 1s) . @ (s, 8)ds + 3 oh (s, &) . (s,t) dB,
1<j<d (4.12)

O (t,t) = Id.

Theorem 4 Here T denotes the transpose.

4.2.2 Proof of the main result

Let us recall Krylov’s inequality for diffusion processes which will be used in the
sequel.

Theorem 4.3. (Krylov [17]) Let (2, F, F;, P) be a filtered probability space,
(Bt)¢>0 a d-dimensional Brownian motion, b : 2 xR} — R o : QxR — RY@R? bounded

adapted processes such that: 3¢ > 0, V¢ € RY, ¥ (t,2) € [0,T] x R, (*oo*¢ > ¢|¢|?. Let

t

t
xt—x—i—/b(t,w)dt—l—/a(t,w)dBt,
0

0

be an Itd process. Then for every Borel function f : Ry x R — R with support in

[0,T] x B(0,M), the following inequality holds

/|@xﬂﬁ <K / / f(t,z) | deda :

0 B(0,M)

where K is a constant and B (0, M) is the ball of center 0 and radius M.
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To apply Ekeland’s variational principle in the non degenerate case, we have to

endow the set of controls with an appropriate metric. For any (u, &), (v,n) € U, we set

dy (u,v) = P@dt{(w,t) € A x [0,T],v(w,t) #u(w,t)}, (4.13)
d2 (&) = (E sup €, — 77t’2]> ’ (4.14)
0<t<T

d((u, &), (v,n)) = di (u,v) +da (&) (4.15)

where P ® dt is the product measure of P with the Lebesgue measure dt.

Lemma 4.4.

Lemma 5 (1) (U,d) is a complete metric space.

(2) The cost functional J is continuous from U into R.

Proof. (1) It is clear that (Us,ds) is a complete metric space. Moreover, it was
shown in [50] that (U1, d;) is a complete metric space. Hence (U, d) is a complete metric
space.

Item (2) is proved as in [93][123]. =

Necessary conditions for a family of perturbed control problems

For n € N*| let us consider the sequence of perturbed control problems obtained by
replacing b, o, f and g by 0™, ¢, f™ and ¢g". Let us denote y the solution of the controlled

stochastic differential equation.

dyy = 0" (t,ys, ut) dt + 0" (t,ys) dBy + Grd&y,
(4.16)

Yo = &,
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The corresponding cost is given by

T T
I (u,€) = E / P (g ) dt + / kede, + 9" (yr) | (4.17)
0 0

Lemma 4.5. Let (u,§) € U, z; and y; the solutions of (4.1) and (4.16) respectively

corresponding to the control (u,§), then we have

Lemma 6 (1) E| sup |x; — yt\2] < M. (en)z, where €, = —.
0<t<T n

(2) |J" (u, &) — J (u,§)| < Ms.€p.

Proof. Since z; —y; and J" (u, &) — J (u, ) does not depend on the singular part,

then This lemma follows from standard arguments from stochastic calculus and lemma 3.4.

Let us suppose that (11, é) € U is an optimal control for the initial control problem
(4.1) and (4.2) . Note that (@, é) is not necessarily optimal for the perturbed control problem

(4.16) and (4.17). However, by Lemma 4.5 we obtain the existence of (d,,) = (2Ms.€,,) a

sequence of positive real numbers converging to 0, such that

n [~ ¢ < n '
J (u,g) < (v’171]1)f€UJ (v,m) +dp

The control (ﬁ, 5 ) will be d,-optimal for the perturbed control problem. According
to Lemma 4.4, it is easy to see that J" (.,.) is continuous on U = U; x Uy endowed with
the metric d = dj + dg defined by (4.15). By the Ekeland principle (lemma 3.4) for (ﬂ, é)

2
with A\, = ;. There is an admissible control (u", &™) such that

a((a.€), wem) <ai,
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and

J§ (u", &) < J§ (v,m), for a general control (v,n) € U,

where

T2 (0,m) = J" (,m) + 3. (v, ) , (u", €M)

This means that (u™,£") is an optimal control for the perturbed system (4.16) with

a new cost function Jg'. The controlled process " is then defined as the unique solution to

the stochastic differential equation,

dx} =b" (t,xp,u}) dt + o™ (t,x}) dBy + GdE},

(4.18)
Yo = &,

We consider ®" (s,t) (s >t), the fundamental solution of the linear stochastic

differential equation

dd" (s,t) = b (5,2, u?) D" (s, t)ds + S o™ (s,27).9" (s,t) dBI,
1<j<d

(4.19)
" (¢, 1) = Id.

Note that b7, o (5 =

Ty YT

1,..,d) are respectively the matrices of first order partial

derivatives of b", 0™/ (j = 1,..,d) with respect to .

Proposition 4.6. For each integer n, there exists an admissible control (u",£")

and a (F})-adapted process p}' given by

T
o= / ST (s5,0) f7 (.27 ) ds + T (T,8) 7 (o) /F |
t

(4.20)
and a Lebesgue null set N such that for t € N¢

1
E[H™ (t,2},v,p}") — H" (t, 27, u}, p)] > —05. M, (4.21)
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and
T

1
E/ (ke + GEp)) d(n—€"), > —03 . Mo. (4.22)
0
for all v € A;, and n € Us, where the Hamiltonian H" is defined by

H" (t,z,u,p) = p.b" (t,x,u) + f* (t,z,u). (4.23)

Here 7 denotes the transpose.
Proof. According to the optimality of (u™, &™) for the perturbed system with the
cost function Jg', we can use the spike variation method to derive a maximum principle for

(u™, ). Let ty € [0,T], v € A; and n € Us, for any € > 0, define the two perturbations

(u, &) and (uf!, &) by

ne om (v, &7) t € [to,to +¢l,
(up ", &F) =
(uy, &) t € [0, 7]\ [to, to + €]

and

(uf', &) = (u, & +e(n, — &)

Since (uy, ;') is optimal for the cost J§', then
0 < J5 (w", &) = J§ (uf!, &)

and

0 < 7 (up, €)= I} (uf', €)
this imply that

0 < ™ (u]F,€0) — I (ul €7 + Oy (u, ),
and

i n
0<J" (uf, &) = J" (uf', &) + 03 .da (6, §)
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using the definitions of d; and ds it holds that

0 < J™ (uf®, €0 — J* (ul, €0) + 63.Me, (4.24)
and

0 < J™ (P, €)= J™ (ul, €7 + 63 Mae. (4.25)

Where M; (i =1,2) is a positive constant. From inequalities (4.24) and (4.25)
respectively we use the same method as in section 5 in chapter 2 to obtain respectively
(4.21) and (4.22). m

We use a transformation that makes it possible to apply Krylov’s estimate for
diffusion processes. Define the dynamics b : [0, 7] x R?x A} — R?, p" [0, T]xR4x A; — RE
7:00,7] xR = R @ R? and 7" : [0,T] x RY — R?®@ R?, by

B t
b(t,z,a) =b (t,x + stdfs,a> ,
0
o ¢
b (t,z,a)=0b" (t,:c—i—stdfs,a> ,
0
t
T(t,z)=0 (t,a:+std§s> ,
0
t
" (t,x) =0o" (t,gg + std£s> .
0
Let z the unique solution of

dzi =b (t, 2ty Ut) dt + (t, 2t) dBy,

(4.26)
20 = Q.
This implies that z; = z; + fg Gsd€, solves the SDE (4.1) with data (b,0).
Similary, let z" the unique solution of
dzl = 0" (t, 21, ug) dt + 3" (t, 2)") dBy,
(4.27)

n __
zZp = Q.



105

Then z}' = 2{' + ff) Gsd€, solves the SDE (4.16) with data (b™,0"™).

Note that, b, Bn,Ej , and " (j = 1,...,d) are measurable bounded functions and
Lipschitz continuous with constant M in x, we conclude that the generalized derivatives (in
the distribution sense) Bx,BZ,E?,;, and 75" (j =1,...,d) are well defined.

Lemma 4.7. We have

lim E | sup |z} — i:t|2] =0 (4.28)
n—-+oo _OStST

lim E | sup |®"(s,t)— @ (s, t)\gl =0 (4.29)
n—-+o0o _tSSST

lim E | sup [p} — pt]2] =0 (4.30)
notee o<t<T

lim B ™ (b, ' o) — H (1 0, s po)] = 0. (431)
n—-+400

Where @, p; and H are determined by the fundamental solution (4.12), the adjoint
process (4.8) and the associated Hamiltonian (4.11), corresponding to the optimal state
process ;. ®F, pi’ and H™ are determined by the fundamental solution (4.19), the adjoint
process (4.20) and the associated Hamiltonian (4.23), corresponding to the approximating
sequence zy, given by (4.18).

In what follows, C represents a generic constant, which can be different from line
to line.

Proof. By squaring and take expectation, we get

E [ysz _ @tﬂ <C <A7f FAD AT M. (d2 (gn,g))2> ,
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where M is a positive constant, and
B[ o) = (52 ) gy (5) 5]

b7 (s, 27, Gig) — b (s, &, 1is)|? + |07 (5,27) — o (s,i‘s)lzds] :

|bn (57‘%57@5) - b(S,:i‘s,ﬂs)|2 + |0_n (sai‘S) -0 (5’j8)|2ds:| .

83
Il
|
O~ O~ O—

By using the boundness of the coefficient b and the fact that dy (u,4) — 0 as

n — +o0, we have lim A} = 0. Since b" and o™ are Lipschitz in the state variable, then
n—oo

¢
A3 <CE {fa:? —ﬁ:SZdS] :
0
Finally, we conclude from the Lemma 3.2 that lir_ir_l A% = 0. Then by using
n—-roo

Burkholder-Davis-Gundy inequality and the Gronwall Lemma, we obtain (4.28).

Again, using standard arguments based on Burkholder-Davis-Gundy, Schwartz

inequalities and the Gronwall Lemma, we easily check that

E sup |(I)n (Sat)_q)(*s?t”?] <
t<s<T
1 1
2 T 2
CE | sup |®" (s,t)[* E | [2 (8, 2, ult) — by (t, ¢, )| * dt
t<s<T 0

+ Y B

1<j<d

[ et (taf) — ol (L] dt| ¢,
0

since the coefficients in the linear stochastic differential equation (4.19) are bounded it is

sup |®" (s,1)[*| < +o0. To obtain the desired result it is sufficient to

s<t<T

easy to see that F

prove that

N

lim E

n—-+o0o

f |b2 (t7$?7u?) - bx (taiﬁt, '[Lt)|4 dt] = O,
0

N

lim F

n—-+o0o

[loi™ ¢, 2) = o, (t,fct)\“dt] =0, forj=1,..d,
0
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T
we have, E | [0 (t, 2, u}t) — by (t, &1, 0e)|*dt| < C (IP 4 I3) , where
0
5 4
I? = FE {‘bg (tw%'?v u?) - bg (t7$?a ut)‘ X{ur#a} (t) de|,
= 4
Ig = K f‘bg (t,x?,fet) - bg (t,iﬁt,’llt)’ dt| .
0

First, in view of the boundness of the derivative b} by the Lipschitz constant and

the fact that dy (u",4) — 0 as n — +o0, we obtain lim I = 0. Next, Let k£ > 1 be a fixed

n—-+o00

integer, we then get

lim I} < th’ {J'+ J3 + J3'},

n—-4o00
where
o 4
To= B\ J e o) — b )| |
0
o 4
Jén = F f bi(t,m?,ﬂt)_bl;(tai‘taat)} dt 3
0
[T 4
Jg’ = F f bl;;(t,i?t,'&t)_bx (t,i’t,at)‘ dt .
0

Now, let z (resp z™) denotes the unique solution of the SDE (4.26) (resp (4.27))

~

corresponding to (ﬁ, f) (resp (u™,£")), then it holds that

T, 7k 4
J{L:E f bm(t7zfaat)_bw(t’zf7at)‘ di ’
0
and
T 4
Jp = (t, 3¢, 1) — by (taﬁtvﬂt)‘ dt|
0

The following argument is taken as in [83] page 87, let w (t,z) be a continuous
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function such that w (t,x) = 0 if 2 + 22 > 1, and w (0,0) = 1. Then for M > 0, we have
T ~
_ t Zt
T o
T t Zt

Therefore without loss of generality, we may suppose that for all n € N*, the

-n —k 4
0 (6 - B 05 ) ]

xz

. T — 7N
functions by, 7, b,,

and o7 have compact support in [0,7] x B (0, M) . Since the diffusion
matrix o" satisfies the non degeneracy condition with the same constant as o, then by

applying Krylov’s inequality, we obtain

T T t ét
hmJl S CE 1—w M’ M dt
n 0

+Clim BZ (t,z,a) — 5’; (t,x,a)

n

sup

‘4
acAq

d+1,M
. . . . Tn 7
Since b7 converges to b, dx-a.e., it is simple to see that b, converges to b, dz-a.e.
and

b (t,x,a) — 5]; (t,z,a) = 0.

d+1,M

lim
n

sup

‘4
a€A;

Next, let M goes to +00, then from the properties of the function w (¢, z) we have

limJ? = 0. Istimating J§ similarily, it holds that limJ} = 0. We use the continuity of
n n

b* in 2. From (4.28), and by using the Dominated convergence theorem we deduce that

EJ; = 0. Hence lirf I = 0. Using the same technique, we prove that
n n—-+0oo

lim F

x
n—-+4o0o

T ) )

/ |Ug:7n (t,zy) — o} (tae'i't)‘4dt] =0, for j=1,...,d.

0

Now, let us prove that 1113 E {sup0<t<T |py — pt\Q] = 0. Clearly,
n—-+o00 ==

E [l —nl] < C (o7 +0p), (4.32)
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where

T
of = E | [ 007 (s,0).£2 syl outd) = 87 (5,0).fs 500 )] s |
t

and

n n n n ol 2
of = E||0"T (T,1) g7 (a) — O (T,1) .9, (ir)|”]
Since f, is bounded by the Lipschitz constant M, and applying the Schwartz

inequality, we get
1
2

sup }@"’T (s, t)’4

af < CE
t<s<T

.
B [ [ Gt - 1 <s,rzs,as>|4ds]
0

+CM.E | sup |7 (s,t) — &7 (s,t)f].

t<s<T

Hence, by the continuity and the boundness of derivatives f7, f., relations (4.28),
(4.29) and the fact that dy (u™, %) — 0 as n — 0o, together with the Krylov’s inequality and
the Dominated convergence theorem, for the term involving f7 (s,z2,u}) — fz (S, Ts,Us),
we get by sending n to infinity lim of = 0.
n—-—+00
On the other hand, since g, is bounded by the Lipschitz constant, and applying

the Schwartz inequality we get

1
2

N|=

i < e ol {8 b - o]}

+CM.E [\@”77’ (T,t) — T (T, t)ﬂ :
Since, g7 and g, are bounded by the Lipschitz constant and g converges to ¢,

we conclude by (4.28) and the dominated convergence theorem that

lim E ||g% (%) - g. (27)[*] = 0.

n—-+00

From (4.32), then by using Burkholder-Davis-Gundy inequality, we obtain (4.30) .
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The Schwartz inequality, gives

1

2

1
E[H" (t.aful,pf) = H (43,00 < { B} =} { B 0" (¢ u) P
1 1
+{ B @ ar ) = b (e a)l ) { B} + B @) — f (a0
Lemma 4.5 and (4.30) imply that the first expression in the right hand side con-
verges to 0 as n — +o0.

Next,

B o™ (¢, 2}, ull) — b (t, &, )| < C (87 + 85 + B3,
where

gt = B[ () - b (b i) vy (8]

gy = E \b"(t,m?,ﬂt)—bn(tai‘t,@t)ﬂa

By = E \b"(t,:et,ﬁt)—b(t,i‘t,ﬁt)ﬂ-

The boundness of b" and the fact that d; (u”,u) — 0, guarantee the convergence
n—oo
of 1 to 0 as n — +o0. By virtue of (3.21), and the dominated convergence theorem we
get, lim A% = 0. In view of the Lemma 3.2, we have lim g5 = 0.
n—-+00 n—-—+o0o
The term E |f™ (¢t,x}, uy) — f (t, &, U¢)| can be treated by the same technique. m

Proof of Theorem 3.1. Let n goes to 400, then from Proposition 3.7 and Lemma

3.8, we get

E[H (t,Z¢,v,pt) — H (t, T4, U, pr)] > 0, dt-a.e., P-as.,

v
o

T
E{(kt + Gip)d (77 - é)t

for every Aj-valued Fi-measurable random variable v, and n € Us.
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Let a € Ay, then for every A; € Fy
E [(H (t, &, a,pr) — H (t, Ty, Uy, pr)) XAt] >0, dt-a.e., P-as.,

which implies that

E[(H (ta j757a7pt) - H(ta‘%taﬁtapt))/Ft] Z 0

Since H (t,Z¢,a,pr) — H (t, &, Uy, pt) is Fi-measurable, then the first variational

inequality without expectation follows immediately.

4.3 The Degenerate case

In this section we drop the uniform ellipticity condition on the diffusion matrix.
It is clear that the method used earlier will no longer be valid. Now, the idea is based on
a result by Bouleau and Hirsch [8] on absolute continuity of probability measures, and the
differentiability of the solution of an SDE with Lipschitz coefficients with respect to initial
data in the sense of distributions on an extension of the initial probability space.

Let Q = R% x Q, and F the Borel o-field over Q and P = hdz ® P. Let By (z,w) =
By (w) and F} the natural filtration of B, augmented with ﬁ—negligible sets of F. It is clear
that (ﬁ, F , (E)tzo , 13, §t> is a Brownian motion. We introduce the process Z; defined on

the enlarged space <§, F , (ﬁt> . ﬁ, Et) solution of the stochastic differential equation
t>

dz;=b (t, T, ’lNLt) dt +o (t, .’i‘t) dét + thg't, for t € [0, T] ,
(4.33)
Tro = Q,

associated to the control (ﬂt,ét> (x,w) = (ug, &) (w) . Since the coefficients are Lipschitz

continuous and bounded, equations (4.1) has a unique Fy-adapted solution. Equations (2.1),
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and (4.1) are almost the same except that uniqueness of the solution of (4.1) is slightly
weaker, one can easily prove that the uniqueness implies that for each t > 0, Ty = x4,

P-a.s.

4.3.1 The main result

The main result of this section is stated in the following Theorem.
Theorem 4.8. (Stochastic maximum principle) Let (4, é) be an optimal control
for the controlled system (2.1), (2.2) and let & be the corresponding optimal trajectory.

Then there exists a measurable Fi-adapted process p; satisfying

T

Pt = E /(I)* (S:t)-f:r (37-%57715) ds + ®* (Tat) -Gz (:%T)/ﬁt ’ (4'34)
t

such that for all a« € A; and n € Us
0 < H (t,Z¢,a,pt) — H (t, T4, U, p) dit-ace, ]S—a.s., (4.35)
and
~ T A~
0<E [ (et Gimd(n-8), (4:36)
0

where the Hamiltonian H is defined by
H(t7 x’ u7p) :p'b (t7 '7;7 u) +f(t7 x? u) ) (4'37)

and @ (s,t), (s > t) is the fundamental solution of the linear equation

dD, = by (5,25, 0) . @ (s, 8)ds+ 3 0% (s,&5).® (s, 1) dBL,
1<j<d (4.38)

O (t,t) = Id.

Theorem 7 Here * denotes the transpose.
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4.3.2 Proof of the main result

Let Z; = 24 — fg God€, the unique solution of the SDE

dgt = B (t, gt, ut) dt +0 (t, Et) dét,
(4.39)

zZo0 = Q.

on the enlarged space <§~2, ﬁ, <E)t20 , ]3, §t>, where b and @ are defined in sebsection 3.2.
Theorem 4.9. (The Bouleau-Hirsch flow property) For P-almost every w
(1) For all t > 0, % is in D%
(2) There exists a Fi-adapted GLg (R)-valued continuous process (E)t)tzo such
that for every t > 0
0

— (2 (w)) = D, (,w) dz-a.e.,

Oox
0 o o
where 2 denotes the derivative in the ditribution sense.
x
(3) The distributional derivative ®, is the unique fundamental solution of the linear

stochastic differential equation

d® (s5,t) = by (s, Zs, Gis) @ (s,t)ds + 5 0% (s,2,).® (s,t)dBI, s> 1,
1<j<d (4.40)

O (t,t) = Id,

where b, and E{« are versions of the almost everywhere derivatives of b and il
(4) The image measure of P by the map Z; is absolutely continuous with respect

to the Lebesgue measure.
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The maximum principle for a Family of perturbed control problems

Now, consider the process y;, t > 0, solution of the system valued in R, defined

on the enlarged probability space <£~2, F , (ﬁt) o’ ]5, Et) by
t>

dye = 0" (t,yp, ug) dt + 0™ (t,y;) dBy + Gydéy,

(4.41)
Yo = @,
and define the cost functional
T T
) =B | [ £ e+ [ e+ g )| (1.42)
0 0

where 0", ¢”, f™ and ¢" be the regularized functions of b, o, f and g.

The following result gives the estimates which relate the original control problem
with the perturbed ones.

Lemma 4.10. Let (z;) and (y;) the solutions of (2.1) and (4.9) respectively,
corresponding to an admissible control (u, ). Then

(1) E sup |xy — yt]2] < M. (en)2 )

0<t<T

(2) 17" (0,8) = T (0, &) < Mo, where e, = =

Where M7 and My are positive constants.

Let (a,é) be an optimal control for the initial problem (2.1) and (2.2). Note
that (a,é) is not necessarily optimal for the perturbed control problem (4.9) and (4.10),
however, according to Lemma 4.3, there exists (6,,) = (2Ms.€,,) a sequence of positive real

numbers converging to 0, such that

JH6,€) < inf  J"(v,n) + b,
(v,n)eU
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The functional J" defined by (4.10) being continuous on U = U; x U with respect

to the topology induced by the metric d' ((u,&), (v,n)) = dy (u,v) +d5 (&,n), for all (u,§),

(v,m) € U, where

d} (u,v) :]5®dt{(w,t) e x[0,T],v(w,t) #u(w,t)},

3
2
sup |§t_77t| ]) ’
0<t<T

. 2
Then by applying Ekeland principle to J™ for (ﬂ, f) with A\, = 63, there exists an

dy (&) = <E

admissible control (u",£") such that

J5 (u",€") < J5' (v,m),  forany (v,n) €U,
and (u™,£") is an optimal control for the perturbed system (4.9) with a new cost function
n n 3 U n n
Js' (v,n) = J" (v,m) + 6i.d ((v,n), (u", "))

Denote by z™ the unique solution of (4.9) corresponding to (u",&")

dap = b" (t,ap, uf) di + o™ (t,27) dB; + Gidey,
(4.43)

n __
zTH = «,

The controlled process z' = x} — Gd€} is then defined as the solution to the

stochastic differential equation

dzP =" (t, 2", ul) dt + " (t, 21") dB;,
(4.44)

2y = a.

where b" and " are defined in sebsection 3.2. Let ®" (s,t) (s >t), be the fundamental
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solution of the linear equation

dd™ (s,t) = b (s, 27, ul) @ (s,t)ds + 3 ob™ (s,27).®" (s,t) dB,
1<j<d (4.45)

o" (t,t) = Id.
Proposition 4.11. For each integer n, there exists an admissible control (u",£")

and a (ﬁt)—adapted process p;’ given by

T

p=E / O™ (5,0).f1 (5,2l ul) ds + ™ (T,0) g2 (o) /Fe |, (4.46)
t

and a Lebesgue null set N such that for t € N¢

- 1
E[H" (t,zy,v,pf) — H" (t,x},uy,py)] > =65 .M, (4.47)
and
T
- 1
B [ (ke + i) d(n - €7), = ~53.Ma, (4.48)

t
for all v € Ay, and n € Us, where the Hamiltonian H" is defined by

H" (t,z,u,p) = p.b" (t,x,u) + " (t,z,u). (4.49)

Here * denotes the transpose.
By the same method as in the sebsection 3.2, we are able to derive the proof.

Lemma 4.12. We have

lim E | sup |zl — 2| =0, (4.50)
n—+0o0 0<t<T

lim E | sup |®" (s,t)@(s,t)F] =0, (4.51)
n—-+00 s<t<T
lim E | sup [p} —pt|2] =0, (4.52)
n—+00 0<t<T

lim E[|H" (t,aul,p}) — H (t, &, 0, pt)|] = 0. (4.53)
n—-+o0o
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Where &, p, and H are determined by (4.6), (4.2), and (4.5), corresponding
to the optimal solution Z;. ®}, pj’ and H" are determined by (4.13), (4.14) and (4.17),
corresponding to the approximating sequence z}, given by (4.11).

In the sequel, we denote by C a positive constant which may vary from line to line.

Proof. The limit (4.18) is proved by the same fashion as the limit (3.21).

In view of the Burkholder, Schwartz inequalities and the Gronwall Lemma, we

obtain
E | sup |®"(s,t) — @ (s,0)]°| <
t<s<T
1 1

_ 2 T 2

CE | sup |®" (s,t)[* E | [ b2 (t, 27, 0¢) — by (t, &4, G)[* dt
t<s<T 0

+ X E|[|oh(ta}) — ol (t,40)| dt ,

1<5<d 0

since the coefficients in the linear stochastic differential equation (4.13) are bounded, it is

casy to sce that E | sup |®" (s,t)|*

t<s<T

< +o00. To derive (4.19), it is sufficient to prove the

following two assertions

T
f by (L, ', 1) — by (t,ft,@t)|4 dt] —0 as n — +0oo,
0

E

and

T

E J ‘Ufc’" (t,zl) — o? (t,:ﬁt)‘4dt] —0 as n — +oo, for j=1,2,.....,d.
0

Let us prove the first Limit. We have

T
f |b; (tv SC;L, u?) - b:c (t7 ‘%t7 ﬂt)’4 dt
0

E <O 413 +13),
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where
_|r 4
I{L = F f |b2 (t,:c?,u?) - bg (t,.ﬁ?,%&” X{un#a} (t) dt|
0
_[r
I%’L = FE f|b2 (t7$?7at) - bfL" (t,l‘?,fbt)ﬁ dt ’
0
[T
Igb = F f |bm (t,:l??,ﬁt) — bm (t,i?t;ﬂt)|4 dt ’
0

In view of the boundness of the derivative b by the Lipschitz constant and the

fact that dj (u™,4) — 0 as n — +o00, we obtain hm 17 = 0.
n—-+00

Indeed, we have

_ 4
o< fsup " (20 a )—bx(t,zf,a)‘ dt|
0 a€A;
T _ 4
= [ J sup [B (ty.0) = B (8, 0)| of (y) et
0 daEAl

where zJ" denotes the unique solution of the SDE (3.20), corresponding to (u",¢™), and

pr (y) its density with respect to the Lebesgue measure. Let us show

-n - 4 n
bx (t7 Y, CL) - ba: (t7 Y, (1)‘ Pt (y) dydt = 0.

lim sup
n—4o0o acAq
d

sup |2;'["
0<t<T

For each p > 0, E < +00. Thus, hm P ( sup |z}"| > R> =0, then

00 0<t<T

it is enough to show that for every R > 0,

. _ 7.
bx (ta Y, CL) — by (ta Y, a)‘ Pt (y) dy =0.

lim sup
n—-+4o0o a€A;
B(0,R)

According to Lemma 3.2, it is easy to see that

_ 4
sup BZ <t7 Y, a’) - ba: (tv Y, a)‘
a€A;
T 4
= sup |b) (t y+fth£t, ) — b, (t,y—I—fthgf,a) — 0 dy-a.e,
a€A; 0
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at least for a subsequence. Then by Egorov’s Theorem, for every § > 0, there exists a mea-

surable set F with A (F) < 8, such that sup |b, (t,3,a) — by (t,y,a)| converges uniformly to
acAq

0 on the set F'°. Note that, since the Lebesgue measure is regular, F' may be chosen closed.

This implies that

lim sup EZ (t7 Y, (I) - BCE (tv Y, a’) p? (y) dy

)4
n—+o0 ) 4eA,;

_ _ 4
< lim (Sup sup b:: (t,y,a) — by (t,y7a)’ ) =0.

n—+00 \ yeFeacA,

Now, by using the boundness of the derivatives BZ, b, we have

/ sup
a€A;
F

= E |: sup
acAq

by

" (t9.) ~ B (,0)|| () dy

n n 7 sn 4
bx (ta 2t >a) — by (t’ Zt ’a)‘ X{":'?GF}]

< 2M*P(8P € F).

In view of the relation (4.18), it is easy to see that z}" = z}' — ff) Gsd€, converges
to 2 = & — [ 6 GSGZES in probability, then in distribution. Applying the Portmanteau-
Alexandrov Theorem, we obtain

. _ 4 -
by (t,y,a) = by (t,y,a)| pf (y)dy < 2M*limsup P (2] € F)

lim/ sup
n a€A;
F

< 2M*P (3, € F)

= 2M4/pt(y)dy<8-
F

where p; (y) denotes the density of 2; with respect to Lebesgue measure.
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Now, since

. _ 4
/ sup [B (v, ) ~ B, (t.9.0)[| pf (v)dy
acA;
B(0,R)
n _ 4
= /Sup by (t,y,a) — by (t,y,a)} ot (y) dy
a€A;
F
n _ 4
+/ Su}f bCE (tvyua) - ba: (t7y7a)‘ pt (y) dya
acAq
FC

we get lim I3 =0.
n—-+400

Let k > 0 be a fixed integer, then it holds that I§ < C (JF + JE 4 J¥) , where

k — k 4
JE = B\ [ by (t, 27, ) — b (t,x?,at)‘ dt|

k k 4
BE (¢, 2, ig) — bF (t,:@t,at)( dt|

Nrl
I
sl
O —HN o‘—|HN o“—|H~

4
VY (¢, 2, ) — by (t,fct,ﬂt)‘ dt] .

Applying the same arguments used in the first limit (Egorov and Portmanteau-

Alexandrov Theorems), we obtain that lir}rl Jf = 0. We use the continuity of b¥ in =
n—-0oo

and the convergence in probability of % to &7 to deduce that b% (¢,z},4;) converges to

b'; (t, 24, Uy) in probability as n — +oo, and to infer by using the Dominated convergence

Theorem that lim J§ = 0.

n—-+o0o

_[r
E | [ sup
0 a€A;

T
= / / sup
acA;
0

El;, b, are bounded, by using the convergence of Ei to by, and by using the Dominated

k 7k s 7 2 4
J3 = bx (ta 2t a) - er (t7 2t a’)‘ dt

4
e (6y,a) = o (by,a)| py (y) dydt

convergence Theorem, we get lim J?{“ =0. m
n—-+0o

Proof of Theorem 4.1. Use the Corollary 4.5 and the Lamma 4.6.
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Chapter 5

On the relationship between the
SMP and DPP in singular optimal

controls and its applications

This chapter investigates the relationship between the maximum principle and
dynamic programming for stochastic optimal control problems where the state X; at time
t of the system is governed by a stochastic differential equation with nonlinear coefficients
and a nonconvex state domain, allowing both regular control and singular control. We prove
that under appropriate differentiability assumptions on the coefficients of the state equation
and the gain functional , the solution of the adjoint equation of such problems coincides
with the derivatives of the value function. We study the case where the value function is
sufficiently smooth, generalizing the classical cases. For this situation a verification theorem

is proved and an example is given.
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Lemma 5.1. (The sufficients conditions of optimality) Let (u*,£*) be an admissi-
ble control, we denote X* the associated controlled state process. Suppose there exists a so-
lution (p, q) to the corresponding BSDFE (2.11) . If we assume that (x,u) — H (¢, x,u, pt, qt) ,

and x — g (z) are concave functions, for all ¢t € [0,7] for all v € Ay, and & € Us

H(t, X[, u;,pt,q) = sup H (t, X[, v,pt,q), dt-a.e., P-as., (5.1)
vEA;
T
E [ {0 +6T On}dE-¢), (5.2)
0

then (u*, &) is an optimal control.

Let (u,&) be an arbitrary admissible pair, and consider

f t Xt ’ut f(t7Xt7ut) dt]

k@) d(E =) 0)| + Elg(X7) —g(X7)].  (5.3)

o—H~

Since g is concave, we get

Elg(X;) - g(Xr)] > B[(Xf-Xn)" Vg(x7)]

- EB|(x7 —XT>TpT] ,

[T
- E|f(X Tdps| + E fptd Xt)]
| 0
T T
+E | [tr{(o(t.X) — o (t. X)) i}t |-
0
With
T T T
E|[(X; Ydp| = E|[(X ) (=VH, (6, X}l par)) dt
0 0
T T
+E | [ (X} = Xt)" qdBy|,
0
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and
T T
E fptd(X;—Xt)] - E fpt(b(t,Xt*,u;‘)—b(t,Xt,ut))Tdt]
0 0
T
+E | [pi(o(t, X)) —o(t, X:)" dB;
0
T
+E {GT(t)ptd(é—é*)t]-

On the other hand, the process

/ {ps (0 (5, X5) — o (5, X)) + (X7 — X,)T qs} dB,
0

is a continuous local martingale for all 0 < ¢ < T, According to (2.9), and the fact that
(p,q) € L*([0,T];R"™) x L*([0,T];R™ %), together with the Burkholder-Davis-Gundy in-

equality, we deduce that

t
E/sup
0<r<s
0

Thus, the process

pr (o (r, X7) = o (r, X)) + (X7 = X)" g,

ds| < 0.

[ {pto X0 — o 5. X)T 4 (X7 - X7 0.} B,
0

inded a martingale have zero expectation. By the concavity of the Hamiltonian H, we get

Elg(X7)—9(Xr)] > —E|[(H(t, X}, ui,pe,q:) — H (t, Xg,ue, pt, qr)) dt]

+E | [pe (b, X uf) — b (¢, Xy, up)) ' dt]

VE | [tr {(a (t, X7) — o (t, X;))" qt} dt]

O—N oOo*—H oY/}~ o—|HN

+E

GT (t)ped (& - f*)t] :
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By the definition of the Hamiltonian H and (2.15), we obtain
J (u*v 5*) —J (U, 5) > 07

then (u*,£*) is an optimal control for the problem (2.8).

5.1 Relation to dynamic programming

The other major approach for studying singular stochastic control problems is the
Bellman dynamic programming principle, a result about this approach can be found in [17],
whoe considered the n-dimensional cas. By the compactification method, it was shown that,
the value function is continuous and is the unique viscosity solution of the HJB variational
inequality (3.2). An advantage of this approach is that it does not require any regularity of
the value function, and thus needs only very mild hypothesis on the data. Let X5 be the
solution of the controlled SDE (2.1) for s > ¢, with initial value X; = z, and we define the

gain function

T

J (€)= E / F (5, Xy us) ds + / K (s)de () + g (X,)]| . (5.4)

t

We have to impose differentiabilty conditions on the coefficients b, o, f, and g, as
in section 2. Now, since our objective is to maximize this gain function, the value function

of our singular control problem is defined as

V(t,x) = sup J(u,§). (5.5)
(u,§)el

for an initial state (¢, ), we say that (u*,£") is an optimal control if V' (¢,z) = J (u*,£¥).
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If we do not apply any singular control, then the infinitesimal generator A%, as-
sociated with (2.1), acting on functions ¢, coincides on C? (R™;R) with partial differential

operator A" given by

u B “ Oy 1 & 0%
A (m)—i;bz (@, u) 5 - (t’xH?i;a” (t:2) e (00

where a;; (t,2) = (O'O'T)ij (t, z) denotes the generic term of the symmetric matrix oo? (¢,z).

The variational inequality associated to the singular control problem is
max {Sule (t,:v, W, 0;W, D,W, D*W, u) yHo (t,x, D,W,u),l =1, ..,m} =0, (5.6)
u
for (t,x) € S, with Hy, and Hs are given by

W
H, (t,:Jc, W, 0;W, D,W, D*W, u) = 867 (t,x) + AW (t,z) + f (t,z,u),
"\ oW

Hy (t, 2, D,W,u) = Z; For

(t,z) Gy (t) + ki (1)
D, W and D2W represent respectively, the gradient and the Hessian matrix of W. The
bondary data satisfying

W (r,z)=g(x), (r,z) € 0S. (5.7)

We start with the definition of classical solutions of the variational inequality (3.2) .

Definition 5.2. Let us consider a function W € C*2(S) N C (S), and define

C(W) = {(t,x) ES:ZZ{Z‘Z (t,:c)Gu(tHk,(t)} <o}

i=1 [=1

We say that W is a classical solution of (3.2) if

8;1/ (t,2) + sup {A"IW (£, 2) + f (t,2,u)} = 0, (t,2) € C (W), (5.8)
uelU
"L oW
> oy (L) Ga () + ki (1) <0, forall (t,2) € S,1=1,..,m, (5.9)
=1 Ot
oW

s (t,z) + AW (t,z) + f (t,z,u) <0, for every (t,z,u) € SxU. (5.10)
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The following verification Theorem is very similar to Theorem 6.1. in [8]. We drop
here the convexity condition for the state domain, and we show that the classical solution to
the variational inequality (3.2) with the boundary condition (3.3) coincides with the value
function. To this end we first show that W (¢, x) majorizes the gain functional J (u,§) for
any control (u,§), and if (u*,£*) is an optimal control then W (t,x) = J (u*,£"). Let us

denote for [ =1,..,m,

C, = {(t,x)ESiaaI;V (t,a:)Gil (t)—i—kl (t) <0}, (5.11)
i=1 v

D, = {(t,m)eS:Z?Z (t,x) Gy (t) + K (t)zo}. (5.12)
i=1 v

Theorem 5.3. Let W be a classical solution of (3.2), such that for some constants

k>1, M e (0,00), |W(ta) <M (1 + W) . Then, for all (t,z) € S, and (u,£) € U
W (t,z) > J (u,§).

Furthermore, if there exists (u*,£*) € A such that with probability 1

(t,X;) € C (W), Lebesgue almost every t < T, (5.13)
uf € argerzlax {A"W (t, X[)+ f(t, X[, u)}, (5.14)
u 1
i {Zn: ?;V (t, X7) Ga (t) + Ky (t)} déj (t) =0, (5.15)
=1 Li=1 "
W (LX) — W XD) = — S k() A (1) (5.16)
=1

For all jumping times ¢ of £* (¢) ., then

W(t,z) = J (u*,&).
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Let us define V (u,§) € U, (t,x) € S, and R > 0

TR:T%L’@:TARAinf{s>t:sup\Xs| >R},
S

TR N 8W
lim 7p = 7. Furthermore, [ > — (s,X;)0 (s, Xs)dBs is an It6 integral with finite
R—o0 t i=1 (%CZ
quadratic variation, so its expected value is zero. Thus, applying Itd6 formula and tak-

ing expectation, we get

EW (g, Xrp)] = W(tz)+E /{

+F Z {W(S,XSJr)_W(S?XS)}

By (3.6), and (3.7) we get

TR

Wi(t,z) > FE /f(s,XS,us)Jr/k(s)dfc(s)

t

—FE Z {W (s, Xot) =W (s, Xo)} | + EW (TR, X711,

1<s<TR
by the mean value theorem and (3.6), we have

m n

W (5, X0s) = W (5,0 = 3 3 50 (5,0 (5)) Gur (5) A ) < b (5) A ().

=1 i=1
where z (s) is some point on the straight line between X and X, hence

TR

W(tz)> E /f(s,Xs,us)+/k(s)d§(s)+W(TR,XTR) ,

from the dominated convergence Theorem, we so that

TR T

5 fﬂs,xs,um [rde| ~ E / (5. X + [ B(5)de ()
t t t

t
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by the left continuity of X and the continuity of W, we get

lim W(TR,X ) W(7'7X‘r) = Q(XT)’

R—o00

W (TR, Xrj) is uniformly integrable and the dominated convergence Theorem implies

lim F [W (TR7XTR)] =FE [g (XT)] ’

R—o0
hence W (t,z) > J (u,§) .
Now, apply the above argument to (u*,£*) € U, with 7}, = 7'5% <) Hence if

(3.10) — (3.13) hold, then by (3.4) and (3.5), we get
TR

/f 5 X% ) /k(s)dg* () + W (7 X3

t

Finally, using the same limiting procedure as above, we conclude that
W(t,z) =J(u*,£%).

The following result is a generalization to the classical case, [see, e.g., Theorem
4.1.in Chapter 5 of [24]], and a generalization to linear dynamics, convex cost criterion and
convex state constraints of Theorem 6.2. in [9]. Comparing with the stochastic maximum
principle, one would expect the solution (p,q) of the BSDE (2.11) to correspond to the
derivatives of the classical solution of (3.2) — (3.3).

Theorem 5.4. Let W be a classical solution of (3.2), with the boundary condition
(3.3) , suppose that W € C13 (S) , with all derivatives are continuous on S, and there exists
(u*,€*) € U such that the conditions (3.10) — (3.13) are satisfied. Then the solution of the

BSDE (2.11) is given by

(pta Qt) = (DIW (ta X:) aDg‘W (ta X:) o (ta Xt*)) )
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with the termial condition is given at the time T'= 7 by p, = D,g (X}).

By the above conditions, we may apply the [to’s rule for semimartingals to 8W (t, X7),
we obtain
Th n
gZ(TX )_ tXt /858xk (s, X7) d8+/z;8xkaxz (s, X)dX} (s)
i
1 " o OPW .
+2[m~z_1aij (s, X )m(s ,X2)ds
oW aW -
+t§s§r}}, {&Ek (o) 8:% Z am’“axl R )}

where the sum is taken over all jumping times s € (¢, 73] of £*, and

AX](s) = X[ (s+)—X](s),

= ZGzl VAL (s), fori=1,..,n

where A (s) =& (s+) — & (s) . Therefore

7_*

oW /. ., oW . O*W ) P*wW .
%(TR’XT*R)_TM;(t’Xt) /{asag_’;k SX +Zb SXS’ S 78$k8$ (8 XS)

t

1 — 0PW
- X -~ ~ 3 * .
+ 5 E a;j (s, X7) on010, (s, X7) p ds (5.17)

n 2 " 2
+/, OW (s x2)0 (s,X2) dB, +/Z (5, XD) Y. Gu ()48 (5)

+ 7(87X5+)_67$k(8?Xs)_ aLUkaLU'(s’XS)ZGil (S)Agl (8)}7
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it holds that

T% n 82W . . *R
/Z D110z, (s, X2) Gy (s)dEfC (s) = /Zamkamz s, X7) Gy (s) d&§ (s)
t L =

D3PI

=1 t<s<T

X3) G (s) AL (s)

xkﬁm

N /Z&Bkamz Xo) G (8) Lys. xp)epydéi° (s)

*
R on

" / Z 8.%']@8.%'1 Xo) G (8) s, xp)ecydéi” (s)

t

For every (t,x) € D;, we have by (3.8)

> OW 4 )Gt = 2 {Z OW (1 2) G () + o (t)} —0, forl=1,..m

1 8xk8xi aTk — awz
hence
Th n 8
/ Zaggkaxz $, X3) Gt (s) 1{(s,x3)ep,3 481" (5) = 0. (5.18)
t i=1 =1
" oW
Furthermore, for every (¢, z) € Cj, and [ = 1, .., m, we have Z 02,01 (t,z) Ga (t) <
i=1 kO
0, but the equation (3.12) implies that
> Lsxpecdsic(s) =0,
=1
hence
n m a
/ 1 ;axkaxz $, X3) Gir () (s, xp)eciydéi* (5) = 0, (5.19)
t 1= =

By the mean value theorem we have

T
O (s, X2) — 9 (s, X0) = D (aW) (5,2 (5)) AX?,
T

oxy, Oy,
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where z (s) is some point on the straight line between X} and X7, . To prove that the right

hand side above vanishes, it is enough to check that, if A&/ (s) > 0 then

; = f =1,..
gaxkaxz x(s)) Gy (s) =0, forl )

It is clear that

W (s, X2,) — W (s, X} +Zk, ) A& (s

= > {Z O (5. (5)) G (5) + I <s>} A (5).

=1 (=1

by (3.13) the laste term vanishes. A&} (s) > 0 then (s,z (s)) € Dy, for [ = 1,..,m. According

0 (3.9), we obtain

n

hence

> {aW (s, X3)) - (;Z (SvX;‘)} = 0. (5.20)

ox
t<s<th k

On the other hand, define

At,z,u) = (t,z +Zb t,x,u) W(t x)

2
+ Zalj (t, callll (t,z) + f(t,z,u).

x)
0x;0x;
If we differentiate A (¢, z,u) with respect to xj, and evaluate the result at (z,u) =

(X7, uy) we get by (3.4),(3.10), and (3.11)

X @ ’X*’ £ a A ?X* o 17 7X* a  a o 7X>|<
oo L ;b o Oz 0 S 2 ijz_laj (& X) 0x1,0x;0x; (&%)
= — ~t LX) 2 (LX) — = ij b xSV e
;azk(a tvut) 8$Z(a t) 2@]2: axk(v t)amiﬁa:j(’ t)
g (0 X0) (5.21)

Bxk
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Finally, substituting (3.15),(3.16),(3.17) and (3.18) into (3.14) which simplifies

to

4(Ge X»)——{ o0 X ) S (0, X0)

aazy * 82 af S
+35 Z 8&718 (t Xt) 83’5k (t7Xt7ut)}dt

7‘7_

W
+>——— (t, X)) o (t,X]) dB;. (5.22)

ow
By the continuity of . on S, and by the left continuity of X, we get
Tk

oW oW dg
— (1, X)) = lim — (75, X5 | = =— (X}).
83:k (T7 T) Rgr;o a.’L'k (TR7 TR) (9.’1)]6 ( 7')

for each k =1, .., n. Clearly,

Ob; . L OW L obT . . .
8 (¢, X7 up) - — O (t, X[) = 783:1{ (t, X', uy) DWW (¢, X)),
and
1 i 8@@' oW 2W
3 LX) 5= —(6X)) = i (X}
2 =1 8$k ( ’ t) 01'@81:] ( ’ t) le (ZJ hJJh) ) 83318:13] ( t)

8UT * 2 * *
= tr| =—tX)D;W (t, X[ )o(t, X]) ).
oz,
Then (3.19) given by the form

d(ZZV (t, Xt)> _—{gf (t, X7, ul) DW (8, X7)
of

80’T * * * *uk
+ tr (a.’]’}k (t,Xt)D?CW“?Xt)O—(taXt )) + 87.’13]6 (t’Xt’ut)}dt

+288W (t, X}) oy (t, X)) dBy, (5.23)

with the terminal condition

ow

dg
aT:k (77 T)

=L (x7).
90y X7



133

Now, from (3.8) we note that

OH obT ool of
a—xk (t,z,u,p,q) = a—% (t,z,u)p+tr (3mk (t,:c)q) + a—xk (t,z,u),

and define p¥ the kth coordinate of the column vector p; by

oOH

dp? = _87 (t,X;,U?,pt,Qt) dt+Qdet7 for t € [O7T]7
k
99
T = — (X7 )

with qdet: > qfthth, for k = 1,..,n. Hence, by the uniqueness of the solution to (2.9)
1<h<d

and (3.20), we obtain

Py :T(th:)’

and

n

O2W

kh * *
—E — (t, X))o (1, X

qt i19k9i<’ t) h( t)

qfh the khth element of ¢, for k = 1,..,n, and h = 1,..,d. In particular, note that (p, ¢)

represents

(DWW (t,X7), D2W (t,X}) o (£, X}))

where X is the optimal solution of the controlled SDE (2.1) .

5.2 Application to finance
Suppose the wealth X; at time ¢ corresponding to initial capital x > 0 is governed
by the linear stochastic differential equation

dXt = /,LXtdt + O'XtdBt — df (t) s for t € [0, T] s
(5.24)
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This problem can be regarded as a special case of the portfolio selection with
transaction costs problem’s in the case of a single push direction [see, e.g., Davis and
Norman]. We concider here, the situation where an investor only invests in a risky stock of
constants rate of return p and volatility o and he may consume continuously and costlessly

from the wealth. The objective of the investor is to maximize the functional

J(E) = E / X dt 4 / et ()] | (5.25)
0 0

with v € (0,1), p,0,0,0 > 0 are given constants. (1 —~) is the relative risk aversion of
the consumer, £ (¢) is an increasing adapted cadlag process satisfying P {|§ (T < oo} =1
with &, = 0, representing the total transaction taken out up to time ¢. ¢ is called admissible
strategy for given initial capital x if the solution of (4.1) satisfies Xy = x, we denote by
IT (x) the class of such pairs for . We want to find the optimal strategy £* (.) € II (x) which
maximizes the expected total discounted utility of the . This is an example of a singular
stochastic control problem. It is called singular because the investment control measure
d¢ (t) is allowed to be singular with respect to Lebesgue measure dt. Other applications of
the singular control problems with jump diffusions in finance are developed in the recent
textbook [22].

We illustrate a verification result for the maximum principle, in this case the

Hamiltonian gets the form
H(t,X,c,p,q) = uXip + 0 Xpqr + e 01X (5.26)

Let £ € U be a candidate for an optimal control, and let X™* be the corresponding
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wealth process with corresponding solution (p*, ¢*) of the adjoint equation

dpf = — (up,’f +oq + e*‘;t*yX]_l) dt + qfdBy, forte0,7),

(5.27)
pr at time T,
with the transversality condition
Epr.(X:—-X;)] <0. (5.28)
Here, the conditions (2.14) and (), gets the form, with probability 1
—pif+e %<0, forall t € [0,7], (5.29)
]‘{—p:+e*5t<0}d€r =0. (5.30)

Explicit solution of the adjoint equation (4.4) satisfies the conditions (), (), and (),
is a difficult problem, then we use the relation between the value function and the solutions
(p*, ¢*) of the adjoint equation given on the optimal state to solve the problem. Further,

for any ¢ define

¢(t,x) = sup J(E).

Eell(t,z)

Note that, the definition of II (¢,x) is similar to II(x), except that the starting
time is £, and the wealth at t is x.

The generator of time-space process if £ = 0 is

0P 1 0?®
t,x) + pr——> (t, ) + ~0%a® ——
X

0P
Ad (t,x) = — 5 92

(t,2),

C= {(t,:(:) : —a—i (t,z) +e % < 0} . (5.31)
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If we guess C has the form C = {(¢,x) : 0 < x < b} for some barrier point b > 0,

then by (3.10) — (3.12) the equation (3.4) gets the form,

d P 1 20
% (t,x) + MUC% (t,z) + 502362—Zx2 (t,z) +e %2 =0, for 0 <z < b, (5.32)
and
d
—g—x (t,z) +e % =0,for x > b. (5.33)

The linearity of the wealth dynamics with respect to the state and control processes,
together with the form of the utility function enables us to represent the solution ® in a
separable form, to this end, We try a solution ® of the form ® (t,z) = e W (z), then
A (t,z) = e %AW () where ¥ remains to be determined. In terms of ¥ the equation

(4.7) has following form

1
=0V (z) + pa¥’ (z) + 5021:2\11” (z) + 27 =0.

We now choose ¥ () = C1z™ +Cyz" + K7, where C1, Cy are arbitrary constants,

and r; < 0 < ro, are the solution of the equation

1
§a2r2+ur—5:0,

R 1 o ’ 2

and the constant K € R, is given by

are given by

1

K=— :
20°72 + (0= 30%) 7 =0

Outside C we require that —V’ (z) +1 =0, or ¥ (z) = 2+ M, M is a constant to
be determined. Hence we put

O (t,z) ={
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e O (Cra™ + Cox™ + K2Y) for 0 <z < b,

=0t (2 + M) for z > b. (5.1)we put C; = 0, assuming smooth

fit’s principle at point b, we obtain a system of equations for unknowns Cy, M and b. ®
continuous at x = b then

Cob™ + KbT = b+ M, (5.35)

® continuously differentiable at = b, then
Coreb™ ™t + Kbt =1, (5.36)
® twice continuously differentiable at © = b, then

Corg (1o — 1) b2 2+ Ky (y —1) 5772 = 0.

Then, we get
M = Cob™ + Kb — b, (5.37)
the barrier point is given by
1
Ky(1-9) ) e
b= ———-———" , 5.38
<027“2 (7"2 — 1) ( )
and
1 — Kypr—!
Co=——"—7
2 Tgbm_l ’

v < 1,and ry > 1, then b > 0. Next, we look into the conditions (3.6) and (3.7) . Accordingly
we will study two different cases, the first when = > b, denote by F'(z) the function given
by

Pla) = A% (),

= —0(z+ M)+ px+a”7,
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which is a decreasing function in = on [b, +o0[, if § > p. So we need only to check that
F (b) <0, but this follows from the fact that A°¥ () < 0 for all z < b, and ¥ € C2. The

second case when 0 < x < b, then ¥ (z) = Kz7 4+ Cy2"™ and the condition (3.6) gets the

form
— (CQT2$T2_1 + Ky:n'y_l) +1<0.
Put G (z) = — (Coroz™ 1 + Kyz7 1) + 1, from (4.13), we get
G (b) = — (Corb™ ' + Kb 1) +1=0,
and

G'(b) =— (Cora (ra — 1) '+ Ky (y —1)577%) =0,
since v € (0,1), then —K~ (y — 1) and Cara (rg — 1) are a positive constants. Thus G’ (z) >
G’ (b) =0, for all z € ]0,b], then G is a increasing function, Thus we have established that
G(z)<G(b)=00n]0,b].

For construction of the optimal control £* (.), let us consider the stochastic integral

equation
t
X;:aco—i—/uX dS—i—/O‘X:st—f* (t), (5.39)
0
X/ <b, te]l0,T], (5.40)
t
/1{X;<b}df* (s)=0, tel0,T]. (5.41)
0

Here b is given by (4.15) . (4.23) — (4.25) define so-called Skorohod problem, whose
solution is a pair (X, £* (t)), where X} is a diffusion process reflected at b. The conditions
(3.10) — (3.13) claim the existence of an increasing process £* (t) such that X; stays in C

for all times t. If the initial size x < b, £* (¢) increases only when X} is at the point b so as
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to ensure X;° < b, on the other hand, if the initial size x > b then £* (0+) = x — b, that is
X¢ jumps to point b immediately and such that X, = b then evolves on as the case of X}
whith the initial point b. Such a singular control is called a local time at b. The existence
and uniqueness of such a local time is proved in [12]. The existence and uniqueness to the
solution of the Skorohod problem (4.23) — (4.25) is established in [21].

Note that, by construction of £*, or by construction of ® all the conditions of the
section 3 are satisfied and the value function is ¢ (t,z) = ® (¢, z).

Now we want to solve the constrainted adjoint equation (4.4), but in order to apply

Theorem 3.2., we first prove that, the solution of the adjoint equation is given by

(s ai) = (7 (Coma Xy~ 4 KX)o (Cara (ra = ) X777 4 Ky (7= 1) X771

(5.42)
to this end, we differentiate the process
At X,) = 0 (czrzxt*”—l + Kth*’Y‘l) , for t € 0,7, (5.43)
using [t6’s rule for semimartingals, we get
Kvye ' x7)7! = Kyxg ™
¢
—0s ) y—1 _ y—1 1 _ o 2 yvy—1
+ [ Kve X+ pu(y—-1)X] —|—2(’y 1) (y—2)o“X] ds
0
¢ ¢
—i—/Kfy (v — 1) oe X7 71dB, /K'y ) e " X7 2dEC ()
0 0
+ Y {Kve (X’Y L xo- 1)} (5.44)
0<s<t

where £ (s) = £ (s)— > A& (s) denote the continuous part of £ (s). Next, consider the case
0<s<t

when X, = X! = XSE*(S), for all times s between 0 and at those ¢t = t*, for which X}% = b. We
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merely note that ¢* is fixed because b is deterministic, in this case A (s, Xs) = K"ye*‘SSX;w_1

for s € [0,¢*], then we obtain
Kye 0" X, 071 = Kyx;7 !

t*
+/K76_58X;‘7_1 {—5 +p(y—1)+ E (y—1)(y—2) 0—2} ds
0

2
t* t*
—l—/K'y (v —1)oe X7 1dB, — /K’y (v — 1) e % X7 24dg° (s)
0 0
+ 3 {ge (x7 - x0 )}
0<s<t*

replacing by the value of the constant § we get, the integrant with respect to ds on the last

equality is given by

1
Kt x bk (- Dt o - (-2

= —Kye X1 {n+(y-1)0%}. (5.45)
Next, by the mean value theorem, we get
Kye ™ (X171 = X77Y) = Ky (v = 1) ey 2. AKX,

if AX¥ # 0, it is necessary that ys > b, then yd 2 < b2 since v € (0,1), then K~ (y — 1)

is a negative constant, hence by () we obtain
Ky(y=1)yl 22 Ky(y—1)b2 =0, (5.46)
on the other hand y:!*z > 0, then
Ky(y=1)y] % <0, (5.47)

hence by () and (), we obtain

Ky(y—1)yl?=0.
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Then

Kre™ (X571 = x07) =0 (5.48)

Now, the fact that 1;x+4d§™ (s) = 0, and by the same argument as above, we

conclude that

t* t*

/K’Y (y—1)oe " X772de* (s) = /K’Y (v = 1) e X 1 x; 54y dE™ (s)
0 0
t*

+ / K’Y (’}/ — 1) 676SX:7721{XZ<b}d£*C (S) .
0
_— (5.49)

By () it is possible to take a terminal condition for the adjoint equation (4.4) at
time 7 = t*, by pf = e .

Further, by substituting (4.19), (4.20), (4.21) and (4.22) into (4.18), together with
(). Then the uniqueness of adapted solutions (p*, ¢*) of the adjoint equation (4.4) implies

(4.16).

Note thate, by the regularity smooth fit condition, we can extend py, for t€ [t*,T]

)

by pr = e %", and with this choise all conditions of theorem are satisfied and the conditions

() and () are coincide with () and ().
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