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Abstract

Extreme Value Theory (EVT) originated, in 1928, in the work of Fisher and
Tippett describing the behavior of the maximum of independent and identically
distributed random variables. Various applications have been implemented suc-
cessfully in many fields such as: actuarial science, finance, economics, hydrology,
climatology, telecommunications and engineering sciences. In this thesis, we give
an overview on the extreme value theory and the different methods of estimation
of the tail index and the extreme quantiles.

This thesis contains two applications of the extreme value theory, in partic-
ulary when the extreme value index is positive, which corresponds to the class
of heavy-tailed distributions frequently used to model real data sets. The first
is an application in the actuarial domain, to estimate one of the most popular
risk measures, called the conditional tail expectation (CTE). The second con-
tribution is an important application in fields of industrial reliability, warranty
systems and telecominucations, to approximate the renewal function.
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Notations
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Introduction

0.1 Problem description

The topic of research in this doctoral dissertation is situated within the domain
of extreme value statistics. Here, in contrast to classical statistics, emphasis lies
on the modelling of extreme events, i.e. events with low frequency (rare events),
but mostly with high and often disastrous impact.

Statistics of extremes, help us “to learn from almost disastrous events”. Thus,
the domains of application of statistics of extremes are quite diversified. We
could mention the fields of hydrology (river discharges, floods,...), environmental
research and meteorology (air pollution, heavy rainfalls, windspeeds, storms,...),
geology (earthquake modeling, value of diamonds,...), (re)insurance (premium
calculations), finance (Value-at-Risk, conditional tail expectation,...), computer
science (network traffic data, server waiting times,...), structural engineering,
telecommunications and biostatistics, among others (see, for instance, Reiss and
Thomas, 2001; Beirlant et al., 2004 and Castillo et al., 2005). Although it
is possible to find some historical papers with applications related to extreme
events, the field dates back to Gumbel, in his papers from 1935, summarized in
his book (Gumbel, 1958).

Extreme value statistics deals with the estimation of quantities that are related
to the tail of a distribution, or equivalently, with the analysis of the largest
observations in a sample. Analysis of extreme values is firmly based on the
so-called extreme value distributions and their domains of attraction. These
distributions arise as the only possible limiting forms for the distributions of
maxima in samples of independent and identically distributed random variables.
Important topics in the field of extreme value statistics are the estimation of the
tail index, extreme quantiles or small tail probabilities.

However, extreme value statistics is based on the fact that under rather mild
conditions a class of functions can be considered to fit the distribution of the
largest observation in a sample. From this limit theorem, it can be seen that
the tail behavior of a distribution function can be completely characterized by a
single real-valued parameter v, called extreme value index or shape parameter.
Based on the sign of this parameter, the domain of attraction of the extreme

vi



0. Introduction vii

value distribution can be divided into three subclasses, namely Fréchet (y > 0),
Gumbel (v = 0) and Weibull (y < 0) classes. We will concentrate on the
case when the extreme value index is positive, corresponding to heavy-tailed or
Pareto-type distributions.

The analysis of heavy-tailed distributions requires special methods of estimation
because of their specific features:

e slower than the exponential decay (to zero).
e violation of Cramér’s condition.
e possible nonexistence of some moments.

e sparse observations at the tail domain.

For example, the central limit theorem, which states the convergence of sums
of iid rv’s to a Gaussian limit distribution, holds for a large variety of distrib-
utions provided that the variance of the summands is finite. If the variance is
infinite, then we get the so-called stable distributions as limit distributions of
the normalized sums (Lévy, 1925 and Khintchine and Lévy, 1936).

The statistical analysis of heavy-tailed distributions requires special methods
that differ from classical tools due to the sparse observations in the tail domain
of the distribution. For example, usually, quantiles can be estimated by means
of an empirical distribution function or weighted estimators based on sample
order statistics. However, high quantiles (e.g., of order 99% or 99.9%) cannot
be calculated in the usual way, since the empirical distribution function is equal
to 1 outside the range of the sample. Ignoring heavy tails in the data may lead
to serious distortions of the estimation and errors in system control. This thesis
focuses mainly on nonparametric and semiparametric methods of the statistical
analysis of univariate heavy-tailed iid. rv’s from samples of moderate sizes.

Traditionally, in EVT there are two main approaches with their own strength
and weakness.

The first one is based on modelling the maximum of a sample (or a few largest
values of a sample, called the upper order statistics) over a time period. This
approach is rigorously formulated by the Fisher-Tippett theorem going back to
1928, where the block maxima (i.e., a set of maximal values selected in the blocks
of data) are modelled by a generalized extreme value (GEV) distribution

M, (2) = exp {— (1 + <%)>+W} |

The second approach is based on modelling excess values of a sample over a
threshold within a time period. This approach is called Peaks Over Threshold
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(POT) method and has been suggested originally by hydrologists. In the POT
method the values which are larger than some thresholds are modelled by the
generalized Pareto distribution (GPD)

Gy () =1 — (1 + (t“) x):/v.

The connection between both approaches is made by Theorem 3.4.5 of Pickands-
Balkema-de Haan, presented in [50].

Statistics based on EVT has to use the largest (or smallest) values of a sample.
They can be selected in different ways and we assume that we have iid data.
The parameters in these two models (in particular the tail index o = 1/7) are
estimated from a sample, using semiparametric methods (e.g., Hill’s method) or
parametric methods (e.g., maximum likelihood).

For practical needs, it is more important to provide estimates of high quantiles for
heavy-tailed distributions. These quantities are applied to determine the values
of characteristics of observed objects that may lead to rare but large losses.
High quantiles indicate the VaRs in finance or the thresholds of parameters in
complex systems such as the Internet (e.g., the 99.9% quantile can provide the
maximal threshold for the file size) or atomic power stations. In this thesis, we
discuss some of the well known high quantile estimators.

The tail index is a key characteristic of heavy-tailed data. It shows the shape of
the tail of the distribution without making any assumption regarding the para-
metric of the whole distribution. All characteristics of heavy-tailed rv’s are based
on this crucial parameter. In this thesis, many well-known estimators of the tail
index such as Hill’s, Pickands’s, POT, moment, and kernel type estimators are
considered.

One of the most popular actuarial risk measures is the conditional tail expec-
tation (CTE) (see, e.g., Denuit et al., 2005), which is the average amount of
loss given that the loss exceeds a specified quantile. Hence, the CTE provides a
measure of the capital needed due to the exposure to the loss, and thus serves
as a risk measure. Not surprisingly, therefore, the CTE continues to receive
increased attention in the actuarial and financial literature, where we also find
numerous generalizations and extensions to the CTE (see, e.g., Landsman and
Valdez, 2003; Hardy and Wirch, 2004; Cai and Li, 2005; Manistre and Hancock,
2005; Furman and Landsman, 2006; Furman and Zitikis, 2008 and the references
therein).

For the purposes of warranty control, reliability analysis of technical systems,
and particularly of telecommunication networks, one often needs to estimate the
renewal function (RF). This function is equal to the mean number of arrivals
of the relevant events before a fixed time. Usually, measurement facilities count
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the events of interest, for example, the number of requested and transferred Web
pages, incoming or outgoing calls in consecutive time intervals of fixed length. To
estimate the RF, several realizations of the counting process (e.g., observations
of number of calls over several days) may be required, with further averaging
inside the corresponding time interval. However, it may be that the RF has to
be estimated using only one set of inter occurrence times of events. This applies
particularly to warranty control or when it would be too expensive to obtain
numerous observations of the process. Explicit forms of the RF are obtained
only for a few inter-arrival time distributions such as the uniform, exponential,
Erlang or normal (Asmussen, 1996). In this thesis, we are interested in the case
where the inter-arrival times of the process are heavy-tailed.

Finally, we mention that the examples presented throughout this thesis are
treated with the packages of the statistical software R, freely downloadable at
WwWw.r-project.cran.
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0.2 Disposition

In this thesis, we study extreme value statistics from the theoretical develop-
ment to its applications. This thesis gives a detailed survey of classical results
and recent developments in the theory of nonparametric estimation of the tail
distribution, tail index and high quantiles assuming the data come from iid. ran-
dom variables with heavy-tailed distributions. Both asymptotic results (such as
convergence rates of the estimates) and results for samples of moderate sizes are
supported by the EVIR package which is written in the software program R.

The thesis bundles two papers and is partitioned into four chapters.:

Paper 1: ESTIMATING THE CONDITIONAL TAIL EXPECTATION IN
THE CASE OF HEAVY-TAILED LOSSES.

Paper 2: POT-BASED ESTIMATION OF THE RENEWAL FUNCTION Of
INTER-OCCURRENCE TIMES Of HEAVY-TAILED RISKS

In Chapter 1 we give an overview of the definitions and basic properties of
probabilty theory, distribution of sum and limit central theorem, distribution of
maxima and Fisher-Tippet theorem, domain of attraction, classes of regulary
variation functions, GPD distribution and POT method, distributions of some
particular order statistic. We also study the caracteristics of the intermediate
order statistic and the second order condition of regular variation.

Chapter 2 is devoted to the study of different estimators of the extreme value
index. In the literature, a minimal requirement is that any estimator should be
consistent under the extreme value condition. It has been proved that for most
known estimators a more restrictive but natural condition (the second order con-
dition) leads to the asymptotic normality. Roughly speaking, the second order
condition specifies the speed of convergence in the extreme value condition, see
de Haan and Stadtmiiller (1996). Tail index estimation and methods of selection
of the number of largest order statistics in Hill’s estimator are presented, estima-
tors of the high quantiles, Weissman’s estimate to the true value of the quantile
is proved to be asymptotically normal. Finally, we present two estimators of the
location parameter in the heavy-tailed case.

Chapter 3 presents some definitions of common risk measures which provide the
general background for practical applications. We discuss some measures of risk
and study the different axioms relative to these measures. We present some exist-
ing estimates and we elaborate a new estimation method for the conditional tail
expectation function in the heavy-tailed case. We study the asymptotic behav-
ior of the new estimator and we construct confidence bounds of this estimator.
Finally illustrations and results of simulations are given with a comparison of
the empirical estimator.

Finally, Chapter 4 includes the renewal process, renewal equation and its lim-
iting theorems, in particular in cases where the second moment is infinite, this
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means that the inter arrival distribution are heavy-tailed with a shape parame-
ter less than one. We interpret our contribution to represent a semiparametric
estimation of the renewal function within infinite time intervals and infinite sec-
ond moment, asymptotic theoretical properties are considered with results of
simulation for this estimator.



Chapter 1

Introduction to Extreme Value

Theory

1.1 History

An historical survey on extreme value distributions can be found in Kotz &
Nadarajah (2000). The history goes back to 1709 and Nicolas Bernoulli dis-
cussing the mean of the largest distance among points lying at random on a
line. The notion of the distribution of the largest value is more modern and was
first introduced by von Bortkiewicz (1922). Fréchet (1927) identified one possi-
ble limit distribution for largest order statistics and, in the next year, Fisher &
Tippett (1928) showed that these distributions can only be of three types. von
Mises (1936) presented sufficient conditions for the convergence toward each of
these types and Gnedenko (1943) gave a rigorous foundation of extreme value
theory with necessary and sufficient conditions for weak convergence.

The late 1930s and 1940s were marked by a number of papers dealing with practi-
cal applications of extreme value theory, among which are Weibull (1939) study-
ing strength of materials and Gumbel with a large number of papers culminating
with his book, Gumbel (1958). As pointed out by Kotz & Nadarajah (2000), the
literature in extreme value analysis is now enormous and growing very quickly.
To the authors, “while this extensive literature serves as a testimony to the great
vitality and applicability of the extreme value distributions and processes, it also
unfortunately reflects on the lack of coordination between researchers and the

inevitable duplication of results appearing in a wide range of diverse publica-
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tions”. This lack of unification was already mentioned by Pickands (1971) where
the author links extreme value theory with the convergence of point processes.
Statistical inference is developed in Pickands (1975) which justifies the use of
the generalized Pareto distribution in threshold methods, commonly used by
hydrologists. In parallel, methods based on several largest order statistics were
proposed by Weissman (1978). These methods were developed afterward by sev-
eral contributors, see Davison & Smith (1990). Galambos’s (1978) monograph
is one of the first reference books specifically dedicated to statistical models and
treating also multivariate extremes.

It is followed by Leadbetter, Lindgren & Rootzén (1983), a key reference, in
which is formally presented extreme value theory for stationary sequences.
Below are presented some main concepts in extreme value theory and its appli-
cations. These concepts can be found in the numerous reference books available,
among which are Leadbetter et al. (1983), Tiago de Oliveira (1984), Resnick
(1987), Embrechts, Kliippelberg & Mikosch (1997), Kotz & Nadarajah (2000),
Reiss & Thomas (2001), Coles (2001), Finkenstiddt & Rootzén (2004), Beirlant
et al (2005) and de Haan & Ferreira (2006).

1.2 Extremal Events

Extremal events are also called "rare" events. Extremal events share three char-

acteristics:

1. relatively rareness,
2. huge impact,
3. statistical unexpectness.

From the name of it, extremal events are extreme cases, that is, the chance of
occurrence is very small. But over the last decades, we have observed several.
We list some recent events with a large impact in time order. Hurricane Andrew
(1992), Northridge earthquake (1994), terrorism attack (2001), disintegration of
space shuttle Columbia (2003), winter blizzard of the northeast (2003). If we
assume those events are in different fields and independent of each other, the

probability of the occurrence of each event is small. The terminology t—year
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event has been used by hydrologists to describe how frequent a certain event will
occur.

In general, suppose for every year, the probability of a certain event is p, where
p is relatively small. Given that the events of each year are independent of
each other, the number of the year when the event occurs follows a geometric
distribution with parameter p, and thus has an expectation of %.

On the other words, we say Hurricane Andrew is a 30—year event 1 means that
for every year the probability of having a hurricane which is more severe than
Hurricane Andrew is approximately %.

The enormous impact of catastrophic events on our society is deep and long. Not
only we need to investigate the causes of such events and develop plans to protect
against them, but also we will have to resolve the resulting huge financial loss.
Financial plans have been established for the reduction of the impact of extremal
events. For example, in the insurance industry of, the magnitude of property
casualty risk has become a major topic of research and discussion. Traditionally,
insurers buy reinsurance to hedge against catastrophic risk. For a catastrophic
event causing more than 5$ billion of insured losses, the overwhelming majority is
not covered by reinsurance. Table 1.1 lists 10 catastrophic events that caused the
largest losses in history of the United States. Since the population and fortune
grow at a relatively constant rate, we expect larger catastrophic events entering
the list in the future. The task of understanding and resolving the underlying

risk is still a big challenge for researchers.

year  Catastrophic Event  Estimated Losses (in billions)

1989 Hurricane Hugo 4.2
1992 Hurricane Andrew 15.5
1993 Midwest blizzard 1.8
1994 Northridge earthquake 12.5
1995 Hurricane Opal 2.1
1998 Hurricane Georges 3.0
1999 Hurricane Floyd 2.0
2001 St.Louis hailstorm 1.9
2001 Tropical Storm Allison 2.5
2001 Fire and explosion 20.3

Table 1.1: 10 Largest Catastrophe Events in US (Source: ISO’s PCS)
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1.3 Definitions and basic properties

We start with the common definitions in probability theory and inference statis-

tics.

Definition 1.1 The set (2, A, P) is called the probability space, where ) is the
space of elementary events, A is a c—algebra of subsets of ), and P is a proba-

bility measure on A.

Let (£2,.A) be some measurable space, (R, B(R)) be the real line with the
o—algebra B (R) of Borelian on R.

Definition 1.2 The real valued function X = X (w) defined on (2, A), is called
a random variable (rv), if for any B C B (R){w : X (w) € B} C A holds.

Definition 1.3 The function
Fx(z)=P{w: X (w) <z},z €R,

is called the distribution function (cdf) of the rv X, and survival function or tail

distribution is

Fx(x)zl—FX<ﬂ'J)

Definition 1.4 Let a nonnegative real-valued function f(t),t € R, exist such
that for all x € R,

Fe@ = [ s
and survival function is _:

Fx(x) = / f(t)dt.
The function f (t),t € R, is called the ;mbabilz'ty density function (pdf) of the
rv X.

Definition 1.5 The rv’s X1, Xs, ..., X,, with common cdf F(X; € B; C R, B;
is a finite set) are called independent identically distributed (iid) if, for any
Bi,Bs, ..., B, € B(R),

P(X,€By,...X, € B,) =P(X, € B)..P(X, € B,).

F(z1, 29, ...,x,) = F(x1)F(22)...F(z,).
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Definition 1.6 The empirical cdf (or sample cdf ) of the sample (X1, Xo, ..., X,)
is defined by

1 n
F(z) = - > lixi<ap T €R (1.1)
=1

Definition 1.7 (Order statistics) The order statistics pertaining to a sample
(X1, Xo, ..., Xy,) are the X!s arranged in non-decreasing order. They are denoted
by X150, Xon, oo, X and for k = 1,2,...,n, the rv X,_j11, ts called the k—th
upper order statistic. Order statistics satisfy X1, < Xo, < ... < X, . Thus

X1, =min (X, Xo, ..., X,) and X,,,, = max (X, X, ..., X,,) .

Definition 1.8 (L-statistics) For (ay,as,...a,) € R™, the statistic

Tn = ZaiXi,na (12)
i=1
1s called L-statistic. It is a linear combinations of order statistics.

L-statistics play a major role in non-parametric statistics by providing robust es-
timators for location and scale parameters.For convenience in the study of the as-
ymptotic behavior of T,,, the weights a; are usually defined as a; = (1/n)J(i/(n+
1)), where J is a real application on (0, 1).

The empirical cdf of the sample (X7, Xs, ..., X,,) is evaluated using order statistics

as follows:
O, T < Xl,n
F,(z) = Xy, << X, fori=1,2,...,n
L, T2 Xon

Definition 1.9 (Quantile and tail quantile functions) The quantile func-

tion of cdf F is the generalized inverse function of F' defined by
Q(s)=F"(s):=inf{z eR:F(z) >z},0<s<1. (1.3)

with the convention that the infimum of the empty set is oo. In the theory of
extremes, a function, denoted by U and (sometimes) called tail quantile function,

1s used quite often. It is defined by

U(t)=Q(l—1/t)= (1/F)" (t),1 <t < . (1.4)
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We shall see in this section, the function U plays a role in extreme value theory
comparable to the role of the characteristic function in the theory of the stable

distributions.

Definition 1.10 (Empirical quantile and tail quantile functions) The em-

pirical (or sample) quantile function of the sample (X1, Xa, ..., X,,) is defned by

Qn(s):=inf{r eR: F,(z) >s},0<s<1. (1.5)
Q,, may be expressed as a simple function of the order statistics pertaining to the
sample (X1, X, ..., X;,). Namely, we have

n—1 n—1i+1
Qn (s) == Xy_gs1,n for - <s< T+, i=1,2,...,n.

Note that for 0 < p <1, Xjyp+1,n 1 the sample quantile of order p.

Definition 1.11 (tail quantile process) Let X, < X3, <...< X, , be the
nth order statistics and k = k (n) satisfying k — oo, k/n — 0, asn — oo. We de-

fine the tail (empirical) quantile process to be the stochastic process {Xn_[ks] 7n}s>0.

Definition 1.12 The upper (or right) endpoint of cdf F' is defined as follows:
" =sup{z: F(r) < 1}.

The lower (or left) endpoint of cdf F is defined as follows:
z, = inf{zx: F(z) > 0}.

Clearly, x, and x* represent, respectively, the minimum and maximum attainable
values of the rv X associated with F. Obuviously, v, = —oo in case of a lower-

unbounded rv, and x* = +oo for an upper-unbounded one.

Definition 1.13 (Brownian motion and Brownian bridge) A stochastic process
{W,,t > 0} is said to be a Brownian motion or a Weiner process if

(i) Wo =0,

(i) (W) has independent and stationary increments,

(i13) for every t > 0, W, is normally distributed with mean 0 and variance ot

for some positive constant o.



1. Introduction to Extreme Value Theory 7

2

1. Parameter o2 is known as the variance parameter. When o2 = 1, the

process is called standard Brownian motion. Since any Brownian motion
(W,) can always be converted to a standard Brownian motion, through the

scaling W, /o, the variance parameter is often set to 1.

2. A Brownian motion (W) is a Gaussian process with £ (W;) = 0 and
Cov(W;, W,) = E(W,W,) = tAs. We also have that W, —W, is N'(0,t—s)
forallt > s> 0.

3. Let {B;,t > 0} be a Brownian motion. The conditional process
{B;,0<t<1|B; =0}

is called a Brownian bridge. It is a Gaussian process with mean 0 and
covariance function s(1 —¢), s < t. An alternative approach to obtaining

such a process is to set
Bt:Wt—tWhOStS 1,
where (W,) is a Brownian motion.

Definition 1.14 (Empirical process ) The empirical process of the iid sam-
ple X1, X5, ..., X, is defined by

en (2) = VA (Fy (2) - F(2)), 2 € R,
where F,, is the empirical distribution function F' based upon X1, Xs, ..., X,,.

Definition 1.15 (Uniform empirical process and uniform quantil process)
Let Uy, Us,...be a sequence of independent uniform (0,1) rv. For ach integer
n>1, let

1 n
Gn(s) = - Z Liv,<sy and H,(s) = inf {t : G,,(t) > s},
i=1

denotes the right-continuious uniform empirical distribution function and quantil
function of G. Let

0n (5) = v/ (Gn(3) = 5), 5 ER,
be the uniform empirical process, and

B (s) = Vn(Hy(s) —5), s €R,

the uniform quantile function.
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Note that, the process R, (s) = o, (5)+ B, (s) is often called the Bahadur-Kiefer

process.

Definition 1.16 (Vervaat process) the process of Vervaat (1972) or integrated

Bahadur-Kiefer process is define as follow

%@y_A%mAQ+@A@M&0§t§L
The following theorem descibes the limiting distribution of the Vervaat process.
Theorem 1.1 Fort € (0,1), we have
2nV,, (t) <, B?, asn — oo,

where B; denote a Brownian bridge on [0, 1].

1.4 Sums of iid rv’s

Definition 1.17 Let X1, X, ..., X,, a sequence of iid rv’s with common cdf F.

For an integer n > 1, define the partial sum by

Sp=>_Xi,

i=1
and the corresponding arithmetic mean X, by
X, =5,/n.

1s then called sample mean or empirical mean.

1.4.1 WLLN and SLLN Theorems

Theorem 1.2 (WLLN and SLLN) If (X, X5, ..., X,,) is a sample of a mv’s
X with cdf F and mean B (X) = u < oo, then

WLLN: X, il [ asn — oQ.
SLLN: X, “5 1 as n — oo.

Applying the SLLN on F,,(x) yields the following result.
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Corollary 1.1
Fo(z) %% F(2) as n — oo, for every x € R.
Theorem 1.3 (Glivenko-Cantelli)

Sup |F(z) — F(z)| “3 0, asn — oo.
z€R

1.4.2 Central Limit Theorem

Theorem 1.4 (CLT) If X, X, ..., X,, is a sequence of iid rv’s with mean p

and finite variance o2, then
X, —
Vi ( 2

Note that a necessary condition for the CLT is that the variance be finite. That

)iJ\/’(O,l) as n — o0o.

is, if the finite variance assumption is dropped, the limit distribution in Theorem
(1.4) is no longer normal. In the case of infinite variance, there exists a result

known as the generalized CLT which states that stable laws.

1.5 Fluctuation of maxima

Suppose that X, X, ..., X,, is a sequence of iid rv’s with cdf F'. Though we will
generalize this argument later one simple way of characterizing the behaviour of

extremes is by considering the behaviour of the maximum order statistic
M, = Xy, M,, = max{ Xy, Xo, ..., X;,} ,n > 2.
Corresponding results for minima can easily be obtained from those for maxima
by using the identity
min{ Xy, Xo, ..., X,,} = —max{-X;, - Xy, ..., = X, } .
In principle this is trivial since
PM,<x2)=P(X; <2, Xo<uz,..X,<x)=F"(x),z € R.

The difficulty arises in practice that the cdf F' is unknown. Some bounds are
available for the behaviour of M,, but these are too broad for practical applica-
tion. This leads to an approach based on asymptotic argument. Specifically we
shall see what possible limit distributions are possible for M, as n — oo, then
use this family as an approximation to the distribution of M, for finite (but

large) n.
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1.5.1 The classical limit laws

The question is then what possible distributions can arise for the distribution
of M, as n — oo. Furthermore is it possible to formulate this set of limit
distributions into a single class H which is independent of F'? If so, then we can
estimate the distribution of M,, directly using the family H without reference to
F at all.
Before proceeding we must recognise that the solution to the problem as posed
is trivial and degenerate. Necessarily with probability the distribution of M,
converges to the upper end point of F'.
We adopt the same approach of CLT in obtaining limits of the distribution of M,
looking instead for limiting distributions of (M,, — b,) /a, where a,, and b, are
sequences of normalizing coefficients. The solution to the range of possible limit
distributions is given by Theorem(1.5). Before stating the result it is convenient
to define an equivalence class of distributions the distributions F™ (az + b) such
that

P (@ < x) = lim f (anz +b,) = H, (). (1.6)
Theorem 1.5 (Fisher-Tippet 1928) The class of extreme value distributions
is H(ax + b) with a > 0, b real, where

H,(z) = exp {— (1+ 71:)_1/7} where 1 4+ yx > 0, (1.7)
with vy real and for v = 0 the right-hand side is interpreted as exp(—e™").
H,(z) is called a standard generalized extreme value (GEVD) distribution.

Definition 1.18 The parameter v is called the extreme value index (EVI) and
defines the shape of the tail of the r.v. X. The parameter o = 1/~ is called the

tail index.

The GEVD 'H, can be written in a more general form by replacing the argument
x by (x — p) /o in the right hand side of equation (1.7), where y € R and o > 0

are respectively the location and scale parameters.

Remark 1.1 Let X1, X, ..., X, be @id rv’s with cdf F'. The cdf F' is called max-

stable if for some choice of constants a, > 0 and b,, real,

P{(M, —b,) /a, <z} =P{X; <z}
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for all x and n = 1,2, ....Note that the class of maz-stable distributions is the

same as the class of extreme value distributions

The parametrization in Theorem (1.5) is due to von Mises (1936) and Jenkinson
(1955). This theorem is an important result in many ways. It shows that the
limit distribution functions form a simple explicit one-parameter family apart

from the scale and location parameters.

density of the GEV distribution Probability of the GEV distribution
(=1 <
o | ; o |
[aw] [am]
w | w |
[an] o
< _| =~ _]
[aw] [am]
o o
[aw] [am]
o | o
[an] o
I I I I I I I I I I
4 2 0 2 4 4 2 0 2 4
X X

Figure 1.1: Density and Probability Plots of Generalized Extreme Distributions

Figure (1.1) illustrates the GEV family for some values of v. Moreover, it shows
that the class contains distributions with quite different features.

Let us consider the subclasses v > 0, v = 0, and v < 0 separately:

a For v > 0 use H,((x — 1) /v) and get with a = 1/v > 0,

¢a(x):{0 r=0

exp (—x~%),z >0,
This class is often called the Fréchet class of distributions (Fréchet (1927)
b The distribution function with v = 0,
Ho(z) = exp{—exp(—z)},z € R;

for all real x, is called the double-exponential or Gumbel distribution.
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c For v <0 use H,(— (z+1) /) and get with « = —1/y >0

W, (z) = { exp {— (—z%)},z <0,

1 >0
This class is sometimes called the reverse-Weibull class of distributions.

Remark 1.2 v is a shape parameter determining the rate of tail decay, with:

1. v > 0 : giving the heavy-tailed (Fréchet) case, the class of distributions of
this type includes the Pareto, Burr, Cauchy, Stable laws with exponent
a < 2, log-gamma, log-hyperbolic, log-logistic and t-distributions. The
properties and the accompanied slowly varied functions of these distrib-

utions can be found in Beirlant, Teugels, and Vynckier (1996).

2. v =0 : giving the light-tailed (Gumbel) case, the class of distributions
of this type characterises an exponentially decreasing tail and includes the

normal, exponential, gamma, and log-normal distributions.

3. v < 0 : giving the short-tailed (negative Weibull) case, the class of dis-
tributions with a finite upper bound, like the uniform in (0,1) and beta

distributions.

Remark 1.3 We state the explicit form of EV quantile function in both para-

meterizations starting with EV qfs in their a—parameterization.

Gumbel v =0 Hy' (s) = —log (—log(s)),
Fréchet v >0 ¢ (s) = (—log (5))_1/a>
Weibull v < 0 W1 (s) = — (—log (s)) """,

Next, we present GEV qfs in their y—representation:

fory #0:H ! (s) = ((=log(s)) " = 1) /7.

The Central Limit Theorem (CLT) is one of the most important tools in prob-
ability theory and statistics, stating that the normal distribution is the only
distribution of iid sums under certain conditions. As an analog, EVT states the
three types (standard GEV) are the only possibilities for the limiting distribu-
tion of the maxima. We have a brief comparison of these two theorem in the
table (1.2).
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Analog CLT EVT
Conditions on X, iid with finite second moment | iid and cdf is regularly varying
Study Object Sy (Sum) M,, (Maxima)
Limiting Distribution Normal GEV

Table 1.2: Analog between CLT and EVT

The relationship between the exceedance probability F'(z) and the distribution

of the maxima M,, will become clear with the following theorem.

Theorem 1.6 For 0 < 7 < oo and every sequence of real numbers u,, n > 1, it
holds for n — oo that

nF(u,) — 7 iff P(M, <wu,) —e .
The result of theorem (1.5) leads to the following theorem.

Theorem 1.7 For v € R the following statements are equivalent:

1) There exist real constants a,, > 0 and b,, real such that

lim F" (a,x + b,) = H, () = exp (— (1+ 7x)71/7> , (1.8)

n—oo

for all x with 1 +~vx > 0.
2) There is a positive function a such that for x > 0,

U(tr) = U(t) 27 -1

li = 1.9
T alt) 5 (1.9)
where for v = 0 the right-hand side is interpreted as logzx.
3) There is a positive function a such that
limt (1 F(a(t)e+U (1)) = (1+~z) 7, (1.10)
for all x with 1 + v > 0.
4) There exists a positive function f such that
. 1=F(t+xf(t) ~1/
1 =(1 7 1.11
e 1 F(1) SRR (L11)

for all x with 1 +~x > 0.

Moreover (1) holds with b,, := U(n) and a,, := a(n). Also (4) holds with f (t) =
a(1/(1=F(t))).
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1.5.2 Domains of Attraction

In statistical applications then we will not give any consideration to the pop-
ulation distribution F' but will fit the GEV family H to series of maxima M,,.
This parallels much of standard statistical inference in which tests are based on
the asymptotic normality of X without concern for the parent distribution. It
should be stressed however that there is substantial interest in extreme value
theory for probabilistic research as well as statistical research. A major field of
study in this respect has been the characterization of domains of attraction for
the extreme value limits. That is given a particular limit distribution from the
GEV class characterizing the set of distributions F' for which the normalized M,,
have the limit distribution H. Alternatively for a given I’ how can the a,, and b,
be found such that a limit for M,, is obtained and what precisely is that limit?
At its greatest level of generality this is a difficult question. We will give here a
characterization which works with absolutely continuous distribution functions

F with density f. In this case the reciprocal hazard function H is defined as

1— F(x)
hp () = ———= 1.12
Note that hr is the derivative of the cumulative hazard function
Hp (z) = —log (1 — F(z)) (1.13)

Definition 1.19 We say that the rv X and its cdf F' belong to the maximum
domain of attraction of H, (x) if equation (1.6) is fulfilled. We write X € D (H.,)
or F '€ D(H,).

Theorem 1.8 The df F' belongs to the maximum domain of attraction of the

GEYV distribution H with the standardised sequences a,, b, exactly when n — oo

limn(1— F(a,x+0b,)) =—InH,(z) for all z € R. (1.14)

n—oo

When H,(xz) = 0 the limit is interpreted as oo

The following theorem states a sufficient condition for belonging to a domain of

attraction. The condition is called von Mises’condition.
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Theorem 1.9 Let F be a cdf and z* its right endpoint. Suppose F"(x) exists
and F'(x) is positive for all x in some left neighborhood of x*. If

v = limh'(z), (1.15)

rlx*

or equivalentely,

O F) ')
e (F()

then F' is in the domain of attraction of 'H..

: (1.16)

Remark 1.4 Under (1.15) we have (1.6) with b, = F~*(1—2) and a,, = h(b,).
Simpler conditions are possible for v # 0.

Theorem 1.10 1) v > 0: Suppose x* = oo and F' exists. If

tF'(t) 1
lim ———— = — 1.17
el F(t) A (1.17)
for some positive vy, then F' is in the domain of attraction of H.,.
2) v < 0: Suppose * < 0o and F' exists for x < x*. If
(x* —1t) F'(t) 1

lm~———2 = = 1.1
de 11— F(t) Y (1.18)

for some negative vy, then I is in the domain of attraction of 'H.,.

We shall establish necessary and sufficient conditions for a distribution function

F to belong to the domain of attraction of H,.

Theorem 1.11 The cdf F' is in the domain of attraction of the EVD H., iff
1) for v > 0: z* is infinite and

. 1—F(tx) 4
lim ————2 = g7/ 1.19
e 1-F@) (1.19)
for all x > 0. This means that the function 1 — F' is reqularly varying at infinity
with index —1/7.
2) for v < 0: x* is finite and
1 — F(z* — tx)

li = g/ 1.20
o 1— F(z* —1t) o (1.20)
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forallz > 0;
3) for v =0: z* can be finite or infinite and

o (1.21)

for all real x, where f is a suitable positive function, if (1.21) holds for some f,
then ff(l — F(s))ds < oo fort < x* and (1.21) holds with

[7(1 = F(s))ds
1— F(t)

f@) = (1.22)

Theorem 1.12 The cdf F' is in the domain of attraction of the EVD H. iff
1) fory>0: F(z) <1 forallz, [[7[(1—F(s))/s]ds < oo, and
ftoo(l — F(s))ds/s

I = ; 1.2
B I () 7; (1.23)

2) for v < 0: there is x* < 0o such that f;i*_t(l — F(s))/ (2" —t)ds < 0o and

(- F@)/ @ —ayd
pita 1— F(z* —t) I (1.24)

3) for v =0 (x* can be finite or infinite and): f; ftx (1 — F(s))dsdt < oo and
the function h defined by

(1—F(2) [ [T (1~ F(s))dsdt

h(z) = _— 2 : (1.25)
(S (= F(s))ds)
satisfies
}gcnh (t) = 1.

Next we show how to find the normalizing constants a,, > 0 and b, in the basic
limit relation (1.6).

Corollary 1.2 If the cdf F' is in the domain of attraction of H.,, then
1) for~ > 0:
lim F" (a,x) = exp (—x_l/v) (1.26)

n—oo

holds for x > 0 with a, := U(n);
2) for v < 0:
lim F" (a,x + x*) = exp <— (—x)flh) (1.27)

n—oo
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holds for x < 0 with a, := z* — U(n);

3) for vy =0:
lim F" (a,@ + b,) = exp (—e ™) (1.28)

n—oo

holds for all x with a,, := f (U(n)),b, :=U(n), and f defined by equation (1.22).
We reformulate Theorem 1.12 in a seemingly more uniform way.

Theorem 1.13 The cdf F' is in the domain of attraction of the EVD H., iff for

some positive function f,

liml —F(t+azf(t))

-1 —1/ 1.2
W Em 4 (1:29)

for all x with 1 +~x > 0. If (1.29) holds for some f > 0, then it also holds with

gL v >0,
ft) = —’Y(*x*—t) v <0,
J; (1= F(s)ds/ (1= F(t)), v=0.

1.5.3 Functions of Regular Variation

In this section, we treat a class of functions that shows up in a vast number of
applications in the whole of mathematics and that is intimately related to the
class of power functions. We first give some generalities. Then we state a num-
ber of fundamental properties.We continue with properties that are particularly

important for us.

Definition 1.20 Let f be an ultimately positive and measurable function on R .
We will say that [ is reqularly varying if and only if there exists a real constant
p for which

S (tx)

lim ——= =t* for allt > 0.

We write f € R, and we call p the index of regular variation. In the case
p = 0, the function will be called slowly varying (s.v.) or of slow variation.
We will reserve the symbol for such functions. The class of all reqularly varying

functions is denoted by R.

Example 1.1 Consider the following examples to fix ideas.

(1) The canonical reqularly varying functions are power functions U(zx) = x” €
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R, for x >0 and p € R.

(2) The canonical slowly varying function is log(1 + x) € Ry.

(3) If limU(z) = U (oc0) ezists and is finite, then U € Ry. So for instance,
every pf“;g;bility distribution function on R, is slowly varying at oc.

(4) If X is a Pareto random variable with distribution F, so that

1-F(r)=F(x)=2"%2>1a>0,
then F € R_,.

Proposition 1.1 The function f € R, if and only if f(z) = zPl(z), where
l € Ry.

The following theorem is used to restate the definition of regular variation and
to introduce a new concept called II-variation.
ftz)—f(t)

a(t)
(where x > 0 and a is a positive function), exists and is not constant, then

g L 00 = () _ 2P -1
tmeoa(t) p

Theorem 1.14 If f : (0,00) — R, measurable function such that tlim

,x >0

for some p € R and ¢ # 0, with the convention that the right hand side reads
clogx if p=0.

The case p = 0 defined the so-called II-varying functions.

Definition 1.21 ( II-varying function) A positive, measurable function f on
(0,1) is -varying at infinity with auziliary function a > 0; notation f € 11, if

o L) = ()

Lim o () = logx,x > 0.

f is said to be IT-varying at 0, notation f € I1°, if f(1/x) is H-varying at infinity.

Some of the basic properties of regularly varying functions are given in the fol-

lowing theorems.

Proposition 1.2 Slowly varying functions have the following properties:
i) Ro is closed under addition, multiplication and division.

i) If ¢ is s.v. then (% is s.v. for all a € R.

w) IfpeR, then feR, iff [ €R_,.
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Mathematically, the two most important results about functions in R, are given

in the following theorem due to Karamata.

Theorem 1.15 (i) Uniform Convergence Theorem. If { € Ry, then the

convergence
lim £(t)

is uniform for t € [a,b] where 0 < a < b < 0.

=1

(it) Representation Theorem. ( € R, if and only if it can be represented in

the form )
0(z) = e(x) exp{ /1 e(uu)du}

where ¢(z) — ¢ € (0,00) and e(x) — 0 as v — oo.

Proposition 1.3 Let ¢ be slowly varying. Then

1)
lim log ¢ (z)

= 0.
z—oo logw

2) For each 6 > 0 there exists a x5 so that for all constants A > 0 and x > x4
Ax° < 0 (z) < Ax®,

3)If { € R, with p > 0, then f(x) — oo, while for p <0, f(x) — 0 as x T oo.
4) Potter Bounds. Given A > 1 and § > 0 there exists a constant x,(A, )

such that ‘w_ {(g)é (g)—a} >
@ =4 e) o) ezt

The following result, known as Karamata’s theorem, says that one can take

slowly varying functions out of integrals.

Theorem 1.16 Let { € Ry be locally bounded in [A, 00) for some A > 0. Then
1) For a > —1,

/ t0(t) dt ~ (a4 1) 2% (2) as © — oo,
A

2) For a < —1,

/ t0(t)dt ~ — (a+ 1) 2 (2) as x — oo,
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Corollary 1.3 Let f € R, for some p # —1, be locally bounded in [a,o0) for
some a > 0. Then as xr — 00,
1) For a > —1,
[ ft)dte 1
zf (x) p+1

2) For a < —1,
[Zrwd
zf () p+1

The definition of heavy-tailed distributions.

Definition 1.22 A cdf F (x) (or the rv X) is called heavy-tailed if its tail
F(z)=1-F(x) >0, >0, satisfies,

F
lmP(X>2+y| X >2)= hm%zl, for all y > 0,.

Definition 1.23 The cdf F (z) (or the rv X ), defined on (0, 00), is called subex-
ponential (F € S (X € S§)), if
P(S,>zx)~nP(S, >z)~ P(M,>z) as x — oc.

The class of heavy-tailed distributions comprises the subexponential class of
distributions (S) and its subset, that is, distributions with regularly varying

tails.

Definition 1.24 The cdf F (z) (or rv X ) is called a regularly varying distribu-
tion at infinity of index o =1/, v >0 (X € R_y),), if

P(X >z)=a2"Y(z),Vz >0,
where { () is called a slowly varying function (¢ (x) € Ry).

Proposition 1.4 (Regular variation for distribution tails) Assume that F
is a continuous cdf (with pdf f) such that F(x) <1 for all x > 0:

a) If lirgloxf (x) /JF(x) =p>0, then f € R_1_, and consequently F € R_,.

b) ]f} €R_1_,(p>0),then lim 2 f (z) /F (x) = p.

¢) If X is a non-negative r.v.gcwz?(t)h distribution tail F € R_, (p > 0) ,then

EX? <ooifp<op,
EX? =00 ifp>p.
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d) If F€R_, (p>0),then forv>p

. 2YF (2) v—p
lim — =
z—oo [ tVdF (1) p

The converse also holds when v > p. If p = v one can only conclude that F ()
= o(x=Pl(x)) for some l € Ry.

In practice, a tail function F () is often fitted by the generalized Pareto distri-
bution. The latter is based on Pickands’ theorem (Pickands, 1975).

1.5.4 Generalized Pareto Distributions (GPD)

As the GEV in the previous section describes the limit distribution of normalized
maxima, the Generalized Pareto Distribution (GPD) is the limit distribution of

scaled excess of high thresholds. The main connection is in the following theorem.
Theorem 1.17 Suppose X1, X, ..., X, are iid rv’s with cdf F'. As in Theorem(1.5),
H, () = exp {— 1+ fya:}_l/w} where 1 4+ yx > 0,

is the limit distribution of the maxima M,.Then for a large enough threshold u,
the conditional distribution function of Y = (X —u | X > u), is approzimately

P{X-u<z|X>u}~G,(x)

where

1) iy £ 0
G, () = { 1 —exp(—x), ify=0 (1.30)

with

x>0 if v=>0
0<z<-1/vify<O.

Then, G, is called standard GPD and -y its shape parameter.

The family of distributions defined by equation(1.30) is called the General Pareto
Distribution family (GPD). For a fixed high threshold u. The GPD distribu-
tion has many good properties, (see, for instance, Embrechts, Kliippelberg and
Mikosch, 1997, Section 3.4, and Reiss and Thomas (2007), Section 1.4, for more
details). For the purpose of this paper, we particularly compute the expectation
of the GPD.



1. Introduction to Extreme Value Theory 22
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Figure 1.2: Density and distribution Plots of the GPD

Definition 1.25 Let X be a rv with cdf F, for u < z*

F(z)=P{X—-u<z|X>u} (1.31)
= __F—(x—i—u) or x
=1 Fl) f >0,

is the excess distribution (edf) of rv X over the threshold u.
Define
e(u)=E(X —u|X >u) (1.32)

and e(u) 1is called the mean excess function (mef) of rv X.

Some useful forms of the mef are given in the following proposition (see Example
3.4.8 of [46]):

Proposition 1.5 (Useful forms of emf) a)

e(u) == / F(x)dr,u < z*.
b) If F € R_., for some v > 1, then

e(u)=u/(y—1) asu — .
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¢) If F is continuous and B is the left limit of its support, then

F(z) = ee((f)) exp{—/; 6621;)}’96 > B.

The following proposition consists of some probabilistic properties of the GPD.

Proposition 1.6 (Properties of the GPD) (a) If Y is a rv having a GPD
with parameters v € R and 0 > 0. Then EY < oo iff v < 1. In this case, the

mef is linear. More precisely, for u < x*

e(u) = Ult:/u,ajuyu > 0,

(b) If (Y)n>1 is an iid sequence having a GPD with parameters v € R and o > 0
and if for some X > 0, N is P()\) independent of that sequence, then

=1/~
P (YN,N < ?J) = eXp {_/\ (1 + %) } = H%uﬁ

where p =2 (XY —1) and § = o \7.

il
The following result, due independently to Balkema and de Haan [8] and Pickands
[108], is one of the most useful concepts in the statistical methods for extremes.
It is known as GPD approximation or (as hydrologists call it) POT method and
says that for a large threshold u, the cdf F, is likely to be well approximated
by a GPD with shape parameter v (equal to the tail index of cdf F') and scale

parameter o = o (u).
Theorem 1.18 (GPD approximation) For every v € R. F € D(H,,) iff

lim sup ‘Fu (y) - G'y,a(u) (y)| =0, (133)

U= )<y <u—x*

for some positive function o.

Results of both Proposition 1.6 and Theorem(1.18) are to be found as parts of
Theorem 3.4.13 in [46], which may be consulted for the proofs.
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1.6 Extreme and Intermediate Order Statistics

The subject of order statistics deals with the properties and applications of these
ordered rv’s and of functions involving them. Examples are the minimum X, ,,
the maximum, X, ,, the range W = X,,,, — Xj ,,, the extreme deviate (from the
sample mean) X,,,, — X. All these statistics have important applications. The
extremes are the critical values used in engineering, physics, medicine, etc, see,
for example, Castillo and Hadi (1997), and in the statistical study of floods and
droughts, in problems of breaking strength and fatigue failure, and in auction
theory (Krishna, 2002).

1.6.1 Distributions of Order Statistics

We discuss the distributions and density of order statistics when (X, Xs, ..., X,,)
is an iid sample of known size n drawn from a common cdf F'(z).
Distribution of a Single Order Statistic

Let F(;y(z)(r = 1,...,n) denote the cdf of the rth order statistic X, ,,. Then the
cdf of the largest order statistic X, ,, is given by

Foy(r) = P(Xpn <7) = Plall X; <) = F"(x).

Likewise we have
Fly(e) = 1—[1 = Fa)]".
These are important special cases of the general result for Fi,(x):

F(T) (l‘) = P(Xr,n S .T)

= Pr{at least r of the X; are less than or equal to = }
=Y CiF(@)[1 = F@)"",

or, the alternative form:

n—r

Fio (@) = F(2) Y Oty [L — F@).

=0



1. Introduction to Extreme Value Theory 25

We shall now assume that X; is continuous with probability density function
(pdf) f(z) = F'(x). If f)(z) denotes the pdf of X,y we have

1 d (@ p
= — =) dt
Joy (@) B(r,n—r+1)dx/0 ( )
1

"B (r,m—r+ 1>F7’—1(x) (1= F(x)]"" f(2),

where B is the Beta function B (a,b) = fol t1 (1 =) dt,a > 0,b> 0.

Proposition 1.7 The random interval (X(i),X(j)) .1 < 7, include the quantile
xp,p € (0,1) with probability

Joint Distribution of two Order Statistics

The joint density function of Xy and X, (I < r < s < n) is denoted by
fys) (@, y), with 2 <y, such that

n!

S = ===t @ W)~ F@IT T @),

By integration, we obtain the joint cdf F,ys)(z,y) of Xy and X(5). We have
for x <y

Foo) = 303 T @ Fw) - @l

j=s i=r

Distribution of the range

From the joint pdf of k order statistics we can by standard transformation meth-
ods derive the pdf of any well-behaved function of the order statistics. For ex-
ample, to find the pdf of W,, = X,y — X,y we set w,s =y — x, we have

“+oo

fu, (152) = Ci / F () (2) [Fz + wpe) — Fla)]"™

o

X f(x + wes) [1 — F(z 4 wy)]" " du.
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Of special interest is the case r = 1, s = n, when W, becomes the range of W

and

fw (w)=n(n-1) : h f(x)[Flx 4+ w) — F(yc)]n*2 flx 4+ w)dz.

The cdf of W is somewhat simpler. On interchanging the order of integration

we have
—+oco

Fw (w) =n f (@) [F(z+w) — F(z)]" " da.

Uniform Order Statistics and Simulation
For a rv X with arbitrary cdf F', let

F'u)=inf{x: F(z) >u},0<u<l.
Then, with U is standard uniform, we have

(Xl,nyXZ,na (R Xn,n) i (F_l (Ul,n) 7F_1 (U2,n) PRXER) F_l (Un,n)) .

Order Statistic and Markov Property

When the cdf F' is continuous, the ordered sample (X ,,, Xop, ..., Xp, ) forms a

Markov Chain. In other words, we have for i = 2,...,n

PXin<z|Xipn=21, . Xicin=2i—1) = P(Xin < 2| Xic10 = 2i1).

1.6.2 Extreme Order Statistics and Poisson Point Processes

Let us start to derive the result for the exponential distribution. Suppose
E\, Es, ..., B, are iid standard exponential and E,, Es,, ..., E,, are the nth
order statistics. By Renyi’s (1953) representation we have for fixed k < n,

d (ﬂ L T Y Ly >

Ein,Eopnyy By = , - + ...+
1 2 ’ n’'n n—1 n n—k+1

with Ef, 5, ..., B} are iid standard exponential. Hence

1 (Evpy By ooy Bnn) 5 (Ef, Ef+ E5, B+ Ef + ...+ EJ). (1.34)
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This suggests that, the point process of normalized lower extreme-order statistics
converges to a homogeneous Poisson process.
Next we generalize the result (1.34) to the entire domain of attraction, and as

usual, we formulate it for upper order statistics rather than lower ones.

Theorem 1.19 Let X, Xs, ..., X,, be iid rv’s with cdf F. Suppose F' is in the

DA of H, for some v € R. Let X1,,Xa,,...,Xnn be the nth order statistics.

Then with the normalizing constants a, > 0 and b,, from (1.6) and fized k € N.
(Xn,n - bn Xn—l,n - bn Xn—k,n - bn>

y g sery
Qn Qn Qn

converges in distribution to

9 g eeey

<(E;‘)” -1 (EBf+E3)7 -1 (Ef+E;+ ...+ E}) — 1)
0 vy 0l

where B, E5, ..., B} are 1id standard exponential.
Under the conditions of Theorem (1.19), consider the random collection

i X, —b, >
n a, i

of points in R, x R and define a point process (random measure) N,, as follows:
for each Borel set B C R, x R,

n’ an

N (B) = D Ly(s e}

Moreover, consider a Poisson point process N on R, X (z,,z*], where z, and
, x*are the lower and upper endpoints of the cdf H.,, with mean measure v given
by

v ([a,b] x [e,d]) = (b—a) [(1+9¢) " = (1 +7d) ] |

with 0 < a < b, ., < ¢ <d < x*. The following limit relation holds.

Theorem 1.20 The sequence of point processes N,, converges in distribution to
the Poisson point process N, i.e., for any Borel sets By, ..., B, C Ry X (z,,x"]
with v(0B;) =0 fori=1,2,...,r, where OB is the boundary of B, then

(N (B1) ooy Nu (By)) % (N (B1) s N (By) -
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1.6.3 Intermediate Order Statistics

In the previous section we studied the asymptotic behavior of order statistics,
that is, X,,_r, when n — oo and k is fixed, along with an approximation by
a Poisson point process. One can also consider X,,_j, with k = k(n) — oo as
n — oo. A commonly considered case is k(n)/n — p € (0,1) (the so-called
central order statistics, see, e.g., Arnold, Balakrishnan, and Nagaraja (1992)).
The normal distribution is then an appropriate limit distribution, and in fact,
the stochastic process Xj,,n, for some 0 < s < 1, properly normalized, can
be approximated by a Brownian bridge. But there is a case in between these
two. Consider the order statistics X, _x, with n — oo, k = k(n) — oo and
k(n)/n — 0 as n — oc.

Those are called intermediate order statistics. Their behavior can be connected
with extreme value theory, and the stochastic process X, (s, properly nor-
malized, can be approximated by Brownian motions, as we shall see.

The following result is given by (Smirnov, 1949, 1967; Falk, 1989) it shows that
there is a connection between intermediate order statistics and extreme value

theory.

Theorem 1.21 Suppose von Mises condition for the DA of an evd H. holds
section (1.5.2). Then, if k = k(n) — oo and k(n)/n — 0 as n — oo,

X in — U(n/k)
vk (n/k) U (n/k)

18 asymptotically standard normal.
In view of applications later on we state the following immediate corollary:

Corollary 1.4 For Fy (y) =1—1/y,y > 1 asn — oo, k — 00, k/n — 0,
k
VEk <EYM,” - 1) (1.35)

15 asymptotically standard normal.

So we see that the normal distribution is a natural limit distribution for interme-
diate order statistics. As in the case of extreme order statistics, where we made
the connection with point processes, we want to put the present limit result in

a wider framework, which in this case will be convergence toward a Brownian
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motion. However, for this result we need more than just the domain of attraction
condition. One can consider the domain of attraction condition as a special kind
of asymptotic expansion of U near infinity. For the approximation by Brownian
motion, as well as for many statistical results as we shall see later on, it is very
useful to have a higher-order expansion.

We call this the second-order condition. This condition will be discussed in the

next section.

1.6.4 Second-Order Condition

We are going to develop a second-order condition, we are begin by this proposi-

tion.

Proposition 1.8 (First Order Regular Variation Condition) The follow-
g assertions are equivalents:
(a) F heavy-tailed

FeD(®y,),7>0.

(b) F regularly varying at oo with index —1/~

1-F
lim (tz)

S A VA BV 1.36
PRT—FE ¢ T (1.36)

(c) Q(1 — s) regularly varying at 0 with index —v

CQU-sp)
(d) U regularly varying at oo with index
U(t
tlirgo% =27,z >0. (1.38)

Definition 1.26 (Second Order Regular Variation Assumption) We say
that (the tail of ) F' € D (@1/7) ,v > 0, is second order reqularly varying at in-
finity if it satisfies one of the following (equivalent) conditions :

(a) There exist some parameter p < 0 and a function A*, tending to 0 and not

changing sign near infinity, such that for all x > 0

o A= Ft0) /(A= F(#) —a™ 2 =1

Jim Yo p (1.39)
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(b) There exist some parameter p < 0 and a function A**, tending to 0 and not

changing sign near 0, such that for all x > 0

Q1 —s2)/Ql—s)—2 2’ —1
b A (s) T

(1.40)

(¢) There exist some parameter p < 0 and a function A, tending to 0 and not
changing sign near infinity, such that for all x > 0

lim U(te)/U(t) =27 2P — 1'

Jim == = (1.41)

zP—1

If p = 0,interpret as log x.

Note that A, A* and A** are regularly varying functions with A*(¢) = A(1/(1 —
F(t))) and A**(s) = A(1/s). Their role is to control the speed of convergence in
(1.41), (1.39) and (1.40) respectively. More precisely we have A € R,,, A* € R/,

and A** ¢ R® ,- The relations above may be reformulated as respectively

log (1 — F(tx)) —log (1 — F(t))+ (1/v)logx  af — 1'

I = 1.42
Pt A (t) p .
log Q(1 — sz) — log Q(1 — 1 -1
i 108 Q(1 —sz) —logQ(1 —5) +ylogz . (1.43)
5s—0 Ax (S) P
— — r—
i logUt) — logU(t) — yloga _ 2 — 1 (1.44)

1.6.5 Hall’s class of cdf’s

As an example of heavy-tailed distributions satisfying the second order assump-
tion, we have the so called and frequently used Hall’s model introduced in [74]

which is a class of cdf’s
Flz)=1—ca (1+dx"/7+o(xp/7)) as r — 00 (1.45)

where v > 0, p <0, ¢ >0, and d € R*.

This sub-class of heavy-tailed distributions contains the Pareto, Burr, Fréchet
and t—Student cdf’s usually used, in insurance mathematics, as models for dan-
gerous risks. Relation (1.45) may be reformulated in terms of functions Q and

U as follows:

Q(l—5)=s"(1+~de’s " +0(s7")) ass — 0, (1.46)
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Distribution ¢ d Y p 6] A(z)
Fréchet 1 —v/2 vy -1 1/2 (v/2)z71
Burr 1 v/p v p 1 yzP
Gener. Pareto 1/ 0 v —y 1 vz~

v v v v)cd v 2 v 2 9/
Student’s ¢, g —% /v =2/v ( ;}Z),CU ((2121)”2 2

Table 1.3: A specimen of distributions in Hall’s class. The constant ¢, in the
bottom row is equal to (vB(r/2,1/2))'/*, where 9B is the complete Beta function;
the case v = 1 corresponds to the Cauchy cdf.

and
U(t) =t (1 +~dc’t” 4+ o(t?)) as t — oc.

Straightforward computations show that, in the case of Hall model, functions
A(t) and A*(t) are respectively equivalent to dpyc’t” and dpyt?/? as t — oo,

whereas function A**(t) is equivalent to dpyc’t— as t — 0.

For this class of cdf’s the second-order condition (1.44) holds with a function
A(t) such that A(t) = pdt? = ~vptP. In table (1.3), we specify the constants +,
p, B, ¢ and d for several popular heavy-tailed distributions (i.e., Fréchet, Burr,
generalized Pareto, and Student’s t,) along with formulas of their corresponding
functions A(t).

1.6.6 Intermediate Order Statistics and Brownian Mo-
tion

We continue the discussion on the behavior of intermediate order statistics under
extreme value conditions. We have seen that a sequence of intermediate order
statistics is asymptotically normal (when properly normalized) under von Mises’s
extreme value condition. However, we want to consider many intermediate order
statistics at the same time, hence we want to consider the tail (empirical) quantile
process.

It is instructive to start by proving the main result of Theorem (1.21), i.e., the
asymptotic normality of a sequence of intermediate order statistics, again, now

not under von Mises’ conditions but under the second-order condition.

Theorem 1.22 Let X;, < X,, <...< X, , be the nth order statistics from an
itd sample with df F'. Suppose that the second-order condition (1.41), holds for
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some vy € R, p <0. Then

Xn—k,n — U (n/k;)
vk a(n/k) ’

is asymptotically standard normal provided that, the sequence k = k(n) — oo
and k(n)/n — 0 as n — oo, and lim VEA (n/k) exists and is finite.

(1.47)

The last result can be vastly generalized and yields the following, relating the

tail quantile process to Brownian motion in a strong sense.

Theorem 1.23 (Drees (1998), Theorem 2.1) Suppose X1, Xo, ... are iid mv’s
with cdf F. Suppose that F satisfies the second-order condition (1.41) for some
vyE€R and p < 0. Let Xy, < Xo, <...< X,,, be the nth order statistics. We
can define a sequence of Brownian motions {W,(s)}sso such that for suitably
chosen functions a, and Ay and each € > 0,

Xn—[ks],nfm(n/k‘) s -1
\/E ( ao(n/k) )

~

—S*W*IWTL(S) — \/EAO (n/k)v,, (571)

P

sup §/HL/%tE =0, (1.48)

K-1<s<1

n— oo, provided k = k (n) — oo, k/n — 0 and VkAy (n/k) = O(1).



Chapter 2

Estimation of the Extreme Value
Index and High Quantile

2.1 General Diagnostic Plots

In the real world, the extreme value theory as we described in chapter (1) needs
to be applied through statistical data, the observed sea level, major insurance
claims, large variation of security market values over a certain time period, daily
records of temperature and precipitation at a certain location, etc. We hope the
modeling of the empirical data through extremes would manifest most of these
variations. Appropriate models can be used to manage financial risks, to set up
prevention procedure or to obtain estimations and predictions.

Before getting into any statistical analysis, we want to learn our best knowledge
of the data set. How is the data collected? Is there any missing or unreported
data? Since it is particularly important that the data is error-free for extreme
observations, we should give special attentions to data that are outliers.

The first step in exploratory analysis is to have a scatter plot of all observations.
It is important just by looking at data to obtain the following information: range
of data, several extremes, trends and seasonalities, any violation of independence
and stationarity conditions. If trends and seasonalities are suspected, we rec-
ommend to fit the location, scale and shape parameters with a time variable
t. See for example, chapter 6 in Coles [21] and references therein. Embrechts,
Kluppelberg and Mikosch’s book [46] and its references give a thorough list of

both graphical and analytical methods, and in Bassi [9], a survival kit of some

33
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terminologies on quantile estimation is provided. We have introduced the mean
excess function in section (1.5.4), which is crucial in the later analysis on the
determination of choice of transforms. We will emphasize two other methods

used in this thesis: Q@) plots, the return period and return levels.

2.1.1 Probability and Quantile Plots (QQ-plot)

Suppose X1, X, ..., X, are continuous rv’s and x1, xs, ..., z,, are independent ob-
servations from a common population with unknown df F'. An estimate of F,
say 2 , has been obtained. The probability and quantile plots provide a graphical
accessment to the fitted distribution F. It follows from the Quantile Transfor-
mation Lemma ([46] Lemma 4.1.9) that F(X;) has a uniform distribution on
(0,1) for i = 1,...,n. Furthermore, if x1,, %2, ..., Tnn are the ordered sample,

then the expectation of these quantiles can be computed as:

E(F (X)) = , fori=1,...n,

n+1
and this leads to the following definition.
Definition 2.1 Given an ordered sample of independent observations

Tin S Tan S S LTn,n

from a population with estimated distribution function ﬁ, a graph

{ﬁ((xm)) ! }zzln

"n+1

is called a probability plot (PP-plot).
Definition 2.2 Given an ordered sample of independent observations
Tin S Tan S S Ln,n

from a population with estimated distribution function F , a graph

{ﬁ—l ( jr 1) ,Xm} Gi=1,...n
n

is called a quantile plot (QQ-plot).
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The quantities z; ,, is the empirical (an

F while F1 (#1) is the estimation. If F' is a reasonable estimation of F', the

quantile plot should look roughly linear. This remains true if the data come

)—quantile of the population distribution

from a linear transformation of the distribution. And since that, the change
of location and scale parameters only change the plot through y-intercept and
slope.

Outliers can be easily identified on the Q@Q)-plot in a general statistical analysis.
While the subject of the extreme value study concerns the upper tail, we should
be particularly cautious about any point that substantially deviates from the
model on the large observation end. Since the shape parameter v determines
how heavy the tail distribution is, some difference in distributional shape may
be deduced from the plot. In general, an over estimation of (heavy tail) will
result in a concave down curve in the Q@-plot, and an under estimation of (light

tail) will result in a concave up curve in the Q@-plot.

2.1.2 The Return Period and The Return Level

The return period and the return level are very silimar to the t-year event we

mentioned in section (1.2). We make the definition precise as below:

Definition 2.3 Let (X;) be a sequence of iid rvs with continuous cdf F and u a
gwen threshold. Consider the sequence (1(x,>v)) of iid Bernoulli rv’s with success
probability p =1 — F (u) . Then

E (L (u)) =1/p, (2.1)

is called the return period of the event (X; > ), where L(u) = min{i > 1: X; > u}
is the time of first exceedance of the threshold u. L(u) follows a geometric dis-

tribution with parameter p.

From the definition, return period is the expected revisiting period corresponding
to the threshold u. This leads to the other definition:

Definition 2.4 Let (X;) be a sequence of iid rv’s with continuous cdf F. If
F(z)=1-p

then z, is called the return level associated with the return period 1/p.
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2.1.3 Mean Excess Function (mef) Plot

Some elementary properties of the mef could be used to distinguish between
light-tailed and heavy-tailed models. The mef of a € () rv is equal to 1/60 and for
the Pareto case, the mef is linear (see 1.5 (a)). Thus, the mef of a heavy-tailed
cdf, for large arguments, typically appears to be between a constant function and
a straight line (with positive slope). A graphical investigation of tail behavior

can now be based on the empirical mef e, defined on R, as follows:

*

1 1

e (1) = 1o / F(o)do = - Zl (X =) Loy, (22)

where N, is the number of observations that exceed u.
Definition 2.5 (mef-plot) The graph

{(Xin,en(Xin))ri=1,....,n},
1s called mef-plot.

When the mef-plot is close to a straight line, the underlying distribution may be
modelled by a Pareto-like cdf .

2.1.4 Pareto Quantile Plot

This is another graphical tool for testing the hypothesis of tail heaviness of
a given set of data. It is known that Pareto-type distributions satisfy U(z) =
27 Ly(x), r > 0 with Ly being a slowly varying function at infinity (in particular
log Ly(x)/logxz — 0 as x — o0). This yields that as z — o0, log Ly(x) ~ log .
Consequently, for heavy-tailed data the Pareto quantile plot

1
(log (n—i— ) ,loan_Hl,n) r=1,...,n
i

should show an approximate linear behavior with slope equal to 7.

2.1.5 Gumbel’s Method of Excesses

This analytical method concerns the number of values, among future observa-

tions, that exceed past records. If we take the k-th upper order statistic X,,_x11
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as a (random) threshold, then the number of its exceedances among the next r
observations X,, .1, ..., X,,1, is an hypergeometric rv. If we denote this number
by SP (k) then S (k) =37, 1{Xn+1>Xn_k+1,n} and we have

P (SZ'L (k> = j) = [Cf-:;—l—jcy—‘::—k} /C;LJrn? .] = 17 27 w1

With this formula one can compute the probabilities of several future events
related to a given high threshold such as no exceedances, exceeding at least

once,... The mean number of exceedances of the level X1, is equal to r(n —

k+1)/(n+1).

2.2 Parameter Estimation for the GEV

Once the model has been set up, parameters in the model need to be estimated
using appropriate procedures. Suppose X1, Xo, ..., X, is a sequence of rv’s of
ild GEVD with parameters v, 4 and 8 > 0, and x1, x9, ..., x, are the recorded
observations. As in 1.5, the df H(x) is

M, (2) :{ exp{— [1+7£%)]—1/v} when v #0, 1+ (££) >0 |
exp {—exp [— (4]} hen 0.0 € B

In this section, we introduce two methods: maximum likelihood method (ML)
and method of probability-weighted moments.(PWM)

2.2.1 Maximum Likelihood Method

The method of maximum likelihood is, by far, the most popular technique for

deriving estimators.

Definition 2.6 Let f(X | 0) denote the joint pdf of the sample X = (X1, X2, ..., Xy,).
Given that X = x = (21, xs, ..., x,) is observed, the function defined by

L(0]X)=f(X]0),
1s called the likelthood function, and
10| X)=InL(0|X),

defines the log-likelihood function. The maximum likelithood estimator
(MLE) 5(3:) := argmax/ (0 | X) is the function of X that mazximizes L (0 | X)
6co

or 1 (0| X) over an appropriate parameter space © .
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2.2.2 Method of Probability-Weighted Moments

The technique of moments method is to equate the model-moments with empir-
ical moments. Even though the general properties of obtained estimators can
be unreliable, the method of moments can be very useful in obtaining an initial
approximation of the intended statistics. The class of probability-weighted mo-
ments stands out to be more promising in obtaining a good first estimate. The
results are used as the initial values for other methods when numerical techniques

are applied. Let 0 = (v; i, 0) and define
wy (0) = E[XHy (z)] forr=1,2. (2.3)
In case v < 1, calculation yields
1 o
w, (0 {u-Zu-ra-yna+n (2.4

T +1
where I" denotes the Gamma function I' (z) = fooo t*~te~tdt for x > 0. Choosing

r =0,1,2, we can then immediately obtain

wo(6) =~ 2[1-T(1—7)]
2wy (6) — wo (6) = T (1 - 7) (27— 1) (2.5)
3 (6) — wo (6) = 2T (1— ) (37 — 1)

(7; i, o) can be explicitly solved from the above system (2.5). For example

27 —1 2w (0) —wo (0)

37 =1 3wy (0) —wo (0) (26)

Parameter estimation is obtained by replacing the model-moments w, (¢) in (2.6)

by empirical moments @, (#). To obtain empirical moments, notice
1 n
0, (0) = =S X, H (X;) forr=0,1,2. 2.7
8 (0) = £ 30 X306y (Xs) for s (2.7

Again it follows from the Quantile Transformation Lemma, that
(HG' (Xl,n) PR HE’ (Xn,n)> - (Ul,n7 cey Un,n) )

where Uy, ..., U, are the order statistics of an iid sequence Uy, U, ..., U,, uni-

formly distributed on (0,1). Thus, 2.7 can be rewritten as:
- 1 - T (s
@ (0) =~ > X, Uj, forr =0,1,2, (2.8)
j=1

where U7, are often approximated by their expectations.
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2.3 Estimation of the Extreme Value Index

In this section, we give some estimators of the EVI ~ constructed under max-
imum domain of attraction conditions. That is, the data (X, X, ..., X,,) are
assumed to be drawn from a population X with cdf F' in D(H,). As opposed to
the parametric methods of the previous section, the semi-parametric statistical
procedures, appropriate to this situation, don’t assume the knowledge of the
whole distribution but only focus on the distribution tails. The case v > 0 has
got more interest because data sets in most real-life applications, exhibit heavy
tails. For a detailed review of some of the firrst works done in this matter, see
[96] amongst others. Classical estimators are based on the largest order statistics
Xn—kn, - Xnn, Where k is an intermediate sequence of integers related to the

sample size n in the following way:

k =k, — ocoand k/n — 0 asn — co. (2.9)

The statistic X,,_j,, is then said to be intermediate order statistic. EVT-based

estimators rely heavily on k.

2.3.1 A Simple Estimator for the Tail Index (v > 0): The
Hill Estimator

In order to introduce the Hill estimator, a simple and widely used estimator, let
us start from theorem 1.11:

1 F
F € D(H,) for v > 0 ifflim (t2)

Ve
e 1-F@) "

In this case the parameter o = 1/ > 0 is called the tail index of F'. Theorem

1.12 gives an equivalent form of this condition:

o Ji (L= F(s))ds/s
t—o0 1 — F(t)

(2.10)

Now partial integration yields

/too(l — F(s))ﬁ = /too (logU — logt) dF (u).

S

Hence we have -
. [, (logu —logt) dF (u)
lim
t—00 1-— F(t)
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In order to develop an estimator based on this asymptotic result, replace in
equation (2.10) the parameter ¢ by the intermediate order statistic X,,_, and
F by the empirical distribution function F),. We then get Hill’s (1975) estimator
8 " defined by

k
W=7 Z (log Xp—im —10g Xp_on) - (2.11)
=1

Hill’s estimator is usual and easy-to-explain. It can be derived through several
other approaches see [46].

In his original paper [78], Hill did not investigate the asymptotic behavior of
the estimator. It was Mason who proved the weak consistency in [94]. The
strong consistency was proved in [36] by Deheuvels, Hiusler and Mason who
gave an optimal rate of convergence for an appropriately chosen sequence k.
The asymptotic normality was established, under some extra condition on F', in
several papers such as, e.g. [23], [31], [73] and [77].

The asymptotic behavior of Hill’s estimator is given in the follows theorem

Theorem 2.1 Let X1, X, ..., X, be a iid rv with cdf F. Suppose that F € D(H.)
with v > 0. Then as n — o0, k — oo and k/n — 0
(a) Weak Consistency:

~

~H £l v as n — 00.
(b) Strong consistency: If k/loglogn — oo as n — oo, then
AT Y% s n— oo.

(c) Asymptotic normality: Suppose that the cdf F' satisfies the second-order
condition (1.39). Then

~ A
Vi@ =) i/\f<1_p,v)
provided k = k(n) — oo and k(n)/n — 0 as n — oo, and

lim VEA (n/k) = A.

n—oo

The second-order framework provides the most natural approach to the asymp-

totic normality of estimators like Hill’s estimator.



2. Estimation of the Extreme Value Index and High Quantile 41

2.3.2 The ratio estimator

A generalization of Hill’s estimator in the sense that we use an arbitrary threshold
level w,, instead of an order statistic X,,_j, in the relation (2.11), we obtain the

ratio estimator
= 108 (Xi/tn) Lx,sunt/ D Lix,>an) (2.12)
i=1 i=1

See (Goldie and Smith, 1987).

Note that Hill’s estimator and ratio estimator may also be applied to dependent
data (Novak, 2002; Resnick and Starica, 1999). Hill’s estimator is very sensitive
with respect to dependence in the data (see Embrechts et al., 1997).

2.3.3 Reduced-Bias Tail Index

The Hill estimator still stays one of the most important estimators even though
the graphs of the estimates as a function of k are not smooth and in spite of the
fact that its bias increases quickly with k. For k small they have a high variance,
and for large k a high bias. Several authors have recognized and exploited the
importance of bias reduction and the use of quantile plots in estimating v > 0
(Kratz and Resnick, 1996; Schultze and Steinebach, 1996; Beirlant, Dierckx,
Goegebeur and Matthys, 1999; Feuerverger and Hall, 1999; Gomes and Martins,
2002) among others.

New second-order “shape” and “scale” estimators allowed the development of
second-order reduced-bias estimators, which are much less sensitive to the choice
of k.

Geluk and de Haan, 1987 to be able to reduce the bias of these estimators, it is
quite useful to assume that we are working in Hall’s class of heavy-tailed models
(Hall, 1982; Hall and Welsh), where the second order condition (1.41) holds with
A(t) := ypt*. de Haan and Peng, 1998 write the Hill estimator as follows

i, A, An/K)
TR =)

with Z, = Vk (Zle Ei/k — 1), and {£;} iid. standard exponential rv’s. Con-
sequently, if we choose k such that vVEA(n/k) — X\ # 0, finite as n — oo,

Vi@ =) i’/\f<4m2>.

L—p

Z +

(1 +o0p(1)),



2. Estimation of the Extreme Value Index and High Quantile 42

We see that the dominant component of the bias of Hill’s estimator is A(n/k)/ (1 — p) =
vB(n/k)?/ (1 — p). This component can be easily estimated and removed from

Hill’s estimator, leading to any of the asymptotically equivalent estimators (Caeiro

et al., 2005), R
AR _ ﬁ E p

where p and E need to be adequate consistent estimators of the second order

parameters p and 3.

We shall consider here particular members of the class of estimators of the second
order parameter proposed by Fraga Alves et al. (2003). Such a class of estimators
may be parameterized by a tuning real parameter 7 € R (Caeiro and Gomes,
2004). These estimators depend on the statistics

T

(M“)(k)) (M(Q) k)/2> /2
(2 t2)" - (112 ) e
tn (1) ()3 0 (2 (1) 2)
%ln(Mf)(k)ﬂ) 2—§ln(M%3)( )/6)

T (k) = : (2.14)

3, 7 =0

converge towards 3(1—p)/(3— p), independently of the tuning parameter, when-
ever the second order condition (1.41) holds and £ is such that relation (2.9) holds
and vk A(n/k) — oo, as n — 0o, where

k
1
M) (k) = EZ 108(Xpnit1) — 10g(Xnn g11)) - (2.15)

The p-estimators considered have the functional expression,

() (1) _
P (k) = — min (0, %) : (2.16)

For the estimation of 3 we shall here consider the estimator developed in Gomes

and Martins (2002), with the functional expression,

2 _ k ’ %Zf:l(k) k) Nf(bl_ﬁ)(k)
0= (3) T2t G

-\ a—1
'R Ui?
(0

: (2.17)

where

1 k
(@) EZ_:
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with 7 = p (k) and
U; =i(log Xp_it1,n — log Xy—in) -

The asymptotic behavior of reduction of bias Hill’s estimator is given in the

follows theorem

Theorem 2.2 Under the second order conditions, let us consider the tail index
estimators 755 (k) with B and p consistent for the estimation of 8 and p, respec-
tively, both computed at the level ki of a larger order than the level k at which
we compute the tail index, and such that p— p = op(1/Inn). Then

VE (352 (k) = 7) 5 N (0.97),
even if VEA(n/k) — X # 0.

2.3.4 General Case 7 € R: The Pickands Estimator

The simplest and oldest estimator for 7 is the Pickands estimator (1975):

~P . 1 Xn—k,n - Xn—Qk,n
N, = log :
10g 2 Xn—2k,n - Xn—4k,n

(2.18)

We shall give weak consistency and asymptotic normality of 77 .

Theorem 2.3 Let X, X,,...,X,, be a iid rv’s with cdf F. Suppose that F €
D(H,) with v € R. Then as n — oo, k — oo and k/n — 0.
(a) Weak Consistency:

~p P
Ay =Y as n — oo.

(b) Strong consistency: If k/loglogn — oo as n — oo, then
AP Y%y as n — oo,

(c) Asymptotic normality: Suppose that U has a positive derivative U and
that £t*7U'(t) (with either choice of sign) is lI—varying at infinity with auziliary
function a. If k =o0(n/g" (n)), where g (t) := 327 (U'(t)/a(t))?, then
\/E(;y\f—’y) i./\/'((),nz) asmn — oo,
where
772 _ 72 (22'y+1 + 1)
C(2(20 —1)log2)*
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A detailed account on Pickands’ estimator (with different conditions on cdf F
and various examples) as well as the proofs of the results of Theorem 2.1 are to
be found in [38]. A full generalization of Pickands’ estimator has been introduced
in [126] as follows:

1 Xn—k,n - an[uk},n

~PG ~PG
R kiu,v) = .1o
g " ( ) lOg v & Xn_[q;k],n - Xn—[uvk],n

, (2.19)

where u, v are positive real numbers different from 1 such that [uk], [vk] and
[uvk] don’t exceed n. For u = v = 2, we have 3L and for u = v = ¢ € N\ {0, 1},

we obtain the Fraga Alves generalization introduced in [50].

2.3.5 Moment Estimator

Next we want to develop an estimator similar to the Hill estimator but one that
can be used for general v € R, not only for v > 0. In order to introduce the
estimator let us look at the behavior of the Hill estimator for general . We look
at a slightly more general statistic.

An immediate problem with applying the Hill estimator for the case v < 0 is
that U(oo) < 0 is possible, in which case the logarithm of the observations is not
defined. . In 1989, Dekkers, Einmahl and de Haan proposed in [39] an extension
to any type of distributions, called moment estimator, is given by the following
estimator:

|
Al =M +1- 3 (1 — (M) /M;”) . (2.20)

The asymptotic behavior of 3 is investigated as well.

Theorem 2.4 Let X1, X5,..., X,, be a wtd r.v. with cdf F. Suppose that F €
D(H.,) with v € R. Then as n — oo, k — oo and k/n — 0
(a) Weak Consistency:

M Ll v asn — 0.

(b) Strong consistency: If k/ (logn)’ — oo as n — oo, for some § > 0, then
AM 2%y as n — oo.

(c) Asymptotic normality:

\/E(%W—v) iN(O,nz) asn — 0o,
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where

720

) 1+ 2,
n? = = B
(177 (- 2) (4~ 813 + Gy o7 <0

Remark 2.1

1
A =AM M =1 - (1 — (MO /M@) . (2.21)

2.3.6 Kernel Type Estimators

A major drawback of the estimators above is the discrete character of their
behavior in the sense that increasing k£ by 1, can change the actual value of the
estimate considerably. In 1985, using a kernel function K, Csorgd, Deheuvels
and Mason [25] proposed a smoother version of Hill’s estimator (denoted by 7)

and proved its consistency and asymptotic normality:

X« n—1 i i 1/h
K (h) = ZEK <%) (log Xp—it1n — log X,_in) / /O K (u)du. (2.22)

where h > 0 is called bandwidth and K is a non-negative, non-increasing and

right continuous function on (0, 1) such that [° K (u) du = 1 and [;° K~/ (u) du <
oo. It is obvious that fol/h K (u) du can be replaced by (=) STK (). No-
tice that, using the uniform kernel K = 11y and h = k/n, we obtain the Hill

estimator 77 as a special case.

The kernel type estimator depends in a continuous way on the bandwidth h
representing the proportion of top order statistics used. Hence, plotting 3% as
a function of h yields a smooth figure as opposed to the zigzag figure resulting
from plotting any of the previous estimators as a function of k.

Unfortunately, 3 can, similarly to 2, only be used for the estimation of positive
extreme value indices. For an investigation of the asymptotic properties of 7%
with a discussion of the restrictions (on F' and K ) under which the asymptotic
normality is established, we refer to [25] where it is also shown that it is possible
to improve the (asymptotic) variance by choosing appropriate kernels. For a
complete analysis of 7% and other kernel type estimators, one may e.g., consult
28] and [125]. The generalization of 3 to the estimation of any real-valued

tail index is made by Groeneboom, Lopuhad and de Wolf in [68] where they
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introduce a new kernel type estimator (to be denoted by %) that inherited the

smooth behavior of 3% as well as the general applicability of 7.

/'777‘?/ = /'775 (h) = /ipos -1+ (21\7(12)) / (ijzl)) ) (2-23)
where
gy i
Aos::/\os h) = - K — 1 Xn—i n_l Xn—in >
Fpos 1= Apos () ;n h(n>(0g 10— log Xosin)
< (i\* (i
61\7(11) = a\le) (h) = Z <_) K (_) (1Og Xn—i+1,n - IOg Xn—i,n) )
i=1 "/ n
n—1

d «
%2) = 977(12) (h) = ; o [uh+1 K (u)}u:i/n (log Xp—iv1n — log Xn_in),
with K, (u) = K(u/h) /h and a > 0. Here K is a kernel function null outside
(0,1) and satisfying K, K" and K” bounded, K(1) = K'(1) = 0, fol K(u)du =1
and fol u* 'K (u) du # 0. Notice that the first term in (??) is (almost) ¥¥. The

basis of the construction of 3" is the von Mises condition

The full description of the way 7 is derived, is given in [68] where consistency

and asymptotic normality are established.

2.4 The choice of k in Hill’s estimator

The choice of the optimal threshold or corresponding k is however a difficult
problem and has been studied by many authors, as discussed in Beirlant et al.
(2004), Markovich (2007) [93] and Meragni (2008) [100]. In this thesis we are
interesting only with algorithm of Cheng and Peng (2001) for esteablished this
fraction.

Note that, the asymptotic normality of Hill’s estimator is used to construct
(asymptotic) confidence intervals for the EVI 7 of a cdf F' belonging to Hall’s
class. Indeed, we have that (see, e.g. Hall, 1982)

VEGT=7) SN (097, as n— oo,
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iff k = o (n=2/1=20)) | Thus, for 0 < a < 1 the one-sided and two-sided intervals

of confidence level (1 — «) are respectively

aH
[1 (Oé) = (07;}77? +2aﬁ) )

and o o
I (a) == (% — Zapr e A+ Za/zh) ;

vk Vk
where z, (0 <w < 1), is defined by P (N (0,1) < z,) = 1 — w, i.e. z, is the
(1 — w)-quantile of the standard normal distribution. It is shown in Cheng and

Peng (2001) that the corresponding coverage probabilities are

POEhe)=izazolz) { 1;%2 B (ﬁc;)ﬂ (%)p}” (% vk (%Y)

and

PWG[?(O‘))=1—a+0(%+\@<%>p).

By minimizing the absolute coverage error for I; (), Cheng and Peng (2001)

propose an optimal sample fraction

2 1/(1=p)
((1;2;&()1(1 —2/7))> 0= if 4> 0,
—oacfp (Ll —2p

5 1/(1=p)
((1 + 2;§)p(1 - p)) n=/0=0) if d < 0.
c’p

Notice that it is readily verified that k* = o (n=%/(!=2/)) . Since k* depends on
quantities characterizing the unknown cdf F, Cheng and Peng (2001) introduce

a plug-in estimate

o\ /0-D)
( (1+2z,) nP0-9) i §0,
Fro={ \30(1—2p) i (2.24)
2 -P
((1 i 2Aza>> n=P/A=P) if §<0
—36
where
M (n/ (2vIogn)) — 2 {M (n/ (2vIogn)) }
p:= —log /log2,

M (n/viogn) - 2 {M" (n/@)}Q
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and

() 2 ()
/5\ — (1 . ﬁ) (lOg n)fﬁ/Q Viogn Viogn

with M{” is given by equation (2.15).

2.5 POT Procedure

The POT is a statistical methodology very largely used in tail index and high
quantile estimation. It is a central approach in the statistical analysis of extreme
events and consists in using the GPD (defined by (1.15)) to approximate the
distribution of excesses over a given (sufficiently high) threshold. Formally, this
approximation is expressed by equation (1.33) of Theorem 1.18, which is a key
result in the theory of extreme values. It makes a connection between the GEVD
and the GPD and explains the importance of the latter distribution. This useful

concept in the statistics of extremes schematically works as follows:

e Step 1: Select a high threshold w.

e Step 2: Fit a GPD to the excesses over u in order to get estimates for the

shape and scale parameters v and o.

In the statistical literature, there exist several contributions on this modelling

approach. For a detailed account, we refer the reader to the fundamental paper
[77].

2.5.1 Fitting the GPD

Let (X, ..., X,) be a sample from a rv X with continuous cdf F' € D(H,).Fix a
high threshold u and select, from the sample, only those observations X;,, ..., X,
that exceed u. A GPD with parameters v and o = o(u) is expected to be a good
approximation of the cdf F, (defined by (1.12)) of the N, excesses

V=X, —u>0,j=1,2,...,N,.

Fitting a GPD to these excesses amounts to estimating parameters v and o based
on Yi, ceey YN

w
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2.5.2 Estimating GPD Parameters

ML estimation

As we applied two parameter estimation methods to GEV in Section 2.5, we use
both two methods in the parameter estimation of GPD model. In case v # 0,

the likelihood function can be obtained directly by

L((7,0)| X) := ij E (1+ %)_W—l} .

The log-likelihood function is

N
1 - ‘
(00) | X)i= ~Nono = (241) Yo (14 7)
7 i=1 g
Taking partial derivatives of [ ((y,0) | X) with respect to v and o, we obtain

N, : Nu
{ o% Zj:l In (1 + %) — i of-@yj =0

)

Nu ;
—Nu+ (1 +7) Zi:1 af;yj =0

where y1, ..., yn, is a realization of Y, ..., Yy, . MLE (Jy,,0y,) of (7, 0) as a solu-
tion of this system of equations. Notice that this system does not have explicit
solutions and hence numerical methods are required to compute the estimate val-
ues Yy, and oy, . In Theorem 3.2 of [117], Smith shows the asymptotic normality

of (An,,0n,) provided v > —1/2. Specifically we have

VN, ( jN“ -7 ) L N5 (0,Q7Y) as N, — oo, (2.25)

ON, — O

where

Q'i=(1+7) ( 1_+17 _21 > , (2.26)

and N3 (g,w) stands for the bivariate normal distribution with mean vector e
and covariance matrix w. With this result, confidence intervals for parameter

estimates are easily constructed.

PWM estimation

Similarly to the estimation of the GEVD parameters (see Subsection 2.3), Hosk-
ing and Wallis [78] proposed a PWM approach for the GPD parameters based
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on the following quantities:
w, (v,0) =F [X@;U (z)] forr=1,2

where X has G, , as a cdf. Solving for r = 0 and 1, we immediately obtain

Wy — 4’[1)1 . 2’(1)011)1

= ,O = .
7 Wo — 2’(1)1 Wo — 2’(1]1
Replacing wy and w; by the respective empirical moments yields the PWM

estimators 7 and o of the GPD parameters.

Estimating Distribution tails

By setting © = u + y in relation (1.31), we may write the distribution tail as

Fa)=F,(r—u)F(u), u<x<az* (2.27)
This means that estimates of the conditional tail F',, (x — u) and F (u) are needed
in order to obtain an estimate for the (unconditional) tail F' (z). After, we com-
pute (by one of the above methods) estimates 7, and o, for 7 and o respectively
and by virtue of (1.33), we can estimate F, (x — u) by
r—u

—1/7u
u(x—u)::G%ﬁu(m—u):<1+%A—) Ju<awz <zt
Oy

=)

A natural estimate of F' (u) is given by the sample edf or the empirical probability

of exceedance

IS N, .
Fn(u>zﬁzl{X>u}:77u<x

=1

%(u) =

Putting all this together results in the following form for the distribution tail

estimate

Nu =N _ 71/:?”
@ =" (142520 o< (229)
n

Oy

=)

It is important to stress that this estimator is only valid for = > w.

2.5.3 Threshold Selection

The POT procedure supposes the existence of a suitable high threshold u for

which the approximation of theorem (1.17) is good and above which we still have
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sufficient data to obtain accurate estimates for the shape and scale parameters.
The choice of such a threshold is subject to a trade-off between bias and variance.
Indeed, a value of u too high results in too few exceedances and consequently
the estimators will have high variances and conversely if u is too small, then too
many exceedances will make approximation (1.33) poor and the estimators will
become biased. Therefore, the threshold has to be selected in an optimal manner.

One tool of immediate use is available for this purpose. It is the emf-plot
{(uy e, (w): X1 <u< Xpnt.

where e, (u) is the empirical mef defined in (2.2). As we saw in Proposition 1.6,
the emf of a GPD is linear in u. Therefore, we have to check the linearity of
the plot above and choose u such that e,(x) is approximately linear for z > wu.
In other words, we select as threshold the value beyond which the emf-plot is
(almost) linear. It is also common practice to fix threshold u at the (k + 1)th
largest observation X,,_j, and the problem becomes a matter of which value of

k to take as an optimal choice.

2.6 Estimating High Quantiles

In the analysis of extremes, one is mainly concerned with the estimation of
quantities related to rare events. In many areas of application, like for instance
insurance, finance, hydrology and statistical quality control, a typical require-
ment is to find values, large enough, so that the chances of exceeding them are

very small. We are then interested in estimating high quantiles.

Definition 2.7 For the continuous cdf F' (x) the quantile v = x,, of level (1 — p),
p € (0,1), is the solution of the equation

1—F(z)=p.

The value x), is the point that is exceeded with probability p. Using the functions
introduced in definition 1.9, we define the (1 — p)-quantile of F as

zp=F"(1-p)=Q1—-p)=U(l/p). (2:29)
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2.6.1 Quantile Estimation

High quantile estimation plays an important role in the context of risk manage-
ment where it is crucial to evaluate adequately the risk of a big loss that occurs
very rarely. The main difficulty of this estimation is due to the fact that when
p is very small, the point z,, is beyond the range of the sample (Xi, ..., X,,) with
drawn from an unknown cdf F.
As we use asymptotic theory, p must depend on the sample size n i.e., p =: p,.
Two cases are possible for x,, within and outside the sample.
If p, — 0 with np, — ¢ € [1,00] as n — oo, the (1 — p,)-quantile is within the
sample, and
if p, — 0 with np, — ¢ € [0,1) as n — oo, the (1 — p,)-quantile is outside the
sample.
In other words, the within-sample estimation is possible up to the (1/n)-quantile
whereas for p < 1/n, quantile estimates are beyond the range of the data. The
latter case is the most relevant for purposes of real-life applications.
For the first situation, we have Q, (s) = X,_it1,, then with s = 1 —p =
1—(i—1)/nfori=2,..,n, weget

Qn (1 — @) =X it1n, 0 =2,...,0.

n

Hence, X,,_; 11, seems to be a natural estimator for the (1 — @:L—D>—quantile.
In the second case, we have to infer beyond the limits of the sample by extrapo-
lating from intermediate quantiles. Obviously, this cannot be done without some
kind of information on the tails of the distribution. An accurate modelling of
the distribution tails is then needed. In other words, a good estimate of the tail
index is essential to the process of extreme quantile estimation.

Since estimating high quantiles is directly linked to estimating the EVI, one
would expect to find, in the literature, as many quantile estimators as there are
tail index estimators. Moreover, confidence intervals for the quantile estimates

are easily constructed since the proposed estimators are asymptotically normal.

Finally, endpoints (in case they are finite) are estimated as quantiles of order 1.

2.6.2 EVT-based Estimators

The GEVD Hy, defined in section 2.2, is used to derive estimators for high
quantiles based on a sample (X, ..., X,,) with drawn from cdf F.
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Case where [ is exactly Hy
The (1 — p)-quantile ;, = Hy (1 —p) is naturally estimated by H5 (1 —p). That

1S

, (2.30)

[ a-2(1-(log(l—p) ) it #0
’ ji — G log (—log(1 —p)) if v =0
where § = (7, i, 0) is either obtained by the ML or the PWM methods discussed

in section 2.2. When v < 0, the endpoint is finite. It may be estimated by

A~

=

=) Q)

Case where F' € DA(Hy)

Using relation (1.6) with large v = a,x + b,, we get a tail estimate of the form

~ -1/5
= 1 _u—b,

Qn,

where 7, gn and a, are appropriate estimates (based on the k upper order statis-
tics Xp—kt1ms .-, Xnn) Of the tail index v and the norming constants a,, and b,
respectively. In case the (1 — p)-quantile is within the range of the observations
(i.e. p>1/n), it readily can be estimated by

-5
Tp = an—(n ) + bn

=)

For the more typical case of outside the sample estimation (i.e. p < 1/n), we
use a subsequence (n/k), where k = k,, — oo and k/n — 0 as n — oo.

Assuming, for notational convenience, that n/k is integer, we get

More details on this approach with the estimation of the norming constants can
be found in Sections 6.4.1 and 6.4.3 of [46].
When v < 0, the endpoint is finite. It may be estimated by

~ T Qn /L

T _bnk_ - .
/ g

Next, we define large quantile estimators that are associated to the semipara-

metric estimators of the EVI v introduced in section 2.3.
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Weissman discussed in [123] the estimation of high quantiles for each one of
the three standard extreme value distributions of Fisher-Tippett theorem 1.5
separately. For the Frechet class (y > 0), the Weissman-type estimator of the

(1 — p)-quantile takes on the following form:

W = X (ﬁ)% (2.31)
D c— n—k,n np ) .

where 7,, is some consistent estimator of the tail index , often taken to be equal
to Hill’s estimator 7 resulting in the classical Weissman quantile estimator

~H

W .= X (ﬁ)% (2.32)
P = n—k,n np . .

The asymptotic properties of this estimator are discussed and confidence inter-
vals constructed under some conditions on F), k and p in, e.g. [90] and [95].

By observing that equation (2.31) may be rewritten into

~ k an N
U(t) = (E) X" t > n/k,

we readily obtain the following Weissman estimator for the distribution tail

Fla):
F(z) = (%) (X)o7, (2.33)

The estimator /x\,(,RB) of the (1 — p)-quantile linked to reduced of bias estimator
3B is derived in [65] (where a full analysis, with several asymptotic results

and examples, is to be found) and is of the following form:

FiE FRE 15 SRBJ p
F(RB) _ Xn*[k/2]:n — Xn—kin ( k ) % (1 . Q(W p) —1 % Y B(n/k) ) 7

D - AR _ n_p 9RE b\

where 778 5, 3 are estimators of -y, p, 5 respectively, are given by formulas (2.13),
(2.16) and (2.17) respectively.

The estimator 2 of the (1 — p)-quantile linked to Pickands estimator )
is derived in [38] (where a full analysis, with several asymptotic results and

examples, is to be found) and is of the following form:

~(P)
:L‘;(ap) = Xn—kt1n + ( l?[/ )2—6(13) (Xn—t+1 = Xn2irin) (2.34)
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When v < 0, the endpoint is finite. It may be estimated by

Xn— n - n— n

(P :

2_’7n ) J— ]_
Similarly, the quantile of order (1 — p) is estimated in [37], on the basis the

/{E\;P) = ankJrl,n +

moment estimator %M), by
_g(M

)
np/k) —1 ank,nMgml)
M) © (%M)>

<>—{ b=t
Tl -y <o
(M)

Actually, 4» "’ could be replaced by any consistent estimator of v in (2.36),

RN = X, gt (2.36)

where

leading to a more general estimator for x,. Asymptotic results are established
in [38] provided various conditions on F', k and p. This enables us to construct
confidence intervals for z,. When v < 0, the endpoint is finite. It may be
estimated by

M = X, g+ (1= 1/38) X, MO,

n

2.6.3 POT-based Estimator

One of the advantages of the POT procedure is that it gives simple quantile
estimators for different thresholds. Indeed, for a fixed threshold u, an estimator

of quantile x, > u results immediately by inverting the tail estimate formula

(2:20)
- Ou (M)”“
Tp=u+ — — -1].
Vu np

Furthermore, the endpoint, in case it is finite (v < 0), is estimated by

N Ou
= — —.
Tu

In practice, we usually fix u at the (k + 1)th largest observation X,,_, and a
GPD is then fitted to the k excesses (X,—k+10—Xn—kn); s (Xnn—Xn—kn). The
resulting estimators of parameters v and o are respectively denoted by 77°7 and

70T, In this case, the quantile estimator is of the following form:

POT

—por _ 5 Fror k Bl X y
Z, = Xp—kn T /W\PW n_p - ,p < k/n.
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The finite endpoint is then estimated by

aPOT
~«POT ,__
T = Xn—k,n — ,’y\PW

2.7 Estimating of the Location Parameter u

Usually, the mean or the location paramater u = F X, is naturally estimated by
the sample mean X,,, which by the Central Limit Theorem ( TCL) is asymptot-
ically normal. Whereas for v € (1/2,1), X; has infinite variance and therfore
the TCL is not valid anymore.

2.7.1 EVT Procedure: Estimator of Peng

In 2001, Peng [106] proposed an estimate of the mean as follows. For each n > 1,

we have
1
o= / Q(s)ds
0

1-k/n 1
:/ Q(s)ds+ Q(s)ds
0 1-k/n
= D2,
Then, Peng estimator of y is defined as follows
=+, (2:37)

where @(11) is the trimmed-mean of the sample X, ..., X, is defined by

N 1
Al = - ZXi,na

and " o
~@2)._ I~ Tn
My = n n—k+ln~p — 17

n

is an estimator of /Af), where 7 is the Hill estimator of the index ~ given by

equation (2.11).
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2.7.2 GPD Procedur: Estimator of Johansson

An alternative way to estimate p may be made by GPD’s approximation ( see
Johansson [58] ).

Indeed, for each n > 1, we have

n= [ adpia)

:/ vdF (2 +/joxdF
:/0 vdF(z /0 (t + wn)dF((t + u,))

= M:+Tn7

where

e = / rdF (z) and 7, = —/ (un + t)dF (u, +t).
0 0

Johansson’s estimator of y is given by

A = / 2dF(z) — / (t + £)dF (uy, + 1),
0 0

where F), is the empirical distribution function pertaining to the sample Xy, X, ..., X,
and F(u,+-) is the estimator of distribution tailed F'(u,+-). Integrating the last
quation, we get

Ay =g 4 T, (2.38)

where

A~ 1 - ~ A~ An
= - ZXi]-{Xi<un} and 7, = pn <un + d = ) )
L - 1=

with p,, = (ZLI 1{X¢2un}) /n is an estimator of p, = P (X > u,) and 7,7, is

estimators of 7, o respectively.



Chapter 3

Financial Risk and Heavy Tails

3.1 Introduction

The measurement of financial risk has been one of the main preoccupations of
actuaries and insurance practitioners for a very long time. Measures of financial
risk manifest themselves explicitly in many different types of insurance prob-
lem, including the determination of reserves or capital, the setting of premiums
and thresholds (e.g., for deductibles and reinsurance cedance levels), and the
estimation of magnitudes such as expected claims, expected losses and probable
maximum losses, they also manifest themselves implicitly in problems involv-
ing shortfall and ruin probabilities. In each of these cases, we are interested,
explicitly or implicitly, in quantiles of some loss function or, more generally, in
quantile-based risk measures.

Very many risk measures are proposed in the literature, the differences between
them are the properties that they satisfy. Value at Risk (VaR) is one of most
popular risk measures, due to its simplicity. VaR indicates the minimal loss
incurred in the worse outcomes of the portfolios. But this risk measure is not
always sub-additive, nor convex. To overcome this, Artzner, Delbaen, Elbner and
Heath (1999) proposed the main properties that a risk measures must satisfy,
thus establishing the notion of coherent risk measure.

After coherent risk measures and their properties were established, other classes
of measures have been proposed, each with distinctive properties: convex (Follmer
and Shied, 2004), spectral (Acerbi, 2002) or deviation measures (Rockafellar et
al. 2006).

Spectral risk measures are coherent risk measure that satisfies two additional

58
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conditions. These measures have been applied to futures clearinghouse margin
requirements in Cotter and Down (2006). Acerbi and Simonetti (2002) extend
the results of Pflug and Rockafellar-Uryasev methodology to spectral risk mea-
sures.

A description of the axioms of risk pricing measures with many applications to
insurance can be found in Wang, Young and Panjer (1997), and in the monograph
by Kass, Goovaerts, Dhaene and Denuit (2001). The concept of distorted risk
measures evolved from this line of work and ties in with the notion of capacity.
Capacities are non-additive, monotone set functions which extend the notion of
integral in a peculiar way. The evolution of this concept, from Choquet’s work
in the 1950’s until the 1990’s can be traced back from the review by Denneberg
(1997).

This chapter provides an overview of the theory and estimation of these risks
measures, and of their applications to insurance problems, focusing mainly on
the VaR, coherent measures, spectral measures and distortion measures. In this
chapter, we present estimates, based on EVT and POT method, for three major
measures of market risk, namely the VaR, the CTE and the return level. Then,
we use EVT results to derive an asymptotically normal estimator for the CTE

for a loss distribution and we are establishing its confidence bounds (see [104]).

3.2 Types of financial risks

Financial institutions such as banks, hedge funds, and (re)insurance companies
are exposed to several types of financial risks. Generally, they are classified into
market risks, credit risks, liquidity risks, operational risks and legal risks. In
a broader perspective, however, each of these corporations faces more general
risks too, such as business risks and strategic risks. However, the daily business
of financial institutions is concerned with managing an enormous number and
variety of financial transactions and thus the financial risks are of key interest to
the financial industry. The following description summarises the characteristics
of the various financial risks.

Credit risk. This risk arises when a counterparty may fail or might be unwill-
ing to meet its obligations and thus causes the asset holder to suffer financial
loss. This class includes: downgrade risk, which refers to the risk that a coun-

terparty might be downgraded by a rating agency; sovereign risk, which refers
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to the default of a country; and settlement risk, which arises when there is non-
simultaneous exchange of value (Bustany 1998).

Operational risk.This risk results from mistakes or failures in internal opera-
tions. It covers a wide area that can be divided into human/technology errors
such as management failure, fraud, flawed system implementation, conducting
business in an unethical or risky manner, and risks that are outside the control
of the firm such as natural disasters and political or regulatory regime changes
(Allen, Boudoukh, and Saunders 2004).

Legal risk. This risk is related to the legal uncertainties arising when a coun-
terparty does not have the regulatory authority to enter financial transactions.
It could also include activities that contravene government regulations, such as
market manipulation and insider trading (Jorion 1997).

Liquidity risk.This risk consists of market/product liquidity risk and cash
flow /funding liquidity risk. The latter relates to the inability to raise the neces-
sary cash to roll over debt, or to meet the cash, margin, or collateral requirements
of counterparties. Market/product liquidity risk is related to trading risk and
arises when a financial institution is unable to execute a transaction in the pre-
vailing market conditions. It may occur during market turmoil when liquidity
dries out and the bid-ask spread increases dramatically. This risk is difficult to
quantify and varies across market conditions (Crouhy, Galai, and Mark 2001).
Market risk. This risk arises from financial transactions and can be defined as
the risk resulting from adverse movement in market prices. There are four major
types of market risk (Basle Committee on Banking Supervision1996): Interest

rate risk, Equity risk, Foreign exchange risk and Commodity price risk.

3.3 Risk Measure

Financial institutions have to regularly assess their capital adequacy to cover
losses by reporting a number which reflects the minimum loss of their portfolio.
In the past, people used to measure this loss by calculating the mean and vari-
ance. Unfortunately, these classical measures do not provide much information
about extreme outcomes. Recently, in the early 1990’s, new more reliable risk
measures, like the VaR or the CTE, have been introduced by a number of world

financial institutions (J.P. Morgan, Bankers Trust,...).

The Return Level is another basic risk measure, mainly used to assess building
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regulations for nuclear plants, dams, sea dykes, bridges,... Based on the largest
observations of loss, all these measures are functions of extreme quantiles of loss
distribution. Those whose are interested in full description of financial risk are
referred to [16].

Risk measure can be formally described with the following definition.

Definition 3.1 Let (2, A) a space mesurable where Q) is the outcome space and
A is a o—algebra defined on it. A risk is a random variable defined on (€2,A),
that is, X : Q@ — R is a risk if X *((—o0,x]) € A for allz € R. A risk represents
the final net loss of a position (contingency) currently held. When X > 0, we

call it a loss, whereas when X < 0, we call it a gain.
The class of all random variables on (€2,.4) is denoted by X

Definition 3.2 Any mapping p : X — RU oo is called a risk measure. In case

plX| = +o0, we say that the risk is unacceptable or non-insurable.

3.4 Coherent Risk Measure

A risk measure is said to be coherent in the sense of Artzner et al. [5], [6] if it
obeys the four properties or axioms that we now list.
Axiom T. Translation invariance: for all X € X and all real numbers a, we
have

p(X+a)=p(X)—a. (3.1)

Translational invariance requires that the addition of a sure amount reduces pari
passu the cash still needed to make our position acceptable, and its validity is

obvious.

Remark 3.1 Aziom T ensures that, for each X, p (X + p (X)) = 0. This equal-

ity has a natural interpretation in terms of the acceptance set associated to p.
Axiom S. Subadditivity: for all X;, X, € X
p (X1 + X5) < p(X1) + p(Xa). (3:2)

The subadditivity is the key property, this tells us that a portfolio made up of
sub-portfolios will risk an amount which is no more than, and in some cases less

than, the sum of the risks of the constituent subportfolios.
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Axiom Ph. Positive homogeneity: for all A > 0 and all X € X, p(AX) =
Ap (X).

Positive homogeneity implies that the risk of a position is proportional to its scale
or size, and makes sense if we are dealing with liquid positions in marketable
instruments.

Axiom M. Monotonicity: for all X and ¥ € X with X < Y, we have
p(X) < p(Y).

Monotonicity means that if Y has a greater value than X, then Y should have
lower risk: this makes sense, because it means that less has to be added to Y

than to X to make it acceptable, and the amount to be added is the risk measure.

Subadditivity axiom is the most important criterion we would expect a ‘re-
spectable’ risk measure to satisfy. It reflects our expectation that aggregating
individual risks should not increase overall risk, and this is a basic requirement

of any ‘respectable’ risk measure, coherent or otherwise.

3.5 Representation of Coherent Risk Measures

by Scenarios

These four axioms define the coherent measures of risks, which admit the fol-

lowing general representation:

Proposition 3.1 Given the total return r on a reference investment, a risk
measure p is coherent iff there exists a family P of probability measures on the
set of states of nature, such that

p(X) = ;telng [—X/r], (3.3)

Thus, any coherent measure of risk appears as the expectation of the maximum
loss over a given set of scenarios (the different probability measures P € P). It
is then obvious that the larger the set of scenarios, the larger the value of p(X)
and thus, the more conservative the risk measure.

The axioms of coherent risk measures have been very influential. These coherent
risk measures can be used as capital requirements to regulate the risk assumed by
market participants, traders, and insurance underwriters, as well as to allocate
existing capitals. But we should realize that not all coherent risk measures are

reasonable to use under certain practical situations.
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Coherent risk measures were extended in general spaces by Delbaen [41].

Later were extended to convex risk measures, also called weakly coherent risk
measures by relaxing the constraints of subadditivity and positive homogeneity,
and instead requiring the following weaker condition:

Convexity (C):

pOAX + (1= NY) < Ap(X) + (1= Np(Y), A € [0,1].

Definition 3.3 A map p : X — R will be called a convex risk measure if it
satisfies the condition of convezity (C), monotonicity (M), and translation in-

variance (T).

Definition 3.4 A map p: X — R satisfying the Subadditivity (S), Positive

homogeneity (Ph), and the following two azioms

(SH) Shift-invariance: p(X +m) =p(X),VX € X, m e R
(N) Nonegative: p(X) > 0,VX € X,

are called deviation measures.

Standard deviation and semi-standard deviation are typical examples of this
kind. Deviation measures and coherent risk measures are in fact mutually in-
compatible: there is no function can satisfy axioms (C) and (SH) at the same

time.

3.6 Some Example of Risk Measures

Variance and standard deviation have been traditional risk measures in eco-
nomics and finance since the pioneering work of Markowitz. The two risk mea-
sures exhibit a number of nice technical properties. For example, the variance
of a portfolio return is the sum of the variance and covariance of the individual
returns. Furthermore, variance can be used as a standard optimization function.
Finally, there is a well established statistical methods to estimate variance and
covariance. However, variance does not account for fat tails of the underlying
distribution and therefore is inappropriate to describe the risk of low probability
events, such as default risks. Secondly, variance penalizes ups and downs equally.

Moreover, mean-variance decisions are usually not consistent with the expected
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utility approach, unless returns are normally distributed or a quadratic utility
function is chosen.

In the following, we shall consider some other familiar risk measures.

3.6.1 Value at Risk (VaR)

Value at Risk (VaR) was originally identified by the Group of Thirty (1993),
a working group of academics, end-users, lawyers, dealers and financiers, whose
major recommendation was to value positions on mark-to-market principles. It
became popular in 1994 as the US investment bank J.P. Morgan made avail-
able to the public their own risk measurement system, called Risk Metrics (J.P.
Morgan 1996).

Jorion (1997, p.19) gives the following definition of VaR.

Definition 3.5 The risk measure VaR is summarises the expected maximum

loss (or worst loss) over a target horizon within a given confidence interval.
Using statistical language for the VaR.

Definition 3.6 (Quantile, VaR) Lett € (0,1) be fized and X be a real rv with
df F in a probability space (2, A, P). We then call

VaR, (v) = Q; (z) = F' (1), (3.4)
the t-quantile of X. The VaR at confidence level t of X.

Remark 3.2 The VaR is translation invariant, positive homogeneous and monotone.
However, the subadditivity property (Azxiom S) fails to hold for VaR in general,

so VaR s not a coherent risk measure.

Remark 3.3 In fact, VaR s only subadditive in the restrictive case where the
loss distribution is elliptically distributed, and this is of limited consolation be-
cause most real-world loss distributions are not elliptical ones. The failure of
VaR to be subadditive is a fundamental problem because it means, in essence,
that VaR has no claim to be regarded as a ‘true’ risk measure at all. The VaR

1s merely a quantile.
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In practice, VaR(X) can be interpreted as the minimal amount of capital to
be put back by an investor in order to preserve his solvency with a probability
of at least t. However, standard deviation lacks the ability to describe the rare
events and VaR is criticized because of its inability to aggregate the risk in a
legal manner.

It is inappropriate to use VaR in practice because of its nonconvexity. It can
have many local extremes, which will lead to unstable risk ranking. VaR is a
model dependent risk measurement because, by definition, it depends on the
initial reference probability.

At the latest in 1999, when coherent risk measures appeared, it became clear that
VaR cannot be considered as an adequate risk measurement to allocate economic
capital for financial institutions. In spite of this, as a compact representation of
risk level, VaR has met the favor of regulatory agencies to measure downside
risk and has been embraced by corporate risk managers as an important tool in

overall risk management process.

3.6.2 Conditional Tail Expectation (CTE)

The CTE measure (also known as Tail-VaR or expected shortfall) is the condi-
tional expectation of a loss variable X given that X exceeds a specified quantile
(e.g., VaR;). In other words, it measures the expected maximum loss in the
100% worst cases, over a given period.

The CTE because of these properties it has become a popular risk-measuring
tool in insurance and finance industries. For example, use of the CTE for de-
termining liabilities associated with variable life insurance and annuity products
with guarantees is recommended in the United States (American Academy of
Actuaries 2002) and required in Canada (Canadian Institute of Actuaries 2002).

Definition 3.7 The Conditional Tail Expectation (CTE) at level t will be de-
noted by CTE,[X], and is defined as

CTE,{X|=FE[X | X > VaR(X)],t € (0,1). (3.5)
Equivalently,
CTE;[X] =VaRy(X)+ E[X — VaR(X)],t € (0,1).

This risk measure can be interpreted as the expected value of the shortfall in case
the capital is set equal to VaR,(X) — t.
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This CTE risk measure is very familiar to actuaries, although it is usually known
in actuarial circles as the Expected Tail Loss, Expected shortfall, Conditional
VaR, Tail Conditional VaR, and Worst Conditional Expectation.

Proposition 3.2 The Conditional Tail Ezxpectation (CTE) is a coherent risk

measure.

Definition 3.8 We assume that, the df Fx is continuous. Then, theThe Con-
ditional Tail Expectation (CTE) is defined by

CTE,[X] = % /t VaR, (z) dr. (3.6)

Note that the CTE; is always larger than the corresponding quantile.

3.6.3 Return Level

To define the return level, we use the block maxima observed over successive non
overlapping time periods of equal length [ (mostly consisting of one year), the
distribution of the maxima is the (general) GEVD H,.

Definition 3.9 The return level is
R, =R,(l)=Hy; (1—1/m),m > 1. (3.7)
is the expected level to be exceeded in one out of m periods of length .

R,, is a conservative risk measure. It measures the maximum loss of a portfolio.
If | = 1; a value of Ry equals 5% means that the maximum loss observed during

a period of one year will exceed 5% once in twenty years on average.

3.7 Modeling Tails and Measures of Tail Risk

As we are particularly interested in the extreme risks faced by the clearinghouse,
we model extreme returns using an Extreme Value (EV) approach. Perhaps
the most suitable of these for our purposes is the Peaks over Threshold (POT)
approach based on the Generalized Pareto distribution (GPD).
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3.7.1 Tail probabilities and risk measures.

Assuming that w is sufficiently high, we observe that under equation (2.27), the

distribution function for exceedances is given by: for x > wu,

o

Fute) = F ) (1447 “)/

which, if we know F'(u), gives us a formula for tail probabilities. This formula
may be inverted to obtain a high quantile of the underlying distribution, which
we interpret as a VaR;.

We will now derive analytical expressions for VaR; and CTE,; defined respec-
tively. For ¢ > F(u) we have that VaR is equal to

o 1—t\ "
VaRt:@t(F):u—i—;((F(u)) —1) (3.8)

Next, we may rewrite the The Conditional Tail Expectation as follows

CTE[X] = VaR(X) + E[X — VaR,(X) | X > VaRy(X)],t € (0,1), (3.9)

where the second term on the right is the mean of excess distribution Fy,.g,(y)
over the threshold VaR;. It is known that the mean excess function for the GPD

with parameter v < 1 is

o+ vz

e(z)=P(X—z|X>2)= 1_7,a+72>0.

Similarly, the The Conditional Tail Expectation is given by

oc+~vVaR; —u) VaRy(X) o—~u
- + '
1—7 1—7 1—7v

CTE,[X] = VaRy(X) + (3.10)

We now apply the block maxima method to our daily return data. The standard
GEV is the limiting distribution of normalized extrema. Given that in practice
we do not know the true distribution of the returns and, as a result, we do not
have any idea about the norming constants a,, and b,,, we use the three parameter

specification

J—oo,p—a/y[ v <0
),x € D, D = |—o0,+0[ =0,

Jw—o/v,+oo[ v>0

T —p
Hy o) = H,(
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of the GEV, which is the limiting distribution of the unnormalized maxima. The
two additional parameters 1 and o are the location and the scale parameters
representing the unknown norming constants.

The return level R,, is

Ry =H" (1—1/m):{”_%(1_(_@(1_%)_7)) 170
p—olog(=log(1-7))  7=0

3.8 Spectral Risk Measures

Spectral risk measures are a generalization of the previous risk measures, in
which the distribution function is pre-multiplied with a admissible risk aversion
function which allow to introduce a subjective risk weight.

The spectral risk measures proposed by Acerbi (2002). Consider a risk measure
My defined by:

1
M, = /0 Q6 (p) dp

where Q, is the p loss quantile, ¢ (p) is a weighting function called the risk
aversion function defined over p, and p is a range of cumulative probabilities
p € [0,1].

Following Acerbi (2004), the risk measure M, is coherent if and only if ¢ (p)

satisfies the following properties:

1 ¢(p) > 0: weights are always non-negative.
2 fol ¢ (p) dp = 1: weights sum to one.

3 ¢’ (p) > 0: higher losses have weights that are higher than or equal to those

of smaller losses.

The CTE is a special case of My obtained by setting ¢ (p) to the following:

1

¢ (p) = T 1>t

3.9 Distortion Risk Measures

Distortion risk measures are a particular class of risk measures that have been ex-

tensively studied in actuarial literature in connection with the axiomatic theory
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of premium calculation, they were introduced by Denneberg (1990) and Wang
(1996) and have been applied to a wide variety of insurance problems, most par-
ticularly distortion risk measures form an important class, they include Value
at Risk, Conditional Tail Expectation and Wang’s PH transform premium prin-
ciple. Later in this section we review distortion functions and distortion risk
measures. The objective of this section is to lay out the relationship between
the characteristics of these risk measures and the criteria for coherence proposed
by Artzner et al (1999), and we see that a distortion risk measure is coherent iff

the associated distortion function is concave.

Definition 3.10 A distortion risk measure is the expected loss under a transfor-
mation of the cumulative density function known as a distortion function, and
the choice of distortion function determines the risk measure. More formally, if
F (z) is some cdf, the transformation F* (x) = g (F (x)) is a distortion function

if g : [0,1] — [0, 1] is an increasing function with g(0) =0 and g(1) = 1.

The distortion risk measure is then the expectation of the random loss X us-
ing probabilities obtained from F* (x) rather than F'(x). Like coherent risk
measures, distortion risk measures have the properties of monotonicity, positive
homogeneity, and translational invariance.

A number of risk measures can be expressed as the expectation of the loss random
variable under a change of measure accomplished using a distortion function.
That is, for a risk measure II, the price associated with a loss random variable
X > 0 with distribution function F' is

II(x) = /0 oog (F (z)) da. (3.11)

Several risk measures of this form are discussed by Wirch and Hardy (1999).
These authors note that, when ¢ is concave, the risk measure is coherent.

We now present an alternative representation of risk measures originally ex-
pressed using distorted probabilities. This representation is convenient in devel-

oping empirical estimators of the risk measures.

Lemma 3.1 Let X be a real-valued rv with df F', and let g be an increasing
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differentiable function with g(0) =0 and g(1) = 1. Then
0 o +o00 o
II(F) = / g (F (z)) — 1] dz +/ g (F (z))dx (3.12)
0

= /UFOF—l (5) W (s) ds,

where
U(s)=¢g(1-3).

3.9.1 Examples of distortion function

1. The VaR Measure: When the binary distortion function:
q (ZE) = 1{x2t};t - (O, 1) .

2. The CTE Measure based on the distortion function:

g(x) > =1ifx >t
gx)=0ifz <t

3. THE PHT-measure (Proportional Hasard Transform measure): When

g(s)=s",with 0 <r < 1.

4. The WT-Measure (Wang Tsansform measure): When

g(s) =2 (27" (s)+ 1),

where ® is the standard normal df, and X is a parameter that reflects the

systematic risk of X.

5. Dual-power transform: The dual power transform is defined for parameter

r > 1 with
g(s)=1—-(1-3s)".

6. Gini’s principle:
g(s) =1 +7r)z—ra?

7. Dennensberg’s absolute deviation principle:

(s) (I14+r)z, for0<s<1/2
s) = :
g r+(1—-r)z, for1/2<s<1
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8. Square-root transform:

4 (s) = Vv1—In(r)z —1

1—In(r)—1
9. Exponential transform:
(5) = =
s) = .
I 1—r

10. Logarithmic transform:
In(1—1In(r)z
()~ I =In()a)
In(1—1In(r))

3.10 Estimations

3.10.1 Empirical Estimators for VaR and CTE.

By using the empirical quantile estimation we established empirical estimations
of the VaR and CTE as follows

1
Vath,n = Qn (t) = Xim,at € (Z 71)

n n

where X ,, is the order statistic of the iid rv’s X, ..., X,, with df F.

CTEip = Y Xin/ (n— [nt])

i=[nt]

3.10.2 POT-Based estimator of VaR and CTE.

With equation (2.28), we have

~ Nu T — 1/5
F(x)—7<1+fyx u) Ju <z <zt

o
where n the sample size and N, is the number of observations in excess of the
u threshold and 7, ¢ are estimates of 7 and o respectively, then we obtain an
estimator of the VaR; as follow

@t:uﬁug((%u—w)aq). (3.13)

Next, with equation 3.10, The Conditional Tail Expectation is estimated by
_ VaR 7 —Au

CTE,[X] = 14
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3.10.3 The Hill Estimator Approach of the VaR

By using the Weissman estimator of the high quantile see equation (2.31), we

have the t—quantile x;
_~H
mfl = Xn—k;,n (%(1 - t)) = An—kn + Xn—k,n |:(%(1 - t)) K — ]_:| ,

where 72 is the Hill estimator (2.11) of the index 7.
Then, with the Value-at-Risk notation, we have

54

——H —Afl]
VaRt = An—kn + ank,n [(%(1 — t)) 7 _ 1:|

3.10.4 Estimate of the return level

An estimator of R,, is defined as follow

o= P30 (02 2
" ,u—alog(—log(l—%)) v=0

Where /1,0 and 7 are estimators of u, o and 7 respectively.

3.10.5 Non Parametric Estimation of the Measure of Dis-

tortion

Indeed, if in equation (3.12) we replace F' by the empirical distribution function
F,, then the integral fol F7L(s) W (s) ds, becomes, 3" [fi/nl)/nllf (s)ds| Xin,
where X ,,...,X,, denote the ordered values of data Xj,..., X,,. Hence, the

empirical estimator of a risk measure II(F') is given by

n

I(F,) = cinXin: (3.15)
i=1
where Cj, = f(ii/Z)/H U (s)ds.
Jones and Zitikis (2003) employ asymptotic theory for L-statistics to prove that,
for underlying distributions with a sufficient number of finite moments and under
certain regularity conditions on function ¥, the empirical estimator H( n) of a
risk measure II(F') is strongly consistent and asymptotically normal with the

mean II(F) and the variance o (¥, ®)/n, where

(.0 = [ [P uinte. ) - F0) F @)U (F () @ (F () dady.
(3.16)
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3.11 Estimation of the Conditional Tail Expec-

tation in the Case of Heavy-Tailed Losses

Naturally, the CTE is unknown since the cdf F' is unknown. Hence, it is desirable
to establish appropriate statistical inferential results such as confidence intervals
for CTE(t) with specified confidence levels and margins of error. We shall next
show how one can accomplish this task, initially assuming the classical moment
assumption E[X?| < co. Namely, suppose that we have independent rv’s X;, X,

.., each with the cdf F', and let X;., < --- < X,,., denote the order statistics
of Xi,...,X,. It is natural to define an empirical estimator of CTE(t) by the

formula

CTE, (1) = % /t ' Qu(s)ds, (3.17)

where Q,,(s) is the empirical quantile function, which is equal to the i*! order
statistic X, for all s € ((i — 1)/n,i/n], and for all i = 1,...,n. The asymptotic
behavior of the estimator CTE,,(¢) has been studied by Brazauskas et al. (2008),

and we next formulate their most relevant for our paper result as a theorem.

Theorem 3.1 Assume that E[X?] < co. Then for every t € (0,1) we have the

asymptotic normality statement
Vn(CTE,(t) — CTE(t)) (1 — t) 5 N(0, 02 (t))

when n — oo, where the asymptotic variance o*(t) is given by the formula

o(t) = / / (min (2, y) — 2y) dQ(2)dQ () .

The assumption E[X?] < oo is, however, quite restrictive as the following ex-
ample shows. Suppose that F' is the Pareto cdf with an index v > 0, that is,
1 — F(x) = 277 for all ¥ > 1. Let us focus on the case v < 1, since when
v > 1, then CTE(t) = 400 for every ¢t € (0,1). Theorem 3.1 covers only the
values v € (0,1/2) due the requirement E[X?] < co. When v € [1/2,1), we have
E[X?] = oo but, nevertheless, CTE(¢) is well defined and finite since E[X] < co.
Analogous remarks hold for other distributions with Pareto-like tails. We shall
tackle this issue in the case of more general distributions than the just noted

heavy-tailed Pareto.
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3.11.1 Construction of a new CTE estimator

We have already noted that the ‘old’ estimator CTE, () does not yield asymp-
totic normality beyond the condition E[X?] < oco. For this reason we next
construct an alternative CTE estimator, which takes into account different as-
ymptotic properties of moderate and high quantiles in the case of heavy-tailed
distributions. Hence, from how on we assume that v € (1/2,1). Before indulging

ourselves into construction details, we first formulate the new CTE estimator:

— 1 [ikm kX kom
C’H‘En(t)zl—_t t Q"(S)d8+n(1—t)(1—§)’
where 7 is an estimator of the tail index v € (1/2,1), we use the Hill (1975)
estimator (2.11).
We have based the construction of @T@n (t) on the recognition that one should

estimate moderate and high quantiles differently when the underlying distrib-

(3.18)

ution is heavy-tailed. For this, we first recall that the high quantile Q, is, by
definition, equal to Q(1 — s) for sufficiently small s. For an estimation theory of
high quantiles in the case of heavy-tailed distributions we refer to, e.g., Weiss-
man (1978), Dekkers and de Haan (1989), Matthys and Beirlant (2003), Gomes

et al. (2005), and references therein. We shall use Weissman’s estimator
@3 = (k‘z/n);y\Xn—k:nS_a, 0<s< k‘/’l’L,

of the high quantile Q,, where the integers k = k, € {1,...,n} are such that
k — oo and k/n — 0 when n — oco. Then we write CTE(¢) as the sum of

Cy,n(t) and Csy,,(t), which are defined together with their empirical estimators

as follows:
1 1-k/n 1 1-k/n _
Cin(t) = T Q(s)ds ~ —— Qn(s)ds = Cy,(t)
and
I | P ~
Con(t) = — Q(s)ds = —— Q1_sds = Copn(2).
1—-1¢ 1-k/n 1—t 1-k/n
Simple integration gives the formula
~ an— m
Con(t) = "

n(1-9)@1-1)

Consequently, the sum @Ln(t) + @Qm(t) is an estimator of CTE(¢), and this is
exactly the estimator (ET]/En(t) introduced above. We shall investigate asymp-
totic normality of the new estimator in the next section, accompanied with an

illustrative simulation study.
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3.11.2 Main theorem and its practical implementation

The Next Theorem 3.2 below, establishes asymptotic normality of the new esti-
mator CTE,,(t).

Theorem 3.2 Assume that the cdf F' satisfies condition (1.89) with v € (1/2,1).
Then for any sequence of integers k = k, — oo such that k/n — 0 and
kY2A(n/k) — 0 when n — oo, we have that

Vn(CTE, (t) — CTE(®)) (1 — 1) 4

S N (0,02 3.19
k/an—k:n ( 7) ( )
for any fized t € (0, 1), where the asymptotic variance ai 1s given by the formula
4
o2 = v

Tl =)t 2y -1
3.11.3 Simulation study

To discuss practical implementation of Theorem 3.2, we first fix a significance
level ¢ € (0,1) and use the classical notation z./, for the (1 — ¢/2)-quantile of
the standard normal distribution N'(0,1). Given a realization of the random
variables Xi,..., X, (e.g., claim amounts), which follow a cdf F' satisfying the
conditions of Theorem 3.2, we construct a level 1 — ¢ confidence interval for
CTE(t) as follows. First, we need to choose an appropriate number k of extreme
values. Since Hill’s estimator has in general a substantial variance for small k
and a considerable bias for large k, we search for a k that balances between
the two shortcomings, which is indeed a well-known hurdle when estimating
the tail index. To resolve this issue, several procedures have been suggested in
the literature, and we refer to, e.g., Dekkers and de Haan (1993), Drees and
Kaufmann (1998), Danielsson et al. (2001), Cheng and Peng (2001), Neves and
Fraga Alves (2004), Gomes et al. (2009), and references therein. In our current
study we employ the method of Cheng and Peng (2001) for deciding on an
appropriate value k* of k. Having computed Hill’s estimator and consequently
determined X,,_;+.,, we then compute the corresponding values of ((/ETI/En(t) and
o2

Fn?
3.2 we arrive at the following (1 — ¢)-confidence interval for CTE(t):

and denote them by (C/?TI/EJZ(IS) and 02*, respectively. Finally, using Theorem

* *
k /an,k*;n.O';y\n

(1—=t)vn

CTE, () % 2.2 (3.20)
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To illustrate the performance of this confidence interval, we have carried out
a small-scale simulation study based on the Pareto cdf F(z) = 1 — 27/, 2 >
1, with the tail index v = 2/3. The levels have been set to t = 0.75 and
0.90. We then generated 200 independent replicates of three samples of sizes
n = 1000, 2000, and 5000. For every simulated sample, we obtained estimates
([%n (t). Then we calculated the arithmetic averages over the values from the
200 repetitions, with the absolute error (error) and root mean squared error
(rmse) of the new estimator mn(t) reported in Tables (3.1), (3.2) for v =2/3
and Tables (3.3), (3.4) for v = 3/4, where we also report 95%-confidence intervals
(3.20) with their lower and upper bounds, coverage probabilities.

We note emphatically that the above coverage probabilities and lengths of confi-
dence intervals can be improved by employing more precise but, naturally, con-
siderably more complex estimators of the tail index. Many of such estimators
are described in the monographs by Beirlant et al.(2004), Castillo et al. (2005),
de Haan and Ferreira (2006) [70], Resnick (2007). Since the publication of these

monographs, numerous journal articles have appeared on the topic.

t=0.75 C (t) = 7.005
n k* C,(t) error rmse Icb  ucb cprob
1000 54 6.876 0.045 0.303 6.356 7.397 0.839
2000 100 6.831 0.025 0.231 6.463 7.199 0.882
5000 219 7.119 0.016 0.194 6.881 7.357 0.895

Table 3.1: Point estimates and 95%-confidence intervals for CTE (0.75) with tail
index 2/3.

£ =090 C () =12.533

n k* C,(t) error rmse Icb uch cprob
1000 46 12.753 0.017 0.534 12.241 13.269 0.847
2000 97 12487 0.003 0.294 12.137 12.838 0.841
5000 219 12461 0.005 0.236 12.246 12.676 0.887

Table 3.2: Point estimates and 95%-confidence intervals for CTE (0.90) with tail
index 2/3.

Figures 3.2 and 3.1 illustrates the performance and comparaison of the sample
estimator (3.17) and the new estimator (3.18) of CTE(¢) with respect to the
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t=0.75 C(t) =9.719
n k*  C,(t) error rmse Icb uch cprob
1000 51 9.543 0.018 0.582 8&8.589 9.543 0.854

2000 104 9.808 0.009 0.466 9.150 10.466 0.888
5000 222 9.789 0.007 0.410 9.363 10.215 0.915

Table 3.3: Point estimates and 95%-confidence intervals for CTE (0.75) with tail
index 3/4

£ = 0.90 C () = 18.494

n k* C,(t) error rmse Icb uch cprob
1000 48 18199 0.015 0.989 17.437 18.960 0.874
2000 96 18.696 0.011 0.858 18.052 19.340 0.895
5000 229 18.541 0.002 0.798 18.092 18.990 0.925

Table 3.4: Point estimates and 95%-confidence intervals for CT'E (0.90) with tail
index 3/4

sample size n > 1 with four different values of ¢ is t = 0.25, t = 0.50, t = 0.75,
and t = 0.90, such that the Figures 3.2 for the tail index v = 2/3 and .Figures
3.1 is for the tail index v = 3/4.

3.11.4 Proof of Theorem 3.2
We start the proof of Theorem 3.2 with the decomposition
(CTE,(t) — CTE()) (1 — t) = Ap1(t) + Apa, (3.21)

where

1-k/n
A (t) = / (Qu(s) — Q(s)) ds,

1
An,2 = k/n Xn—kn — @(S)ds

1- :}\/n 1-k/n

We shall show below that there are Brownian bridges B,, such that

Vidu() _fy T Bu()dQ(s)
VE/nQ(1 — k/n) VE/nQ(1 — k/n)

+op(1) (3.22)

and

VA2 oy " o 1 LOB(s) AW
m@u—k/m_(l—w?\/;(ﬁ"“ k/n) 7/1k/nlsd)+f;(1)')
3.23
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Figure 3.1: Values of the CTE estimator CTE., (vertical axis) versus sample
sizes n (horizontal axis) evaluated at the levels t = 0.25, ¢t = 0.50, ¢t = 0.75, and
t = 0.90 (panels 1-4, respectively) in the Pareto case with the tail index v = 3/4.

Assuming for the time being that statements (3.22) and (3.23) hold, we complete

the proof of Theorem 3.2. To simplify the presentation, we use the notation:

W — _do " Bu(5)dQ(s)
" VE/nQ(1 = k/n)’

N n —k/n
WZ,n—(l )2\/71871(1 k/ )7

1
B
Wip=—- — 2\/E/ n(s)ds.
(L= VE Jigm 1—s

Hence, we have the asymptotic representation
Vn(CTE, (t) — CTE(t))(1 - #)
VE/mQ(1 — k/n)

= Wl,n + WQ,n + WS,TL + OP(l)-
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Figure 3.2: Values of the CTE estimator CTE., (vertical axis) versus sample
sizes n (horizontal axis) evaluated at the levels t = 0.25, ¢t = 0.50, ¢t = 0.75, and
t = 0.90 (panels 1-4, respectively) in the Pareto case with the tail index v = 2/3.

The sum W1 ,, +Ws,,+ W3, is a centered Gaussian random variable. To calculate

its asymptotic variance, we establish the following limits:

Summing up the right-hand sides of the above six limits, we obtain o

2y 272
N I
(1—7) (1—7)
—2~? 2
i 29 ZE[Wl,nWB,n] - 7 PR
(I—=) (I=)
—9~3
2E[W2’nW37n] — —74
(1—7)

2
~» whose

expression in terms of the parameter v is given in Theorem 3.2. Finally, since

Xn—kn/Q(1—k/n) converges in probability to 1 (see, e.g., the proof of Corollary
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in Necir and Meraghni (2009)), the classical Sultsky’s lemma completes the proof
of Theorem 3.2. Of course, we are still left to verify statements (3.22) and (3.23),

which make the contents of the following two subsections.

Proof of statement (3.22).

If Q were continuously differentiable, then statement (3.22) would follow easily
from the proof of Theorem 2 in Necir and Meraghni (2009). We do not assume
differentiability of Q and thus a new proof is required, which is crucially based
on the Vervaat process (see Zitikis (1998), Davydov and Zitikis (2003), Davydov
and Zitikis (2004), and references therein)

Q)

V(t) = / (Quls) — Qs)) ds + / (Fu(z) — F(x)) de.

Hence, for every ¢ such that 0 < ¢ < 1— k/n, which is satisfied for all sufficiently

large n since t is fixed, we have that
1-k/n t
Aua®)= [ (@) = Q) ds = [ (Quls) - Q) ds
0 0

Q(1—k/n)
_ /Q@ (Fu(2) — F(2))do + Vo(1— k/n) — Va(t).  (3.24)

It is well known (see Zitikis (1998), Davydov and Zitikis (2003), Davydov and
Zitikis (2004)) that V,(t) is non-negative and does not exceed —(F,(Q(t)) —
£)(Qy(t) —Q(t)). Since the cdf F' is continuous by assumption, we therefore have
that
Vi Va(t) < lea(®)]1Qa(t) — Q) (3.25)
where e, (t) is the the uniform empirical process /n (F,(Q(t)) — F(Q(t)), which
for large n looks like the Brownian bridge B,,(¢). Note also that with the just
introduced notation e, the integral on the right-hand side of equation (3.24) is
equal to f&g_k/") en(F(z))dz. Hence,
Vidu®) oy en(Flx))da 20
VEmQU—k/m)  /R/nQ(L—k/n) |
+ Op(1) len(1 = k/n)[|Qn(1 — k/n) — Q(1 — k/n)|
VE/nQ(1 — k/n)
len(®)]1Qn(t) — Q)]
VE/nQ = k/n)

+ Op(1)
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We shall next replace the empirical process e,, by an appropriate Brownian bridge
B, in the first integral on the right-hand side of equation (3.26) with an error
term of magnitude op(1), and we shall also show that the second and third
summands on the right-hand side of equation (3.26) are of the order op(1). The
replacement of e,, by B,, can be accomplished using, for example, Corollary 2.1 on
p. 48 of Csorgd et al. (1986), which states that on an appropriately constructed
probability space and for any 0 < v < 1/4, we have that

wy Jen) =B
1/n<s<1—1/n 81/2—V(1 _ 8)1/2—1/

= Op(n™). (3.27)

This result is applicable in the current situation since we can always place our
original problem into the required probability space, because our main results
are ‘in probability’. Furthermore, since Q(t) < = < Q(1 — k/n), we have that
t < F(x) <1—k/n. Hence, statement (3.27) implies that

Q1—-k/n Q(1—k/n) Q(1—-k/n v
o M elP@pde gy Ba(F(x))d oS (1~ F())Y/> " da

m—n Q(1 — k/n) wc/_n@l—k/n o) n”ﬁc/_n@u&%)

Changing the variables of integration and using the property /k/nQ(1—k/n) —
oo when n — oo, we obtain that
=— +op(1). (3.29)
\/k/n(@ l—k:/n) VE/mQ( — k/n)
The main term on the right-hand side of equation (3.29) is W;,. We shall

next show that the right-most summand of equation (3.28) converges to 0 when

n — oo.
Changing the variable of integration and then integrating by parts, we obtain
the bound

ftl_k/n(l — 5)7V2vQ(s)ds

0(1)

f@(tl k/n _F([L‘))I/Z—Vdgj<(1 )1/2 vQ(s )‘1 k/n
n/k/nQ(1 —k/n)  — n'\/k/nQ(1 — k/n) v \/WQG@ 50@

We want to show that the right-hand side of bound (3.30) converges to 0 when
n — 00. For this, we first note that

1/2—y 1-k/n 1/2—v
(L= Q) " 1 (=p"™Q@) (3.31)

n'\/k/nQ(1 — k/n) k” nv\/k/mQ(1 — k/n)




3. Financial Risk and Heavy Tails 82

Next, with the notation ¢(u) = Q(1 — u)/u'/?*" we have that

[T =9 Qs 1 i 99
= —
n’\/k/nQ(1 — k/n) kv (k/n)o(k/n)
when n — 00, where the convergence to 0 follows from Result 1 in the Appendix

of Necir and Meraghni (2009). Taking statements (3.30)—(3.32) together, we have

that the right-most summand of equation (3.28) converges to 0 when n — oo.

(3.32)

Consequently, in order to complete the proof of statement (3.22), we are left to
show that the second and third summands on the right-hand side of equation
(3.26) are of the order op(1). The third summand is of the order op(1) because
len()]|Qn(t) — Q(t)] = Op(1) and /k/nQ(1 — k/n) — co. Hence, we are only
left to show that the second summand on the right-hand side of equation (3.26)
is of the order op(1), for which we shall show that

len(1 = k/n)|| Qn(1 — k/n)
VE/n Q1 — k/n)

To prove statement (3.3

3),
len@ = k/m)l _ lenl = k/n) — Ba(L —k/n)| | [Bu(1 — k/n)l
k/n k/n k/n

— 1] = op(1). (3.33)

we first note that

. (3.34)

The first summand on the right-hand side of bound (3.34) is of the order Op(1)
due to statement (3.27) with v = 0. The second summand on the right-hand side
of bound (3.34) is of the order Op(1) due to a statement on p. 49 of Csorgd et
al. (1986) (see the displayed bound just below statement (2.39) therein). Hence,
to complete the proof of statement (3.33), we need to check that

Q.(1—k/n)
Q1 - k/n)
Observe that, for each n, the distribution of Q,(1 — k/n) is same as that of
Q(E; (1 —k/n)), where E,! is the uniform empirical quantile function. Fur-
thermore, the processes {1 — E (1 —s), 0 < s <1} and {E;!(s), 0 <s <1}
are equal in distribution. Hence, statement (3.35) is equivalent to
Q1 — E; (k/n))
Q1 - k/n)
From the Glivenko-Cantelli theorem we have that £ *(k/n) — k/n — 0 almost
surely, which also implies that E,!(k/n) — 0 since k/n — 0 by our choice of k.

=1+ op(1). (3.35)

=1+ op(1). (3.36)
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Moreover, we know from Theorem 0 and Remark 1 of Wellner (1978) that

sup s~ |E, ' (s) — s| = op(1), (3.37)

1/n<s<1

from which we conclude that
nE Y (k/n)/k =1+ op(1). (3.38)

Since the function s — Q (1 — s) is slowly varying at zero, using Potter’s in-
equality (see the 5" assertion of Proposition B.1.9 on p. 367 of de Haan and
Ferreira (2006)) [70] we obtain that

Q1 — E;'(k/n))
Q1 - k/n)
for any 6 € (0,7v). In view of (3.38), the right-hand side of equation (3.39) is

equal to 1+ op(1), which implies statement (3.36) and thus finishes the proof of
statement (3.22).

— (14 0p(1)) (nE; (k/n)/k) "=’ (3.39)

3.11.5 Proof of statement (3.23).

The proof of statement (3.23) is similar to that of Theorem 2 in Necir et al.
(2007), though some adjustments are needed since we are now concerned with
the CTE risk measure. We therefore present main blocks of the proof together
with pinpointed references to Necir et al. (2007) for specific technical details.
We start the proof with the function U(z) = Q(1 — 1/2) that was already used
in the formulation of Theorem 3.2. Hence, if Y is a random variable with the
distribution function G(z) =1 —1/z, 2 > 1, then U(Y) = Q(G(Y)) £ X since
G(Y) is a uniform on the interval [0, 1] random variable. Hence,
k/n

k/n
An72 = ~ U(Yn—k:n) - / U(l/S)dS,
1 =", 0

and so we have

k/n
VA :\/E( 1 UYokn)  (n/k) Jy U(l/s)d5>

(k/n)'2Q(1 = k/n) L—%, Un/k) U(n/k)

A )

1 [7° 572U (ns/k)ds
+\/E(1_7+ Ton/E) ) (3.40)
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We next show that the right-most term in equation (3.40) converges to 0 when

n — 00. For this reason, we first rewrite the term as follows:

\/E(liﬁf ZE(/"ks/k ) \/_/ ( 25//: —s”)ds. (3.41)

The right-hand side of equation (3.41) converges to 0 (see notes on p. 149 of Necir

et al. (2007)) due to the second-order condition (1.39), which can equivalently

i 5 (g —) =

for every s > 0, where A(z) = 42a(U(z)). Note that vk A(n/k) — 0 when
n — oo. Hence, in order to complete the proof of statement (3.23), we need to
check that

“E<1_1anwu?</27?§)‘1iv)‘<lf \/EB( S

be rewritten as

(1).

1— k:/n
(3.42)
With Hill’s estimator(2.11) is written in the form
Z IOg n z+1 n)
Yn k’ o n) ;
we proceed with the proof of statement (3.42) as follows:
1=~ U, n) 1=y (U(Yookw) (Yaoin )’
k —1)=Vk —
\/_<1—/7\n U(n/k) \/_1—371 U(n/k) n/k
1— Yn—k:n K :}/\n -
-1 k .
s (G) )i
(3.43)

Furthermore, we have that

k
n_ 1 1 U(Yn [ lzn) Yn i+1:n
k
v 1 Yn i+1n) )
+ —— lo 1 3.44
1—%%%2( g<Ynkn 340
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Arguments on p. 156 of Necir et al. (2007) imply that the first term on the
right-hand side of equation (3.44) is of the order Op(vVk A(Y,_kn)), and a note
on p. 157 of Necir et al. (2007) says that \/EA(Yn,;m) = op(1). Hence, the first
term on the right-hand side of equation (3.44) is of the order op(1). Analogous
considerations but now using bound (2.5) instead of (2.4) on p. 156 of Necir et
al. (2007) imply that the first term on the right-hand side of equation (3.43) is

of the order op(1). Hence, in summary, we have that

e ) e () )

(3.45)

We now need to connect the right-hand side of equation (3.45) with Brownian
bridges B,. To this end, we first convert the Y-based order statistics into U-
based (i.e., uniform on [0, 1]) order statistics. For this we recall that the cdf
of Y is G, and thus Y is equal in distribution to G~!(U), which is 1/(1 — U).

Consequently,
(i) = 2V (emasem) Y

(3.46)

Next we choose a sequence of Brownian bridges B, (see pp. 158-159 in Necir
et al. (2007) and references therein) such that the following two asymptotic
representation hold:

(e am) 1) =Rk o

%z (1og (A=l ) 1) = om0 b
*) ds + op(1).

i [
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Using these two statements on the right-hand side of equation (3.46) and also
keeping in mind that %, is a consistent estimator of v (see Mason (1982)), we
have that

(= T ) =y
v

D lds +op(1).  (3.47)
Dividing both sides of equation (3.47) by 1 — v, we arrive at equation (3.42).

v '
1— g L=

This completes the proof of statement (3.23) and of Theorem 3.2 as well.



Chapter 4

Renewal theory and Estimation
of The Renewal Function

4.1 Introduction

A renewal process is a generalization of the Poisson process. In essence, the
Poisson process is a continuous-time Markov process on the positive integers
(usually starting at zero) which has independent identically distributed holding
times at each integer i (exponentially distributed) before advancing (with prob-
ability 1) to the next integer: ¢ + 1. In the same informal spirit, we may define
a renewal process to be the same thing, except that the holding times take on
a more general distribution. (Note however that the iid property of the holding
times is retained).

Renewal processes have a wide range of applications in the warranty control, in
the reliability analysis of technical systems and, particularly, of telecommuni-
cation networks such as high-speed packet-switched networks like the Internet.
Normally, measurement facilities count the events of interest, e.g., the number of
requested and transferred Web pages, incoming or outgoing calls, frames, packets
or cells in consecutive time intervals of fixed length. It is important for planning
and control purposes to estimate the related traffic load in terms of the mean

numbers of counted events and their variances in these intervals.

87
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4.2 Main Definitions
Definition 4.1 Let X, X5, ...be 1id non-negative rv’s with cdf F'. Let
To=0,T,=X1+Xo+ ...+ X, foralln > 1,

and

N(t) =max{n:T, <t}. (4.1)

Then we say N(t) is a renewal process and that it has inter-arrival or lifetimes
X;.

The random variable N (¢) equals the number of renewals of these elements during

time ¢.

Remark 4.1 If the inter-arrival times {X, } are exponentially distributed with
mean 1/X, then the renewal counting process {N(t),t > 0} is a Poisson process

with intensity .

Definition 4.2 The function

H(t)=E(N(t) =Y P(T,<t)=> F" (), (4.2)

is called the renewal function, for t > 0 where F*" denotes the n-fold recursive

Stieltjes convolution of F.

The function H satisfies the renewal equation

H(t):F(t)—i-/tH(t—s)dF(s).

Note that, The renewal process N(t) and the renewal function H(t) are very
important in the study of various theoretical and applied problems in queueing

theory, reliability theory, storage theory, the theory of branching processes.

Definition 4.3 The df F' is said to be arithmetic if its support is on {0, £d, +2d, ...
for some constant d and otherwise is not arithmetic. The largest such d s called

the period (or span) of the rv.
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4.3 Limit Theorems for Renewal Process

Theorem 4.1 Let {N(t),t > 0} be a renewal process corresponding to iid inter-
arrival times {X,,n=1,2,...}
1) A symptotic expression for the mean H(t) = E[N(t)]: if un = E[X;] <
0o, then

i 20 _ 1

t—oo ¢ 7
2) Asymptotic expression for the variance Var[N(t)], if p = E[X;] and
o? = Var [X;] are finite, then

Var [N(t)] o2

lim L 0
tE?o t M?’

3) Asymptotic normality of the renewal process: if E[T?] < oo, then

N(t) _t/:u i)./\/'
Vio?

Smith’s (1954) key renewal theorem may be useful.

(0,1).

Theorem 4.2 (Key renewal theorem) Let the cdf Q (t) be continuous and

Q(t) > 0 be a monotone non-increasing and integrable function on (0,00). Then

lim [ Q(t— s)H (ds) Q(z (4.3)
) il

where j1 denote the mean of inter-arrival time, p = E (X;)
Theorem 4.3 (Blackwell’s theorem) If F' is not arithmetic
h
H(it)—H({t—h)— —, ast — o0 (4.4)
1

for every h > 0. If F' is arithmetic the same is true when h is multiple of the
span d.

Theorem 4.4 Let H(t) be the mean value function of a renewal process corre-
sponding to iid inter-arrival times with non-lattice df F(x) and finite mean p.

Let g(t) be a function satisfying the renewal equation

o=+ [ gt — $)dF(s).
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Then g (t) is given by

o=+ | gt — $)dH(s).

If Q(t) be continuous and Q(t) > 0 be a monotone non-increasing and integrable

function on (0,00). Then

t—o0

limg (t) = i/ooo Q (z) dx, (4.5)

Several rf-estimation methods have been developed for a known interarrival-
time distribution. Unfortunately, explicit forms of the rf are obtained only in
rare cases, for example, if the interarrival times have a uniform distribution, or
for the wide class of matrix-exponential distributions (exponential and Erlang
distributions belong to this class). Therefore, several attempts have been made
to evaluate the rf computationally.

If the variance 02 = var (X;) of F is finite, then, applying Smith’s theorem, the
RF H (t) for large t, may be approximated as follow

Theorem 4.5 If F is not arithmetic with finite mean pu and finite variance o2,

then

ast — o0. (4.6)

4.4 Renewal Function when the first or the sec-

ond moment is infinite

The classical renewal theorems do not tell much about the renewal function if
the mean lifetime is infinite. To obtain more accurate results, when the lifetime
distribution is regulary varying, 1 — F'(z) = 2~*L(x) and some 0 < a < 1, where
L is slowly varying function, we have an analogue of the key renewal theorem by
Feller (1971) and W.L. Smith proved a result of the two boundary case a = 0

and o =1

Theorem 4.6 If F' is requlary varying distribution, then ast — oo

1/L(z)  ifa=0
H(t) ~ et 0<a<l .

t/ [y Flx)dr ifa=1
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Next, when the mean exist but the second moment is infinite Sgibnev[115] in
1981 shows the result.

Theorem 4.7 If F' is not arithmetic with finite mean 1 and infinite variance

o?, then when t — oo
t 1 t oo
H(t) ~—+ — (1 - F(z))dx | dy, (4.7)
K K= Jo Y
Note that the quantity H ()~ converges to a constant if and only if E(X?) < occ.

Theorem 4.8 If F' is requlary varying distribution, 1 — F(x) = z~“L(x) and
some 1 < a < 2, where L is slowly varying function, we have

[ )
poop2(a—1)(a—2)
This result (4.8) is derived by Teugels in 1968.

H(t) ~ t — oo (4.8)

Remark 4.2 This result has been extended to the case 1 < o < 2, as follows

t 1 [t y
a0 - L~ [ (= [Ca= Fads) g ¢ -,
% m= Jo 0
in Mohan 1976.

4.5 Non Parametric Estimation of the Renewal

Function

There is a considerable body of literature on this topic, of which we shall next
present an overview. Frees (52) in 1985, introduced and considered three non-
parametric estimators of (4.2), The first is defined by replacing F**(z) by its

unbiased estimator:

—1
n
F:(Z) = ( k ) Zl{Xi1+Xi2+---+Xik§Z}'

where the sum is taken over all k distinct indices i1, ..., i from the set {1,...,n}.
The sum in (4.2) is then truncated at some m = m(n) dependent on n. This

gives the estimator

H)(2) =Y FX(2). (4.9)
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Frees[52] proves that H,(z) is a strongly consistent estimator of H (z) and proves
that this estimator is asymptotically normal distribution.

The second estimator suggested by Frees [52] is obtained by replacing F' by the
empirical distribution function F), based on Xj, ..., X,,. The sum in (4.2) is then

truncated at some m = m(n) dependent on n. This gives the estimator

m

HX(2) =Y Fi(2). (4.10)
k=0
Frees[52] notes that the asymptotic results concerning estimator (4.9) hold for the
estimator in (4.10) as well. However, just as with (4.9), choosing the parameter
m = m(n) in (4.10) remains a problem.
Frees[52] also mentions the possibility of using yet a third estimator, defined by
replacing F' by the empirical distribution function F),, the sum in (4.2) is not

truncated this time. This results in the estimator

Hi(2) =Y Fi(2). (4.11)

Zhao and Subba Rao in 1997, estimated the renewal function by solving the
renewal equation, incorporating a kernel estimate of the renewal density f .
Markovitch and Krieger[91] in 2006 used a histogram-type estimate, this esti-
mator is without any information about the form of the underlying distribution
and they using only an empirical sample.

From the literature overview above we can appreciate the complexities that
arise in estimating the renewal function RF when F(X?) < oo, let alone when
E(X?) = oo. Nevertheless, one can attempt to investigate the performance of
this estimators when E(X?) = oo. This is certainly a natural and interesting
avenue of research. Sgibnev [115] in 1981 shows that, when t — oo, the quantity
H(t) — ﬁ converges to a constant iff £(X?) < co. When E(X?) = oo, Sgibnev
(1981) proves that

o)L~ [ ([T - P a,
pooiJo \J,

Mark Bebbington et al, 2007[10], construct an empirical estimator for it as fol-

ﬁn(t)~%+%/ot (/yoo(l—Fn(x))dx> dy

lows.
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where F,, and X is the empirical distribution and sample mean respectively

based on the sample X1, Xs, ..., X,,. we write this estimatord as follows

~ t 1 < ) t —
UhS Siw DB I ) (4.12)

Their main result says that whenever F' belongs to the domain of attraction
of a stable law S, with 1/2 < a < 1 (see, e.g., Solotarev, 1986), the df of
ﬁn(t) converges, for suitable normalizing constants, to S,. This result provides

confidence bounds for H (¢) with respect to the quantiles of S,.

4.6 Semi Parametric Estimation of the Renewal

Function

In practice, it is a more realistic situation that the distribution is unknown or
that just general information describing it is available. The restoration of the
df, if the latter exists, may become complicated if the distributions of the rv’s
are heavy-tailed. Weibull distributions with a shape parameter less than one
and Pareto distributions provide examples of such pdfs. Heavy-tailed distribu-
tions often arise in practice, for example, in insurance and queueing or in the

characterization of World Wide Web (WWW) traffic (Ref.[92]).

Indeed, an important class of models having infinite second order moments is
the set of heavy-tailed distributions (e.g., Pareto, Burr, Student, ...). A df F'is
said to be heavy-tailed with tail idex v > 0 if

F(z)=ca (1+27°L(z)), as @ — oo, (4.13)

for v € (0,1), 6 > 0 and some real constant ¢, with L a slowly varying function
at infinity.
Notice that when v € (1/2,1) we have p < oo and E [X?] = co. In this case, an

asymptotic approximation of the renewal function H(?) is given by (4.7).

Prior to Sgibnev (1981) [115], Teugels (1968) [120] obtained an approximation
of H(t) when F is heavy-tailed with tail index v € (1/2,1) :
t V22 F (t)

H(t)_ﬁNM(l—v)(%—l)

, as t — 00. (4.14)
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Extreme value theory allows for an accurate modeling of the tails of any unknown
distribution, making the (semi-parametric) statistical inference more performant
for heavy-tailed distributions. Indeed, the semi-parametric approach permits to
extrapolate beyond the largest value of a given sample while the non-parametric
one does not since the empirical df vanishes outside the sample. This represents

a big handicap for those dealing with heavy-tailed data.

Extreme value theory is applied with the POT method, it is based on Balkema-
de Haan result which says that the distribution of the excesses over a fixed
threshold is approximated by the generalized Pareto distribution (GPD) (see
section (1.5.4). In our situation, we have a fixed threshold equal to the horizon
t = t,. Therefore, the POT method would be the appropriate choice to derive
an estimator for H(¢) by exploiting the heavy-tail property of df F' used in
approximation (4.7). The asymptotic normality of our estimator is established

under suitable assumptions.

4.6.1 Estimating the renewal function in infinite time

The distribution of the excesses, over a "fixed" threshold ¢, pertaining to df F'is
defined by F; as (1.31), with theorem (1.18) of Balkema and de Haan (1974) and
Pickands (1975), that is F} is approximated by a generalized Pareto distribution
(GPD) function G, , with shape parameter 7 € R and scale parameter o =
o(t) > 0, where G, is define by equation (1.30).

Suppose now that Y7, ..., Yy are drawn not from G, ., but from F}. In view of the

¥,
asymptotic approximation (1.33), Smith (1985) [118] has proposed estimates for
(v, 0) via the Maximum Likelihood approach. The obtained estimators (7, o)

are given in equations (2.25) and (2.26).

Since we are interested in the renewal function in infinite time, we must assume
that time ¢ is large enough and for asymptotic considerations, we will assume
that ¢ depends on the sample size n. That is t = ¢,,, with ¢, — 0o as n — oc.
Relation (4.13) suggests that in order to construct an estimator of H(¢,), we
need to estimate u, v and F(t,). Let n = n (t) be the number of X/s, which are

observed on horizon ¢,, and denote by
N, =card({X; >t,:1<i<n}),

the number of exceedances over t,,, with card (K) being the cardinality of set K.
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Notice that NN, is a binomial rv with parameters n and p, := F(t,) for which

the natural estimator is p,, := N;/n.

Select, from the sample (X7, ..., X,,), only those observations X, , ..., X;, that

iNtn

exceed t,,. The N, excesses
Ej:n = Xij — ln, j = 17 "'7Ntn7

are iid rv’s with df £}, . The maximum likelihood estimators (7, 7,,) are solutions

of the following system
1 & in
—Zlog (1 + 76]—') =,
Un o

1?: €j;n/0' . 1
Uj:11+ej:n/0 1+’7’

where v,, is an observation of IV, and the vector (ej.,, ..., €, .,) a realization of
(Evns -y En,, ). Regarding the distribution mean ;o = E'[X;], we know that, for
v € (0,1/2], X3 has finite variance and therefore p could naturally be estimated
by the sample mean X := n~1S, which, by the Central Limit Theorem (CLT),
is asymptotically normal. Whereas for v € (1/2,1), X; has infinite variance,
in which case the CLT is no longer valid. This case is frequently met in real
insurance data (see for instance, Beirlant et al., 2001). Using the GPD approx-
imation, Johansson (2003) in [58] has proposed an alternative estimator for u

given by equation (2.38) as follow:

= 2 Xilpxise,) + P (tn + ) : (4.15)
=1

1-7,

Here 1) denotes the indicator function of set K. Respectively substituting ,IZ,({]),

A and p, for p, v and F(t,) in (4.14) yields the following estimator for the

renewal function H(t,)

A~

- tn 2t2 ATL
Hy, () := 0y T Ze %L/\np ~ :
Hn Hn (1 - 711) (2%1 - 1)

(4.16)

The asymptotic behavior of ﬁn(tn) is given by the following two theorems.

Theorem 4.9 Let F' be a df fulfilling (4.13) with v € (1/2,1). Suppose that L

is locally bounded in [xq, +00) for zg > 0 and x +— x7°L (x) is non-increasing
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near infinity, for some § > 0. Then, for any t, = O(n*"*) with o € (0,1), we
have
B, (t,) — H(t,) = Op(n®/D0U9712) g5 5, o0,

Theorem 4.10 Let F be as in Theorem 4.9. Then for any t, = O(n®"/*) with
a€ (4/(1+2796),1), we have

Snln
where
2 elna—n ?
+ (1 + 7)2 (93 + elnpnan)2 2( + 7) H%npn On
P (1—7)? Pn (1 —7)?
(1 + /7) Hlnpno-n < anpno-n >
- 3n o 2 |
pn(1=7) (1—7)*
with
. 27t npn
T (- 2y - 1)
2
tn
9211 = 2 7 5
p2(1=7)(2y-1)
tnpn ( 4y’ — 3 >
03, := 2v + ,
(1) 2y - 1) 1-7)(2y-1)

o, =ty and 2 = Var (Xll{xlgtn}) . Here N (0,1) stands for the standard

normal rv.

4.6.2 Simulation study

In this section, we carry out a simulation study (by means of the statistical
software R, see Thaka and Gentleman, 1996) to illustrate the performance of our
estimation procedure, through its application to sets of samples taken from two
distinct Pareto distributions F' (x) = 1 — 2~ %/7, z > 1 (with tail indices y= 3/4
and y= 2/3). We fix the threshold at 4, which is a value above the intermediate
statistic corresponding to the optimal fraction of upper order staistics in each
sample. The latter is obtained by applying the algorithm of Cheng and Peng

(2001). For each sample size, we generate 200 independent replicates. Our
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True value H = 2.222

semi-parametric H non-parametric H
sample size mean bias rmse mean  bias rmse
1000 2.265 0.042 0.185 2.416 0.193 0.229
2000 2.247 0.024 0.157 2.054 —-0.167 0.223
5000 2.223 0.001 0.129 2.073 —-0.149 0.192

Table 4.1: Semi-parametric and non-parametric estimates of the renewal function
of inter-occurence times of Pareto-distributed claims with shape parameter 2/3.
Simulations are repeated 200 times for different sample

True value H = 1.708

semi-parametric H non-parametric H
sample size mean  bias  rmse mean  bias rmse
1000 1.696 —0.013 0.250 2.141 0.433 0.553
2000 1.719 0.011 0.183 1.908  0.199 0.288
5000 1.705 —0.003 0.119 1.686 —0.022 0.168

Table 4.2: Semi-parametric and non-parametric estimates of the renewal function
of inter-occurence times of Pareto-distributed claims with shape parameter 3/4.
Simulations are repeated 200 times for different sample

overall results are then taken as the empirical means of the values in the 200

repetitions. A comparison with the non-parametric estimator is done as well.

In the graphical illustration, we plot both estimators versus the sample size
ranging from 1000 to 20000. Figure 4.1 clearly shows that the new estimator is
consistent and that it is always better than the non-parametric one. For the
numerical investigation, we take samples of sizes 1000, 2000 and 5000. In each
case, we compute the semi-parametric estimate ]ﬁln as well as the non-parametric
estimate H,. We also provide the bias and the root mean squared error (rmse).
The results are summarized in Tables (4.1) and (4.2) for v= 3/4 and v= 2/3
respectively. We notice that, regardless of the tail index value and the sample
size, the semi-parametric estimation procedure is more accurate than the non-

parametric one.
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Figure 4.1: Plots of the new and sample estimators of the renewal function, of
inter-occurence times of Pareto-distributed claims with tail indices 2/3 (panel
1) and 3/4 (panel 2), versus the sample size. The horizontal line represents the
true value of the renewal function R (¢) evaluated at ¢ = 4.

4.7 Proofs

The following tools will be instrumental for our needs.

Proposition 4.1 Let F be a cdf fulfilling (4.13) with v € (1/2,1), § > 0 and
some real c. Suppose that L is locally bounded in [xo, +00) for xog > 0. Then
for n large enough and for any t, = O (no‘"’/“) ,a € (0,1), we have as n — oo
o = c(1+0(1))n=2/4 42 = O(nl@/206=1/2))

s2 = O(n\@P012) and \/mp,t,°L(t,) = O (n=/8-070/4+1/2)

Lemma 4.1 Under the assumptions of Theorem (4.10), we have, for any real

numbers uy, ug, uz and Uy,

exp {zul%ﬁ (B — ) + in/mpn (g, us) ( Gn/0n ; 1 ) L WMH

n Tn Pn (1 _pn)

2 1 2
Hexp{—%—§(uz,u3)(@l ZQ —% , asn — oo,
3

where i = —1.

E
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Proof of the Proposition. We will only prove the second result, the
other ones are straightforward from (4.13). Let zo > 0 be such that F (z) =

cx /7 (1+27°L()), for # > zy. Then for n large enough, we have

tn xo tn
E [X11{x,<t.}] :/0 zdF (z) :/0 zdF (z) +/ xdF (z).
z0

Recall that p < oo, hence [ zdF (z) < co. Making use of the Proposition as-
sumptions, we get for all large n, F [Xll{Xlgtn}} =0O(1) and F [X121{X1§tn}} =
@) (ti71/7> and therefore 72 = O (n®/20/2°D) .

Proof of the Lemma. See Johansson (2003)[58]. m

Proof of Theorem 4.9. We readily check that for all large n,

(]ﬁln(tn) - H(tn)> tn) ~ Ay + B, + Ch,

where
1 Plapa (7 + 1) »
An =\ ==~ —on, (A = 1)
fin g g2 (L =) (2y = 1)
~2
Yrtn .
Bn = - (pn - pn)
~(J ~ —~ )
,ng 2 (1 - ’Yn) (27n - 1)
and
tnbn
C, =
n /\J —~ ~
,usl )2 (1 - ’Vn) (27% - 1)
. 292 (Y +7) — 372> -
X Aty + (B =)
< (1-7)(2y-1)

Johansson (2003)[58] proved that there exists a bounded sequence k,, such that

ﬁgz(]) — K= Op <’7n V kn/”) ; as 1 — 00, (417)

hence
/751‘]) —pu=0p (n(a/4)(w—1/2)—1/2) _

The first result of the Proposition yields that
tapa (A — 1) = Op (n(@/D@1-3/2-1/2)
Since (a/4) (2y —3/2) —1/2 < 0, then

tnDn (@({]) - :UJ) = op (1) :
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On the other hand, by the CLT we have

DPn—Dn = Op (\/pn/n> , as n — 00, (4.18)
then
b (B — pu) = Op (n@/90-1271/2) — 4. (1),

On the other hand, from Smith (1987), yields
Vo — v = Op (tT_LJL (tn)), as n — oo, (4.19)

it follows
’/V\Ztn (ﬁn ) O]P ( (a/4)(v (1—25)—1/2)—1/2) = op (1) ’

therefore SO
Tnln (pn - pn)
J 2 A~ A~
% (1 =7, (29, — 1)

topPn (G — ) = Op ( (@/H)((1=0)= 1)) =op(l), asn — oo,

=op(l), asn — oo,

/v\ntnpn </'7\n - ) O[[D ( (@/4)(v(1- 26)71)) = Op (1) , as n — 0OQ,

and
Pn (G —7) = Op (n(_o‘/‘l)((lﬂ‘s))) =op(l), as n — oo.
Thus R
()2 (%A+ V)A tnDn (n — ) L0, asn — oo,
" (L =A,) (29, — 1)
and

tnbn (27° (9n +7) — 377)
(1 =329, - 1)1 —7) 2y - 1)

Finally, we infer that H,(t,) — H(t,) = Op(n(®/20=1/9=1/2) a5 p — c0. m

(ﬁn—w)ﬂOasn—mxa.

Proof of theorem 4.10. In the proof of Theorem 4.9, we have shown that

i) =+ op (1) as n — oo. In view of (4.19), it follows that, for all large n,

(H.,(t,) — H(t,))/t, may be rewritten into

(B (ta) = B(t2) ) /b = 61 (1 + 0 (1) (3 — 1)
+ 05 (1+ 05 (1)) (B — 1)
+ 05 (1+ 08 (1)) (G — 7).
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where
o B l-y) 2y -1
Vi,
92 - 2 )
p?(1=7)(2y—1)
and

o tnpn 4'73 - 372
T G Gy (2” (1—7)(27—1)) |

Multiplying by \/n/7, and using the Proposition and the Lemma together with

the continuous mapping theorem, we find that

n

f;:fn (I/H\In(tn) - Hn(tn)> =601 (14 o0p (1)) ? (@ — )

0y (14 0 (1)) j—ﬁ 5o — po)

n

+03<1+0P<1>>§m—v>.

n

On the other hand, from Johansson (2003) [58], we have for all large n

\/ﬁ ~(J) \/ﬁ/\* * ( On >\/ﬁ/\
=) = (= ) + | —— (Pn = P
D - ) = L2 @)+ (o 1) Y G- p)
(A=) + — (0, —0op) +op(1).
T G )+ P G o) e ()
This enables us to rewrite \/f (]@n(tn) - Rn(tn)) into
Vnn
n 1- n n An_ n
0" (G — iy + VP L= ) p)(02+91(tn+ d )) Vi (Dn — po)
Tn Tn L=y Pn (1= pn)
OnDPn ~
+0 V1pn (/o — 1
=) v, Ve /o=
- (9 + 0, )\/_np (Fn =) + 08 (1)
'Yn\/p_n 3 1(1_7>2 n\'In P .

In view of Lemma 2, we infer that for all large n, the previous quantity

n - n n
o, + YOZ2) (g4, (1,4 17 ) ),

Y

V2 (1 +7)610,pn (1+7) ( 01pnon )
+ Wy + 05 + Wy + op (1),
Yo (L =7y) \/Pn S /e \° (1—7)? s or (1)
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where (W;),_, , are standard normal rv’s with E [W;W;] = 0 for every i,j =
1,...,4 with ¢ # j, except for

EWsW,| = E m\/@@n/% —1) a +7)\/W(% - )
1 ~ ~
=(1+7) 2(1+7)E[\/H_M(0n/0n—1)\/71_2%(%—7)]
1
- 2(1+fy).

n /-~

Therefore the rv \/t_ <Hn(tn) - Hn(tn)> is Gaussian with mean zero with as-
Y

ymptotic variance o

n 1_ n n 2
KZz@erIsz)(ngL@l (tn+ ? )>
Vit 11—~

2(1 252 (1 2 2

12 (1—7)? a2 (1—~)?
(1"'_'7)0'71( 2 PnOn )
— 22—~ | 0,05+0 + 1
T NCRTRL
=s2+op(l),

Observe now that K? = s + op (1), where s? is that in theorem (4.10), this
completes the proof of Theorem (4.10). m
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Conclusions and Future Research
1rections

In this thesis, the use of Extreme Value Theory is advocated. This methodology
provides a scientific approach for a difficult practical problem, namely that
of estimating extreme risks when only little data is available. Due to its
assumptions of heavy tails and the extreme value distributions that are
used. For these reasons, EVT is important in the theory and practice of a
category of problems that is normally hard to address. A presentation of
the main methods of EVT has been made, with the support of graphical

tools.

One of the most active areas in this field is extreme value theory applied to
time dependent sequences and certain time series models. By adopting the
general theory of point processes, there is a natural way explaining the

independence between parameters.

Further research may extend the tail dependence estimations by applying mul-
tivariate distributions such as the copula methods. Another application of

tail dependence is in the context of style analysis.

Out last approach is to apply the technique of proper transforms to extreme
models using Bayesian inferences and /or Markov chains. A Bayesian analy-
sis of extreme value data is desirable if we acquire other source of informa-
tion through a prior distribution. It is specially helpful when the number
of available observations is not large enough to apply large sample approx-
imation in extreme value theory. The by product of Bayesian analysis is a
more complete inference through the posterior distribution than the MLE
method.
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Résumé

La théorie des valeurs extrémes (EVT) est apparue en 1928, dans le travail de

Fisher et de Tippett décrivant le comportement du maximum d'une suite des
variables aléatoires indépendantes et identiquement distribuées. Des diverses
applications ont ¢té mises en application avec succes dans beaucoup de
domaines comme: science actuarielle, finances, sciences ¢économiques,
hydrologie, climatologie, télécommunications et sciences de la technologie.
Dans cette thése, nous présentons une vue d'ensemble sur la théorie des valeurs
extrémes et les différentes méthodes d'estimation d'index de la queue de
distribution et des quantiles extrémes.
Cette thése comporte deux applications de la théorie de valeur extréme, en
particulier, quand l'index de valeur extréme est positif, qui correspond a la classe
des distributions a queue lourdes fréquemment utilisées, dans des mode¢les a des
ensembles de données réels. Le premier consiste en une application dans le
domaine actuariel, pour estimer une des mesures de risque plus usuelles, est
appelé l'espérance conditionnelle de queue (CTE). La deuxiéme contribution est
une application importante dans les domaines de la fiabilité des systémes et dans
la télécommunication, pour estimer la fonction de renouvellement.
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