
MOHAMED KHIDER UNIVERSITY - BISKRA

Faculty of Exact Sciences and the Natural Sciences and Life

DEPARTMENT OF MATHEMATICS

A Thesis Presented for the Degree of :

DOCTOR in Mathematics

In the Filled of : Statistics

By

Souraya KHEIREDDINE

Title :

On Boundary Correction in Kernel Estimation

Examination Committee Members :

NECIR Abdelhakim Prof. Biskra University Chairman

YAHIA Djabrane M.C.A. Biskra University Supervisor

YOUSFATE Abderrahmane Prof. Sidi Bel-Abbas University Examinator

SAYAH Abdallah M.C.A. Biskra University Examinator

BRAHIMI Brahim M.C.A. Biskra University Examinator

2016



UNIVERSITÉ MOHAMED KHIDER, BISKRA

Faculté des Sciences Exactes et des Sciences de la Nature et de La Vie

DÉPARTEMENT DE MATHÉMATIQUES

Thèse présentée en vue de l�obtention du Diplôme :

Doctorat en Mathématiques

Option: Statistique

Par : Souraya KHEIREDDINE

Titre :

Sur la correction des e¤ets de bord dans l�estimation à noyau

Membres du Comité d�Examen :

NECIR Abdelhakim Professeur Université de Biskra Président

YAHIA Djabrane M.C.A. Université de Biskra Encadreur

YOUSFATE Abderrahmane Professeur Univ. Sidi Bel-Abbas Examinateur

SAYAH Abdallah M.C.A. Université de Biskra Examinateur

BRAHIMI Brahim M.C.A. Université de Biskra Examinateurr

2016



Dédicace

To my

Dear Parents

&

my Sisters and Brothers.

i



Remerciements

Avant tout j�adresse mes remerciements à mon Dieu qui m�a donné la patience et

le courage qui m�ont permis de réaliser ma thèse.

Je souhaite exprimer ici ma reconnaissance envers mon directeur de thèse Dr.

Yahia Djabrane, pour ses conseils béné�ques et ses apports précieux tout au long

de la réalisation de ma thèse. Merci de votre disponibilité, de votre grande patience

et de vos conseils fort judicieux...

Je remercie in�niment le Professeur Necir Abdelhakim de l�Université de Biskra

de me faire l�honneur de présider le Jury de ma thèse. Je tiens également à ex-

primer ma gratitude envers le Professeur Yousfate Abderrahmane d�avoir accepté

de participer au Jury de cette thèse. Je le remercie énormément. Dr. Sayah

Abdallah et également Dr. Brahimi Brahim Maitres de Conférences à l�Université

de Biskra ont bien acceptés de participer au Jury de cette thèse, qu�ils trouvent ici

toute ma gratitude.

Je tiens à remercier ma chère mère, et toute ma famille que Dieu les gardent,

pour leurs sacri�ces, leur patience et leur encouragements. Sans eux, je ne me

serais jamais rendu aussi loin.

Mes remerciements sont adressés également à tous les membres de Département de

Mathématiques et ceux du Laboratoire de Mathématiques Appliquées. Sans oublier

mes amis, dont je garderai de très bons souvenirs.

ii



iii



Abstract

In this thesis we study some boundary correction methods for kernel estimators

of both density and regression functions and their statistical properties. Kernel

estimators are not consistent near the �nite end points of their supports. In other

words, these e¤ects seriously a¤ect the performance of these estimators. To re-

move the boundary e¤ects, a variety of methods have been developed in the lit-

erature, the most widely used is the re�ection, the transformation and the local

linear methods... In this thesis, we combine the transformation and the re�ection

methods in order to introduce a new general method of boundary correction when

estimating the regression function. Boundary problem for kernel quantile function

estimator in heavy-tailed case are also studied in this thesis.
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Résumé

Dans cette thèse nous étudions certaines méthodes de correction des e¤ets de bord

des estimateurs à noyaux des fonctions de densité et de la régression et leurs pro-

priétés statistiques. Les estimateurs à noyau présentent des problèmes de conver-

gence aux bords de leurs supports. En d�autre termes, ces e¤ets de bord a¤ectent

sérieusement les performances de ces estimateurs. Pour corrigé ces e¤ets de bord,

une variété de méthodes ont été développées dans la littérature, la plus largement

utilisée est la ré�exion, la transformation et la linéaire locale... Dans cette thèse,

nous combinons les méthodes de transformation et de ré�exion, pour introduire

une nouvelle méthode générale de correction de l�e¤et de bord lors de l�estimation

de la régression. Le problème de bord de l�estimateur à noyau de la fonction des

quantiles en cas de distribution à queue lourde est également étudié dans cette

thèse.
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Introduction

In statistical studies, it is often the case that variables represent some sort of

physical measure such as time or length. These variables thus have a natural lower

boundary, e.g. time of birth or zero point on a scale. Hence, it is also justi�ed

to assume that the underlying true density f has a bounded support. There are

many applications in particular in economics where densities of positive random

variables are the object of interest or an essential model to be estimated from

data. For examples, volatility models, duration and survival times data, �nancial

transaction data,... In a lot of these situations, however, appropriate functional

forms are unknown, such that a nonparametric estimate is needed. It is often the

point estimates close to the boundary which are the focus of practical interest and

thus, require good precision.

Nonparametric kernel smoothing belongs to a general category of techniques for

nonparametric curve estimations including : density, distribution, regression, quan-

tiles, ... These estimators are now popular and in wide use with great success

in statistical applications. Early results on kernel density estimation are due to

Rosenblatt (1956) and Parzen (1962), and the form kernel regression estimator
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Introduction

has been proposed by Nadaraya (1964) and Watson (1964). Since then, much

research has been done in the area e.g., the monographs of Silverman (1986),

and Wand and Jones (1995) and kernel regression estimator can be found in, for

instance, Gasser and Müller (1979), Eubank (1988) and Fan and Gijbels (1996).

Kernel estimators are not consistent near the �nite end points of their supports.

In other words, these e¤ects seriously a¤ect the performance of these estimators

and these require good precision. In this thesis we study some boundary correction

methods for kernel estimators of both density and regression functions and their

statistical properties. The so-called �boundary problem�of kernel density estima-

tors has been thoroughly analyzed and discussed for densities which are continuous

on their support [0;1). It arises when the support has at least one �nite bound-

ary and it appears e.g. in form of a relatively high bias when calculating the

estimate at a point near the boundary. In the density estimation context, a vari-

ety of boundary correction methods now exists, and most are referred to in Jones

(1993). He sets up a uni�ed approach to many of the more straightforward meth-

ods using �generalized jackkni�ng�(Schucany et al. 1971). A well-known method

of Rice (1984) is a special case. A popular linear correction method is another: it

has close connections with the boundary properties of local linear �tting (Fan and

Gijbels, 1996)... Consequently, an idea on how to include boundary corrections in

these estimators is presented.

In the regression function estimation context, Gasser and Müller (1979) identi-

�ed the unsatisfactory behavior of the Nadaraya Watson regression estimator for

2



Introduction

points in the boundary region. They proposed optimal boundary kernels but did

not give any formulas. However, Gasser and Müller (1979) and Müller (1988)

suggested multiplying the truncated kernel at the boundary zone or region by a

linear function. The local linear methods developed recently have become increas-

ingly popular in this context (cf. Fan and Gijbels (1996)). More recently, in Dai

and Sperlich (2010) a simple and e¤ective boundary correction for kernel density

and regression estimator is proposed, by applying local bandwidth variation at the

boundaries. To remove the boundary e¤ects a variety of methods have been devel-

oped in the literature, the most widely used is the re�ection method, the boundary

kernel method, the transformation method, the pseudo-data method and the lo-

cal linear method. They all have their advantages and disadvantages. One of the

drawbacks is that some of them (especially boundary kernels), can produce negative

estimators.

For heavy-tailed distributions, bias or ine¢ ciency problems may occur in the clas-

sical kernel estimation when considering. The estimation of population quantiles

is of great interest when a parametric form for the underlying distribution is not

available. It plays an important role in both statistical and probabilistic appli-

cations, namely: the goodness-of-�t, the computation of extreme quantiles and

Value-at-Risk in insurance business and �nancial risk management. Also, a large

class of actuarial risk measures can be de�ned as functionals of quantiles (see, De-

nuit et al., 2005). Quantile estimation has been intensively used in many �elds,

see Azzalini ( 1981), Harrell and Davis ( 1982), Sheather and Marron ( 1990),

Ralescu and Sun ( 1993), Chen and Tang ( 2005). Most of the existing estimators
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Introduction

su¤er from either a bias or an ine¢ ciency for high probability levels. Inspired

by Wand et al. (1991) ; Buch-Larsen et al. ( 2005) showed that for heavy-tailed

distributions, the tail performance of the classical kernel density estimator could

be signi�cantly improved by using a tail �attening transformation. They used

modi�ed Champernowne distribution to estimate loss distributions in insurance

which is categorically heavy-tailed distributions. Sayah et.al.(2010) produce a ker-

nel quantile estimator for heavy-tailed distributions using a modi�cation of the

Champernowne distribution.

The rest of the thesis is organized as follows. In chapter 1, we focused on the

boundary e¤ect in kernel density estimation, some methods of boundary correc-

tion have been discussed. This �rst chapter consists of preliminary mathematical

material which serves the framework for the rest of the thesis. Chapter 2 is con-

cerned with the connections between the kernel regression estimation and boundary

e¤ect. Chapter 3 introduces the important part of our research is devoted to the

extension of the boundary correction methods based on both transformation and

re�ection to the regression setting. In chapter 4, We have focused also on the

boundary problems for kernel quantile estimator in heavy-tailed data case and

presents some asymptotic results.

4



Chapter 1

Boundary correction in kernel

density estimation

In the past, many ways to diminish the boundary problem in the kernel density

estimation have been considered. Consequently, an idea on how to include bound-

ary corrections in these estimators is presented. The �rst statement implies that

the density has a support which is bounded on the left hand side. Without loss of

generality the support is set to be [0;1): Nonparametric kernel density estima-

tion is now popular and in wide use with great success in statistical applications.

The re�ection method is speci�cally designed for the case f (1) (0) = 0 where f (1)

denotes the �rst derivative of f . The boundary kernel method is more general

than the re�ection method in the sense that it can adapt to any shape of density.

These included a boundary kernel and its close counterpart the local linear �tting

method, the transformation and re�ection based method given by Zhang et al.

5



Chapter 1. Boundary e¤ect in kernel density estimation

(1999), Jones and Foster�s (1993) nonnegative adaptation estimator, Cowling and

Hall�s (1996) pseudo-data method, and a recent estimator due to Hall and Park

(2002) based on a transformation of the data �inside�the kernel.

1.1 Kernel density estimation

Let X1;:::; Xn be independent and identically distributed (iid.) copies of the ran-

dom variable (rv) X with continuous distribution function

F (x) = P [X � x]

and continuous density function : f(x) = d
dx
F (x) :

In this chapter, we will consider the problem of estimating the density using non-

parametric kernel estimation, wich is a rather simple but very powerful and thus

broadly used method to estimate a density non-parametrically. It was �rst de�ned

in Rosenblatt (1956) and Parzen (1962), the latter providing a more detailed

analysis of this new and innovative method.

A very natural estimator of the distribution function is the empirical estimator

Fn (x) =
1

n

nX
i=1

1fXi�xg;

6



Chapter 1. Boundary e¤ect in kernel density estimation

where

1fXi�xg =

8><>: 1 if Xi � x

0 if Xi > x

De�nition 1.1.1 (Standard kernel density estimator). Let n be the sample size

and K be a kernel function of support [�1; 1], symmetric around the origin. The

standard kernel density estimator based on X1; :::; Xn is

f̂h (x) =
1

nh

nX
i=1

K

�
x�Xi

h

�
(1.1)

where h := hn (h ! 0 and nh ! 1) is the bandwidth and Kh (:) := K (:=h) ;

where K is an integrable smoothing kernel which usually is nonnegative, i.e., a

symmetric probability density function .

Conditions 1.1 f has two derivatives and f 00 is bounded and uniformly con-

tinuous in a neighborhood of zero or x when x is a boundary or interior point,

respectively.

K satis�es
R
K2 (t) dt <1 and

R
jt2K(t)j dt <1:

Propriety 1.1.1 For any real-valued function � on R, c 2 R and l = 0; 1; 2,

de�ne �l;c (�) =
R c
�1 t

l� (t) dt and �l (�) =
R1
�1 t

l� (t) dt: Suppose that Condition

1.1 holds, then for x = ch, c � 0, as n ! 1, h ! 0 and nh ! 1, f̂h (x) has

expected value

E
�
f̂h (x)

�
= �0;c (K) f (x)�h�1;c (K) f (1) (x)+

h2

2
�2;c (K) f

(2) (x)+o
�
h2
�
(1.2)

7



Chapter 1. Boundary e¤ect in kernel density estimation

and variance

V ar
�
f̂h (x)

�
=
1

nh
f (x)�0;c

�
K2
�
+ o

�
1

nh

�
: (1.3)

Propriety 1.1.2 Suppose that K is supported on [�1; 1]. Then for any c 2 [0; 1),

�0;c(K) < 1 and f̂h (x) ; x = ch, as an estimator of f (x), has a nonzero constant

bias unless f(0+) is equal to zero. And for c � 1, (1.2) and (1.3) become

E
�
f̂h (x)

�
= f (x) +

h2

2
�2 (K) f

(2) (x) + o
�
h2
�

(1.4)

and

V ar
�
f̂h (x)

�
=
1

nh
f (x)�0

�
K2
�
+ o

�
1

nh

�
: (1.5)

The mean square error (MSE) is a widely used measure of discrepancy. For f̂h

as an estimator of f it is de�ned as

MSE
�
f̂h (x)

�
= E

��
f̂h (x)� f (x)

�2�
= Bias2

�
f̂h (x)

�
+ V ar

�
f̂h (x)

�
:

The asymptotic mean integrated square error (AMISE) is

AMISE
�
f̂h (x)

�
=
h4

4
�22 (K)

Z
f (2) (x)2 dx+

1

nh
�0
�
K2
�
: (1.6)

The bandwidth which minimizes the AMISE can be calculated by di¤erentiating

(1.6), setting the equation to 0 and solving it for h: The result is referred to as

8



Chapter 1. Boundary e¤ect in kernel density estimation

the optimal global bandwidth:

hopt =

 
�0 (K

2)

�22 (K)
R
f (2) (x)2 dx

!1=5
n�1=5:

Remark 1.1.1 The formula for the bias and the variance show that some sort

of bias-variance trade-o¤ is present. Taking assumption h ! 0 and nh ! 1 for

n!1 into account, the following behavior can be observed:

1) h becomes too small: bias gets smaller, variance gets larger.

2) h becomes too large: bias gets larger, variance gets smaller.

An example of the impact of the bandwidth on the estimator can be seen in the

�gure (1.1).

From (1.6) another useful result can be derived: the optimal kernel function. Since

the moments have a de�ning impact on the AMISE and the function itself has re-

strictions from its own de�nition, an optimal kernel function can be derived. Some

popular kernels functions used in the literature are the following (see Silverman,

1986):

Quartic or Biweight kernel Kbiw (t) =
15
16
(1� t2)2 1jtj�1

Triangular kernel Ktrian (t) =
35
32
(1� t2)3 1jtj�1

Gaussian kernel Kgauss (t) =
1p
2�
e�1=2t

2
; for t 2 R

Epanechnikov kernel KEpa (t) =
3
4
(1� t2) 1jtj�1

9



Chapter 1. Boundary e¤ect in kernel density estimation

Figure 1.1: Kernel density estimator using three di¤erent bandwidths

1.2 Boundary e¤ects

In statistical studies, it is often the case that variables represent some sort of

physical measure such as time or length. These variables thus have a natural

lower boundary, e.g. time of birth or zero point on a scale. Hence, it is also

justi�ed to assume that the underlying true density f has a bounded support.

Boundary e¤ects are a well known problem in nonparametric curve estimation,

no matter if we think of density estimation or regression. Moreover, both density

estimator and regression usually show a sharp increase in variance and bias when

estimating them at points near the boundary region, i.e., for x 2 [0; h), this

phenomenon is referred to the "boundary e¤ects".

10



Chapter 1. Boundary e¤ect in kernel density estimation

Figure 1.2: Rate of kernels: Triangular, Biweight, Gaussian and Epanechnikov

To remove those boundary e¤ects in kernel density estimation, a variety of meth-

ods have been developed in literature. Some well-known methods are summarized

below:

� Re�ection method (Cline and Hart, 1991, Schuster, 1985, Silverman, 1986).

� Boundary kernel method (Gasser and Müller, 1979, Gasser et al., 1985,

Jones 1993, Müller, 1991, Zhang and Karunamuni, 2000).

� Transformation method (Marron and Ruppert, 1994, Wand et al., 1991).

� Pseudo-data method (Cowling and Hall, 1996).

� Local linear method (Cheng, 1997, Zhang and Karunamuni, 1998).

� Rice�s Boundary Modi�cation (Cheng, 2006).

11



Chapter 1. Boundary e¤ect in kernel density estimation

Consider a density function which is continuous on [0;1) and is 0 for x < 0.

Given a bandwidth h, the interval [0; h) is de�ned to be the boundary interval

and [h;1) the interior interval. The kernel density estimator is in conformity in

the interior interval. As will be shown, problems will arise if x is smaller than

the chosen bandwidth h. In order to analyze this situation, consider now only

f̂h (c:h) ; for c 2 [0; 1). This can be understood as some sort of rescaling. The

expected value of f̂h (x) is computed just as before, but when substituting the

variables, one must pay attention to the limits of the integral:

E
�
f̂h (x)

�
=

Z c

�1
K (t) f (x� ht) dt; x = ch for c 2 (0; 1) :

Assuming that f
00
exists and is continuous in a neighborhood of x, the density in

the integral can be approximated by its second order Taylor expansion evaluated

at x:

f (x� ht) = f (x) + (x� ht� x) f (1) (x) + 1
2
(x� ht� x)2 f (2) (x) + o

�
h2
�
:

given for h! 0 and being uniform in t 2 [�1; 1],

E
�
f̂h (x)

�
= f (x)

Z c

�1
K (t) dt� hf (1) (x)

Z c

�1
tK (t) dt

+
h2

2
f (2) (x)

Z c

�1
t2K (t) dt+ o

�
h2
�
: (1.7)

Unless x � h, i.e. c � 1, the estimator is not asymptotically unbiased and

inconsistent. At the left most boundary the expected value asymptotically reaches

12



Chapter 1. Boundary e¤ect in kernel density estimation

only half the original value:

E
�
f̂h (0)

�
=
1

2
f (0) +O (h) :

Example 1.2.1 The boundary problem can be detected in �gure (1.3). The the-

oretical curve is that of the exponential density.

Figure 1.3: Boundary problem in kernel density estimation

1.3 Boundary corrections in kernel density esti-

mation

As will be shown, it is di¢ cult to �nd an approach which ful�lls both require-

ments without bringing along other restrictions. Thus, one must usually set some

13



Chapter 1. Boundary e¤ect in kernel density estimation

kind of priority: is it more important to �nd an estimate which is rather precise

but is not a real density or to �nd an actual density setting the exactness of the

estimate as a second priority?. Since the standard kernel density estimator per-

forms satisfyingly for x � h, the goal is to �nd a method which adapts near the

boundary in a bene�cial way, but coincides with the standard estimator in the

interior interval, i.e. if x � h. It is natural to desire a smooth crossover from the

boundary to the internal estimator. This is justi�ed by the simplicity it brings

along: one would have to select a kernel function, bandwidth and possibly tuning

factors for the boundary but would not require two or more di¤erent algorithms

for the estimation on the whole support. In this section, some methods were

selected which seemed to be reasonable. There were methods which were rather

complicated and others which on the other hand felt quite natural. The order in

which these approaches are presented is not chronological but is rather an attempt

to create a coherent order.

If not explicitly stated otherwise, K(:) is taken to be a smooth kernel function

of support [�1; 1], symmetric with respect to the origin, the sample consists of

n i.i.d. copies of the random variable X with continuous density f on [0;1),

the bandwidth is a strictly positive number h > 0, depending on n, ful�lling the

conditions (h! 0, n!1 and nh!1) and f̂h (:) is the standard kernel density

estimator as in De�nition (1.1.1).

14



Chapter 1. Boundary e¤ect in kernel density estimation

1.3.1 Cut-and-Normalized method

As can be seen in (1.7), the kernel density estimator is asymptotically biased in

[0; h);

E
�
f̂h (x)

�
= f (x)

Z c

�1
K (t) dt� hf (1) (x)

Z c

�1
tK (t) dt

+
h2

2
f (2) (x)

Z c

�1
t2K (t) dt+ o

�
h2
�

Due to Gasser and Müller (1979), a very naive correction could then be to divide

the original estimator (1.1) by this factor
R c
�1K(t)dt. The order of the bias is

then h, which still is not very satisfying since in [h;1) it becomes of order h2.

The goal is to achieve such an order in the boundary interval. This is a local

correction since the integral depends on the relative position of x with respect to

the bandwidth h

f̂CN (x) =
1

nh

1R c
�1K (t) dt

nX
i=1

K

�
x�Xi

h

�
; x � 0: (1.8)

1.3.2 Re�ection of the data method

This method is introduced by Schuster (1985), then study by Cline and Hart

(1991). A simple but ingenious idea is to re�ect the data points X1;:::; Xn at the
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origin and then to work with the rv�s:

Yi =

8><>: �Xj; j = 1; :::; n

X2n�j; j = n+ 1; :::; 2n

This not only yields a twice as large sample size but most importantly yields a

�sample�drawn from a density with unbounded support. Therefore, a standard

kernel estimator can be applied to the data which is now of sample size 2n:

f �refl (x) =
1

2nh

2nX
j=1

K

�
x� Yj
h

�
; x 2 R (1.9)

This is the standard kernel density estimator. Moreover it is also easy to see that

this estimate is symmetric around the origin. Thus, the natural way to get an

estimate with support [0;1) :

f̂ �refl (x) :=

8><>: 2f �refl (x) ; x � 0

0; x < 0

This is usually referred to as the re�ection estimator and it can also be formulated

as

f̂refl (x) =
1

nh

nX
i=1

�
K

�
x�Xi

h

�
+K

�
x+Xi

h

��
; x � 0 (1.10)

16
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Due to the symmetry of the kernel function, it is very easy to prove that this

results in the re�ection estimator, i.e. f̂refl (x) = f̂h (x) + f̂h (�x) : This equality

allows to calculate the bias and the variance of the estimator in the following way:

Bias
�
f̂refl (x)

�
=
h2

2
f (2) (x)

Z
t2K (t) dt+ o

�
h2
�
:

V ar
�
f̂refl (x)

�
=
1

nh
f (x)

Z
K2 (t) dt+O

�
n�1
�
:

Example 1.3.1 Taking boundary problem for rv X with exponential distribution

with parameter � = 0:5 and sample size n = 300. Graphical output �gure(1.4)

illustrates the boundary correction by the re�ection method.

Figure 1.4: Classical (simple) and re�ection estimator.

Remark 1.3.1 As in the re�ection estimator, the estimate is set to 0 for x < 0.

Of course, (1.8) reduces to the standard kernel density estimator (1.1) as soon

17
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as x � h. An interesting property is that at 0 this estimator coincides with the

re�ection estimator (1.10):

f̂CN (0) =
1

nh

1R 0
�1K (t) dt

nX
i=1

K

�
0�Xi

h

�
=
1

nh

1

1=2

nX
i=1

K

�
�Xi

h

�
=
1

nh

nX
i=1

�
K

�
�Xi

h

�
+K

�
Xi

h

��
= f̂refl (0)

since K is a symmetric function.

1.3.3 Generalized Jackkni�ng method

Jones (1993) sets up a uni�ed approach to many of the more straightforward

methods using �generalized jackkni�ng� developed by Schucany et al., (1971).

Let f̂h be the standard kernel density estimator. We have

�f (x) =
f̂h (x)

a0 (c)
= f̂CN (x)

with al (c) =
R (c^1)
�1 tlK (t) dt; and kl (c) =

R (c^1)
�1 tlL (t) dt:

Let also ~f be like �f only with kernel function L

~f (x) =
f̂h (x)

k0 (c)

Think of �f and ~f as being de�ned only on [0;1). Then, in a minor reformu-

lation of the presentation of Jones (1993), generalized jackkni�ng seeks a linear

18
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combination

f̂ (x) = �x �f (x) + �x ~f (x) (1.11)

with good asymptotic bias properties. Away from the boundary, kernel density

estimation typically a¤ords a bias of order h2 as h = h(n)! 0. It turns out that

the choices

�x = k1 (c) a0 (c) = fk1 (c) a0 (c)� a1 (c) k0 (c)g

�x = �a1 (c) k0 (c) = fk1 (c) a0 (c)� a1 (c) k0 (c)g

allow O(h2) bias at and near the boundary also. (Note that k1 (c) a0 (c) must

not equal a1 (c) k0 (c)). Observe that boundary corrected kernel density estimates

typically do not integrate to unity, but could be renormalised to do so.

There are many possible choices for L. It is usually preferred to make L a function

of K because then one has a boundary correction derived solely from the �interior

kernel�K. Examples include taking L(t) to be Kc(t) = c�1K(c�1t) or K(t) or

K(2p� t) or tK(t):

Remark 1.3.2 A disadvantage of all generalized jackknife boundary corrections,

however, is their propensity for taking negative values near the boundary. See the

dashed curves in �gure (1.5) where n = 50 data points are simulated from the

Gamma(3; 1) distribution (but only the boundary region 0 < x < h is shown).

Here, K is the biweight kernel and h = 1:3: The proposed modi�ed boundary
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corrected estimator

f̂C (x) = �f (x) exp

(
f̂ (x)
�f (x)

� 1
)
: (1.12)

It is clearly nonnegative because, since K and a0 (c) are nonnegative, �f is nonneg-

ative, and the rest of the formula is exponentiated. That it is a modi�cation of �f

�in the direction of�f̂ is clear, and thus to each f̂ there corresponds a nonnegative

f̂C (x) : Indeed, there is no requirement here of generalized jackkni�ng to obtain f̂;

so the proposal is a completely general non negativisation.

Figure 1.5: Generalized jackknife boundary corrections methods.

The asymptotic means and variances of both f̂(x) and f̂C (x) are given in the
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following theorem. Let

B (c) =
k1 (c) a2 (c)� a1 (c) k2 (c)
k1 (c) a0 (c)� a1 (c) k0 (c)

;

V (c) =
k21 (c) b (c)� 2k1 (c) a1 (c) e (c) + a21 (c) z (c)

fk1 (c) a0 (c)� a1 (c) k0 (c)g2
;

where b (c) =
R (c^1)
�1 K2 (t) dt, e (c) =

R (c^1)
�1 tK2 (t) dt, and z (c) =

R (c^1)
�1 t2K2 (t) dt.

Theorem 1.3.1 Suppose that f has at least two continuous derivatives. Then,

as n!1, h! 0 and nh!1,

Bias
�
f̂ (x)

�
' 1

2
h2B (c) f (2) (x) ;

Bias (fC(x)) ' 1
2
h2
�
B (c) f (2) (x) +

a21(c)

a20(c)

f 02(x)
f(x)

�
and

V ar
�
f̂E (x)

�
' 1

nh
V (c) f (x)

where f̂E denotes either f̂ given by (1.11) and fC(x) given by (1.12).

1.3.4 Translation in the argument of the kernel method

The cut-and-normalized estimator (1.8) converges slowly to the true density func-

tion. In Hall and Park (2002) an adaptation of this estimator is presented, density

functions with an upper bound were considered. Nevertheless, the estimator will
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now be presented for densities with support [0;1). For c = x:h�1 :

f̂Tag (x) :=
1

nh

1R c
�1K (t) dt

nX
i=1

K

�
x�Xi + � (x)

h

�
; x � 0 (1.13)

where � (x) is a function to determine.

Remark 1.3.3 It is clear that if � (x) = 0, this estimator would reduce to the cut-

and-normalized estimator (1.8). The aim is to �nd a suitable � (x) such that for

x � h, the estimator (1.13) reduces again to the standard kernel density estimator

(1.1). Hence, an estimator must be used and in Hall and Park (2002) the following

is proposed

�̂ (x) = h2
f̂ (1) (x)

f̂CN (x)

1

K (c)

Z c

�1
tK(t)dt; x = ch

with f̂CN (x) is given by (1.8) and f̂ (1) (x) is an estimate of the �rst derivative of

the density evaluated at x.

De�nition 1.3.1 By a translation in the argument of the kernel, Hall and Park

(2002) give a boundary correction kernel density estimator, for c = x:h�1 :

f̂TAK: (x) :=
1

nh

1R c
�1K (t) dt

nX
i=1

K

�
x�Xi + �̂ (x)

h

�
; x � 0:

Example 1.3.2 In �gure (1.6), the boundary problem is studied for the sam-

ple size of 300 and rv X � exp(0:2): Classical kernel estimator (Simple), by

translation in the argument of the kernel (TAK) and by cut and normalized (CN)
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approach are considered. In the graphical output, we give a comparison of three

methods also mentioned. The graph shows that the three methods to coincide for

x > h = 0:3: In the boundary region, both CN and TAK estimators improve the

simple one.

Figure 1.6: Classical (simple), by translation in the argument of the kernel and
by the approach of the cut and normalized estimators.

1.3.5 Re�ection and transformation methods

The re�ection estimator computes the estimate density based on the original and

the re�ected data points. Unfortunately, this does not always yield a satisfying

result since this estimator enforces the shoulder condition and still contains a bias
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of order h if the density does not ful�ll this condition. The generalized re�ection

and transformation density estimators is given by

f̂g (x) =
1

nh

nX
i=1

�
K

�
x+ g (Xi)

h

�
+K

�
x� g (Xi)

h

��
; x � 0 (1.14)

where g is a transformation that need to be determined.

Remark 1.3.4 By simply looking at this formula, one could also question the need

of using the same function in both arguments: why not use di¤erent functions

g1 and g2? If chosen in a smart way the bias could possibly be reduced to a

higher order with respect to h. This idea was pursued in the technical report

of Karunamuni and Alberts (2003) and later on, in an abbreviated manner, in

Karunamuni and Alberts (2005). Special cases were analyzed in Zhang et al.

(1999) and in Karunamuni and Alberts (2006). The general form of such estimator

is the following:

f̂grt (x) =
1

nh

nX
i=1

�
K

�
x+ g1 (Xi)

h

�
+K

�
x� g2 (Xi)

h

��
; x � 0 (1.15)

g1; g2 are two transformations that need to be determined. The kernel function K

is nonnegative, symmetric function with support [�1; 1], and satisfying

Z
K (t) dt = 1;

Z
tK (t) dt; and 0 <

Z
t2K (t) dt <1:

A1 Karunamuni and Alberts (2005) assumed that the transformations g1; g2 in

(1.15) are non-negative, continuous and monotonically increasing functions
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de�ned on [0;1). Further assumed that g�1k exists, gk(0) = 0, g
(1)
k = 1, and

that g(2)k and g(3)k exist and are continuous on [0;1), where g(j)k denotes the

jth�derivative of gk; with g(0)k = gk and g�1k denoting the inverse function of

gk (for k = 1; 2).

A2 Particularly, supposed that g1 = g2 := g and

g(2) (0) = 2
f (1) (0)

f (0)

Z 1

c

(t� c)K (t) dt
�
c+ 2

Z 1

c

(t� c)K (t) dt
��1

:= d:K 0
c; (1.16)

where

d :=
f (1) (0)

f (0)
(1.17)

and

K 0
c := 2

Z 1

c

(t� c)K (t) dt
�
c+ 2

Z 1

c

(t� c)K (t) dt
��1

:

A3 Supposed further that, f (j) the jth�derivatives of f exists and is continuous

on [0;1), j = 0; 1; 2, with f (0) = f:
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Theorem 1.3.2 Under the above conditions on f; g1; g2; h and K (e.g., A1-A3).

For the estimate f̂grt (x) de�ned in (1.15), we have for x = ch; 0 � c � 1 :

Bias
�
f̂grt (x)

�
=
1

2
h2
�
f (2) (0)

Z 1

�1
K2 (t) dt

�
�
g(3)c (0) f (0) + g(2)c (0)

�
f (1) (0)� g(2)c (0) f (0)

���
c2 +

Z 1

�1
K2 (t) dt

��
+ o

�
h2
�

(1.18)

and

V ar
�
f̂grt (x)

�
=
f (0)

nh

�
2

Z 1

c

K (t)K (2c� t) dt+
Z 1

�1
K2 (t) dt

�
+ o

�
1

nh

�
:

(1.19)

1.3.6 Rice�s boundary modi�cation density estimator

Rice (1984) proposed a boundary modi�cation of kernel regression estimators. In

the boundary area, the method takes a linear combination of two kernel regression

estimators based on di¤erent bandwidths such that the bias is of the same order

of magnitude as in the interior. The idea is similar to the bias reduction technique

discussed in Schucany and Sommers (1977). Cheng (2006) adapted the method

to the context of density estimation.

De�nition 1.3.2 Given � > 0, the Rice�s boundary modi�ed kernel estimator of
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f(x); x = ch; c � 0 is

f�;h (x) = af̂h (x)� bf̂�h (x) = n�1
Xn

i=1
(aKh � bK�h) (x�Xi) (1.20)

where

a =
��1;c=� (K)

��0;c=� (K)��1;c=� (K)� �0;c=� (K)��1;c (K)
; b =

�1;c (K)

��1;c=� (K)
a (1.21)

Here, a and b depend on c and are obtained by requiring to have a bias f�;h (x) of

order h2, see Rice (1984) for more details.

Let

K� (:) = aK (:)�
b

�
K
� :
�

�

Asymptotic bias and variance of f�;h (x) are given in the following theorem.

Theorem 1.3.3 Under Condition (1.1), for x = ch; c � 0; as n ! 1; h ! 1

and nh!1;

Bias
�
f�;h (x)

�
=
h2

2
f (2) (0+)�2;c

�
K�

�
+ o

�
h2
�

and

V ar
�
f�;h (x)

�
=
f (0+)

nh
�0;c

�
K
2

�

�
+ o

�
1

nh

�
:
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Remark 1.3.5 Under the above Theorem, f�;h retains the same rate of conver-

gence in mean squared error everywhere. This method introduces an extra para-

meter �, the ratio of the two bandwidths. Rice (1984) recognized that it is di¢ cult

to �nd the best solution for each c and suggested taking � = 2 � c, where K is

supported on [�1; 1] :

Remark 1.3.6 In the case of Normal kernels, keeping the bandwidth ratio �xed,

for ease and speed of implementation, and a speci�c bandwidth ratio are suggested.

i) When the kernel is Gaussian, our asymptotic studies recommend taking � � 1.

ii) Hence � � 1 is recommended as a general choice.

iii) Cheng (2006) discussed advantages of Rice�s boundary modi�cation. For that

method, best choice of the bandwidth ratio � depends on the density, the sample

size, the kernel and the location in a complicated way. He provided both asymptotic

and exact formulae of the mean squared errors to analyze the problem. Cheng

(2006) also performed some analyses in the case of Normal kernel and made some

useful suggestions.
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Boundary correction in kernel

regression estimation

This chapter is concerned with the connections between the kernel regression

estimation and boundary e¤ect. In the regression function estimation context,

Gasser and Müller (1979) identi�ed the unsatisfactory behavior of the Nadaraya

Watson regression estimator for points in the boundary region. They proposed

optimal boundary kernels but did not give any formulas. However, Gasser and

Müller (1979) and Müller (1988) suggested multiplying the truncated kernel at the

boundary zone or region by a linear function. The local linear methods developed

recently have become increasingly popular in this context (cf. Fan and Gijbels

1996). More recently, in Dai and Sperlich (2010) a simple and e¤ective boundary

correction for kernel density and regression estimator is proposed, by applying

local bandwidth variation at the boundaries. To remove the boundary e¤ects a
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Chapter 2. Boundary correction in kernel regression estimation

variety of methods have been developed in the literature, the most widely used is

the re�ection method, the boundary kernel method, the transformation method,

the pseudo-data method and the local linear method.

2.1 Nadaraya-Watson estimator

Let Y be a real random variable (rv), and let X be a continuous covariable

with probability density function f which is supported within [0;1). The real

rv�s Y and X are repectively called variable of interest and predictor. Our

goal is to estimate the regression function, which is the conditional expectation

m(x) := E(Y jX = x) (assuming f (x) 6= 0). Then the model can be written as

Y = m(X) + �; (2.1)

where � is a rv such that E (�jX) = 0 and V ar (�jX) = �2 <1:

There exist many interesting nonparametric estimators for the unknown regres-

sion function m. Examples of these last can be found in, for instance, Gasser

and Müller (1979), Eubank (1988) and Fan and Gijbels (1996). Given a sam-

ple of independent replicates of (X; Y ), the popular Nadaraya-Watson estimator

Nadaraya (1964) and Watson (1964) of m is given by

m̂h(x) =

Xn

i=1
YiKh (x�Xi)Xn

i=1
Kh (x�Xi)

; (2.2)
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where h := hn (h ! 0 and nh ! 1) is the bandwidth and Kh (:) := K (:=h) ;

where K is an integrable smoothing kernel which usually is nonnegative, i.e., a

symmetric probability density function with compact support. There have been

numerous activities to studymn(x), see Härdle (1990) andWand and Jones (1995)

for a review.

Conditions 2.1 � E(Y 2) <1 and E(X2) <1:

� m is twice continuously di¤erentiable in a neighborhood of x:

Theorem 2.1.1 We have, under conditions (2.1), as h! 0; nh!1 for n!1

Bias (m̂h(x)) =
h2
�
2f (2) (x)m(1) (x) + f (x)m(2) (x)

�
�2 (K)

2f (x)
+ o

�
h2
�
(2.3)

and

V ar (m̂h(x)) =
�2

nhf (x)
�0
�
K2
�
+ o

�
1

nh

�
: (2.4)

2.2 Some boundary corrections methods in ker-

nel regression estimation

Nonparametric regression function estimators usually show a sharp increase in

variance and bias when estimating m(:) at points near the boundary of the sup-

port of the function (e.g., x < h). Gasser and Müller (1979, 1984) identi�ed the
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crucial nature of these e¤ects. They proposed optimal boundary kernels but did

not give any formulas. However, Gasser and Müller (1979) and Müller (1988)

suggested multiplying the truncated kernel at the boundary by a linear function.

Rice (1984) proposed another approach using a generalized jackknife, also known

as Richardson extrapolation which linearly combines the two bandwidths. Schus-

ter (1985) introduced a re�ection technique for density estimation. Eubank and

Speckman (1991) have given a method for removing boundary e¤ects using a "bias

reduction theorem". The fundamental idea of their work is to use a biased esti-

mator to improve another estimator in some sense. Müller (1991) proposed an

explicit construction for a boundary kernel which is the solution of a variational

problem under asymmetric support. He tables many polynomials that are opti-

mal in a speci�ed sense. Moreover, Müller (1993) introduced a general method

of constructing a boundary kernel which is the solution of a variational problem

involving a certain weight function. More recently, Müller and Wang (1994) gave

explicit formulas for a new class of polynomial boundary kernels.

In the context of density estimation, Wand and Schucany (1990) and Berlinet

(1993) worked with the Gaussian kernel which exhibits a �rst-order boundary

e¤ect because the Gaussian kernel has noncompact support. In fact, Berlinet

(1993) proposed a framework for building kernels of increasing order apart from

some speci�c methods based on moment relationships.
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2.2.1 Gasser and Müller estimator

Gasser and Müller (1979) proposed the following estimator

m̂n (x) =
1

h

nX
i=1

Z si

si�1

K

�
x� u
h

�
duYi

with si; i = 1; :::; n a sequence de�ned as follows:

s0 = 0; si�1 � Xi � si; (i = 1; :::; n) ; sn = 1

A natural choice for si (i = 1; :::; n� 1) is:

si =
1

2
(Xi +Xi+1)

Conditions 2.2 K ful�lls a Lipschitz condition of order K (0 < K � 1) :

The basic requirement for the design is:

max
i
jXi �Xi�1j = o

�
1

n

�

but at some points they require form of asymptotic equidistant with rate � > 1 :

max
i

����si � si�1 � 1

n

���� = o� 1n�
�
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For an equidistant design they can put the terms involving o
�
1
n�

�
equal to zero.

Remark 2.2.1 The Gasser and Müller regression estimator is a modi�cation of

an earlier version of Priestly and Chao (1972), and is similar to that of Cheng

and lin (1981). The special case of si = Xi has been investigated by Cheng and

Lin (1981) :

Theorem 2.2.1 assuming m to be Lipschitz continuous of order m

E (m̂n (x)) =
1

h

Z 1

0

K

�
x� u
h

�
m (u) du+ o

�
1

nm

�

and

V ar (m̂n (x)) =
�2

nh

Z 1

�1
K2 (u) du+ o

�
1

n1+K :h1+K
+

1

n�h

�

2.2.2 Cut-and-Normalized regression estimator

A method of cut-and-normalize was �rst introduced by Gasser and Müller (1979).

For simplicity, only the left boundary e¤ects, i.e., c = x=h < 1, we discussed here.

The right boundary e¤ects proceed in the same manner. Since Gasser and Müller

(1979) investigated the cut-and-normalize method, we brie�y explain the general

approach described above.
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Therefore, a boundary kernel modi�cation of m is

m̂CN(x) =
1

nh

nX
i=1

K1c

�
x�Xi

h

�
Yi; (2.5)

where

K1c (t) =
K (t)R c

�1K (u) du
; �1 � t � c (2.6)

Further, this is �normalized�in the sense that it is rescaled to integrate into (0; 1).

Then, the corresponding Bias is

Bias (m̂CN(x)) = �hm(1) (x)

Z c

�1
tK1c (t) dt+

h2m(2) (x)

2!

Z c

�1
t2K1c (t) dt+o

�
h2
�
;

(2.7)

where
R c
�1 tK1c (t) dt 6= 0:

Remark 2.2.2 The dominant part of Bias (m̂CN(x)) in (2.7) is of order h, so

m̂CN(x) is still subject to more boundary bias. The asymptotic variance of m̂CN(x)

can be obtained by the same method as for he non boundary, i.e.,

V ar (m̂CN(x)) =
�2

nh

Z c

�1
K2
1c (t) dt+ o

�
1

nh

�
: (2.8)

Hence, the asymptotic mean square error has the form

AMSE (m̂CN(x)) =
�2

nh

Z c

�1
K2
1c (t) dt+

�
hm(1) (x)

Z c

�1
tK1c (t) dt

�2
: (2.9)
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2.2.3 Rice�s boundary modi�ed regression estimator

The Rice�s boundary modi�ed kernel regression estimator (cf. Rice, 1984) is

�m�;h (x) = m̂h (x) + � [m̂h (x)� m̂�h (x)] ;

where

� =
R (c)

�R (c=�)�R (c) ;

R (c) = !1 (c) =!0 (c) ; and !l (c) =
R c
�1 t

lK (t) dt:

Theorem 2.2.2 The leading bias of �m�;h (x) is

bias ( �m�;h (x)) = hm
(1) (x) [�R (c)� �R (c) + ��R (c=�)]

Remark 2.2.3 For the choice of �, Rice has recommended the following : � =

2� c:

Remark 2.2.4 Rice presents a simple and e¤ective solution to the following prob-

lem: if a given kernel, K is used in the interior of the interval, how can K be

smoothly modi�ed near the boundary? one may not choose to use the optimal

kernel (Epanechnikov, 1969) because of its non di¤erentiability at �1 and the

relatively small dean in MSE, Tapia and Thompson (1978) (Although Epanech-

nikov�s kernel was derived to be optimal for the problem of density estimation, a

similar derivation shows its optimality for regression).
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Next, to obtain the same local asymptotic behavior, the generalized jackknife

method is applied to reduce the order of the bias.

2.2.4 Generalized Jackknif regression estimator

In this section we describe the boundary e¤ects and present a simple and e¤ective

solution to the boundary problem. This solution is due to Rice (1984) and uses

the (generalized) jackkni�ng technique. Boundary phenomena have also been dis-

cussed by Gasser and Müller (1979) and Müller (1984b) who proposed �boundary

kernels� for use near the boundary. In the setting of spline smoothing Rice and

Rosenblatt (1983) computed the boundary bias. Consider the �xed design error

model with kernels having support [�1; 1]. Take the kernel estimator

m̂jh(x) = (nh)
�1

nX
i=1

Kh (Xi � x)Yi

which has the expectation

E (m̂jh(x)) =

Z x=h

(x�1)=h
K (u)m (x� uh) du+O

�
1

nh

�
; as nh!1:
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Now let x = ch � 1� h, then by a Taylor series expansion the expected value of

m̂jh(x) can be approximated by

m(x)

Z c

�1
K(u)du� hm(1)(x)

Z c

�1
uK (u) du

+
1

2
h2m(2) (x)

Z c

�1
u2K (u) du

= m (x)!0 (c)� hm(1)(x)!1 (c) +
1

2
h2m(2) (x)!2 (c) (2.10)

Of course, if c � 1

8>>>><>>>>:
!0 (c) = 1

!1 (c) = 0

!2 (c) = dk

and we have the well-known bias expansion for the estimator. The idea of John

Rice is to de�ne a kernel depending on the relative location of x expressed through

the parameter c: Asymptotic unbiasedness is achieved for a kernel: Kc(�) =

K(�)=!0(c):

Remark 2.2.5 If x is away from the left boundary, that is, c � 1, then the

approximate bias is given by the third term. If c < 1, the second term is of

dominant order O(h) and thus the bias is of lower order at the boundary than in the

center of the interval. The generalized jackknife technique (Gray and Schucany,

1972) allows one to eliminate this lower order bias term.
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Let m̂jh;c(x) be the kernel estimator with kernel Kc and let

m̂J
jh(x) =(1�R)m̂jh;c(x) +Rm̂�jh;c(x)

be the jackknife estimator of m(x), a linear combination of kernel smoothers with

bandwidth h and �h: From the bias expansion (2.10), the leading bias term of

m̂J
jh(x) can be eliminated if

R = � !1(c)=!0(c)

�!1(c=�)=!0(c=�)� !1(c)=!0(c)

This technique was also used by Bierens (1987) to reduce the bias inside the

observation interval. In e¤ect, the jackknife estimator is using the kernel function

KJ
c (x) = (1�R)K(t)� (R=�)K(t=�)

where R and � and thus KJ
c depend on c. In this sense, K

J
c can be interpreted as

a �boundary kernel�. For the choice of �; Rice (1984) has recommended to take

:� = 2� c:

Example 2.2.1 As an example, take as the initial kernel the quartic kernel given

by

K (t) = (15=16)
�
1� t2

�2
1[�1;1]:

The numbers !0(c); !1(c) can be computed explicitly. Figure (2.1) shows the se-

quence of boundary kernels KJ
c for c = 0:1; 0:2; 0:4; 0:6; 0:8: Note that the kernels
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have negative side lobes. Figure (2.2) shows the nonparametric estimate of the

function m (x) = x2 from n = 15 observations (Gaussian noise, � = 0:05). The

bandwidth h is 0:4, thus 60 percent of the observation interval are due to boundary

e¤ects.

Figure 2.1: Sequence of boundary kernels.

2.2.5 Local linear regression estimator

Most regression estimators studied in the literature are of the form

nX
i=1

wi (x;X1; :::; Xn)Yi:
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Chapter 2. Boundary correction in kernel regression estimation

Figure 2.2: Boundary correction in kernels regression estimation: quartic case.

Such a kind of estimator is called a linear smoother (cf. Fan and Gijbels 1996),

since it is linear in the response. Consider a linear smoother which is obtained

via a local linear approximation to the mean regression function. More precisely,

the estimator is de�ned as m̂ (x) where â together with b̂ minimizes

nX
i=1

(Yi � a� b (x�Xi))
2Kh (x�Xi) (2.11)

It turns out that m̂ (x) is the best linear smoother, in the sense that it is the

asymptotic minimax linear smoother when the unknown regression function is in

the class of functions having bounded second derivative. This property is estab-

lished in Fan (1992b). The preceding idea is an extension of Stone (1977), who

used the kernel K(x) = 1[jxj�1]=2, resulting in the running line smoother. For a
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further motivation and study of linear smothers obtained via a local polynomial

approximation to the regression function see Cleveland (1979), Lejeune (1985),

Müller (1987), Cleveland and Devlin (1988) and Fan (1992b; 1993). Fan and Gij-

bels (1992) referred to the estimator m̂ (x) as a local linear smoother.

The smoothing parameter in (2.11) remains constant, that is, it depends on nei-

ther the location of x nor on that of the data Xi. Such an estimator does not fully

incorporate the information provided by the density of the data points. Further-

more, a constant bandwidth is not �exible enough for estimating curves with a

complicated shape. All these considerations lead to introducing a variable band-

width h=� (Xi), where � (:) is some nonnegative function re�ecting the variable

amount of smoothing at each data point. This concept of variable bandwidth was

introduced by Breiman, Meisel and Purcell (1977) in the density estimation con-

text. Further related studies can be found in Abramson (1982), Hall and Marron

(1988), Hall (1990) and Jones (1990). It is expected that the proposed estimator

has all the advantages of both the local linear smoothing method and the vari-

able bandwidth idea. Fan and Gijbels (1992) gave a formal introduction of the

estimator. Instead of (2.11), they minimized

nX
i=1

(Yi � a� b (x�Xi))
2 � (Xi)Kh ((x�Xi)� (Xi)) ; (2.12)

with respect to a and b. Denote the solution to this problem by â; b̂. Then the
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regression estimator is de�ned as â, which is given by

m̂ (x) = â =

nX
i=1

wiYi=

nX
i=1

wi (2.13)

where

wi � � (Xi)Kh ((x�Xi)� (Xi)) [Sn;2 � (x�Xi)Sn;1] (2.14)

with

Sn;k =
nX
i=1

� (Xi)Kh ((x�Xi)� (Xi)) (x�Xi)
k ; k = 0; 1; 2 (2.15)

If Fan and Gijbels (1996) take � (:) = 1, the preceding result slightly generalizes

the known result for the estimator with a constant bandwidth (see Fan, 1992b)

m̂l (x) =

Pn
i=1Kh (x�Xi) [Sn;2 � (x�Xi)Sn;1]YiPn
i=1Kh (x�Xi) [Sn;2 � (x�Xi)Sn;1]

where

Sn;k =
nX
i=1

Kh (x�Xi) (x�Xi)
k ; k = 0; 1; 2 (2.16)
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Chapter 3

General method of boundary

correction in kernel regression

estimation

Abstract1. Kernel estimators of both density and regression functions are not

consistent near the �nite end points of their supports. In other words, boundary

e¤ects seriously a¤ect the performance of these estimators. In this paper, we

combine the transformation and the re�ection methods in order to introduce a new

general method of boundary correction when estimating the mean function. The

asymptotic mean squared error of the proposed estimator is obtained. Simulations

show that our method performes quite well with respect to some other existing

methods.
1This chapter is an Article appeared in Afrika Statistika. Vol. 10, 2015, pages 688�

699.(Authors : S. Kheireddine, A. Sayah and D. Yahia).
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3.1 Introduction

Let Y be a real random variable (rv), and let X be a continuous covariable with

probability density function f which is supported within [0;1). Then the model

can be written as Y = m(X) + � where � is a rv such that E (�jX) = 0 and

V ar (�jX) = �2 <1:

Given a sample of independent replicates of (X; Y ), the popular Nadaraya-Watson

estimator Nadaraya (1964) and Watson (1964) of m is given by

m̂h(x) =

Xn

i=1
YiKh (x�Xi)Xn

i=1
Kh (x�Xi)

(3.1)

where h := hn (h ! 0 and nh ! 1) is the bandwidth and Kh (:) := K (:=h) ;

where K is an integrable smoothing kernel which usually is nonnegative.

Boundary e¤ects are a well known problem in the nonparametric curve estima-

tion setup, no matter if we think density estimation or regression. Moreover,

both density and regression estimator usually show a sharp which increase in

bias and variance when estimating them at points near the boundary region, i.e.,

for x 2 [0; h), this phenomenon is referred as "boundary e¤ects". In the con-

text of the regression function estimation, Gasser and Müller (1979) identi�ed

the unsatisfactory behavior of (2.2) for points in the boundary region. They pro-

posed optimal boundary kernels but did not give any formulas. However, Gasser

and Müller (1979) and Müller (1988) suggested multiplying the truncated ker-

nel at the boundary zone or region by a linear function. Rice (1984) proposed
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another approach using a generalized jackknife. Schuster (1985) introduced a re-

�ection technique for density estimation. Eubank and Speckman (1991) presented

a method for removing boundary e¤ects using a bias reduction theorem. Müller

(1991) proposed an explicit construction of a boundary kernel which is the solu-

tion of a variational problem under asymmetric support. Moreover, Müller and

Wang (1994) gave explicit formulas for a new class of polynomial boundary kernels

and showed that these new kernels have some advantages over the smooth opti-

mum boundary kernels in Müller (1991), i.e., these new kernels have higher mean

squared error (MSE) e¢ ciency. The local linear methods developed recently have

become increasingly popular in this context (cf. Fan and Gijbels, 1996). More

recently, in Dai and Sperlich (2010) a simple and e¤ective boundary correction for

kernel densitiy and regression estimator is proposed, by applying local bandwidth

variation at the boundaries.

To remove the boundary e¤ects a variety of methods have been developed in the

literature, the most widely used is the re�ection method, the boundary kernel

method, the transformation method, the pseudo-data method and the local linear

method. They all have their advantages and disadvantages. One of the draw-

backs is that some of them (especially boundary kernels), can produce negative

estimators. The recent work of Karunamuni and Alberts (2005) provides excellent

selective review article on boundary kernel methods and their statistical proper-

ties in nonparametric density estimation. In the latter reference, a new boundary

correction methodology in density estimation is proposed and studied. It is the

purpose of this paper to extend this approach to the regression case.
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The rest of the chapter is organized as follows. Section 3.2 introduces our new

nonparametric regression estimator and presents some asymptotic results. In Sec-

tion 3.3, extensive simulations are carried out to compare the proposed estimator

with outher ons. Proofs are relegated to Section 3.4.

3.2 Main results

In this paper, we combine the transformation and re�ection boundary correction

methods to estimate the mean function m̂h(x). At each point in the boundary

region (i.e., for x = ch; 0 � c � 1), we propose to investigate a class of estimators

of the form

emn(x) =

Xn

i=1
Yi fKh (x+ g1 (Xi)) +Kh (x� g1 (Xi))gXn

i=1
fKh (x+ g2 (Xi)) +Kh (x� g2 (Xi))g

:=
e'n(x)efn(x) (3.2)

where h is the bandwidth, Kh (:) := K (:=h) and K is a kernel function and

g1; g2 are two transformations that need to be determined. Also, let the kernel

function K in (3.2) be a non-negative, symmetric function with support [�1; 1],

and satisfying

Z
K (t) dt = 1;

Z
tK (t) dt = 0; and 0 <

Z
t2K (t) dt <1;

that is, K is a kernel of order 2.
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For x � h; emn(x) reduces to the traditional kernel estimator m̂h(x) given in (2.2).

Thus emn(x) is a natural boundary continuation of the usual kernel estimator (2.2).

Moreover, estimator (3.2) is non-negative as long as the kernel K is non-negative.

Most importantly, the proposed estimator improves the bias while the variance

remains almost unchanged.

We assume that the transformations g1; g2 in (3.2) are non-negative, continuous

and monotonically increasing functions de�ned on [0;1). Further assume that

g�1k exists, gk(0) = 0, g0k = 1, and that g00k and g
000
k exist and are continuous on

[0;1), where g�1k denoting the inverse function of gk (for k = 1; 2). Particularly,

suppose that

g001 (0) =
'0 (0)

' (0)
CK;c and g002 (0) =

f 0 (0)

f (0)
CK;c (3.3)

where

CK;c := 2

1Z
c

(t� c)K (t) dt

0@2 1Z
c

(t� c)K (t) dt+ c

1A�1

:

Suppose further that, f (j), '(j) and m(j) the jth�derivatives of f; ' and m exist

and are continued on [0;1), j = 0; 1; 2, with f (0) = f; '(0) = ' and m(0) = m:

The bias and variance of our estimator are given in the following theorem, which

is the main result of this paper.

Theorem 3.2.1 Under the above conditions on f; '; m; g1; g2; and K: For the
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estimate emn(x) de�ned in (3.2), we have for x = ch; 0 � c � 1 :

Bias(emn(x)) =
h2 (A1 �m (x)A2)

f (x)
+ o(h2); (3.4)

and

V ar (emn(x)) =
f(0)�2(0)

nhf 2(x)

�Z 1

�1
K2 (t) dt+ 2

Z 1

c

K (t)K (2c� t) dt
�
+o

�
1

nh

�
:

(3.5)

where

A1 := '
00 (0)

1Z
�1

t2K (t) dt�
�
g0001 (0)' (0) + 3g

00
1 (0)

�
'(1) (0)� g001 (0)' (0)

��

(

1Z
�1

t2K (t) dt+ c2); (3.6)

A2 := f
00 (0)

1Z
�1

t2K (t) dt� [g0002 (0) f (0) + 3g002 (0) (f 0 (0)� g002 (0) f (0))]

(

1Z
�1

t2K (t) dt+ c2); (3.7)

and �2(x) = V ar (Y=X = x) :
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Hence, the MSE of emn(x) is

MSE (emn(x)) = Bias
2(emn(x)) + V ar (emn(x))

The asymptotic MSE of emn(x) is

AMSE (emn(x)) =
h4 (A1 �m (x)A2)2

f 2 (x)
+
f(0)�2(0)

nhf 2(x)

�Z 1

�1
K2 (t) dt+ 2 :Z 1

c

K (t)K (2c� t) dt
�

On the basis of Theorem 3.2.1, the asymptotic optimal bandwidth that minimizes

the AMSE is

hopt = Cn
�1=5 with C =

0@�2 (0) f(0)
�
2
R 1
c
K (t)K (2c� t) dt+

R
K2 (t) dt

�
4 (A1 �m (x)A2)2

1A1=5

:

(3.8)

Remark 3.2.1 Functions satisfying the conditions (3.3) can be easily constructed.

We employ the following transformation in our investigation. For 0 � c � 1,

de�ne

gk(y) = y +
1

2
dky

2 + �0d
2
ky
3; k = 1; 2 (3.9)

where d1 = g001 (0) (resp. d2 = g002 (0)) and �0 is a positive constant such that

12�0 > 1. This condition on �0 is necessary for gk(y) of (3.9) to be an increasing

function in y.
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Remark 3.2.2 The choice hopt of h is only possible in a simulation study, when

all required quantities are known, but not in a real data situation. To select the

bandwidth for the new method in practice, we can replace the unknown quantities in

(3.8) by their estimates. Another method is to use leave-one-out cross-validation

(cf. Härdle and Vieu, 1992) to select the bandwidth h, i.e., we �nd h by minimizing

CV (h) =
Xn

i=1
(yj � emi;h(xi))

2 ;

here emi;h(:) is the proposed regression estimate by leaving the ith observation out.

3.3 Simulation results

In this section, we present some simulation results which are designed to illustrate

the performance of our estimator (3.2) for small sample and large sizes. For com-

parison purposes, the local linear and the classical Nadaraya�Watson estimators

(2.2) were also considered. Recently, local polynomial �tting, and particularly its

special case - local linear �tting - have become increasingly popular in light of

recent works by Cleveland and Loader (1996), Fan (1992b) and several others. It

has the advantages of achieving full asymptotic minimax e¤eciency and automat-

ically correcting for boundary bias. A review of local polynomial smoothing is

given in Fan and Gijbels (1996). The local linear regression estimator is given by

m̂l(x) =

nX
j=1

wjYj=

nX
j=1

wj; wj := Kh (Xj � x) (Sn;2 � Sn;1 (Xj � x)) ;
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where Sn;k :=
Pn

j=1Kh (Xj � x) (Xj � x)k ; for k = 1; 2:

To assess the e¤ect of the correction methods near the boundaries, the following

models are investigated:

Model 1 : m1 (x) = 2x+ 1 and Model 2 : m2 (x) = 2x
2 + 3x+ 1

and errors "j, assumed to be standard normally distributed independent rv�s.

Likewise, consider two cases of density f with support [0;1) of the continuous

covariable X :

density 1 : f1 (x) = exp(�x) and density 2 : f2 (x) =
2

� (1 + x2)
x � 0:

For each density f1; f2 and models m1;m2 we calculate the absolute biases and

MSE 0s of the proposed general transformation and re�ection (GTR), the local

linear (LL) and Nadaraya-Watson (NW) estimators, in left boundary region (i.e.,

x = ch ; for c = 0:1; 0:2; 0:3; and 0:4). The bandwidth selection is based on

cross-validation procedure. The main reason for this choice is that it provides a

fair basis for comparison among the di¤erent estimators regardless of bandwidth

e¤ects.

Throughout our simulations, we use the Epanechnikov kernel (cf. Epanechnikov,

1969)

K (t) = (3=4)
�
1� t2

�
1[�1;1] (t) ;
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where 1A (:) denotes the indicator function of a set A.

The simulated sample sizes are n = 50 (small) and n = 500 (large). All results

are calculated by averaging over 1000 simulation runs. For each model and each

density, we calculate the absolute bias and the MSE of the estimators at the

points in the mentioned boundary region. The results are shown in Tables 3.1

and 3.2. We see that in all cases the standard Nadaraya-Watson estimator m̂h(x)

is the worst one. This is clearly due to the boundary e¤ect. Furthermore, when

looking at theMSE 0s, our new method outperforms the others. The bias is about

the same for our method and the local linear one.

3.4 Proofs

Proof of (3.4). For x = ch; 0 � c � 1; we have

emn(x) =

Xn

i=1
Yi fKh (x+ g1 (Xi)) +Kh (x� g1 (Xi))gXn

i=1
fKh (x+ g2 (Xi)) +Kh (x� g2 (Xi))g

:=
e'n(x)efn(x) ;
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where g1 and g2 are given in (3.3). For the numerator e'n(x); we have
E [e'n(x)] = 1

h

Z Z
fKh (x+ g1(u)) +Kh (x� g1(u))g yf (u; y) dydu

=
1

h

Z
fKh (x+ g1(u)) +Kh (x� g1(u))g' (u) du

=
1

h

Z
Kh (x+ g1(u))' (u) du+

1

h

Z
Kh (x� g1(u))' (u) du

=: I1 + I2;

where ' (u) =
R
yf (u; y) dy:

Let t = (x+ g1(u)) =h; then

I1 =

1Z
c

K (t)
'
�
g�11 (h (t� c))

�
g
(1)
1

�
g�11 (h (t� c))

�dt:
A Taylor expansion of order 2 of the function '

�
g�11 (:)

�
=g
(1)
1

�
g�11 (:)

�
at

t = c gives

I1 =

1Z
c

K (t) [' (0) + h (t� c) ('0 (0)� g001 (0)' (0))

+
h2 (t� c)2

2
f'00 (0)� g0001 (0)' (0)� 3g001 (0) ('0 (0)� g00 (0)' (0))g

#
dt

+ o
�
h2
�
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I1 = ' (0)

1Z
c

K (t) dt+ h ('0 (0)� g001 (0)' (0))
1Z
c

(t� c)K (t) dt

+
h2

2
f'00 (0)� g0001 (0)' (0)� 3g0001 (0) ('0 (0)� g001 (0)' (0))g

1Z
c

(t� c)2K (t) dt+ o
�
h2
�
: (3.10)

Similarly,

I2 = ' (0)

cZ
�1

K (t) dt� h ('0 (0)� g001 (0)' (0))
cZ

�1

(t� c)K (t) dt

+
h2

2
f'00 (0)� g0001 (0)' (0)� 3g001 (0) ('0 (0)� g001 (0)' (0))g

�
cZ

�1

(t� c)2K (t) dt+ o
�
h2
�
: (3.11)

Using the properties of K, we have

cZ
�1

tK (t) dt = �
1Z
c

K (t) dt and

cZ
�1

K (t) dt = 1�
1Z
c

K (t) dt:

Also, by the existence and the continuity of '00 (:) near 0, we have for x = ch;

' (0) = ' (x)� ch'0 (x) + (ch)2

2
'00 (x) + o (h2) ;

'0 (x) = '0 (0) + ch'00 (0) + o (h) ;

'00 (x) = '00 (0) + o (1) :

(3.12)

Now combining (3.10) and (3.11) and using the properties of K along with (3.12),
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we have for x = ch; 0 � c � 1

E [e'n(x)] = 1

h
E [Kh (x+ g1 (Xi))Yi] +

1

h
E [Kh (x� g1 (Xi))Yi]

= ' (0)

1Z
c

K (t) dt+ ' (0)

cZ
�1

K (t) dt+ h ('0 (0)� g001 (0)' (0))

�
1Z
c

(t� c)K (t) dt� h ('0 (0)� g001 (0)' (0))
cZ

�1

(t� c)K (t) dt

+
h2

2
f'0 (0)� g0001 (0)' (0)� 3g001 (0) ('0 (0)� g001 (0)' (0))g

�
1Z
c

(t� c)2K (t) + h
2

2
f'00 (0)� g0001 (0)' (0)� 3g001 (0)

('0 (0)� g001 (0)' (0))g
1Z
c

(t� c)2K (t) dt+ o
�
h2
�
: (3.13)

Furthermore, the kernel K provides

1Z
�1

(t� c)2K (t) dt =
1Z

�1

t2K (t) dt+ c2;

and

1Z
c

(t� c)K (t) dt�
cZ

�1

(t� c)K (t) dt = 2
1Z
c

(t� c)K (t) dt+ c:
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From (3.13) we have

E [e'n(x)] = ' (x) + h ('0 (0)� g01 (0)' (0)) f2 1Z
c

(t� c)K (t) dt+ cg

+
h2

2
f'00 (0)� g0001 (0)' (0)� 3g001 (0) ('0 (0)� g001 (0)' (0))g

� f
1Z

�1

t2K (t) dt+ c2g+ o
�
h2
�

= ' (x) + h

8<:2'0 (0)
1Z
c

(t� c)K (t) dt� g001 (0)' (0)

� f2
1Z
c

(t� c)K (t) dt+ cg

9=;+ h22
8<:'00 (0)

1Z
�1

t2K (t) dt

� [g0001 (0)' (0) + 3g001 (0) ('0 (0)� g001 (0)' (0))] (
1Z

�1

t2K (t) dt+ c2)

9=;
+ o

�
h2
�
: (3.14)

Under the condition (3.3) on the transformation g1; the second order term of the

right-hand side of (3.14) is zero. It can be shown that

E [e'n(x)]� ' (x) =: h2A1 + o �h2� ;
where A1 is given in (3.6).
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Similarly, we can get

E
h efn(x)i = f (x) + h

8<:2f 0 (0)
1Z
c

(t� c)K (t) dt� g002 (0) f (0)

� f2
1Z
c

(t� c)K (t) dt+ cg

9=;+ h22
8<:f 00 (0)

1Z
�1

t2K (t) dt

� [g002 (0) f (0) + 3g002 (0) (f 0 (0)� g002 (0) f (0))] f
1Z

�1

t2K (t) dt+ c2g

9=;
+ o

�
h2
�

(3.15)

Substitute g002 (0) ; the second term of the right-hand side of (3.15) is zero. Then

E
h efn(x)i� f (x) =: h2A2 + o �h2�

where A2 is given in (3.7). Hence

emn (x) =
h2A1 + o (h

2)

h2A2 + o (h2)
= m (x) +

h2 (A1 �m (x)A2)
f (x)

+ o
�
h2
�
:

The asymptotic bias result (3.4) follows directly.

Proof of (3.5). In order to �nd the asymptotic variance of the proposed estimator

(3.2), we may write

emn (x) =

nX
i=1

Wni(x)Yi;
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with

Wni(x) =
Kh (x+ g1 (Xi)) +Kh (x� g1 (Xi))Pn

i=1 fKh (x+ g2 (Xi)) +Kh (x� g2 (Xi))g
:

The weights Wni(x) are nonnegative and satisfy
Xn

i=1
Wni(x) = 1; for all x 2 R:

Moreover, we have

emn (x)�m (x) =
nX
i=1

Wni(x) fYi �m (Xi)g+
nX
i=1

Wni(x) fm (Xi)�m (x)g

=: J1 + J2:

Here J1 is the variance which is study here. Recall that the predictable quadratic

variation of J1 equals

ef 2n(x) nX
i=1

W 2
ni(x)�

2(Xi) = (nh)
�2

nX
i=1

�2(Xi) fKh (x+ g1 (Xi)) +Kh (x� g1 (Xi))g2 ;

where �2(:) is the conditional variance i.e., �2(:) = V ar (Y jX = :) :
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For x = ch; 0 � c � 1, we have, using a Taylor expansion of order 2

E

"
(nh)�2

nX
i=1

�2(Xi) fKh (x+ g1 (Xi)) +Kh (x� g1 (Xi))g2
#

=
1

nh2
E
�
�2(Xi) fKh (x+ g1 (Xi)) +Kh (x� g1 (Xi))g2

�
=

1

nh2

Z
�2(u) fKh (x+ g1(u)) +Kh (x� g1(u))g2 f(u)du

=
1

nh2

�Z
�2(u)K2

h (x+ g1(u)) f(u)du+

Z
�2(u)K2

h (x� g1(u)) f(u)du
�

+
2

nh2

Z
�2(u)Kh (x+ g1(u))Kh (x� g1(u)) f(u)du

=: J11 + J12:

Firstly,

J11 =
1

nh2

24hZ 1

c

�2(g
�1

1
((t� c)h))K2 (t)

f
�
g
�1

1
((t� c)h)

�
g01
�
g�1
1
((t� c)h)

�dt
+h

Z c

�1
�2(g

�1

1
((c� t)h))K2 (t)

f
�
g
�1

1
((c� t)h)

�
g01
�
g�1
1
((c� t)h)

�dt
35

=
f(0)�2(0)

nh

Z 1

�1
K2 (t) dt+ o(

1

nh
): (3.16)

Next we consider J12: By the continuity property of g001 and by a Taylor expansion

of order 2 of g1; we have

g1 ((c� t)h) = g1 (0) + (t� c) (�h) g01 (0) +O
�
h2
�

= (c� t)h+O
�
h2
�
;
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since g1 (0) = 0 and g01 (0) = 1: Using (3.16) and by the change of variables,

x+ g1(y) = ht; we obtain

J12 =
2

nh2

Z 1

0

�2(u)Kh (x+ g1 (Xi))Kh (x� g1 (Xi)) f(u)du

=
2

nh

Z 1

c

�2
�
g
�1

1 (th� x)
�
K (t)Kh

�
x� g1(g

�1

1 (th� x))
�

� f(g�11 (th� x))dt

=
2

nh

Z 1

c

�2
�
g
�1

1 (th� x)
�
K (t)Kh

�
x� (t� c)h+O

�
h2
��

� f(g�11 (th� x))dt

=
2

nh

Z 1

c

�2 (0)K (t)K (2c� t+O (h)) (f(0) +O (h)) dt

=
2�2 (0) f(0)

nh

Z 1

c

K (t)K (2c� t) dt+ o
�
1

nh

�
: (3.17)

The proof of (3.5) now follows from (3.16) and (3.17), which achieves the proof of

Theorem 3.2.1.
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Table 3.1: Bias and MSE of the indicated regression estimators at boundary
jBiasj MSE jBiasj MSE jBiasj MSE jBiasj MSE
c = :1 c = :2 c = :3 c = :4

GTR :0141 :0613 :0381 :0631 :0461 :0584 :0512 :0571
n = 50 NW :2678 :1362 :2192 :1120 :1775 :0894 :1365 :0700

LL :0375 1:2375 :0064 :3649 :0064 :1468 :0101 :1167
Model 1 density1

GTR :0109 :0083 :0126 :0090 :0162 :0091 :0199 :0084
n = 500 NW :1747 :0393 :1503 :0313 :1217 :0233 :0954 :0163

LL :0127 :0386 :0025 :0240 :0006 :0169 :0049 :0123

GTR :1361 :0595 :1877 :0786 :1841 :0785 :1304 :0656
n = 50 NW :5705 :3934 :4356 :2540 :3413 :1782 :2923 :1453

LL :0694 :1252 :1334 :0903 :1991 :1002 :2158 :1054
Model 2 density1

GTR :0940 :0141 :0948 :0146 :0778 :0131 :0582 :0107
n = 500 NW :3520 :1320 :2854 :0887 :2343 :0627 :1951 :0454

LL :0458 :0300 :0955 :0263 :1327 :0305 :1517 :0358

Table 3.2: Bias and MSE of the indicated regression estimators at boundary
jBiasj MSE jBiasj MSE jBiasj MSE jBiasj MSE
c = :1 c = :2 c = :3 c = :4

GTR :1131 :1189 :1064 :1084 :0876 :0813 :1216 :0769
n = 50 NW :8697 :8014 :6174 :4329 :4455 :2529 :2630 :1279

LL :2662 :7402 :0818 :2944 :0245 :2785 :0044 :1955
Model 1 density2

GTR :0496 :0196 :0520 :0167 :0455 :0131 :0391 :0107
n = 500 NW :7162 :5180 :5016 :2577 :3621 :1374 :2511 :0690

LL :0063 :0601 :0054 :0373 :0040 :0238 :0007 :0159

GTR :1257 :1758 :1205 :1411 :1339 :1119 :1479 :0946
n = 50 NW :6272 :4902 :6220 :4794 :6345 :4856 :7076 :5848

LL :1849 1:8400 :0657 :2573 :1288 :1719 :2294 :1398
Model 2 density2

GTR :0505 :0260 :0562 :0201 :0663 :0179 :0575 :0135
n = 500 NW :3744 :1526 :3511 :1344 :3218 :1136 :3077 :1037

LL :0004 :0752 :0274 :0489 :0806 :0359 :1517 :0418
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Chapter 4

Boundary correction using the

Champernowne transformation

Inspired by Wand et al. (1991) ; Buch-Larsen et al. (2005) showed that for heavy-

tailed distributions, the tail performance of the classical kernel density estimator

could be signi�cantly improved by using a tail �attening transformation. They

used modi�ed Champernowne distribution to estimate loss distributions in insur-

ance which is categorically heavy-tailed distributions. Sayah et.al.(2010) produce

a kernel quantile estimator for heavy-tailed distributions using a modi�cation of

the Champernowne distribution.
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Chapitre 4: Boundary correction using the Champernowne transformation

4.1 Champernowne transformation

The original Champernowne distribution has density

t�;M (x) :=
�x��1M�

(x� +M�)2
; x � 0;

The cumulative distribution function (cdf) is

T�;M (x) :=
x�

x� +M�
; x � 0;

with parameters � > 0: M is the median of the distribution.

The Champernowne distribution converges to a Pareto distribution in the tail,

whil looking more like a lognormal distribution near 0 when � > 0: The distri-

bution was mentioned for the �rst time in 1936 by D.G. Champernowne when

he spoke on The Theory of Income Distribution at the Oxford Meeting of the

Econometric Society.

Remark 4.1.1 In the transformation kernel density estimation method, if we

transform the data with the Champernowne cdf, the in�exible shape near 0 results

in boundary problems. We argue that a modi�cation of the Champernowne cdf

can solve this inconvenience. The modi�ed Champernowne cdf as proposed by

Buch-Larsen et al. (2005) is:

T�;M;c (x) :=
(x+ c)� � c�

(x+ c)� + (M + c)� � 2c� ; x � 0; (4.1)
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with parameters � > 0; M > 0 and c � 0: The associated pdf is

t�;M;c (x) :=
� (x+ c)��1 ((M + c)� � c�)
((x+ c)� + (M + c)� � 2c�)2

; x � 0:

Remark 4.1.2 The e¤ect of the additional parameter c is di¤erent for � > 1 and

for � < 1 (see �gures 4.1 and 4.2): Moreover, this distribution is of Pareto type,

that is

t�;M;c (x) �
� ((M + c)� � c�)

x�+1
; as x!1:

Figure 4.1: Modi�ed Champernowne distribution function, (M = 5; � = 2) :
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Figure 4.2: Modi�ed Champernowne distribution function, (M = 5; � = 5) :

4.2 Boundary correction for heavy-tailed distri-

butions

Kernel density estimator which is of the form

f̂h (x) =
1

nh

nX
i=1

K

�
x�Xi

h

�
: (4.2)

where h := hn (h ! 0 and nh ! 1) is the bandwidth and K is an integrable

smoothing kernel.

De�nition 4.2.1 Given a set of data X1; X2; :::; Xn; cdf T�;M;c (x) ; modi�ed
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Champernowne distribution, then

fZ1; :::; Zng := fT�;M;c(X1); :::; T�;M;c(Xn)g

are new variable, Z is in the interval (0; 1) and uniform distributed. The kernel

density estimation for the transforms data is given by

f̂T (z) =
1

nhkz

nX
i=1

K

�
z � Zi
h

�
;

K is kernel function. The transformation kernel density estimator of f (x) :

f̂TCh (x) :=
1

nh

nX
i=1

K

�
T�;M;c (x)� T�;M;c (Xi)

h

�
T 0�;M;c (x) ; (4.3)

where T�;M;c (:) is the modi�ed Champernowne transformation function, T 0�;M;c (:)

it�s derivative.

Remark 4.2.1 Boundary correction, kz is needed since z are in the interval (0; 1)

so that we have to divide by the area under the kernel that lies in this interval,

which de�ned by

kz :=

Z max(1;(1�z)=h)

max(�1;�z=h)
K (t) dt:

Theorem 4.2.1 (Buch-Larsen et al., 2005) The bias and the variance of f̂TCh (x)
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are given by

Bias
�
f̂TCh (x)

�
=
1

2
�2 (K)h

2

  
f (x)

T 0�;M;c (x)

!0
1

T 0�;M;c (x)

!0
+ o

�
h2
�
;

V ar
�
f̂TCh (x)

�
=
1

nh

Z
K2 (t) dtT 0�;M;c (x) f (x) + o (1=nh) ;

where �2 (K) :=
R
t2K (t) dt <1:

4.3 Boundary correction in kernel quantile esti-

mation

4.3.1 Kernel quantile estimation

The estimation of population quantiles is of great interest when a parametric

form for the underlying distribution is not available. It plays an important role

in both statistical and probabilistic applications, namely: the goodness-of-�t, the

computation of extreme quantiles and Value-at-Risk in insurance business and

�nancial risk management. Also, a large class of actuarial risk measures can be

de�ned as functionals of quantiles (see, Denuit et al., 2005).

Quantile estimation has been intensively used in many �elds, see Azzalini (1981),

Harrell and Davis (1982), Sheather and Marron (1990), Ralescu and Sun (1993),

Chen and Tang (2005). Most of the existing estimators su¤er from either a

bias or an ine¢ ciency for high probability levels. To solve this inconvenience,
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we suggest to use the so-called transformed kernel estimate, �rstly used in the

density estimation context, by Devroye and Györ� (1985) for heavy-tailed ob-

servations. The idea is to transform the initial observations fX1; :::; Xng into a

sample fZ1; :::; Zng := fT (X1); :::; T (Xn)g; where T is a given function having

values in (0; 1) : Buch-Larsen et al. (2005) suggested to choose T so that T (X)

is close to the uniform distribution. They proposed a kernel density estimation

of heavy-tailed distributions based on a transformation of the original data set

with a modi�cation of the Champernowne cumulative distribution function (cdf)

(see, Champernowne, 1936 and 1952). While Bolancé et al. (2008) proposed the

Champernowne-inverse beta transformation in kernel density estimation to model

insurance claims and showed that their method is preferable to other transforma-

tion density estimation approaches for distributions that are Pareto-like.

In order to correct the bias problems, Charpentier and Oulidi (2010) suggested

several nonparametric quantile estimators based on the beta-kernel and applied

them to transformed data. For nonparametric estimation, the bandwidth con-

trols the balance between two considerations: bias and variance. Furthermore,

the mean squared error (MSE) which is the sum of squared bias and variance,

provides a composite measure of performance. Therefore, optimality in the sense

of MSE is not seriously swayed by the choice of the kernel but is a¤ected by

that of the bandwidth (for more details, see Wand and Jones 1995). Sayah et al.

(2010) proposed a new estimator of the quantile function, based on the modi�ed

Champernowne transformation and obtained an expression for the value of the

smoothing parameter that minimizes the AMSE of the obtained estimator. They
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show that, the use of this transformation in kernel estimation of quantile functions

for heavy-tailed distributions improves the already existing results.

Let X1; X2; :::; be independent and identically distributed (iid) random variables

(rv�s) drawn from an absolutely continuous (cdf) F with probability density func-

tion (pdf) f: For each interger n; let X1;n � ::: � Xn;n denote the order statistics

pertaining to the sample X1; :::; Xn: We de�ne the pth quantile QX (p) as the

left-continuous inverse of F as

QX(p) := inf fx 2 IR : F (x) � pg ; 0 < p < 1:

A basic estimator of QX (p) ; is the sample quantile Qn (p) = X[np]+1;n where [x]

denotes the integer part of x 2 IR: Suppose that K is a pdf symmetric about 0

and h := hn is a sequence of real numbers (called bandwidth) such that h ! 0

as n ! 1: The classical kernel quantile estimator (CKQE) was introduced by

Parzen (1979) in the following form:

~Qn;X (p) :=
nX
i=1

Xi;n

Z i
n

i�1
n

Kh (x� p) dx; (4.4)

where Kh (t) := K (t=h) =h: Yang (1985) established the asymptotic normality

and the mean squared consistency of ~Qn;X (p) ; while Falk (1984) showed that the

asymptotic performance of ~Qn;X (p) is better than that of the empirical sample

quantile. Sheather and Marron (1990) gave the AMSE of ~Qn;X (p) : For further

details on kernel-based estimation, see Silverman (1986) and Wand and Jones

(1995).
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4.3.2 Estimation procedure

In the context of quantile estimation, if T is strictly increasing, the pth quantile of

T (X) is equal to T (QX(p)) : The idea is to transform the initial data fX1; :::; Xng

into fZ1; :::; Zng ; where Zi := T (Xi) ; i = 1; :::; n: This can be assumed to have

been produced by a (0; 1)-uniform rv Z: Thus, (4.4) yields the transformed kernel

quantile estimator

Q̂n;X(p) := T
�1
�
Q̂n;Z(p)

�
;

where T�1 is the inverse of T and

Q̂n;Z (p) :=
nX
i=1

Zi;n

Z i
n

i�1
n

Kh (z � p) dz: (4.5)

The estimation procedure is described as follows:

1. Compute the estimates
�
�̂; M̂; ĉ

�
of the parameters of the modi�ed Cham-

pernowne distribution (4.1). Notice that T�;M;0 (M) = 0:5; this suggests

that M can be estimated by the empirical median (see Lehmann, 1991).

Then, estimate the pair (�; c) which maximizes the log-likelihood function

(see, Buch-Larsen et al., 2005):

l (�; c) = n log�+ n log ((M + c)� � c�) + (�� 1)
nX
i=1

log (Xi + c)

� 2
nX
i=1

log ((Xi + c)
� + (M + c)� � 2c�) : (4.6)
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2. Transform the data X1; :::; Xn into Z1; :::; Zn by

Zi = T�̂;M̂;ĉ (Xi) ; i = 1; :::; n:

The resulting transformed data belong to the interval (0; 1) :

3. Using (4.5), calculate the kernel quantile estimator Q̂n;Z(p) of the trans-

formed data: Z1; :::; Zn:

4. The resulting of the original data X1; :::; Xn is given by

Q̂n;X(p) = T
�1
�̂;M̂;ĉ

�
Q̂n;Z(p)

�
: (4.7)

4.3.3 Asymptotic theory and bandwidth selection

Let X1; :::; Xn be iid rv�s with cdf F and pdf f: For each p in (0; 1) ; let Q̂n;X (p)

be the transformed estimator (4.7) of QX (p) :

Theorem 4.3.1 (Sayah et al. 2010) Assume that QZ (�) is two-times di¢ ren-

tiable in a nieghborhood of p 2 (0; 1) with continuous second derivative. Assume

further that the kernel K has compact support and ful�lls:

Z
K(t)dt = 1;

Z
tK(t)dt = 0 and

Z
t2K(t)dt <1:
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Then the bias and the variance of Q̂n;X (p) are respectively

Bias
�
Q̂n;X (p)

�
=
h2

2

h�
T�1

�00
(QZ (p))Q

02
Z (p) +

�
T�1

�0
(QZ (p))Q

00
Z (p)

i
� �2 (K) + o

�
h2
�
;

and

V ar
�
Q̂n;X (p)

�
=
��
T�1

�0
(QZ (p))Q

0
Z (p)

�2�p (1� p)
n

� h
n
' (K)

�
+o

�
h

n

�
;

where �2 (K) :=
R
t2K (t) dt; ' (K) := 2

R
tK (t)

�R t
�1K(s)ds

�
dt; Q0Z and Q

00
Z

are the �rst and the second derivatives of QZ : The value of h that minimizes the

AMSE of Q̂n;X (p) is

hopt;X := Cn
�1=3; C =

 �
(T�1)

0
(QZ (p))Q

0
Z (p)

�2
' (K)

n	2T;Q (p)�
2
2 (K)

!1=3
; (4.8)

where

	T;Q (p) :=
�
T�1

�00
(QZ (p))Q

02
Z (p) +

�
T�1

�0
(QZ (p))Q

00
Z (p) :

Remark 4.3.1 If Q0X (p) > 0; the asymptotically optimal bandwidth for silmple

estimator ~Qn;X (p) is

hopt;C =

�
Q02X (p)' (K)

nQ002X (p)
2 �2 (K)

2

�1=3
: (4.9)
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Remark 4.3.2 The �rst and the second derivatives of QZ are

Q0Z (p) =
1

g(QZ (p))
=
T 0(QX (p))

f(QX (p))
;

and

Q00Z (p) =
�g0(QZ (p))
g3(QZ (p))

= �f
0(QX (p))T

0(QX (p))� f(QX (p))T 00(QX (p))
f 3(QX (p))

:

4.4 Examples and comparative study

For comparison perpose between ~Qn;X (p) and the transformed estimator Q̂n;X (p) ;

we consider the distributions described in Table 4.1.

Table 4.1: Examples of heavy-tailed distributions

Distribution Density for x > 0

Burr (2; 3; 1)
6x3

x (1 + x3)3

Paralogistic (3; 0:5)
27x3

x (1 + 8x3)4

Mixture of 70% log-normal(0; 1) 0:7
1p
2�x

exp
�
� (log x)2 =2

	
and 30% Pareto(1; 1) +0:3

x

x (1 + x)2

Remark 4.4.1 Note that, the mixture of log-normal and Pareto distributions was

74



Chapitre 4: Boundary correction using the Champernowne transformation

previously used in Buch-Larsen et al. (2005) and Charpentier and Oulidi (2010).

The performance of the estimators is measured by the AMSE criteria:

AMSE :=
1

N

NX
s=1

�
Q̂
(s)
n;X(p)�Q (p)

�2
;

where Q̂(s)n;X(p) is the quantile correponding to the s
th simulated samplen

X
(s)
1 ; :::; X

(s)
n

o
and N is the number of replications. The algorithm used to esti-

mate the quantile function with level p 2 (0; 1) is described as follows:

1. Generate a sample X1; :::; Xn of size n:

2. Estimate M by the empirical median M̂; solution of T�;M;0 (M) = 0:5:

3. Estimate the pair (�; c) maximizing the log-likelihood function (4.6).

4. Transform X1; :::; Xn into Z1; :::; Zn :

Zi = T�̂;M̂;ĉ (Xi) ; i = 1; :::; n:

5. Compute the estimate Q̂n;Z(p) by choosing the Epanechnikov kernel:

K(t) = 3
4
(1� t2)1(jtj<1):

1. The resulting transformed quantile estimator of the original data is

Q̂n;X(p) = T
�1
�̂;M̂;ĉ

�
Q̂n;Z(p)

�
:
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Chapitre 4: Boundary correction using the Champernowne transformation

2. The classical quantile estimator is directly obtained from the original data,

where the bandwidth h := hopt;C is such as in (4.9).

Let the sample size be 200 and compute both the transformed (TQ) and the classi-

cal (CQ) quantile estimators for probability levels p 2 f:05; :10; :25; :50; :75; :90; :95g :

All results are calculated by averaging over 200 simulation runs.. The results are

summarized in Tables 4.2�4.5 where we see that the transformed estimator is

better than the classical one for high probability levels p 2 f:75; :90; :95g : Table

4.4 is based on the mixture 30% log-normal and 70% Pareto distributions. Both

estimators are equal for p 2 f:05; :10; :25; :50g :

Table 4.2: Burr distribution, 200 samples of size 200.

p 0:05 0:1 0:25 0:5 0:75 0:9 0:95

Q(p) 0:2962 0:3782 0:5368 0:7454 1:0000 1:2931 1:5143

TKQE 0:2966 0:3728 0:5345 0:7480 0:9946 1:2928 1:5150

CKQE 0:2988 0:3741 0:5345 0:7503 0:9852 0:5464 0:0367

Table 4.3: Paralogistic distribution, 200 samples of size 200.

p 0:05 0:1 0:25 0:5 0:75 0:9 0:95

Q(p) 0:1075 0:1551 0:2622 0:4291 0:6667 0:9803 1:2422

TKQE 0:7983 0:1278 0:2526 0:4263 0:6705 0:9676 1:1626

CKQE 0:1088 0:1547 0:2641 0:4330 0:7024 0:6079 0:4421
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Chapitre 4: Boundary correction using the Champernowne transformation

Table 4.4: Mixtures ( rho= 0.3) distribution, 200 samples of size 200.

p 0:05 0:1 0:25 0:5 0:75 0:9 0:95

Q(p) 0:0948 0:1611 0:3862 1:0000 2:6889 7:3807 14:8541

TKQE 0:2380 0:3391 0:6213 1:2560 2:7743 7:2812 15:2085

CKQE 0:2350 0:3380 0:6273 1:3246 16:4845 28:9263 21:5483

Table 4.5: Mixtures ( rho= 0.7) distribution, 200 samples of size 200.

p 0:05 0:1 0:25 0:5 0:75 0:9 0:95

Q(p) 0:1509 0:2277 0:4566 1:0000 2:2741 5:2216 9:3262

TKQE 0:2987 0:4200 0:7230 1:3483 2:5389 5:1070 8:4522

CKQE 0:3239 0:3981 0:7293 1:3805 2:6514 6:6738 29:6183

Next, we sample, 200 times, from the four distributions sets of sizes 50; 100 and

compute the transformed and the classical quantile estimators with their AMSE 0s

for levels p 2 f:90; :95g : The respective results are given in Tables 4.6 and 4.7. It

is clear that, for large probability levels, the transformation-based approach gives

results of higher quality with respect to the classical procedure. Note that, under

classical estimation, some AMSE 0s are seriously bad when samples come from

mixture distributions, especially when 70% of Pareto distribution is considered.

The same remark can be observed in Charpentier and Oulidi (2010) (see their

table�s 13-18 pages 52�53).
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Table 4.6: Classical and transformed pth quantile estimators (p= .9)
Distribution Burr Paralogistic �log normal+(1� �)Pareto

� = 30% � = 70%
p = :90 Q(p) 1:2931 0:9803 7:3807 5:2216

n = 50 value TQ 1:2941 0:9796 7:8530 5:2474
CQ 0:3864 0:4683 10:668 9:5797

AMSE TQ 0:0201 0:0277 15:545 3:2335
CQ 0:8230 0:2655 298:59 179:86

n = 100 value TQ 1:2985 0:9819 7:3484 5:1982
CQ 0:4690 0:5341 12:540 11:3100

AMSE TQ 0:0084 0:0113 5:3956 1:5319
CQ 0:6798 0:2012 352:99 324:23

Table 4.7: Classical and transformed pth quantile estimators (p=.95)
Distribution Burr Paralogistic �log normal+(1� �)Pareto

� = 30% � = 70%
p = :95 Q(p) 1:5143 1:2422 14:8541 9:3262

n = 50 value TQ 1:5506 1:0945 16:6389 9:0187
CQ 0:0232 0:3396 12:2710 12:0748

AMSE TQ 0:0443 0:0751 165:422 19:7341
CQ 2:2232 0:8165 1025:83 466:674

n = 100 value TQ 1:5332 1:1352 14:8011 8:6076
CQ 0:0291 0:3889 16:0566 17:5289

AMSE TQ 0:0211 0:0702 42:2056 4:8286
CQ 2:2057 0:7294 1129:14 669:036
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Conclusion

Kernel estimators are not consistent near the �nite end points of their supports. In

other words, these e¤ects seriously a¤ect the performance of these estimators. In

this thesis, we have studied the boundary e¤ect in the kernel density and regression

estimations. We have mentioned some methods for correcting this e¤ect. Both

density and regression functions are considered and their statistical properties are

given.

For heavy-tailed distributions, bias or ine¢ ciency problems may occur in the clas-

sical kernel quantile estimation when considering high probability levels. To solved

this incontinence, the use of the transformation data modi�ed based on the Cham-

pernowne distribution is recommended.

The variables studied are fully observed, the case of incomplete data: truncated

or censored is interesting for future study. Note also that the density function

is often encountered in the estimation of the distribution function, quantile and

conditional densities. Therefore, the study of the boundary e¤ect in the estimation

of these functions o¤ers good perspectives.
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Symbols and Notations

We list the notations that will be used in this thesis

X predictor variable

Y variable of interest

E (X) expectation or mean of X

F distribution function

f marginal density of X

c ^ 1 min (c; 1)

f (0+) f right continuous at the point 0

f̂ estimator of f

h bandwidth

iid independent and identically distributed

K kernel function

f (j) the jth-derivative

f 0; f 00; f 000 the �rst, the second and the third derivatives of f .
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f̂g the re�ection and transformation density estimator

f̂CN Cut and Normalized density estimator

f̂grt the generalized re�ection and transformation density estimator

f̂refl the re�ection density estimator

f̂Tag the transformation density estimator

f̂TAK Translation in the Argument of the Kernel density

f̂T The kernel density estimation for the transforms data

f̂TCh Transformation Champernowne kernel density estimator of f (x)

�f�;h Rice�s boundary modi�cation density estimator

g transformation function

g�1 the inverse function of g

m (:) regression curve of Y on X

m̂ (:) estimator of m(:)

m̂h classical estimator

m̂l local linear regression estimator

m̂n kernel regression estimator of Gasser and Müller 1979

~mn the generalized re�ection and transformation regression estimator

m̂J
jh the generalized Jackkni�ng regression estimator

m̂CN Cut and Normalized kernel regression estimator

�m�;h the Rice�s modi�cation kernel regression estimator
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rv random variable

MSE Mean Squared Error

AMSE Asymptotic Mean Squared Error

AMISE Asymptotic Mean Integrated Squared Error

Q quantile function

QX(p) the pth quantile

~Qn;X (p) The classical kernel quantile estimator

Q̂n;X (p) the transformed estimator (CKQE) of QX (p)

t�;M The original Champernowne density

t�;M;c (x) The associated pdf

T�;M The cumulative distribution function (cdf)

T�;M;c (x) The modi�ed Champernowne cdf

f(Xi; Yi)gi=1;::;n sample of n observations

1A indicator function of set A

�2 (Y jX = x) conditional variance of Y given X = x

o (:) f (x) = o (g (x)) as x! x0: f (x) =g (x) as x! x0

O (:) f (x) = O (g (x)) as x! x0: 9M > 0; jf (x) =g (x)j �M as x! x0
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[0;1) positive interval

V ar (X) variance of X

Epa Epanechnikov

biw biweight

cdf cumulative distribution function

CKQE The classical kernel quantile estimator

CN Cut-and-Normalized

CQ the classical quantile estimator

CV Cross Validation

e.g. for example

gauss gaussian

grt generalized re�ection and transformation

GTR Generalized Transformation and Re�ection

i.e. that is to say

LL Local Linear

opt optimal

NW Nadaraya and Watson

pdf probability density function

re� re�ection

Tag Tanslation in the argument of the kernel

TAK Translation in the Argument of the Kernel
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