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Introduction

The important role of images in the modern world is undeniable as they

are intimately integrated into our lives. They are often present in our

everyday life (video games, magazines, TV, ...), for our personal needs

(medical imaging, biological imaging, photographs ...), and also in pro-

fessional life (o�ce, monitoring remote video conferencing, industrial

vision ...).

They are not limited to the various technological areas, but they

are useful tools for observation and investigation and frequently lead

to major scienti�c discoveries in various �elds of science. The world of

processing and image analysis is very broad and multidisciplinary. It

means all of the theories, methods, techniques, applications, software ...

in connection with the information extracted from (qualitative or quan-

titative) images to survey, measure, understand, interpret and �nally

make a decision.

Image processing deals with the transformations of an image or multiple
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Introduction

images to an other group of one or more images ([22], [26], [39], and

[43]). For image compression, the main purpose is to reduce the amount

of data required to represent the image. This is done either by removing

redundancies, or by using a basis which maps the minimum number of

coe�cients to reconstruct the image. Known methods are the represen-

tation of wavelets ([45],[38]) and DCT decomposition ([31], [13]). There

are two techniques for compressing images: lossy and lossless (with and

without loss).

Due to the huge expansion of images and multimedia use in current

nowadays applications, the need for fast and secure representation, trans-

mission and storage schemes become more and more crucial, especially

because digital images can contain private and con�dential information

that may be associated with �nancial, medical or personal interest [34].

Encrypting images is a crucial tool for protecting information during

communication in network, through the rapid development of computer

network large sized images can be easily transmitted therefore, the en-

cryption operation has become an important issue. The most classi-

cal encrypting techniques are well developed for the security of textual

data, but these are not suitable with digital media such as images. The

main constraint is that, the structure of image is complex compared to

the text �le, which implies that the size of image is much greater than

the size of textual �le. In this case the necessity of designing encryp-
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tion and decryption algorithms with low complexity is very important.

Many researches from di�erent disciplines like mathematics, computer

science and electrical engineering have focused for developing robust al-

gorithms for encrypting images in order to o�er a higher level of security

in telecommunication networks.

Nowadays, di�erent techniques of image encryption have been pro-

posed. This is due to the proliferation of sophisticated sensors. By

nature, the Internet by its TCP/IP protocol is a subject to any control,

hence its vulnerability to hacker attacks. For this reason, the large num-

ber of researches in the �eld of visual cryptography have been developed.

Exchange of secret digital images are frequently used worldwide in a sec-

ond split on the Internet [42]. Therefore, it becomes very important to

protect these information [47].

Cryptographic techniques can be divided into symmetric and asym-

metric encryption [4]. As one of the important research topics, image

encryption has been more developed. Due to its high processing speed

and more degrees of freedom, the added value of image encryption is

showed through the recent optical information processing technologies.

Di�erent optical techniques have been proposed for image encryption

[21, 52].

As known, digital images have important proprieties like, redundancy
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Introduction

of data, less sensitive, correlation between pixels and massive capacity of

data. Hence, many of image encryption algorithms have been proposed

[18, 51] taking pro�t from these characteristics. Recently, Guomin Zhou

et al. [51] proposeed a fast symmetrical image encryption algorithm

based on skew tent map. Based on a new chaos based Line map, their

proposed algorithm encrypts images with di�erent size. In order to per-

turb the correlations between the R, G and B components of the true

color image, these three components are encrypted at bit level and oper-

ated at the same time [51]. In fact, several classical encryption schemes

like data encryption standard (DES) [8], triple data encryption algo-

rithm (TDEA) [7], advanced encryption standard (AES) [6] and Rivest,

Shamir and Adleman (RSA) [6, 16] have been developed. However, these

algorithms are limited when they are applied in the encryption of digital

images, especially for huge images [33].

Similar to DES algorithm but faster than DES, Nithin et al. [36]

have proposed the fast image encryption algorithm (FEAL).

Using structurally random matrices and Arnold transform, Rawat

et al. [41] have introduced a digital image encryption method based

on a fast compressed sensing idea. Zhao et al [51] have recently pre-

sented a symmetric digital image encryption algorithm by a new im-

proper fractional-order chaotic subsystem.

A binary image (bi-valued image) is the type of simple image that is
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widely used in various electronic applications such as �ngerprint anal-

ysis, robot vision, motion detection and character recognition. It often

appears as cartoons in newspapers and magazines. Moreover, binary

images frequently emerge as the result of many automatic tasks, such

as binarisation, halftoning, edge detection, segmentation, and threshold-

ing. Certain input/output devices and sensors, like for examples laser

printers, fax machines, biometric devices, and bi-tone machine screens,

can only handle bi-level images.

Due to their simplicity compared with gray level images; it is better

to process binary images in real time. In the context of binary image

encryption, many schemes have been proposed. Among the most pub-

lished works, we can �nd in [10] a scan language is proposed by Bourbaki

in 1986 as a language for e�cient accessing of a two dimensional array.

In [12] a parallel implementation version for the scan language is pre-

sented, which shows that the parallel expansion scheme is faster and

requires less storage space. Bourbaki and Alexopoulos in [11] proposed

a new encryption scheme for binary images using scan pattern. This

algorithm is based on a family of 2D transposition which is produced

by the scan language. In [14] Chung and Chang developed an encryp-

tion scheme for binary images with higher security, this approach sets

the di�erent scan patterns at the same level in the scan tree structure

and uses the two dimensional run-encoding technique in order to ensure

a higher security and a good compression ratio. In [27] a very simple
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method for binary image encryption is reported based on inference of two

phase-only masks, the main idea of this algorithm is that: the binary

image is �rst modulated by a random phase mask and then separated

into two phase-only masks. This approach o�ers a very low complexity

and without any time consuming iterative computations. Most of the

aforementioned algorithms, they have proved their e�ectiveness in the

area of cryptography.

This work is organized as follows.

Chapter 1 resume the fundamentals concepts of image processing, where

we given; de�nitions, types and properties of digital image, then we de-

scribes techniques of lossy and losseless image compression, after we

resume the necessary mathematical background of image processing.

In chapter 2, we propose a new method of lossy compression made up of

two steps. The �rst one is the transformation of a representation basis

of d images to the one proposed by Melkemi and Mokhtari [35], with the

aim to have a lot of redundancies. The second step is the application

of the DCT transformation on the image obtained. When we get the

di�erent values of DCT coe�cients, we perform a thresholding on these

coe�cients, depending on the probability of each coe�cient, where we

eliminate the coe�cients that have low probabilities. We calculate the

variation of the PSNR of the reconstructed image, based on the per-

centage of non-zero coe�cients obtained after thresholding, we plot the

corresponding curve, analyze the results and �nally compare the results
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obtained with those achieved when we do the same steps, but replacing

the DCT by the Haar DWT of the �rst and the second level.

In the last chapter, we propose an e�cient encryption algorithm for

binary images [24] which is based on dividing the original image into d

blocks, then constructing new images of the same size as the original one

and representing them in a new proposed basis.

We call key-image the matrix of parameters obtained using this trans-

formation, and we call the encrypted images the represented images in

this new basis.

In the proposed decryption algorithm, a subtraction between each

encrypted image and the key-image is applied, then we sum them in an

image to get the original one.

Moreover, in the same way, we use this new basis to encrypt a

database of binary images. In fact, the idea of this new basis construc-

tion is inspired from the paper of Mokhtari and Melkemi [35].

7



Chapter 1

Fundamentals Concepts

1.1 Digital Image Fundamentals

1.1.1 De�nitions

Digital images are made of picture elements called pixels. Typically, pix-

els are organized in an ordered rectangular array. The size of an image

is determined by the dimensions of this pixel array. The image width

is the number of columns, and the image height is the number of rows

in the array. Thus the pixel array is a matrix of M columns × N rows.

To refer to a speci�c pixel within the image matrix, we de�ne its coordi-

nate at x and y. The coordinate system of image matrices de�nes x as

increasing from left to right and y as increasing from top to bottom. [3]

8
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4*Having de�ned the number of pixels, M ×N , only provides a rect-

angular shape for our image. One more parameter, intensity, is needed

to truly de�ne an image. Each pixel has its own intensity value, or

brightness. If all the pixels have the same value, the image will be a

uniform shade; all black, white, gray, or some other shade. It is in the

type of intensity used for each pixel that image types vary. Black and

white images only have intensity from the darkest gray (black) to lightest

gray (white). Color images, on the other hand, have intensity from the

darkest and lightest of three di�erent colors, Red, Green, and Blue. The

various mixtures of these color intensities produces a color image. Thus

the two most basic types of digital images, BW and Color, are known

as gray-scale and RGB images. In addition to the intensity type of each

pixel, the range of intensity values also varies. [3]

Intensity values in digital images are de�ned by bits. A bit is binary

and only has two possible values, 0 or 1. An 8-bit intensity range has 256

possible values, 0 to 255. This can be seen mathematically by 2(of bits).

For a 1-bit, or binary, image, 21 = 2 possible values and for an 8-bit

image, 28 = 256 possible values. The standard digital photo uses an

8-bit range of values; RGB images use 8-bit intensity ranges for each

color and BW images have a single 8-bit intensity range. Since RGB

images contain 3 × 8-bit intensities they are also referred to as 24-bit

color images. [3]
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Figure 1.1: 256 gray levels

1.1.2 Types of Digital Images

For photographic purposes, there are two important types of digital im-

ages : color and black and white. Color images are made up of colored

pixels while black and white images are made of pixels in di�erent shades

of gray [44].

Black an White Images

A black and white image is made up of pixels each of which holds a

single number corresponding to the gray level of the image at a particular

location. These gray levels span the full range from black to white in a

series of very �ne steps, normally 256 di�erent grays . Since the eye can

barely distinguish about 200 di�erent gray levels, this is enough to give

the illusion of a stepless tonal scale as illustrated below in Figure (1.1):
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Color Images

A color image is made up of pixels each of which holds three numbers

corresponding to the red, green, and blue levels of the image at a par-

ticular location. Red, green, and blue (sometimes referred to as RGB)

are the primary colors for mixing lightâthese so called additive primary

colors are di�erent from the subtractive primary colors used for mixing

paints (cyan, magenta, and yellow). Any color can be created by mixing

the correct amounts of red, green, and blue light. Assuming 256 levels

for each primary, each color pixel can be stored in three bytes (24 bits)

of memory. This corresponds to roughly 16.7 million di�erent possible

colors.

Note that for images of the same size, a black and white version will

use three times less memory than a color version.

Binary or Bilevel Images

Binary images use only a single bit to represent each pixel. Since a bit

can only exist in two states on or o�, every pixel in a binary image must

be one of two colors, usually black or white. This inability to represent

intermediate shades of gray is what limits their usefulness in dealing

with photographic images.

11
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1.1.3 Resolution

The more points at which we sample the image by measuring its color,

the more detail we can capture. The density of pixels in an image is

referred to as its resolution. The higher the resolution, the more in-

formation the image contains. If we keep the image size the same and

increase the resolution, the image gets sharper and more detailed. Alter-

natively, with a higher resolution image, we can produce a larger image

with the same amount of detail.

For example, the following images illustrate what happens as we

reduce the resolution of an image while keeping its size the same the

pixels get larger and larger and there is less and less detail in the image

in Figure (1.2):

1.2 Mathematical background

1.2.1 The Discrete Cosine Transform (DCT )

Transform coding constitutes an integral component of contemporary

image/video processing applications. Transform coding relies on the

premise that pixels in an image exhibit a certain level of correlation

with their neighboring pixels. Similarly in a video transmission sys-

tem, adjacent pixels in consecutive frames show very high correlation.
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Figure 1.2: The resolution of an image
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Consequently, these correlations can be exploited to predict the value

of a pixel from its respective neighbors. A transformation is, therefore,

de�ned to map this spatial (correlated) data into transformed (uncor-

related) coe�cients. Clearly, the transformation should utilize the fact

that the information content of an individual pixel is relatively small i.e.,

to a large extent visual contribution of a pixel can be predicted using its

neighbors. [28]

The Discrete Cosine Transform (DCT ) attempts to decorrelate the

image data. After decorrelation each transform coe�cient can be en-

coded independently without losing compression e�ciency.

The One-Dimensional DCT

The most common DCT de�nition of a 1−D sequence of length N is

C(u) = α(u)
∑

x=0,N−1

f(x)cos(
π(2x+ 1)u

2N
) (1.1)

for u = 0, 1, 2, ..., N − 1. Similarly, the inverse transformation is de�ned

as

f(x) =
∑

u=0,N−1

α(u)C(u)cos(
π(2x+ 1)u

2N
) (1.2)

14
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for x = 0, 1, 2, ..., N − 1. In both equations 1.1 and 1.1 α(u) is de�ned

as

α (u) =


√

1
N

for u = 0√
2
N

for u 6= 0
(1.3)

It is clear from 1.1 that for u = 0 C(0) =

√
1

N

∑
x=0,N−1 f(x). Thus, the

�rst transform coe�cient is the average value of the sample sequence.

In literature, this value is referred to as the DC Coe�cient. All other

transform coe�cients are called the AC Coe�cient.

The Two-Dimensional DCT

The study of the e�cacy of DCT on images, necessitates the extension

of ideas presented in the last section to a two-dimensional space. The

2−DDCT is a direct extension of the 1−D case and is given by

C(u, v) = α(u)α(v)
∑

x=0,N−1

∑
y=0,N−1

f(x, y)cos(
π(2x+ 1)u

2N
)cos(

π(2y + 1)v

2N
)

(1.4)

for u, v = 0, 1, 2, ..., N − 1, α(u) and α(u) are de�ned in 1.3. The inverse

transformation is de�ned as

f(xny) =
∑

u=0,N−1

∑
u=0,N−1

α(u)α(v)C(u, v)cos(
π(2x+ 1)u

2N
)cos(

π(2y + 1)v

2N
)

(1.5)

for x, y = 0, 1, 2, ..., N − 1.
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Properties of DCT

In this outlineswe present some properties of the DCT which are of

particular value to image processing applications.

1. Decorrelation. The principle advantage of image transformation

is the removal of redundancy between neighboring pixels. This

leads to uncorrelated transform coe�cients which can be encoded

independently.

2. Energy Compaction. E�cacy of a transformation scheme can

be directly gauged by its ability to pack input data into as few

coe�cients as possible. This allows the quantizer to discard coe�-

cients with relatively small amplitudes without introducing visual

distortion in the reconstructed image. DCT exhibits excellent en-

ergy compaction for highly correlated images.

Examples of the energy compaction property of DCT with respect

to some standard images are provided in Figure 1.3 below. Figure

re�g:ec above reveals that it comprises of four broad image classes.

(a) and (b) contain large areas of slowly varying intensities. These

images can be classi�ed as low frequency images with low spatial

details. A DCT operation on these images provides very good

energy compaction in the low frequency region of the transformed

image. (c) contains a number of edges (i.e., sharp intensity vari-

ations) and therefore can be classi�ed as a high frequency image
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Figure 1.3: Energy compaction property of DCT
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with low spatial content. However, the image data exhibits high

correlation which is exploited by the DCT algorithm to provide

good energy compaction.

DCT renders excellent energy compaction for correlated images.

Studies have shown that the energy compaction performance of

DCT approaches optimality as image correlation approaches one

i.e., DCT provides (almost) optimal decorrelation for such images

[15].

3. Separability. The DCT transform equation 1.4 can be expressed

as,

C(u, v) = α(u)α(v)
N−1∑
x=0

cos(
π(2x+ 1)u

2N
)
N−1∑
y=0

f(x, y)cos(
π(2y + 1)v

2N
)

(1.6)

for u, v = 0, 1, 2, , N1. This property, known as separability, has

the principle advantage that C(u, v) can be computed in two steps

by successive 1−D operations on rows and columns of an image.

The arguments presented can be identically applied for the inverse

DCT computation 1.5.

4. Symmetry. Another look at the row and column operations in

Equation 1.6 reveals that these operations are functionally identi-

cal. Such a transformation is called a symmetric transformation.

A separable and symmetric transform can be expressed in the form

18



Chapter 1. Fundamentals Concepts

[40]

T = AfA (1.7)

where A is an N symmetric transformation matrix with entries

a(i, j) given by

a(i, j) = α(j)
∑

j=0,N−1

cos(
π(2j + 1)i

2N
)

and f is the N image matrix.

1.2.2 The continuous/discrete Wavelet transform

The continuous Wavelet transform CWT

Given ψ in L2(R). Introduce a family of functions ψ(a,b) where a > 0

and b ∈ R as follows [48]

ψ(a,b)(t) =
1√
a
ψ(

(t− b)
a

)

t ∈ R and ‖ψ(a,b)‖ = ‖ψ‖

The continuous wavelet transform F (a, b) of a function f is de�ned by

F (a, b) = 〈f, ψa,b〉 =
1√
a

+∞∫
−∞

f(t)ψ(
(t− b)
a

)dt

〈f, ψa,b〉 =
1

2π
〈f̂ , ψ̂a,b〉
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where

ψ̂a,b(ω) =
√
ae−iωbψ̂(aω)

The inverse wavelet transform

f(t) = C−1ψ

+∞∫
−∞

+∞∫
0

1

a2
F (a, b)ψa,b (t) dadb

Cψ =

+∞∫
0

|ψ̂(ω)|2

ω
dω

Needed ψ̂(0) = 0, i.e.,
+∞∫
−∞

ψ(t)dt = 0

This is the reason why the functions ψa,b are called wavelets. ψ is called

the Motherwavelet.

The discrete Wavelet transform

DWT A huge amount of data are represented by a �nite number of

values, so it is important to consider a discrete version of the CWT .

Generally, the orthogonal(discrete) wavelets are employed because this

method associates the wavelets to orthonormal bases of L2(R). In this

case, the wavelet transform is performed only on a discrete grid of the

parameters of dilation and translation, i.e., a and b take only integral
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values. Within this framework, an arbitrary function f(t) of �nite energy

can be written using an orthonormal wavelet basis:

f(t) =
∑
m

∑
n

dmn ψ
m
n (t) (1.8)

where the coe�cients of the expansion are given by

dmn =

+∞∫
−∞

f(t)ψmn (t)dt (1.9)

The orthonormal basis functions are all dilations and translations of a

function referred as the analyzing wavelet ψ(t), and they can be ex-

pressed in the form

ψmn (t) = 2
m
2 ψ(2mt− n) (1.10)

with m and n denoting the dilation and translation indices, respectively.

The contribution of the function at a particular wavelet level m is given

by

dm(t) =
∑
n

dmn ψ
m
n (t) (1.11)

which provides information on the time behavior of the function within

di�erent scale bands. Additionally, it provides knowledge of their con-

tribution to the total function energy.

In this context, Mallat (1999) [32] developed a computationally e�cient

method to calculate 1.8 and 1.8. This method is known as multiresolu-
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tion analysis (MRA). The MRA approach provides a general method

for constructing orthogonal wavelet basis and leads to the implementa-

tion of the fast wavelet transform (FWT ). This algorithm connects, in

an elegant way, wavelets and �lter banks. A multiresolution function

decomposition of a function f is based on successive decomposition into

a series of approximations and details, which become increasingly

coarse. Associated with the wavelet function ψ(t) is a corresponding

scaling function, φ(t), and scaling coe�cients, amn (Mallat, 1999 [32]).

The scaling and wavelet coe�cients at scale m can be computed from

the scaling coe�cients at the next �ner scale m+ 1 using

amn =
∑
l

h[l − 2n]am+1
l , (1.12)

dmn =
∑
l

g[l − 2n]am+1
l , (1.13)

where h[n] and g[n] are typically called lowpass and highpass �lters in

the associated �lter bank. Equations 1.12 and 1.13 represent the fast

wavelet transform (FWT ) for computing 1.9.

In fact, amn and dmn are the convolutions of am+1
n with the �lters h[n] and

g[n] followed by a downsampling of factor 2 [32].

Conversely, a reconstruction of the original scaling coe�cients am+1
n can
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be made from

am+1
n =

∑
l

(h[l − 2n]aml + g[l − 2n]dml (1.14)

a combination of the scaling and wavelet coe�cients at a coarse scale.

Equation 1.14 represents the inverse of FWT for computing 1.8, and it

corresponds to the synthesis �lter bank. This part can be viewed as the

discrete convolutions between the upsampled aml and the �lters h[n] and

g[n], that is, following an âupsamplingâ of factor 2 one calculates the

convolutions between the upsampled function and the �lters h[n] and

g[n]. The number of levels in the multiresolution algorithm depends on

the length of the signal. A signal with 2k values can be decomposed into

k + 1 levels.

To initialize the FWT , one considers a discrete time function

f = f [1], f [2], ..., f [N ] of length N = 2M . The �rst application of 1.12

and 1.13, beginning with am+1
n = f [N ], de�nes the �rst level of the

FWT of f . The process goes on, always adopting the m+ 1 scaling co-

e�cients to calculate them+1 scaling and wavelet coe�cients. Iterating

1.12 and 1.13 M times, the transformed function consists of M sets of

wavelet coe�cients at scales m = 1, ...,M , and a function set of scaling

coe�cients at scaleM . There are exactly 2(km) wavelet coe�cients dmn at

each scale m, and 2(kM) scaling coe�cients aMn . The maximum number

of iterations Mmax is k. This property of the MRA is generally the key
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factor to identify crucial information in the respective frequency bands.

A three-level decomposition process of the FWT is shown in Figure 1.4

below

Figure 1.4: The structure of a three-level fast wavelet transform.

Examples

The Haar wavelet

The Haar wavelet's mother wavelet function ψ(t) can be described as

[29]

ψ(t) =


1 for 0 ≤ t < 1

2

−1 for 1
2
≤ t < 1

0 otherwise

(1.15)
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Its scaling function φ(t) can be described as

φ(t) =

 1 for 0 ≤ t < 1

0 otherwise
(1.16)

Figure 1.5: The Haar wavelet.

Haar Matrix

The 2× 2 Haar matrix that is associated with the Haar wavelet is

H2 =

1 1

1 −1

 (1.17)

If one has a sequence of length a multiple of four, one can build blocks

of 4 elements and transform them in a similar manner with the 4 × 4
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Haar matrix

H4 =



1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1


(1.18)

which combines two stages of the fast Haar-wavelet transform.

Generally, the 2N × 2N Haar matrix can be derived by the following

equation.

H2N =

HN

⊗
[1, 1]

IN
⊗

[1,−1]

 (1.19)

where IN =



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


and

⊗
is the Kronecker product.

The Kronecker product of A where A is anm matrix and B is a p matrix,

is expressed as

A =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 (1.20)

The Haar transform

The Haar transform is derived from the Haar matrix. An example of a

26



Chapter 1. Fundamentals Concepts

4× 4 Haar transformation matrix is shown below.

H4 =
1

2



1 1 1 1

1 1 −1 −1
√

2 −
√

2 0 0

0 0
√

2 −
√

2


(1.21)

The Haar transform yn of an n-input function xn is yn = Hnxn.

The Haar transform matrix is real and orthogonal. Thus, the inverse

Haar transform can be derived by the following equations H = H∗,

H−1 = HT i.e HHT = I. Thus, the inverse Haar transform is xn =

HT
n yn.

The Meyer wavelet

Yves Meyer constructed a smooth othornormal wavelet basis as follows.

First all, de�ne the Fourier transform Φ(ω) of a scaling function φ(t) as

[29]

Φ(ω) =


1 if |ω| ≤ 2

3
π

cos[π
2
v( 3

4π
|ω| − 1)] if 2

3
π ≤ |ω| ≤ 4

3

0 oterwise

(1.22)
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where v is a smooth function satisfying the following conditions:

v(t) =

 0 if t ≤ 0

1 if t ≥ 1
(1.23)

with the additional property

v(t) + v(1− t) = 1 (1.24)

In this case, the wavelet function ψ can be found easily from Φ. First,

we �nd the fourier transform of ψ :

Ψ(ω) = exp( iω
2

)
∑

l∈Z Φ(ω + 2π(2l + 1))Φ(ω
2
)

= exp( iω
2

)[Φ(ω + 2π) + Φ(ω − 2π)]Φ(ω
2
)

(1.25)

ψ can be obtained by taking the inverse Fourier transform.

1.2.3 Peak Signal to Noise Ratio (PSNR)

The PSNR is used to assess the quality of the recovered image.

De�nition 1. Mean Square Error ( MSE ) is de�ned as:

MSE =
1

MN

∑∑
(F (x, y)− F ′(x, y))2 (1.26)
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F (x, y) and F ′(x, y) represent the pixel values of M × N original and

reconstructed image.

De�nition 2. Peak Signal to Noise Ratio ( PSNR ) is de�ned as:

PSNR = 10 log10(2552/MSE) (1.27)

for color image we use following de�nition of MSE and PSNR [17]

De�nition 3. Peak Signal to Noise Ratio ( PSNR ) is de�ned as:

PSNR = 10 log10((2552×3)/(MSE(R)+MSE(G)+MSE(B))) (1.28)

MSE =
1

MN

∑∑
(F (x, y)− F ′(x, y))2 (1.29)

F (x, y) and F ′(x, y) represent intensities values of M ×N original and

reconstructed image belonging to R, G and B planes.

Compression Ratio

De�nition 4. Data compression ratio is de�ned as the ratio between the

uncompressed size and compressed size

Compression Ratio =
Uncompressed Size

Compressed Size
(1.30)
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1.2.4 Di�use representation of an image

For a data-set of images, there exist a transform which give a di�use

representation of the image in some speci�c basis, it is based on the

transformation of the representation basis of images given by Melkemi

and Mokhatri in [35]; this transformation gives a representation that

di�uses the images in the new basis.

This new transformation di�uses the images of a given data-set in a

new basis, in order to share information quantity almost equal in di�er-

ent images of our data-set.

In [35], the authors have shown that if we have a database {Ik}k=1,d

of d images, which are represented in the orthonormal basis {ej}j=1,n,

such that for any value of k,

Ik =
∑
j=1,n

akjej (1.31)

There exists a new base {fj}j=1,n where for all k:

Ik =
∑
j=1,n

bkjfj (1.32)

With

bkj = βj − akj (1.33)
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and

bkj ∼
‖ Ik ‖1√

n
(1.34)

By choosing a suitable function and applying the method of least squares,

they will get the optimal settings j = 1, n:

β∗j =
1

d

∑
k=1,d

(akj +
‖ Ik ‖1√

n
) (1.35)
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Chapter 2

A Lossy Compression

Algorithm for Data Basis

Images

In this chapter we present a new method to compress a data basis of

images, in the �rst stage we present this data basis of images in new

base given in 1.2.4 in order to reduce the amount of data required to

represent the image. In the second stage we apply the DCT to the new

representation and do a thresholding with di�erent levels. Experimental

results introduced at the end of the chapter, demonstrates the robustness

of the proposed strategy in comparison with classical tools.
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2.1 Image Compression

Image data compression is concerned with minimization of the number

of information carrying units used to represent an image. Image com-

pression schemes can be divided into two broad classes: lossless com-

pression schemes and lossy compression schemes. Lossless compression

techniques, as their name implies aim at exact reconstruction and in-

volve no loss of information. Lossy compression techniques accept some

loss of information, therefore images compressed using a lossy technique

cannot be reconstructed exactly. The distortion in the image caused by

lossy compression may be imperceptible to humans and we obtain much

higher compression ratios than is possible with lossless compression [9].

2.1.1 Lossless Image Compression Techniques

Lossless data compression is a class of data compression algorithm that

allows the exact original data to be reconstructed from the compressed

data. Lossless data compression is used in many applications. For ex-

ample, it is used in the ZIP �le format [30].

Lossless compression is used in cases where it is important that the

original and the decompressed data be identical, or where deviations

from the original data could be deleterious. Typical examples are ex-

ecutable programs, text documents, and source code. Some image �le
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formats, like PNG or GIF, use only lossless compression, while others

like TIFF and MNG may use either lossless or lossy methods [25].

Runlength encoding

Run-length encoding (RLE) is a very simple form of data compression

in which runs of data (that is, sequences in which the same data value

occurs in many consecutive data elements) are stored as a single data

value and count, rather than as the original run. This is most useful on

data that contains many such runs: for example, simple graphic images

such as icons, line drawings, and animations. It is not useful with �les

that don't have many runs as it could greatly increase the �le size [25].

Run-length encoding performs lossless data compression and is well suited

to palette-based iconic images. It does not work well at all on continuous-

tone images such as photographs, although JPEG uses it quite e�ectively

on the coe�cients that remain after transforming and quantizing image

blocks. The Run length code for a grayscale image is represented by a

sequence Vi , Ri where Vi is the intensity of pixel and Ri refers to

the number of consecutive pixels with the intensity Vi as shown in the

Figure 2.1.

Hu�man encoding

Hu�man encoding, an algorithm for the lossless compression of �les

based on the frequency of occurrence of a symbol in the �le that is
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32 32 32 40 40 40 40 56 56 56

{32, 3} {40, 4} {56, 3}

Figure 2.1: Example of RLE encoding

being compressed. The Hu�man algorithm is based on statistical cod-

ing, which means that the probability of a symbol has a direct bearing

on the length of its representation. The more probable the occurrence of

a symbol is, the shorter will be its bit-size representation [2]. In any �le,

certain characters are used more than others. Using binary representa-

tion, the number of bits required to represent each character depends

upon the number of characters that have to be represented. Using one

bit we can represent two characters, i.e., 0 represents the �rst character

and 1 represents the second character. Using two bits we can represent

four characters, and so on. Unlike ASCII code, which is a �xed-length

code using seven bits per character, Hu�man compression is a variable-

length coding system that assigns smaller codes for more frequently used

characters and larger codes for less frequently used characters in order

to reduce the size of �les being compressed and transferred [2]. For

example, in a �le with the following data:

XXXXXXY Y Y Y ZZ
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the frequency of "X" is 6, the frequency of "Y " is 4, and the frequency

of "Z" is 2. If each character is represented using a �xed-length code of

two bits, then the number of bits required to store this �le would be 24,

i.e.,

(2× 6) + (2× 4) + (2× 2) = 24.

If the above data were compressed using Hu�man compression, the more

frequently occurring numbers would be represented by smaller bits, such

as:

X by the code 0 (1 bits)

Y by the code 10 (2 bits)

Z by the code 11 (2 bits)

therefore the size of the �le becomes 18, i.e.,

(1× 6) + (2× 4) + (2× 2) = 18.

In the above example, more frequently occurring characters are assigned

smaller codes, resulting in a smaller number of bits in the �nal com-

pressed �le [25].
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Input Image Source Encoder Quantizer

Entropy EncoderCompressed Image

Figure 2.2: Lossy compression scheme

2.1.2 Lossy Image Compression Techniques

Lossy compression as the name implies leads to loss of some information.

The compressed image is similar to the original uncompressed image

but not just like the previous as in the process of compression some

information concerning the image has been lost [37]. They are typically

suited to images. The most common example of lossy compression is

JPEG. An algorithm that restores the presentation to be the same as

the original image are known as lossy techniques. Reconstruction of the

image is an approximation of the original image, therefore the need of

measuring of the quality of the image for lossy compression technique

[37]. Lossy compression technique provides higher compression ratio

compare to lossless compression.

Lossy compression scheme is shown in Figure 2.2
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Transform Coding

Transform Coding algorithm usually starts by partitioning the original

image into small blocks of smaller size. Then for each block related

transform coe�cients are obtained based on their transform, DCT and

wavelet are the example of the transform coding. The resulting coe�-

cients are then computed by quantization techniques and then the output

of the quantizer is used for symbol encoding technique to produce the

output. At the decoder the reverse process is obtained and image is

reconstructed [46].

Block Truncation Coding

In this the image is divided into non overlapping blocks of pixels. Then

the quantizer is used to �nd mean of the pixel values of the all the

non overlapping blocks. After that thresholding is done so that the

image pixels above the threshold values are set to zero or one. Then

for each segment in the bitmap the related reconstruction value is ob-

tained. Larger block size gives greater compression ratio but it reduces

the quality of an image [46].

2.2 The proposed method

This section presents a class of methods to compress images. It is based

on Di�use representation of an image given in 1.2.4
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2.2.1 Method based on DCT

We apply the algorithm below:

Algorithm 1 The proposed lossy compression code

1: Input the data basis of d images;
2: Represent data basis of d images in new basis (compute βj and bj);
3: Apply DCT transform for each image of data basis;
4: Compute the probability of DCT coe�cients ;
5: Tresholding;
6: Apply IDCT ;
7: Return to the canonical basis;
8: Compressed Image;

2.2.2 Method Based on DWT

We apply the same pattern, but replacing the DCT transform by the

one corresponding to the Haar DWT of the �rst and second level.

2.3 Digital Results

We take 8 grayscale images ( 8 images RGB ) of size 512 ∗ 512, in two

di�erent formats png and ti�. The selected images are:

Test, Man, Airplane, Fingerprint, Mandrill, lena, Peppers and Boat

for png format ( Women, Airplane, House, Lacke, Mandrill, Lena, Pep-

pers, Milk for ti� format ).
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For images: Mandrill, Lena and Peppers, we plot the PSNR ac-

cording to the percentage of non-zero DCT coe�cients for the method

based on DCT and depending on the percentage of non-zero coe�cients

of the DWT for the one based on Haar DWT of the �rst and second

level. Through this curves ( �gures ( 2.4,...,2.9)), we can see what pro-

cess allows us to reconstruct images with only a small percentage We

note that the PSNR values for the images: Mandrill, Lena and Pep-

pers, reconstructed by the method based on DCT in the new basis, are

greater than those obtained by the method based on DWT for NNZ

values (percentage of non-zero coe�cients) less than 10.

So,we choose 4 NNZ values less than 10 for each method, we calculate

the PSNR associated with these values and we show the reconstructed

images. We obtain the results shown in Figures (2.10, ..., 2.15). Numer-

ical results are resumed in ( table 2.1 , table 2.2 ).
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Figure 2.3: Images of png and ti� type
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Image Mandrill Lena Peppers

NNZ PSNR NNZ PSNR NNZ PSNR

DCT

8.75% 43.31
4.97% 39.47
1.69% 36.73
0.89% 30.89

6.17 30.33
3.12 32.02
2.50 28.90
0.71 31.67

8.78 53.8
4.96 51.34
1.86 42.99
0.88 36.66

Haar 2 niv

8.69% 33.01
4.97% 7.27
1.69% 14.27
0.89% 18.36

6.17 5.83
3.12 11.17
2.51 13.59
0.71 19.89

8.78 50.03
4.96 9.21
1.87 19.82
0.88 26.71

Haar 1 niv

8.79% 13.08
4.98% 16.90
1.69% 23.99
0.91% 27.75

6.21 17.87
3.13 22.70
2.55 23.83
0.0.71 20.13

8.80 17.87
4.94 23.69
2.55 23.83
0.71 30.13

Table 2.1: Numerical Results for Images of png type

Figure 2.4: PSNR curve of Mandrill.png, for DCT (blue), HAAR 2nd
level (green) and HAAR 1st level (red).
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Figure 2.5: PSNR curve of Lena.png, for DCT (blue), HAAR 2nd level
(green) and HAAR 1st level (red).

Figure 2.6: PSNR curve of Peppers.png, for DCT (blue), HAAR 2nd
level (green) and HAAR 1st level (red).
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Figure 2.7: PSNR curve of Mandrill.ti�, for DCT (blue), HAAR 2nd
level (green) and HAAR 1st level (red).

Figure 2.8: PSNR curve of Lena.ti�, for DCT (blue), HAAR 2nd level
(green) and HAAR 1st level (red).
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Figure 2.9: PSNR curve of Peppers.ti�, for DCT (blue), HAAR 2nd
level (green) and HAAR 1st level (red).

Image Mandrill Lena Peppers

NNZ PSNR NNZ PSNR NNZ PSNR

DCT

8.97% 30.40
4.93% 29.39
1.67% 28.25
0.92% 27.37

6.00% 23.11
3.11% 23.03
2.54 22.02
0.70% 26.85

8.67% 49.68
4.87% 46.26
1.88% 40.39
0.87% 34.86

Haar 2 niv

8.88% 34.49
4.93% 27.23
1.67% 11.87
0.91% 16.38

6.17% 29.00
3.12% 29.00
2.54 29.00
0.71% 15.38

8.69% 44.95
4.94% 38.37
1.88% 9.74
0.87% 15.57

Haar 1 niv

8.79% 30.55
4.96% 14.93
1.69% 21.91
0.91% 24.50

6.16% 9.53
3.11% 14.63
2.54 16.41
0.71% 24.18

8.69% 40.13
4.93% 12.72
1.89% 19.69
0.86% 25.31

Table 2.2: Numerical Results for Images of ti� type
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2.4 Discussion

Now let comment on the results obtained from the reconstructed images

and the calculation of PSNR and NNZ. For the image Mandrill.png

(respectively: Mandrill.ti�), we note that for the method based onDCT ,

we can reconstruct the image with percentages of non-zero coe�cients

of the DCT up to 0.89 and PSNR greater than 30 (respectively: up to

0.91 and PSNR near 30 ). In the case of the method based on DWT

(Haar of 2nd level), we can only reconstruct the mandrill.png image with

8.75 of non-zero coe�cients and a PSNR equal to 33 (respectively: 8.88

and PSNR = 34). About the image Lena.png (respectively: Lena.ti�),

we �nd that through the method based on DCT , the image can be re-

constructed with percentages of non-zero coe�cients up to 0.71 and a

PSNR greater than 30 (respectively: up to 0.70 with PSNR = 27),

in the case of the method based on DWT, the reconstructed images

Lena.png and Lena.ti� are bad. Finally, for the last image, Peppers.png

(respectively: Peppers.ti�), we note that using the method based on

DCT , we can reconstruct the image Pepppers.png, with percentages of

non-zero DCT coe�cients up to 0.88 and a PSNR of more than 30 (re-

spectively: up to 0.87 with PSNR = 34.86). In the case of the method

based on DWT (2nd level of Haar), we can only reconstruct the im-

age Peppers.png with non-zero coe�cients of 8.78 and a PSNR = 50

(respectively: 8.69 with PSNR = 44.95). We need to draw attention
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here to the fact that through the method based on DCT , for non-zero

coe�cients of 8.78, we have a PSNR = 53 (respectively: for 8.69 we get

PSNR = 44.95).

For the reconstruction of images from a data basis, we need to store

the matrix of parameters βj , which is a matrix of size 512 ∗ 512; its

storage has no e�ect on the gain of bits even if we have a large data

basis of images ( d is large ).
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By DCT By HAAR 1 level By HAAR 2 level

PSNR=30.33 PSNR=17.87 PSNR=5.83
NNZ=6.17 % NNZ=6.21% NNZ=6.17 %

PSNR=32.02 PSNR=22.7 PSNR=11.17
NNZ=3.12 % NNZ=3.13 % NNZ=3.12 %

PSNR=28.90 PSNR=23.83 PSNR=13.59
NNZ=2.5 % NNZ=2.55 % NNZ=2.51 %

PSNR=31.67 PSNR=20.13 PSNR=19.89
NNZ=0.71 % NNZ=0.71 % NNZ=0.71 %

Figure 2.10: Reconstructed images for lena.png
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By DCT By HAAR 1 level By HAAR 2 level

PSNR=43.31 PSNR=13.08 PSNR=33.01
NNZ=8.75 % NNZ=8.79% NNZ=8.69 %

PSNR=39.47 PSNR=16.90 PSNR=7.27
NNZ=4.97 % NNZ=4.98 % NNZ=4.97 %

PSNR=36.73 PSNR=23.99 PSNR=14.27
NNZ=1.69 % NNZ=1.69 % NNZ=1.69 %

PSNR=30.89 PSNR=27.75 PSNR=18.36
NNZ=0.89 % NNZ=0.91 % NNZ=0.89 %

Figure 2.11: Reconstructed images for mandrill.png
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By DCT By HAAR 1 level By HAAR 2 level

PSNR=53.8 PSNR=17.87 PSNR=50.03
NNZ=8.78 % NNZ=8.80% NNZ=8.78 %

PSNR=51.34 PSNR=23.69 PSNR=9.21
NNZ=4.96 % NNZ=4.94 % NNZ=4.96 %

PSNR=42.99 PSNR=34.09 PSNR=19.82
NNZ=1.86 % NNZ=1.88 % NNZ=1.87 %

PSNR=36.66 PSNR=40.71 PSNR=26.71
NNZ=0.88 % NNZ=0.89 % NNZ=0.88%

Figure 2.12: Reconstructed images for pepers.png
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By DCT By HAAR 1 level By HAAR 2 level

PSNR=23.11 PSNR=9.53 PSNR=29.00
NNZ=6.00 % NNZ=6.16% NNZ=6.17 %

PSNR=23.03 PSNR=14.63 PSNR=29.00
NNZ=3.11 % NNZ=3.11 % NNZ=3.12 %

PSNR=22.02 PSNR=16.41 PSNR=29.00
NNZ=2.54 % NNZ=2.54 % NNZ=2.54 %

PSNR=26.85 PSNR=24.18 PSNR=15.38
NNZ=0.70 % NNZ=0.71 % NNZ=0.71 %

Figure 2.13: Reconstructed images for lena.ti�
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By DCT By HAAR 1 level By HAAR 2 level

PSNR=30.40 PSNR=30.55 PSNR=34.49
NNZ=8.97 % NNZ=8.79% NNZ=8.88 %

PSNR=29.39 PSNR=14.93 PSNR=27.23
NNZ=4.93 % NNZ=4.96 % NNZ=4.94 %

PSNR=28.25 PSNR=21.91 PSNR=11.87
NNZ=1.67 % NNZ=1.69 % NNZ=1.67 %

PSNR=27.37 PSNR=24.50 PSNR=16.38
NNZ=0.92 % NNZ=0.91 % NNZ=0.91 %

Figure 2.14: Reconstructed images for mandrill.ti�
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By DCT By HAAR 1 level By HAAR 2 level

PSNR=49.68 PSNR=40.13 PSNR=44.95
NNZ=8.67 % NNZ=8.69% NNZ=8.69 %

PSNR=46.26 PSNR=12.72 PSNR=38.37
NNZ=4.87 % NNZ=4.93 % NNZ=4.94 %

PSNR=40.39 PSNR=19.69 PSNR=9.74
NNZ=1.88 % NNZ=1.89 % NNZ=1.88 %

PSNR=34.86 PSNR=25.31 PSNR=15.57
NNZ=0.87 % NNZ=0.86 % NNZ=0.87%

Figure 2.15: Reconstructed images for pepers.ti�
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Chapter 3

A novel binary image

encryption algorithm

In this chapter, we propose a new algorithm to encrypt binary images.

In the �rst step, the image is split into d blocks, which is used in new

images of the same size as the original one, and represent them in the new

basis given in 1.2.4 to obtain a key-image and encrypted images. The

parameters obtained by this transformation are considered as key-image

for the encryption and decryption algorithm. The decryption algorithm

is performed by the subtraction between each encrypted image and key-

image, then summing them in an image to obtain the original one. In the

same way, we can apply our proposed algorithm to encrypt a database

of binary images. Experimental results demonstrate the e�ciency of the

proposed approach.
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3.1 Cryptography

Cryptography is the study of mathematical techniques related to aspects

of information security such as con�dentiality, data integrity, authenti-

cation and Non-repudiation. [1]

Con�dentiality is the fundamental security service provided by cryp-

tography. It is a security service that keeps the information from an

unauthorized person.

Data integrity It is security service that deals with identifying any

alteration to the data. The data may get modi�ed by an unauthorized

entity intentionally or accidently. Integrity service con�rms that whether

data is intact or not since it was last created, transmitted, or stored by

an authorized user. Data integrity cannot prevent the alteration of data,

but provides a means for detecting whether data has been manipulated

in an unauthorized manner.

Authentication provides the identi�cation of the originator. It con-

�rms to the receiver that the data received has been sent only by an

identi�ed and veri�ed sender.

Non-repudiation is a security service that ensures that an entity can-

not refuse the ownership of a previous commitment or an action. It

is an assurance that the original creator of the data cannot deny the

creation or transmission of the said data to a recipient or third party.

Non-repudiation is a property that is most desirable in situations where
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there are chances of a dispute over the exchange of data.

3.1.1 Cryptosystem

A cryptosystem is an implementation of cryptographic techniques and

their accompanying infrastructure to provide information security ser-

vices. A cryptosystem is also referred to as a cipher system.

The basic model of a cryptosystem that provides con�dentiality to the

information being transmitted is illustrated in Figure 3.1 below:

56



Chapter 3. A novel binary image encryption algorithm

SENDER

Plaintext

Encryption Key

Encryption Algorithm Ciphertext

RECEIVER

Ciphertext

Decryption Key

Decryption Algorithm Plaintext

Figure 3.1: Cryptosystem scheme
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The illustration shows a sender who wants to transfer some sensitive

data to a receiver in such a way that any party intercepting or eaves-

dropping on the communication channel cannot extract the data.

The objective of this simple cryptosystem is that at the end of the pro-

cess, only the sender and the receiver will know the plaintext. The

various components of a basic cryptosystem are as follows:

1. Plaintext. It is the data to be protected during transmission.

2. Encryption algorithm. It is a mathematical process that pro-

duces a ciphertext for any given plaintext and encryption key. It is

a cryptographic algorithm that takes plaintext and an encryption

key as input and produces a ciphertext.

3. Ciphertext. It is the scrambled version of the plaintext produced

by the encryption algorithm using a speci�c the encryption key.

The ciphertext is not guarded. It �ows on public channel. It can

be intercepted or compromised by anyone who has access to the

communication channel.

4. Decryption algorithm. It is a mathematical process, that pro-

duces a unique plaintext for any given ciphertext and decryption

key. It is a cryptographic algorithm that takes a ciphertext and a

decryption key as input, and outputs a plaintext. The decryption

algorithm essentially reverses the encryption algorithm and is thus
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closely related to it.

5. Encryption key. It is a value that is known to the sender. The

sender inputs the encryption key into the encryption algorithm

along with the plaintext in order to compute the ciphertext.

6. Decryption key. It is a value that is known to the receiver.

The decryption key is related to the encryption key, but is not

always identical to it. The receiver inputs the decryption key into

the decryption algorithm along with the ciphertext in order to

compute the plaintext.

For a given cryptosystem, a collection of all possible decryption keys is

called a key space.

An interceptor (an attacker) is an unauthorized entity who attempts

to determine the plaintext. He can see the ciphertext and may know

the decryption algorithm. He, however, must never know the decryption

key.

3.1.2 Types of Cryptosystems

Fundamentally, there are two types of cryptosystems based on the man-

ner in which encryption-decryption is carried out in the system [1]:

1. Symmetric Key Encryption. The encryption process where

same keys are used for encrypting and decrypting the information
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is known as Symmetric Key Encryption.

A few well-known examples of symmetric key encryption meth-

ods are: Digital Encryption Standard (DES), Triple DES (3DES),

IDEA, and BLOWFISH.

2. Asymmetric Key Encryption. The encryption process where

di�erent keys are used for encrypting and decrypting the informa-

tion is known as Asymmetric Key Encryption. Though the keys

are di�erent, they are mathematically related and hence, retrieving

the plaintext by decrypting ciphertext is feasible.

3.2 The proposed scheme

In the proposed idea, the transformation of an original binary image to

another encrypted image is inspired from the work proposed by Mokhatri

and Melkemi in [35] discussed in paragraph di�use representation of an

image in chapter 1.

First of all, let's start this section with an example that illustrates the

application of the transform proposed by Mokhatri and Melkemi in [35],

in order to apply it to the binary image encryption.
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Example

The basis {ej}j=1,n is the canonical basis of the vector space Rn with

dimension n, in the following example we work with matrices with di-

mension 8 × 8 the dimension of our vector space is n = 8 × 8, and the

elements of this basis are matrices de�ned by :

ei,j(s, l) =

 1 for (s, l) = (i, j)

0 otherwise
, s, l = 1, ..., 8

Let be I a matrix n = 8× 8 such that I(i, j) ∈ {0, 1}.

I =



1 1 0 1 1 0 0 1

0 1 0 1 1 0 0 0

1 0 0 0 0 1 1 0

1 0 0 0 0 0 1 1

0 0 0 0 0 1 1 0

1 0 1 0 0 1 0 1

1 1 0 1 0 0 0 1

1 0 0 0 1 1 1 1



If, we split matrix I vertically into d = 2 blocks, and construct 2
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new matrices I1 and I2 with the same size as I such that each matrix

contains one of the blocks and the remaining value is zero (I = I1 + I2),

we get

I1 =



1 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 0 0 0 0 0 0



I2 =



0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1

0 0 0 0 1 1 1 1


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So, we have a1(i, j) the element of matrix I1 and a2(i, j) the element

of matrix I2. Now, we transform the 2 matrices I1 and I2 into new

basis. We obtain the matrix beta of parameters which are obtained by

this transformation by applying equation 1.35

β (i, j) =
1

2

[(
a1 (i, j) +

‖I1‖1√
64

)
+

(
a2 (i, j) +

‖I2‖1√
64

)]
, i, j = 1, ..., 8

and b1, b2; the representation of 2 matrices I1 and I2 in this new basis,

according to the equation 1.33

b1(i, j) = β(i, j)− a1(i, j), i, j = 1, ..., 8

b2(i, j) = β(i, j)− a2(i, j), i, j = 1, ..., 8

β =



2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2


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b1 =



1 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

1 2 2 2 2 2 2 2

1 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 2 1 2 2 2 2 2

1 1 2 1 2 2 2 2

1 2 2 2 2 2 2 2



b2 =



2 2 2 2 1 2 2 1

2 2 2 2 1 2 2 2

2 2 2 2 2 1 1 2

2 2 2 2 2 2 1 1

2 2 2 2 2 1 1 2

2 2 2 2 2 1 2 1

2 2 2 2 2 2 2 1

2 2 2 2 1 1 1 1


We notice that almost coe�cients of matrix b1 take the value 2 ∼

‖I1‖1√
8×8 and also almost coe�cients of matrix b2 take the value 2 ∼ ‖I2‖1√

8×8

We can return easily to the canonical basis by summation and subtrac-
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tion

I = (β − b1) + (β − b2)

The proposed idea is applied for both a binary image and a database

of d binary images. For a given binary image, we share the original im-

age into d blocks (horizontally or vertically or both), then we construct

new images of the same size as the original one, such that each image

contains one of the blocks and the value of the remaining pixels is zero.

After that, we transform them into the new basis. The matrix of pa-

rameters which is obtained by this transformation is called key-image

and the images represented in the new basis are called encrypted im-

ages. In the decryption step, each encrypted image is subtracted with

the key-image, and then all these new images are summed in an image

to return-back to the original one.

The proposed encryption approach does not only encrypts a single

binary image, but it can be used to encrypt a set of binary images

having the same size. Indeed, a database of d binary images having

the same size can be encrypted similarly using the proposed method.

First, the d binary images are transformed into the new basis. The

parameters matrix obtained by this transformation is called key-image

and the new images based on this new basis are called encrypted images.
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In the same way, the decryption process subtracts each encrypted image

from the key-image in order to return back to the original database of

d binary images. We explain the two proposed schemes of binary image

encryption and decryption in the two pseudo-codes (see Algorithms 2,3).

3.2.1 The proposed algorithms

In this subsection, we present the two pseudo-codes. In the Algorithm 2,

we describe the binary image encryption/decryption pseudo-code. The

Algorithm 3 presents the binary image database encryption and decryp-

tion pseudo-code.

Let be I a binary image of size m× n, to split I into d blocks vertically,

we choose d integers n1, n2, ..., nd such that

d∑
k=1

nk = n (3.1)

I =

 n1︷ ︸︸ ︷
Block1

∣∣∣∣∣
n2︷ ︸︸ ︷

Block2

∣∣∣∣∣
n3︷ ︸︸ ︷

Block3

∣∣∣∣∣ ..........
∣∣∣∣∣∣

nd︷ ︸︸ ︷
Blockd

 (3.2)

then we construct d new images I1, I2, ..., Id of the same size as I,

such that each image contains one of the blocks and the value of the

remaining pixels is zero,
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I1 =

 n1︷ ︸︸ ︷
Block1

∣∣∣∣∣∣
n−n1︷ ︸︸ ︷
Zeros

 , I2 =

 n1︷ ︸︸ ︷
Zeros

∣∣∣∣∣
n2︷ ︸︸ ︷

Block2

∣∣∣∣∣
n−(n1+n2)︷ ︸︸ ︷
Zeros

 , (3.3)

I3 =

 n1+n2︷ ︸︸ ︷
Zeros

∣∣∣∣∣
n3︷ ︸︸ ︷

Block3

∣∣∣∣∣
n−(n1+n2+n3)︷ ︸︸ ︷
Zeros

 , ......., Id =

 n−nd︷ ︸︸ ︷
Zeros

∣∣∣∣∣∣
nd︷ ︸︸ ︷

Blockd


(3.4)

�nally, we transform them into the new basis, by computing matrix

β and b1, b2, ..., bd representation of I1, I2, ..., Id in this new basis, using

equations 1.33 and 1.35. Matrix β is used as key-image and b1, b2, ..., bd

are used as d encrypted images. For decryption, we can easily obtain

the original image I by computing

d∑
k=1

(β − bk) = (d× β)−
d∑

k=1

bk (3.5)

For a database of d binary images having the same size, the d bi-

nary images are transformed into the new basis, using equations 1.33

and 1.35. The parameters matrix obtained by this transformation is

called key-image and the new images based on this new basis are called

encrypted images. In the same way, the decryption process subtracts
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each encrypted image from the key-image in order to return back to the

original database of d binary images.

Algorithm 2 The proposed binary image encryption pseudo code

1: Encryption:
2: Step 1. Initialization;
3: Input the image to encrypt;
4: Split the image in d blocks;
5: Form d images with the same size as the original one;
6: Step 2: Construction of the key-image and encrypted image;
7: Compute the new basis (compute βj and bj);
8: Save βj as the key-image;
9: Save bj as the encrypted images;

10: Decryption:
11: Step 1. Initialization;
12: Input the key-image and encrypted images;
13: Return to the canonical basis;
14: Step 2: Decryption step;
15: Sum the d splits;
16: Construct and display the decrypted image;
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Algorithm 3 The proposed binary image database encryption pseudo
code
1: Encryption:
2: Step 1. Initialization;
3: Input the database of d images of the database to encrypt;
4: Step 2: Construction of the key-image and the encrypted images of

the database;
5: Compute the new basis (compute βj and bj);
6: Save βj as the key image;
7: Save bj as the database of encrypted images;
8: Decryption:
9: Step 1. Initialization;

10: Input the key-image and the encrypted images of the database;
11: Step 2: Decryption step;
12: Return to the canonical basis to get the decrypted images;

3.3 Encryption evaluations metrics

To evaluate the e�ciency of our cryptography scheme, we will choose

some basic parameters to evaluate our algorithm. One of the major pa-

rameters to examine the encrypted image is the visual inspection [23],[5],

another parameter is the study of; characteristic di�usion [50],[19], which

is measured to judge the randomization algorithm. If an algorithm has

good di�usion characteristic, the relationship between the encrypted im-

age and the original image is too complex and can not be easily predicted.

In this work, we propose to study, in detail, the following metrics: the

calculation of PSNR, the correlation between the key-image and the en-

crypted image; and in the end we evaluate the characteristics di�usion

through the calculation of two parameters NPCR and UACI.
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3.3.1 Correlation Coe�cient

Correlation is a measure of the relationship between two variables. If

the two variables are images, and the correlation coe�cient equals zero,

then those images are totally di�erent. If the correlation coe�cient

equals −1, this means that one of them is the negative of the other. So,

success of the encryption process can be con�rmed by smaller values of

the correlation coe�cient, which is given by the following equation :

corr =

∑N
i=1(xi − E(x)).(yi − E(y))√∑N

i=1(xi − E(x)2).
√∑N

i=1(yi − E(y)2)
(3.6)

Where

E(x) = (1/N).
N∑
i=1

xi (3.7)

3.3.2 Characteristics di�usion

Di�usion is an important parameter that must be measured to judge the

encryption algorithm randomization. To test the security of the image

encryption algorithm, two common measures may be used: Number of

Pixels Change Rate (NPCR) and Uni�ed Average Changing Intensity

(UACI) [20],[49] Let C1 and C2 be two images with size N ×M , we
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de�ne an array, D, with the same size as images C1 and C2 by :

D(i, j) =

 0 if C1(i, j) = C2(i, j)

1 if C1(i, j) 6= C2(i, j)
(3.8)

The NPCR is de�ned as:

NPCR =

∑N×M
i,j=1 D(i, j)

N ×M
× 100% (3.9)

NPCRmeasures the percentage of di�erent pixel numbers between these

two images.

If C2 is the encryption image of C1, the UACI is de�ned as:

UACI =
1

N ×M

[
N×M∑
i,j=1

|C1(i, j)− C2(i, j)|
MAX(C2)

]
× 100% (3.10)

Which measures the average intensity of di�erences between the two

images. NPCR and UACI are used in security analysis of image en-

cryption for di�erential attacks.

3.4 Experimental results

3.4.1 Numerical tests and visual results

We summarize our numerical tests and visual results in Tables 3.1, 3.2,

3.3, 3.4, and Figures 3.2, 3.3, 3.4, 3.5.
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We perform the Algorithm 2 on three binary images: text, cartoon

and Lena. Each image is split vertically into d = 8 blocks, key-image

and encrypted images are saved in png and in jpeg2000 (jp2 in short)

formats (see Figures 3.2 and 3.3). To assess the quality of the recovered

image, PSNR is used and calculated for these images in the two formats.

To test the security of the image encryption algorithm. The parameters

NPCR and UACI (see Table 3.1) and entropy values (see Table 3.4)

are calculated. For correlation values, we note that for algorithm 1, all

pixels of key-image are equals in the 3 images test ( lena, cat and text ),

so correlation value between key-images and encrypted images is NAN.

For a database of images, we apply our proposed Algorithm 3 on a

document containing d = 6 pages. The key-image and the encrypted

images are saved in png and jp2 formats (see Figures 3.4 and 3.5). In

the same way as presented above, the well-known PSNR, NPCR and

UACI are computed in order to assess the performance of the proposed

approach (see Table 3.2), also correlation values (see Table 3.3)and en-

tropy values (see Table 3.4) are calculated.
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Figure 3.2: Visual results for Algorithm 2 applied on the images text,
cat and Lena. Key-image and encrypted images are saved in jp2 format.
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Figure 3.3: Visual results for Algorithm 2 applied on images, text, cat
and Lena. Key-image and encrypted images are saved in png format.
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Figure 3.4: Visual results for Algorithm 3 applied on a dataset (docu-
ment) containing 6 binary images (pages of the document). Key-image
and encrypted images are saved in jp2 format.
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Figure 3.5: Visual results for Algorithm 3 applied on a dataset (docu-
ment) containing 6 binary images (pages of the document). Key-image
and encrypted images are saved in png format.
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Type Text Cat Lena

PSNR
png
jp2

∞
63.28

∞
66.10

∞
61.04

NPCR
png
jp2

100 %
100 %

100 %
100 %

100 %
100 %

UACI
png
jp2

97.55 %
81.28 %

99.16 %
98.33 %

98.29 %
95.40 %

Table 3.1: Numerical results of Algorithm 2.

Type Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

PSNR
png
jp2

∞
57.91

∞
57.68

∞
59.62

∞
58.42

∞
59.16

∞
57.37

NPCR
png
jp2

100 %
100 %

100 %
100 %

100 %
100 %

100 %
100 %

100 %
100 %

100 %
100 %

UACI
png
jp2

98.96 %
98.32 %

99.02 %
98.38 %

98.25 %
98.36 %

98.98 %
98.34 %

98.96 %
90.34 %

98.84 %
98.19 %

Table 3.2: Numerical results for Algorithm 3.

Encrypted page 1 2 3 4 5 6

Correlation 0.05 0.06 0.04 0.04 0.05 0.08

Table 3.3: Correlation values between key-image and 6 encrypted images
for document of 6 pages.

3.4.2 Discussion

To demonstrate the e�ciency of the proposed method, we have applied

the Algorithms 2 on the three binary images with di�erent sizes and the

Algorithm 3 on a data-set called document containing 6 pages as binary

images.

A text 227 × 467 pixels, cat 1024 × 994 pixels, Lena 512 × 512
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Image Origi Encr1 Encr2 Encr3 Encr4 Encr5 Encr6 Encr7 Encr8 Key

Lena 0.9996 0.1122 0.3125 0.0541 0.0643 0.1302 0.1878 0.1864 0.9457 0
Text 0.5071 0.0640 0.0414 0.0759 0.0681 0.0642 0.0660 0.0872 0.3139 0
Cat 0.3117 0.1918 0.1896 0.2374 0.1888 0.1834 0.1822 0.2293 0.8486 0

Page 1 2 3 4 5 6

Original 0.7789 0.8431 0.7642 0.8021 0.8072 0.5822
Encrypted 0.7783 0.8463 0.7625 0.8006 0.8078 0.5903

Entropy of key-image (document containing 6 pages) = 0.0361

Table 3.4: Entropy values for original image, key-image and encrypted
images

pixels, and the document of 6 pages with 256 × 256 pixels.

By analyzing the values of the calculated parameters, we can notice

that in the case where the encrypted images and the key image are saved

in the png format, we get the in�nite value of PSNR, so the recovered

image and the original one are identical. We can �nd it as well in other

case (jp2 format), we got a big values for the PSNR, that we can con-

�rm the good recovery of our images.

By using the NPCR and UACI criteria, we notice that the NPCR

is 100 per 100 for the both cases (png, jp2) and the two tests (images

and document), that means that all the pixels change those values in
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the encrypted images. For the UACI test, the almost obtained values

are near of 99 per cent.

By interpreting the correlation values in Table 3.3, we note that we

got smaller values, this means that the encryption process is good.

By studying the entropy values obtained in Table 3.4, we con�rm

that key-image has 0 entropy for three tests; lena, cat and text, this

means that key-image contains only one value, and we also note that

the encrypted images, have a lower entropy than 1, so there is not a

problem of storage.
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Conclusion

From the proposed transformation of the representation basis of images

given by Melkemi and Mokhatri in [35]; that gives a representation to

di�uses the images in the new basis, in order to share information quan-

tity almost equal in di�erent images of data-set; we have succeeded to

get two new results, the �rst concerns compression of an database of

images, and the other concern the cryptography of a binary image or a

binary database images.

In chapter 2, we are applied a method based on DCT and one based

on DWT for the types of images: gray level (png) or colored (ti�). From

the results obtained, we conclude that the method based on DCT is very

e�cient compared to the one based on DWT , because, using the DCT

method, we were able to reconstruct the image with a percentage of pix-

els below 1, so it allows us to obtain a very signi�cant gain in storage

space.
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Conclusion

In chapter 3, we have proposed a new encryption algorithm to protect

binary images and databases of binary images having the same size. The

main idea of this approach is based on the generation of a key as an

image. This key-image is obtained from the proposed transformation,

which get all the pixels values almost equal. Indeed, it helps us to present

the encrypted and key images in one color (black sheet). In addition,

this algorithm can encrypt not only an image but also a database of

binary images having the same size.

We have shown with empirical evidence that this algorithm can be

used e�ciently in transferring a secret binary image, scanned document

containing several pages, con�dential queries containing binary images.
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