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Abstract

In this work, we are interesting in the necessary conditions of optimality of stochasticoptimal control for systems governed by mean-�eld forward-backward stochastic

di¤erential equations with jump processes, in which the coe¢ cients depend on the marginal

law of the state process through its expected value. The control variable is allowed to enter

both di¤usion and jump coe¢ cients. Moreover, the cost functional is also of mean-�eld

type. Necessary conditions for optimal control for these systems in the form of maximum

principle are established by means of convex perturbation techniques. As an application,

mean-variance portfolio selection mixed with a recursive utility functional optimization

problem is discussed.

Keywords: Mean-�eld forward-backward stochastic di¤erential equation with jumps, op-

timal stochastic control, mean-�eld maximum principle, mean-variance portfolio selection

with recursive utility functional.
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Résumé

Dans ce travail, nous intéressons aux conditions nécessaires d�optimalité en

contrôle optimal stochastique pour des systèmes gouvernés par des équations

di¤érentielles stochastiques progressives rétrogrades de type champ-moyen avec sauts, où

les coe¢ cients dépendent de la loi marginale du processus de l�état par l�espérance de

sa valeur. La variable de contrôle entre à la fois dans les coe¢ cients de di¤usion et

de saut. De plus, la fonction du coût est aussi de type champ-moyen. Les conditions

nécessaires d�optimalité pour ses systèmes seront établies sous la forme de principe du

maximum par les techniques de perturbation convexe. Comme une application, la sélection

de portefeuille moyenne-variance avec un problème d�optimisation fonctionnelle d�utilité

récursive est discutée.

Mots clés: Equation di¤érentielle stochastique progressive rétrograde de type champ-

moyen avec sauts, contrôle optimal stochastique, principe du maximum de type champ-

moyen, sélection du portefeuille moyenne-variance avec utilité récursive fonctionnelle.
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Introduction

The two famous approach in solving control problems are the Bellman Dynamic

Programming and Pontryagin�s Maximum principles. The �rst method consists

to �nd a solution of a stochastic partial di¤erential equation (SPDE) which is not linear,

veri�ed by the value function. It is called Hamilton-Jacobi-Bellman (HJB) equation. We

refer to [3] for more details about this method. The second method which will be the center

of our interest in this work which consists to �nd an admissible control u� that minimizes

a cost functional subject to an stochastic di¤erential equation on a �nite time horizon.

If u� is some optimal control, we may ask how we can characterize it, in other words,

what conditions must u� necessarily satisfy? These conditions are called the stochastic

maximum principle or the necessary conditions for optimality. The �rst version of the

stochastic maximum principle was extensively established in the 1970�s by Bismut [6],

Kushner [28], Bensoussan [5] and Haussmann [18].

In this work, our main goal is to derive a maximum principle for optimal stochastic

control of mean-�eld forward-backward stochastic di¤erential equations with Poisson jump

processes (FBSDEJs) of the form8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dx(t) = f(t; x(t); E(x(t)); u(t))dt+ �(t; x(t); E(x(t)); u(t))dW (t)

+

Z
�

c(t; x(t�); E(x(t�)); u(t); �)N (d�; dt) ;

dy(t) = �
Z
�

g(t; x(t); E(x(t)); y(t); E(y(t)); z(t); E(z(t)); r(t; �); u(t))� (d�) dt

+z(t)dW (t) +

Z
�

r(t; �)N (d�; dt) ;

x(0) = �; y(T ) = h(x(T ); E(x(T )));

(1)

where f; �; c; g et h are given maps and the initial condition � is an F0�measurable ran-
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Introduction

dom variable, W = (W (t))t2[0;T ] is a one-dimensional standard Brownian motion de�ned

on a �ltered probability space
�

;F ; fFtgt2[0;T ];P

�
satisfying the usual conditions and

N (d�; dt) is a Poisson martingale measure with local characteristics �(d�)dt:

The control variable u (�) = u(t)
t2[0;T ] is called admissible control, it is an fFtgt2[0;T ]�adapted

process and square-integrable with values in a nonempty convex subset A of R:We denote
by U ([0; T ]) the set of all admissible controls.
Our stochastic optimal control problem is to minimize over the class of admissible control

the following cost function:

J(u (�)) = E[

Z T

0

Z
�

l(t; x(t); E(x(t)); y(t); E(y(t)); z(t); E(z(t));

r(t; �); u(t))� (d�) dt+ �(x(T ); E(x(T ))) + ' (y(0); E(y(0)))];

(2)

where l; � and ' is an appropriate functions. This cost functional is also of mean-�eld

type, as the functions l; � and ' depend on the marginal law of the state process through

its expected value.

Any admissible control u� (�) 2 U ([0; T ]) satisfying

J(u� (�)) = inf
u(�)2U([0;T ])

J(u (�));

is called an optimal control.

The stochastic maximum principle of optimality for systems governed by forward-

backward stochastic di¤erential equations (FBSDEs) has been studied by many authors,

Peng [41] �rstly studied one kind of forward-backward stochastic control system which

had the economic background and could be used to study the recursive utility problem

in the mathematical �nance. He obtained the maximum principle for this kind of control

system with the control domain being convex. The di¢ culty to get the stochastic maxi-

mum principle for the control problems for systems governed by a forward and backward

SDE for controlled di¤usion and non convex control domain is how to use spike variation

method for the variational equations with enough higher estimate order and use the dual-

ity technique for the adjoint equation. Xu [57] studied the non convex control domain case

and obtained the corresponding maximum principle. But he assumed that the di¤usion

coe¢ cient in the forward control system does not contain the control variable. Wu [55]

4



Introduction

�rst obtained stochastic maximum principle for fully coupled forward-backward stochastic

control system in local form. Shi and Wu [50] extended this result to the global form

while the di¤usion coe¢ cient doesn�t contain the control variable. A good account and an

extensive list of references on stochastic maximum principle for FBSDEs with applications

can be found in Ma and Yong [33].

The mean-�eld stochastic di¤erential equation was introduced by Kac [27] in 1956 as

a stochastic model for the Vlasov kinetic equation of plasma and the study of this model

was initiated by McKean [34] in 1966. Since then, many authors made contributions on

mean-�eld stochastic problems and their applications. The mean-�eld games for large

population multi-agent systems with Markov jump parameters have been investigated in

Wang and Zhang [53]. Decentralized tracking-type games for large population multi-agent

systems with mean-�eld coupling have been studied in Li and Zhang [30]. Discrete-time

inde�nite mean �eld linear-quadratic optimal control problem has been investigated in Ni

et al. [36]. Discrete time mean-�eld stochastic linear-quadratic optimal control problems

with applications have been derived by Elliott et al. [11]. In Buckdahn, Li, and Peng

[9], a general notion of mean-�eld BSDE associated with a mean-�eld SDE was obtained

in a natural way as a limit of some high-dimensional system of FBSDEs governed by a

d-dimensional Brownian motion, and in�uenced by positions of a large number of other

particles. In Buckdahn et al. [10], a general maximum principle was introduced for a

class of stochastic control problems involving SDEs of mean-�eld type. However, su¢ -

cient conditions of optimality for mean-�eld SDE have been established by Shi [47]. In

Meyer-Brandis, ;ksendal, and Zhou [35], a stochastic maximum principle of optimality

for systems governed by controlled Itô-Levy process of mean-�eld type was proved using

Malliavin calculus. Mean-�eld singular stochastic control problems have been investigated

in Hafayed and Abbas [19]. More interestingly, mean-�eld type stochastic maximum prin-

ciple for optimal singular control has been studied in Hafayed [20], in which convex per-

turbations used for both absolutely continuous and singular components. The maximum

principle for optimal control of mean-�eld FBSDEJs with uncontrolled di¤usion has been

studied in Hafayed [21]. The necessary and su¢ cient conditions for near-optimality of

mean-�eld jump di¤usions with applications have been derived by Hafayed et al. [22].

Singular optimal control for mean-�eld forward-backward stochastic systems and applica-

tions to �nance have been investigated in Hafayed [23]. Second-order necessary conditions
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Introduction

for optimal control of mean-�eld jump di¤usion have been obtained by Hafayed and Abbas

[24]. Under partial information, mean-�eld type stochastic maximum principle for opti-

mal control has been investigated in Wang, Zhang, and Zhang [54]. Under the condition

that the control domain is convex, Andersson and Djehiche [1] and Li [29] investigated

problems for two types of more general controlled SDEs and cost functionals, respectively.

The linear-quadratic optimal control problem for mean-�eld SDEs has been studied by

Yong [58] and Shi [47]. The mean-�eld stochastic maximum principle for jump di¤usions

with applications has been investigated in Shen and Siu [45] Recently, maximum principle

for mean-�eld jump di¤usions stochastic delay di¤erential equations and its applications

to �nance have been derived by Yang, Meng, and Shi [46]. Mean-�eld optimal control for

backward stochastic evolution equations in Hilbert spaces has been investigated in Xu and

Wu [56].

The optimal control problems for stochastic systems described by Brownian motions and

Poisson jumps have been investigated by many authors including [48], [49], [8], [26], [17],

[37]. The necessary and su¢ cient conditions of optimality for FBSDEJs were obtained

by Shi and Wu [48]. General maximum principle for fully coupled FBSDEJs has been

obtained in Shi [49], where the author generalized Yong�s maximum principle [59] to jump

case.

This thesis is organized as follows:

I Chapter 1: This introductory chapter, we give a short introduction to stochastic

control problems.

I Chapter 2: (Maximum principle for forward-backward stochastic control system with

jumps and application to �nance). In this chapter we present the maximum principle

for systems governed by the forward-backward stochastic di¤erential equations with

jumps (FBSDEJs for short) in which the control domain is convex. This result was

obtained by Shi and Wu [48].

I Chapter 3: (Mean-�eld maximum principle for optimal control of forward-backward

stochastic systems with jumps and its application to mean-variance portfolio prob-

lem). This chapter contains the main result of this thesis, in this chapter, we

study mean-�eld type optimal stochastic control problem for systems governed by

6



Introduction

mean-�eld controlled forward-backward stochastic di¤erential equations with jump

processes, in which the coe�cients of the state equation depends not only on the

state process but also its marginal law of the state process through its expected

value. The cost functional is also of mean-�eld type. Our main goal is to derive

necessary conditions for optimality satis�ed by some optimal control which are also

known as the stochastic maximum principle. The proof of our result is based on

convex perturbation method. These necessary conditions are described in terms of

two adjoint processes, corresponding to the mean-�eld forward and backward com-

ponents with jumps and a maximum condition on the Hamiltonian. In the end, as

an application to �nance, a mean-variance portfolio selection mixed with a recursive

utility optimization problem is given, where explicit expression of the optimal port-

folio selection strategy is obtained in feedback form involving both state process and

its marginal distribution, via the solutions of Riccati ordinary di¤erential equations.

To streamline the presentation of this travail, we only study the one-dimensional

case.

7
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Chapter 1

Introduction to stochastic Control Problems
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Chapter 1

Introduction to stochastic control

problems

This chapter will be organized as follows. In section 1, we give the optimal control

theory. In section 2, we present strong and weak formulations of stochastic optimal control

problems. Section 3 and 4 are concerned to the presentation of the two important methods

which are dynamic programming and the maximum principle.

1.1 Optimal control theory

Optimal control theory can be described as the study of strategies to optimally in�uence

a system x with dynamics evolving over time according to a di¤erential equation. The

in�uence on the system is modeled as a vector of parameters, u, called the control. It is

allowed to take values in some set U , which is known as the action space. For a control to

be optimal, it should minimize a cost functional (or maximize a reward functional), which

depends on the whole trajectory of the system x and the control u over some time interval

[0; T ]. The in�mum of the cost functional is known as the value function (as a function of

the initial time and state). This minimization problem is in�nite dimensional, since we are

minimizing a functional over the space of functions u(t); t 2 [0; T ]. Optimal control theory
essentially consists of di¤erent methods of reducing the problem to a less transparent, but

more manageable problem. The two main methods are dynamic programming and the

maximum principle.

9



Chapter 1. Introduction to stochastic control problems

1.2 Formulations of stochastic optimal control prob-

lems

In this section, we present two mathematical formulations (strong and weak formulations)

of stochastic optimal control problems in the following two subsections, respectively.

1.2.1 Strong formulation

Let
�

;F ; fFtgt2[0;T ];P

�
be a given �ltered probability space satisfying the usual condi-

tion, on which an d-dimensional standard Brownian motion W (�) is de�ned, consider the
following controlled stochastic di¤erential equation :8<: dx(t) = f(t; x(t); u(t))dt+ �(t; x(t); u(t))dW (t);

x(0) = x0 2 Rn;
(1.1)

where

f : [0; T ]� Rn � U �! Rn;

� : [0; T ]� Rn � U �! Rn�d;

and x(�) is the variable of state.
The function u(�) is called the control representing the action of the decision-makers (con-
trollers). At any time instant the controller has some information (as speci�ed by the

information �eld fFtgt2[0;T ]) of what has happened up to that moment, but not able to
foretell what is going to happen afterwards due to the uncertainty of the system (as a conse-

quence, for any t the controller cannot exercise his/her decision u(t) before the time t really

comes), which can be expressed in mathematical term as "u(�) is fFtgt2[0;T ]�adapted".
The control u (�) is an element of the set:

U [0; T ] = fu : [0; T ]� 
 �! U= u (�) is fFtgt2[0;T ] � adaptedg:

We introduce the cost functional as follows:

10



Chapter 1. Introduction to stochastic control problems

J(u(�)) :
= E

�Z T

0

l(t; x(t); u(t))dt+ g(x(T ))

�
; (1.2)

where

l : [0; T ]� Rn � U �! R;

g : Rn �! R:

De�nition 1.2.1 Let
�

;F ; fFtgt2[0;T ];P

�
be given satisfying the usual conditions and let

W (t) be a given d-dimensional standard fFtgt2[0;T ]-Brownian motion. A control u(�) is
called an s-admissible control, and (x(�); u(�)) an s-admissible pair, if

i) u(�) 2 U [0; T ];

ii) x(�) is the unique solution of equation (1.1);

iii) l(�; x(�); u(�)) 2 L1F ([0; T ] ;R) and g(x(T )) 2 L1FT (
;R) :

The set of all s-admissible controls is denoted by U s ([0; T ]).
Our stochastic optimal control problem under strong formulation can be stated as follows:

Problem 1.2.1 Minimize (1.2) over U s ([0; T ]) :

The goal is to �nd u�(�) 2 U s ([0; T ]) ; such that

J(u�(�)) = inf
u(�)2Us([0;T ])

J(u(�)): (1.3)

For any u�(�) 2 U s ([0; T ]) satisfying (1.3) is called an s-optimal control. The corresponding
state process x�(�) and the state-control pair (x�(�); u�(�)) are called an s-optimal state
process and an s-optimal pair, respectively.

1.2.2 Weak formulation

There exists for the optimal control problem another formulation of a more mathematical

aspect, it is the weak formulation of the stochastic optimal control problem. Unlike in the

strong formulation the �ltered probability space
�

;F ; fFtgt2[0;T ];P

�
on which we de�ne

the Brownian motion W (�) are all �xed, but it is not the case in the weak formulation,
where we consider them as a parts of the control.

11



Chapter 1. Introduction to stochastic control problems

De�nition 1.2.2 A 6-tuple � =
�

;F ; fFtgt2[0;T ];P;W (�) ; u (�)

�
is called w-admissible

control and (x(�); u(�)) an w-admissible pair, if

i)
�

;F ; fFtgt2[0;T ];P

�
is a �ltered probability space satisfying the usual conditions;

ii) W (�) is an d-dimensional standard Brownian motion de�ned on
�

;F ; fFtgt2[0;T ];P

�
;

iii) u(�) is an fFtgt2[0;T ]�adapted process on (
;F ;P) taking values in U ;

iv) x(�) is the unique solution of equation (1.1);

v) l(�; x(�); u(�)) 2 L1F ([0; T ] ;R) and g(x(T )) 2 L1FT (
;R) :

The set of all w-admissible controls is denoted by Uw ([0; T ]). Sometimes, might write
u(�)) 2 Uw ([0; T ]) instead of

�

;F ; fFtgt2[0;T ];P;W (�) ; u (�)

�
2 Uw ([0; T ]) :

Our stochastic optimal control problem under weak formulation can be formulated as

follows:

Problem 1.2.2 Minimize (1.2) over Uw ([0; T ]) :

Namely, one seeks ��(�) 2 Uw ([0; T ]) such that

J(��(�)) = inf
�(�)2Uw([0;T ])

J(�(�)):

1.3 The Dynamic Programming Principle

In this section, we study an approach to solving optimal control problems, namely,

the method of dynamic programming. Dynamic programming, originated by R. Bellman

[3] in the early 1950�s, is a mathematical technique for making a sequence of interrelated

decisions, which can be applied to many optimization problems (including optimal control

problems). The basic idea of this method applied to optimal controls is to consider a

family of optimal control problems with di¤erent initial times and states, to establish

relationships among these problems via the so-called Hamilton-Jacobi-Bellman equation

(HJB, for short), which is a nonlinear �rst-order (in the deterministic case) or second-

order (in the stochastic case) partial di¤erential equation. If the HJB equation is solvable

(either analytically or numerically), then one can obtain an optimal feedback control by

12



Chapter 1. Introduction to stochastic control problems

taking the maximize/minimize of the Hamiltonian or generalized Hamiltonian involved in

the HJB equation. This is the so-called veri�cation technique. Note that this approach

actually gives solutions to the whole family of problems (with di¤erent initial times and

states).

1.3.1 The Bellman principle

Let (
;F ;P) be a probability space with �ltration fFtgt2[0;T ]; satisfying the usual
conditions, T > 0 a �nite time, and W a d-dimensional Brownian motion de�ned on the

�ltered probability space
�

;F ;P; fFtgt2[0;T ]

�
:

We consider the state stochastic di¤erential equation

dx(s) = f(s; x(s); u(s))ds+ �(s; x(s); u(s))dW (s): (1.4)

The control u = u(s)0�s�T is a progressively measurable process valued in the control set

U , a subset of Rk, satis�es a square integrability condition. We denote by U ([t; T ]) the
set of control processes u.

To ensure the existence of a solution to SDE (1.4), the Borelian functions f : [0; T ]�Rn�
U �! Rn and � : [0; T ]� Rn � U �! Rn�d satisfy the following conditions:

jf(t; x; u)� f(t; y; u)j+ j�(t; x; u)� �(t; y; u)j � C jx� yj ;

jf(t; x; u)j+ j�(t; x; u)j � C j1 + jxjj ;

for some constant C.

We de�ne the gain function as follows:

J(t; x; u) = E

�Z T

t

l(s; x(s); u(s))ds+ g(x (T ))

�
; (1.5)

where

l : [0; T ]� Rn � U �! R;

g : Rn �! R;

13



Chapter 1. Introduction to stochastic control problems

be given functions. We have to impose integrability conditions on f and g in order for

the above expectation to be well-de�ned, e.g. a lower boundedness or quadratic growth

condition.

Our objective is to maximize this gain function, we introduce the so-called value function:

V (t; x) = sup
u2U([t;T ])

J(t; x; u); (1.6)

where x(t) = x is the initial state given at time t:

For an initial state (t; x) ; we say that u� 2 U ([t; T ]) is an optimal control if

V (t; x) = J(t; x; u�):

Theorem 1.3.1 Let (t; x) 2 [0; T ]� Rn be given. Then we have

V (t; x) = sup
u2U([t;T ])

E

�Z t+h

t

l(s; x(s); u(s))dt+ V (t+ h; x(t+ h))

�
; for t � t+ h � T:

(1.7)

The proof of the dynamic programming principle is technical and has been studied by

di¤erent methods, we refer the reader to Lions [31], Fleming and Soner [15] and Yong and

Zhou [60].

1.3.2 The Hamilton-Jacobi-Bellman equation

The HJB equation is the in�nitesimal version of the dynamic programming principle.

It is formally derived by assuming that the value function is C1;2 ([0; T ]� Rn) ; applying
Itô�s formula to V (s; xt;x(s)) between s = t and s = t+ h, and then sending h to zero into

(1.7). The classical HJB equation associated to the stochastic control problem (1.6) is

�Vt(t; x)� sup
u2U

[LuV (t; x) + l(t; x; u)] = 0; on [0; T ]� Rn; (1.8)

where Lu is the second-order in�nitesimal generator associated to the di¤usion x with
control u

LuV = f(x; u):DxV +
1

2
tr (� (x; u)�| (x; u)D2

xV ) :

14
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This partial di¤erential equation (PDE) is often written also as :

�Vt(t; x)�H(t; x;DxV (t; x); D
2
xV (t; x)) = 0; 8(t; x) 2 [0; T ]� Rn; (1.9)

where for (t; x;	; Q) 2 [0; T ]�Rn�Rn�Sn (Sn is the set of symmetric n�n matrices) :

H(t; x;	; Q) = sup
u2U

�
f(t; x; u):	+

1

2
tr (��| (t; x; u)Q) + l(t; x; u)

�
: (1.10)

The function H is sometimes called Hamiltonian of the associated control problem, and

the PDE (1.8) or (1.9) is the dynamic programming or HJB equation.

There is also an a priori terminal condition:

V (T; x) = g(x); 8x 2 Rn;

which results from the very de�nition of the value function V .

1.3.3 The classical veri�cation approach

The classical veri�cation approach consists in �nding a smooth solution to the HJB

equation, and to check that this candidate, under suitable su¢ cient conditions, coincides

with the value function. This result is usually called a veri�cation theorem and provides

as a byproduct an optimal control. It relies mainly on Itô�s formula. The assertions

of a veri�cation theorem may slightly vary from problem to problem, depending on the

required su¢ cient technical conditions. These conditions should actually be adapted to

the context of the considered problem. In the above context, a veri�cation theorem is

roughly stated as follows:

Theorem 1.3.2 LetW be a C1;2 function on [0; T ]�Rn and continuous in T , with suitable
growth condition. Suppose that for all (t; x) 2 [0; T ]� Rn, there exists u�(t; x) mesurable,
valued in U such that W solves the HJB equation:

0 = �Wt(t; x)� sup
u2U

[LuW (t; x) + l(t; x; u)]

= �Wt(t; x)� Lu
�(t;x)W (t; x)� l(t; x; u�(t; x)); on [0; T ]� Rn;

15
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together with the terminal condition

W (T; �) = g on Rn;

and the stochastic di¤erential equation:

dx(s) = f(s; x(s); u�(s; x (s)))ds+ �(s; x(s); u�(s; x (s)))dW (t);

admits a unique solution x�, given an initial condition x(t) = x. Then, W = V and

u� (s; x�) is an optimal control for V (t; x).

A proof of this veri�cation theorem may be found in any textbook on stochastic control

see. e.g. [14], [15], [60] or [42].

1.4 The Pontryagin stochastic maximum principle

Another classical approach for optimization and control problems is to derive neces-

sary conditions satis�ed by an optimal solution. The argument is to use an appropriate

calculus of variations of the cost functional J(u) with respect to the control variable in

order to derive a necessary condition of optimality. The maximum principle initiated by

Pontryagin, states that an optimal state trajectory must solve a Hamilton system together

with a maximum condition of a function called a generalized Hamilton. In principle, solve

a Hamilton should be easier than solving the original control problem.

The original version of Pontryagin�s maximum principle was derived for deterministic

problems in the 1950�s and 1960�s by Pontryagin and al. [43], as in classical calculus of

variation. The basic idea is to perturb an optimal control and to use some sort of Taylor

expansion of the state trajectory around the optimal control, by sending the perturbation

to zero, one obtains some inequality, and by duality, the maximum principle is expressed

in terms of an adjoint variable. More recent results for the study of optimal control in

the deterministic cases were treated by Fleming [14] and [15], where the authors present

the results of fundamental control theory. The �rst version of the stochastic maximum

principle was extensively established in the 1970�s by Bismut [6], Kushner [28], Bensoussan

[5] and Haussmann [18]. However, at that time, the results were essentially obtained

16
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under the condition that there is no control on the di¤usion coe¢ cient. The �rst version

of the stochastic maximum principle when the di¤usion coe¢ cient depends explicitly on

the control variable and the control domain is not convex, was obtained by Peng [40], in

which he studied the second order term in the Taylor expansion of the perturbation method

arising from the Itô integral. He then obtained a maximum principle for control dependent

di¤usion, which involves in addition to the �rst-order adjoint process, a second-order

adjoint process. The adjoint processes are described by what is called adjoint equation. In

fact, the adjoint equation is in general a linear backward stochastic di¤erential equation

(BSDE) with a speci�ed a random terminal condition on the state. Unlike a forward

stochastic di¤erential equation, the solution of a BSDE is a pair of adapted solutions. The

linear BSDE was �rst proposed by Bismut [7] in 1973. Pardoux and Peng [39] got the

uniqueness and existence theorem for the solutions of nonlinear BSDE driven by Brownian

motion under Lipschitz condition in 1990. Now BSDE theory is playing a key role not

only in dealing with stochastic optimal control problems, but also in mathematical �nance,

particularly in hedging and nonlinear pricing theory for imperfect market.

1.4.1 The maximum principle

As an illustration, we provide a sketch of how the maximum principle for a deterministic

control problem is derived. In this setting, the state of the system is given by the di¤erential

equation 8<: dx(t) = f(t; x(t); u(t))dt; t 2 [0; T ] ;
x(0) = x0;

(1.11)

where

f : [0; T ]� R�A �! R;

and the action space A is some subset of R:
The objective is to minimize some cost function of the form

J(u (�)) =

Z T

0

l(t; x(t); u(t)) + g(x (T )); (1.12)

17
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where

l : [0; T ]� R�A �! R;

g : R �! R:

That is, the function l in�icts a running cost and the function g in�icts a terminal cost.

We now assume that there exists a control u�(t) which is optimal, i.e.

J(u� (�)) = inf
u
J(u (�)):

We denote by x�(t) the solution to (1.11) with the optimal control u�(t). We are going

to derive necessary conditions for optimality, for this we make small perturbation of the

optimal control. Therefore we introduce a so-called spike variation, i.e. a control which is

equal to u� except on some small time interval:

u"(t) =

8<: v for � � " � t � �;

u�(t) otherwise.
(1.13)

We denote by x"(t) the solution to (1.11) with the control u"(t). We set that x�(t) and

x"(t) are equal up to t = � � " and that

x"(�)� x�(�) = (f(�; x"(�); v)� f(�; x�(�); u� (�)))"+ o (")

= (f(�; x�(�); v)� f(�; x�(�); u� (�)))"+ o (") ;
(1.14)

where the second equality holds since x"(�) � x�(�) is of order ": we look at the Taylor

expansion of the state with respect to ": Let

z(t) =
@

@"
x"(t) j"=0;

i.e. the Taylor expansion of x"(t) is

x"(t) = x� (t) + z(t)"+ o("): (1.15)

18
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Then, by (1.14)

z (�) = f(�; x�(�); v)� f(�; x�(�); u� (�)): (1.16)

Moreover, we can derive the following di¤erential equation for z(t):

dz(t) =
@

@"
dx"(t) j"=0

=
@

@"
f(t; x"(t); u"(t))dt j"=0

= fx(t; x
"(t); u"(t))

@

@"
x"(t)dt j"=0

= fx(t; x
�(t); u�(t))z(t)dt;

where fx denotes the derivative of f with respect to x. If we for the moment assume that

l = 0, the optimality of u�(t) leads to the inequality

0 � @

@"
J(u") j"=0=

@

@"
g (x"(T )) j"=0

= gx (x
"(T ))

@

@"
x"(T ) j"=0

= gx (x
�(T )) z(T ):

We shall use duality to obtain a more explicit necessary condition from this. To this end

we introduce the adjoint equation:8<: d	(t) = �fx(t; x�(t); u�(t))	(t)dt; t 2 [0; T ] ;

	(T ) = gx(x
�(T )):

Then it follows that

d(	(t)z(t)) = 0;

i.e. 	(t)z(t) = constant. By the terminal condition for the adjoint equation we have

	(t)z(t) = gx(x
�(T ))z(T ) � 0; for all 0 � t � T:

In particular, by (1.16)

	(�) (f(�; x�(�); v)� f(�; x�(�); u� (�))) � 0:
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Since � was chosen arbitrarily, this is equivalent to

	(t)f(t; x�(t); u�(t)) = inf
v
	(t)f(t; x�(t); v); for all 0 � t � T:

This speci�es a necessary condition for u�(t) to be optimal when l = 0:

To account for the running cost l one can construct an extra state

dx0(t) = l(t; x(t); u(t))dt;

which allows us to write the cost function in terms of two terminal costs:

J(u (�)) = x0(T ) + g(x(T )):

By repeating the calculations above for this two-dimensional system, one can derive the

necessary condition

H(t; x�(t); u�(t);	(t)) = inf
v
H(t; x�(t); v;	(t)) for all 0 � t � T; (1.17)

where H is the so-called Hamiltonian (sometimes de�ned with a minus sign which turns

the minimum condition above into a maximum condition) :

H(x; u;	) = l(x; u) + 	f(x; u);

and the adjoint equation is given by8<: d	(t) = �(lx(t; x�(t); u�(t)) + fx(t; x�(t); u�(t))	(t))dt;

	(T ) = gx(x
�(T )):

(1.18)

The minimum condition (1.17) together with the adjoint equation (1.18) speci�es the

Hamiltonian system for our control problem.

1.4.2 The stochastic maximum principle

Stochastic control is the extension of optimal control to problems where it is of im-

portance to take into account some uncertainty in the system. One possibility is then to
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replace the di¤erential equation by an SDE:

dx(t) = f(t; x(t); u(t))dt+ �(t; x(t))dW (t); t 2 [0; T ] ; (1.19)

where f and � are deterministic functions and the last term is an Itô integral with respect

to a Brownian motion W (�) de�ned on a probability space
�

;F ; fFtgt2[0;T ];P

�
:

More generally, the di¤usion coe¢ cient � may have an explicit dependence on the control:

dx(t) = f(t; x(t); u(t))dt+ �(t; x(t); u(t))dW (t); t 2 [0; T ] : (1.20)

The cost function for the stochastic case is the expected value of the cost function (1.12),

i.e. we want to minimize

J(u (�)) = E

�Z T

0

l(t; x(t); u(t)) + g(x (T ))

�
:

For the case (1.19) the adjoint equation is given by8>>>><>>>>:
d	(t) = �(lx(t; x�(t); u�(t)) + fx(t; x�(t); u�(t))	(t)

+�x(t; x
�(t))Q(t))dt+Q(t)dW (t);

	(T ) = gx(x
�(T )):

(1.21)

A solution to this kind of backward SDE is a pair (	(t); Q(t)) which ful�lls (1.21).

The Hamiltonian is

H(x; u;	; Q) = l(x; u) + 	f(x; u) +Q�(x);

and the maximum principle reads

H(t; x�(t); u�(t);	(t); Q(t)) = inf
u
H(t; x�(t); u;	(t); Q(t)) for all 0 � t � T;P� a.s.

(1.22)

There is also third case: if the state is given by (1.20) but the action space A is convex,

it is possible to derive the maximum principle in a local form. This is accomplished by

using a convex perturbation of the control instead of a spike variation, see Bensoussan [4].
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The necessary condition for optimality is then the following

Hu(t; x
�(t); u�(t);	�(t); Q�(t)) (u� u�(t)) � 0 for all 0 � t � T;P� a.s.
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Chapter 2

Maximum principle for

forward-backward stochastic control

system with jumps and application

to �nance

2.1 Introduction

In this chapter we will give the maximum principle for systems governed by the forward-

backward stochastic di¤erential equations with Jumps (FBSDEJ for short) in which the

control domain is convex, the control variable is allowed to enter both di¤usion and jump

coe¢ cients. This result was obtained by Shi and Wu [48].

This chapter is organized as follow. In section 2, we consider some assumptions to achieve

the goal. In section 3, we obtain the maximum principle for one kind of forward-backward

stochastic system with jumps. In section 4, we prove that under some additional condi-

tions, the maximum principle is also su¢ cient. In section 5, we apply this result to study

a mean-variance portfolio selection mixed with a recursive utility functional optimization

problem and give the explicit expression of the optimal portfolio selection strategy.
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2.2 Problem formulation and assumptions

Let T > 0 be a �xed time horizon and
�

;F ; fFtgt2[0;T ];P

�
be a �xed �ltered probability

space equipped with a P�completed right continuous �ltration on which a d�dimensional
Brownian motion W = (W (t))t2[0;T ] is de�ned. Let � be a homogeneous fFtgt2[0;T ]�
Poisson point process independent of W . We denote by ~N (d�; dt) the random counting

measure induced by �; de�ned on ��R+, where � is a �xed nonempty subset of Rl with
its Borel �-�nite measure on (�;B (�)) with � (d�) <1: We then de�ne

N (d�; dt) := ~N (d�; dt)� � (d�) ;

where N (�; �) is Poisson martingale measure on B (�)� B (R+) with local characteristics
� (d�) dt.

We assume that fFtgt2[0;T ] is P-augmentation of the natural �ltration fF
(W;N)
t gt2[0;T ] de-

�ned as follows

F (W;N)
t = � (W (s) : s 2 [0; t]) _ �

�Z s

0

Z
B

N (d�; dr) : s 2 [0; t] ; B 2 B (�)
�
_ G0;

where G0 denotes the totality of P�null sets and �1 _ �2 denotes the �-�eld generated by
�1 [ �2:

Throughout this chapter, we use the notations

1. h�; �i the Euclidean scalar product.

2. j�j the Euclidean norm on Rn;8n 2 N:

3. > appearing in the superscripts denotes the transpose of a matrix.

Let U be a nonempty convex subset of Rk.

We de�ne the admissible control set

U ([0; T ]) =
�
u (�) 2 L2F

�
[0; T ] ;Rk

�
;u (t) 2 U; a:e: t 2 [0; T ] ;P� a:s:

	
:

For any given admissible control u (�) 2 U ([0; T ]) and initial state x0 2 Rn; we consider
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the following forward-backward stochastic control system with jumps:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dx(t) = f(t; x(t); u(t))dt+ �(t; x(t); u(t))dW (t)

+

Z
�

c(t; x(t�); u(t); �)N (d�; dt) ;

�dy(t) =

Z
�

g(t; x(t); y(t); z(t); r(t; �); u(t))� (d�) dt

�z(t)dW (t)�
Z
�

r(t; �)N (d�; dt) ;

x(0) = x0; y(T ) = h(x(T ));

(2.1)

where
f : [0; T ]� Rn � U �! Rn;

� : [0; T ]� Rn � U �! Rn�d;

c : [0; T ]� Rn � U �� �! Rn;

g : [0; T ]� Rn � Rm � Rm�d � Rm � U �! Rm;

h : 
� Rn �! Rm;

are given maps.

The stochastic optimal control problem is to minimize over U ([0; T ]) the cost functional
of the form

J(u(�)) :
= E

�Z T

0

Z
�

l(t; x(t); y(t); z(t); r(t; �); u(t))� (d�) dt+ �(x(T )) + '(y(0))

�
;

(2.2)

where
l : [0; T ]� Rn � Rm � Rm�d � Rm � U �! R;

� : Rn �! R;

' : Rm �! R;

are given maps.

An admissible control which solves this problem is called an optimal control and it is

denoted by u�, i.e.

J(u�(�)) = inf
u(�)2U([0;T ])

J(u(�)):

Assumptions (H2.1)
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Throughout this chapter, we assume that the above functions satisfy the following as-

sumptions:

1. f; �; c are global Lipschitz in (x; u) and g is global Lipschitz in (x; y; z; r; u) ;

2. f; �; c; g; l; �; ' are continuously di¤erentiable in their variables including (x; y; z; r; u) ;

3. fx; fu; �x; �u; gx; gy; gz; gr; gu and
Z
�

jcx(�; �; �)j2 � (d�) ;
Z
�

jcu(�; �; �)j2 � (d�) are bounded;

4. lx; ly; lz; lr; lu are bounded byC (1 + jxj+ jyj+ jzj+ jrj+ juj) ; �x and 'y are bounded
by C (1 + jxj) ; C (1 + jyj) respectively;

5. 8x 2 Rn; h(x) 2 L2 (
;FT ;Rm) and for �xed w 2 
; h(x) continuously di¤erentiable
in x, hx is bounded;

6. For all t 2 [0; T ] ; f(t; 0; 0); g(t; 0; 0; 0; 0; 0) 2 L2F ([0; T ] ;Rn) ; �(t; 0; 0) 2 L2F
�
[0; T ] ;Rn�d

�
and c(t; 0; 0; �) 2M2

F ([0; T ] ;Rn) :

Under assumption (H2.1) the forward-backward equation (2.1) admits a unique solution

(x(�); y(�); z(�); r(�; �)) 2 L2F ([0; T ] ;Rn)�L2F ([0; T ] ;Rm)�L2F
�
[0; T ] ;Rm�d

�
�M2

F ([0; T ] ;Rm).

2.3 Necessary conditions for optimal control of FBS-

DEJs

The goal in this section is to get the maximum principle and to �nd the necessary

condition of optimality veri�ed by some optimal control, for this we use the classic convex

variation method. We assume the existence of an optimal control u�(�) minimizing the
cost J over U ([0; T ]) and (x�(�); y�(�); z�(�); r�(�; �)) denotes the optimal trajectory, that is,
the solution of (2.1) corresponding to u�(�):
Since U is convex, then for any 0 � " � 1; we de�ne an admissible control u" (�) by the
following perturbation

u" (�) := u� (�) + "u (�) ;

which is also a admissible control has value U:

We denote by (x"(�); y"(�); z"(�); r"(�; �)) the trajectory corresponding to u" (�) :
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2.3.1 Variational equations and variational inequality

Let (x"1(�); y"1(�); z"1(�); r"1(�; �)) be the solution of the following variational equation:8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

dx"1(t) = [fx(t)x
"
1(t) + fu(t)u(t)] dt+ [�x(t)x

"
1(t) + �u(t)u(t)] dW (t)

+

Z
�

[cx(t; �)x
"
1(t�) + cu(t; �)u(t)]N (d�; dt) ;

�dy"1(t) =

Z
�

[gx(t; �)x
"
1(t) + gy(t; �)y

"
1(t) + gz(t; �)z

"
1(t)

+gr(t; �)r
"
1(t; �) + gu(t; �)u(t)]� (d�) dt

�z"1(t)dW (t)�
Z
�

r"1(t; �)N (d�; dt) ;

x"1(0) = 0; y"1(T ) = hx(x
�(T ))x"1(T );

(2.3)

where and in the sequel

f(t) � f(t; x�(t); u�(t)); �(t) � �(t; x�(t); u�(t));

c(t; �) � c(t; x�(t); u�(t); �); l(t; �) � l(t; x�(t); y�(t); z�(t); r�(t; �); u�(t));

g(t; �) � g(t; x�(t); y�(t); z�(t); r�(t; �); u�(t)):

and their derivatives.

Under (H2.1), there exists a unique solution

(x"1(�); y"1(�); z"1(�); r"1(�; �))
2 L2F ([0; T ] ;Rn)� L2F ([0; T ] ;Rm)� L2F

�
[0; T ] ;Rm�d

�
�M2

F ([0; T ] ;Rm) ;

satisfying (2.3).

The following lemma is needed to establish our result.

For all t 2 [0; T ] ; " � 0; we set

x̂"(t)
:
= "�1 (x"(t)� x�(t))� x"1(t);

ŷ"(t)
:
= "�1 (y"(t)� y�(t))� y"1(t);

ẑ"(t)
:
= "�1 (z"(t)� z�(t))� z"1(t);

r̂"(t; �)
:
= "�1 (r"(t; �)� r�(t; �))� r"1(t; �):

(2.4)
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Lemma 2.3.1 Let assumption (H2.1) hold. Then

lim
"�!0

sup
0�t�T

E jx̂"(t)j2 = 0;

lim
"�!0

sup
0�t�T

E jŷ"(t)j2 = 0;

lim
"�!0

E

Z T

0

jẑ"(t)j2 dt = 0;

lim
"�!0

E

Z T

0

Z
�

jr̂"(t; �)j2 � (d�) dt = 0:

(2.5)

Proof After de�ning x"(t); x�(t) and x"1(t); we have

dx"(t) = f(t; x"(t); u"(t))dt+ �(t; x"(t); u"(t))dW (t) +

Z
�

c(t; x"(t�); u"(t); �)N (d�; dt) ;

dx�(t) = f(t; x�(t); u�(t))dt+ �(t; x�(t); u�(t))dW (t) +

Z
�

c(t; x�(t�); u�(t); �)N (d�; dt) ;

dx"1(t) = [fx(t)x
"
1(t) + fu(t)u(t)] dt+ [�x(t)x

"
1(t) + �u(t)u(t)] dW (t)

+

Z
�

[cx(t; �)x
"
1(t�) + cu(t; �)u(t)]N (d�; dt) :

So we can well de�ne x̂"(t) as

x̂"(t) = "�1 (x"(t)� x�(t))� x"1(t):

Applying Itô�s formula, we get

dx̂"(t) = "�1 (dx"(t)� dx�(t))� dx"1(t)

= "�1 [f(t; x"(t); u"(t))� f(t)] dt� [fx(t)x"1(t) + fu(t)u(t)] dt

+"�1 [�(t; x"(t); u"(t))� �(t)] dW (t)� [�x(t)x"1(t) + �u(t)u(t)] dW (t)

+"�1
�Z

�

c(t; x"(t�); u"(t); �)� c(t; �)

�
N (d�; dt)

�
Z
�

[cx(t; �)x
"
1(t�) + cu(t; �)u(t)]N (d�; dt) ;

with x̂�(0) = 0:
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By replacing x"(t) with x�(t) + " (x̂"(t) + x"1(t)) and u
"(t) with u�(t) + "u(t); we �nd

dx̂"(t) = "�1 [f(t; x�(t) + " (x̂"(t) + x"1(t)) ; u
�(t) + "u(t))� f(t)] dt

� [fx(t)x"1(t) + fu(t)u(t)] dt

+"�1 [�(t; x�(t) + " (x̂"(t) + x"1(t)) ; u
�(t) + "u(t))� �(t)] dW (t)

� [�x(t)x"1(t) + �u(t)u(t)] dW (t)

+"�1
�Z

�

c(t; x�(t) + " (x̂"(t) + x"1(t)) ; u
�(t) + "u(t); �)� c(t; �)

�
N (d�; dt)

�
Z
�

[cx(t; �)x
"
1(t�) + cu(t; �)u(t)]N (d�; dt) :

(2.6)

By Taylor�s expansion with a simple computation, we show that

"�1 [f(t; x�(t) + " (x̂"(t) + x"1(t)) ; u
�(t) + "u(t))� f(t)]

=

Z 1

0

fx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t)) (x̂"(t) + x"1(t)) d�

+

Z 1

0

fu(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))u (t) d�:

(2.7)

"�1 [�(t; x�(t) + " (x̂"(t) + x"1(t)) ; u
�(t) + "u(t))� �(t)]

=

Z 1

0

�x(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t)) (x̂"(t) + x"1(t)) d�

+

Z 1

0

�u(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))u (t) d�;

(2.8)

and

"�1 [c(t; x�(t) + " (x̂"(t) + x"1(t)) ; u
�(t) + "u(t); �)� c(t; �)]

=

Z 1

0

cx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t)); �) (x̂"(t) + x"1(t)) d�

+

Z 1

0

cu(t; x
�(t) + " (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t)); �)u (t) d�:

(2.9)
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We replace (2.7), (2.8) and (2.9) in (2.6), it becomes

dx̂"(t) =

Z 1

0

fx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))x̂"(t)d�dt

+

Z 1

0

�x(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))x̂"(t)d�dW (t)

+

Z 1

0

cx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t); �)x̂"(t)d�N (d�; dt)

+

Z 1

0

[fx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))� fx(t)]x
"
1(t)d�dt

+

Z 1

0

[fu(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))� fu(t)]u(t)d�dt

+

Z 1

0

[�x(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))� �x(t)]x
"
1(t)d�dW (t)

+

Z 1

0

[�u(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))� �u(t)]u(t)d�dW (t)

+

Z 1

0

[cx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t); �)� cx(t; �)]x
"
1(t)d�N (d�; dt)

+

Z 1

0

[cu(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t); �)� cu(t; �)]u(t)d�N (d�; dt) :

So, we obtain8>>>>><>>>>>:
dx̂"(t) = [A"(t)x̂"(t) +G1"(t)] dt+ [B"(t)x̂"(t) +G2"(t)] dW (t)

+

Z
�

[C"(t�; �)x̂"(t�) +G3"(t�; �)]N (d�; dt) ;

x̂"(0) = 0;

where

A"(t)
:
=

Z 1

0

[fx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t))] d�;

G1"(t)
:
= [A"(t)� fx(t)]x

"
1(t) +

Z 1

0

[fu(t; x
�(t) + �" (x̂"(t) + x"1(t)) ;

u�(t) + �"u(t))� fu(t)]u (t) d�;

B"(t)
:
=

Z 1

0

[�x(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t)]d�;
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G2"(t)
:
= [B"(t)� �x(t)]x

"
1(t) +

Z 1

0

[�u(t; x
�(t) + �" (x̂"(t) + x"1(t)) ;

u�(t) + �"u(t))� �u(t)]u (t) d�;

C"(t; �)
:
=

Z 1

0

cx[(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; u

�(t) + �"u(t); �)]d�;

G3"(t; �)
:
= [C"(t; �)� cx(t; �)]x

"
1(t) +

Z 1

0

[cu(t; x
�(t) + �" (x̂"(t) + x"1(t)) ;

u�(t) + �"u(t); �)� cu(t; �)]u (t) d�:

Applying Itô�s formula to jx̂"(t)j2, noting that assumption (H2.1), we have

E jx̂"(t)j2 = E

Z T

0

[h2x̂"(t); A"(s)x̂"(t) +G1"(t)i] dt+ E

Z T

0

jB"(t)x̂"(s) +G2"(t)j2]dt

+

Z T

0

Z
�

jC"(t; �)x̂"(t) +G3"(t; �)j2 �(d�)dt

� CE

Z T

0

jx̂"(t)j2 dt+ o(�):

Then we can to get the �rst convergence result of (2.5) from Gronwall�s inequality.

Afterwards, we will prove the last three results, �rst we have:8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

�dy"(t) =

Z
�

g(t; x"(t); y"(t); z"(t); r"(t; �); u"(t))� (d�) dt� z"(t)dW (t)

�
Z
�

r"(t; �)N (d�; dt) ;

�dy�(t) =

Z
�

g(t; x�(t); y�(t); z�(t); r�(t; �); u(t))� (d�) dt� z�(t)dW (t)

�
Z
�

r�(t; �)N (d�; dt) ;

�dy"1(t) =

Z
�

[gx(t; �)x
"
1(t) + gy(t; �)y

"
1(t) + gz(t; �)z

"
1(t) + gr(t; �)r

"
1(t; �)

+gu(t; �)u(t)]� (d�) dt� z"1(t)dW (t)�
Z
�

r"1(t; �)N (d�; dt) :

So we can de�ne ŷ"(t) as

ŷ"(t) = "�1 (y"(t)� y�(t))� y"1(t);
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and from Itô�s formula, we get

�dŷ"(t) = "�1
Z
�

[g(t; x"(t); y"(t); z"(t); r"(t; �); u"(t))� g(t; �)]� (d�) dt

�"�1 [z"(t)� z�(t)] dW (t)� "�1
Z
�

[r"(t; �)� r�(t; �)]N (d�; dt)

�
Z
�

[gx(t; �)x
"
1(t) + gy(t; �)y

"
1(t) + gz(t; �)z

"
1(t) + gr(t; �)r

"
1(t; �)

+gu(t; �)u(t)]� (d�) dt+ z"1(t)dW (t) +

Z
�

r"1(t; �)N (d�; dt) :

Using the fact that

x"(t) = x�(t) + " (x̂"(t) + x"1(t)) ;

y"(t) = y�(t) + " (ŷ"(t) + y"1(t)) ;

z"(t) = z�(t) + " (ẑ"(t) + z"1(t))

r"(t; �) = r�(t; �) + " (r̂"(t; �) + r"1(t; �))

u"(t) = u�(t) + "u(t);

we get

�dŷ"(t) = "�1
Z
�

[g(t; x�(t) + " (x̂"(t) + x"1(t)) ; y
�(t) + " (ŷ"(t) + y"1(t)) ;

z�(t) + " (ẑ"(t) + z"1(t)) ; r
�(t; �) + " (r̂"(t; �) + r"1(t; �)) ; u

�(t) + "u(t))

�g(t; �)]� (d�) dt� "�1 [z"(t)� z�(t)] dW (t)� "�1
Z
�

[r"(t; �)� r�(t; �)]N (d�; dt)

�
Z
�

[gx(t; �)x
"
1(t) + gy(t; �)y

"
1(t) + gz(t; �)z

"
1(t) + gr(t; �)r

"
1(t; �)

+gu(t; �)u(t)]� (d�) dt+ z"1(t)dW (t) +

Z
�

r"1(t; �)N (d�; dt) :

(2.10)
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By Taylor�s expansion with a simple computation, we show that

"�1[g(t; x�(t) + " (x̂"(t) + x"1(t)) ; y
�(t) + " (ŷ"(t) + y"1(t)) ; z

�(t) + " (ẑ"(t) + z"1(t)) ;

r�(t; �) + " (r̂"(t; �) + r"1(t; �)) ; u
�(t) + "u(t))� g(t; �)]

=

Z 1

0

[gx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ; z
�(t) + �" (ẑ"(t) + z"1(t)) ;

r�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u
�(t) + �"u(t)) (x̂"(t) + x"1(t)) d�

+

Z 1

0

gy(t; x
�(t) + " (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ; z
�(t) + �" (ẑ"(t) + z"1(t)) ;

r�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u
�(t) + �"u(t)) (ŷ"(t) + y"1(t)) d�

+

Z 1

0

gz(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ; z
�(t) + �" (ẑ"(t) + z"1(t)) ;

r�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u
�(t) + �"u(t)) (ẑ"(t) + z"1(t)) d�

+

Z 1

0

gr(t; x
�(t) + �" (~x"(t) + x"1(t)) ; y

�(t) + �" (~y"(t) + y"1(t)) ; z
�(t) + �" (~z"(t) + z"1(t)) ;

r�(t; �) + �" (~r"(t; �) + r"1(t; �)) ; u
�(t) + �"u(t)) (~r"(t) + r"1(t)) d�

+

Z 1

0

gu(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ; z
�(t) + �" (ẑ"(t) + z"1(t)) ;

r�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u
�(t) + �"u(t))u(t)d�:

(2.11)

by substituting (2.11) in (2.10), we obtain8>>>>>><>>>>>>:

�dŷ"(t) =

Z
�

[D"(t; �)x̂"(t) + I"(t; �)ŷ"(t) + F "(t; �)ẑ"(t) + �"(t; �)r̂"(t; �)

+G4"(t; �)]�(d�)dt� ẑ"(t)dW (t)�
Z
�

r̂"(t; �)N (d�; dt) ;

ŷ"(T ) = "�1 [(h (x"(T ))� h(x�(T ))]� hx (x
�(T ))x"1(T );

where

D"(t; �)
:
=

Z 1

0

[gx(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ; z
�(t)

+ �" (ẑ"(t) + z"1(t)) ; r
�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u

�(t) + �"u(t))d�:
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I"(t; �)
:
=

Z 1

0

gy(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ; z
�(t)

+ �" (ẑ"(t) + z"1(t)) ; r
�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u

�(t) + �"u(t))d�:

F "(t; �)
:
=

Z 1

0

gz(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ; z
�(t)

+ �" (ẑ"(t) + z"1(t)) ; r
�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u

�(t) + �"u(t))d�;

�"(t; �)
:
=

Z 1

0

gr(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ; z
�(t)

+ �" (ẑ"(t) + z"1(t)) ; r
�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u

�(t) + �"u(t))d�:

G4"(t; �)
:
= [D"(t; �)� gx(t; �)]x

"
1(t) + [I

"(t; �)� gy(t; �)] y
"
1(t)

+ [F "1 (t; �)� gz(t; �)] z
"
1(t) + [�

"(t; �)� gr(t; �)] r
"
1(t; �)

+

Z 1

0

[gu(t; x
�(t) + �" (x̂"(t) + x"1(t)) ; y

�(t) + �" (ŷ"(t) + y"1(t)) ;

z�(t) + �" (ẑ"(t) + z"1(t)) ; r
�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ; u

�(t)

+ �"u(t))� gu(t; �)]u(t)d�:

Applying Itô�s formula jŷ"(t)j2, noting assumption (H2.1), we have

E
�
jŷ"(t)j2

�
+ E

Z T

t

jẑ"(s)j2 ds+ E

Z T

t

Z
�

jr̂"(s; �)j2 �(d�)ds

= E

Z T

t

Z
�

h2ŷ"(s); D"(s; �)x̂"(s) + I"(s; �)ŷ"(s) + F "(s; �)ẑ"(s)

+�"(s; �)r̂"(s; �) +G4"(s; �)i�(d�)ds

+E ["�1 [(h (x"(T ))� h(x�(T ))]� hx (x
�(T ))x"1(T )]

2

� CE

Z T

t

jŷ"(s)j2 ds+ 1
2
E
Z T

t

jẑ"(s)j2 ds+ 1
2
E
Z T

t

Z
�

jr̂"(s; �)j2 �(d�)ds+ o(�):

By Gronwall�s inequality again, we can get the last three convergence results of (2.5).

Variational inequality
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Since u� (�) is an optimal control, then

"�1 [J (u" (�))� J (u� (�))] � 0: (2.12)

From this and Lemma (2.3.1), we have the following.

Lemma 2.3.2 Let assumption (H2.1) hold. Then the following Variational inequality

holds:

o(�) � E

Z T

0

Z
�

[lx(t; �)x
"
1(t) + ly(t; �)y

"
1(t) + lz(t; �)z

"
1(t) + lr(t; �)r

"
1(t; �)

+lu(t; �)u(t)� (d�)]dt+ E [�x(x
�(T ))x"1(T )] + E ['y(y

�(0))y"1(0)] :

(2.13)

Proof From (2.12), we have

"�1 [J (u" (�))� J (u� (�))]

= "�1E

Z T

0

Z
�

l(t; x"(t); y"(t); z"(t); r"(t; �); u"(t))

�l(t; x�(t); y�(t); z�(t); r�(t; �); u�(t))]� (d�) dt

+"�1E [�(x"(T ))� �(x�(T ))] + "�1E ['(y"(0))� '(y�(0))] � 0:

By applying Taylor�s expansion and the �rst result of (2.5) respectively, we get

"�1E [�(x"(T ))� �(x�(T ))] = "�1E

Z 1

0

�x(x
�(T ) + � (x"(T )� x�(T ))) (x"(T )� x�(T )) d�

�! E [�x(x
�(T )x"1(T )] :

Similarly, we have

"�1E ['(y"(0))� '(y�(0))] = "�1E

Z 1

0

'y(y
�(0) + � (y"(0)� y�(0))) (y"(0)� y�(0)) d�

�! E ['y(y
�(0)y"1(0)] ;
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and

"�1E

Z T

0

Z
�

[l(t; x"(t); y"(t); z"(t); r"(t; �); u"(t))

�l(t; x�(t); y�(t); z�(t); r�(t; �); u�(t))]� (d�) dt

�! E

Z T

0

Z
�

[lx(t; �)x
"
1(t) + ly(t; �)y

"
1(t) + lz(t; �)z

"
1(t)

+lr(t; �)r
"
1(t; �) + lu(t; �)u(t)]� (d�) dt:

Thus (2.13) follows.

2.3.2 Adjoint equations and adjoint processes

We introduce the following adjoint equations:8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�d	(t) = [f|x (t)	(t)�
Z
�

g|x(t; �)K(t)�(d�) + �|x(t)Q(t)

+

Z
�

(c|x(t; �)R(t; �) + l|x(t; �))�(d�)]dt

�Q(t)dW (t)�
Z
�

R(t; �)N(d�; dt);

	(T ) = �h|x(x�(T ))K(T ) + �x(x
�(T ));

dK(t) =

Z
�

�
g|y (t; �)K(t)� l|y(t; �)

�
�(d�)dt

+

Z
�

[g|z (t; �)K
�(t)� l|z (t; �)]�(d�)dW (t)

+

Z
�

[g|r (t�; �)K�(t�)� l|r (t�; �)]N(d�; dt);

K(0) = �'y(y�(0)):

(2.14)

The same as (2.3), under assumption (H2.1), there exists a unique quartet

(	(t); Q(t); K(t); R(t; �)) 2 L2F ([0; T ] ;Rn)�L2F
�
[0; T ] ;Rn�d

�
�L2F ([0; T ] ;Rm)�M2

F ([0; T ] ;Rn)

satisfying (2.14).

We de�ne the Hamiltonian function

H : [0; T ]� Rn � Rm � Rm�d � Rm � U � Rn � Rn�d � Rm � Rn �! R;
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as follows:

H(t; x; y; z; r(�); u;	; Q;K;R (�))
:
= h	; f(t; x; u)i+ hQ; �(t; x; u)i �

Z
�

[hK; g(t; x; y; z; r(�); u)i

�l(t; x; y; z; r(�); u)� hR(�); c(t; x; u; �)i]�(d�):

(2.15)

Denote H(t) = H(t; x�(t); y�(t); z�(t); r�(t; �); u�(t);	(t); Q(t); K(t); R(t; �)) and its deriv-
atives, then adjoint equations (2.14) can be rewritten as the following stochastic Hamil-

tonian system�s type:

8>>>>>>>>><>>>>>>>>>:

�d	(t) = Hx(t)dt�Q(t)dW (t)�
Z
�

R(t; �)N(d�; dt);

	(T ) = �h|x(x�(T ))K(T ) + �x(x
�(T ));

dK(t) = �Hy(t)dt�Hz(t)dW (t)�
Z
�

Hr(t�; �)N(d�; dt);

K(0) = �'y(y�(0)):

(2.16)

The main result in this chapter is the following.

2.3.3 Necessary conditions of optimality

In this part, our objective is to derive optimality necessary conditions satis�ed by

some optimal control, known as the stochastic maximum which is given by the following

theorem.

Theorem 2.3.1 (Stochastic maximum principle) Assume (H2.1) hold. Let u� (�) be
an optimal control for our stochastic optimal control problem, and

(x� (�) ; y� (�) ; z� (�) ; r� (�; �)) be the corresponding optimal trajectory. Then we have

hHu(t); u� u�(t)i � 0; 8u 2 U; a:e:t 2 [0; T ] ;P� a:s: (2.17)
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Proof Applying Itô�s formula to h	(t); x"1(t)i, we obtain

E [h	(T ); x"1(T )i] = E

Z T

0

h	(t); dx"1(t)i+ E

Z T

0

hx"1(t); d	(t)i

+E

Z T

0

hQ(t); �x(t)x"1(t) + �u(t)u(t)i dt

+E

Z T

0

Z
�

hR(t; �); cx(t)x"1(t�) + cu(t; �)u(t)i�(d�)dt:

(2.18)

A simple computation shows that

E

Z T

0

h	(t); dx"1(t)i = E

Z T

0

h	(t); fx(t)x"1(t) + fu(t)u(t)i dt; (2.19)

and

E

Z T

0

hx"1(t); d	(t)i = �E
Z T

0

[

�
x"1(t); f

|
x (t)	(t)�

Z
�

g|x(t; �)K(t)�(d�) + �|x(t)Q(t)

+

Z
�

(c|x(t; �)R(t; �) + l|x(t; �))�(d�)

�
]dt:

(2.20)

We replace (2.19), (2.20) in (2.18) and using the fact that

	(T ) = �h|x(x�(T ))K(T ) + �x(x
�(T ));

we get

E [h�h|x(x�(T ))K(T ) + �x(x
�(T ))]; x"1(T )i]

= E

Z T

0

Z
�

hx"1(t); g|x(t; �)K(t)� l|x(t; �))i�(d�)dt

+E

Z T

0

h	(t); fu(t)u(t)i dt+ E

Z T

0

hQ(t); �u(t)u(t)i dt

+E

Z T

0

Z
�

hR(t; �); cu(t; �)u(t)i�(d�)dt:

(2.21)
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Applying Ito�s formula also to hK(t); y"1(t)i ; we obtain

E [hK(T ); y"1(T )i]� E [hK(0); y"1(0)i]

= E

Z T

0

hK(t); dy"1(t)i+ E

Z T

0

hy"1(t); dK(t)i

+E

Z T

0

Z
�

hz"1(t); g|z (t; �)K(t)� l|z (t; �)i� (d�) dt

+E

Z T

0

Z
�

hr"1(t; �); g|r (t�; �)K(t�)� l|r (t�; �)i�(d�)dt;

(2.22)

where

E

Z T

0

hK(t); dy"1(t)i = �E
Z T

0

Z
�

hK(t); gx(t; �)x"1(t) + gy(t; �)y
"
1(t) + gz(t; �)z

"
1(t)

+gr(t; �)r
"
1(t; �) + gu(t; �)u(t)i� (d�) dt

(2.23)

and

E

Z T

0

hy"1(t); dK(t)i = E

Z T

0

Z
�



y"1(t); g

|
y (t; �)K(t)� l|y(t; �)

�
�(d�)dt: (2.24)

We replace (2.23), (2.24) in (2.22) and use the fact that K(0) = �'y(y�(0)),
y"1(T ) = hx(x

�(T ))x"1(T ); we get

E [hK(T ); hx(x�(T ))x"1(T )i] + E [h'y(y�(0)); y"1(0)i]

= �E
Z T

0

Z
�



y"1(t); l

|
y(t; �)

�
�(d�)dt

�E
Z T

0

Z
�

hK(t); gx(t; �)x"1(t) + gu(t; �)u(t)i� (d�) dt

�E
Z T

0

Z
�

hz"1(t); l|z (t; �)i�(d�)dt

�E
Z T

0

Z
�

hr"1(t; �); l|r (t�; �)i�(d�)dt:

(2.25)
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Combining (2.21) and (2.25), we get

E [�x(x
�(T )x"1(T )] + E ['y(y

�(0)y"1(0)]

= �E
Z T

0

Z
�

[lx(t; �)x
"
1(t) + ly(t; �)y

"
1(t) + lz(t; �)z

"
1(t) + lr(t; �)r

"
1(t; �)

+lu(t; �)u(t)]� (d�) dt+ E

Z T

0

hHu(t); u(t)i dt:

This together with the variational inequality (2.13) implies, for u(�) 2 U ([0; T ]) ;

E

Z T

0

hHu(t); u(t)i dt � 0:

So (2.17) holds.

2.4 Su¢ cient conditions for optimal control of FBS-

DEJs

In this section, we give su¢ cient conditions of optimality with the same notations used

in the previous section. Therefore, we add some hypothesis:

Assumptions (H2.2)

i) � is convex in x;

ii) ' is convex in y;

iii) H is convex in (x; y; z; r (�) ; u) :

Then we have the following result.

Theorem 2.4.1 (Su¢ sient Conditions of Optimality) Assume (H2.1) and (H2.2)

holds. Let u�(�) be an admissible control and (x� (�) ; y� (�) ; z� (�) ; r� (�; �)) be the correspond-
ing trajectory with y�(T ) = MTx

�(T ); MT 2 Rm�n: Let (	 (�) ; Q (�) ; K (�) ; R (�; �)) be the
solution of the adjoint equations (2.14). Then u�(�) is an optimal control if it satis�es
(2.17).
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Proof Let u(�) be an arbitrary admissible control and (x (�) ; y (�) ; z (�) ; r (�; �)) be the
corresponding trajectory. We consider

J(u�(�))� J(u(�)) = E

Z T

0

Z
�

[l(t; x�(t); y�(t); z�(t); r�(t; �); u�(t))

�l(t; x(t); y(t); z(t); r(t; �); u(t))]� (d�) dt

+E [�(x�(T )� � (x(T ))] + E ['(y�(0)� ' (y(0))] :

(2.26)

We �rst note that, by the convexity of � and Itô�s formula to (x�(t)� x(t))|	(t), we get

E [�(x�(T )� � (x(T ))]

� E [(x�(T )� x(T ))| �x(x
�(T ))]

= E [(x�(T )� x(T ))|	(T )] + E [(x�(T )� x(T ))|M|
TK(T )]

= E

Z T

0

[(x�(t)� x(t))| (�f|x (t)	(t) +
Z
�

g|x(t; �)K(t)�(d�)� �|x(t)Q(t)

�
Z
�

(c|x(t; �)R(t; �)� l|x(t; �))�(d�)) + h	(t); f(t)� f(t; x(t); u(t))i

hQ(t); �(t)� �(t; x(t); u(t))i+
Z
�

hR(t; �); c(t; �)� c(t; x(t); u(t); �)i�(d�)]dt

+E [(x�(T )� x(T ))|M|
TK(T )] :

And similarly, by the convexity of ' and Itô�s formula to (y�(t)� y(t))|K(t), it becomes

E ['(y�(0)� ' (y(0))]

� E [(y�(0)� y(0))| 'y (y(0))]

= �E [(y�(0)� y(0))|K(0)]

= �E [(x�(T )� x(T ))|M|
TK(T )]

+E

Z T

0

Z
�

[(y�(t)� y(t))|
�
g|y (t; �)K(t)� l|y(t; �)

�
+ [(z�(t)� z(t))| (g|z (t; �)K(t)� l|z (t; �))]

+ [(r�(t; �)� r(t; �))| (g|r (t; �)K(t)� l|r (t; �))]

�hK(t); g(t; �)� g(t; x(t); y(t); z(t); r(t; �); u(t))i]�(d�)dt:
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By the de�nition (2.15) of H, we have

E

Z T

0

Z
�

[l(t; x�(t); y�(t); z�(t); r�(t; �); u�(t))� l(t; x(t); y(t); z(t); r(t; �); u(t))]�(d�)dt

= E

Z T

0

[H(t)�H(t; x(t); y(t); z(t); r(t; �); u(t);	(t); Q(t); K(t); R(t; �))]dt

+E

Z T

0

Z
�

[�h	(t); f(t)� f(t; x(t); u(t))i � hQ(t); �(t)� �(t; x(t); u(t))i

+ hK(t); g(t; �)� g(t; x(t); y(t); z(t); r(t; �); u(t))i

� hR(t; �); c(t; �)� c(t; x(t); u(t); �)i�(d�)]dt:

Adding the above (in)equalities up, from (2.26), we can get

J(u�(�))� J(u(�))

� E

Z T

0

[H(t)�H(t; x(t); y(t); z(t); r(t; �); u(t);	(t); Q(t); K(t); R(t; �))

�hHx(t); x
�(t)� x(t)i � hHy(t); y

�(t)� y(t)i � hHz(t); z
�(t)� z(t)i

� hHr(t); r
�(t; �)� r(t; �)i]dt;

(2.27)

Since H is convex in (x; y; z; r (�) ; u) :

H(t)�H(t; x(t); y(t); z(t); r(t; �); u(t);	(t); K(t); Q(t); R(t; �))

� hHx(t); x
�(t)� x(t)i+ hHy(t); y

�(t)� y(t)i+ hHz(t); z
�(t)� z(t)i

+ hHr(t); r
�(t; �)� r(t; �)i+ hHu(t); u

�(t)� u(t)i :

(2.28)

Combing (2.27) and (2.28), we get

J(u�(�))� J(u(�)) � E

Z T

0

hHu(t); u
�(t)� u(t)i dt: (2.29)

Then from the maximum condition (2.17), we deduce that J(u�(�)) � J(u(�)) for all
u(�) 2 U , which proves that u�(�) is optimal.
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2.5 Applications to �nance

In this section, we will apply the maximum principle (2.3.1) to study a mean-variance

portfolio selection mixed with a recursive utility functional optimization problem.

Suppose we have two kinds of securities in the market for possible investment choice:

1. A risk-free security (Bond price), where the price P0(t) at time t is given by

dP0(t) = � (t)P0(t)dt; P0(0) > 0; (2.30)

here � (t) is a bounded deterministic function;

2. A risk security (Stock price), where the price P1(t) at time t is given by

dP1(t) = P1(t�)
�
� (t) dt+ � (t) dW (t) +

Z
�

�(t; �)N(d�; dt)

�
; P1(0) > 0;

(2.31)

here � (t) ; � (t) 6= 0; are bounded deterministic functions and � (t) > � (t) : To ensure

that P1(t) > 0 for all t, we assume that �(t; �) > �1, 8� 2 � and in addition we

assume that
Z
�

�2(t)� (d�) is abounded function.

Let u(t) :
= e1(t)P1(t) denote the amount invested in the risky security which we call

portfolio strategy. Let be x(0) = x0 � 0 the initial wealth. By combining (2.30) and

(2.31), we introduce the wealth process x(�) and the recursive utility process y(�) as the
solution of the following FBSDEJs:

8>>>>>><>>>>>>:

dx(t) = [� (t)x(t) + (�(t)� � (t))u(t)] dt+ �(t)u(t)dW (t) +

Z
�

�(t; �)u(t�)N(d�; dt);

�dy(t) = [� (t)x(t) + (�(t)� � (t))u(t)� �y(t)] dt� z(t)dW (t)�
Z
�

r(t; �)N(d�; dt);

x(0) = x0; y(T ) = x(T ):

(2.32)

We denote by U ([0; T ]) the set of admissible portfolios valued in U = R:
The cost functional, to be minimized, is given by

J(u(�)) :
= E[

1

2
(x(T )� a)2]� y(0); (2.33)
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where some a 2 R is given.
The optimization problem can be written as

J(u�(�)) = inf
u(�)2U([0;T ])

J(u(�)): (2.34)

In this case the adjoint equations (2.14) reduce to8>>>>><>>>>>:
�d	(t) = �(t) [	(t)�K(t)] dt�Q(t)dW (t)�

Z
�

R(t; �)N(d�; dt);

dK(t) = ��K(t)dt;

	(T ) = x(T )� a�K(T ); K(0) = 1:

(2.35)

Let u�(�) be an optimal portfolio strategy and x�(�); y�(�) be the corresponding wealth
process, recursive utility process, respectively, with corresponding solution

(	�(�); Q�(�); K�(�); R�(�; �)) of the adjoint equations (2.35).
Hamiltonian function (2.15) reduce to

H(t; x�(t); y�(t); z�(t); r�(t; �); u;	�(t); Q�(t); K�(t); R�(t; �))

= � [�(t)x�(t) + (�(t)� �(t))u] [K�(t)�	�(t)] dt+ �(t)Q�(t)u

+�K�(t)y�(t) +

Z
�

�(t; �)R� (t; �)u�(d�):

(2.36)

Since this is a linear expression of u, by the maximum condition ((2.17), Theorem (2.3.1)),

we have

� (�(t)� �(t)) [K�(t)�	�(t)] dt+ �(t)K�(t) +

Z
�

�(t; �)R� (t; �)�(d�) = 0: (2.37)

In order to �nd the expression of u�(t), we conjecture a process 	�(t) with form

	�(t) = A(t)x�(t) +B(t); (2.38)

where A(t); B(t) are deterministic di¤erentiable functions.
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Applying Itô�s formula to (2.38), in virtue of (2.32), we can get

d	�(t) = A(t) f[�(t)x�(t) + (�(t)� �(t))u�(t)] dt+ �(t)u�(t)dW (t)

+

Z
�

�(t; �)u� (t�)N(d�; dt)
�
+ x�(t)A0(t)dt+B0(t)dt;

= [A(t)�(t)x�(t) + A(t) (�(t)� �(t))u�(t) + x�(t)A0(t) +B0(t)] dt

+A(t)�(t)u�(t)dW (t) +

Z
�

A(t)�(t; �)u� (t�)N(d�; dt);

(2.39)

where A0(t) and B0(t) denote the derivatives with respect to t.

Comparing (2.39) with the BSDEJ the (2.35), we get (noting that K�(t) = e��t)

A(t)�(t)x�(t) + A(t) (�(t)� �(t))u�(t) + x�(t)A0(t) +B0(t)

= ��(t) (A(t)x�(t) +B(t)) + �(t)e��t;
(2.40)

Q�(t) = A(t)�(t)u�(t); (2.41)

R�(t; �) = A(t)�(t; �)u� (t) : (2.42)

Substituting (2.41), (2.42) in (2.37) and denoting

�(t)
:
= �2(t) +

Z
�

�2(t; �)�(d�); (2.43)

we can get

u�(t) =
(�(t)� �(t))

�
A(t)x�(t) +B(t)� e��t

�
A(t)�(t)

: (2.44)

On the other hand, (2.40) gives

u�(t) =
(2A(t)�(t) + A0(t))x�(t) + �(t)B(t) +B0(t)� �(t)e��t

A(t) (�(t)� �(t))
: (2.45)

Combining (2.44) and (2.45) (noting the terminal condition in (2.35)), we get8><>: A0(t) =

�
(�(t)� �(t))2

�(t)
� 2�(t)

�
A(t);

A(T ) = 1;

46



Chapter 2. Maximum principle for FBSDE with jumps and application to �nance

and 8><>: B0(t) =

�
(�(t)� �(t))2

�(t)
� �(t)

�
B(t)� e��t

�
(�(t)� �(t))2

�(t)
� �(t)

�
;

B(T ) = �a� 1:

The solutions of these equations are8>>>>>><>>>>>>:

A(t) = exp

�
�
Z T

t

[ (�(s)��(s))
2

�(s)
� 2�(s)]ds

�
;

B(t) = exp

�
�
Z T

t

[ (�(s)��(s))
2

�s
� �(s)]ds

�
�Z T

t

e��s
h
(�(s)��(s))2

�(s)
� �(s)

i
exp

�Z T

s

[ (�(r)��(r))
2

�(r)
� �(r)]dr

�
ds� a� e��T

�
:

(2.46)

With this choice of A(t) and B(t) the process

	�(t) = A(t)x�(t) +B(t); K�(t) = e��t; Q�(t) = A(t)�(t)u�(t); R�(t; �) = A(t)�(t; �)u� (t) ;

satisfying the adjoint equation (2.35) with u�(t) given by (2.44). Moreover, with this

choice of u�(t), the maximum condition (2.17) of Theorem (2.3.1)) holds.

Finally, we give the explicit optimal portfolio section strategy in the state feedback form.

Theorem 2.5.1 The optimal solution u�(t) of our mean-variance portfolio selection mixed

with a recursive utility optimization problem (2.34), when the wealth dynamics obeys

(2.32), is given in the state feedback form by

u�(t; x�) =
(�(t)� �(t))

�
A(t)x�(t) +B(t)� �(t)e��t

�
A(t)�(t)

:

where �(t), A(t) and B(t) are given by (2.43) and (2.46) respectively.
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Chapter 3

Mean-�eld maximum principle for optimal
control of forward-backward stochastic
control system with jumps and its

application to mean-variance portfolio
problem
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Chapter 3

Mean-�eld maximum principle for

optimal control of forward-backward

stochastic systems with jumps and

its application to mean-variance

portfolio problem

3.1 Introduction

In this chapter, by means of convex variation methods and duality techniques, we will

give the necessary conditions of optimality satis�ed by an optimal control in the form of

maximum principle. This maximum principle di¤ers from the classical one, where the

adjoint equation is a linear forward-backward stochastic di¤erential equation with Poisson

jump processes, since here the adjoint equation turns out to be a linear mean-�eld forward-

backward stochastic di¤erential equation with Poisson jump processes.

We consider stochastic optimal control for systems governed by nonlinear mean-�eld con-

trolled forward-backward stochastic di¤erential equation with Poisson jump processes (FB-
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SDEJs) of the form8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dx(t) = f(t; x(t); E(x(t)); u(t))dt+ �(t; x(t); E(x(t)); u(t))dW (t)

+

Z
�

c(t; x(t�); E(x(t�)); u(t); �)N (d�; dt) ;

dy(t) = �
Z
�

g(t; x(t); E(x(t)); y(t); E(y(t)); z(t); E(z(t)); r(t; �); u(t))� (d�) dt

+z(t)dW (t) +

Z
�

r(t; �)N (d�; dt) ;

x(0) = �; y(T ) = h(x(T ); E(x(T )));

(3.1)

where f; �; c; g et h are given maps and the initial condition � is an F0�measurable random
variable. The mean-�eld FBSDEJs-(3.1) called McKean-Vlasov systems are obtained as

the mean square limit of an interacting particle system of the form8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

dxjn(t) = f(t; xjn(t);
1

n

nP
i=1

xin(t); u(t))dt

+�(t; xjn(t);
1

n

nP
i=1

xin(t); u(t))dW
j(t)

+

Z
�

c(t; xjn(t�);
1

n

nP
i=1

xin(t�); u(t); �)N j (d�; dt) ;

dyjn(t) = �
Z
�

g(t; xjn(t);
1

n

nP
i=1

xin(t); y
j
n(t);

1

n

nP
i=1

yin(t); z
j
n(t);

1

n

nP
i=1

zin(t); r(t; �); u(t))� (d�) dt

+zjn(t)dW
j(t) +

Z
�

r(t; �)N j (d�; dt) ;

where (W j (�) ; j � 1) is a collection of independent Brownian motions and (N j (�; �) ; j � 1)
is a collection of independent Poisson martingale measure. Noting that mean-�eld FBS-

DEJs (3.1) occur naturally in the probabilistic analysis of �nancial optimization problems

and the optimal control of dynamics of the McKean-Vlasov type. Moreover, the above

mathematical mean-�eld approaches play an important role in di¤erent �elds of economics,

�nance, physics, chemistry, and game theory.
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The expected cost to be minimized over the class of admissible control has the form

J(u (�)) = E[

Z T

0

Z
�

l(t; x(t); E(x(t)); y(t); E(y(t)); z(t); E(z(t));

r(t; �); u(t))� (d�) dt+ �(x(T ); E(x(T ))) + ' (y(0); E(y(0)))];

(3.2)

where l; � and ' is an appropriate functions. This cost functional is also of mean-�eld

type, as the functions l; � and ' depend on the marginal law of the state process through

its expected value. It is worth mentioning that since the cost functional J is possibly a

nonlinear function of the expected value stands in contrast to the standard formulation

of a control problem. This leads to the so-called time-inconsistent control problem where

the Bellman dynamic programming does not hold. The reason for this is that one cannot

apply the law of iterated expectations on the cost functional.

An admissible control u(�) is an fFtgt2[0;T ]�adapted and square-integrable process with
values in a nonempty convex subsetA of R. We denote by U ([0; T ]) the set of all admissible
controls.

Any admissible control u� (�) 2 U ([0; T ]) satisfying

J(u� (�)) = inf
u(�)2U([0;T ])

J(u (�)); (3.3)

is called an optimal control.

This chapter is organized as follows. In the second section, we formulate the mean-�eld

stochastic control problem and describe the assumptions of the model. The third section

is devoted to prove our mean-�eld stochastic maximum principle. As an illustration, using

these results, a mean-variance portfolio selection mixed problem with recursive utility is

discussed in the fourth section.

3.2 Problem Statement and Preliminaries

We consider stochastic optimal control problem of mean-�eld type of the following

kind. Let T > 0 be a �xed time horizon and
�

;F ; fFtgt2[0;T ];P

�
be a �xed �ltered

probability space equipped with a P�completed right continuous �ltration on which a
one-dimensional Brownian motion W = (W (t))t2[0;T ] is de�ned. Let � be a homogeneous

51



Chapter 3. Mean-�eld maximum principle for FBSDE with jumps and application to
�nance

fFtgt2[0;T ]� Poisson point process independent ofW . We denote by ~N (d�; dt) the random
counting measure induced by �; de�ned on �� R+, where � is a �xed nonempty subset
of R with its Borel �-�nite measure on (�;B (�)) with � (d�) <1:

We then de�ne

N (d�; dt) := ~N (d�; dt)� � (d�) ;

where N (�; �) is Poisson martingale measure on B (�)� B (R+) with local characteristics
� (d�) dt.

We assume that fFtgt2[0;T ] is P-augmentation of the natural �ltration fF
(W;N)
t gt2[0;T ] de-

�ned as follows

F (W;N)
t = � (W (s) : s 2 [0; t]) _ �

�Z s

0

Z
B

N (d�; dr) : s 2 [0; t] ; B 2 B (�)
�
_ G0;

where G0 denotes the totality of P�null sets and �1 _ �2 denotes the �-�eld generated by
�1 [ �2:
Throughout this paper, we also assume that the functions

f; � : [0; T ]� R� R�A �! R;

c : [0; T ]� R�A�� �! R;

g : [0; T ]� R� R� R� R� R� R� R�A �! R;

h : R� R �! R;

l : [0; T ]� R� R� R� R� R� R� R�A �! R;

�; ' : R� R �! R;

satisfy the following standing assumptions:

Assumptions (H1):

1. The functions f; � and c are global Lipschitz in (x; ~x; u) and g is global lipschitz in

(x; ~x; y; ~y; z; ~z; r; u).

2. The functions f; �; c; g; l; h; � and ' are continuously di¤erentiable in their variables

including (x; ~x; y; ~y; z; ~z; r; u) :

Assumptions (H2):
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1. The derivatives of f; �; g and h with respect to their variables including (x; ~x; y; ~y; z; ~z; r; u)

are bounded, andZ
�

�
jcx(t; x; ~x; u; �)j2 + jc~x(t; x; ~x; u; �)j2 + jcu(t; x; ~x; u; �)j2

�
� (d�) < +1:

2. The derivatives b� are bounded by C (1 + jxj+ j~xj+ jyj+ j~yj+ jzj+ j~zj+ jrj+ juj)
for � = (x; ~x; y; ~y; z; ~z; r; u) and b = f; �; c; g; l, Moreover, 'y; '~y are bounded by

C (1 + jyj+ j~yj) and �x; �~x are bounded by C (1 + jxj+ j~xj) :

3. For all t 2 [0; T ] ; f(t; 0; 0; 0); g(t; 0; 0; 0; 0; 0; 0; 0; 0) 2 L2F ([0; T ] ;R) ; �(t; 0; 0; 0) 2
L2F ([0; T ] ;R) and c(t; 0; 0; 0; �) 2M2

F ([0; T ] ;R) :

Under the assumptions (H1) and (H2), the FBSDEJs (3.1) has a unique solution

(x(t); y(t); z(t); r(t; �)) 2 L2F ([0; T ] ;R)� L2F ([0; T ] ;R)� L2F ([0; T ] ;R)�M2
F ([0; T ] ;R).

(See [45] Theorem 3.1, for mean-�eld BSDE with jumps).

For any u (�) 2 U ([0; T ]) with its corresponding state trajectories (x (�) ; y (�) ; z (�) ; r(�; �)) ;
we introduce the following adjoint equations:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

d	(t) = �ffx(t)	(t) + E (f~x(t)	(t)) + �x(t)Q(t) + E (�~x(t)Q(t))

+

Z
�

[�gx(t; �)K(t)� E (g~x(t; �)K(t)) + cx(t; �)R(t; �)

+E (c~x(t; �)R(t; �)) + lx(t; �) + E (l~x(t; �))]�(d�)gdt

+Q(t)dW (t) +

Z
�

R(t; �)N(d�; dt);

	(T ) = �[hx(x(T ); E(x(T ))K(T ) + E (h~x(x(T ); E (x(T )))K(T ))]

+�x(x (T ) ; E (x (T ))) + E (�~x(x (T ) ; E (x (T )))) ;

dK(t) =

Z
�

[gy(t; �)K(t) + E (g~y(t; �)K(t))� ly(t; �)� E (l~y(t; �))]�(d�)dt

+

Z
�

[gz(t; �)K(t) + E (g~z(t; �)K(t))� lz(t; �)� E (l~z(t; �))]�(d�)dW (t)

+

Z
�

[gr(t; �)K(t)� lr(t; �)]N(d�; dt);

K(0) = � ('y(y(0)) + E ('~y(y(0)))) :

(3.4)
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Note that the �rst adjoint equation (backward) corresponding to the forward component

turns out to be a linear mean-�eld backward SDE with jumps, and the second adjoint

equation (forward) corresponding to the backward component turns out to be a linear

mean-�eld (forward) SDE with jump processes.

Further, we de�ne the Hamiltonian function

H : [0; T ]� R� R� R� R� R� R� R�A�R� R� R� R �! R;

associated with the stochastic control problem (3.1)-(3.2) as follows

H (t; x; ~x; y; ~y; z; ~z; r; u;	; Q;K;R)

:= 	(t)f (t; x; ~x; u) +Q(t)� (t; x; ~x; u)

+

Z
�

[�K(t)g (t; x; ~x; y; ~y; z; ~z; r; u) +R(t; �)c (t; x; ~x; u; �)

+l (t; x; ~x; y; ~y; z; ~z; r; u)]�(d�):

(3.5)

If we denote by

H(t) := H (t; x (t) ; ~x (t) ; y (t) ; ~y (t) ; z (t) ; ~z (t) ; r (t; �) ; u (t) ;	(t) ; Q (t) ; K (t) ; R (t; �)) ;

then the adjoint equation (3.4) can be rewritten as the following stochastic Hamiltonian

system�s type8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

�d	(t) = (Hx(t) + E (H~x(t))) dt�Q(t)dW (t)�
Z
�

R(t; �)N(d�; dt);

	(T ) = �[hx(x(T ); E(x(T )))K(T ) + E (h~x(x(T ); E (x(T ))))K(T )]

+�x(x (T ) ; E (x (T ))) + E (�~x(x (T ) ; E (x (T )))) ;

�dK(t) = (Hy(t) + E (Hy(t))) dt+ (Hz(t) + E (H~z(t))) dW (t)

+

Z
�

Hr(t; �)N(d�; dt);

K(0) = � ('y(y(0)) + E ('~y(y(0)))) :

(3.6)

Thanks to Lemma 3.1 in Shen and Siu [45], under assumptions (H1), (H2), the adjoint
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equations (3.4) admit a unique solution (	 (t) ; Q (t) ; K (t) ; R (t; �)) such that

(	 (t) ; Q (t) ; K (t) ; R (t; �))
2 L2F ([0; T ] ;R)� L2F ([0; T ] ;R)� L2F ([0; T ] ;R)�M2

F ([0; T ] ;R) :

Moreover, since the derivatives of f; �; c; g; h; � and ' with respect to x; ~x; y; ~y; z; ~z; r are

bounded, we deduce from standard arguments that there exists a constant C > 0; such

that

E

"
sup
t2[0;T ]

j	(t)j2 + sup
t2[0;T ]

jK(t)j2 +
Z T

0

jQ(t)j2 dt+
Z T

0

Z
�

jR(t; �)j2 �(d�)dt
#
< C: (3.7)

3.3 Mean-�eld type necessary conditions for optimal

control of FBSDEJs

In this section, we establish a set of necessary conditions of Pontraygin�s type for a

stochastic control to be optimal where the system evolves according to nonlinear controlled

mean-�eld FBSDEJs. Convex perturbation and duality techniques are applied to prove

our mean-�eld stochastic maximum principle.

The following theorem constitutes the main contribution of this work.

Let (x� (�) ; y� (�) ; z� (�) ; r� (�; �)) be the trajectory of the mean-�eld FBSDEJ-(3.1) corre-
sponding to the optimal control u� (�) and (	� (�) ; Q� (�) ; K� (�) ; R� (�; �)) be the solution
of adjoint equation (3.4) corresponding to u� (�).

Theorem 3.3.1 (Maximum principle for mean-�eld FBSDEJs) Let Assumptions (H1)

and (H2) hold. If (u� (�) ; x� (�) ; y� (�) ; z� (�) ; r� (�; �)) is an optimal solution of the mean-
�eld control problem (3.1)-(3.2). Then the maximum principle holds, that is, 8u 2 A

Hu(t; �
�(t; �); u�;�� (t; �)) (u� u�(t)) � 0; P� a:s:; a:e:; t 2 [0; T ] ; (3.8)

where

��(t; �) = (x�(t); E (x�(t)) ; y�(t); E (y�(t)) ; z�(t); E (z�(t)) ; r�(t; �)) ;
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and

�� (t; �) = (	� (t) ; Q� (t) ; K� (t) ; R� (t; �)) :

We derive the variational inequality (3.8) in several steps, from the fact that

J(u"(�)) � J(u�(�): (3.9)

Since the control domain A is convex and for any given admissible control u (�) 2 U [0; T ]
the following perturbed control process

u"(t) = u�(t) + " (u(t)� u�(t)) ;

is also an element of U ([0; T ]) :
Let �"(t; �) = (x"(t); y"(t); z"(t); r"(t; �)) be the solution of state equation (3.1) and �" (t; �) =

(	" (t) ; Q" (t) ; K" (t) ; R" (t; �)) be the solution of the adjoint equation (3.4) corresponding

to perturbed control u" (�) :
Variational equations:

We introduce the following variational equations which have a mean-�eld type.

For simplicity of notation, we still use fx(t) =
@f

@x
(t; x� (�) ; E (x� (�)) ; u� (�)) ; etc.

Let (x"1(�); y"1(�); z"1(�); r"1(�; �)) be the solution of the following forward-backward stochastic
system described by Brownian motions and Poisson jumps of mean-�eld type8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

dx"1(t) = [fx(t)x
"
1(t) + f~x(t)E (x

"
1(t)) + fu(t)u(t)] dt

+ [�x(t)x
"
1(t) + �~x(t)E (x

"
1(t)) + �u(t)u(t)] dW (t)

+

Z
�

(cx(t; �)x
"
1(t) + c~x(t; �)E (x

"
1(t)) + cu(t; �)u(t))N(d�; dt);

x"1(0) = 0;

dy"1(t) = �
Z
�

[gx(t; �)x
"
1(t) + g~x(t; �)E (x

"
1(t)) + gy(t; �)y

"
1(t)

+g~y(t; �)E (y
"
1(t)) + gz(t; �)z

"
1(t) + g~z(t; �)E (z

"
1(t)) + gr(t; �)r

"
1(t; �)

+gu(t; �)u(t)]�(d�)dt+ z"1(t)dW (t) +

Z
�

r"1(t; �)N(d�; dt);

y"1(T ) = � [hx(T ) + E (h~x(T ))]x
"
1(T ):

(3.10)
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Duality relations:

Our �rst Lemma below deals with the duality relations between	�(t); x"1(t) andK
�(t); y"1(t):

This Lemma is very important for the proof of Theorem (3.3.1).

Lemma 3.3.1 We have

E (	�(T )x"1(T ))

= E

Z T

0

[	�(t)fu(t)u(t) +Q�(t)�u(t)u(t)

+

Z
�

R�(t; �)cu(t; �)u(t)�(d�)]dt

+E

Z T

0

Z
�

fx"1(t)gx(t; �)K�(t)

+x"1(t)E (g~x(t; �)K
�(t))� x"1(t)lx(t; �)

�x"1(t)E (l~x(t; �))g�(d�)dt;

(3.11)

similarly, we get

E (K�(T )y"1(T ))

= �Ef['y(y�(0); E (y�(0))) + E ('~y(y�(0); E (y�(0))))]y"1(0)g

�E
Z T

0

Z
�

fK�(t)gx(t; �)x
"
1(t) +K�(t)g~x(t; �)E (x

"
1(t))

+K�(t)gu(t; �)u(t) + y"1(t)ly(t; �) + y"1(t)E (l~y(t; �))

+z"1(t)lz(t; �) + z"1(t)E (l~z(t; �)) + r
"
1(t; �)lr(t; �)g�(d�)dt;

(3.12)

and

E f[�x (x� (T ) ; E (x� (T ))) + E (�~x (x� (T ) ; E (x� (T ))))]x"1(T )g

+Ef['y(y�(0); E (y�(0))) + E ('~y(y
�(0); E (y�(0))))]y"1(0)g

= �E
Z T

0

Z
�

x"1(t)lx(t; �) + x"1(t)E (l~x(t; �)) + y
"
1(t)ly(t; �) + y"1(t)E (l~y(t; �))

+z"1(t)lz(t; �) + z"1(t)E (l~z(t; �)) + r
"
1(t)lr(t; �) + lu(t; �)u(t)g�(d�)dt

+E

Z T

0

Hu(t)u(t)dt:

(3.13)
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Proof By applying integration by parts formula for jump processes to 	�(t)x"1(t); we get

E (	�(T )x"1(T )) = E

Z T

0

	�(t)dx"1(t) + E

Z T

0

x"1(t)d	
�(t)

+E

Z T

0

Q�(t) [�x(t)x
"
1(t) + �~x(t)E (x

"
1(t)) + �u(t)u(t)] dt

+E

Z T

0

Z
�

R� (t; �) [cx(t; �)x
"
1(t) + c~x(t; �)E (x

"
1(t)) + cu(t)u(t)]�(d�)dt

= I"1 + I"2 + I"3 + I"4 ;

(3.14)

A simple computation shows that

I"1 = E

Z T

0

	�(t)dx"1(t)

= E

Z T

0

	�(t) [fx(t)x
"
1(t) + f~x(t)E (x

"
1(t)) + fu(t)u(t)] dt

= E

Z T

0

f	�(t)fx(t)x"1(t) + 	�(t)f~x(t)E (x"1(t)) + 	�(t)fu(t)u(t)gdt;

(3.15)

and

I"2 = E

Z T

0

x"1(t)d	
�(t)

= �E
Z T

0

fx"1(t)fx(t)	�(t) + x"1(t)E (f~x(t)	
�(t)) + x"1(t)�x(t)Q

�(t)

+x"1(t)E (�~x(t)Q
�(t)) +

Z
�

(�x"1(t)gx(t; �)K�(t)

�x"1(t)E (g~x(t; �)K�(t)) + x"1(t)cx(t; �)R
�(t; �)

+x"1(t)E (c~x(t; �)R
�(t; �)) + x"1(t)lx(t; �) + x"1(t)E (l~x(t; �)))�(d�)gdt:

(3.16)

From (3.14), we get

I"3 = E

Z T

0

Q�(t) [�x(t)x
"
1(t) + �~x(t)E (x

"
1(t)) + �u(t)u(t)]

= E

Z T

0

Q�(t)�x(t)x
"
1(t)dt+ E

Z T

0

Q�(t)�~x(t)E (x
"
1(t)) dt+ E

Z T

0

Q�(t)�u(t)u(t)dt;
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I"4 = E

Z T

0

Z
�

R� (t; �) [cx(t; �)x
"
1(t) + c~x(t; �)E (x

"
1(t))

+cu(t)u(t)�(d�)]dt

= E

Z T

0

Z
�

R� (t; �) cx(t; �)x
"
1(t)�(d�)dt

+E

Z T

0

Z
�

R� (t; �) c~x(t; �)E (x
"
1(t))�(d�)dt

+E

Z T

0

Z
�

R� (t; �) cu(t)u(t)�(d�)dt:

(3.17)

The duality relation (3.11) follows immediately from combining (3.15)-(3.17) and (3.14).

Let us turn to second duality relation (3.12). By applying integration by parts formula

for jump process to K�(t)y"1(t); we get

E (K�(T )y"1(T )) = E (K�(0)y"1(0))

+E

Z T

0

K�(t)dy"1(t) + E

Z T

0

y"1(t)dK
�(t)

+E

Z T

0

Z
�

z"1(t)[gz(t; �)K
�(t) + E (g~z(t; �)K

�(t))

�lz(t; �)� E (l~z(t; �))]�(d�)dt

+E

Z T

0

Z
�

r"1(t; �) [gr(t; �)K
�(t)� lr(t; �)]�(d�)dt

= I"1 + I"2 + I"3 + I"4 + I"5 :

(3.18)

From (3.11), we get

I"2 = E

Z T

0

K�(t)dy"1(t)

= �E
Z T

0

Z
�

fK�(t)gx(t; �)x
"
1(t) +K�(t)g~x(t; �)E (x

"
1(t)) +K

�(t)gy(t; �)y
"
1(t)

+K�(t)g~y(t; �)E (y
"
1(t)) +K

�(t)gz(t; �)z
"
1(t) +K�(t)g~z(t; �)E (z

"
1(t))

+K�(t)gr(t; �)r
"
1(t; �) +K�(t)gu(t; �)u(t)g�(d�)dt;

(3.19)

59



Chapter 3. Mean-�eld maximum principle for FBSDE with jumps and application to
�nance

from (3.4), we obtain

I"3 = E

Z T

0

y"1(t)dK
�(t)

= E

Z T

0

Z
�

fy"1(t)gy(t; �)K�(t) + y"1(t)E (g~y(t; �)K
�(t))

�y"1(t)ly(t)� y"1(t)E (l~y(t))g�(d�)dt;

(3.20)

and

I"4 = E

Z T

0

Z
�

fz"1(t)gz(t; �)K�(t) + z"1(t)E (g~z(t; �)K
�(t))

�z"1(t)lz(t; �)� z"1(t)E (l~z(t; �))g�(d�)dt;

I"5 = E

Z T

0

Z
�

r"1(t; �) [gr(t; �)K
�(t)� lr(t; �)]�(d�)dt:

(3.21)

Since

I"1 = E (K�(0)y"1(0)) = �Ef['y(y�(0); E (y�(0))) + E ('~y(y�(0); E (y�(0))))]y"1(0)g;

the duality relation (3.12) follows immediately by combining (3.19)-(3.21) and (3.18). Let

us turn to (3.13). Combining (3.11) and (3.12) we get

E (	�(T )x"1(T )) + E (K
�(T )y"1(T ))

= �Ef['y(y�(0); E (y�(0))) + E ('~y(y
�(0); E (y�(0))))]y"1(0)g

�E
Z T

0

Z
�

fx"1(t)lx(t; �) + x"1(t)E (l~x(t; �)) + y
"
1(t)ly(t; �) + y"1(t)E (l~y(t; �))

+z"1(t)lz(t; �) + z"1(t)E (l~z(t; �)) + r
"
1(t)lr(t; �) + lu(t; �)u(t)g�(d�)dt

+E

Z T

0

Hu(t)u(t)dt:

From (3.6) and (3.10), we get

E (	�(T )x"1(T )) + E (K
�(T )y"1(T ))

= Ef[�x (x (T ) ; E (x (T ))) + E (�~x (x (T ) ; E (x (T ))))]x"1(T )g:
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Using (3.5), we obtain

E

Z T

0

f	�(t)fu(t)u(t) +Q�(t)�u(t)u(t)

+

Z
�

[�K�(t)gu(t; �)u(t) +R�(t; �)cu(t; �)u(t)

+lu(t; �)u(t)]�(d�)gdt = E

Z T

0

Hu(t)u(t)dt;

which implies that

E f[�x (x� (T ) ; E (x� (T ))) + E (�~x (x� (T ) ; E (x� (T ))))]x"1(t)g

+Ef['y(y�(0); E (y�(0))) + E ('~y(y
�(0); E (y�(0))))]y"1(0)g

= �E
Z T

0

Z
�

x"1(t)lx(t; �) + x"1(t)E (l~x(t; �)) + y
"
1(t)ly(t; �) + y"1(t)E (l~y(t; �))

+z"1(t)lz(t; �) + z"1(t)E (l~z(t; �)) + r
"
1(t)lr(t; �) + lu(t; �)u(t)g�(d�)dt

+E

Z T

0

Hu(t)u(t)dt:

This completes the proof of (3.13).

The second Lemma presents the estimates of the perturbed state process (x"1(�); y"1(�); z"1(�); r"1(�; �)) :

Lemma 3.3.2 Under assumptions (H1) and (H2), the following estimations hold

E

�
sup
0�t�T

j x"1(t) j2
�
�! 0; as " �! 0;

E

�
sup
0�t�T

j y"1(t) j2
�
+ E

Z T

0

[jz"1(s)j
2

+

Z
�

jr"1(s; �)j
2 �(d�)]ds �! 0; as " �! 0;

(3.22)

sup
0�t�T

jE (x"1(t))j
2 �! 0; as " �! 0;

sup
0�t�T

jE (y"1(t))j
2 +

Z T

t

jE (z"1(s))j
2 ds

+

Z T

0

Z
�

jE (r"1(s; �))j
2 �(d�)]ds �! 0; as " �! 0;

(3.23)
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E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
�! 0; as " �! 0;

E

�
sup
0�t�T

jy(t)� y�(t)j2
�
+ E

Z T

0

jz"(t)� z�(t)j2 dt

+E

Z T

0

Z
�

jr"(t; �)� r�(t; �)j2 �(d�)dt �! 0; as " �! 0;

(3.24)

and

E

 
sup
0�t�T

����1" [x"(t)� x�(t)]� x"1(t)

����2
!
�! 0; as " �! 0;

E

 
sup
0�t�T

����1" [y"(t)� y�(t)]� y"1(t)

����2
!
�! 0; as " �! 0;

E

Z T

0

����1" [z"(s)� z�(s)]� z"1(s)

����2 ds �! 0; as " �! 0;

+E

Z T

0

Z
�

����1" [r"(s; �)� r�(s; �)]� r"1(s; �)

����2 �(d�)ds �! 0; as " �! 0:

(3.25)

Let us also point out that the above estimates (3.22)-(3.24) can be proved using similar

arguments developed in ([[45], Lemma 4.2 and Lemma 4.3]) and ([[48], Lemma 2.1]). So

we omit their proofs.

Proof We set
x̂"(t) =

1

"
[x"(t)� x�(t)]� x"1(t);

ŷ"(t) =
1

"
[y"(t)� y�(t)]� y"1(t);

ẑ"(t) =
1

"
[z"(t)� z�(t)]� z"1(t);

r̂"(t; �) =
1

"
[r"(t; �)� r�(t; �)]� r"1(t; �);

(3.26)

and

f(t) = f(t; x�(t); E (x�(t)) ; u�(t));

�(t) = �(t; x�(t); E (x�(t)) ; u�(t));

c(t; �) = c(t; x�(t); E (x�(t)) ; u�(t); �);

g(t; �) = g(t; x�(t); E (x�(t)) ; y�(t); E (y�(t)) ; z�(t); E (z�(t)) ; r�(t; �); u�(t)):
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From (3.1) and since

x"(t) = x�(t) + " (x̂"(t) + x"1(t))

we have

dx̂"(t) =
1

"
[dx"(t)� dx�(t)]� dx"1(t)

=
1

"
[f(t; x�(t) + " (x̂"(t) + x"1(t)) ; E (x

�(t) + " (x̂"(t) + x"1(t))) ; u
"(t))� f(t)] dt

� [fx(t)x"1(t) + f~x(t)E (x
"
1(t)) + fu(t)u(t)] dt

+
1

"
[�(t; x�(t) + " (x̂"(t) + x"1(t)) ; E (x

�(t) + " (x̂"(t) + x"1(t))) ; u
"(t))

��(t)]dW (t)� [�x(t)x"1(t) + �~x(t)E (x
"
1(t)) + �u(t)u(t)] dW (t)

+
1

"

Z
�

[c(t; x�(t) + " (x̂"(t) + x"1(t)) ; E (x
�(t) + " (x̂"(t) + x"1(t))) ; u

"(t); �)

�c(t; �)]N(d�; dt)�
Z
�

[cx(t; �)x
"
1(t) + c~x(t; �)E (x

"
1(t)) + cu(t; �)u(t)]N(d�; dt):

(3.27)

We denote
x�;"(t) = x�(t) + �" (x̂"(t) + x"1(t)) ;

y�;"(t) = y�(t) + �" (ŷ"(t) + y"1(t)) ;

z�;"(t) = z�(t) + �" (ẑ"(t) + z"1(t)) ;

r�;"(t) = r�(t; �) + �" (r̂"(t; �) + r"1(t; �)) ;

u�;"(t) = u�(t) + �"u(t):

(3.28)

By Taylor�s expansion with a simple computation, we show that

x̂"(t) =
1

"
[x"(t)� x�(t)]� x"1(t)

= ~I1 (") + ~I2 (") + ~I3 (") ;

(3.29)
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where

~I1 (") =

Z t

0

Z 1

0

fx(s; x
�;"(s); E

�
x�;"(s)

�
; u�;"(s))x̂"(s)d�ds

+

Z t

0

Z 1

0

f~x(s; x
�;"(s); E

�
x�;"(s)

�
; u�;"(s))E (x̂"(s)) d�ds

+

Z t

0

Z 1

0

�
fx(s; x

�;"(s); E
�
x�;"(s)

�
; u�;"(s))� fx (s)

�
x"1(s)d�ds

+

Z t

0

Z 1

0

�
f~x(s; x

�;"(s); E
�
x�;"(s)

�
; u�;"(s))� f~x (s)

�
E (x"1(s)) d�ds

+

Z t

0

Z 1

0

�
fu(s; x

�;"(s); E
�
x�;"(s)

�
; u�;"(s))� fu (s)

�
u(s)d�ds;

(3.30)

~I2 (") =

Z t

0

Z 1

0

�x(s; x
�;"(s); E

�
x�;"(s)

�
; u�;"(s))x̂"(s)d�dW (s)

+

Z t

0

Z 1

0

�~x(s; x
�;"(s); E

�
x�;"(s)

�
; u�;"(s))E (x̂"(s)) d�dW (s)

+

Z t

0

Z 1

0

�
�x(s; x

�;"(s); E
�
x�;"(s)

�
; u�;"(s))� �x (s)

�
x"1(s)d�dW (s)

+

Z t

0

Z 1

0

�
�~x(s; x

�;"(s); E
�
x�;"(s)

�
; u�;"(s))� �~x (s)

�
E (x"1(s)) d�dW (s)

+

Z t

0

Z 1

0

�
�u(s; x

�;"(s); E
�
x�;"(s)

�
; u�;"(s))� �u (s)

�
u(s)d�dW (s) ;

(3.31)

and

~I3 (")

=

Z t

0

Z
�

Z 1

0

cx(s; x
�;"(s�); E

�
x�;"(s�)

�
; u�;"(s); �)x̂"(s)d�N (d�; ds)

+

Z t

0

Z
�

Z 1

0

c~x(s; x
�;"(s�); E

�
x�;"(s�)

�
; u�;"(s); �)E (x̂"(s)) d�N (d�; ds)

+

Z t

0

Z
�

Z 1

0

�
cx(s; x

�;"(s�); E
�
x�;"(s�)

�
; u�;"(s); �)� cx (s; �)

�
x"1(s)d�N (d�; ds)

+

Z t

0

Z
�

Z 1

0

�
c~x(s; x

�;"(s�); E
�
x�;"(s�)

�
; u�;"(s); �)� c~x (s; �)

�
E (x"1(s)) d�N (d�; ds)

+

Z t

0

Z
�

Z 1

0

�
cu(s; x

�;"(s�); E
�
x�;"(s�)

�
; u�;"(s); �)� cu (s; �)

�
u(s)d�N (d�; ds) ;

(3.32)
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we proceed as in Anderson and Djehiche [1], we get

E

�
sup
0�t�T

���~I1 (")���2� �! 0; as " �! 0;

E

�
sup
0�t�T

���~I2 (")���2� �! 0; as " �! 0:

(3.33)

Applying similar estimations for the third term with the help of Proposition 3.2 (in Ap-

pendix Bouchard and Elie [8]), we have

E

�
sup
0�t�T

���~I3 (")���2� �! 0; as " �! 0: (3.34)

From (3.33) and (3.34), we obtain

E

 
sup
0�t�T

����1" [x"(t)� x�(t)]� x"1(t)

����2
!
�! 0; as " �! 0: (3.35)

We proceed to estimate the last terms in (3.25). First, from (3.26) and since

ŷ"(t) =
1

"
[y"(t)� y�(t)]� y"1(t);

we get

dŷ"(t) = �1
"

Z
�

[g(t; x�(t) + " (x̂"(t) + x"1(t)) ; E (x
�(t) + " (x̂"(t) + x"1(t))) ;

y�(t) + " (ŷ"(t) + y"1(t)) ; E (y
�(t) + " (ŷ"(t) + y"1(t))) ; z

�(t) + " (ẑ"(t) + z"1(t)) ;

E(z�(t) + " (ẑ"(t) + z"1(t)) ; r
�(t; �) + " (r̂"(t; �) + r"1(t; �)) ; u

"(t))� g(t; �)]� (d�) dt

�
Z
�

[gx(t; �)x
"
1(t) + g~x(t)E (x

"
1(t)) + gy(t; �)y

"
1(t) + g~y(t)E (y

"
1(t))

+gz(t; �)z
"
1(t) + g~z(t)E (z

"
1(t)) + gr(t; �)r

"
1(t; �) + gu(t; �)u(t)]� (d�) dt

+ẑ"(t)dW (t) +

Z
�

r̂"(t; �)N(d�; dt);

and
ŷ"(T ) =

1

"
[h (x"(T ); E (x"(T )))� h (x�(T ); E (x�(T )))]

+ [hx (x
�(T ); E (x�(T )))� h~x (x

�(T ); E (x�(T )))] x"1(T ):
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Applying Taylor�s expansion, we get

�dŷ"(t) =

Z
�

Z 1

0

gx(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� x̂"(t)d�� (d�) dt

+

Z
�

Z 1

0

g~x(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� E (x̂"(t)) d�� (d�) dt

+

Z
�

Z 1

0

[gx(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� gx(t; �)]x

"
1(t)d�� (d�) dt

+

Z
�

Z 1

0

[g~x(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� g~x(t; �)]E (x

"
1(t)) d�� (d�) dt

+

Z
�

Z 1

0

gu(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� gu(t; �)]u(t)d�� (d�) dt

+

Z
�

Z 1

0

gy(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
;

r�;"(t; �); u�;"(t))� ŷ"(t)d�� (d�) dt

+

Z
�

Z 1

0

g~y(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
;

r�;"(t; �); u�;"(t))� E (ŷ"(t)) d�� (d�) dt

+

Z
�

Z 1

0

[gy(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� gy(t; �)]y

"
1(t)d�� (d�) dt

+

Z
�

Z 1

0

[g~y(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
;

r�;"(t; �); u�;"(t))� g~y(t; �)]E (y
"
1(t)) d�� (d�) dt
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+

Z
�

Z 1

0

gz(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
;

r�;"(t; �); u�;"(t))� ẑ"(t)d�� (d�) dt

+

Z
�

Z 1

0

g~z(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
;

r�;"(t; �); u�;"(t))� E (ẑ"(t)) d�� (d�) dt

+

Z
�

Z 1

0

[gz(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
;

r�;"(t; �); u�;"(t))� gz(t; �)]z
"
1(t)d�� (d�) dt

+

Z
�

Z 1

0

[g~z(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� g~z(t; �)]E (z

"
1(t)) d�� (d�) dt

+

Z
�

Z 1

0

gr(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� r̂"(t)d�� (d�) dt

+

Z
�

Z 1

0

[gr(t; x
�;"(t); E

�
x�;"(t)

�
; y�;"(t); E

�
y�;"(t)

�
; z�;"(t); E

�
z�;"(t)

�
r�;"(t; �); u�;"(t))� gr(t; �)]r

"
1(t)d�� (d�) dt� ẑ"(t)dW (t)�

Z
�

r̂"(t)N (d�d; dt) ;

�nally, using similar arguments developed in [48], the desired result follows. This completes

the proof of (3.25).

Lemma 3.3.3 Let assumptions (H1) et (H2) hold. The following variational inequality

holds

E

Z T

0

Z
�

[lx(t; �)x
"
1(t) + l~x(t; �)E (x

"
1(t)) + ly(t; �)y

"
1(t) + l~y(t; �)E (y

"
1(t))

lz(t; �)z
"
1(t) + l~z(t; �)E (z

"
1(t)) + lr(t; �)r

"
1(t; �) + lu(t; �)u(t)]� (d�) dt

+E [�x (T )x
"
1(T ) + �~x (T )E (x

"
1(T ))] + E ['y(0)y

"
1(0) + '~y(0)E (y

"
1(0))] � o("):
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Proof From (3.9), we have

J(u"(�))� J(u�(�))

= Ef
Z T

0

Z
�

[l(t; x"(t); E (x"(t)) ; y"(t); E (y"(t)) ; z"(t); E (z"(t)) ; r"(t; �); u"(t))

�l(t; x�(t); E (x�(t)) ; y�(t); E (y�(t)) ; z�(t); E (z�(t)) ; r�(t; �); u�(t))]� (d�) dt

+ [�(x"(T ); E (x"(T )))� �(x�(T ); E (x�(T )))]

+ ['(y"(0); E (y"(0)))� '(y�(0); E (y�(0)))]g � 0:
(3.36)

By applying Taylor�s expansion and Lemma (3.3.2), we have

1

"
E [�(x"(T ); ~x"(T ))� �(x�(T ); ~x�(T ))]

=
1

"
Ef
Z 1

0

�x(x
�(T ) + �(x"(T )� x�(T )); ~x�(T )

+�(~x"(T )� ~x�(T )))d� (x"(T )� x�(T ))

+

Z 1

0

�~x(x
�(T ) + �(x"(T )� x�(T )); ~x�(T )

+�(~x"(T )� ~x�(T )))d� (~x"(T )� ~x�(T ))]g+ o (") :

From estimate (3.25), we get

1

"
E [�(x"(T ); ~x"(T ))� �(x�(T ); ~x�(T ))]

�! E [�x(x
�(T ); E (x�(T )))x"1(T ); �~x(x

�(T ); E (x�(T )))E (x"1(T ))]

= E [�x (T )x
"
1(T ) + �~x (T )E (x

"
1(T ))] ; as " �! 0:

(3.37)

Similarly, we have

1

"
E ['(y"(0); ~y"(0))� '(y�(0); ~y�(0))]

�! E ['y(y
�(0); E((y�(0)))y"1(0); '~y(y

�(0); E((y�(0)))E (y"1(0))]

= E ['y (0) y
"
1(0) + '~y (0)E (y

"
1(0))] ; as " �! 0;

(3.38)
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and

E

Z T

0

Z
�

[l(t; x"(t); E (x"(t)) ; y"(t); E (y"(t)) ; z"(t); E (z"(t)) ; r"(t; �); u"(t))

�l(t; x�(t); E (x�(t)) ; y�(t); E (y�(t)) ; z�(t); E (z�(t)) ; r�(t; �); u�(t))]� (d�) dt

�! E

Z T

0

Z
�

[lx(t; �)x
"
1(t) + l~x(t; �)E (x

"
1(t)) + ly(t; �)y

"
1(t) + l~y(t; �)E (y

"
1(t))

+lz(t; �)z
"
1(t) + l~z(t; �)E (z

"
1(t)) + lr(t; �)r

"
1(t; �) + lu(t; �)u(t)]� (d�) dt;

as " �! 0:

(3.39)

The desired result follows by combining (3.36)�(3.39), This completes the proof of Lemma
(3.3.3).

Proof of Theorem (3.3.1): The desired result follows immediately by combining (3.13) in

Lemma (3.3.2) and Lemma (3.3.3).

3.4 Application: Mean-variance portfolio selection prob-

lem mixed with a recursive utility functional

The mean-variance portfolio selection theory, which was �rst proposed in Markowitz

[32] is a milestone in mathematical �nance and has laid down the foundation of modern

�nance theory. Using su¢ cient maximum principle, the authors in [17] gave the expres-

sion for the optimal portfolio selection in a jump di¤usion market. The near-optimal

consumption-investment problem has been discussed in Hafayed, Abbas, and Veverka [26].

The continuous time mean-variance portfolio selection problem has been studied in Zhou

and Li [61]. The mean-variance portfolio selection problem where the state driven by SDE

(without jump terms) has been studied in [1]. Optimal dividend, harvesting rate, and

optimal portfolio for systems governed by jump di¤usion processes have been investigated

in [35]. Mean-variance portfolio selection problem mixed with a recursive utility functional

has been studied by Shi and Wu [48], under the condition that

E (x�(T )) = c;

where c is a given real positive number.
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In this section, we will apply our mean-�eld stochastic maximum principle of optimal-

ity to study a mean-variance portfolio selection problem mixed with a recursive utility

functional optimization problem and we will derive the explicit expression for the optimal

portfolio selection strategy.

This optimal control is represented by a state feedback form involving both x(�) and
E(x(�)).
Suppose that we are given a mathematical market consisting of two investment possibili-

ties:

1. Risk-free security (Bond price). The �rst asset is a risk-free security whose price

P0(t) evolves according to the ordinary di¤erential equation8<: dP0(t) = �(t)P0(t)dt; t 2 [0; T ]
P0(0) > 0;

(3.40)

where �(�) : [0; T ] �! R+ is a locally bounded and continuous deterministic function.

2. Risk-security (Stock price). A risk security (e.g., a stock), where the price P1(t) at

time t is given by:

8><>:
dP1(t) = P1(t�)

�
�(t)dt+G(t)dW (t) +

Z
�

� (t; �)N (d�; dt)

�
;

P1(0) > 0; t 2 [0; T ] :
(3.41)

Assumptions. In order to ensure that P1(0) > 0 for all t 2 [0; T ] ; we assume

1. The functions �(�) : [0; T ] �! R; G(�) : [0; T ] �! R are bounded deterministic such

taht

�(t); G(t) 6= 0; �(t) > �(t);8t 2 [0; T ] :

2. �(t; �) > �1 for ��almost all � 2 � and all t 2 [0; T ] ;

3.
Z
�

�2(t; �)� (d�) is bounded.

Portfolio strategy, the price dynamic with recursive utility process. A portfolio is a

Ft�predictable process e(t) = (e1(t); e2(t)) giving the number of units of the risk free
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and the risky security held at time t. Let �(t) = e2(t)P1(t) denote the amount invested in

the risky security. We call the control process � (�) a portfolio strategy.
Let x�(0) = � be an initial wealth. By combining (3.40) and (3.41), we introduce the wealth

process x�(�) and the recursive utility process y� (�) corresponding to �(�) 2 U([0; T ]) as
solution of the following FBSDEJs

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

dx�(t) = [�(t)x�(t) + (�(t)� �(t))�(t)] dt

+G(t)�(t)dW (t) +

Z
�

� (t; �)N (d�; dt) ;

�dy�(t) = [�(t)x�(t) + (�(t)� �(t))�(t)� �y�(t)] dt

�z�(t)dW (t)�
Z
�

r� (t; �)N (d�; dt) ;

x�(0) = �; y�(T ) = x�(T ):

(3.42)

Mean-variance portfolio selection problem mixed with a recursive utility functional : In

this section, the objective is to apply our maximum principle to study the mean-variance

portfolio selection problem mixed with a recursive utility functional maximization.

The cost functional, to be minimized, is given by

J(�(�)) = 


2
V ar(x�(T ))� E(x�(T ))� y�(0): (3.43)

By a simple computation, we can show that

J(�(�)) = E
h

2
x�(T )2 � x(T )

i
� 


2
[E (x�(T ))]2 � y�(0); (3.44)

where the wealth process x�(�) and the recursive utility process y�(�) corresponding �(�) 2
U([0; T ]) are given by FBSDEJ-(3.42). We note that the cost functional (3.44) becomes
a time-inconsistent control problem. Let A be a compact convex subset of R. We denote

U([0; T ]) the set of admissible Ft-predictable portfolio strategies �(�) valued in A. The
optimal solution is denoted by (x�(�); ��(�)).
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The Hamiltonian functional (3.5) gets the form

H(t; x; ~x; y; ~y; z; ~z; r; �;	; Q;K;R)

= [�(t)x(t) + (�(t)� �(t))�(t)] (	(t)�K(t))

+G(t)�(t)Q(t) + �K(t)y(t) +

Z
�

� (t; �)�(t)R(t; �)� (d�)

According to the maximum condition ((3.8), Theorem (3.3.1)), and since ��(�) is optimal
we immediately get,

[(�(t)� �(t))] (	�(t)�K�(t)) +G(t)Q�(t)

+

Z
�

� (t; �)R�(t; �)� (d�) = 0:
(3.45)

The adjoint equation (3.4) being8>>>>>>>>><>>>>>>>>>:

d	�(t) = ��(t) (	�(t)�K�(t)) dt+Q�(t)dW (t)

+

Z
�

R� (t; �)N (d�; dt) ;

	�(T ) = 
(x�(T )� E(x�(T ))� 1�K�(T )

dK�(t) = ��K�(t)dt;K�(0) = 1; t 2 [0; T ] :

(3.46)

In order to solve the above equation (3.46) and to �nd the expression of optimal portfolio

strategy ��(�), we conjecture a process 	�(t) of the form:

	�(t) = A1(t)x
�(t) + A2(t)E (x

�(t)) + A3(t); (3.47)

where A1(�); A2(�) and A3(�) deterministic di¤erentiable functions.(See Shi and Wu [48],
Shi [47], Framstad, ;ksendal and Sulem [17]).

From last equation in (3.46), which is a simple ordinary di¤erential equation (ODE in

short), we get immediately

K�(t) = exp(��t): (3.48)

Noting that from (3.42), we get

d (E (x�(t))) = f�(t)E (x�(t)) + (�(t)� �(t))E (��(t))gdt:
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Applying Itô�s formula to (3.47) in virtue of SDE-(3.42), we get8>>>>>>>>><>>>>>>>>>:

d	�(t) = A1(t)f[�(t)x�(t) + (�(t)� �(t))��(t)]dt

+G(t)��(t)dW (t) +

Z
�

� (t; �)��(t)N (d�; dt)g

+x�(t)A
0
1(t)dt+ A2(t)[�(t)E (x

�(t)) + (�(t)� �(t))E (��(t))]dt

+E (x�(t))A
0
2(t)dt+ A

0
3(t)dt;

which implies that8>>>>>>>>>>>><>>>>>>>>>>>>:

d	�(t) = fA1(t)[�(t)x�(t) + (�(t)� �(t))��(t)] + x�(t)A
0
1(t)

+A2(t)[�(t)E (x
�(t)) + (�(t)� �(t))E (��(t))]

+A
0
2(t)E (x

�(t)) + A
0
3(t)gdt

+A1(t)G(t)�
�(t)dW (t) +

Z
�

A1(t)� (t�; �)��(t)N (d�; dt)

	�(T ) = A1(T )x
�(T ) + A2(t)E(x

�(T )) + A3(T );

(3.49)

where A
0
1(t); A

0
2(t) and A

0
3(t) denote the derivatives with respect to t.

Next, comparing (3.49) with (3.46), we get

��(t) (	�(t)�K�(t)) = A1(t)[�(t)x
�(t) + (�(t)� �(t))��(t)] + x�(t)A

0
1(t)

+A2(t)[�(t)E (x
�(t)) + (�(t)� �(t))E (��(t))]

+A
0
2(t)E (x

�(t)) + A
0
3(t);

(3.50)

Q�(t) = A1(t)G(t)�
�(t); (3.51)

R�(t) = A1(t)� (t�; �)��(t): (3.52)

By looking at the terminal condition of 	�(t), in (3.49), it is reasonable to get

A1(T ) = 
;A2(T ) = �
;A3(T ) = �1�K�(T ) (3.53)

Combining (3.50) and (3.47), we deduce that A
0
1(�); A

0
2(�) and A

0
3(�) satisfying the following
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ODEs: 8>><>>:
A
0
1(t) = �2�(t)A1(t); A1(T ) = 
;

A
0
2(t) = �2�(t)A2(t); A2(T ) = �
;

A
0
3(t) + �(t)A3(t) = �(t) exp(��t); A3(T ) = � exp(��T )� 1:

(3.54)

By solving the �rst two ordinary di¤erential equations in (3.54), we obtain

A1(t) = �A2(t) = 
 exp

�
2

Z T

t

�(s)ds

�
: (3.55)

Using integrating factor method for the third equation in (3.54), we get

A3(t) = ��(t)�1
�
exp(��T ) + 1 +

Z T

t

�(s)�(s) exp(��s)ds
�
; (3.56)

where the integrating factor is �(t) =
Z T

t

�(s)ds; �(T ) = 1:

Combining (3.45), (3.48), (3.51), and (3.52) and denoting

�(t) = A1(t)

�
G2(t) +

Z
�

�2(t; �)�(d�)

�
(3.57)

we get

��(t) = �(t)�1 (�(t)� �(t)) [A1(t) (x
�(t)� E (x�(t))) + A3(t)� exp(��t)] ; (3.58)

and

E (��(t)) = �(t)�1 (�(t)� �(t)) [A3(t)� exp(��t)] (3.59)

Finally, we give the explicit optimal portfolio selection strategy in the state feedback form

involving both x�(�) and E(x�(�)).

Theorem 3.4.1 The optimal portfolio strategy ��(t) of our mean-variance portfolio se-

lection problem (3.42)-(3.44) is given in feedback form by

��(t; x�(t); E (x�(t)))

= �(t)�1 (�(t)� �(t)) [A1(t) (x
�(t)� E (x�(t))) + A3(t)� exp(��t)] ;
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and

E [��(t; x�(t); E (x�(t)))] = �(t)�1 (�(t)� �(t)) [A3(t)� exp(��t)]

where A1(t), A3(t) and �(t) are given by (3.55), (3.56) and (3.57) respectively.
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Conclusion

In this work, we have discussed the necessary conditions for optimal stochastic controlof mean-�eld forward-backward stochastic di¤erential equations with Poisson jumps

(FBSDEJs). The cost functional is also of mean �eld type. Mean-variance portfolio

selection mixed with recursive utility functional optimization problem has been studied

to illustrate our theoretical results. We would like to indicate that the general maximum

principle for fully coupled mean-�eld FBSDEJs is not addressed, and we will work for this

interesting issue in the future research.
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Appendix A: Abbreviations and

Notations

The following notation is frequently used in this thesis

P� a:s: Almost surely for the probability measure P.

a:e: Almost everywhere:

e.g for example

u" perturbed control.

u� Optimal control.

W Brownian motion.

N (�; �) Poisson martingale measure.

G0 The totality of P� null sets.
Rn n-dimensional real Euclidean space.

Rn�d The set of all (n� d) real matrixes.

(
;F ;P) Probability space.

fFtgt2[0;T ] Filtration.

(
;F ; fFtgt�0 ;P) Filtered probability space.

L2 (
;FT ;H) The space of all H� valued squared integrable FT �measurable
random variables.

L2F ([0; T ] ;H) The Hilbert space of all H� valued fFtgt2[0;T ] � adapted processes

(X(t))t2[0;T ] such that E
Z T

0

jX (t)j2 dt <1:
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M2
F ([0; T ] ;H) The sHilbert pace of all H� valued fFtgt2[0;T ] � predictable processes

( (t; �))t2[0;T ] de�ned on [0; T ]�� such that

E

Z T

0

Z
�

j  (t; �) j2 � (d�) dt <1:

U s ([0; T ]) The set of (stochastic) strong admissible controls.

Uw ([0; T ]) The set of (stochastic) weak admissible controls.

E(�) The expectation with respect to P:

SDE Stochastic di¤erential equation.

SDEJ Stochastic di¤erential equation with Poisson jump processes.

ODE Ordinary di¤erential equation.

BSDE Backward stochastic di¤erential equations.

FBSDEJs Forward-backward stochastic di¤erential equations

with Poisson jump processes.

SPDE stochastic partial di¤erential equation.
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Proposition

Let f be real function de�ned and derivable in the interval I, so the following properties

are equivalent :

i) f is convex on I.

ii) 8 (x; y) 2 I; x < y; f(y) � f(x) + fx(x)(y � x):

Gronwall Lemma

Let f and g be non negative integrable functions and c a nonnegative constant. if

f(t) � c+

Z t

0

g(s)f(s)ds for t � 0;

then

f(t) � c exp

�Z t

0

g(s)ds

�
for t � 0:

Lemma: (Integration by parts formula for mean-�eld jump di¤usions)

Suppose that the processes x1(t) and x2(t) are given by for i = 1; 2; t 2 [0; T ]8>>><>>>:
dxi(t) = f(t; xi(t); E(xi(t)); u(t))dt+ �(t; xi(t); E(xi(t)); u(t))dW (t)

+

Z
�

g(t; xi(t�); E(xi(t�)); u(t))N (d�; dt) ;

xi(0) = 0:
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Then we get

E [x1(t)x2(t)]

= E

Z T

0

x1(t)dx2(t) + E

Z T

0

x2(t)dx1(t)

+E

Z T

0

�(t; x1(t); E(x1(t)); u(t))�(t; x2(t); E(x2(t)); u(t))dt

+E

Z T

0

Z
�

g(t; x1(t); E(x1(t)); u(t); �)g(t; x2(t); E(x2(t)); u(t); �)�(d�)dt:

See Framstad et al., ([17] Lemma 2.1 ), for the proof of the above Lemma.

Integrating factor method

The integrating factor method for solving partial di¤erential equations may be used to

solve linear, �rst order di¤erential equations of the form:

dy

dt
+ a(t)y = b(t)

where a(t) and b(t) are functions of t. and in some cases may be constants.

We will say that an equation written in the above way is written in the standard form.

The method for solving linear, �rst order di¤erential equations using the integrating factor

method may be broken down into the following steps:

1. Write the di¤erential equation in the standard form:
dy

dt
+ a(t)y = b(t):

2. Determine the integrating factor,

Integrating Factor = exp
�Z

a(t)dt

�
:

3. Multiply the equation in standard form by the integrating factor,

exp

�Z
a(t)dt

��
dy

dt
+ a(t)y

�
= b(t) exp

�Z
a(t)dt

�
:

4. Using the product and chain rule of di¤erentiation, write the left hand side of the

equation in the following way:

exp

�Z
a(t)dt

��
dy

dt
+ a(t)y

�
=

d

dt

�
exp

�Z
a(t)dt

�
y

�
:
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So,
d

dt

�
exp

�Z
a(t)dt

�
y

�
= b(t) exp

�Z
a(t)dt

�
:

5. Integrate both sides of the new equation:

exp

�Z
a(t)dt

�
y =

Z
b(t) exp

�Z
a(t)dt

�
dt+ C:

6. Divide by the integrating factor to get the solution:

y = exp

�
�
Z
a(t)dt

��Z
b(t) exp

�Z
a(t)dt

�
dt+ C

�
:
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