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Abstract

This thesis studies optimal control of systems driven by stochastic differential equations
(SDEs), with jump processes, where the control variable appears in the drift and the jump
term. We study the relaxed problem for which admissible controls are measure-valued
processes and the state variable is governed by an SDE driven by a counting measure valued
process which we call relaxed Poisson measure such that the compensator is a product
measure. Under some conditions on the coefficients, we prove that every diffusion process
associated to a relaxed control is a limit of a sequence of diffusion processes associated to
strict controls. And we show that the strict and the relaxed control problems have the
same value function. The existence of an optimal relaxed control is a consequence of the
development. Moreover we derive a maximum principle for this type of relaxed problem.
In second step, we study optimal control problem of the same type of SDEs defined in
the first one, but the control variable has two components, the first being absolutely con-
tinuous and the second singular. Our goal is to establish a stochastic maximum principle
for relaxed controls for this type of relaxed problem, using strong perturbation on the
absolutely continuous part of the control and a convex perturbation on the singular one.
The proofs are based on the strict maximum principle, Ekeland’s variational principle,
and some stability properties of the trajectories and adjoint processes with respect to the

control variable.



Résumé

Cette theése étudie un controle optimal des systémes gouvernés par des équations dif-
férentielles stochastiques ( EDSs), avec des processus de saut, ou la variable de controle
apparaisse dans le drift et le terme de saut. On étude les problémes relaxés pour lesquels les
controles admissibles sont des processus a valeurs mesures et la variable d’état est gouverné
par une EDS conduite par un processus dont ces valeurs sont des mesures de comptage, ce
qu’on appelle mesure de Poisson relaxé de telle sorte que le compensateur est une mesure
produit. Sous certaines conditions sur les coefficients, on prouve que tous les processus de
diffusion associés a un controle relaxé est une limite d’une suite des processus de diffusion
associés a une suite des controles stricts. On montre que le probléme de controle strict et
le probléme de controle relaxé ont la méme fonction de valeur. L’existence d’un controle
optimal relaxé est une conséquence de développement. En outre, on démontre un principe
de maximum pour ce type de probleme relaxé.

Dans la deuxiéme étape, nous étudions un probléme de controle optimal du méme type
de SDEs définis dans la premiére, mais la variable de controle comporte deux composants,
le premier étant absolument continu et le second singulier. Notre objectif est d’établir
un principe du maximum pour ce type de probléme relaxé, en utilisant une forte pertur-
bation sur la partie absolument continue du controle et une perturbation convexe sur le
singulier. Les preuves sont basées sur le principe du maximum strict, le principe variation-
nel d’Ekeland et certaines propriétés de stabilité des trajectoires et des processus adjoints

par rapport a la variable de controle.
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Symbols and Abbreviations

The different symbols and abbreviations used in this thesis.

(2, F, (Ft)y=0, P) : A filtered probability space.

SDE : A stochastic differential equation.

N : A Poisson random measure.

v(dl)dt : The compensator of N.

N : The compensated Poisson measure.

d.(da) : The Dirac measure.

1 : The relaxed control.

NH(t,0,a) : The relaxed Poisson random measure.

pe @ v(da, dd) : The compensator of relaxed Poisson random measure N*.
NH : The compensated relaxed Poisson measure.

A . The set of values taken by the strict control .

The set of admissible strict controls.

1% . The space of positive Radon measures on [0;1] x A
(

the smallest 0 — field such that the mappings

<l

1
pw— / / ¢(t, u)py(du)dt are measurable,where ¢ is a bounded
0 A

measurable function which is continuous in a.

\

v



(V) . The filtration generated by {1[0;t] Wy [ E V} .

The space of probability measures equipped with

P(A)
the topology of weak convergence.
J(.) : The cost function.
J(.,.) : The cost function associated with the singular problem.
u* : Optimal strict control.
w Optimal relaxed control.
¢ . Singular control.

*) : Optimal strict-singular control.

¢
u*,¢*) : Optimal relaxed-singular control.

H : The Hamiltonian.

(p,q,7) : Adjoint processes.

R : The set of relaxed controls.

S : The set of rapidly decreasing functions.

S The topological dual of the Schwartz space of S.

Dy . The space of all mappings cadlag from [0;7] with values in S".
(p“*, g, r“*) : The adjoint processes associated with the relaxed control problem.
Ay X Ag . The set of values taken by the strict-singular controls (u, ().

U =U; x Uy : The set of admissible strict-singular controls.

R* =Ry x Uy : The set of admissible relaxed-singular controls.
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General introduction

‘ N T e consider a control problem where the state variable is a solution of a sto-
chastic differential equation (SDE), in which the control enters the drift and

the jump term. More precisely the system evolves according to the SDE

dxy = b(t, x,,u,)dt + ot xt)dBt+/f(t7 — ut)N(dt, do)
r
To = 07

on some filtered probability space (€2, F,(F:),5¢, P), where b, o, and f are given determin-
istic functions, (F;),5, is the filtration governed by a standard Brownian motion B and
an independent Poisson random measure N, whose compensator is given by v(df)dt and
u stands for the control variable.

The expected cost to be minimized over the class of admissible controls is defined by

J(u) =F |g(zr) + /h(t,a:t,ut)dt

A control process that solves this problem is called optimal. The strict control problem
may fail to have an optimal solution, if we don’t impose some kind of convexity assumption.
In this case, we must embed the space of strict controls into a larger space that has nice
properties of compactness and convexity. This space is that of probability measures on A,
where A is the set of values taken by the strict control. These measure valued processes

are called relaxed controls. The first existence result of an optimal relaxed control is



General Introduction

proved by Fleming [14], for the SDEs with uncontrolled diffusion coefficient and no jump
term. For such systems of SDEs a maximum principle has been established in [2, 3] [26].
For mean-field systems one can refer to [4, 5, [6]. The case where the control variable
appears in the diffusion coefficient has been solved in [13]. The existence of an optimal
relaxed control of SDEs, where the control variable enters in the jump term was derived
by Kushner [23].

In this thesis, we first show that under a continuity condition of the coefficients, each
relaxed diffusion process with controlled jump is a strong limit of a sequence of diffusion
processes associated with strict controls. The proof of this approximation result is based
on Skorokhod selection theorem, and the tightness of the processes. Consequently, we
show that the strict and the relaxed control problems have the same value function. Using
the same techniques, we give another proof of the existence of an optimal relaxed control,
based on the Skorokhod selection theorem.

The second main goal of this part is to establish a Pontriagin maximum principle for
the relaxed control problem. More precisely we derive necessary conditions for optimality
satisfied by an optimal control. The proof is based on Pontriagin’s maximum principle
for nearly optimal strict controls and some stability results of trajectories and adjoint
processes with respect to the control variable.

In second step, we consider mixed relaxed-singular stochastic control problems of systems
governed by stochastic differential equations of the same type of SDEs defined in the
forth chapter, but the control variable has two components, the first being measure valued

process and the second singular. More precisely the system evolves according to the SDE

dxl = /b(t,xf,a)ut(da)dt—l—a(t, xf)dBt—i—//f(t,xf_,@,a)]v“(dt, df, da)+Gd(,
Al Al I

zy =0,
(1)

on (2, F,(Ft),s¢, P), such that Fy contains the P—null sets, We assume that (F);>o is



General Introduction

generated by a standard Brownian motion B and an independent Poisson random measure
N* defined in first section of chapter 4, which its compensator has the form p; ® v(da, df),
where g is the relaxed control and v is the compensator of Poisson measure N. The
control variable is (u, (), where u is a P(A;)—valued process, progressively measurable
with respect to (F;),5o and ¢ : [0; 7] x @ — A, is of bounded variation, nondecreasing
left-continuous with right limits and (y = 0.

The expected cost to be minimized over the class of admissible controls has the form

T T
J(p, Q) = E |g(af) + h(t, zy, a)p(da)dt + [ kdG
/] /

A control process that solves this problem is called optimal.

Singular control problems without jump have been studied by many authors including
Benés, Sheep, and Witsenhausen [7], Chow, Menaldi, and Robin [I1], Karatzas and Shreve
[21], Davis and Norman [12], and Haussmann and Suo [15],[16],[17]. The approaches used in
these papers are mainly based on dynamic programming. The first version of the stochas-
tic maximum principle that covers singular control problems was obtained by Cadenillas
and Haussman [I0] for linear systems. Second order necessary conditions for optimality
for nonlinear SDEs with a controlled diffusions matrix were obtained by S. Bahlali and B.
Mezerdi [26], extending the Peng maximum principle to singular control problems. The
stochastic maximum principle for relaxed-singular control problem is studied by S. Bahlali,
B. Djehiche, and B. Mezerdi [2], where the proofs are based on the strict maximum prin-
ciple, Ekeland’s variational principle, and some stability properties of the trajectories and
adjoint process with respect to the control variable.

Our main goal is to extended the result of S. Bahlali, B. Djehiche, and B. Mezerdi [2] to
the problem where the system evolves according to the SDE , by the same techniques
that used in the previous chapters, and using a strong perturbation of the absolutely

continuous part of the control and a convex perturbation of the singular part.
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In the first chapter, we introduce the general notions of stochastic calculus with jump
diffusion.

Second chapter contains the relaxed control problem.

The third chapter gives the stochastic maximum principle of controlled jump diffusion.
In the forth chapter we will introduce the relaxed control problem of our system, and we

will establish the stochastic maximum principle of our problem.

Finally, in the fifth chapter we will state and prove a stochastic maximum principle of our

relaxed-singular control problem.



Chapter 1

Stochastic calculus with jump

diffusion

I n this chapter, we present the basic concepts and results needed for the applied
calculus of jump diffusion, and we refer to the two books [27] and [28] for more

information and more detailed proofs.

1.1 The Poisson process

Definition 1.1 (Counting process) The process N = (Ny), defined by

Ny = Zl{Tngt},

n>1

with values in NU{oo}, where (T},),~, is a strictly increasing sequence of positive random

variables (with Ty = 0), is called counting process associated to the sequence (T,),,~,

Remark 1.1 Set T' = sup, Ty, if T = oo a.s, then N is a counting process without

explosions. Indeed,

[Ti00) = {N = n} = {(t.w) : Ny(w) > n},
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as well as

[T0; Tota) = {N =n},

and

[T;00) ={N = 0}.

Theorem 1.1 A counting process N is adapted if and only if the associated random vari-

ables (T,,),», are stopping times.

Proof. If N is adapted, then {7, <t} = {N, > n} € F, for each t, then T,, is a stopping

time. Mutually, if (75,),,-, are stopping times with Ty = 0 a.s, then
{N;=n}={w: T,(w) <t <Thi(w)},
then,
{Ny=n} ={w:T,(w) <t} N{w: Th(w) <t}°,

as we have {w: T,(w) <t} € F and {w: T, 1(w) <t} € F, then {N, =n} € F, for

each n, and therefore N is adapted. m

Definition 1.2 (Poisson process) An adapted counting process N is a Poisson process
if :
1. For any s,t, 0 < s <t < oo, Ny — N is independent of Fj,

2. Forany s, t,u,v,0<s<t<oo;0<u<wv<oo,t—s=u—uv, then the distribution

of Ny — Ny is the same as that of N, — N,,.

Theorem 1.2 Let N be a Poisson process. Then, the random variable N; has the Poisson

distribution with parameter \t, for some A > 0. That is

(A)"
n!

P(N; =n) = exp(—At); n € N,
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A is called the intensity of N.
Proof. Seec [28] =

Corollary 1.1 A Poisson process N with intensity \ satisfies
E[N;] = Var [Ny = At.

Theorem 1.3 Let N be a Poisson process with intensity A. Then, (N; — At),5, and
((N; — A\t)* = \t)

1> 7€ martingales.

Proof.

e Since At is non-random, then

and

E[(N, = M) — (Ns — \s) | Fi] = E[N, — N, | F.] — At + As.

Since N has an independent increments, we have for 0 < s < t < 00,
E[N; — Ny | Fs] = M+ As = E[N; — Ny] — Mt + As =0,

which implies that (N; — At),., is a martingale.

e The analogous statement holds for ((IN; — M) — At)

t>0"

1.2 Lévy process

Definition 1.3 (Lévy process) The process m defined on a filtered probability space

8



Chapter 1. Stochastic calculus with jump diffusion

(92, F, (Ft)y0, P) is called a Lévy process if

1. 1o =0 a.s,
2. m has stationary and independent increments,

3. m 18 continuous in probability :

}llin%)P (|7gn —m| >€) =0.
Exemple 1.1 1. It is clear that the Poisson process introduced in the previous section

18 a Lévy process.

2. We know that the Brownian motion initiated from the origin, and has an independent
and stationary increments, moreover has right continuous paths with left limits. Then

it is a Lévy process.

Remark 1.2 These two processes are different because Brownian motion has continuous
paths, whereas a Poisson process does not. And a Poisson process is a mon-decreasing
process, and thus has paths of bounded variation over finite time horizons, whereas a
Brownian motion does not have monotone paths and its paths are of unbounded variation

over finite horizons.

Theorem 1.4 Let m be a Lévy process, then m has a cadlag version which is also a Lévy

process.

Proof. See 28] =

Now, consider only the Lévy processes cadlag

Definition 1.4 (jump of Lévy process) If 7 is a Lévy process, we define the jump

process of ™ by Am = (Amy)i>o with Amy = 713 — T
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Definition 1.5 Let Ay be the family of Borel sets A C R whose closure A does not

contain 0, Fiz A € Ay, we define

N(w,t,A) = N(t,A) = Y 1a(Am)=) 1 (3t}

0<s<t n>1
1S a counting process without explosion.

Theorem 1.5 1. The set function A — N(t, A,w) defines a o—finite measure on Ay

for each fixed (t,w).

2. The set function

v(A) = E[N(1,A)] = ) 1a(Am,)

0<s<1

also defines a o— finite measure on Aq called Lévy measure of m.
3. Fiz A € Ay, then the process (N(t, A,w)),s, is a Poisson process of intensity v(A).
Proof.

1. The set function A — N(¢,A,w) is a counting measure because it represent the

number of jumps of size Ar, € A, which occur before or at ¢.
2. By the proof of , it is clear that v is also a measure.

3. For0<s<t<oo, N(t,A)—N(s,A) € o {m, —mp; s <v <u<t},then N(t,A)—
N(s, A) is independent of Fy; That is N(., A) has an independent increments. And

we have

N(t, A) = N(s,A) = > 1a(maeu — m);

0<u<t—s
by the stationarity of the distributions of 7, we can conclude that N (¢, A) — N(s, A)

has the same distribution as N (¢t — s, A).

Therefore N(., A) is a counting process with stationary and independent increments;

then, N(., A) is a Poisson process.

10
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Definition 1.6 (Poisson random measure) Let Aq be the family of Borel sets A C R

whose closure A does not contain 0. Fiz A € Ay, we define

A= N(w,t,A) = N(t,A) = > 14(Ar,),

0<s<t

which is represent the number of jumps size Am, € A, is called Poisson random measure

of w. The differential form of this measure is written as N(dt,dd).

1.2.1 Stochastic integral with respect to N

Theorem 1.6 Let A € Ay, and let f be Borel and finite on A. Then

JEGLCXOED SIS IS
A

0<s<t
1s a Lévy process.

Proof. It is a consequence of the fact that N(., A) has an independent and stationary

increments. |

Definition 1.7 (Jump process) For a given set A € Ay, we define the associated jump

process by

J(t,4) = 3 Am1a(Ar,) = / ON(t, df).
0<s<t ‘A
Remark 1.3 J(t, A) is a Lévy process itself.

Theorem 1.7 Given a set A € Ay, the process (m; — J(t, A)),5, 18 a Lévy process.

Proof. See [28] =

11
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Theorem 1.8 Let A € Ay, and v be the Lévy measure of 7w, and f14 € L*(dv). Then,

E / FO)N(tdo)| =1t / £(60)0(db),

and
2

E| [ fONEdo) —t | f0)dd)| =t | 20)u(dd).
[somemn-e sonin) ~¢f

A A

Proof. [28] First let f be a simple function, that is f = > a;14,. Then

i

=> aE(N(t A)),

i

since N (t, A;) is a Poisson process with parameter v(A4;), then

E

Z CLZ'N(t, Az)

= tz (IZ"U(Ai),

hence the first equality follows. For the second one, let Ni = N(t, A;) — tv(A;). The N}
are LP martingales, for all p > 1, see theorem 34 in [28]. Moreover, [Nf} = 0. Suppose

A;, A; are disjoint, we have

E [N;Ng} —E

¥ (%, - 3) X (¥, 1) .
k !
for any partition 0 = tg < t; < ... < t,, = t. Using the martingale property, we have

E [N;Ng} —E

5 (%~ ) (5 - ¥0)|

k
then, by the inequality |ab| < a? + b?, we have

~ o~ ~. ~.\2 ~. ~ .\ 2
EINN| <Y (N, - NL) + 3 (M, - V)

k k

12



Chapter 1. Stochastic calculus with jump diffusion

~ \2
However, Z ( e — Ntlk) < N2(t, A;) + t20v%(A;); therefore the sums are dominated by
an 1ntegrable random variable. Since Ng and th have paths of finite variation on [0;¢] it
is easy to deduce that if we take a sequence (%), of partitions where the mesh tends to

0 we have

nm o S (N, - N (WL, - ML) = YD ANIANY.

tk7tk+1€(tn)n21 0<s<t
Now, using the Lebesgue’s dominated convergence theorem, and since A;, A; are disjoint;

this implies that N* and N7 jump at different times. Then, we can conclude that

> ANIAN]

0<s<t

E [Ng’ﬁg’] —F ~0. (1.1)

Hence,
Var ({ FIOIN(t, dO) ) - <ff N(t d@i—t{f(&)v(d@))z
5 [2 w (. A»] SHOLTTERS s Av)]

by the equality (1.1)), we can deduce that

Z atv;(db).

i

2

Then, the second equality is verify for simple functions.
For general f, let f, be a sequence of simple functions such that f,, 14 converges to f in

L?(dv), and the result follows.

Corollary 1.2 For a set A € Ay, the process ( fN (t,d0) > 18 a Poisson
A

t>0

process with parameter v(A), and (]\Nf(t,dQ) N(t,df) — tv(dé’)) is a martingale, is
>0

called compensated Poisson process.

13
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1.2.2 Ito6-Lévy process

Theorem 1.9 (Lévy decomposition) Let m = (m;)i>0 be a Lévy process. Then m has

the decomposition

m = bt + 0B, + /9N(t,d9)+ / ON(t,do) (1.2)

lb]<R 10]>R

for some b,o € R, and where B is a Brownian motion independent of N(t, A).

Definition 1.8 (Itd-Lévy process) As a consequence of the decomposition (1.9), the
integral with respect to dmy can be split into integrals with respect to ds, dBks, N (ds,df)
and N(ds,df). That is

xt:v0+/b ds+/ s)dB, +//f59 (ds,d6) + //f(s,e)N(ds,de).

0 0 |6|<R 0 |0|>R

The differential notation of processes x is

dzx; = b(s)ds + o(s)dB, + / F(s,0)N(ds, d) + / f(s,0)N(ds,do).  (1.3)

|0|<R 101>R

We call such processes Ito-Lévy processes.

1.3 It6’s formula for It6-Lévy processes

In this section, we introduce the important It6’s formula for Ito-Lévy processes. For more

information see [27].

Theorem 1.10 (It6’s formula) Let x = (z¢)>0 be a process of the form (1.3). Define

14



Chapter 1. Stochastic calculus with jump diffusion

the process y; = g(t,x;), with g € CH2(R?), then (y;)i>0 s an Ito-Lévy process, and

dy, = 2 (t,,)dt + 92(t, 3,) [b(t)dt + o(t)dB,] + 502(75)329(@ ;) dt

9z

+ / {g(ta%— + f(s,0)) — g(t,z-) — %(t,xt_)f(s,ﬁ)} v(df)dt

|0|<R
+ [ A+ £(5.0)) = ot} Nat. db)
0|<R
+ [ At + 7(5.0)) = gt )} N(at.do)
o>k
1.4 Stochastic differential equation driven by a Lévy

process

Consider the following Lévy SDE in R",

dry = b(s,x)ds + o(s,z¢)dBs + /f(s, 2~ ,0)N(ds, df)
Rn
Zo = 0.

Where

b:[0;7] x R" — R"
o:[0;7T] x R" — R™*™

f:[0;T] x R* x R® — R™*.

Theorem 1.11 (Existence and uniqueness of solutions of Lévy SDEs) [30] Assume

that b, o, and f satisfying

1. There exist a constant C; < oo such that
l
lo(t, )] + [b(t, )” + / SISt 2 0P vi(dd;) < C (L+16]%) . for all 6 € R™.
5 =1

15



Chapter 1. Stochastic calculus with jump diffusion

2. There exist a constant Cy < 0o such that
1
lo(t, ) — o (t, )| +[b(t, ) — b(¢, y)|2+2/ |fi(t, 2, 0:) — fi(t,y, 0:) P vi(dhi) < Calw —yI?,
i=1

for all x,y € R". Then, there exist a unique cadlag adapted solution (z+)>o such that

E|z,|* < oo, for all t.
Proof. See [30] =

Exemple 1.2 (The geometric process) [27] Consider the following stochastic differ-

ential equation

dry = x- |adt + fdB; + / F(t,0)N(dt,do) + / f(t,0)N(dt,do) | ,

lo|<R 0>R

where a, 5 € R and f(t,0) > —1. To find the solution, we define y; = In(x;), then by Ité’s
formula (see theorem ), we get

dyy = (a—1p%) dt+BdB,+ [ {In[l+ f(t,0)] — f(t,0)} v(d)dt
[0|<R

+ [ In[1+ f(t,0)]N(dt,dd) + [ In[l+ f(t,0)] N(dt,db),
0] <R 10|>R

hence

Ye =yo+(a—%62)t+63t+ft J A1+ f(t,0)] — f(t,6)} v(df)dt

010|<R

+f [ In[1+ f(t,0)] N(dt,dd) +f [ In[l+ f(t,0)] N(dt,db),

0 |0|<Rr 0 |0|>R

16



Chapter 1. Stochastic calculus with jump diffusion

this gives the solution

Ty = Toexp (a - %52) t+ 6By +} [ {In[1+ f(t,0)] — f(t,0)} v(db)dt

0 |0|<R
+ f [ In[1+ f(t,60)] N(dt,df) + ft [ In[l+4 f(t,0)] N(dt,df)| .
0 |0|<R 0 |0|>R

1.5 Relaxed control problem

We know that in stochastic control theory, and in the absence of additional hypotheses
of convexity on the coefficients, the optimal stochastic control problem does not have a
solution. For that, we should inject the space of strict controls in a wider space that has
good properties of compactness and convexity. This space is that of probability measures
on A, where A is the set of values taken by the strict control. In this new space, controls
called relaxed controls. For more details see ([25]) and ([26]), Before defining the notion
of relaxed stochastic control, we begin with an example for which an optimal solution in

the strict control space does not exist.

Exemple 1.3 Let a system that evolves according to the following SDFE

dzy = wdt

IEOZO.

where u : [0;1] — {—1,1}, and the cost
1
J(u) = /(x}f)th.
0

If we consider u! = (—1)*, with £ <t < 1.0 <k <n—1. Then, Vt € [0;1], |z{"| < 2,
then J(u™) < 2 which implies that inf J(u) = 0. But there is not u such that J(u) = 0,
because =i = 0,Vt € [0;1] if and only if uy = 0 which is impossible. The trouble is the

fact that the sequence (u™), has not a limit in the space of strict controls. So we look

17



Chapter 1. Stochastic calculus with jump diffusion

for a space in which this limit exists. If we identify uy with the Dirac measure, then
dur (du) = pn(t, du) is a sequence of measures over the space [0;1] X U. converges weakly
to u(t, du) = 3 [01 4 6_1] du. Indeed, if we take a continuous function f on [0;1] x U, one

has
i+1

/ f(t, u)pn(dt, du) —i/f(t,(—ni)dt.

(0;1]xU
Suppose first that is even number , that is n = 2m. Let € > 0, there is an M > 0 such that

VYm > M,
) 1
|f(t,U)—f(S,U)| <€ Zf |t_8| < Ea

where u s either 1 and —1. Fix m > M, then for every j =0,....m — 1,

2j+1 2j+2
2m 2m
[ st [ st <
25 2j+1
2m 2m
then
2j+1 2j+2
m—1 2m m—1 2m
ftu)dt = / f(tu)dt| < 5,
I=0 25 I=0 2551
2 2m
therefore,
2j+1
m—1 2m 1 1
[ #twar =3 [ riewa <
7=0 55 0
2
and
2542
m—1 2m 1 1
[ st~ [ < 5,
J=0 2571 0
2m
because
2j+1 2j+2
m—1 2m m—1 2m 1
3 /f(t,u)dtJrZ /f(t,u)dt:/f(t,u)dt
J=0 3 J=0 2541 0
2m 2m

18



Chapter 1. Stochastic calculus with jump diffusion

So,
2m—1 Y 1 1 1
> /f(t,(—1)i)dt—§ /f(t,l)dt—/f(t,—l)dt <e.
=0 i 0 0

That s

/ Ft ) (dt, dut) — / f(t,u)%[61(du)+5_1(du)]dt <e.

0;1]xU [0;1]xU

The case where n is odd is treated in the same way.

Now, we can define a new control problem that generalize the strict one, which is associated
to such a measure p(dt,du) = d,,(du)dt, which is called a relaxed control problem.

Counsider the SDE .
ot =+ [ [untds.du),
0 A

and the cost is

J(u) = /1(xf)2dt.

If p*(dt,du) = 5 [01(du) + §_1(du)] dt, we have J(pu*) = 0, so the new problem has u* as

1
2
an optimal solution. p is called a relaxed control.

Let V' be the space of positive Radon measures on [0; 1] x A, whose projections on [0; 1]

coincide with Lebesgue measure, and let the Borel o—field V as the smallest o—field
1
such that the mappings yu — / / o(t, u)py(du)dt are measurable, where ¢ is a bounded
0 A
measurable function which is continuous in a. Let us also introduce the filtration (V;) on

V, where V, is generated by {1[0;,5] W, e V} .

Definition 1.9 A relazed control on the filtered probability space (2, F,(Ft),sg, P) is a
random variable . with values in V' such that p(w,t,da) is progressively measurable with

respect to (Fi)i>0 and such that for each t, Lo, 18 Fy—measurable.
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Chapter 2

Stochastic maximum principle of

controlled jump diffusions

n this chapter, we will give a detailed demonstration of the maximum principle
Ifor optimal control of systems driven by stochastic differential equations with jump
processes, where the control variable appear in the drift and the jump term, we also
study the maximum principle for near optimal controls. This result is based on Ekeland’s
variational principle. The maximum principle for near optimal controls has great utility

to establish the relaxed maximum principle in the next chapter.

2.1 Formulation of the problem

We consider in this subsection a stochastic control problem of systems governed by sto-
chastic differential equations on some filtered probability space (€2, F ,(.7-}),20, P), such that
Fo contains the P—null sets, We assume that (F;);>¢ is generated by a standard Brownian
motion B and an independent Poisson measure N, and assume that the compensator of

N has the form v(df)dt, where the jumps are confined to a compact set I'. And set

N(dt,do) = N(dt,dd) — v(d6)dt.

20



Chapter 2. Stochastic maximum principle of controlled jump diffusions

Consider the following set A is a nonempty subset of R* and let U the class of measurable,
adapted processes u : [0; 7] x 2 — A. For any u € U, we consider the following stochastic

differential equation (SDE)

dey = b(t, 2, u)dt + o(t, 2,)dB + / (0, u,) N (dt, dB)
T (2.1)

where

b:[0;T] xR"x A — R"
0:[0;T] x R" — M,,»q(R)

f:0T|xR*"xT'x A — R"

are bounded, measurable and continuous functions.

The expected cost is given by :

T
J(u)=FE |g(xr) + /h(t,xt,ut)dt , (2.2)
0
where

g:R" — R

h:[0;T]xR"x A— R

be bounded and continuous functions.
The strict optimal control problem is to minimize the functional J(.) over U. A control

that solves this problem is called optimal.
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

2.2 The maximum principle for strict control

2.2.1 Using convex perturbations

The following assumptions will be in force throughout this subsection

(Hy) The maps b, o, f and h are continuously differentiable with respect to (x,u), and g
is continuously differentiable in x .

(Hy) The derivatives b, b, 0, fz, fu and h;, h, are continuous in (x,u) and uniformly
bounded, and ¢ is continuous in z and bounded.

(Hs) b, 0, f and h are bounded by K (1 + |z| + |u|), and g is bounded by K(1 + |z|), for
some K > 0.

Under the above hypothesis, and since the probability space and Brownian motion do not
change with the control, then has a unique strong solution and the cost functional
(2.2) is well defined from U into R.

Suppose that there exist an optimal strict control v*, which minimizing the cost functional
J(.) over U, and denote by z* the corresponding trajectory. To derive optimality necessary
conditions, satisfied by the optimal strict control u*, we use the convex perturbations of

the optimal control v*, which defined by
h _ % *
u" =u" + h(u —u")

for some u € U.

Lemma 2.1 Under assumptions (H, )-(Hz), one has

*

lim £/ | sup }m? — Ty ’l =o.
te[0;T]

h—0

Proof. See proof of lemma m
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

Since u* is optimal, then

J*) < J(u") = J(u*) + h#

Thus a necessary condition for optimality is that

dJ(u")
dh

> 0.
h=0

Let us take care to compute this derivative :

T
ul * *
Y| = 4B | (aleh) - (o)) + [ (e wloud) = bt ) de
T 0
+ [ bttt = hit g ) e
0
then .
uh * * * *
Y| = AE g )+ [huttai bt - o)

0

T
f/m@w;@xw—mnﬁ
0

If we denote by z; = C;L? , we get the following corollary

h

Corollary 2.1 Under assumptions (H,)-(Hs), one has

dJ(uh)
dh

T
, =F /{hw(t, i, ul)ze 4 ho(t, 2, ul )ug } dt
-0
0

+. (1) 21]
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

where the process z is the solution of the linear SDE

dzy = (be(t, xf,uy)ze + by (t, z7, uf)uy) dt + o, (t, x7) 2, d By
/(fx<, w00 )z + fult a0, ul Yuy-) N(dt, db)

r

L 20 = 0.
From (H,) the variational equation has a unique solution.

To prove the corollary ([2.1)) we need the following estimate.

Lemma 2.2 Under assumptions (H, )-(Hs), it holds that

»

— Z¢.

h *
Ty — Ty

lim F
h—0

Proof. Let

h *
Ty — Ty

Y =

(2.4)

We denote =/ = 7 + Ma(yl + 2), and u}”* = uF 4+ Ahuy, then y* satisfies the following

SDE
dyl —% bt Lol ul)y —b(t, x;‘,u;‘)] dt+}—ll [a(t,x?) —a(t,x;‘)} dB,
+%/ 7ta9ut) f(atveu )]N(dt,d@)
r
— [b2(t, xf, uf)ze + bu(t, xf, uf )ug] dt — o,(t, x5)2:d By
/ o a0, 0 )z fu(t, @7, 0,07 Yuy- | N (dt,dd),
T
then
t 1 ¢ 1
Yt = /bz(, T u! ysd)\ds—i—//ax yhd\d B,
0 0

0
t 1

0
///fgc(s,a:’:’_A,H,u’;_)yg_d)\ﬁ(ds,de)—l—p?,
00T

+
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

where

t 1

t 1
of ://bm(, T uy zsd)\ds—l—//ax M zod\d B
00

0 0
t

N 1 h
+O/O/F/fx(8 x, L0, u" )z, dAN (ds, df)+ /[b(s,xs,us) b(s, z%,uk)] ds

t t

—l—//fu(s,x:_ﬁ,u* )usﬁ(ds,dH)—/b (s, 2% uk)zsds
0T

0
t t

—/bu(s,xs,us)usds - /ax(s,xg)zsst,
0

0

hence
t] 1 2 i1 2
E|yﬂ2 SKE/ /bx(s,xi“\, ul)yhd\ ds+KE/ /ax(s,xg’)‘)ygd)\ ds
0 10
2
+KE// /fx 5,2, 0, ul Yyl d\| v(df)ds + K Esup,poper | pf }

Since b,, 0., and f, are bounded, then

to+h<t<T

By < CE/ WP ds+ KE sup |olf*.
0

We conclude by the boundedness and continuity of b,, o, f. ,b,, and f,, and the dominated

convergence that limy .o £sup, ;<7 ‘pﬂ2 = 0. Hence by the Gronwall lemma, we get

hmE‘yt| =0.
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

We use the same notations as in the proof of lemma ([2.2)), we can prove the corollary ([2.1).

Proof of corollary. We have by the definition of J that

then,

PA Ul (Yl + z)dAdt

S
.
—~
I
=
|
=
I
*
=
I
o
\’ﬂ
e}
8
8
N>
N
<
S
+
N
2
Q
>~
OQ%
(=]
>
§
=
3?

+
T 1
—i—//hu(t o up )utd)\dt] ,
00

hence
% [J(uh) — J(u*)} — [/gx sz)\ + // t l’t ut th)\dt
T 1
+//hu(t o5 ul M ugdAdt | + ol
00
where
1 T 1
of = F /gw de)\—i-//hxtxt UM ytd\dt
0 00

By the Cauchy-Schwartz inequality and boundedness of g, and h,, using the lemma ({2.2))
we can easily prove that

lim o = 0,
h—0

hence, the result follows by letting h go to 0 in the above equality. m

By the integration by parts formula [27], we can see that the solution of dz; is given by
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

2y = iy where

(

do(t, T ot u)o(t, 7) + o (t, ) e(t, 7)dBy
/fx o0, )N (dt, dB)

0<7<t<LT

Y

L @(Tu T) = -[d

and

dn; = 1y bu(t,xf,u;‘)ut—/f (t, 27,0, u; )uyo(d)dt
r

_¢t_/(f (t 27 0,u7) + 1) " fult, 2i 0, uf)u N (dt, db)

r

L Mo = 07
with v is the inverse of ¢ satisfying suitable integrability conditions, and it is the solution

of the following equation

(

dp(t,7) = (02 (t, 2)(t, T)ow(t, vF) — ba(t, F, up)ib(t, 7)
/fx L, 0, u )t T)u(de)dt

—o,(t, z7)(t, 7)dB;
—w(t‘ﬁ)/(fx(, v 0,ut) + 1)) ot 0, uf)N(dt, do)

T

(T, ) = 1y

\

Remark 2.1 1. From Ito’s formula, we can easily check that d(p(t,7)(t, 7)) = 0,

and 90(7—7 TW(ﬂ T) = Iy.

2. If T =0, we simply write p(t,0) = ¢; and Y (t,0) = 9.
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

Then the equality (2.3]) will become

_E / (halt, ol o + ha(t, s} dt
+92(z7)prnr] -

Set

T

X = /hx(t,xi,ui)widt+gm(:v?})90é‘r

0
t

_E[X|Ft]_/h (s,xs,us) :dsv
0

then, we have

T

yr = E[X | Fi] — /hx S, xa ut)pids = X — / (s, 25, ul)prds = g.(x})er, (2.5)
0

replacing (2.5)) in (2.18)), we obtain

dJ (u)
dh

_E / (ho(t 2,0 )oims + b, 2w ug) d 4 yenr | - (2.6)
h=0

By the Itd representation theorem [19], there exist two processes Q € M? and R € £?

EIX|F]=E /QSdB +// N(ds, d8),
yt:E[X]—/h (5, 2%, u7) gpsder/Q iB, +// N (ds, d6).

satisfying

hence,
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

Now, let us calculate E [yrnr|, we have

dyy = —hg(t, x, u})pdt + Qid By + /Rt N(dt,dd),

by the integration by parts formula we get

d(yem:) = yedny + nedy; + /ppoU(dQ)dt

= yt¢t [ t xtjut /fu t,xs,e u U{U(da)] dt

Tr

+n:Qed By + /mRt(Q)N(dt,dﬁ)

T

+ / Re(0)y (fo + Id)™" fuugv(de)dt.

r

If we define the adjoint process by : p; = y;, then

d(yem) = pbyudt — py / Juuv(dO)dt — p, / (fo+I1d)™" fyuN(dt,dd)
N

—pt/ (fe+ Id)_l fuugv(dO)dt — nypfhedt + n,Qd By
r

T / neRe(0) N (dt. db) + / ROV (fs + Td)~" foupo(d0)dt

r r

hence

S

T
yrnr = [ piby udt—//ptfuuv (df)d //pt fo 4 Id)™" fuu,N(dt, d6)
0

o\’ﬂ

/ pr(fo 4+ 1d)™ fuupo(d0)dt — | negihadt + / nQudB,
I 0

+

D\ﬂo\ﬂo

T
r 0r
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take the expectation, we obtain

T

Elyrnr] =E / ptbour/Rt(H)wt (fo+1d) " = pi ((fo + Id) + Id) fuuo(dO) | dt

T
/Ut%h dt
0

We define the adjoint process r by
r(0) = Ry(0)Yy (f2 + fd)_l —p ((fe + 1d) + 1d),

hence
T T

E [yTnT] =L / prbyu + /rt(e)fuutv(dﬁ) dt — /Ut@fhwdt

0 r 0

By the replacing in (2.6, we get

T
=F / ho(s,zh,ul) + psby(s, x5, ul) + /?“S(H)fu(s,xsﬁ usv(dl) p usds| > 0.
h=0

0 T

dJ (u)
dh

(2.7)

Finally, if we define the Hamiltonian H from [0; 7] x R™ x A x R™ x R"™*™ x L2 into R by

H(taxvu7paq7 ( h t mtaut) _I_pb(t xhut) +q0(t mt)

/ (s, 2,0, us)v(db)
T

we get from (2.7) the next theorem which is the result of this subsection.

Theorem 2.1 (maximum principle for strict control) Let u* be the optimal strict

control minimizing the cost J (.) over U, and denote by x* the corresponding optimal
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

tragectory, then the following inequality holds

T
E /Hu(tax;tkvufapta%,rt(-))(ut —uy)ds | >0,
0
where the Hamiltonian H is defined by .

2.2.2 Using strong perturbations

The following assumptions will be in force throughout this subsection

(Hy) The maps b, o, f and h are continuously differentiable with respect to (z,u), and ¢
is continuously differentiable in z.

(Hz) The derivatives o, f., and g, are bounded, and b,, h, are uniformly bounded in u.
(Hs) b, 0, f and h are bounded by K (1 + |z| + |u|), and g is bounded by K (1 + |z|), for
some K > 0.

Under the above hypothesis, the SDE has a unique strong solution and the cost
functional is well defined from U into R.

The purpose of this subsection is to derive optimality necessary conditions, satisfied by
an optimal strict control. The proof is based on the strong perturbation of the optimal

control u*, which defined by :

14 if té[to;to—i‘h]

u* otherwise,

where 0 < tg < T is fixed, h is sufficiently small, and v is an arbitrary A—valued
Fi,—measurable random variable such that E |V|2 < o0. Let 2" denotes the trajectory

associated with u”, then
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

h=ar t<t

r

\ r

We first have

Lemma 2.3 Under assumptions (H,)-(Hs), one has

lim F
h—0

sup |x? — I =o0.
te(to;T)

Proof. For ¢ € [to;to + h|, we have

¢
-2 = /b(s,x?, v) —b(s,xs,ul)ds

to
t

+ /a(s,x?) —o(s,zy)ds

to
t
+// [f(s,xg_,e,u?)—f(s,x:,e,u:) N(ds, db).
to T

We can deduce by the standard arguments that,

to+h to+h

E/ “mg—x;‘ 2]d3§K/E|V—u:|2ds,

to to

and by the martingale inequalities, we deduce

E

to+h
sup |} —x}ff <K / Elv —u:| ds.
tG[to;to-‘rh}

to

32
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We next have for ¢ € [ty + h; 1],

¢
oy —xp = [af - a ] + / b(s, " v) — b(s,x*, ut)ds

to+h
t
—i—/a(s,x?)—a(s,x:)ds
to+h
t
s [ [ [ralba)= .00, ] s, do
to+h I’

from which we deduce successively

T
E [ |oh =2’ ds < KE|a} ., — 2}, |’
Ty —Tg| AS > Tiorh = Tigrn|

to+h
|2 * 2
E| sup |x£‘ — ] < KFE {xfﬁh - xt0+h| : (2.11)
te[to+h;T)

From ([2.10)) and ([2.11)), letting & tend to 0, we obtain (2.8)). m

Since u* is optimal, then

Ju*) < J(u") = J(u*) + hM

< i + o(h).

h=0

Thus a necessary condition for optimality is that

dJ(uh)
dh

> 0.
h=0

Let us take care to compute this derivative :

Note that the following properties holds, because b(t, z,u), h(t,xz,u) and f(t,z,-,0,u) are
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sufficiently integrable

t+h
1
E/E [1k(s, g, us) — /{:(t,a:t,ut)|2] h—00dt—ae (2.12)
t
1 t+h
E//E (1 (5,20, 0,10) — F(t, 2,0, ur)[2] 0(d6) h— 0 0 dt — ace, (2.13)
r t

where k stands for b or h.

Choose tg such that ([2.12) and (2.13]) holds, then we have
Corollary 2.2 Under assumptions (Hy)-(Hs), one has

dJ (u)
dh |, o

= E[g.(v7)2r + or], (2.14)

where

ds; = hy(t, x}, uf)zdt to<t<T
Sto = h(to, z},,v) — h(to, x7,, u;"o)

and the process z is the solution of the linear SDE

dzy = by (t, x7, uy) zedt + o, (t, 27) 2 d By + /fm(t, Ty, 0,u)z-N(dt,db); to <t<T
T

Rtg = [b(th 37;;07 V) - b(to, 33:0, u;O)} ’

(2.15)
From (Hs) the variational equation has a unique solution.

To prove the corollary (£2.1)) we need the following estimates.

Lemma 2.4 Under assumptions (H,)-(Hs), it holds that

»

h *
) T —
lim F ||—t—"t

h—0
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T
}LL)I%E E/ [(h(t,xt,uh) - (h(t,xt,ut)} —qr = 0.
to

Proof. Let

dyp = 2 [b(t,z; + h(y! + z),v) — bt x},u}) — hb,(t, x}, u})z] dt

+3 [ot, @7 + h(y! + ) — o(t, x]) — hoy(t, x})z] dB,
+%/ [f(tw + (Yl + 2-),0.0)—f(t,xi, 0,uf) — hfolt, ), 0,u])z- ] N(dt,df)
r
\ y[bo = - |:b<t07 ‘xr()’ U) - b<t07 x;‘;’ u:‘,ko)]
Hence
tot+h tot+h
Yish =4 / [b(t, @} + h(yy + z),v) = b(t, =}, v)] dt + / [b(t, a7, v) = b(t, @}y, v)] di
to to
to+h to+h
—i—% / [b(t,a:fo, v) — b(to, x7,, V)} dt + % / [b(to,xfo,u’t“o) — b(t,x;‘,uf)] dt
to to
to+h
w4 [ [ottai + it + 20) - ott. )] aB
to
to+h
+% / / [f(t’ l‘;‘_ + h(y?— + Zt_)> 97 V)_f(ta l’:_, 07 V)} N(dta d‘g)
to T
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+%//:f(, zr,0,v)— f(t,xt_,e u)} N (dt,db)
+%// flt e, 0,v)=f(tg, 7,0, u)} N (dt, df)

+%//'f( o 75 0,0)= F by, 0,3,)| N(dt, o)

b [ [ [Hga boi) (e 0.00)] F(at,do
to+h to+h to+h

—/bx(t,xf,u;‘)ztdt— /ax(t xf)zdBy — //fx Ty, 0, uf th(dt dn).

to to

Then

E|yg)+h|2 < C[E sup }xf—xff—i— sup E‘b(t,xfo,l/)—b(to,xfo,u)fdt

to<t<to+h to<t<to+h
to+h
1 * * * x |2
+EE/ ‘b(t07$tovuto> b(t, ‘rt7ut> Sup |xt — Ty
to<t<to+h
t0+h to+h

+E//|u—ut\ v(dh) dt+E/ |20 dt (2.16)

sup E [ |f(t,z7_,0,v)—f(t,,z_,0,v)| v(d)
/1 g )|

to <t<to+h
to+h

2
+%E//‘f o 0, u3,) = f (1, 0,u)| v(db)dt
to T

By Lemma 1} and the properties (2.12) and (2.13)), it is easy to see that E |yﬁ)+h|2

tends to 0 as h — 0.
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For t € [t + h; T], we denote z}"* = aF + Mh(yl + z), then y* satisfies the following SDE

dyp =3 [b(t of + Ry + 20),up) — b(t af,up)] dt + 4 [o(t 27 + byt + 2)) — ot 27)] dB,

+%/ Flt o + by + z-), 0,u))—f(t, x5, 0,uf)] N(dt, do)
T
—b.(t, x}, ul)zedt — o, (t, xF)2,d By

/fx (t azt 0, uy)z (dt,d@),
T

then
yr =yp o+ / / s, 2P u)yhdds + / / 04 (s, M) yrdNd B,
to+h O to+h O
1t
+///fa: s, A 0 ur) fdAN(ds,dG)—l—pﬁ,
0 to+h T
where
// s, A ur)z,dds + //ax Mz, d\dBs + ///fw s, SA,Qu)zsdAN(ds,dQ)
t0+h 0 to+h O to+h O
—/b (s,z%,ul)zeds — /O'z( )zsdBs — //fx s, o, 0,ul)z SN (ds, db).
to+h to+h to+h T’
Hence
2 2
n|? Ro|2
Elyt|” <Elyp..| +KE s, el ul)yldA| ds+ KE yrdA| ds
to+h |0 to+h |0

2

+KE// /f:c s, Z/\ae u ) gd/\ U(de)dS+KEsupt0+h<t<T‘pt‘

to+h I 0

Since b,, 0., and f, are bounded, then

E‘yﬂ <E‘yt0+h‘ —i—CE/‘yﬂ ds+ KE sup }pt|

to+h<t<T
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

We conclude by the continuity of b,, o, and f,, and the dominated convergence that

limy, o E'supy, p<i<r ‘pt ‘ = 0. Hence by the Gronwall lemma, and (2.16)) we get

hm E ‘yt |

The second estimate is proved in a similar way. m
We use the same notations as in the proof of Lemma (2.4)), we can prove the corollary

2.
Proof. We have by the definition of J that

PG~ )] = 5 | Blate) - o] + [ el = bt )] |
then
% [J(uh) - / )d/\ + ;L/ [h(t,mi‘,ui‘) — h(t,xf,u:)] dt

From Lemma ({2.4), we obtain (2.3)) by letting h tend to 0. m
Let us introduce the adjoint process. We proceed as in [9] and [27].

Let ¢(t,7) be the solution of the linear equation

;

do(t, ) = by (t, zF, uf)o(t, 7) + o (t, 27)o(t, 7)d By

0<r7<t<T.
/fac Jx, 0,up)p(t, )N (dt, db) (2.17)

L 90(7-7 7—) =14

This equation is linear with bounded coefficients. Hence it admits a unique strong solution.
Moreover, the process ¢ is invertible, with an inverse v satisfying suitable integrability
conditions.

From It6’s formula, we can easily check that d(p(t, 7)) (t, 7)) = 0, and (7, 7)(7, 7)) = 14,
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

where 1 is the solution of the following equation

;

dip(t, 1) = (0. (t, xp)(t, T)ou(t, x7) — by (t, xf, uf )i (t, T)
/fx 0, v (do)dt

\  —ou(t,at)(t, 7)dB,
-ww,ﬂjkfmt,ewwdalﬁ<,wemwwwdw

(T, 7) = 1.

\

If 7 = 0 we simply write ¢(t,0) = ¢; and ©(t,0) = 1.

By the uniqueness property, it is easy to check that

2 = p(t, to) [b(to,xfo, v) = b(to, ry,, ufo)} ,

then, (2.3) will become

T
ul * * * * *
O] =B [ttt )ttt [ o)~ bt )] de
fo (2.18)
+ 9z (I})QO(T, tO) [b(t(b 377507 V) - b<t07 x;‘,km u;fk())]
+ [h(to, x:ov V) - h(t0> x:ov u%)“ :
Now, if we define the adjoint process by
pr = Yty (2.19)

where
T

w = E |gua)er+ [halsat)odt | 7

t
t

IEWLH—/h@%wQMt

0
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

with

T
X = )T +/hx S, Ta,uk)pidt.
0
It follows that

dJ(u)
dh |,_,

=F [pt [b(th $Z07 V) - b(tOv x;fkoa UIO)] + [h(tO’ 1’:07 V) - h(tO’ 1’:07 u:o)ﬂ :
Define the Hamiltonian H from [0;7] x R" x A x R™ into R by
H(t,z,u,p) = h(t, x, up) + pb(t, Ty, uy), (2.20)

we get from optimality of u*

E [H(to, 3y, v,pty) — H(to, 2y, 15, , pro)] > 0.dto — a.e.

By the Ito representation theorem [19], there exist two processes Q € M? and R € £?

EX|FR]=FE /QSdB+// N(ds, db),
yt—E[X]—/h (s,x%,ul) <p5ds+/Q dB; —|—// N(ds, df).

satisfying

hence,

Let

qt = Qtl/)t - pto-z(tu I:)a

Tt<9> = Rt(g)wt (fa:( ) t ,(9 ut) +Id) + Dt [(f:r( ) t 79 ut) +[d) - [d]

The above discussion will allow us to introduce the next theorem which is the main result

of this subsection.

Theorem 2.2 (maximum principle for strict control) Let u* be the optimal strict
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

control minimizing the cost J (.) over U, and denote by x* the corresponding optimal
trajectory, then there exist a unique triple of square integrable adapted processes (p,q,r)

which is the solution of the backward SDE

dpe = — [hao(t, aF,ul) + piba (L, xF, uf) + qro, (L, o)

+ / re(0) f(t, 27, 0, u)v(df) | dt.
I
B, + / r(0) N (d, dB)

r

\ P — ga:(x;“)

such that for all v € U the following inequality holds
EH(t,xf,v,p) — H(t,z},u;,p)] > 0.dt — a.e.

where the Hamiltonian H 1is defined by .

2.3 The maximum principle for near optimal controls

We know that there is always a near optimal control. It is interesting to know what kind
of necessary conditions are verified by these controls. For this we need to introduce the

Ekeland’s variational principle

Lemma 2.5 (Ekeland’s variational principle) Let (E,d) be a complete metric space
and f : E — R be lower semicontinuous and bounded from below. Given ¢ > 0, suppose

u® € E satisfies f(u®) <inf(f)+e. Then for any A > 0, there exists v € E such that

o f(v) < flw)+ 5d(w,v) for all w # v.
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Chapter 2. Stochastic maximum principle of controlled jump diffusions

To apply Ekeland’s variational principle, we have to endow the set U of strict controls

with an appropriate metric. For any u and v € U, we set

du,v) = P@dt{(w,t) € Q x [0;T], u(w,t) # v(w,t)}.

A suitable version of Ekeland’s variational principle implies that, given any ¢, > 0, there

exist ©" € U such that

J(u") < J(u) + epd(u”, u), Yu € U. (2.21)

Let us define the perturbation, Vu € U, S € F,

. u;  (t,w) € [tosto+h] xS

u™....otherwise.

from (2.21)), we have

0 < J(u™") — J(u") + epd(u™", u™),

by the definition of d, it holds that

J™) < J(u™") + ,hC,

where C' is a positive constant.
Finally, we use the same method as in the previous chapter, we can prove the next theorem

which is the main result of this subsection

Theorem 2.3 For each €, > 0,there exists (u™) € U such that there exist a unique triple

of square integrable adapted processes (p™,q",r"™) which is the solution of the backward
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SDE

dpy = — [he(t, 27, u}) + pPbe(t, 27, up) + qfo.(t, 27)

+/7‘f(9)f(t,xf_,9,u?)v(d@) dt.

r

+q'dB, + / 1 (0)N(dt, df)
r

such that for all u € U

EH(t,zy, u,py) — H(t,z},uy, p})] + Cep > 0,

where C' is a positive constant.
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Chapter 3

The relaxed maximum principle of

controlled jump diffusions

‘ N T e know that in theory of stochastic control of diffusions and in the absence

of additional convexity assumptions on the coefficients of the control problem

defined in the second chapter has no optimal solution. For that, we should inject the space
of strict controls in a wider space that has good properties of compactness and convexity.
This space is that of probability measures on A where A is the set of values taken by the
strict control. In this new space, controls called relaxed controls. The first existence result
of an optimal relaxed control is proved by Fleming [14], for the SDEs with uncontrolled
diffusion coefficient and no jump term. For such systems of SDEs a maximum principle
has been established in [2, B, 26]. The case where the control variable appears in the
diffusion coefficient has been solved in [13]. The existence of an optimal relaxed control
of SDEs, where the control variable enters in the jump term was derived by Kushner [23].
Our main goal in this chapter is show that under a continuity condition of the coefficients,
each relaxed diffusion process with controlled jump is a strong limit of a sequence of dif-
fusion processes associated with strict controls. The proof of this approximation result is

based on Skorokhod selection theorem, and the tightness of the processes. Consequently,
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Chapter 3. The relaxed maximum principle of controlled jump diffusions

we show that the strict and the relaxed control problems have the same value function.
Using the same techniques, we give another proof of the existence of an optimal relaxed
control, based on the Skorokhod selection theorem. After that we establish a Pontriagin
maximum principle for the relaxed control problem. More precisely we derive necessary
conditions for optimality satisfied by an optimal control. The proof is based on Pontria-
gin’s maximum principle for nearly optimal strict controls and some stability results of

trajectories and adjoint processes with respect to the control variable.

3.1 Formulation of the relaxed control problem

If u™ is a sequence of admissible relaxed controls with corresponding solution x", then
there might be a weakly convergent subsequence of (z™, ™) whose limit does not satisfy
for some Brownian motion, Poisson measure and admissible control u, because in the
relaxed control framework, the way of representing the limit controlled jump terms not
clear. To get the desired closure or compactness, it is necessary to enlarge the model, for
that we need to introduce an extension of the Poisson measure, which we call the relaxed
Poisson measure, to do this we follow closely [22].

Let us begin with a simple example. Suppose that the admissible control u takes the two
values a; and a9 such that

a t e lkp; kp+
wit)=4 hpikp + Pp k=1,2,...

az,  t€[kp+ Bipikp+ p

where p > 0, and 5 + 2 = 1.

Let ¥ denote the associated solution to (2.1)), if we define 17(s) by

L, wl(s) = a(s)

0, otherwise,
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then the SDE (2.1)) takes the form

2 2
dxf 2215(75)6(15,;15?, a;(t))dt + o(t, xf)dBt+Z/1f(t)f(t,xf, 6,a;(t))N(dt,do)
i=1 =11

P
g =0.

Let p” denote the relaxed version of the control u”, that is uf(da;)dt = dye)(das)dt. It is

easy to see that 17(s) = 7 (a;) which converges weakly to y;(a;) = f3;, when p — 0, indeed

/ / (5)8ur 0 (datg)dt = / (0 (1))t
R A R

= /‘P(al)l[kp;k/ﬂrﬁlp} (t)dt + /90(a2)1[kp+51p;kp+p] (t)dt

R R
= p(a1)Bip + p(as)Bap
2
= /Z ©(a:) Biligpirpp) (£)dt
I

= /‘P(al)ﬁll[kp;kwrﬁm] (t)dt + /‘P(aQ}B?l[karﬁlp;ka] (t)dt

= R//Sf?(az‘)ﬁidt- R

By the tightness of the set of jumps, we can fix a weakly convergent subsequence of the

jumps, such that the limit satisfies the following SDE

2
dz; :/b(t,xt,at)ut(da)dt + a(t,xt)dBt—l—Z/f(t,xt,Q,ai(t))m(dt,dﬁ)
A =lr
) = 0,

where N;,i = 1,2 are independent Poisson measures with compensator v(df)3;dL.

Remark 3.1 Note that the previous type of approrimation can be adapted to the case

where the fractions of the intervals on which the a; are used are time dependent in a
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Chapter 3. The relaxed maximum principle of controlled jump diffusions

nonanticipative way. in this case the compensator of N;,i = 1,2, is the random and time
varying quantity v(d0)u,(da;)dt. Moreover, the Ny, i = 1,2, would not be independent, but

the martingales defined by

t

j J1tsts.at0.00N s, d0)- [ [ 105,020, auld0)ng(dais

0r

converge weakly to the processes

t

//f s, 24,0, a;)N;(dt,df)— //f(s,xs—,H,ai)v(de),us(dai)ds

0r

which are orthogonal F;,—martingales.

General case

The above discussion suggests a generalization of the concept of Poisson measure. For
that, let p be the relaxed representation of an admissible control u, and let Ay € B(A)
and I'y € B(I"). Then define

N#([05t], Ag, To) = NH(t, Ag, Tg) = //IAO(U(S))N(ds,dQ),

0 Tp

the number of jumps of //(9N(d$, df) on [0;t] with values in 'y and where u(s) € Ag

0 To
at the jump times s.

Since 14,(u(s)) = ps(Ap), then the compensator of the counting measure valued process
NFis v(d) i (da)dt = py @v(da, df)dt. Moreover, for bounded and measurable real-valued

functions ¢(.), the process

/// S, xs—, 0, a)N*(dt,dl, da) ///gps zs—,0,a)v(dO)us(da)ds
T
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is also an JF;—martingale.

Definition 3.1 A relazed Poisson measure N is a counting measure valued process such
that its compensator is the product measure of the relaxed control p with the compensator

v of N. Which have the property that for any Borel set 'y C T and Ag C A, the processes
N*™(t, Ag,Ty) = N*(t, Ao, T) — u(t, Ag)v(Ty)

are Fy—martingales and are orthogonal for disjoint T'g X Ap.

Now, we can write the stochastic differential equation with controlled jumps in terms of

relaxed Poisson measure as follows

dxy :/b(t,xf,a)ut(da)dt—|—0(t,xf)dBt—I—//f(t,xg,H,a)]v#(dt,dﬁ,da)
A AT (3.1)

The expected cost associated to a relaxed control is defined as

J(p) =E |glag) + [ [ h(t, 2}, a)p(da)dt
/]

Consider a sequence of random predictable measures (4l @ v),, converging weakly to s @v
on [0; 7] x A x I' P—almost surely, then there exists a sequence of orthogonal martingale
measures N™ defined on Q) x [0; 7] x A x I" with compensator u” ® v(da,df)ds, such that

for each bounded function ¢

t

/// s,zh_,0,a YN™(ds, df, da) converges to ///go(s,x’;,H,a)ﬁ“(ds,dG,da).
0

0 AT
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3.2 Approximations and existence of relaxed control

3.2.1 Approximation of trajectories

In order for the relaxed control problem to be truly an extension of the strict one, the
infimum of the expected cost for the relaxed controls must be equal to the infimum for
the strict controls. This result is based on the approximation of a relaxed control by a

sequence of strict controls, given by the next lemma, which called chattering lemma.

Lemma 3.1 Let p be a predictable process with values in the space P(A). Then there

exist a sequence of predictable processes (u™) with values in A such that
py (da)dt = 6,p (da)dt — pe(da)dt — weakly..

Proof. see [14] =
The next theorem which is our main result in this section gives the stability of the stochas-
tic differential equations with respect to the control variable, and that the two problems

has the same infimum of the expected costs.

Theorem 3.1 Let i be a relaxed control, and let x* be the corresponding trajectory. Then

there exist a sequence (u™) of strict controls such that

lim E [ sup |z} —xﬂQ] =0

n—oo 0<t<T

and

lim J(u") = J(p). (3.2)

n—0o0

where 2™ denote the trajectory associated with (u™).
To prove theorem (??) and theorem (3.1)), we need some results on the tightness of the

processes.
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Lemma 3.2 The family of relaxed controls ((11")n>0, 1) is tight in R the space of proba-

bility measures on [0;T] x A.
Proof. see [3]. =

Lemma 3.3 The family of martingale measures ((N™),s0, N*) is tight in the space Dy ([0; T])
of all mappings cadlag from [0;T] with values in S" the topological dual of the Schwartz

space S of rapidly decreasing functions.

Proof. If we denote .
Y = / / Wt 2l 0, a)N"(dt, db, da)
0 AxT"
and
t
y, — / / Ot 2,0, a)N(dt, df, da),
0 AxT"

and let S, T' two stopping times, such that S <T < .S + 6, then we have

Vn € N, e >0, dm and k > 0, such that

E Y
n>m P(sup|Y)| > k) < b

<e
t<n k? -

and Vn € N, € > 0, by the proposition (4.1)) ( see appendix ), we have

P(sup [Y¢ —=Y7[>n) < 5 +P(KY" >p — <Y" >g> k).
te[S;T] n
Since < Y >1 — < Y" >5< w(< Y™ >,0) = supp_gs |[< Y™ >r — < Y™ >g|, because
|T"— S| < 6. This implies that
P(sup V2 - Y7l =) < —

5 T Pw(<Y" >,0) > k).
te[S;T] n

By the C—tightness of < Y >, we have

Plw(<Y">,0) > k) <e.
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Finally, we conclude that

limlimsup sup P(sup |[Y§ —Y/[>n) =0,
6—0 n S<T<S+0  te[S;T]

that is the Aldous conditions is fulfilled (see appendix). Hence the sequence (Y;*),>o is

tight. By the same method we can prove the tightness of (Y;). =

Lemma 3.4 if 2" and x are the solutions of associated with ™ and p respectively,

then the family of processes (x™, x) is tight in D([0;T],R?).

Proof. By the same method in the proof of lemma (3.3). =

Proof of theorem 4.2. 1- Let i be a relaxed control, then by the Lemma , there
exists a sequence (u") such that pf(da)dt = 0,y (da)dt — ;(da)dt in R, P —a.s, Let 2",
and z are the solutions of associated with p™ and p, respectively, Suppose that the

result of theorem ([3.1)) is false, then there exists v > 0 such that
inf F []a:? — xfﬂ > 7. (3.3)

According to lemmas (3.2)), (3.3) and (3.4), the family of processes
B" = (", p, 2"z, N", N¥)

is tight in the space
(RxR)x(DxD)x(Dg xDg).

Then, by the Skorokhod selection theorem, there exist a probability space (ﬁ, F , ﬁ) and
a sequence B; = (um,v", x", Y, N7, M") defined on it such that

a- For each n € N, the laws of 8" and Bﬁ coincides,

b- there exists a subsequence (E"\k) of (B;) which converges to B\, P — a.s on the space

—

(R x R) x (D x D) x (Dg x Dg), where 3 = (1i, 0, %, 3, N*, M*~).
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By the uniform integrability, we have

n__ . n
Ty — Yy

v <liminf &/ { sup |z — xfﬂ — liminf E [ sup

0<t<T 0<t<T

where E is the expectation with respect to P. We see that @ and yAf satisfy the following

equations
o . - - =
dx} = /b(s,x?,a),u’;(da)ds—i—a(s,x?)st+//f(s,:c?,H,Q)N”(ds,dé,da)
A AT
(76 =0,
R N . - e
dyy :/b(s,yf,a)vg(da)ds+0(s,yf)st+//f(s,yf,H,a,)M”(ds,dé’,da)
A AT
L =0,

using the fact that ([/3;) converges to 3, P — a.s, it holds that (z7') and (y}') converge

respectively to z; and 7;, which satisfy

dz, :/b(t,@,a);ﬁ(da)dwa(t,:a)dBt+//f(t,f;,e,a)m(dt,de,da)
A AT
:i‘\(] 207

b(t, i, a)vy(da)dt + o(t, 5:)d B + //f(t,zifﬁ,a)ﬂ“(dt,d&da)
AT

IS
S
I

<
S
Il

By the lemma (3.1)), the sequence (u™, 1) converges to (p, pt) in R%. Moreover

law(u", p) = law(p", v%),

(ﬁ>ﬁ> - (ﬁaa)a ]/D\_a-s in R27
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if n tends to oo.

Hence, law(jz, V) = law(p, ), then 1 = v, P—as. By the same method we can prove
that z@(ds,de,da) - fj\z\ﬂ(ds,dé,da), P — a.s. It follows that & = i, P — a.s, by the
uniqueness of solution. Which is a contradiction .

2- By using the Cauchy-Schawrz inequality, we get

T() = J(w)] < O(E|g<:v%>— 9@ )’

+CFE // s,z a)u?(da)ds — //h s, 2% a)ps(da)ds

0

+C’/ E|h(s, 2, u) — h(s, 2" u)| )

N

ds.

The first and the third terms in the right hand side converge to 0 because g and h are

bounded and continuous functions in x, and the fact that

lim £ [\xt — x| }

n—oo

Since h is bounded and continuous in a, an application of the dominated convergence

theorem allows us to conclude that the second term in the right hand side tends to 0 . =

3.2.2 Existence of an optimal relaxed control

We show in this section that there exist an optimal solution for the relaxed control problem,

the proof is based on Skorokhod selection theorem and some results of tightness.

Theorem 3.2 Under assumptions on the coefficients b, o, f, g, and h the relaxed control

problem admits an optimal relaxed control.

proof . Let (™, u™) be a minimizing sequence for the cost function J(u), that is

lim J(u") = inf J(u),

n—00 HER

53



Chapter 3. The relaxed maximum principle of controlled jump diffusions

where 2" is the solution of (3.1} corresponding to u".
According to lemmas , and ( D the family of processes 5" = (u™, x", ],an) is
tight in the space (R, D, Dy ), by the Skorokhod selection theorem, there exist a proba-

bility space (ﬁ, F, 13) and a sequence B; = (um, z7, ]/V\;L) defined on it such that
1. For each n € N, the laws of 5™ and B; coincides,

2. there exists a subsequence (@) of (BE) which converges to E , P — a.s on the space

R x D x Dy, where B = (p, 7, N) it holds that 27 proba 7 then, we have

—_—

—

TG = J@)| < B }g(w@) - g@)

T
+E// t:z:t, dadt //htxt, ut (da)dt
7

A

+E// (t, Ty, a ,ut (da)d //ht:ct, Vi (da)dt|,
0

A

then

| J () —

dt

< Epen
/ t 7ut h(tai‘\tvu?k)
T T
// (t, Ty, a ut (da)d //h(t,@,a)/@(da)dt
0 A

0 A

The first and second terms in the right-hand side converge to 0, because h and g are
bounded and continuous functions with respect to . Using the convergence of (;;?’“)n to
iy, and the dominated convergence theorem to conclude that the last term tends to 0.

Hence

inf J(p) = lim J(p") = lim J(3*) = lim J(p™) = J(A),

HER n—00 n—00 n—00

then 1z is an optimal control. m
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Chapter 3. The relaxed maximum principle of controlled jump diffusions

Remark 3.2 From the previous results, we see that the relared model is a true extension
of the strict one, because the infimum of the two cost functions are equal, and the relazed

model have an optimal solution.

3.3 Maximum principle for relaxed control problems
Now, we can introduce the next theorem, which is the main result of this section.

Theorem 3.3 (The relaxed stochastic maximum principle) Let u* be an optimal
relazxed control minimizing the functional J over R, and let x}’ “be the corresponding optimal

trajectory. Then there exist a unique triple of square integrable and adapted processes

(p*,q ", r ") which is the solution of the backward SDE

ap = — / ha(t, 22, )it (da) + / Dbt 2t @)y (da) + gt o (8,2
A A
+ / / P (0)£(t, 20, )it © v(da, do). | di -
AT ’
+q¢" dB, + /Tf (0)N" (dt, dd, da)
T
L pg“t = gm(x!jﬂt)v
such that for all w € U
T
E / H(t 2 e, ol g () — / H(t 2l gl g ())yii(da) | dt > 0. (3.5)
0 N

The proof of this theorem is based on the following lemma.

Lemma 3.5 Let (p ",q ", 7 ") and (p * ,q " ,r "), be the solutions of and ,
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Chapter 3. The relaxed maximum principle of controlled jump diffusions

respectively. Then we have

T T
1im, o E|pn_pu*‘2+E/|qn_qﬂ*|2ds+E//|r"—r“*|2v(d9)ds =0.
t T

t

To prove the lemma ([3.5)), we need to state and prove the stability theorem of BSDEs with

jump. Note that this theorem is proved by Hu and Peng [18] in the case without jump.

Stability theorem for BSDE’s with jump

Let us denote by M?2(0,T;R™) the subset of L2(2 x [0;T],dP x dt;R™) consisting of
F;—progressively measurable processes. Consider the following BSDE’s with jump de-

pending on a parameter n.

T

T T
pr =+ / F™(s, g, ¢ 1) ds — / qdB, — / / (O)N"(ds, dB) ¢ € [0;T).
t t

t T

We assume that :

1. For any n, (p,q,r) € R™ x R™4 x R, F*(.,p,q,r) € M*O0,T;R™) and pp €

L2<Qaft7p7 Rm)’

2. There exists a constant Cy > 0 such that

|F™(s,p1,q1,71) — F™(8,p2,q2,72)| < Co | |p1 — p2| + |¢2 — ¢2| + / |71 — 12| v(dB)
r

Pa.s a.e te|0;T],

3. E(lph —p3")n =3 0,
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Chapter 3. The relaxed maximum principle of controlled jump diffusions

4. vt € 0,7,

T 2

lim E / (F™ (s, 0% 0 r) — F*(s, 0, a0y 1)) ds| | = 0.

n—00
t

Theorem 3.4 (Stability theorem for BSDE’s with jump) Let(p ",q ",r ") and (p *,q *,7 *),
be the solutions of and , respectively. Then we have

T T
limy oo F |p"—p*|2+/|q”—q*|2ds+//|r"—r*|20(d9)d5 =0.
t t T

Proof. We proceed as in [I§]. Let p* = p"—p*, ¢* = ¢"—q*, 7 = r"* —r* andﬁ; = plh—ph,
then

T T T
g+ [@ans [ [Rf@eds) g7+ [P - P ds
t t T

t
T

+/ [Fn(sap:7QZ7TZ) - F*<S,p:,q:,7’:)] ds.

t

Taking the square and the expectation, we get

E

-
yz

T T
2 A~ A~
+/‘qg|2d8+//‘r2|20(d0)ds < 2F |a?)?
t t T
T
+2E /[F”(S,p?,q?w?)—F”(s,pZ,Q§,T§)] ds
t

<2E|ap/*

T
AT — 1) / (s, g2 g 1) — (s, %, gty 7t ds,
t
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with

T
ol = P+ / Fn (s, 0% 0, 7%) — F*(s, 9%, g7 )] ds.
t

Because of the assumption 2,

T T
2 —~ ~
+E/]qg}2d3+E//}rg|2v(d9)ds <2E |’ +2(T — )CoE
t T

t

2

E|p} Py

T T
+2(T — t)CoE /@|2ds+//|@\2u(d9)ds
t t T

For t € [T —&;T] with ¢ = 1~

4CO
T T
~ 12 ~ 12 ~ 12 2
£l +/\qg| ds+//|7"§" v(d8)ds < 2E |07
t t I’
T
B [P+ |af + [ 1] o)) as
t r
hence

E

/h
2

T T A
2+%E/‘qzl|2ds+%E//‘@FU(CZG)&S ngwa?IQ+%/E|@\2dS-
¢ t T !

Then, we have

T
= |2 2 n|2 4 1 |2
B <3Blap+ 4 [ B[ ds
T tT
E/ [ ds <iElapf + /E 172 ds,

t
T

t
T
E//{@\Qu(de)ds < §E|ag|2+§/E|@}2ds.
t T

t
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Chapter 3. The relaxed maximum principle of controlled jump diffusions

Now, for apply the Gronwall lemma we need to prove that lim,, .. F |a?!2 = 0. We have

T
E|Of?|2 < 2F |pg“ _p’?|2 +2(T_t>COE/ |Fn(s,p:,q:,’l“:) - F*(37P:7q;77":)|2 d57

t

by the assumptions 3 and 4, we deduce that lim,,_,.F |af|2 =0.
T

By the Gronwall lemma, we can deduce that lim,, ..o F 1;?

2 ~ 12
= 0, hence limn_mE/ |qg‘ ds =

t
T

0 and imnﬁooE// }@’2 v(df)ds = 0.

t T
We can use the same argument to prove that the above convergence is hold on [T' — 25; T — 4] ,
[T — 35; T — 20] .... This complete the proof. m
To prove the lemma (3.5]), it is sufficient to show that the coefficients of our BSDE verify
the assumptions of stability theorem ((3.4]) :

Proof of lemma 4.5. By the continuity of the derivatives of the coefficients, and the

12
fact that lim, . E |z} — x| =0, we can deduce that

T
lim F / (F”(s,p’;*,qg*,r’;*) — F“*(s,pz*,qg*,rg*)) ds =0
¢

2
limE( ):0.

And, by the boundedness of b,, 0., and f, we can easily check that there exists a constant

and

pr — Dy

Co > 0 such that

*

Fn(S,p?,q:,T?) - Fn(supz aqg 7Tg ) < CO pg _pg + q: - qg T? - TZ U<d0)

!

Pa.s a.e t€0;T],
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Chapter 3. The relaxed maximum principle of controlled jump diffusions

where

F'(s,X,Y,Z) = hy + Xby + Yo, + /va(d@),
I

and
F'i(s,X,Y,Z) = /hx(a)uf(da) + /Xbx(a),u;f(da) +Yo, + /Zf(@,a)uf ® v(da,dd).
A A T

This complete the proof. m

Proof of theorem 4.4. The result is proved by passing to the limit in inequality ({2.23)),

and using lemma (3.5]), we get easily the inequality (3.5). m
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Chapter 4

The relaxed maximum principle in
singular optimal control of controlled

jump diffusions

n this chapter, we consider mixed relaxed-singular stochastic control problems of
Isystems governed by stochastic differential equations of the same type of SDEs
defined in the forth chapter, but the control variable has two components, the first being
measure valued process and the second singular. Our main goal is to extend the result
of S. Bahlali, B. Djehiche, and B. Mezerdi [2] to the problem where the system evolves
according to SDE with jumps, by the same techniques that used in the previous chapters,
and using a strong perturbation of the absolutely continuous part of the control and a

convex perturbation of the singular part.
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4.1 Formulation of the problem

4.1.1 Strict control problem

We consider in this subsection a stochastic control problem of systems governed by sto-
chastic differential equations on some filtered probability space (2, F,(F) >, P), such that
Fo contains the P—null sets, We assume that (F;);>¢ is generated by a standard Brownian
motion B and an independent Poisson measure N, and assume that the compensator of

N has the form v(df)dt, where the jumps are confined to a compact set I'. And set
N(dt,df) = N(dt,dd) — v(db)dt.

Consider the following sets Aj, is a nonempty subset of R¥ and Ay = ([0;00))™, let Uy
the class of measurable, adapted processes u : [0;T] x @ — Aj, and U, the class of

measurable, adapted processes ¢ : [0;T] x Q@ — A,.

Definition 4.1 An admissible strict control is a pair (u, () of (A1 X Ag)—wvalued measur-

able, F;—adapted processes, such that

e ( is of bounded variation, nondecreasing left-continuous with right limits and (; = 0

E | sup |ul*+[¢r”

te[0;T)

We denote by U =U; x U, the set of admissible strict controls.

For any (u,() € U, we consider the following stochastic differential equation (SDE)

dr, =b(t,z,,u)dt +o(t,z, dB—I—/f Ty, 0,u,) (dt df) + G,d¢;
(4.1)

z(0) = xo,
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where

b:[0;T] xR"x A— R"
0:]0;T] x R" — M,»a(R)
f:0T)xR*"xI'x A — R"

G:[0;T] — Myum(R)

are bounded, measurable and continuous functions.

The expected cost is given by:

T T
J(u,¢) =E |g(zr) + /h(t,xt,ut)dt + /ktdg : (4.2)
0 0
where
g:R" — R

h:[0;T]xR"x A— R

ko 0;T] — ([0;00))™,

be bounded and continuous functions.

The strict optimal control problem is to minimize the functional J(.,.) over Y. A control
that solves this problem is called optimal.

The following assumptions will be in force throughout this chapter :

(Hy) The maps b, o, f and h are continuously differentiable with respect to . They and
their derivatives b, o, f, and h, are continuous in (x, u).

(Hz) The derivatives o,, f,and g, are bounded and b, and h, are uniformly bounded in
u.

(H3) b, 0 and f are bounded by K (1+ |z|+ |u|), and g is bounded by K (1 + |z|), for some
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K > 0.

(Hy) G and k are continuous and bounded.

4.1.2 Relaxed-Singular control problem

In this subsection, we introduce relaxed controls of our systems of SDE. The idea of relaxed
control is to replace the absolutely continuous part of the control u with a P(A;)—valued
process u, where P(A;) denotes the space of probability measures equipped with the
topology of weak convergence. Consequently, the state variable is governed by a counting
measure valued process called the relaxed Poisson measure, as described in the previous

chapter in particular the first section.
Definition 4.2 A relaxed-singular control is a pair (u, () of processes such that

L. pis a P(A;)—valued process, progressively measurable with respect to (F;),-,
2. (e Us.

We denote by R*= R x U, the set of relaxed-singular controls.
For any (u,() € R, write the stochastic differential equation with controlled jumps in

terms of relaxed Poisson measure as follows

dxl = /b(t,xf,a)ut(da)dt—|—0(t,$f)dBt+//f(t,xf,O,a)]v“(dt,dé,da)—l—thCt
Ay AT
xy  =0.
(4.3)

The expected cost associated to a relaxed-singular control is defined as

T T
!l [
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4.2 Approximation of trajectories

In order for the relaxed-singular control problem to be truly an extension of the strict one,
the infimum of the expected cost for the relaxed-singular controls must be equal to the
infimum of the expected cost for the strict ones. This result is based on the approximation
of a relaxed control by a sequence of strict controls, and the convergence of the relaxed
Poisson measures corresponding with them, given by the chattering lemma (3.1)). The
next theorem which is our main result in this section gives the stability of the stochastic
differential equations with respect to the control variable, and that the two problems has

the same infimum of the expected costs.

Theorem 4.1 Let (u,() be a relaxed-singular control, and let z* be the corresponding

trajectory. Then there exist a sequence (u", () of strict controls such that

lim F [ sup |z} — xf]z] =0,

n—0o0 0<t<T

and

lim J(u", ¢) = J (1, C), (4.4)

n—0o0

where z™ denote the trajectory associated with (u™, ().

Proof. Using the same method of the proof of theorem 5 in chapter 4. m

4.3 Maximum principle for relaxed control problems

Our main goal in this section is to establish optimality necessary conditions for relaxed-
singular control problems, where the system is described by a SDE driven by a relaxed
Poisson measure which is a martingale measure, of the form (4.3) and the admissible

controls are measure-valued processes which are called relaxed controls. The proof is
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based on the chattering lemma (3.1)), and using Ekeland’s variational principle (2.5)), we
derive necessary conditions of near optimality satisfied by a sequence of strict controls.
By using stability properties of the state equations and adjoint processes, we obtain the

maximum principle for our relaxed problem.

4.3.1 The maximum principle for strict control

The purpose of this subsection is to derive optimality necessary conditions, satisfied by
an optimal strict control. The proof is based on strong perturbations for the absolutely
continuous part, and the convex perturbations for the singular components of the optimal

control (u*,(*), which defined by :

(uh’ C*) _ (V, <*> if te [to; to + h] (45)
(u*, ") otherwise,

(w,¢") = (u, ¢" + W€ = ), (4.6)

for some (v,&) € U.

The first variational inequality

To obtain the first variational inequality in the stochastic maximum principle, we use the

strong perturbations (4.5)), the first variational inequality is derived from the fact that

dJ(u",¢*)

dh

h=0

Note that the singular part is not affected by the perturbation (4.5). So, we have

2
h *
CL’EU €*) _x:

lim £

su
h—0 P

te(0;7)

] 0 4
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where

(ki)
z, O =ar st <ty

I
+GydC; -%<t<m+h

dal™ )= (e, 2 t)dt + ot 2 ) dB 4 /f(7 260
T

| +GdG tth <t <T.

For more detail about the proof see lemma ({2.3) chapter 3.
Choose to such that ([2.12) and (2.13) holds, then we have

Corollary 4.1 Under assumptions (Hy)-(Hs), one has

dJ(u", ¢*)

7 = Ego(x7)2r +or],

where

dsy = hy(t, 7, uf)zdt  to <t <T

Sty = h(to,xfo, V) — h(to,xfo, uzfo),

and the process z is the solution of the linear SDE

daf" = bt " O )i+ o, 0B+ [ (62, 0.0) (ar,d0)

L0, u*)N (dt, df)

(4.8)

dz :bm(t,xz‘,uz‘)ztdt+Jx(t,mf[)ztdBt+/fx L Tr, 0, uf)z- N(dt,dﬁ); to <t <T

2, = [blto, z},,v) — blto, z,,uy,)] -
From (H,) the variational equation has a unique solution.

To prove the corollary (4.1)) we need the following estimates.
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Lemma 4.1 Under assumptions (H, )-(Hs), it holds that

(u",¢*)

. Ly — . _
- 2
tim || [ [(btt,paf) — (bt up)] = | | =00
to
Uh7§*)

Proof. Since z; — x; does not depend on the singular part, the proof follows that of

lemma ([2.4)), chapter 3. =
By the same method of section (3.2.2) of chapter 3, we can get the first variational in-
equality

E[H(t,z;,v,p) — H(t,z},u;f,p)] > 0.dt — a.e,

where the Hamiltonian H is defined by (2.20)).

The second variational principle

To obtain the second variational inequality of the stochastic maximum principle, we use
the perturbations (4.6]) of the second parts of the optimal control. Since (u*,(*) is optimal
control, then we have

J(u*, ¢ — J(u*, ¢*) > 0. (4.10)

From this inequality, we will derive the second variational inequality.

u*7<h

Lemma 4.2 Let x; ) be the trajectory associated with (u*, ("), and x} be the trajectory

associated with (u*,(*), then the following estimate holds :

* ~h
lim F x,ﬁ“ < T

Su
h—0 D

te[0;T

2] ~0. (4.11)
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Proof. From the boundedness and continuity of b,., o,., and f, and by using the Burkholder-

Davis-Gundy inequality for the martingale part, we get

t

u*.ch 2 w* ¢ * 2 *
B [supico |1 = aif[| <0 [B supon o8 [ ds 4 cantale - o
0
t
(u* ") 2
+Cs [ E |supsepon SUPger s ' — k| | vu(df)ds| ,
0 r
which implies that
t
u* h 2 u* h % 2 «
E |:Supt€[0;T] xg < xf } < Cl/E {SUPse[o;T] g x } ds + Cyh?d|€ — ¢ |2
0
(u* ") 2
+03U(F)/E {supsE[O;T] (SUPeer xg © ) — ) ds] ,
0
then
t
(u*,¢h) o 2 (u* ¢ x 2 2 %2
E | sup |z zi| | < (Cv+Csu(T)) | E | sup |z i | ds+Caoh*d | — C*|°.
te[0;T] , s€[0;T]

Since v(I') < oo, by the Gronwall inequality, the result follows immediately by letting h

go to zero. m

Lemma 4.3 Under assumptions, it holds that

(u*,¢")

- /S I
}gﬂo E - z| | =0, (4.12)
where z; is the solution of the following equation :
t t t t
2 = /bx(s,x:,u:)zsds—i—/am(s,:C:)zsdBS—i-//fw(s,x:,9,u:)zs—ﬁ(ds,d9)+/Gsd(f—C*)s.
0 0 0T 0
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Proof. Let

then,

dy} :%[btxﬁu*’ch) up) = blt,a7,up)| di + 4 [o(t,al"") — o(t,27)| dB;

+ / b 0,y )~ f(tap, 0,0 )| N(dt, o)

=

—b.(t, x}, ul)zedt — o, (t, xF)2,d By
/ felt, 25, 0,u )2 N(dt, d6),
r

hence

t 1 t 1
g = [ [ ba(s,zr + A@ ) — ), u ysd)\der//ar s, xF 4+ Nz — a7))yhdAdB,
0 0

54
+///fm(s,x:_ + )\(xg’ch) - x:_),ﬁ,u:_)yg_dAN(ds,dﬁ) + o
00T

where

t 1 t 1
— //bx(s,x;‘ + )\($§u*,<h) —x7),ul)zsdNds + //ax(s,:v,’f + )\($,Eu*7<h) — 17))zsd\d Bs
0 0

///fzsa:—i—)\ S ), 0,0 )2~ dAN (ds, dO) //f (s,2*_ 0,0’ )z, N(ds, do)

t

—/b (s,z%,ul)zeds — /Uz(s,x:)zsst,
0 0
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hence

t] 1 2

Bl <K [ | [outs.a + 2™ iy ayypan| ds

0 |0
t 1

+KE/ /Ux(s xf + )\(ﬁ(u*,gh) —a))ytd\| ds

2

2
2

—i—KE// /fx s, zh 4+ ANz w6 —a3),0,ul)ytd\| v(df)ds + KE |p}|”.
Since b,, 0., and f, are bounded, then
Ely|’ <0E/{yh} ds+ KE |pl|”.

We conclude by the boundedness and continuity of b,, o,, and f,, and the dominated

convergence theorem that lim;_,g & ‘p } = 0. Hence by the Gronwall lemma, we get

hmE‘yt| =0.

Lemma 4.4 The following inequality holds :

T T

E | g.(xh)zr + /hm(t,xf,u:)ztdt + /ktd(§ — ()| > 0. (4.13)
0 0
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Proof. From (4.10), we have

o
IA
S

T T
u*,¢h * * * *
B gl - +E/ (") ) = h(t, a7, )| dt +E/ktd<5—<>t
0 0
1
E

/1
T 1
of
00
From the continuity and boundedness of g, and h,, by letting h go to zero, we can deduce

the result from (4.11) and (4.12). =

Now, we are able to derive the second variational inequality from (4.13)). If ©(¢, s) denotes

T
() g

(_h ) o [+ Ml = 7). u;ﬂ dAdt + E / ud(€ = ¢

0

+

(u*,cmy «
(—””T ; ) go |5 + Al — ap)| dA]

the solution of (2.17)), it’s easy to check that z; is given by

T
/@tSGt (=)
0

Replacing z; with its value, we obtain the second variational inequality

T

E / (ke + Gip)d(€ — ¢).| >0,

0

where p is the adjoint process defined in chapter 3 by (2.19).
The above discussion will allow us to introduce the next theorem which is the main result

of this subsection.

Theorem 4.2 (the maximum principle for strict control problem) Let (u*,(*) be

the optimal strict control minimizing the cost J (.,.) over U, and denote by z* the corre-
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sponding optimal trajectory, then the following inequalities holds

E[H(t,xf,v,p;) — H(t,z},ul,p)] > 0.dt — a.e,

T
/{kt + G} d(C = ¢ >0,
0
where the Hamiltonian H is defined by ([2.20)).

4.3.2 The maximum principle for near optimal controls

In this subsection, we establish necessary conditions of near optimality satisfied by a
sequence of nearly optimal strict controls, this result is based on Ekeland’s variational
principle, which is given by the lemma .

To apply Ekeland’s variational principle, we have to endow the set U of strict controls

with an appropriate metric. For any (u,() and (v,§) € U, we set

dy(u,v) =P®dt{(w,t) € Qx[0;T], u(w,t) # v(w,t)},
da(¢,€) =k (Supte[o;ﬂ G — §t|2) )
d[(u,C), (1, &) = di(u,v) + da(C, §).

VI

where P ® dt is the product measure of P with the lebesgue measure dt.

Remark 4.1 (U, d) is a complete metric space, and it well known that the cost functional

J is continuous from U into R, for more detail see [2])].

Let (u*,¢*) € R® be an optimal relaxed-singular control and denote by z; the trajectory
of the system controlled by (u*, (*), from lemma (3.1)), there exist a sequence (u™) of strict

controls such that

i (da)dt = 6, (da)dt — py(da)dt — weakly,
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and

n w*

limE[

2
|-

where 2™ is the solution of (4.3]) corresponding to ™.
According to the optimality of 1* and ({2.5)), there exist a sequence (&,,) of positive numbers

with lim,,_, . €, = 0 such that
J",¢7) = J(",¢7) = J(u', ) +en = If J(u, O) + e,

a suitable version of Lemma (2.5 implies that, given any ¢, > 0, there exist (u",(*) € U
such that

J(u", ") < J (v, &) + end[(u", C), (v, )], V(v,§) € U. (4.14)

Let us define the perturbations

(umh, ¢*) (v, ¢*)  if t € [to;to + A
(u™,¢*)  otherwise,
(un7 Ch) — (un7 C* + h(§ i g*)) '
From we have

0 < J@™",¢*) = J(u",¢*) + end [(w™", ), (u",¢*)] |
0 < J(u",¢") = J(u",¢*) +end [(u",¢"), (u", ()] -

Using the definition of d, it holds that

0 < J™ ) — J(u", C*) + endy (u™ um),
0 S J(un’ Ch) - ‘](un’ C*) + gndQ(Cha C*)
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Finally, using the definition of d; and dy, we obtain

0 < J(u™h, ¢*) = J(u™,¢*) + e,Chh, (4.15)

0 S J(una Ch) - J(un’ C*) + EnCth

where C; is a positive constant.

Now, we can introduce the next theorem which is the main result of this subsection.

Theorem 4.3 For each ¢, > 0, there exists (u",() € U such that there exist a unique

triple of square integrable adapted processes (p", q", ™) which is the solution of the backward

SDE

(

dp? - = [hm(t, x?’ u?) + p?bx(t, ZE?, u?) + qfcrx(t, CL’?)

-I—/T[‘(Q)f(t,xt 0, ulv(dl) | dt.

N
+qMdB, + / r(0)N (dt, df)

r

P = gu(27).

such that for all (u,() €U
T
E/ [[H(tv xrv uapt> o H(t7 I:tkv u:7pt)] + Clgn] dt > 07 (416)
0

T
E/ kt + tht C Ct ) + 02871} - 7
0

where C; is a positive constant.

Proof. From the inequality (4.15)), we use the same method as in the previous subsection,

we obtain (4.16). =

4.3.3 The relaxed stochastic maximum principle

Now, we can introduce the next theorem, which is the main result of this section
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Theorem 4.4 (The relaxed stochastic maximum principle) Let (u*,(*) be an op-
timal relazed-singular control minimizing the functional J (.,.) over R*, and let x “be the
corresponding optimal trajectory. Then there exist a unique triple of square integrable and

adapted processes (p ¥, q " ,r **) which is the solution of the backward SDE

dp = — /mwﬁﬁmwu@+/ﬁhﬁwﬁ@@w@+¢hww%
A

A
+//rf*(9)f(t,xf*,e,aw ® v(da,dd). | dt
AT

+¢" dB, + / () N= (dt, O, da)
T

| P = gular),

such that for all (u,() e U

T
E/ H@ﬁ&mmﬁ¢ﬁ¢%»—/ﬁUJE@mﬁ¢ﬁwwwwuw at > 0,
0 A

T

EQ/%+G%ﬂﬂQ—G)2Q

0

Proof. Since the singular term does not affect the adjoint processes, so the proof is the

same as the proof of theorem (3.3). m
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4.4 Appendix

Lemma 4.5 (Skorokhod selection theorem ) [19] Let (E,p) be a complete separable
metric space, and let P and P,, n = 1,2.... be probability measures on (E,B(FE)), such that
(P,) converges weakly to to P. Then, on a probability space (ﬁ, F, ﬁ), there exist E-valued

random variables x™,n = 1,2...., and x such that

Lemma 4.6 (Aldous criterion of tightness) [1/ Let (™) be a sequence of cadlag processes,
suppose that for each n, x™ is defined on a filtered probability space (X", F™, (F[)¢, P™),

and the two following conditions holds
o (z7) is tight on R, V¢
e Ve > 0,Vn > 0, there exist 6 > 0 and ng € N, such that Vn > ng, for all stopping

time S, T, such that S < T < S 4§, we have

limlimsup sup P(sup|Yd — Y/ >n)=0.
6—0 n S<T<S+§ t<n

Then, (") is tight on D(R).

Proposition 4.1 ([20]) Let x be a cadlag square integrable martingale and let < x > its

predictable " crochet ". If S < T two finite stopping times, then

15
P(sup |zg—ap| >n) < -+ P(<a" >p — <a" >5> k).
te[S;T) n

7



Conclusion

As a conclusion of this work, we note that the problem of relaxed control is interesting
because it is a generalization of the problem of ordinary control, that we always have an
optimal control relaxed which verifies conditions similar to the principle of the ordinary
maximum. We should also note the importance of studying jump problems because they
are closest to reality, because it is considered to be a model to many problems in many
areas, for example in telecommunication.

Many questions remain unresolved and deserve closer consideration, including
e Generalization of the maximum relaxed principle

It is a question of seeking the necessary conditions of optimality in the case where the

diffusion coefficient o is controlled.

e The aim is to find the necessary conditions of optimality which are verified by a
relaxed control without the need for a maximum principle for ordinary problem, and
without using the Ekeland variational principle, i-e the objective is to establish a

maximum principle by the perturbation of the relaxed control itself.
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