
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

MOHAMED KHIDER UNIVERSITY, BISKRA
Faculty of Exact Sciences and the Natural Sciences and Life

Department of Mathematics

A Thesis Presented for the Degree of

DOCTOR in Mathematics
In The Field of Applied Mathematics

By
RAHMOUNE ABDELAZIZ

Title

Existence and asymptotic behavior for some hyperbolic
systems

Examination Committee Members:

Pr. Mokhtari Zohir ( Univ. Biskra ) Chairman
Dr. Bendaoud Zohra (Univ. Laghouat ) Supervisor
Dr. Ouchenane Djamel (Univ. Laghouat ) Second Supervisor
Pr. Drabla Salah (Univ. Setif ) Examinator
Pr. Marouani Boubakeur (Univ. Setif ) Examinator
Dr. Yahaia Djabrane (Univ. Biskra ) Examinator



MOHAMED KHIDER UNIVERSITY BISKRA
Faculty of Exactes Sciences and the Natural Sciences and Life

Department of Mathematics

Existence and asymptotic behavior for some hyperbolic
systems

by

Abdelaziz Rahmoune

Under the Supervision of

First Supervisor: Dr. Bendaoud Zohra
Second Supervisor: Dr. Ouchenane Djamel

This thesis is submitted in order to obtain the

degree of Doctor of Sciences

University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)


Abstract

This thesis is devoted to study the Existence and asymptotic behavior for some hyper-

bolic systems . The first part of the thesis is composed of two chapters 2 and 3. We

studied a one-dimensional linear thermoelastic system of Timoshenko type, where the

heat flux is given by Cattaneo’s law, noting that in the chapter 3 we have introduced a

delay term in the feedback and forcing term.

We established several exponential decay results for classical and weak solutions in

one-dimensional. Our technics of proof is based on the construction of the appropri-

ate Lyapunov function equivalent to the energy of the considered solution, and which

satisfies a differential inequality leading to the desired decay.

In chapter 4, we consider a system of nonlinear wave equation with degenerate damping

and strong nonlinear source terms. We prove that the solution blows up in time.

Keywords: Nonlinear damping, Strong damping, Viscoelasticity, Nonlinear source,

Locale solutions, Global solution, Exponential decay, Polynomial decay, Blow up.
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Résumé

Cette thèse est consacrée á l’étude de l’existence et le comportement asymptotique pour

certains systèmes hyperboliques. La première partie de la thèse est composée de deux

chapitre 2 et 3. Les deux sont consacrés en premier lieu á l’étude du systme thermo-

élastique linéaire en dimension un de type Timoshenko, dans lequel le flux de chaleur

est donné par la loi de Cattanéo. noton ici que l’introduction du term de retard et le

terme de la force extrieure ne concerne que le chapitre 3 .

Et on montre l’existence, ainci que la stabilité exponentielle de la solution. La preuve

que nous avons établie est basées sur la construction d’une fonction de Lyapunov ap-

propriée et équivalente á l’énergie de la solution considérée. Cette fonction vérifie une

inequation différentielle menant au résultat de la décroisence désirée

Ensuite, et dans le chapitre 4, on considére un systme d’équations des ondes avec termes

dissipatifs afin de prouver que la solution de ce système explose en temps fini.

Mots clés : Dissipation nonlinéaire, dissipation forte, viscoélasticité, source non linéaire,

solution locales, solution globales, décroissance exponentielle, décroissance polynômiale,

explosion en temps fini.
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Introduction

Our work, in this thesis, lies in the study some hyperbolic systems with the presence of

different mechanisms of damping, and under assumptions on initial data and boundary

conditions. Our goal is to establish the existence of the solutions and a general decay

estimate using the energy methode. In fact, we prove that under some assumptions on

the parameters in the systems and on the size of the initial data, the solutions can be

proved to be either global in time or may blow up in finite time. If the solution are

global in time, then the natural question is about their convergence to the steady state

and the rate of the convergence. The system that we treated here are the following:

The Timoshenko systems

In 1921, Timoshenko [92] gave the following system of coupled hyperbolic equations ρϕtt = (K(ϕx − ψ))x, in (0, L) × (0,+∞)

Iρψtt = (EIψx)x + K(ϕx − ψ), in (0, L) × (0,+∞),
(1)

wich describe the transverse vibration of a beam of length L in its equilibrium config-

uration. where t denotes the time variable, x is the space variable along the beam of

length L, in its equilibrium configuration, ϕ is the transverse displacement of the beam

and ψ is the rotation angle of the filament of the beam. The coefficients ρ, Iρ, E, I and K

are, respectively, the density (the mass per unit length), the polar moment of inertia of

a cross section, Young’s modulus of elasticity, the moment of inertia of a cross section,

and the shear modulus.

System (1), together with boundary conditions of the form

EIϕx |
x=L
x=0= 0, K(ux − ϕ) |x=L

x=0= 0

is conservative, and thus the total energy is preserved, as time goes to infinity. Sev-

eral authors introduced different types of dissipative mechanisms to stabilize system

1



Introduction 2

(1), and several results concerning uniform and asymptotic decay of energy have been

established.

Kim and Renardy [39] considered (1) together with two boundary controls of the form Kψ(L, t) − Kϕx(L, t) = αϕt(L, t), ∀t ≥ 0

EIψx(L, t) = −βϕt(L, t), ∀t ≥ 0

and used the multiplier techniques to establish an exponential decay result for the total

energy of (1). They also provided numerical estimates to the eigenvalues of the operator

associated with system (1). Raposo et al. [81] treated the following system: ρ1ϕtt − K(ϕx − ψ)x + ϕt = 0, in (0, L) × (0,+∞)

ρ2ψtt − bψxx + K(ϕx − ψ) + ψt = 0, in (0, L) × (0,+∞)
(2)

with homogeneous Dirichlet boundary conditions and two linear frictional dampings,

and proved that the associated energy decays exponentially. Soufyane and Wehbe [89]

showed that it is possible to stabilize uniformly (1) by using a unique locally distributed

feedback. They considered


ρϕtt = (K(ϕx − ψ))x, in (0, L) × (0,+∞)

Iρψtt = (EIψx)x + K(ϕx − ψ) − bψt, in (0, L) × (0,+∞)

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = 0, ∀t > 0,

(3)

where b is a positive and continuous function, which satisfies

b(x) ≥ b0 > 0, ∀ x ∈ [a0, a1] ⊂ [0, L].

In fact, they proved that the uniform stability of (3) holds if and only if the wave speeds

are equal
(

K
ρ

= EI
Iρ

)
; otherwise only the asymptotic stability has been proved. Also,

Muñoz Rivera and Racke [65] studied a nonlinear Timoshenko-type system of the form

 ρ1ϕtt − σ1(ϕx, ψ)x = 0

ρ2ψtt − χ(ψx)x + σ2(ϕx, ψ) + dψt = 0

in a one-dimensional bounded domain. The dissipation is produced here through a fric-

tional damping which is only present in the equation for the rotation angle. The authors
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gave an alternative proof for a necessary and sufficient condition for exponential stabil-

ity in the linear case and then proved a polynomial stability in general. Moreover, they

investigated the global existence of small smooth solutions and exponential stability

in the nonlinear case. Concerning the Timoshenko system with viscoelastic damping,

Ammar-Khodja et al. [5] considered a linear Timoshenko-type system with memory of

the form


ρ1ϕtt − K(ϕx + ψ)x = 0

ρ2ψtt − bψxx +

ˆ t

0
g(t − s)ψxx(s)ds + K(ϕx + ψ) = 0

(4)

in (0, L) × (0,+∞), together with homogeneous boundary conditions. They used the

multiplier techniques and proved that the system is uniformly stable if and only if the

wave speeds are equal
(

K
ρ1

= b
ρ2

)
and g decays uniformly. Precisely, they proved an

exponential decay if g decays in an exponential rate and polynomially if g decays in a

polynomial rate.

Messaoudi and Mustafa [50] improved the results of [5] and [27] by allowing more

general decaying relaxation functions and showed that the rate of decay of the solution

energy is exactly the rate of decay of the relaxation function. Also, Muñoz Rivera and

Fernndez Sare [69], considered Timoshenko type system with past history acting only

in one equation. More precisely they studied the following problem:
ρ1ϕtt − K(ϕx + ψ)x = 0,

ρ2ψtt − bψxx +

ˆ ∞
0

g(t)ψxx(t − s, .)ds + K(ϕx + ψ) = 0,
(5)

together with homogenous boundary conditions, and showed that the dissipation given

by the history term is strong enough to stabilize the system exponentially if and only

if the wave speeds are equal. They also proved that the solution decays polynomially

for the case of different wave speeds. This work was improved recently by Messaoudi

and Said-Houari [48], where the authors considered system (5) for g decaying polyno-

mially, and proved polynomial stability results for the equal and nonequal wave-speed

propagation under conditions on the relaxation function weaker than those in [69]. The

case of g having a general decay has been studied in [30–32] for Timoshenko-type and

[29, 33] for abstract systems, where a general relation between the growth of g at infin-

ity and the decay rate of solutions is explicitly found in terms of the growths at infinity.
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Messaoudi et al. [53] studied the following problem:

ρ1ϕtt − σ(ϕx, ψ)x + µϕt = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + βθx = 0,

ρ3θt + γqx + δψtx = 0,

τ0qt + q + κθx = 0,

where (x, t) ∈ (0, L) × (0,∞) and ϕ = ϕ(t, x) is the displacement vector, ψ = ψ(t, x) is

the rotation angle of the filament, θ = θ(t, x) is the temperature difference, q = q(t, x) is

the heat flux vector, ρ1, ρ2, ρ3, b, k, γ, δ, κ, µ, τ0 are positive constants. The nonlinear

function σ is assumed to be sufficiently smooth and satisfy

σϕx(0, 0) = σψ(0, 0) = k

and

σϕxϕx(0, 0) = σϕxψ(0, 0) = σψψ = 0.

Several exponential decay results for both linear and nonlinear cases have been estab-

lished.

Concerning the Timoshenko system with delay, the investigation started with the paper

[82] where the authors studied the following problem:
ρ1ϕtt (x, t) − K (ϕx + ψ)x (x, t) = 0,

ρ2ψtt (x, t) − bψxx (x, t) + K (ϕx + ψ) (x, t) + µ1ψt (x, t) + µ2ψt (x, t − τ) = 0.
(6)

Under the assumption µ1 ≥ µ2 on the weights of the two feedbacks, they proved the

well-posedness of the system. They also established for µ1 > µ2 an exponential decay

result for the case of equal-speed wave propagation, i.e.

K
ρ1

=
b
ρ2
. (7)

Subsequently, the work in [82] has been extended to the case of time-varying delay

of the form ψt (x, t − τ (t)) by Kirane, Said-Houari and Anwar [40]. The case where

the damping µ1ψt is replaced by (
´ ∞

0 g (s)ψxx ( t − s) ds) (with either discrete delay

µ2ψt (t − τ) or distributed one
´ ∞

0 f (s)ψt ( t − s) ds) has been treated in [32] (in case

(7) and the opposite one), where several general decay estimates have been proved.
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Our main results in this part can be summarized as follows:

Chapter 2. In this chapter we studied a one-dimensional linear thermoelastic system

of Timoshenko type, where the heat flux is given by Cattaneo’s law, see for

example [53]. We consider damping terms acting on the second equation and

we establish a general decay estimate without the usual assumption of the wave

speeds,with theintroductio of damping term µϕt in the first equation see [74].Also,

the results obtained in [74] has been improved without µϕt. Our method of proof

uses the energy method together with some properties of convex functions. The

advantage here is that from our general estimates we can derive the exponential,

polynomial or logarithmic decay rate. We also give some examples to illustrate

our result.This work has been recently published in [74].

Chapter 3. In this chapter we consider a one-dimonsional linear thermoelastic system

of Timoshenko type with delay term in the feedback. The heat conduction in given

by Cattaneo’s law. Under an appropriate assumption between the weight of the

delay and the weight of the damping, we proved a well-posedness result. Further-

more an exponential stability result has been shown without the usual assumption

on the wave speeds. To achieve our goals, we made use of the semigroup method

and the energy method.

The damped wave equation (Blow up )
The study of the interaction between the source term and the damping term in the

wave equation

utt − ∆u + a |ut|
m−2 ut = b |u|p−2 u, in Ω × (0,T ) , (8)

where Ω is a bounded domain of RN , N ≥ 1 with a smooth boundary ∂Ω, has an

exciting history.

It has been shown that the existence and the asymptotic behavior of solutions

depend on a crucial way on the parameters m, p and on the nature of the initial

data. More precisely, it is well known that in the absence of the source term

|u|p−2 u then a uniform estimate of the form

‖ut (t)‖2 + ‖∇u (t)‖2 ≤ C, (9)

holds for any initial data (u0, u1) = (u(0), ut(0)) in the energy space H1
0 (Ω) ×

L2 (Ω) , where C is a positive constant independent of t. The estimate (9) shows
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that any local solution u of problem (8) can be continued in time as long as (9) is

verified. This result has been proved by several authors. See for example [34, 38].

On the other hand in the absence of the damping term |ut|
m−2 ut, the solution of

(8) ceases to exist and there exists a finite value T ∗ such that

lim
t→T ∗
‖u (t)‖p = +∞, (10)

the reader is refereed to Ball [8] and Kalantarov & Ladyzhenskaya [38] for more

details.

When both terms are present in equation (8), the situation is more delicate. This

case has been considered by Levine in [43, 44], where he investigated problem

(8) in the linear damping case (m = 2) and showed that any local solution u of

(8) cannot be continued in (0,∞) × Ω whenever the initial data are large enough

(negative initial energy). The main tool used in [43] and [44] is the ”concavity

method”. This method has been a widely applicable tool to prove the blow up

of solutions in finite time of some evolution equations. The basic idea of this

method is to construct a positive functional θ (t) depending on certain norms of

the solution and show that for some γ > 0, the function θ−γ (t) is a positive con-

cave function of t. Thus there exists T ∗ such that lim
t→T ∗

θ−γ (t) = 0. Since then,

the concavity method became a powerful and simple tool to prove blow up in fi-

nite time for other related problems. Unfortunately, this method is limited to the

case of a linear damping. Georgiev and Todorova [22] extended Levine’s result

to the nonlinear damping case (m > 2). In their work, the authors considered

the problem (4.1) and introduced a method different from the one known as the

concavity method. They showed that solutions with negative energy continue to

exist globally ’in time’ if the damping term dominates the source term (i.e.m ≥ p)

and blow up in finite time in the other case (i.e.p > m) if the initial energy is

sufficiently negative. Their method is based on the construction of an auxiliary

function L which is a perturbation of the total energy of the system and satisfies

the differential inequality
dL (t)

dt
≥ ξL1+ν (t) (11)

In [0,∞) , where ν > 0. Inequality (11) leads to a blow up of the solutions in finite

tim t ≥ L (0)−ν ξ−1ν−1, provided that L (0) > 0. However the blow up result in

[22] was not optimal in terms of the initial data causing the finite time blow up of

solutions. Thus several improvement have been made to the result in [22] (see for

example [42, 45, 62, 93]. In particular, Vitillaro in [93] combined the arguments
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in [22] and [42] to extend the result in [22] to situations where the damping is

nonlinear and the solution has positive initial energy.

In [95], Young, studied the problem

utt − ∆ut − div
(
|∇u|α−2

∇u
)
− div

(
|∇ut|

β−2
∇ut

)
+ a |ut|

m−2 ut = b|u|p−2u, (12)

in (0,T ) × Ω with initial conditions and boundary condition of Dirichlet type.

He showed that solutions blow up in finite time T ∗ under the condition p >

max {α,m} , α > β, and the initial energy is sufficiently negative (see condition

(ii) in [95][Theorem 2.1]). In fact this condition made it clear that there exists a

certain relation between the blow-up time and |Ω|([95][Remark 2]).

Messaoudi and Said-Houari [60] improved the result in [95] and showed that the

blow up of solutions of problem (12) takes place for negative initial data only

regardless of the size of Ω.

To the best of our knowledge, the system of wave equations is not well studied,

and only few results are available in literature. Let us mention some of them.

Milla Miranda and Medeiros [63] considered the following system utt − ∆u + u − |v|ρ+2
|u|ρ u = f1 (x)

vtt − ∆v + v − |u|ρ+2
|v|ρ v = f2 (x) ,

(13)

in Ω × (0,T ) . By using the method of potential well, the authors determined the

existence of weak solutions of system (13). Some special cases of system (13)

arise in quantum field theory which describe the motion of charged mesons in

an electromagnetic field. See [87] and [36]. Agre and Rammaha [3] studied the

system  utt − ∆u + |ut|
m−1 ut = f1 (u, v) ,

vtt − ∆v + |vt|
r−1 vt = f2 (u, v) ,

(14)

in Ω × (0,T ) with initial and boundary conditions of Dirichlet type and the non-

linear functions f1 (u, v) and f2 (u, v) satisfying

f1(u, v) = b1|u + v|2(ρ+1)(u + v) + b2|u|ρu|v|(ρ+2)

f2(u, v) = b1|u + v|2(ρ+1)(u + v) + b2|u|(ρ+2)|v|ρv,
(15)

They proved, under some appropriate conditions on f1(u; v) , f1(u; v) and the ini-

tial data, several results on local and global existence, but no rate of decay has

been discussed. They also showed that any weak solution with negative initial
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energy blows up in finite time, using the same techniques as in [22]. Recently, the

blow up result in [3] has been improved by Said-Houari [83] by considering cer-

tain class of initial data with positive initial energy. Subsequently, the paper [83]

has been followed by [85], where the author proved that if the initial data are small

enough, then the solution of (14) is global and decays with an exponential rate if

m = r = 1 and with a polynomial rate like t−2/(max(m,r)−1) if max (m, r) > 1. Several

authors and many results appeared in the literature see for example [[9],[75]]

Chapter 4. In this chapter, we consider the following system of wave equations
utt − ∆ut − div

(
|∇u|α−2

∇u
)
− div

(
|∇ut|

β1−2
∇ut

)
+ a1 |ut|

m−2 ut = f1 (u, v) ,

vtt − ∆vt − div
(
|∇v|α−2

∇v
)
− div

(
|∇vt|

β2−2
∇vt

)
+ a2 |vt|

r−2 vt = f2 (u, v) ,
(16)

where the functions f1 (u, v) and f2 (u, v) satisfying (15). In (16), u = u (t, x) , v =

v (t, x) , x ∈ Ω, a bounded domain of RN (N ≥ 1) with a smooth boundary ∂Ω, t >

0 and a1, a2, b1, b2 > 0 and β1, β2, m, r ≥ 2, α > 2. System (16) is supplemented

by the following initial and boundary conditions (u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω

u(x) = v(x) = 0 x ∈ ∂Ω,
(17)

Our main interest in this chapter is to prove a global nonexistence result of solu-

tions of system (16) - (17) for large initial data. We use the method in [83] with

the necessary modification imposed by the nature of our problem. The core of this

method relies on the use of an auxiliary function L in order to obtain a differential

inequality of the form (11) which leads to the desired result. This work has been

recently published in [80].



Chapter 1

Preliminaries

In this chapter, we recall some basic knowledge in fonctional analysis, moste of wich

will be used in the subseqent chapter. The reader can easily find the detailed in the

related literature, see, e.g.,[2], [12], [77], [96]

1.1 Functional Spaces

We denote by Rn the Euclid space, Ω ⊂ Rn is bonded smoth domain,Ck(Ω) is the kth

differentiable continuous function space in Ω, C∞(Ω) is the ∞th differentiable continu-

ous function space in Ω, C∞c (Ω) is the∞th differentiable continuous function space with

compact support in Ω

Definition 1.1. Let X be a vector space over the filed K (K = R or C). Then a semi-

norm on X is a function ‖.‖ : X −→ R, such that :

a) ‖x‖ > 0 for all x ∈ X,

b) ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ K,

c) ‖x + y‖ 6 ‖x‖ + ‖y‖ for all x, y ∈ X.

A norm on X is a semi-norm wich also satisfies :

d) ‖x‖ = 0 ⇒ x = 0. A vector space X toghether with a norm ‖.‖ is called a normed

linear space, a normed vector space or simply, a normed space.

Definition 1.2. (Convergent and Cauchy sequences ). Let X be a normed space, and let

{xn}n∈N be a sequence of elements of X.

9
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a) {xn}n∈N converges to x ∈ X if

lim
n→∞
‖xn − x‖ = 0,

i.e. if

∀ε > 0;∃N > 0,∀n ≥ N, ‖xn − x‖ < ε.

b) {xn}n∈N is a Cauchy sequence if

∀ε > 0;∃N > 0,∀m, n ≥ N, ‖xm − xn‖ < ε.

Normed spaces in which every Cauchy sequence is convergent are called complet normed

spaces. In general a normed space is not complete.

Definition 1.3. (Banach Spaces). A normed spaces is called a Banach space if it is

complet i.e. if any Cauchy sequence inside the space converges to a point of the space.

Its dual space X′ is the linear space of all contnuous linear functional f : X → R.

Proposition 1.4. X′ equipped with the norm ‖.‖X′ defined by

‖ f ‖X′ = sup{| f (u)| : ‖u‖ ≤ 1}

is olso a Banach space.

Remark 1.5. From X′ we construct the bidual or secend dual X′′ = (X′)′. Futhermore,

with each u ∈ X we can define ϕ(u) ∈ X′′ by ϕ(u)( f ) = f (u), f ∈ X′, this satisfies

clearly ‖ϕ(x)‖ ≤ ‖u‖. Moreover, for each u ∈ X there is an f ∈ X′ with f (u) = ‖u‖ and

‖ f ‖ = 1, so it follows that ‖ϕ(x)‖ = ‖u‖.

Definition 1.6. Since ϕ is linear we see that

ϕ : X → X′′,

is a linear isometry of X onto a closed subspace of X′′, we denote this by

X ↪→ X′′.

Definition 1.7. if ϕ ( in the above definition ) is onto X′′ we say X is reflexive, X u X′′
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1.1.1 The weak and weak star topologies:

Let X be a Banach space and f ∈ X′ . Denot by

ϕ f :X → R

x 7→ ϕ f

When f cover X′, we obtain a family (ϕ f ) f∈X′ of appmications to X in R.

Definition 1.8. The weak topology on X, denoted by σ(X, X′), is the weakest topology

on X for which every (ϕ f ) f∈X′ is continuous.

We will define the topology on X′, the weak star topology, denoted by σ(X′, X). For all

x ∈ X. Denote by

ϕx :X′ → R

f 7→ ϕx( f ) = 〈 f , x〉X′,X

Definition 1.9. The weak star topology on X′ is the weakest topology on X′ for wich

every (ϕx)x∈X′ is continuous.

Remark 1.10. Since X ⊂ X′′, it is clear that, the weak star topology σ(X′, X) is weakest

then the topology σ(X′, X′′), and this later is weakest then the strong topology.

Definition 1.11. A sequence (xn) in X is weakly convergent to x if and only if

lim
n→∞

f (xn) = f (x)

for evry f ∈ X′, and this is denoted by xn ⇀ x.

Remark 1.12. :

1.If the weak limit exist, it is unique.

2.If xn → x ∈ X(strongly), then xn ⇀ x (weakly).

3.If dim X < ∞, then the weak convergent implise the strong convergent.
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1.1.2 Hilbert spaces

The proper setting for the rigorous theory of partial differential equation turns out to be

the most important function space in modern physics and modern analyse, known as

Hilbert spaces. Then, we most give some impotant result on these spaces here.

Definition 1.13. A Hilbert space His a vectorial space supplied with inner product 〈u, v〉

such that ‖u‖ =
√
〈u, u〉 is the norm which let H complete.

Theorem 1.14. Let (xn)n∈N is a bounded squence in the Hilbrt sce H, then it possess a

subsequence which converges in the weak topology of H.

Theorem 1.15. In the Hilbrt space, all sequence which converges in the weak topology

is bounded.

Theorem 1.16. Let (xn)n∈N be sequence which converges to x, in the weak topology and

(yn)n∈N is an other squence which converge weakly to y, then

lim
n→∞
〈xn, yn〉 = 〈x, y〉.

Proposition 1.17. Let X and Y be tow Hilbert space, let (xn)n∈N ∈ X be a sequence

which conveges weakly to x ∈ X, let A ∈ L(X,Y). Then, the sequence (A(xn))n∈N

converges to A(x) in the weak topology of Y.

Theorem 1.18. ( The Lax-Milgram Theorem)

Let X be a Hilbert space and let a : X × X → R be a bilinear functional. Asume that

there existe tow constants C < ∞, α > 0 such that:

(i) |a(u, v)| ≤ C‖u‖.‖v‖ for all (u, v) ∈ X × X (continuity);

(ii) a(u, u) ≥ α‖u‖2 for all u ∈ X (coerciveness).

Then, for evry f ∈ X∗ ( the dual space of X), there exists a unique u ∈ X such that

a(u, v) = 〈 f , v〉 for all v ∈ X.

1.1.3 The Lp(Ω) spaces

Definition 1.19. Let 1 ≤ p ≤ ∞, and let Ω be on open domain in Rn, n ∈ N. Define the

standard Lebesgue space Lp(Ω) by

Lp(Ω) =

{
f : Ω→ R : f is measurable and

ˆ
Ω

| f (x)|pdx < ∞
}
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Notation 1 : for p ∈ R and 1 ≤ p < ∞, denote by

‖ f ‖p =

(ˆ
Ω

| f (x)|pdx
) 1

p

. If p = ∞, we have

Lp(Ω) = { f : Ω→ R : f is measurable and there exists C suche that, | f (x)| ≤ C in Ω}

Notation 2 : Let 1 ≤ p ≤ ∞,we denote by q the conjugate of p i.e.
1
p

+
1
q

= 1.

Theorem 1.20. It is well known that Lp(Ω) supplied with the norm ‖.‖p is a Banach

space, for all 1 ≤ p ≤ ∞

Remark 1.21. In particularly, when p = 2, L2(Ω) equipped with the inner product

〈 f , g〉L2(Ω) =

ˆ
Ω

f (x)g(x)dx,

is a Hilbert space .

Theorem 1.22. For 1 < p < ∞, Lp(Ω) is reflexive space.

1.1.4 The Sobolev space Wm,p(Ω)

Definition 1.23.

i) Let m ∈ N and p ∈ [0,∞] . The Wm,p(Ω) is the space of all f ∈ Lp(Ω), defined as

Wm,p(Ω) = { f ∈ Lp(Ω), such that ∂α f ∈ Lp(Ω) f or all α ∈ Nm}

such that |α| =
∑n

j=1 α j ≤ m where, ∂α = ∂α1
1 ∂

α2
2 ....∂

αn
n .

ii) if f ∈ Wm,p(Ω), we define its norm to be

‖ f ‖Wm,p(Ω) =

 (
∑
|α|<k

´
Ω
|Dα f |pdx)

1
p ; (1 ≤ p < ∞),∑

|α|<k ess sup |Dα f | ; (p = ∞)

Definition 1.24. We denote by

Wm,p
0 (Ω)

the closure of C∞0 (Ω) in Wm,p(Ω)
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Remark 1.25. i) if p = 2 we usully write

Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω).

Supplied with the norm

‖ f ‖Hm =

∑
|α|≤m

(‖∂α f ‖L2)2


1
2

The letter H is used, since - as we will see - Hm(Ω) is a Hilber space.

with usual scalar product

〈u, v〉 =
∑
|α|≤m

ˆ
Ω

∂αu∂αvdx

Note that H0(Ω) = L2(Ω)

Theorem 1.26. .

1. Hm(Ω) supplied with inner product 〈., .〉Hm(Ω) is Hilbert space.

2. If m ≥ m′ , Hm(Ω) ↪→ Hm′(Ω).

Theorem 1.27. Assume that Ω is an open domain in Rn, n ≥ 1, with smooth boundary

Γ. Then,

i) if 1 ≤ p ≤ n, we have W1,p ⊂ Lq(Ω), for every q ∈ [p, p∗], where p∗ =
np

n − p
.

ii) if p = n we have W1,p ⊂ Lq(Ω), for every q ∈
[
p,∞) .

iii) if p > n we have W1,p ⊂ L∞(Ω) ∩C0,α(Ω), where α =
p − n

p
.

1.1.5 The Lp(0,T, X) space

Definition 1.28. Let X be a Banach space, denote by Lp(0,T, X) the space of measurable

functions

f : ]0,T [→ X

t 7→ f (t)

such that (ˆ T

0
‖ f (t)‖p

Xdt
) 1

p

= ‖ f ‖Lp(0,T,X) < ∞, 1 ≤ p < ∞.

If p = ∞,

‖ f ‖L∞(0,T,X) = sup
t∈]0,T [

ess‖ f (t)‖X
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Theorem 1.29. Lp(0,T, X) equipped with the norm ‖.‖Lp(0,T,X) is a Banach space .

Proposition 1.30. Let X be a reflexive Banach space, X′ it’s dual, and 1 ≤ p < ∞,

1 ≤ q < ∞, 1
p + 1

q = 1. Then the dual of Lp(0,T, X) is identify algebraically and

topologically with Lq(0,T, X′)

1.2 Some useful inequalities

In this section, we shall recall some inqualities which will be used in the supsequent

chapters.

1.2.1 Young inequalities

Theorem 1.31. Let 1 < p, q < ∞, 1
p + 1

q = 1,then

ab ≤
ap

p
+

bq

q
, a, b > 0

Theorem 1.32. (Young inequality with ε) Let 1 < p, q < ∞, 1
p + 1

q = 1,then

ab ≤ ε
ap

p
+

1

ε
q
p

bq

q
, a, b > 0

The Young inequality has several variants in the following.

Corollary 1.33. Let a, b > 0, 1
p + 1

q = 1, 1 < p, q < ∞. Then

i) a
1
p b

1
q ≤

a
p

+
b
q

.

ii) a
1
p b

1
q ≤

a

pε
1
q

+
bε

1
p

q
,∀ε > 0.

iii) aαb1−α ≤ αa + (1 − α)b ,0 < α < 1.

1.2.2 The Holder inequalities

Theorem 1.34. Let 1 < p, q < ∞, 1
p + 1

q = 1,

then if f ∈ Lp(Ω), g ∈ Lq(Ω), we have

‖ f g‖L1(Ω) ≤ ‖ f ‖Lp(Ω).‖g‖Lq(Ω)
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Theorem 1.35. (Generalized Holder inequality) Let 1 ≤ p1, ...., pm ≤ ∞,
1
p1

+ .... + 1
pm

= 1, then if fk ∈ Lpk(Ω) for k = 1, ...,m, we have

ˆ
Ω

| f1.... fm|dx ≤
m∏

k=1

‖ fk‖Lpk (Ω)

Remark 1.36. We have the corresponding weighted Holder inequality of the integral

form. Let 1 < p < ∞, 1
p + 1

q = 1 , f ∈ Lp(Ω), g ∈ Lq(Ω),ω(x) > 0 on Ω. Then

ˆ
Ω

| f g|ω(x)dx ≤
(ˆ

Ω

| f (x)|pω(x)dx
) 1

p
(ˆ

Ω

|g(x)|qω(x)dx
) 1

q

.

1.2.3 The Minkowski inequality

Theorem 1.37. Assume 1 ≤ p ≤ ∞, f , g ∈ Lp(Ω), then

‖ f + g‖Lp(Ω) ≤ ‖ f ‖Lp(Ω) + ‖g‖Lp(Ω).

If 0 , p < 1, then

‖ f + g‖Lp(Ω) ≥ ‖ f ‖Lp(Ω) + ‖g‖Lp(Ω).

In the applications, the integral form from the Minkowski inequality is used frequentely.

1.2.4 The Poincar inequality

In this subsection, we shall recall the Poincar inequality in different forms.

Theorem 1.38. . Let Ω be a bounded domain in Rn and f ∈ H1
0(Ω). Then there is a

positive constant C such that

‖ f ‖L2(Ω) ≤ C‖∇ f ‖L2(Ω), ∀ f ∈ H1
0(Ω)

Theorem 1.39. Let Ω be a bounded domain of C1 in Rn. There is a positive constant C

, such that for any f ∈ H1(Ω).

‖ f − f̃ ‖L2(Ω) ≤ C‖∇ f ‖L2(Ω)

Where f̃ = 1
|Ω|

´
Ω

f (x)dx is the integral average of f over Ω, and |Ω| is the volume fo Ω.
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Theorem 1.40. Under assumption of Theorem (1.39) for any f ∈ H1(Ω), we have

‖ f ‖L2(Ω) ≤ C
(
‖∇ f ‖L2(Ω) + |

ˆ
Ω

f dx|
)
.

1.3 Basic theory of semigroups

In this section, we recall some basic knowledge in semigroups,most of whiche will be

used in the subsequent chapters. Ageneral rference to this topic is [12], [77],

1.3.1 C0−Semigroups of Linear Operators

Definition 1.41. (Semigroups)

Let X be a Banach space, the one-parametre family S (t), 0 ≤ t < ∞ from X to X is

called a Semigroups if

(i) S (0) = I ( I is the identity operateur on X ), (ii) S (t + s) = S (t) + S (s) for every

t, s ≥ 0 (the Semigroup property).

Definition 1.42. The linear operator A defined by

D(A) =

{
x ∈ X : lim

t→0+
(S (t)x − x)/t exists

}
and

Ax = lim
t→0+

(S (t)x − x)/t =
d(S (t)x)

dt
|t=0 f or all x ∈ D(A)

is called the infinitesimal generator of the Semigroup S (t), D(A) is called the domain of

A.

Definition 1.43. (C0−Semigroups).

A Semigroup S (t),0 ≤ t < ∞,from X to X is called a strong continuous Semigroup of

bounded lineaar operators if

lim
t→0+

S (t)x = x f or all x ∈ X,

or

lim
t→0+
‖S (t)x − x‖ = 0 f or all x ∈ X.

i.e S (t) C0−Semigroup.



18

Definition 1.44. A semigroup S (t),0 ≤ t < ∞ is called a semigroup of contraction if

there exists a constant α > 0 (0 < α < 1) such that for all t > 0,

‖S (t)x − S (t)y‖ ≤ α‖x − y‖, f or all x, y ∈ X.

1.3.2 Hille-Yoshida Theorem

Definition 1.45. An unbonded linear operator A : D(A) ⊂ H → H1 is said to be

monotone2if it satisfies

〈Av, v〉 ≥ 0 ∀v ∈ D(A).

It is called maximal monotone if, in addition; R(I + A) = H i.e

∀ f ∈ H ∃u ∈ D(A) such that u + Au = f .

Proposition 1.46. Let A be a maximal monotone operator. Then

1. D(A) is dense in H.

2. A is closed operator.

3. For evry λ > 0, (I + λA) is bijective from D(A) onto H, (I + λA)−1 is a bounded

operator, and ‖(I + λA)−1‖L(H) ≤ 1.

Theorem 1.47. (Hille-Yosida) Let A be a maximal monotone operator. Then, given any

u0 ∈ D(A) there exists a unique function

u ∈ C1([0,+∞); H) ∩C([0,+∞); D(A))

satisfying 
du
dt

+ Au = 0 on[0,+∞)

u(0) = u0.

1H denotes a Hilbert space
2Some authors say that A is accretive or −A is dissipative.



Chapter 2

Stability of a thermo-elastic
Timoshenko Beam system of second
sound

2.1 Introduction

Here, the long-term behavior of solutions to the following system is investigating:

ρ1ϕtt − k (ϕx + ψ)x + µϕt = 0

ρ2ψtt − b̄ψxx +

ˆ t

0
g (t − s) (a (x)ψx (s))x ds + k (ϕx + ψ) + b (x) h (ψt) + γθx = 0

ρ3θt + κqx + γψtx = 0

τ0qt + δq + κθx = 0.
(2.1)

where t ∈ (0,∞) , x ∈ (0, 1), the functions ϕ and ψ are respectively, the transverse

displacement of the solid elastic material and the rotation angle, the function θ is the

temperature difference, q = q(t, x) ∈ R is the heat flux, and ρ1, ρ2, ρ3, γ, τ0, δ, κ, b̄ and k

are a positive constants and the following are initial conditions:

ϕ(., 0) = ϕ0(x), ϕt(., 0) = ϕ1(x), ψ(., 0) = ψ0(x)

ψt(., 0) = ψ1(x), θ(., 0) = θ0 (x) , q(., 0) = q0(x), (2.2)

19
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and boundary conditions

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = q(0, t) = q(1, t) = 0, ∀t ≥ 0. (2.3)

Timoshenko in 1921, proposed the following system of coupled hyperbolic equations
ρutt = (K(ux − ϕ))x, in (0, L) × (0,+∞)

Iρϕtt = (EIϕx)x + K(ux − ϕ), in (0, L) × (0,+∞),
(2.4)

which describes the transverse vibration of a beam of length L in its equilibrium config-

uration. Where t denotes the time variable, x is the space variable along the beam, u is

the transverse displacement of the beam and ϕ is the rotation angle of the filament of the

beam. The coefficients ρ, Iρ, E, I and K are respectively the density (the mass per unit

length), the polar moment of inertia of a cross section, Young’s modulus of elasticity,

the moment of inertia of a cross section, and the shear modulus.

System (2.4), together with boundary conditions of the form

EIϕx |
x=L
x=0= 0, K(ux − ϕ) |x=L

x=0= 0

is conservative, and so the total energy of the beam remains constant along the time.

The subject of stability of Timoshenko-type systems has received a lot of attention in the

last years and several outstanding results have been proved by some of the major experts

in the fields of partial deferential equations, and several results concerning uniform and

asymptotic decay of energy have been established.

An important issue of research is to look for a minimum dissipation by which solutions

of system (2.4) decay uniformly to the stable state as time goes to infinity.

Kim and Renardy [39] considered (2.4) together with two boundary controls of the form

Kϕ(L, t) − K
∂u
∂x

(L, t) = α
∂u
∂t

(L, t), ∀t ≥ 0

EI
∂ϕ

∂x
(L, t) = −β

∂ϕ

∂t
(L, t), ∀t ≥ 0

and used the multiplier techniques to establish an exponential decay result for the nat-

ural energy of (2.4). They also provided numerical estimates to the eigenvalues of the
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operator associated with system (2.4)). Raposo et al. [81] studied the following system ρ1utt − K(ux − ϕ)x + ut = 0, in (0, L) × (0,+∞)

ρ2ϕtt − bϕxx + K(ux − ϕ) + ϕt = 0, in (0, L) × (0,+∞)
(2.5)

with homogeneous Dirichlet boundary conditions, and proved that the associated energy

decays exponentially. Soufyane and Wehbe [89] showed that it is possible to stabilize

uniformly (2.4) by using a unique locally distributed feedback. They considered
ρutt = (K(ux − ϕ))x, in (0, L) × (0,+∞)

Iρϕtt = (EIϕx)x + K(ux − ϕ) − bϕt, in (0, L) × (0,+∞)

u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0, ∀t > 0,

(2.6)

where b is a positive and continuous function, which satisfies

b(x) ≥ b0 > 0, ∀ x ∈ [a0, a1] ⊂ [0, L]

and proved that the uniform stability of (2.6) holds if and only if the wave speeds are

equal
(

K
ρ

= EI
Iρ

)
; otherwise only the asymptotic stability has been proved. Recently,

Muñoz Rivera and Racke [68] obtained a similar result in a work where the damping

function b = b(x) is allowed to change its sign. Also, Muñoz Rivera and Racke [65]

treated a nonlinear Timoshenko-type system of the form ρ1ϕtt − σ1(ϕx, ψ)x = 0

ρ2ψtt − χ(ψx)x + σ2(ϕx, ψ) + dψt = 0

in a one-dimensional bounded domain. The dissipation is produced here through a fric-

tional damping which is only present in the equation for the rotation angle. The authors

gave an alternative proof for a necessary and sufficient condition for exponential stabil-

ity in the linear case and then proved a polynomial stability in general. Moreover, they

investigated the global existence of small smooth solutions and exponential stability

in the nonlinear case. Ammar-Khodja et al. [5] considered a linear Timoshenko-type

system with memory of the form
ρ1ϕtt − K(ϕx + ψ)x = 0

ρ2ψtt − bψxx +

ˆ t

0
g(t − s)ψxx(s)ds + K(ϕx + ψ) = 0

(2.7)
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in (0, L) × (0,+∞), together with homogeneous boundary conditions. They used the

multiplier techniques and proved that the system (2.7) is uniformly stable if and only

if the wave speeds are equal
(

K
ρ1

= b
ρ2

)
and g decays uniformly. Precisely, they proved

an exponential decay if g decays in an exponential rate and polynomially if g decays in

a polynomial rate. They also required some extra technical conditions on both g′ and

g′′ to obtain their result. Guesmia and Messaoudi [27] proved the same result without

imposing the extra technical conditions of [5]. Recently, Messaoudi and Mustafa [50]

have improved the results of [5] and [27] by allowing more general decaying relaxation

functions and showed that the rate of decay of the solution energy is exactly the rate of

decay of the relaxation function.

Also, Muñoz Rivera and Fernández Sare [69], considered Timoshenko type system with

past history acting only in one equation. More precisely they looked into the following

problem 
ρ1ϕtt − K(ϕx + ψ)x = 0

ρ2ψtt − bψxx +

ˆ ∞
0

g(t)ψxx(t − s, .)ds + K(ϕx + ψ) = 0
(2.8)

together with homogenous boundary conditions, and showed that the dissipation given

by the history term is strong enough to stabilize the system exponentially if and only

if the wave speeds are equal. They also proved that the solution decays polynomially

for the case of different wave speeds. This work was improved recently by Messaoudi

and Said-Houari [48], where the authors considered system (2.8) for g decaying polyno-

mially, and proved polynomial stability results for the equal and nonequal wave-speed

propagation under conditions on the relaxation function weaker than those in [69].

Concerning the Timoshenko systems in thermo-elasticity, Rivera and Racke [64] con-

sidered 
ρ1ϕtt − σ(ϕx, ψ)x = 0 in (0, L) × (0,+∞)

ρ2ψtt − bψxx + k (ϕx + ψ) + γθx = 0 in (0, L) × (0,+∞)

ρ3θt − kθxx + γψtx = 0 in (0, L) × (0,+∞)

(2.9)

where ϕ, ψ and θ are functions of (x, t) which model the transverse displacement of the

beam, the rotation angle of the filament, and the difference temperature respectively.

Under appropriate conditions of σ, ρi, b, k, γ, they proved several exponential decay re-

sults for the linearized system and a non exponential stability result for the case of

different wave speeds.
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Modeling heat conduction with the so-called Fourier law (as in (2.9)), which assumes

the flux q to be proportional to the gradient of the temperature θ at the same time t,

q + κ∇θ, (κ > 0),

leads to the phenomenon of infinite heat propagation speed. That is, any thermal dis-

turbance at a single point has an instantaneous effect everywhere in the medium. To

overcome this physical problem, a number of modification of the basic assumption on

the relation between the heat flux and the temperature have been made. The common

feature of these theories is that all lead to hyperbolic differential equation and the speed

of propagation becomes limited. See [16] for more details. Among them Cattaneo’s

law,

τqt + q + κ∇θ = 0, (τ > 0, relatively small),

leading to the system with second sound, ([90], [78], [52]) and a suggestion by Green

and Naghdi [24], [26], for thermo-elastic systems introducing what is called thermo-

elasticity of type III, where the constitutive equations for the heat flux is characterized

by

q + κ∗px + κ̃∇θ = 0, (κ̃ > κ > 0, pt = θ).

In the present work we are concerned with system (2.1) - (2.3) where the heat conduc-

tion is given by Cattaneo’s law instead of usual Fourier’s one. We should note here that

the dissipative effects of heat conduction induced by Cattaneo’s law are usually weaker

than those induced by Fourier’s law. This justifies the presence of the extra damping

terms in system (2.1). In fact if a = b = 0, Fernandez Sare and Racke [20] have proved

recently that (2.1) - (2.3) is no longer exponentially stable even in the case of equal

propagation speed ρ1/ρ2 = K/b̄.

2.2 Preliminaries

In this section, we introduce some notations and some techenical lemmas to be used

throughout this chapter. Also, we give a local existence theorem. In order to state and

prove our result, we formulate the following assumptions:
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• (H1) a, b: [0, 1]→ R+ are such that

a ∈ C1 ([0, 1]) , b ∈ L∞ ([0, 1])

a = 0 or a (0) + a (1) > 0, inf
x∈[0,1]

{a (x) + b (x)} > 0.

• (H2) h : R → R is a differentiable nondecreasing function such that there exist

constants ε′, c1, c2 > 0 and a convex and increasing function H : R+ → R+

of class C1 (R+) ∩ C2 ((0,∞)) satisfying H (0) = 0 and H is linear on [0, ε′] or

H′ (0) = 0 and H′′ > 0 on (0, ε′] such that
c1 |s| ≤ h (s) ≤ c2 |s| if |s| ≥ ε′

s2 + h2 (s) ≤ H−1 (sh (s)) if |s| ≤ ε′.

• (H3) g : R+ → R+ is a differentiable function such that

g (0) > 0, 1 − ‖a‖∞

ˆ ∞
0

g (s) ds = l > 0.

• (H4) There exists a non-increasing differentiable function ξ : R+ → R+ satisfying

g′ (s) ≤ −ξ (s) g (s) , ∀s ≥ 0.

Throughout this chapter, we use the following notations

(φ ∗ ψ) (t) : =

ˆ t

0
φ (t − τ)ψ (τ) dτ

(φ � ψ) (t) : =

ˆ t

0
φ (t − τ) |ψ (t) − ψ (τ)| dτ

(φ ◦ ψ) (t) : =

ˆ t

0
φ (t − τ)

ˆ
Ω

|ψ (t) − ψ (τ)|2 dxdτ.

The following lemma was introduced in [21].

Lemma 2.1. For any function φ ∈ C1 (R) and any ψ ∈ H1 (0, 1), we have

(φ ∗ ψ) (t)ψt (t) = −
1
2
φ (t) |ψ (t)|2 +

1
2

(
φ′ � ψ

)
(t)

−
1
2

d
dt

{
(φ � ψ) (t) −

(ˆ t

0
φ (τ) dτ

)
|ψ (t)|2

}
.
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Now, we are going to prepare some materials in order to state two lemmas due to Cav-

alcanti and Oquendo [15]. See also [28] for the proof.

By using the fact that a (0) > 0 and since a is continuous, then there exists ε > 0 such

that infx∈[0,ε] a (x) ≥ ε. Let us denote

d = min
{
ε, inf

x∈[0,1]
{a (x) + b (x)}

}
> 0

and let α ∈ C1 ([0, 1]) be such that 0 ≤ α ≤ a and
α (x) = 0 if a (x) ≤ d

4

α (x) = a (x) if a (x) ≥ d
2

(2.10)

To simplify the notations we introduce the following

g � v =

ˆ 1

0
α (x)

ˆ t

0
g (s) (v (t) − v (s)) dsdx

for all v ∈ L2 (0, 1). Here and in the sequel, we denote various generic positive constants

by C or c.

Lemma 2.2. The function α is not identically zero and satisfies

inf
x∈[0,1]

{α (x) + b (x)} ≥
d
2
.

Lemma 2.3. There exists a positive constant c such that

(g � v)2
≤ cg ◦ vx,

for all v ∈ H1
0 (0, 1) .

In order to make this chapter self contained we state, without proof, a local existence

result. The proof can be established by the classical Galerkin method.

Theorem 2.4. Let (ϕ0, ϕ1) , (ψ0, ψ1) ∈ H1
0 (0, 1) × L2 (0, 1) and (θ0, q0) ∈ L2 (0, 1) ×

L2 (0, 1) be given. Assume that (H1)−(H4) are satisfied, then problem (2.1)−(2.3) has a

unique global (weak) solution satisfying

ϕ, ψ ∈ C
(
R+; H1

0 (0, 1)
)
∩C1

(
R+; L2 (0, 1)

)
θ, q ∈ C

(
R+; L2 (0, 1)

)
.
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2.3 Stability result for µ > 0

In this section, we show the uniform decay property of the solution of the system

(2.1)−(2.3). In order to use the Poincaré inequality for θ, we introduce, as in [26],

θ̄(x, t) = θ(x, t) −
ˆ 1

0
θ0(x)dx.

Then, by the third equation in (2.1) we easily verify that

ˆ 1

0
θ̄ (x, t) dx = 0,

for all t ≥ 0. In this case the Poincaré inequality is applicable for θ̄. On the other

hand, (ϕ, ψ, θ̄, q) satisfies the same system (2.1) and the boundary conditions (2.3). So,

in the sequel, we shall work with θ̄ but we write θ for simplicity. The first-order energy,

associated to (2.1)−(2.3), is then given by

E
(
t, ϕ, ψ, θ̄, q

)
=

1
2

ˆ 1

0

{
ρ1ϕ

2
t + ρ2ψ

2
t +

(
b̄ − a (x)

ˆ t

0
g (s) ds

)
ψ2

x

}
dx

+
1
2

ˆ 1

0

{
K (ϕx + ψ)2 + ρ3θ

2 + τ0q2
}

dx +
1
2

(g ◦ ψx).

(2.11)

In what follows, we denote E(t) = E
(
t, ϕ, ψ, θ̄, q

)
and E(0) = E

(
0, ϕ0, ψ0, θ̄0, q0

)
for

simplicity. The main result of this chapter is given by the following theorem:

Theorem 2.5. Let (ϕ0, ϕ1) , (ψ0, ψ1) , ∈ H1
0 (0, 1) × L2 (0, 1) and (θ0, q0) ∈ L2 (0, 1) ×

L2 (0, 1) be given. Assume that (H1)−(H4) are satisfied, then there exist positive con-

stants c′, c′′ and ε0 for which the (weak) solution of problem (2.1)− (2.3) satisfies

E (t) ≤ c′′H−1
1

(
c′
ˆ t

0
ξ (s) ds

)
, ∀t ≥ 0, (2.12)

where

H1 (t) =

ˆ 1

t

1
H2

(s) ds

and

H2 (t) =

 t if H is linear on
[
0, ε

′
]

tH
′ (ε0t) if H

′ (0) = 0 and H
′′

> 0 on
(
0, ε

′
] (2.13)

and ξ = 1 if a = 0.
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To prove Theorem (2.5), we will use the energy method to produce a suitable Lyapunov

functional. This will be established through several lemmas. A starting point is, as

usual, the dissipativity inequality which states that the energy E of the entire system

(2.1)-(2.3) is a non-increasing function. Of course this fact is a necessary preliminary

step of stability analysis. More precisely, we have the following result:

Lemma 2.6. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3), then the energy E is non-

increasing function and satisfies, for all t ≥ 0,

dE(t)
dt

= −δ

ˆ 1

0
q2dx −

1
2

g (t)
ˆ 1

0
a (x)ψ2

xdx −
ˆ 1

0
b (x)ψth (ψt) dx

+
1
2

(
g′ ◦ ψx

)
− µ

ˆ 1

0
ϕ2

t dx,

≤ −δ

ˆ 1

0
q2dx −

ˆ 1

0
b (x)ψth (ψt) dx +

1
2

(
g′ ◦ ψx

)
− µ

ˆ 1

0
ϕ2

t dx ≤ 0.(2.14)

Proof. Multiplying the first equation in (2.1) by ϕt, we obtain

1
2

d
dt

ˆ 1

0
ρ1ϕ

2
t dx + K

ˆ 1

0
ϕtxϕxdx + K

ˆ 1

0
ϕtxψdx = −µ

ˆ 1

0
ϕ2

t dx. (2.15)

Similarly, multiplying the second equation in (2.1) by ψt, we get

1
2

d
dt

ˆ 1

0
ρ2ψ

2
t dx + b̄

ˆ 1

0
ψxψtxdx +

ˆ 1

0
ψt

ˆ t

0
g (t − s) (a (x)ψx (s))x dsdx

+K
ˆ 1

0
ψtϕxdx + K

ˆ 1

0
ψtψdx − γ

ˆ 1

0
ψtxθdx (2.16)

= −

ˆ 1

0
b (x)ψth (ψt) dx.

Also, multiplying the third equation in (2.1) by θ, we find

1
2

d
dt

ˆ 1

0
ρ3θ

2dx + κ

ˆ 1

0
qxθdx + γ

ˆ 1

0
ψtxθdx = 0. (2.17)

Finally, multiplying the fourth equation in (2.1) by q, we deduce

1
2

d
dt

ˆ 1

0
τ0q2dx − κ

ˆ 1

0
θqxdx = −δ

ˆ 1

0
q2dx. (2.18)

Now, using Lemma 2.1, to handle the last term in first line of (2.16) and summing up

(2.15)−(2.18), then (2.14) holds. �
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Let us now define the functional I1 as follows:

I1 (t) := −
ˆ 1

0
ρ2α (x)ψt

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx

+
γτ0

κ

ˆ 1

0
α (x) q

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx,

for simplicity we write

I1 (t) := χ1 (t) + χ2 (t) . (2.19)

Then, we have the following result:

Lemma 2.7. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3). Assume that (H1)−(H4)
hold. Then we have, for any ε1, ε′1 > 0,

dI1

dt
≤ −

(
ρ2

ˆ t

0
g (s) ds − ε1

(
ρ2

2 +

ˆ t

0
g (s) ds

)) ˆ 1

0
α (x)ψ2

t dx

+ε′1K2
ˆ 1

0
(ϕx + ψ)2 dx + ε1

ˆ 1

0
b(x)h2(ψt)dx

+ε′1
(
2b̄2 + 1

) ˆ 1

0
ψ2

xdx +

(
cε1 +

1
ε1

ˆ t

0
g (s) ds

)ˆ 1

0
q2dx (2.20)

+c
(
ε′1 +

1
ε′1

)
g ◦ ψx + c

(
ε1 +

1
ε1

)
g ◦ ψx −

c
ε1

g′ ◦ ψx

Proof. Differentiating χ1 with respect to t to obtain

χ′1 (t) = −

ˆ 1

0
ρ2α(x)ψtt

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx

−

ˆ 1

0
ρ2α (x)ψt

ˆ t

0
g′ (t − s) (ψ (t) − ψ (s)) dsdx (2.21)

−

ˆ 1

0
ρ2α (x)ψ2

t

ˆ t

0
g (s) dsdx.
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Now, using the second equation in (2.1), we get

−

ˆ 1

0
ρ2α(x)ψtt

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx

=

ˆ 1

0
b̄α (x)ψx

ˆ t

0
g (t − s) (ψx (t) − ψx (s)) dsdx

+

ˆ t

0
Kα (x) (ϕx + ψ)

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx

−

ˆ 1

0
α (x) a (x)

(ˆ t

0
g (t − s)ψx (s) ds

) (ˆ t

0
g (t − s) (ψx (t) − ψx (s)) ds

)
dx

+

ˆ 1

0
b (x) h (ψt)

(ˆ t

0
g (t − s) (ψ (t) − ψ (s)) ds

)
dx

+

ˆ 1

0
α (x) γθx

(ˆ t

0
g (t − s) (ψ (t) − ψ (s)) ds

)
dx

+

ˆ 1

0
α′ (x)

(
b̄ψx − a (x)

ˆ t

0
g (s)ψx (s) ds

) (ˆ t

0
g (t − s) (ψ (t) − ψ (s)) ds

)
dx.

(2.22)

Next, we will estimate the second term in the right-hand side of (2.21). So, by using

Lemma 2.3, we have, for any ε1 > 0

−

ˆ 1

0
ρ2α (x)ψt

ˆ t

0
g′ (t − s) (ψ (t) − ψ (s)) dsdx

≤ ε1ρ
2
2

ˆ 1

0
α (x)ψ2

t dx −
c
ε1

g′ ◦ ψx.

(2.23)

Also, as above we have

χ′2 (t) =
γτ0

κ

ˆ 1

0
α (x) qt

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx

+
γτ0

κ

ˆ 1

0
α (x) q

ˆ t

0
g′ (t − s) (ψ (t) − ψ (s)) dsdx

+
γτ0

κ

ˆ 1

0
α (x) qψt

ˆ t

0
g (s) ds.

Using the fourth equation in (2.1), we get

χ′2 (t) = −
γδ

κ

ˆ 1

0
α (x) q

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx

−

ˆ 1

0
α (x) γθx

(ˆ t

0
g (t − s) (ψ (t) − ψ (s)) ds

)
dx

+
γτ0

κ

ˆ 1

0
α (x) q

ˆ t

0
g′ (t − s) (ψ (t) − ψ (s)) dsdx (2.24)

+
γτ0

κ

(ˆ t

0
g (s) ds

) ˆ 1

0
α (x) qψtdx.
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Similarly to (2.23), by exploiting Young’s inequality, we estimate the terms in the right-

hand side of (2.22) as follows:

ˆ 1

0
b̄α (x)ψx

ˆ t

0
g (t − s) (ψx (t) − ψx (s)) dsdx

≤ ε′1b̄2

ˆ 1

0
ψ2

xdx +
c
ε′1

g ◦ ψx.

(2.25)

Similarly, ˆ t

0
Kα (x) (ϕx + ψ)

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx

≤ ε′1K2

ˆ 1

0
(ϕx + ψ)2 dx +

c
ε′1

g ◦ ψx.
(2.26)

By the same method used in [28], we have the following estimates:

−

ˆ 1

0
α (x) a (x)

(ˆ t

0
g (s)ψx (s) ds

) (ˆ t

0
g (t − s) (ψx (t) − ψx (s)) ds

)
dx

≤ ε′1

ˆ 1

0
ψ2

xdx + c
(
ε′1 +

1
ε′1

)
g ◦ ψx

(2.27)

and ˆ 1

0
b (x) h (ψt)

(ˆ t

0
g (t − s) (ψ (t) − ψ (s)) ds

)
dx

≤ ε1

ˆ 1

0
b(x)h2(ψt)dx + c

(
ε1 +

1
ε1

)
g ◦ ψx.

(2.28)

Finally,

ˆ 1

0
α′ (x)

(
b̄ψx − a (x)

ˆ t

0
g (s)ψx (s) ds

) (ˆ t

0
g (t − s) (ψ (t) − ψ (s)) ds

)
dx

≤ ε′1b̄2

ˆ 1

0
ψ2

xdx + c
(
ε′1 +

1
ε′1

)
g ◦ ψx.

(2.29)

As in (2.23), it is easy to prove

γτ0

κ

ˆ 1

0
α (x) q

ˆ t

0
g′ (t − s) (ψ (t) − ψ (s)) dsdx

≤ ε1

ˆ 1

0
q2dx −

c
ε1

g′ ◦ ψx.

(2.30)

Also, we estimate the first term in the right-hand side of (2.24) as follows:

−
γδ

κ

ˆ 1

0
α (x) q

ˆ t

0
g (t − s) (ψ (t) − ψ (s)) dsdx

≤

(
γδ

κ

)2

ε1

ˆ 1

0
q2dx +

c
ε1

g ◦ ψx

(2.31)



Stability of a thermo-elastic Timoshenko Beam system of second sound 31

and

γτ0

κ

(ˆ t

0
g (s) ds

)ˆ 1

0
α (x) qψtdx

≤

(ˆ t

0
g (s) ds

)
1
ε1

ˆ 1

0
q2dx +

(ˆ t

0
g (s) ds

)
cε1

ˆ 1

0
ψ2

t dx. (2.32)

Consequently, by combining all the above estimates (2.21)−(2.32), the assertion of

Lemma (2.7) is fulfilled. �

Now, as in [64], let w be the solution of −wxx = ψx,

w (0) = w (1) = 0.
(2.33)

Then, we have the following inequalities:

Lemma 2.8. The solution of (2.33) satisfies

ˆ 1

0
w2

xdx ≤
ˆ 1

0
ψ2dx

and ˆ 1

0
w2

t dx ≤
ˆ 1

0
ψ2

t dx.

Proof. We multiply Equation (2.33) by w, integrate by parts and use the Cauchy-Schwarz

inequality to obtain ˆ 1

0
w2

xdx ≤
ˆ 1

0
ψ2dx.

Next, we differentiate (2.33) with respect to t and by the same procedure, we obtain

ˆ 1

0
w2

t dx ≤
ˆ 1

0
ψ2

t dx.

This completes the proof of Lemma 2.8. �

Let w be the solution of (2.33). We introduce the following functional:

I2 (t) :=
ˆ 1

0

(
ρ2ψtψ + ρ1ϕtw −

γτ0

κ
ψq

)
dx. (2.34)

Then, we have the following estimate:
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Lemma 2.9. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3). Assume that (H1)−(H4)
hold. Then we have, for any ε2 > 0

dI2

dt
≤ −

(
b̄ +

cµε2

2
− 2cε2 −

δγε2

2κ

)ˆ 1

0
ψ2

xdx +

(
ρ1

2ε2
+

µ

2ε2

)ˆ 1

0
ϕ2

t dx

+

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)ˆ 1

0
ψ2

t dx +
c
ε2

g ◦ ψx (2.35)

+

(
γτ0

2κε2
+

δγ

2κε2

)ˆ 1

0
q2dx +

1
2ε2

ˆ 1

0
b (x) h2 (ψt) dx.

Proof. By taking the derivative of I2 with respect to t we get

I′2 (t) =

ˆ 1

0

(
ρ2ψttψ + ρ2ψ

2
t

)
dx +

ˆ 1

0
(ρ1ϕttw + ρ1ϕtwt) dx

−
γτ0

κ

ˆ 1

0
(ψtq + ψqt) dx (2.36)

:= J1 + J2 + J3.

Next, using the first and the fourth equations in (2.1) we get

J2 + J3 = −K
ˆ 1

0
ϕψxdx + K

ˆ 1

0
w2

xdx + ρ1

ˆ 1

0
ϕtwtdx

−
γτ0

κ

ˆ 1

0
ψtqdx +

δγ

κ

ˆ 1

0
ψqdx + γ

ˆ 1

0
ψθxdx. (2.37)

Next, using the second equation in (2.1), we get

J1 = −b̄
ˆ 1

0
ψ2

xdx + ρ2

ˆ 1

0
ψ2

t dx +

ˆ 1

0
ψx

ˆ t

0
g (t − s) a (x)ψx (s) dsdx

−K
ˆ 1

0
ψ2dx − K

ˆ 1

0
ϕxψdx −

ˆ 1

0
b (x)ψh (ψt) dx −

ˆ 1

0
γψθxdx.

(2.38)

From (2.37), (2.38) and by using Lemma 2.8, we deduce

I′2 (t) ≤ −µ

ˆ 1

0
ϕtwdx + ρ1

ˆ 1

0
ϕtwtdx −

γτ0

κ

ˆ 1

0
ψtqdx +

δγ

κ

ˆ 1

0
ψqdx

−b̄
ˆ 1

0
ψ2

xdx + ρ2

ˆ 1

0
ψ2

t dx −
ˆ 1

0
b (x)ψh (ψt) dx

+

ˆ 1

0
a (x)ψx

ˆ t

0
g (t − s)ψx (s) dsdx. (2.39)
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By exploiting the inequality

|ab| ≤
ν

2
a2 +

1
2ν

b2, a, b ∈ R, ν > 0,

we easily find, for any ε2 > 0,

I′2 (t) ≤ −b̄
ˆ 1

0
ψ2

xdx +
µ

2

ˆ 1

0

(
1
ε2
ϕ2

t + ε2w2
)

+
ρ1

2

ˆ 1

0

(
1
ε2
ϕ2

t + ε2w2
t

)
dx

+
γτ0

2κ

ˆ 1

0

(
ε2ψ

2
t +

1
ε2

q2
)

dx +
δγ

2κ

ˆ 1

0

(
ε2ψ

2 +
1
ε2

q2
)

dx

+ρ2

ˆ 1

0
ψ2

t dx −
ˆ 1

0
b (x)ψh (ψt) dx (2.40)

+

ˆ 1

0
a (x)ψx

ˆ t

0
g (t − s)ψx (s) dsdx.

We now proceed to the evaluation of the last two terms in the right-hand side of (2.40).

First, by Young’s and Poicaré’s inequalities we have∣∣∣∣∣∣
ˆ 1

0
b (x)ψh (ψt) dx

∣∣∣∣∣∣ ≤ ε2c
ˆ 1

0
ψ2

xdx +
1

2ε2

ˆ 1

0
b (x) h2 (ψt) dx. (2.41)

Furthermore, by Young’s and Cauchy-Schwartz inequalities we have∣∣∣∣∣∣
ˆ 1

0
a (x)ψx

ˆ t

0
g (t − s)ψx (s) dsdx

∣∣∣∣∣∣ ≤ ε2c
ˆ 1

0
ψ2

xdx +
c
ε2

g ◦ ψx. (2.42)

Then, plugging (2.41) and (2.42) into (2.40) and using the second inequality in Lemma

2.8, there fore the assertion of Lemma 2.9 holds. �

Now, following [28], we define the functional I3 as follows:

I3 (t) :=
ˆ 1

0
ρ1ϕtϕdx +

µ

2

ˆ 1

0
ϕ2dx. (2.43)

Then, we have the following estimate:

Lemma 2.10. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3). Then, for any ε3 > 0, we

have

I′3 (t) ≤
(Kε3

2
− K

)ˆ 1

0
ϕ2

xdx +
K

2ε3

ˆ 1

0
ψ2

xdx + ρ1

ˆ 1

0
ϕ2

t dx. (2.44)
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Proof. By exploiting the first equation in (2.1) and using Young’s inequality, we get

I′3 (t) =

ˆ 1

0
ρ1ϕttϕdx + ρ1

ˆ 1

0
ϕ2

t dx + µ

ˆ 1

0
ϕtϕdx

=

ˆ 1

0
Kϕ (ϕxx + ψx) dx + ρ1

ˆ 1

0
ϕ2

t dx

= −K
ˆ 1

0
ϕ2

xdx + K
ˆ 1

0
ϕψxdx + ρ1

ˆ 1

0
ϕ2

t dx

≤ −K
ˆ 1

0
ϕ2

xdx +
K
2

ˆ 1

0

(
ε3ϕ

2 +
1
ε3
ψ2

x

)
dx + ρ1

ˆ 1

0
ϕ2

t dx.

A simple use of Poincaré’s inequality completes the proof of Lemma 2.10. �

Now, in order to obtain negative terms of
´ 1

0 θ
2dx we introduce the following functional:

I4(t) := −τ0ρ3

ˆ 1

0
q(t, x)

(ˆ x

0
θ(t, y)dy

)
dx. (2.45)

Then we have the following estimate:

Lemma 2.11. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3). Then, for any ε4 > 0, we

have

I′4 (t) ≤
(
−ρ3κ +

ε4ρ3δc
2

)ˆ 1

0
θ2dx +

ε4τ0γ

2

ˆ 1

0
ψ2

t dx

+

(
τ0κ +

ρ3δ

2ε4
+
τ0γ

2ε4

)ˆ 1

0
q2dx. (2.46)

Proof. By using the fourth equation in (2.1), we get

I′4(t) = −ρ3

ˆ 1

0
τ0qt

(ˆ x

0
θdy

)
dx − τ0

ˆ 1

0
q
(ˆ x

0
ρ3θtdy

)
dx

= −ρ3

ˆ 1

0
(−δq − κθx)

(ˆ x

0
θdy

)
dx − τ0

ˆ 1

0
q
(ˆ x

0
(−κqx − γψtx) dy

)
dx

= ρ3δ

ˆ 1

0
q
(ˆ x

0
θdy

)
dx + ρ3κ

ˆ 1

0
θx

(ˆ x

0
θdy

)
dx

+τ0κ

ˆ 1

0
q
(ˆ x

0
qxdy

)
dx + τ0γ

ˆ 1

0
q
(ˆ x

0
ψtxdy

)
dx.
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That is

I′4(t) ≤
ρ3δ

2

ˆ 1

0

ε4

(ˆ x

0
θ2dy

)2

+
1
ε4

q2

 dx − ρ3κ

ˆ 1

0
θ2dx

+τ0κ

ˆ 1

0
q2dx +

τ0γ

2

ˆ 1

0

(
ε4ψ

2
t +

1
ε4

q2
)

dx. (2.47)

Consequently, the assertion of Lemma 2.11 immediately follows. �

Proof of Theorem 2.5. For N,N1,N2 > 0, we can define an auxiliary functional F by

F (t) := NE (t) + N1I1 + N2I2 + I3 + I4 (2.48)

and let t0 > 0, and g0(t) =
´ t

0 g(s)ds > 0. By combining (2.14), (2.20), (2.35), (2.44)

and (2.47), and by using the inequality

(ϕx + ψ)2
≤ 2ϕ2

x + 2ψ2

and Poincaré’s inequality, we arrive at

dF (t)
dt

≤ −N1

(
ρ2g0 − ε1

(
ρ2

2 + g0

))ˆ 1

0
(α (x) + b (x))ψ2

t dx

+

(
N2

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)
+
τ0γε4

2

)ˆ 1

0
ψ2

t dx − N
ˆ 1

0
b (x)ψth (ψt) dx

+

(
N2

(
ρ1

2ε2
+

µ

2ε2

)
+ ρ1 − Nµ

)ˆ 1

0
ϕ2

t dx +

(
N1ε1 +

N2

2ε2

)ˆ 1

0
b(x)h2(ψt)dx

+N1

(
ρ2g0 − ε1

(
ρ2

2 + g0

))ˆ 1

0
b (x)ψ2

t dx

+

{
N1ε

′

1

(
2b̄2 + 1 + 2K2

)
− N2

(
b̄ − 2cε2 −

δγε2

2κ

)
+

K
2ε3

}ˆ 1

0
ψ2

xdx

+

(
2N1ε

′

1K2 +
Kε3

2
− K

)ˆ 1

0
ϕ2

xdx +

(
−ρ3κ +

ε4ρ3δc
2

)ˆ 1

0
θ2dx

+

{
cN1

(
ε1 +

1
ε1

)
+ cN1

(
ε
′

1 +
1
ε
′

1

)
+

N2c
ε2

}
g ◦ ψx +

(
N
2
−

cN1

ε1

)
g′ ◦ ψx

+

{
N1

(
cε1 +

g0

ε1

)
+ N2

(
γτ0

2κε2
+

δγ

2κε2

)
+

(
τ0κ +

ρ3δ

2ε4
+
τ0γ

2ε4

)
− δN

}ˆ 1

0
q2dx

for all t ≥ t0. At this point, we have to choose our constants very carefully. First, let us

take ε3 < 1, ε1, ε2 and ε4 small enough such that
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ε1 ≤ min
{(
ρ2g0

2

)
/
(
ρ2

2 + g0

)
,

1
4K

}
,

ε2 ≤

(
b̄
2

)
/
(
2c +

δγ

2κ

)
and

ε4 ≤
κ

δc
.

After that, we pick N2 large enough so that

N2 ≥
2Kb̄
ε3

.

Now, by using Lemma 2.2, and choosing N1 large enough such that

N1ρ2g0

2
>

(
N2

(
ρ2 +

γτ0ε2

2k
+
ρ1ε2

2

)
+
τ0γε4

2

) 2
d

then, we can select ε
′

1 small enough such that

ε
′

1 ≤ min
{

1
4N1K

,

(
N2b̄

4

)
/N1

(
2b̄2 + 1 + 2K2

)}
. (2.49)

Finally, we choose N large enough so that, there exist positive constants η, η1, and η2

such that, for t ≥ t0,

dF (t)
dt

≤ −η

{ˆ 1

0
(α (x) + b (x))ψ2

t dx +

ˆ 1

0
ϕ2

t dx

+

ˆ 1

0
θ2dx +

ˆ 1

0
q2dx

}
− η1

ˆ 1

0
ψ2

xdx − η2

ˆ 1

0
ϕ2

xdx

+cg ◦ ψx + c
ˆ 1

0
b (x)

(
ψ2

t + h2 (ψt)
)

dx.
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By the same method as in [55]
(
see inequality (25) in [55]

)
, we can find η3 > 0 such

that, for t ≥ t0,

dF (t)
dt

≤ −η3

{ˆ 1

0
(α (x) + b (x))ψ2

t dx +

ˆ 1

0
ϕ2

t dx +

ˆ 1

0
ψ2

xdx

+

ˆ 1

0
(ϕx + ψ)2 dx +

ˆ 1

0
θ2dx +

ˆ 1

0
q2dx

}
+cg ◦ ψx + c

ˆ 1

0
b (x)

(
ψ2

t + h2 (ψt)
)

dx. (2.50)

Moreover, we have the following: there exist two positive constants β1 and β2 depending

on N,N1,N2, such that

β1E (t) ≤ F (t) ≤ β2E (t) , ∀t ≥ 0. (2.51)

This can be seen simply from estimate (2.14), (2.19), (2.34), (2.43), (2.45), (2.48),

Young’s and Poincaré’s inequalities, that

|F (t) − NE (t)| ≤ CE (t) , ∀t ≥ 0.

Consequently, we can choose N large enough such that β1 = N−C > 0 and (2.50) there-

fore (2.51) holds true. Our goal now is to estimate the last term in the right-hand side

of (2.50). Following the method presented in [28], we consider the following partition

of the interval (0, 1) :

Ω+ =
{
x ∈ (0, 1) : |ψt| > ε

′
}

and Ω− =
{
x ∈ (0, 1) : |ψt| ≤ ε

′
}

(2.52)

where ε
′

is defined in (H2). By using the hypothesis (H2) , we have |ψt| ≤ c−1
1 ψth (ψt)

on Ω+ and therefore taking into account the estimate (2.14), we arrive at

ˆ
Ω+

b (x)
(
ψ2

t + h2 (ψt)
)

dx ≤ c
ˆ

Ω+

b (x)ψth (ψt) dx

≤ c
ˆ 1

0
b (x)ψth (ψt) dx

≤ −cE
′

(t) . (2.53)

According to (H2) , we distinguish two cases:

Case 1: H is linear on
[
0, ε

′
]
. Consequently, there exist two positive constants c

′

1 and

c
′

2 such that c
′

1 |s| ≤ |h (s)| ≤ c
′

2 |s| , for all s ∈ R+, therefore the above inequality (2.53)
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holds on (0, 1) . Now, from (2.50) and (2.53), we arrive at

d
dt

(F (t) + cE (t)) ≤ −cE (t) + cg ◦ ψx

= −cH2 (E (t)) + cg ◦ ψx, ∀t ≥ t0, (2.54)

where the function H2 is defined by (2.13) .

Case 2: H
′ (0) = 0 and H

′′ (0) > 0 on
[
0, ε

′
]
. Let H∗ denote the dual of H in the sense

of Young, then we have (see [39] for more details)

H∗ (s) = s
(
H
′
)−1

(s) − H
[(

H
′
)−1

(s)
]
, ∀s ∈ R+.

By using Jensen’s inequality, we deduce

ˆ
Ω−

b (x)
(
ψ2

t + h2 (ψt)
)

dx ≤ c
ˆ

Ω−
b (x) H−1 (ψth (ψt)) dx

≤ c
ˆ

Ω−
H−1 (b (x)ψth (ψt)) dx

≤ cH−1
(ˆ

Ω−
b (x)ψth (ψt) dx

)
≤ cH−1

(
−cE

′

(t)
)
. (2.55)

Thus, it follows from (2.50), (2.53) and (2.55) that

F
′

(t) ≤ −cE (t) + cH−1
(
−cE

′

(t)
)
− cE

′

(t) + cg ◦ ψx, ∀t ≥ t0.

By using Young’s inequality and the fact that

H∗ (s) ≤ s
(
H′

)
(s) , E

′

(t) ≤ 0, H
′′

≥ 0,

we obtain by the same method as in [28] (we omit the details)

H′ (ε0E (t))
(
F ′(t) + cE′ (t) + c0E′ (t)

)
≤ −cH2 (E (t)) + cg ◦ ψx (2.56)

where ε0 is a small positive constant and c0 is a large positive constant. Now, let us

define the following functional:

L (t) =

 F (t) + cE (t) if H is linear on
[
0, ε

′
]

H
′ (ε0E (t)) (F (t) + cE (t)) + c0E (t) if H

′ (0) = 0 and H
′′

> 0 on (0, ε
′

].
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We can easily show that

L ∼ E.

On the other hand, by making use of (2.54) and (2.56), we easily deduce that the fol-

lowing inequality

L
′

(t) ≤ −cH2 (E (t)) + cg ◦ ψx

holds for all t ≥ t0. By using (2.14) and (H4) , we obtain

(ξ (t)L (t))
′

= ξ
′

(t)L (t) + ξ (t)L
′

(t)

≤ −cξ (t) H2 (E (t)) − cE
′

(t) .

Next, let K (t) = ε (ξ (t)L (t) + cE (t)) , where 0 < ε < ε̄ and ε̄ is a positive constant

satisfying

ξ (t)L (t) + cE (t) ≤
1
ε̄

E (t) , ∀t ≥ 0.

We can also show that

K ∼ E

and, for t ≥ t0,

K
′

(t) ≤ −cεξ (t) H2 (K (t)) .

A simple integration of the above inequality over (t0, t) yields

K (t) ≤ H−1
1

(
cε
ˆ t

0
ξ (s) ds + H1 (K (t0)) − cε

ˆ t0

0
ξ (s) ds

)
,∀t ≥ t0,

where H1 (t) =
´ 1

t

(
1

H2 (t)

)
ds. Since lim

t→0+
H1 (t) = ∞ and

0 ≤ K (t0) ≤
ε

ε̄
E (t0) ≤

ε

ε̄
E (0) .

We may choose ε small enough such that

H1 (F (t0)) − cε
ˆ t0

0
ξ (s) ds ≥ 0.

Therefore,K (t) ≤ H−1
1

(
cε
´ t

0 ξ (s) ds
)
, for t ≥ t0. Consequently, there exist two positive

constants c
′

, and c
′′

for which

K (t) ≤ c
′′

H−1
1

(
c
′

ˆ t

0
ξ (s) ds

)
, ∀t ≥ 0,
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since K is bounded, which gives (2.12).

This completes the proof of the Theorem 2.5 �

Remark 2.12. We can also prove the same decay results for the following boundary

conditions:

ϕx (0, t) = ϕx (1, t) = ψ (0, t) = ψ (1, t) = q (0, t) = q (1, t) = 0.

2.4 Stability results for µ = 0

This is the main section, where we show the uniform decay property of the solution of

the system (2.1)−(2.3). As in [78], and in order to use the Poincaré inequality for θ, we

introduce

θ̄(x, t) = θ(x, t) −
ˆ 1

0
θ0(x)dx.

Then, by the third equation in (2.1) we easily verify that

ˆ 1

0
θ̄ (x, t) dx = 0,

for all t ≥ 0. In this case the Poincaré inequality is applicable for θ̄. On the other

hand, (ϕ, ψ, θ̄, q) satisfies the same system (2.1) and the boundary conditions (2.3). So,

in the sequel, we shall work with θ̄ but we write θ for simplicity. The first-order energy,

associated to (2.1)−(2.3), is then given by

E
(
t, ϕ, ψ, θ̄, q

)
=

1
2

ˆ 1

0

{
ρ1ϕ

2
t + ρ2ψ

2
t +

(
b̄ − a (x)

ˆ t

0
h (s) ds

)
ψ2

x

}
dx

+
1
2

ˆ 1

0

{
k (ϕx + ψ)2 + ρ3θ

2 + τ0q2
}

dx +
1
2

(h ◦ ψx).

(2.57)

Theorem 2.13. Let (ϕ0, ϕ1) , (ψ0, ψ1) , ∈ H1
0 (0, 1) × L2 (0, 1) and (θ0, q0) ∈ L2 (0, 1) ×

L2 (0, 1) be given. Assume that (H1)−(H4) are satisfied, then there exist positive con-

stants c′, c′′ and ε0 for which the weak solution of problem (2.1)−(2.3) satisfies

E (t) ≤ c′′H−1
1

(
c′
ˆ t

0
ξ (s) ds

)
, ∀t ≥ 0, (2.58)
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where

H1 (t) =

ˆ 1

t

1
H2

(s) ds

and

H2 (t) =

 t if H is linear on
[
0, ε

′
]

tH
′ (ε0t) if H

′ (0) = 0 and H
′′

> 0 on
(
0, ε

′
] (2.59)

and ξ = 1 if a = 0.

To prove Theorem 2.13, we will use the energy method to produce a suitable Lyapunov

functional. This will be established through several lemmas.

Lemma 2.14. Let (ϕ, ψ, θ, q) be the solution of (2.1) − (2.3), then the energy E(t) is

no-increasing function and satisfies, for all t ≥ 0,

dE(t)
dt

= −δ

ˆ 1

0
q2dx −

1
2

h (t)
ˆ 1

0
a (x)ψ2

xdx −
ˆ 1

0
b (x)ψtg (ψt) dx

+
1
2

(
h′ ◦ ψx

)
≤ −δ

ˆ 1

0
q2dx −

ˆ 1

0
b (x)ψtg (ψt) dx +

1
2

(
h′ ◦ ψx

)
≤ 0. (2.60)

Proof. By multiplying the first equation in (2.1) by ϕt, we obtain

1
2

d
dt

ˆ 1

0
ρ1ϕ

2
t dx + k

ˆ 1

0
ϕtxϕxdx + k

ˆ 1

0
ϕtxψdx = 0 (2.61)

And the second equation in (2.1) by ψt, we get

1
2

d
dt

ˆ 1

0
ρ2ψ

2
t dx + b̄

ˆ 1

0
ψxψtxdx +

ˆ 1

0
ψt

ˆ t

0
h (t − s) (a (x)ψx (s))x dsdx

+k
ˆ 1

0
ψtϕxdx + k

ˆ 1

0
ψtψdx − γ

ˆ 1

0
ψtxθdx (2.62)

= −

ˆ 1

0
b (x)ψtg (ψt) dx.

Multiplying the third equation in (2.1) by θ, we find

1
2

d
dt

ˆ 1

0
ρ3θ

2dx + κ

ˆ 1

0
qxθdx + γ

ˆ 1

0
ψtxθdx = 0. (2.63)
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Finally, multiplying the fourth equation in (2.1) by q, we deduce

1
2

d
dt

ˆ 1

0
τ0q2dx − κ

ˆ 1

0
θqxdx = −δ

ˆ 1

0
q2dx (2.64)

To handle the last term in first line of (2.62), using Lemma (2.1) and summing up

(2.61)− (2.64), then (2.60) holds. �

We define the functional I1 as follows:

I1 (t) := −

ˆ 1

0
ρ2α (x)ψt

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

+
γτ0

κ

ˆ 1

0
α (x) q

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

:= χ1 (t) + χ2 (t) . (2.65)

Then, we have the following Lemma.

Lemma 2.15. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3). Assume that (H1)−(H4)
hold. Then we have, for any ε1, ε′1 > 0,

dI1

dt
≤ −

(
ρ2

ˆ t

0
h (s) ds − ε1

(
ρ2

2 +

ˆ t

0
h (s) ds

)) ˆ 1

0
α (x)ψ2

t dx

+ε′1k2
ˆ 1

0
(ϕx + ψ)2 dx + ε1

ˆ 1

0
b(x)g2(ψt)dx

+ε′1
(
2b̄2 + 1

)ˆ 1

0
ψ2

xdx +

(
cε1 +

1
ε1

ˆ t

0
h (s) ds

)ˆ 1

0
q2dx (2.66)

+c
(
ε′1 +

1
ε′1

)
(h ◦ ψx) + c

(
ε1 +

1
ε1

)
(h ◦ ψx) −

c
ε1

(h′ ◦ ψx)

Proof. Differentiating χ1 with respect to t to obtain

χ′1 (t) = −

ˆ 1

0
ρ2α(x)ψtt

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

−

ˆ 1

0
ρ2α (x)ψt

ˆ t

0
h′ (t − s) (ψ (t) − ψ (s)) dsdx (2.67)

−

ˆ 1

0
ρ2α (x)ψ2

t

ˆ t

0
h (s) dsdx.
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By using Lemma (2.3), we have, for any ε1 > 0

−

ˆ 1

0
ρ2α (x)ψt

ˆ t

0
h′ (t − s) (ψ (t) − ψ (s)) dsdx

≤ ε1ρ
2
2

ˆ 1

0
α (x)ψ2

t dx −
c
ε1

(h′ ◦ ψx).
(2.68)

Next, using the second equation in (2.1), we get

−

ˆ 1

0
ρ2α(x)ψtt

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

=

ˆ 1

0
b̄α (x)ψx

ˆ t

0
h (t − s) (ψx (t) − ψx (s)) dsdx

+

ˆ t

0
kα (x) (ϕx + ψ)

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

−

ˆ 1

0
α (x) a (x)

(ˆ t

0
h (t − s)ψx (s) ds

) (ˆ t

0
h (t − s) (ψx (t) − ψx (s)) ds

)
dx

+

ˆ 1

0
b (x) g (ψt)

(ˆ t

0
h (t − s) (ψ (t) − ψ (s)) ds

)
dx

+

ˆ 1

0
α (x) γθx

(ˆ t

0
h (t − s) (ψ (t) − ψ (s)) ds

)
dx

+

ˆ 1

0
α′ (x)

(
b̄ψx − a (x)

ˆ t

0
h (s)ψx (s) ds

) (ˆ t

0
h (t − s) (ψ (t) − ψ (s)) ds

)
dx.

(2.69)

Also, as above we have

χ′2 (t) =
γτ0

κ

ˆ 1

0
α (x) qt

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

+
γτ0

κ

ˆ 1

0
α (x) q

ˆ t

0
h′ (t − s) (ψ (t) − ψ (s)) dsdx

+
γτ0

κ

ˆ 1

0
α (x) qψt

ˆ t

0
h (s) ds.

Using the fourth equation in (2.1), we get

χ′2 (t) = −
γδ

κ

ˆ 1

0
α (x) q

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

−

ˆ 1

0
α (x) γθx

(ˆ t

0
h (t − s) (ψ (t) − ψ (s)) ds

)
dx

+
γτ0

κ

ˆ 1

0
α (x) q

ˆ t

0
h′ (t − s) (ψ (t) − ψ (s)) dsdx (2.70)

+
γτ0

κ

(ˆ t

0
h (s) ds

) ˆ 1

0
α (x) qψtdx.
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Similarly to (2.68), by exploiting Young’s inequality, we estimate the terms in the right-

hand side of (2.69) as follows:

ˆ 1

0
b̄α (x)ψx

ˆ t

0
h (t − s) (ψx (t) − ψx (s)) dsdx

≤ ε′1b̄2

ˆ 1

0
ψ2

xdx +
c
ε′1

(h ◦ ψx).
(2.71)

Similarly, ˆ t

0
kα (x) (ϕx + ψ)

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

≤ ε′1k2

ˆ 1

0
(ϕx + ψ)2 dx +

c
ε′1

(h ◦ ψx).
(2.72)

By the same method used in [28], we have the following estimates:

−

ˆ 1

0
α (x) a (x)

(ˆ t

0
h (s)ψx (s) ds

) (ˆ t

0
h (t − s) (ψx (t) − ψx (s)) ds

)
dx

≤ ε′1

ˆ 1

0
ψ2

xdx + c
(
ε′1 +

1
ε′1

)
(h ◦ ψx)

(2.73)

and ˆ 1

0
b (x) g (ψt)

(ˆ t

0
h (t − s) (ψ (t) − ψ (s)) ds

)
dx

≤ ε1

ˆ 1

0
b(x)g2(ψt)dx + c

(
ε1 +

1
ε1

)
(h ◦ ψx).

(2.74)

Finally,

ˆ 1

0
α′ (x)

(
b̄ψx − a (x)

ˆ t

0
h (s)ψx (s) ds

) (ˆ t

0
h (t − s) (ψ (t) − ψ (s)) ds

)
dx

≤ ε′1b̄2

ˆ 1

0
ψ2

xdx + c
(
ε′1 +

1
ε′1

)
(h ◦ ψx).

(2.75)

As in (2.68), it is obvious that

γτ0

κ

ˆ 1

0
α (x) q

ˆ t

0
h′ (t − s) (ψ (t) − ψ (s)) dsdx

≤ ε1

ˆ 1

0
q2dx −

c
ε1

(h′ ◦ ψx).
(2.76)

Also, we estimate the first term in the right-hand side of (2.70) as follows:

−
γδ

κ

ˆ 1

0
α (x) q

ˆ t

0
h (t − s) (ψ (t) − ψ (s)) dsdx

≤

(
γδ

κ

)2

ε1

ˆ 1

0
q2dx +

c
ε1

(h ◦ ψx)
(2.77)
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and

γτ0

κ

(ˆ t

0
h (s) ds

)ˆ 1

0
α (x) qψtdx

≤

(ˆ t

0
h (s) ds

)
1
ε1

ˆ 1

0
q2dx +

(ˆ t

0
h (s) ds

)
cε1

ˆ 1

0
ψ2

t dx. (2.78)

Consequently, by combining all the above estimates (2.67)−(2.78), the assertion of

Lemma 2.15 is fulfilled. �

Now, as in [64], let w be the solution of −wxx = ψx,

w (0) = w (1) = 0.
(2.79)

Then, we have

Lemma 2.16. The solution of (2.79) satisfies

ˆ 1

0
w2

xdx ≤
ˆ 1

0
ψ2dx

and ˆ 1

0
w2

t dx ≤
ˆ 1

0
ψ2

t dx.

Proof. We multiply Equation (2.79) by w, integrate by parts and use the Cauchy-Schwarz

inequality to obtain ˆ 1

0
w2

xdx ≤
ˆ 1

0
ψ2dx.

Next, we differentiate (2.79) with respect to t and by the same procedure, we obtain

ˆ 1

0
w2

t dx ≤
ˆ 1

0
ψ2

t dx.

This completes the proof of Lemma (2.16). �

Let w be the solution of (2.79). We introduce the following functional:

I2 (t) :=
ˆ 1

0

(
ρ2ψtψ + ρ1ϕtw −

γτ0

κ
ψq

)
dx. (2.80)

Then, we have
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Lemma 2.17. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3). Assume that (H1)−(H4)
hold. Then we have, for any ε2 > 0

dI2

dt
≤ −

(
b̄ − 2cε2 −

δγε2

2κ

)ˆ 1

0
ψ2

xdx +
ρ1

2ε2

ˆ 1

0
ϕ2

t dx

+

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)ˆ 1

0
ψ2

t dx +
c
ε2

(h ◦ ψx) (2.81)

+

(
γτ0

2κε2
+

δγ

2κε2

) ˆ 1

0
q2dx +

1
2ε2

ˆ 1

0
b (x) g2 (ψt) dx.

Proof. By taking the derivative of I2 with respect to t we get

I′2 (t) =

ˆ 1

0

(
ρ2ψttψ + ρ2ψ

2
t

)
dx +

ˆ 1

0
(ρ1ϕttw + ρ1ϕtwt) dx

−
γτ0

κ

ˆ 1

0
(ψtq + ψqt) dx (2.82)

:= J1 + J2 + J3.

Next, using the first and the fourth equations in (2.1) we get

J2 + J3 = −k
ˆ 1

0
ϕψxdx + k

ˆ 1

0
w2

xdx + ρ1

ˆ 1

0
ϕtwtdx

−
γτ0

κ

ˆ 1

0
ψtqdx +

δγ

κ

ˆ 1

0
ψqdx + γ

ˆ 1

0
ψθxdx. (2.83)

Next, using the second equation in (2.1), we get

J1 = −b̄
ˆ 1

0
ψ2

xdx + ρ2

ˆ 1

0
ψ2

t dx +

ˆ 1

0
ψx

ˆ t

0
h (t − s) a (x)ψx (s) dsdx

−k
ˆ 1

0
ψ2dx − k

ˆ 1

0
ϕxψdx −

ˆ 1

0
b (x)ψg (ψt) dx −

ˆ 1

0
γψθxdx.

(2.84)

From (2.83), (2.84) and by using Lemma (2.16), we deduce

I′2 (t) ≤ ρ1

ˆ 1

0
ϕtwtdx −

γτ0

κ

ˆ 1

0
ψtqdx +

δγ

κ

ˆ 1

0
ψqdx

−b̄
ˆ 1

0
ψ2

xdx + ρ2

ˆ 1

0
ψ2

t dx −
ˆ 1

0
b (x)ψg (ψt) dx

+

ˆ 1

0
a (x)ψx

ˆ t

0
h (t − s)ψx (s) dsdx. (2.85)
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By exploiting the inequality

|ab| ≤
ν

2
a2 +

1
2ν

b2, a, b ∈ R, ν > 0,

we easily find, for any ε2 > 0,

I′2 (t) ≤ −b̄
ˆ 1

0
ψ2

xdx +
ρ1

2

ˆ 1

0

(
1
ε2
ϕ2

t + ε2w2
t

)
dx

+
γτ0

2κ

ˆ 1

0

(
ε2ψ

2
t +

1
ε2

q2
)

dx +
δγ

2κ

ˆ 1

0

(
ε2ψ

2 +
1
ε2

q2
)

dx

+ρ2

ˆ 1

0
ψ2

t dx −
ˆ 1

0
b (x)ψg (ψt) dx (2.86)

+

ˆ 1

0
a (x)ψx

ˆ t

0
h (t − s)ψx (s) dsdx.

We now proceed to the evaluation of the last two terms in the right-hand side of (2.86).

First, by Young’s and Poicaré’s inequalities we have∣∣∣∣∣∣
ˆ 1

0
b (x)ψg (ψt) dx

∣∣∣∣∣∣ ≤ ε2c
ˆ 1

0
ψ2

xdx +
1

2ε2

ˆ 1

0
b (x) g2 (ψt) dx. (2.87)

Furthermore, we have the following inequality∣∣∣∣∣∣
ˆ 1

0
a (x)ψx

ˆ t

0
h (t − s)ψx (s) dsdx

∣∣∣∣∣∣ ≤ ε2c
ˆ 1

0
ψ2

xdx +
c
ε2

(h ◦ ψx). (2.88)

Then, plugging (2.87) and (2.88) into (2.86) and using the second inequality in Lemma

(2.16), there fore the assertion of Lemma (2.17) holds. �

Now, following [28], we define the functional I3 as follows:

I3 (t) := −
ˆ 1

0
(ρ2ψψt + ρ1ϕϕt)dx (2.89)

Then, we have the following estimate:
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Lemma 2.18. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3) Assume that (H1)−(H4)
hold. Then, for any ε3 > 0, we have

I′3 (t) ≤ −

ˆ 1

0
(ρ2ψ

2
t + ρ1ϕ

2
t )dx + k

ˆ 1

0
(ϕx + ψ)2dx

+
1

2ε3

ˆ 1

0
b(x)h2(ψt)dx +

(
γ

2ε3

)ˆ 1

0
θ2dx

+
(
γε3 + b̄ + cε3

)ˆ 1

0
ψ2

xdx +
c
ε3

(h ◦ ψx) (2.90)

Proof. By exploiting the first equation in (2.1)

I′3 (t) = −

ˆ 1

0
(ρ2ψ

2
t + ρ1ϕ

2
t )dx − k

ˆ 1

0
ϕ(ϕx + ψ)xdx

−

ˆ 1

0
ψ[b̄ψxx −

ˆ t

0
h(t − s)(a(x)ψx(s))xds − k(ϕx + ψ) − b(x)g(ψt) − γθx]dx

= −

ˆ 1

0
(ρ2ψ

2
t + ρ1ϕ

2
t )dx + b̄

ˆ 1

0
ψ2

xdx −
ˆ 1

0
a(x)ψx

(ˆ t

0
h(t − s)ψsds

)
dx

+k
ˆ 1

0
(ϕx + ψ)2dx +

ˆ 1

0
ψb(x)g(ψt)dx + γ

ˆ 1

0
ψθxdx

≤ −

ˆ 1

0
(ρ2ψ

2
t + ρ1ϕ

2
t )dx + k

ˆ 1

0
(ϕx + ψ)2dx +

(
γε3 + b̄ + cε3

)ˆ 1

0
ψ2

xdx

+
c
ε3

(h ◦ ψx) +
1

2ε3

ˆ 1

0
b(x)g2(ψt)dx +

(
γ

2ε3

)ˆ 1

0
θ2dx. (2.91)

�

Now, we define the functional I4 as follows :

I4 (t) := ρ2

ˆ 1

0
ψt (ϕx + ψ) dx + ρ2

ˆ 1

0
ψxϕtdx −

ρ1

k

ˆ 1

0
a(x)ϕt

ˆ t

0
h(t − s)ψx(s)dsdx.

(2.92)

Lemma 2.19. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3) Assume that (H1)−(H4) and

ρ2

b̄
=
ρ1

k
(2.93)
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hold. Then, for any 0 < ε ≤ k
1+γ

, we have

I′4 (t) ≤
[(

b̄ψx − a(x)
ˆ t

0
h(t − s)ψx(s)ds

)
ϕx

]x=1

x=0
− (k − ε − γε)

ˆ 1

0
(ϕx + ψ)2dx

+
ερ1

k

ˆ 1

0
ϕ2

t dx −
cρ1

kε
h′ ◦ ψx +

cρ1

ε

ˆ 1

0
ψ2

xdx

+ρ2

ˆ 1

0
ψ2

t dx +
c
ε

ˆ 1

0
b(x)g2(ψt)dx

+
cγ
ε

ˆ 1

0
θ2

xdx (2.94)

Proof. By exploiting the first and second equation in (2.1) and (2.93); we have

I′4 (t) =

ˆ 1

0
(ϕx + ψ)

[
b̄ψxx −

ˆ t

0
h(t − s)(a(x)ψx(s))xdx − k(ϕx + ψ) − b(x)g(ψt) − γθx

]
+ρ2

ˆ 1

0
(ϕxt + ψt)ψtdx + ρ2

ˆ 1

0
ψxtϕtdx +

ρ2k
ρ1

ˆ 1

0
ψx(ϕx + ψ)xdx

−
ρ1

k

ˆ 1

0
a(x)ϕt

(
h(0)ψx +

ˆ t

0
h′(t − s)ψx(s)ds

)
dx

−

ˆ 1

0
a(x)(ϕx + ψ)x

ˆ t

0
h(t − s)ψx(s)dsdx

= b̄
ˆ 1

0
(ϕx + ψ)ψxx −

ˆ 1

0
(ϕx + ψ)

ˆ t

0
h(t − s)(a(x)ψx(s))xdsdx − k

ˆ 1

0
(ϕx + ψ)2

−

ˆ 1

0
(ϕx + ψ)b(x)h(ψt) − γ

ˆ 1

0
(ϕx + ψ)θx + ρ2

ˆ 1

0
ψ2

t +
ρ2k
ρ1

ˆ 1

0
ψx(ϕx + ψ)x

−
ρ1

k

ˆ 1

0
(ϕx + ψ)xa(x)

ˆ t

0
h(t − s)ψx(s)dsdx

−
ρ1

k

ˆ 1

0
a(x)ϕt

(
h(0)ψx +

ˆ t

0
h′(t − s)ψx(s)ds

)
dx

(2.95)

by Young’s inequality, (2.94) is established. �

Now, following [28], we define the functionals I5 and I6, let m ∈ C1([0, 1]) be a function

satisfying m(0) = −m(1) = 2.

I5 (t) :=
ˆ 1

0
ρ2m(x)ψt

(
b̄ψx − a(x)

ˆ t

0
h(t − s)ψx(s)ds

)
dx. (2.96)

I6 (t) :=
1
k

ˆ 1

0
ρ1m(x)ϕtϕxdx. (2.97)
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Lemma 2.20. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3) Assume that (H1)−(H4)
hold. Then, for any ε > 0 , we have

I′5 (t) ≤ −

(b̄ψx(1, t) − a(1)
ˆ t

0
h(t − s)ψx(1, s)ds

)2

+

(
b̄ψx(0, t) − a(0)

ˆ t

0
h(t − s)ψx(0, s)ds

)2
+εk
ˆ 1

0
(ϕx + ψ)2dx +

cρ2

ε

(ˆ 1

0
ψ2

xdx + (h ◦ ψx)
)

+b̄ρ2c
(ˆ 1

0
(ψ2

t + b(x)g2(ψt))dx − (h′ ◦ ψx)
)

+ cγ
ˆ 1

0
θ2

xdx (2.98)

and

I′6 (t) ≤ −(ϕ2
x(1, t) − ϕ

2
x(0, t)) +

cρ1

k

ˆ 1

0
ϕ2

t +
ck
2

ˆ 1

0
(ϕ2

x + ψ2
x)dx (2.99)

Proof. By exploiting the first and second equation in (2.1) and using Young’s inequality

and lemma (2.3) , we have

I′5 (t) =

ˆ 1

0
ρ2m(x)ψtt

(
b̄ψx − a(x)

ˆ t

0
h(t − s)ψsds

)
dx

+

ˆ 1

0
m(x)ψt

(
b̄ψx − a(x)

ˆ t

0
h(t − s)ψsds

)′
dx

=

ˆ 1

0
m(x)

(
b̄ψx − a(x)

ˆ t

0
h(t − s)ψx(s)ds

)
x

(
b̄ψx − a(x)

ˆ t

0
h(t − s)ψsds

)
dx

−

ˆ 1

0
m(x)

(
b̄ψx − a(x)

ˆ t

0
h(t − s)ψx(s)ds

)
(ϕx + ψ + b(x)g(ψt) + γθx)dx

+

ˆ 1

0
m(x)ψt

(
b̄ψxt − a(x)h(0)ψx −

ˆ t

0
h(t − s)ψx(s)ds

)
dx

= −

(b̄ψx(1, t) − a(1)
ˆ t

0
h(t − s)ψx(1, s)ds

)2

+

(
b̄ψx(0, t) − a(0)

ˆ t

0
h(t − s)ψx(0, s)ds

)2
−

1
2

ˆ 1

0
m′(x)

(
b̄ψx − a(x)

ˆ t

0
h(t − s)ψx(s)ds

)2

dx

−

ˆ 1

0
m(x)

(
b̄ψx − a(x)

ˆ t

0
h(t − s)ψx(s)ds

)
(k(ϕx + ψ) + b(x)g(ψt) + γθx)dx

−
b̄ρ2

2

ˆ 1

0
m′(x)ψ2

t dx

+ρ2

ˆ 1

0
m(x)a(x)ψt

(ˆ t

0
h′(t − s)(ψx(t) − ψx(s))ds

)
dx + h(t)

ˆ 1

0
m(x)a(x)ψxψtdx,

(2.100)
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Applying Young’s inequality, we obtain (2.98). Similarly, we can prove the second

estimate of Lemma (2.20) �

Now, we introduce the followige functionel I7

I7 (t) := εI4 (t) +
1
4ε

I5 (t) + εI6 (t) . (2.101)

Lemma 2.21. Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3) Assume that (H1)−(H4)

hold. Then, for any 0 < ε ≤
3k2

4c
, we have

I′7 (t) ≤ −(
3k
4
−

cε
k

)
ˆ 1

0
(ϕx + ψ)2dx + cερ1

ˆ 1

0
ϕ2

t dx +
c
ε

ˆ 1

0
ψ2

t dx

+
c
ε

ˆ 1

0
b(x)g2(ψt)dx +

c
ε

ˆ 1

0
ψ2

xdx +
cγ
ε

ˆ 1

0
θ2

xdx

−
c
ε

(h′ ◦ ψx) +
c
ε

(h ◦ ψx) (2.102)

Proof. By using Lemmas (2.19) and (2.20) ,Young’s and Poincare’s inequalities and the

fact that

ϕ2
x ≤ 2(ψ + ϕx)2 + 2ψ2

and(
ψx − a(x)

ˆ t

0
h(t − s)ψx(s)ds

)
ϕx ≤ εϕ

2
x +

1
4ε

(
ψx − a(x)

ˆ t

0
h(t − s)ψx(s)ds

)2

we obten (2.102) �

Finally, we set

I8 (t) := −τ0ρ3

ˆ 1

0
q(t, x)

(ˆ x

0
θ(t, y)dy

)
dx. (2.103)

Lemma 2.22. [53] Let (ϕ, ψ, θ, q) be the solution of (2.1)−(2.3) Assume that (H1)−(H4)
hold. Then, we have for any ε8 > 0,

I′8 (t) ≤
(
−ρ3κ +

ε8ρ3δc
2

)ˆ 1

0
θ2dx +

ε8τ0γ

2

ˆ 1

0
ψ2

t dx

+

(
τ0κ +

ρ3γ

2ε8
+
τ0γ

2ε8

)ˆ 1

0
q2dx (2.104)
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proof of Theorem 2.13. For N,N1,N2,N3,N7 > 0, we can define an auxiliary functional

F by

F (t) := NE (t) + N1I1 + N2I2 + N3I3 + N7I7 + N8I8 (2.105)

and let t0 > 0, and g0 =
´ t

0 g(s)ds > 0. By combining (2.60), (2.66), (2.81), (2.90) and

(2.102),(2.104) and by using the inequality

(ϕx + ψ)2
≤ 2ϕ2

x + 2ψ2

and Poincaré’s inequality, we arrive at

dF (t)
dt

≤ −N1

(
ρ2g0 − ε1

(
ρ2

2 + g0

)) ˆ 1

0
(α (x) + b (x))ψ2

t dx

+

(
N2

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)
− N3ρ2 +

N7c
ε

+ N8
ε8τ0γ

2

)ˆ 1

0
ψ2

t dx − N
ˆ 1

0
b (x)ψtg (ψt) dx

+

(
N2ρ1

2ε2
− N3ρ1 + N7cερ1

)ˆ 1

0
ϕ2

t dx +

(
N1ε1 +

N2

2ε2
+

N3

2ε3
+

cN7

ε

)ˆ 1

0
b(x)g2(ψt)dx

+N1

(
ρ2h0 − ε1

(
ρ2

2 + h0

)) ˆ 1

0
b (x)ψ2

t dx

+

{
N1ε

′
1

(
2b̄2 + 1 + 2ck2

)
− N2

(
b̄ − 2cε2 −

δγε2

2κ

)
+ N3(γε3 + b̄ + cε3)

+2kcN3 +
N7c
ε

(
3k
4
−

cε
k

)}ˆ 1

0
ψ2

xdx

+

{
2N1ε

′
1k2 + 2N3k − N7

(
3k
4
−

cε
k

)
+ 2N7ε

(
3k
4
−

cε
k

)} ˆ 1

0
ϕ2

xdx

+

(
N3γ

2ε3
+

N7Cγ
cε

+ N8

(
−ρ3κ +

ε8ρ3δc
2

))ˆ 1

0
θ2dx

+

{
cN1

(
ε1 +

1
ε1

)
+ cN1

(
ε
′

1 +
1
ε
′

1

)
+

N2c
ε2

+
N3c
ε3

+
cN7

ε

}
(h ◦ ψx)

+

(
N
2
−

cN1

ε1
−

cN7

ε

)
(h′ ◦ ψx)

+

{
N1

(
cε1 +

g0

ε1

)
+ N2

(
γτ0

2κε2
+

δγ

2κε2

)
+ N8

(
τ0κ +

ρ3δ

2ε8
+
τ0γ

2ε8

)
− δN

}ˆ 1

0
q2dx

for all t ≥ t0. At this point, we have to choose our constants very carefully. First, let us

take ε3 < 1, ε1, ε2, ε and ε8 small enough such that
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ε1 ≤ min
{(
ρ2g0

2

)
/
(
ρ2

2 + h0

)
,

1
4k

}
,

ε2 ≤

(
b̄
2

)
/
(
2c +

δγ

2κ

)
,

ε ≤ min
{

k
1 + γ

,
3k2

4c

}
,

and

ε8 ≤
2k
δc
.

After that, we pick N2 large enough so that

N2 ≥
2kb̄
ε3

.

Now, by using Lemma (2.2), and choosing N1 large enough such that

N1ρ2h0

2
>

(
N2

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)
− N3ρ2 +

N7C
ε

+ N8
ε8τ0γ

2

) 2
d

then, we can select ε
′

1 small enough such that

ε
′

1 ≤ min
{

1
4N1k

,

(
N2b̄

4

)
/N1

(
2b̄2 + 1 + 2ck2

)}
. (2.106)

Then we take N3 so large that

N3 >
N2

2ε2

After that, we pick N7 so large that

N7 > N3k

Next, let N8 be large enough so that

N8 >
N7cγ
ρ3κcε
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Finally, we choose N large enough so that, there exist positive constants η, η1, and η2

such that, for t ≥ t0,

dF (t)
dt

≤ −η

{ˆ 1

0
(α (x) + b (x))ψ2

t dx +

ˆ 1

0
ϕ2

t dx

+

ˆ 1

0
θ2dx +

ˆ 1

0
q2dx

}
− η1

ˆ 1

0
ψ2

xdx − η2

ˆ 1

0
ϕ2

xdx

+c(h ◦ ψx) + c
ˆ 1

0
b (x)

(
ψ2

t + g2 (ψt)
)

dx.

As in [28], we can find η3 > 0 such that, for t ≥ t0,

dF (t)
dt

≤ −η3

{ˆ 1

0
(α (x) + b (x))ψ2

t dx +

ˆ 1

0
ϕ2

t dx +

ˆ 1

0
ψ2

xdx

+

ˆ 1

0
(ϕx + ψ)2 dx +

ˆ 1

0
θ2dx +

ˆ 1

0
q2dx

}
+c(h ◦ ψx) + c

ˆ 1

0
b (x)

(
ψ2

t + g2 (ψt)
)

dx. (2.107)

Moreover, we have the following:

Lemma 2.23. There exist two positive constants β1 and β2 depending on N,N1,N2, such

that

β1E (t) ≤ F (t) ≤ β2E (t) , ∀t ≥ 0. (2.108)

Proof. As in [28],it is clear, for (2.60), (2.65), (2.80), (2.89), (2.101), (2.105), Young’s

and Poincaré’s inequalities, that

|F (t) − NE (t)| ≤ CE (t) , ∀t ≥ 0.

Consequently, we can choose N large enough such that β1 = N −C > 0 and (2.107) and

therefore (2.108) holds true.

�

Our goal now is to estimate the last term in the right-hand side of (2.107). Following

the method presented in [28], we consider the following partition of the interval (0, 1) :

Ω+ =
{
x ∈ (0, 1) : |ψt| > ε

′
}

and Ω− =
{
x ∈ (0, 1) : |ψt| ≤ ε

′
}

(2.109)
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where ε
′

is defined in (H2). By using the hypothesis (H2) , we have |ψt| ≤ c−1
1 ψtg (ψt)

on Ω+ and therefore taking into account the estimate (2.60) , we arrive at

ˆ
Ω+

b (x)
(
ψ2

t + g2 (ψt)
)

dx ≤ c
ˆ

Ω+

b (x)ψtg (ψt) dx

≤ c
ˆ 1

0
b (x)ψth (ψt) dx

≤ −cE
′

(t) . (2.110)

According to (H2) , we distinguish two cases:

Case 1: H is linear on
[
0, ε

′
]
. Consequently, there exist two positive constants c

′

1 and

c
′

2 such that c
′

1 |s| ≤ |g (s)| ≤ c
′

2 |s| , for all s ∈ (0, 1) . Now, from (2.107) and (2.110), we

arrive at

d
dt

(F (t) + cE (t)) ≤ −cE (t) + c(h ◦ ψx)

= −cH2 (E (t)) + c(h ◦ ψx),∀t ≥ t0, (2.111)

where the function H2 is defined by (2.59) .

Case 2: H
′ (0) = 0 and H

′′ (0) > 0 on
[
0, ε

′
]
. Let H∗ denote the dual of H in the sense

of Young, then we have (see [28] for more details)

H∗ (s) = s
(
H
′
)−1

(s) − H
[(

H
′
)−1

(s)
]
, ∀s ∈ R+.

By using Jensen’s inequality, we deduce

ˆ
Ω−

b (x)
(
ψ2

t + g2 (ψt)
)

dx ≤ c
ˆ

Ω−
b (x) H−1 (ψtg (ψt)) dx

≤ c
ˆ

Ω−
H−1 (b (x)ψtg (ψt)) dx

≤ cH−1
(ˆ

Ω−
b (x)ψtg (ψt) dx

)
≤ cH−1

(
−cE

′

(t)
)
. (2.112)

Thus, it follows from (2.107) , (2.110) and (2.112) that

F
′

(t) ≤ −cE (t) + cH−1
(
−cE

′

(t)
)
− cE

′

(t) + c(h ◦ ψx),∀t ≥ t0.
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By using Young’s inequality and the fact that

H∗ (s) ≤ s
(
H′

)
(s) , E

′

(t) ≤ 0, H
′′

≥ 0,

we obtain by the same method as in [28] (we omit the details)

H′ (ε0E (t))
(
F ′(t) + cE′ (t) + c0E′ (t)

)
≤ −cH2 (E (t)) + c(h ◦ ψx) (2.113)

where ε0 is a small positive constant and c0 is a large positive constant. Now, let us

define the following functional:

L (t) =

 F (t) + cE (t) if H is linear on
[
0, ε

′
]

H
′ (ε0E (t)) (F (t) + cE (t)) + c0E (t) if H

′ (0) = 0 and H
′′

> 0 on (0, ε
′

].

We can easily show that

L ∼ E.

On the other hand, by making use of (2.111) and (2.113) , we easily deduce that the

following inequality

L
′

(t) ≤ −cH2 (E (t)) + c(h ◦ ψx)

holds for all t ≥ t0. By using (2.60) and (H4) , we obtain

(ξ (t)L (t))
′

= ξ
′

(t)L (t) + ξ (t)L
′

(t)

≤ −cξ (t) H2 (E (t)) − cE
′

(t) .

Next, let K (t) = ε (ξ (t)L (t) + cE (t)) , where 0 < ε < ε̄ and ε̄ is a positive constant

satisfying

ξ (t)L (t) + cE (t) ≤
1
ε̄

E (t) , ∀t ≥ 0.

We can also show that

K ∼ E

and, for t ≥ t0,

K
′

(t) ≤ −cεξ (t) H2 (K (t)) .

A simple integration of the above inequality over (t0, t) yields

K (t) ≤ H−1
1

(
cε
ˆ t

0
ξ (s) ds + H1 (K (t0)) − cε

ˆ t0

0
ξ (s) ds

)
,∀t ≥ t0,
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where H1 (t) =
´ 1

t

(
1

H2(t)

)
ds. Since lim

t→0+
H1 (t) = ∞ and

0 ≤ K (t0) ≤
ε

ε̄
E (t0) ≤

ε

ε̄
E (0) .

We may choose ε small enough such that

H1 (F (t0)) − cε
ˆ t0

0
ξ (s) ds ≥ 0.

Therefore,K (t) ≤ H−1
1

(
cε
´ t

0 ξ (s) ds
)
, for t ≥ t0. Consequently, there exist two positive

constants c
′

, and c
′′

for which

K (t) ≤ c
′′

H−1
1

(
c
′

ˆ t

0
ξ (s) ds

)
, ∀t ≥ 0,

since K is bounded, which gives (2.58)).

This completes the proof of the Theorem (2.13) �



Chapter 3

Global existence and exponential
stability of a Timoshenko system in
thermoelasticity of second sound with a
delay term in the internal feedback

3.1 Introduction

We investigate in this chapter, the effect of time delay and the forcing term on the

following system solution’s behavior :

ρ1ϕtt (x, t) − K (ϕx + ψ)x (x, t) + µ1ϕt (x, t) + µ2ϕt (x, t − τ) = 0,

ρ2ψtt (x, t) − bψxx (x, t) + K (ϕx + ψ) (x, t) + f (ψ) + γθx (x, t) = 0,

ρ3θt (x, t) + κqx (x, t) + γψtx (x, t) = 0,

τ0qt (x, t) + δq (x, t) + κθx (x, t) = 0,

(3.1)

where t ∈ (0,∞) repreents the time variable, and the space varible is represented

by x ∈ (0, 1), the transverse displacement of the solid elastic material and the rota-

tion angle are respectively represented by the functions ϕ and ψ. Furthermore, θ is

the the temperature difference function, q = q(t, x) ∈ R is the heat flux. Moreover,

ρ1, ρ2, ρ3, γ, τ0, δ, κ, µ1, µ2 and K are positive constants and τ > 0 represents the time

58
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delay. We consider the following initial conditions
ϕ(x, 0) = ϕ0 (x) , ϕt(x, 0) = ϕ1 (x) , ψ(x, 0) = ψ0 (x) , ψt(x, 0) = ψ1 (x) ,

θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) , ϕt(x, t − τ) = f0 (x, t − τ) ,
(3.2)

where x ∈ (0, 1) and t ∈ (0, τ).

And we have as the boundary conditions

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = q(0, t) = q(1, t) = 0, ∀t ≥ 0. (3.3)

Through this chapter seek the proof the existence and the asymptotic behavior of the

solution to problem (3.1)-(3.3). Before going on, let us first review some related results

which seem to us interesting.

A lot of effort have beenmade regarding stability/instability of wave equations with

delay. Existing works depict that delays can destabilize a system that is asymptotically

stable in their absence (see [19] for more details).

Datko [18, Example 3.5], proved that the system in the following form : form
wtt − wxx − awxxt = 0, x ∈ (0, 1), t > 0,

w (0, t) = 0, wx (1, t) = −kwt (1, t − τ) , t > 0,

become unstable for any arbitrary reduced values of τ and any values of a, k, where a, k

and τ are positive constants.

Afterward, they addressed [19] the following one-dimentional problem :
utt(x, t) − uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

ux(1, t) = −kut(1, t − τ), t > 0,

(3.4)

which models the vibrations of a string clamped at one end and free at the other end,

where u(x, t) is the displacement of the string. Also, the string is controlled by a bound-

ary control force (with a delay) at the free end. They showed that, if the positive con-

stants a and k satisfy

k
e2a + 1
e2a − 1

< 1,
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then the delayed feedback system (3.4) is stable for all sufficiently small delays. On the

other hand, if

k
e2a + 1
e2a − 1

> 1,

then there exists a dense open set D in (0,+∞) such that for each τ ∈ D, system (3.4)

admits exponentially instable solutions.

Nicaise and Pignotti [71] examined the problem

utt(x, t) − ∆u(x, t) + +µ1ut(x, t) + µ2ut(x, t − τ) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), x ∈ Ω, t ≥ 0

ut(x, t − τ) = f0(x, t − τ), x ∈ Ω, t ∈ (0, τ).

(3.5)

Using an observability inequality obtained with a Carleman estimate, they proved that,

under the assumption

µ2 < µ1, (3.6)

the energy is exponentially stable. On the contrary, if (3.6) does not hold, they found a

sequence of delays for which the corresponding solution of (3.5) is unstable. The same

results were shown if both the damping and the delay act in the boundary of the domain.

Said-Houari and Laskri [82] considered the following Timoshenko system with a delay

term in the internal feedback:
ρ1ϕtt (x, t) − K (ϕx + ψ)x (x, t) = 0,

ρ2ψtt (x, t) − bψxx (x, t) + K (ϕx + ψ) (x, t) + µ1ψt (x, t) + µ2ψt (x, t − τ) = 0.
(3.7)

Under the assumption µ1 ≥ µ2 on the weights of the two feedbacks, they proved the

well-posedness of the system. They also established for µ1 > µ2 an exponential decay

result for the case of equal-speed wave propagation, i.e.

K
ρ1

=
b
ρ2
. (3.8)

The work in [82] has been extended to the case of time-varying delay of the form

ψt (x, t − τ (t)) by Kirane, Said-Houari and Anwar [40]. First, by using the variable

norm technique of Kato, and under some restriction on the parameters µ1, µ2 and on

the delay function τ(t), the system has been shown to be well-posed. Second, under a
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hypothesis between the weight of the delay term in the feedback, the weight of the term

without delay and the wave speeds, an exponential decay result of the total energy has

been proved.

The Timoshenko system goes back to Timoshenko [92] in 1921 who proposed a coupled

hyperbolic system which is similar to (3.7) (with µ1 = µ2 = 0), describing the transverse

vibration of a beam, but without the presence of any damping. For a physical derivation

of Timoshenko’s system, we refer the reader to [23].

In the absence of the delay in system (3.7), that is for µ2 = 0, the question of the

stability of the Timoshenko-type systems has received a lot of attention in the last years,

and quite a number of results concerning uniform and asymptotic decay of energy have

been established.

An important issue of research is to look for a minimum dissipation by which solutions

of the Timoshenko system decay uniformly to zero as time goes to infinity. In this re-

gard, several types of dissipative mechanisms have been introduced, such as: frictional

damping, viscoelastic damping and thermal dissipation. We recall here only some re-

sults related to the thermal dissipation in the Timoshenko systems. The interested reader

is referred to [4, 49, 50, 65, 68, 89] for the Timoshenko systems with frictional damping

and to [5, 28, 48, 69] for Timoshenko systems with viscoelastic damping.

To the best of our knowledge, the paper [64] is the first paper in which the authors dealt

with the Timoshenko system with thermal dissipation. More precisely, they treated the

problem 
ρ1ϕtt − σ(ϕx, ψ)x = 0, in (0, L) × (0,+∞),

ρ2ψtt − bψxx + k (ϕx + ψ) + γθx = 0, in (0, L) × (0,+∞),

ρ3θt − kθxx + γψtx = 0, in (0, L) × (0,+∞),

(3.9)

where ϕ, ψ and θ are functions of (x, t) which model the transverse displacement of the

beam, the rotation angle of the filament, and the difference temperature respectively.

Under appropriate conditions on σ, ρi, b, k, γ, they proved several exponential decay

results for the linearized system and a non exponential stability result for the case of

different wave speeds.
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Modeling heat conduction with the so-called Fourier law (as in (3.9)), which assumes

the flux q to be proportional to the gradient of the temperature θ at the same time t,

q + κ∇θ = 0, (κ > 0),

leads to the phenomenon of infinite heat propagation speed. To overcome this physi-

cal paradox in the Fourier, a number of modifications of the basic assumption on the

relation between the heat flux and the temperature have been made. The common fea-

ture of these theories is that all lead to hyperbolic differential equation and the speed of

propagation becomes finite. See [16] for more details. Among them Cattaneo’s law,

τqt + q + κ∇θ = 0,

leading to the system with second sound, ([52], [78], [90]) and a suggestion by Green

and Naghdi [24], [25], for thermoelastic systems introducing what is called thermoe-

lasticity of type III, where the constitutive equations for the heat flux is characterized

by

q + κ∗px + κ̃∇θ = 0, (κ̃ > κ∗ > 0, pt = θ).

Messaoudi et al. [53] studied the following problem

ρ1ϕtt − σ(ϕx, ψ)x + µϕt = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + βθx = 0,

ρ3θt + γqx + δψtx = 0,

τ0qt + q + κθx = 0,

(3.10)

where (x, t) ∈ (0, L) × (0,∞), ϕ = ϕ(t, x) is the displacement vector, ψ = ψ(t, x) is the

rotation angle of the filament, θ = θ(t, x) is the temperature difference, q = q(t, x) is

the heat flux vector, ρ1, ρ2, ρ3, b, k, γ, δ, κ, µ, τ0 are positive constants. The nonlinear

function σ is assumed to be sufficiently smooth and satisfy

σϕx(0, 0) = σψ(0, 0) = k

and

σϕxϕx(0, 0) = σϕxψ(0, 0) = σψψ = 0.

Several exponential decay results for both linear and nonlinear cases have been estab-

lished.
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Concerning the Timoshenko systems in thermoelasticity of type III, we have the papers

of Messaoudi and Said-Houari [51, 55] in which the authors proved several stability

results.

More precisely, in [51], they investigated the asymptotic behavior of the problem
ρ1ϕtt − K (ϕx + ψ)x = 0,

ρ2ψtt − bψxx + K (ϕx + ψ) + βθx = 0,

ρ3θtt − δθxx + γψttx − κθtxx = 0,

(3.11)

in (0,∞) × (0.1) and proved an exponential decay result similar to the one in [64]. We

recall that the heat conduction in (3.11) is given by Green and Naghdi’s theory. The

same problem (3.11) with an additional damping of history type of the form

ˆ ∞
0

g(s)ψxx(x, t − s)ds (3.12)

acting in the second equation has been analyzed in [55]. The authors of [55] proved

an exponential and polynomial stability results for the equal and nonequal wave-speed

propagation respectively and under conditions on the relaxation function g weaker than

those in [4] and [69].

In the present chapter our objective is to extend the result of D. Ouchenane [73] to a

nonlinear framework by adding a forcing term f (ψ).

3.2 Well-posedness of the problem

First we give some hypotheses on the forcing term f (ψ (x, t)) , we assume f : R → R

satisfying .

∣∣∣∣ f (
ψ2

)
− f

(
ψ1

)∣∣∣∣ ≤ k0

(∣∣∣ψ1
∣∣∣θ − ∣∣∣ψ2

∣∣∣θ) ∣∣∣ψ1 − ψ2
∣∣∣ (3.13)

for all ψ1, ψ2 ∈ R where k0 > 0, θ > 0. In addition we assume that

0 ≤ f̃ (ψ) ≤ f (ψ)ψ for all ψ ∈ R (3.14)

with

f̃ (z) =

ˆ z

0
f (s) ds.
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Assumptions (3.13) and (3.14) include nonlinear term of the form

f (ψ) ≈ |ψ|ρψ ± |ψ|αψ, 0 < α < ρ

In order to prove the well-posedness result we proceed as in [70] (see also [82]). Let us

introduce the following new dependent variable

z (x, ρ, t) = ϕt (x, t − τρ) , x ∈ (0, 1) , ρ ∈ (0, 1) , t > 0.

Then, we obtain the following equation

τzt (x, ρ, t) + zρ (x, ρ, t) = 0, (x, ρ, t) ∈ (0, 1) × (0, 1) × (0,+∞) .

Therefore, problem (3.1) can be rewritten as

ρ1ϕtt (x, t) − K (ϕx + ψ)x (x, t) + µ1ϕt (x, t) + µ2z (x, 1, t) = 0,

ρ2ψtt − bψxx + K (ϕx + ψ) + f (ψ) + γθx = 0,

ρ3θt + κqx + γψtx = 0,

τ0qt + δq + κθx = 0,

τzt (x, ρ, t) + zρ (x, ρ, t) = 0,

(3.15)

where x ∈ (0, 1) , ρ ∈ (0, 1) , and t > 0. The above system subjected to the following

initial conditions

ϕ(x, 0) = ϕ0 (x) , ϕt(x, 0) = ϕ1 (x) ,

ψ(x, 0) = ψ0 (x) , ψt(x, 0) = ψ1 (x) ,

θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) ,


x ∈ (0, 1)

z (x, 0, t) = ϕt (x, t) , x ∈ (0, 1) , t > 0

z (x, 1, t) = f0 (x, t − τ) , (x, t) ∈ (0, 1) × (0, τ) .

(3.16)

In addition to the above initial conditions, we consider the following boundary condi-

tions

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = q(0, t) = q(1, t) = 0, ∀t ≥ 0. (3.17)
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The main question to be asked here is whether problem (3.15)-(3.17) is well posed?.

Our main goal in this section is to give a positive answer to this question. In other words,

we give sufficient conditions that guarantee the well-posedness of problem (3.15)-(3.17).

To prove this, we adopt the steps used in the paper [82] in which a Thimoshenko prob-

lem with a frictional damping has been investigated.

In order to use the semigroup approach, we rewrite system (3.15)-(3.17) as a first order

system. To this end, let U = (ϕ, ϕt, ψ, ψt, θ, q, z)T , and rewrite (3.15)-(3.17) as

 U
′

= A U + F̃,

U (0) = U0 =
(
ϕ0, ϕ1, ψ0, ψ1,θ, q, f0 (.,−.τ)

)T ,
(3.18)

where the operator A is defined by

A



ϕ

u

ψ

v

θ

q

z



=



u

K/ρ1 (ϕxx + ψx) − µ1/ρ1u − µ2/ρ1z (., 1)

v

b/ρ2ψxx − K/ρ2 (ϕx + ψ) − γ/ρ2θx

−κ/ρ3qx − γ/ρ3vx

−δ/τ0q − κ/τ0θx

− (1/τ) zρ



+



0

0

0

−1/ρ2 f (ψ)

0

0

0


with domain

D (A ) =
{
(ϕ, u, ψ, v, θ, q, z)T

∈ H : u ≡ z (., 0) , in (0, 1)
}
, (3.19)

where

H : =
(
H2 (0, 1) ∩ H1

0 (0, 1)
)
× H1

0 (0, 1) ×
(
H2 (0, 1) ∩ H1

0 (0, 1)
)
× H1

0 (0, 1)

×H1 (0, 1) × H1
0 (0, 1) × L2

(
(0, 1); H1 (0, 1)

)
.

The energy space H is defined as

H : = H1
0 (0, 1) × L2 (0, 1) × H1

0 (0, 1) × L2 (0, 1) × L2 (0, 1)

×L2 (0, 1) × L2
(
(0, 1) ; L2 (0, 1)

)
.
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For U = (ϕ, u, ψ, v, θ, q, z)T , U =
(
ϕ, u, ψ, v, θ, q, z

)T
and for ζ a positive constant satis-

fying

τµ2 ≤ ξ ≤ τ (2µ1 − µ2) , (3.20)

we define the following inner product in H

〈U,U〉H =

ˆ 1

0

{
ρ1uu + ρ2vv + K (ϕx + ψ)

(
ϕx + ψ

)
+ bψxψx + ρ3θθ

}
dx

+

ˆ 1

0
τ0qqdx + ξ

ˆ 1

0

ˆ 1

0
z (x, ρ) z (x, ρ) dρdx.

Our existence and uniqueness result reads as follows.

Theorem 3.1. Assume that (3.13), (3.14) and µ2 ≤ µ1, then for any U0 ∈ H , there

exists a unique solution U ∈ C ([0,+∞) ,H ) of problem (3.15)-(3.17). Moreover if

U0 ∈ D (A ) , then

U ∈ C ([0,+∞) ,D (A )) ∩C1 ([0,+∞) ,H ) .

Proof. In order to prove Theorem 3.1, we use the semigroup approach. That is, we

show that the operator A generates a C0−semigroup in H . In this step, we prove that

the operator A is dissipative. Indeed, for U = (ϕ, u, ψ, v, θ, q, z)T
∈ D (A ) , we have

〈A U,U〉H = −δ

ˆ 1

0
q2dx − µ1

ˆ 1

0
u2dx − µ2

ˆ 1

0
z (x, 1) udx

−
ξ

τ

ˆ 1

0

ˆ 1

0
z (x, ρ) zρ (x, ρ) dρdx. (3.21)

Looking now to the last term in the right-hand side of (3.21), we have

ˆ 1

0

ˆ 1

0
z (x, ρ) zρ (x, ρ) dρdx =

ˆ 1

0

ˆ 1

0

1
2
∂

∂ρ
z2 (x, ρ) dρdx

=
1
2

ˆ 1

0

{
z2 (x, 1) − z2 (x, 0)

}
dx. (3.22)

Consequently, (3.21) becomes

〈A U,U〉H = −δ

ˆ 1

0
q2dx − µ1

ˆ 1

0
u2dx −

ˆ 1

0
z (x, 1) udx

−
ξ

2τ

ˆ 1

0
z2 (x, 1) dx +

ξ

2τ

ˆ 1

0
u2 (x) dx. (3.23)



existence and exponential stability of a Timoshenko system in thermoelasticity 67

By using Young’s inequality we obtain, from (3.23),

〈A U,U〉H ≤ −δ

ˆ 1

0
q2dx +

(
−µ1 +

µ2

2
+
ξ

2τ

)ˆ 1

0
v2 (x) dx

+

(
µ2

2
−
ξ

2τ

)ˆ 1

0
z2 (x, 1) dx.

Keeping in mind condition (3.20), we observe that

−µ1 +
µ2

2
+
ξ

2τ
≤ 0,

µ2

2
−
ξ

2τ
≤ 0.

Consequently, the operator A is dissipative.

Now we prove that the operator λI − A is surjective for λ > 0. For this purpose, we

take an element F = ( f1, f2, f3, f4, f5, f6, f7)T
∈ H , we seek U = (ϕ, u, ψ, v, θ, q, z)T

∈

D (A ) , solution to the problem

λU −A U = F (3.24)

or equivalently 

λϕ − u = f1,

λu −
K
ρ1

(ϕxx + ψx) +
µ1

ρ1
u +

µ2

ρ1
z (., 1) = f2,

λψ − v = f3,

λv −
b
ρ2
ψxx +

K
ρ2

(ϕx + ψ) +
1
ρ2

f (ψ) +
γ

ρ2
θx = f4,

λθ +
κ

ρ3
qx +

γ

ρ3
vx = f5

λq +
δ

τ0
q +

κ

τ0
θx = f6

λz +
1
τ

zρ = f7.

(3.25)

Suppose that we have found ϕ and ψ with the appropriate regularity. Therefore, the first

and the third equations in (3.25) yield u = λϕ − f1,

v = λψ − f3.
(3.26)
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It is clear that u ∈ H1
0 (0, 1) , and v ∈ H1

0 (0, 1) . Furthermore, we can find z as

z (x, 0) = u (x) , for x ∈ (0, 1) . (3.27)

Following the same approach as in [70], we obtain, by using the last equation in (3.25),

z (x, ρ) = u (x) e−λρτ + τe−λρτ
ˆ ρ

0
f7 (x, σ) eλστdσ.

From (3.26), we obtain

z (x, ρ) = λϕ (x) e−λρτ − f1e−λρτ + τe−λρτ
ˆ ρ

0
f7 (x, σ) eλστdσ. (3.28)

From (3.28), we have

z (x, 1) = λϕ (x) e−λτ + z0 (x) ,

where x ∈ (0, 1) and

z0 (x) = − f1e−λτ + τe−λτ
ˆ ρ

0
f7 (x, σ) eλστdσ. (3.29)

It is clear from the above formula that z0 depends only on fi, i = 1, 7.

By using (3.25) and (3.26) the functions ϕ, ψ, θ and q satisfying the following system

(
λ2 +

µ1

ρ1
λ + λe−λτ

µ2

ρ1

)
ϕ −

K
ρ1

(ϕxx + ψx) = f2 +

(
λ +

µ1

ρ1

)
f1 −

µ2

ρ1
z0(x),

λ2ψ −
b
ρ2
ψxx +

K
ρ2

(ϕx + ψ) +
1
ρ2

f (ψ) +
γ

ρ2
θx = f4 + λ f3,

λθ +
κ

ρ3
qx +

γλ

ρ3
ψx = f5 +

γ

ρ3
f3x,

λq +
δ

τ0
q +

κ

τ0
θx = f6.

(3.30)
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Solving system (3.30) is equivalent to finding (ϕ, ψ, θ, q) ∈ H2 (0, 1) ∩ H1
0 (0, 1) ×

H2 (0, 1) ∩ H1
0 (0, 1) × H1 (0, 1) × H1

0 (0, 1) so that



ˆ 1

0

((
λ2ρ1 + µ1λ + λe−λτµ2

)
ϕw + K (ϕx + ψ) wx

)
dx =

ˆ 1

0
(ρ1 f2 + (λρ1 + µ1) f1 − µ2z0(x)) wdx,

ˆ 1

0

(
ρ2λ

2ψχ + bψxχx + K (ϕx + ψ) χ + f (ψ) χ + γθxχ
)

dx =

ˆ 1

0
ρ2 ( f4 + λ f3) χdx,

ˆ 1

0
(ρ3λθw1 + κqxw1 + γλψxw1) dx =

ˆ 1

0
(ρ3 f5 + γ f3x) w1dx,

ˆ 1

0
(τ0λ + δ) qχ1 + κθxχ1 =

ˆ 1

0
τ0 f6χ1dx,

(3.31)

for all (w, χ,w1, χ1) ∈ H1
0 (0, 1) × H1

0 (0, 1) × H1 (0, 1) × H1
0 (0, 1).

Consequently, problem (3.31) is equivalent to the problem

ζ ((ϕ, ψ, θ, q) , (w, χ,w1, χ1)) = l (w, χ,w1, χ1) , (3.32)

where the bilinear from ζ :
(
H1

0 (0, 1) × H1
0 (0, 1) × H1 (0, 1) × H1

0 (0, 1)
)2
→ R and the

linear from l : H1
0 (0, 1) × H1

0 (0, 1) × H1 (0, 1) × H1
0 (0, 1)→ R are defined by

ζ ((ϕ, ψ, θ, q) , (w, χ,w1, χ1)) =

ˆ 1

0

((
λ2ρ1 + µ1λ + λe−λτµ2

)
ϕw + K (ϕx + ψ) (wx + χ)

)
dx

+

ˆ 1

0

(
ρ2λ

2ψχ + bψxχx + f (ψ) χ + γθxw1x

)
dx

+

ˆ 1

0
(ρ3λθw1 + κqxχ1x + γλψxχx) dx

+

ˆ 1

0
(τ0λ + δ) qχ1 + κθxw1x,

and

l (w, χ,w1, χ1) =

ˆ 1

0
(ρ1 f2 + (λρ1 + µ1) f1 − µ2z0(x)) wdx +

ˆ 1

0
ρ2 ( f4 + λ f3) χdx

+

ˆ 1

0
(ρ3 f5 + γ f3x) w1dx +

ˆ 1

0
τ0 f6χ1dx, (3.33)

where z0 (x) satisfies the equation in (3.29).

From (3.13) and (3.14) it is easy to verify that ζ is continuous and coercive, and l is con-

tinuous, so applying the Lax-Milgram theorem, we deduce that for all (w, χ,w1, χ1) ∈

H1
0 (0, 1) × H1

0 (0, 1) × H1 (0, 1) × H1
0 (0, 1) , problem (3.32) admits a unique solution



existence and exponential stability of a Timoshenko system in thermoelasticity 70

(ϕ, ψ, θ, q) ∈ H1
0 (0, 1) × H1

0 (0, 1) × H1 (0, 1) × H1
0 (0, 1) . Applying the classical elliptic

regularity, it follows from (3.31) that (ϕ, ψ, θ, q) ∈ H2 (0, 1) × H2 (0, 1) × H1 (0, 1) ×

H1
0 (0, 1) . Therefore, the operator λI −A is surjective for any λ > 0.

Consequently, we can infer that the operator A is m-dissipative in H .

Now, we prove that the operator F̃ defined in (3.18) is locally Lipschitz in H .

Let U = (ϕ, u, ψ, v, θ, q, z)T and U1 = (ϕ1, u1, ψ1, v1, θ1, q1, z1)T , then we have

‖F̃(U) − F̃(U1)‖H ≤ ‖ f (ψ) − f (ψ1)‖L2 .

By using (3.13), Hlder and Poincar inqualities, we get

‖ f
(
ψ2

)
− f

(
ψ1

)
‖L2 ≤ k0

(
‖ψ1‖θ − ‖ψ2‖θ

)
‖ψ1 − ψ2‖ ≤ C‖ψ1

x − ψ
2
x‖H ,

which gives us

‖F̃(U) − F̃(U1)‖H ≤ ‖U − U1‖H .

Then the operator F̃ is locally Lipschitz in H .

Since D(A ) is dence in H , thus we can conclude that the operator A is the infinitesi-

mal generator of a C0-semigroup in H by the Lumer-Phillips theorem (see, for exaple

Pazy [77]). The proof of Theorem 3.1 is complete. �

3.3 Exponential stability for µ1 > µ2

In this section, we show that, under the assumption µ1 > µ2, the solution of problem

(3.15)-(3.17) decays exponentially, independently of the wave speed assumption1. To

achieve our goal we use the energy method to produce a suitable Lyapunov functional

which leads to an exponential decay result.

In order to use the Poincaré inequality for θ, we introduce, as in [78],

θ(x, t) = θ(x, t) −
ˆ 1

0
θ0(x)dx.

1The wave speed assumption is significant only from the mathematical point of view since in practice
the velocities of waves propagations may be different, see [47]. So, it is very interesting to obtain some
stability results for the Timoshenko systems without the wave speed condition.
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Then by the third equation in (3.1) we easily verify that

ˆ 1

0
θ (x, t) dx = 0,

for all t ≥ 0. In this case the Poincaré inequality is applicable for θ. On the other hand

(ϕ, ψ, θ, q, z) satisfies the same system (3.15) and the boundary conditions (3.17). For ξ

satisfying

τµ2 < ξ < τ (2µ1 − µ2) , (3.34)

we define the functional energy of the solution of problem (3.15)-(3.17) as

E (t) = E (t, z, ϕ, ψ, θ, q)

=
1
2

ˆ 1

0

(
ρ1ϕ

2
t + ρ2ψ

2
t

)
dx +

1
2

ˆ 1

0

{
K (ϕx + ψ)2 + bψ2

x + ρ3θ
2
}

dx

+
1
2

ˆ 1

0
τ0q2dx +

ξ

2

ˆ 1

0

ˆ 1

0
z2 (x, ρ, t) dρdx +

ˆ 1

0
f̃ (ψ(t))dx. (3.35)

We multiply the first equation in (3.15) by ϕt, the second equation by ψt, the third

equation in (3.15) by θ, and the fourth equation in (3.15) by q, we integrate by parts, we

get

1
2

d
dt

ˆ 1

0

(
ρ1ϕ

2
t + ρ2ψ

2
t

)
dx +

1
2

d
dt

ˆ 1

0

{
K (ϕx + ψ)2 + bψ2

x + ρ3θ
2 + τ0q2

}
dx +

d
dt

f̃ (ψ(t))

= −δ

ˆ 1

0
q2dx − µ1

ˆ 1

0
ϕ2

t (x, t) dx − µ2

ˆ 1

0
ϕt (x, t) z (x, 1, t) dx + f (ψ)ψt. (3.36)

Now, multiplying the last equation in (3.15) by (ξ/τ) z, integrate the result over (0, 1) ×

(0, 1) with respect to ρ and x respectively, we obtain

ξ

2
d
dt

ˆ 1

0

ˆ 1

0
z2 (x, ρ, t) dρdx

= −
ξ

τ

ˆ 1

0

ˆ 1

0
zzρ (x, ρ, t) dρdx = −

ξ

2τ

ˆ 1

0

ˆ 1

0

∂

∂ρ
z2 (x, ρ, t) dρdx

=
ξ

2τ

ˆ 1

0

(
z2 (x, 0, t) − z2 (x, 1, t)

)
dx. (3.37)

From (3.35), (3.36) and (3.37), we get

dE (t)
dt

= −δ

ˆ 1

0
q2dx −

(
µ1 −

ξ

2τ

)ˆ 1

0
ϕ2

t (x, t) dx

−
ξ

2τ

ˆ 1

0
z2 (x, 1, t) dx − µ2

ˆ 1

0
ϕt (x, t) z (x, 1, t) dx + f (ψ)ψt. (3.38)
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Now, using Young’s inequality, (3.38) can be rewritten as

dE (t)
dt

≤ −δ

ˆ 1

0
q2dx −

(
µ1 −

ξ

2τ
−
µ2

2

)ˆ 1

0
ϕ2

t (x, t) dx

−

(
ξ

2τ
−
µ2

2

)ˆ 1

0
z2 (x, 1, t) dx + f (ψ)ψt.

Then, by using (3.14),(3.34), we deduce that there exists C > 0 such that

dE (t)
dt

≤ −δ

ˆ 1

0
q2dx −C

{ˆ 1

0
ϕ2

t (x, t) dx +

ˆ 1

0
z2 (x, 1, t) dx

}
. (3.39)

The last inequality implies that the energy E is a non-increasing function with respect

to t.

Let us now state our main result:

Theorem 3.2. Assume that (3.13), (3.14) and µ2 < µ1. Then there exist two positive

constants C and γ independent of t such that for any solution of problem (3.15)-(3.17),

we have

E (t) ≤ Ce−γt, ∀t ≥ 0. (3.40)

To derive the exponential decay of the solution, it is enough to construct a functional

L (t) , equivalent to the energy E (t) , and satisfying

dL (t)
dt
≤ −ΛL (t) , ∀t ≥ 0,

for some constant Λ > 0.

In order to obtain such functional L, we need several Lemmas.

First, let us consider the functional I1 given by

I1 (t) :=
ˆ 1

0
ρ1ϕtϕdx +

µ1

2

ˆ 1

0
ϕ2dx. (3.41)

Then we have the following estimate.



existence and exponential stability of a Timoshenko system in thermoelasticity 73

Lemma 3.3. Let (ϕ, ψ, θ, q, z) be the solution of (3.15)-(3.17). Then we have for any

ε1 > 0,

I1 (t) ≤
(
−K + ε1

(K
2

+
µ2c
2

))ˆ 1

0
ϕ2

xdx +
K

2ε1

ˆ 1

0
ψ2

xdx

+
µ2

2ε1

ˆ 1

0
z2 (x, 1, t) dx + ρ1

ˆ 1

0
ϕ2

t dx, (3.42)

where c = 1/π2 is the Poincaré constant.

Proof. By taking the derivative of (3.41) with respect to t, we conclude

dI1 (t)
dt

=

ˆ 1

0
ρ1ϕttϕdx + ρ1

ˆ 1

0
ϕ2

t dx + µ1

ˆ 1

0
ϕϕtdx.

Then, by using the first equation in (3.15), we find

dI1 (t)
dt

= K
ˆ 1

0
(ϕx + ψ)x ϕdx − µ2

ˆ 1

0
ϕz (x, 1, t) dx + ρ1

ˆ 1

0
ϕ2

t dx.

Consequently, we arrive at

dI1 (t)
dt

= −K
ˆ 1

0
(ϕx + ψ)ϕxdx − µ2

ˆ 1

0
ϕz (x, 1, t) dx + ρ1

ˆ 1

0
ϕ2

t dx.

Applying Young’s inequality and Poincaré’s inequality, we find (3.41). This completes

the proof of Lemma 3.3. �

Now, Let w be the solution of

− wxx = ψx, w (0) = w (1) = 0. (3.43)

then we get

w (x, t) = −

ˆ x

0
ψ (y, t) dy + x

(ˆ 1

0
ψ (y, t) dy

)
.

We have the following inequalities.

Lemma 3.4. The solution of (3.43) satisfies

ˆ 1

0
w2

xdx ≤
ˆ 1

0
ψ2dx
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and ˆ 1

0
w2

t dx ≤
ˆ 1

0
ψ2

t dx

Proof. We multiply equation (3.43) by w, integrate by parts and use the Cauchy-Schwarz

inequality to obtain ˆ 1

0
w2

xdx ≤
ˆ 1

0
ψ2dx

Next, we differentiate (3.43) with respect to t and by the same procedure, we obtain

ˆ 1

0
w2

t dx ≤
ˆ 1

0
ψ2

t dx.

This completes the proof of Lemma 3.4. �

Let w be the solution of (3.43). We introduce the following functional

I2 (t) :=
ˆ 1

0

(
ρ2ψtψ + ρ1ϕtw −

γτ0

κ
ψq

)
dx. (3.44)

Then we have the following estimate.

Lemma 3.5. Let (ϕ, ψ, θ, q, z) be the solution of (3.15)-(3.17).

Then we have for any ε2 > 0,

dI2 (t)
dt

≤

(
−b +

cµ1ε2

2
+

cµ2ε2

2
+
δγε2c

2κ
+ c1

)ˆ 1

0
ψ2

xdx +
µ2

2ε2

ˆ 1

0
z2 (x, 1, t)

+

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)ˆ 1

0
ψ2

t dx +

(
µ1

2ε2
+
ρ1

2ε2

)ˆ 1

0
ϕ2

t dx

+

(
γτ0

2κε2
+

δγ

2κε2

) ˆ 1

0
q2dx (3.45)

where c, c1 > 0

Proof. By taking the derivative of (3.44), we conclude

dI2 (t)
dt

= −b
ˆ 1

0
ψ2

xdx + K
ˆ 1

0
ϕψxdx − K

ˆ 1

0
ψ2dx + ρ2

ˆ 1

0
ψ2

t dx − K
ˆ 1

0
ϕxwxdx

−K
ˆ 1

0
ψwxdx −

ˆ 1

0
f (ψ)ψdx − µ1

ˆ 1

0
ϕtwdx − µ2

ˆ 1

0
z (x, 1, t) wdx + ρ1

ˆ 1

0
ϕtwtdx

−
γτ0

κ

ˆ 1

0
ψtqdx +

δγ

κ

ˆ 1

0
ψqdx.
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Then, using (3.43) and the first inequality in Lemma 3.4, we get

dI2 (t)
dt

≤ −b
ˆ 1

0
ψ2

xdx + K
ˆ 1

0
ϕψxdx − K

ˆ 1

0
ψ2dx + ρ2

ˆ 1

0
ψ2

t dx + K
ˆ 1

0
ϕxψdx

+K
ˆ 1

0
ψ2dx −

ˆ 1

0
f (ψ)ψdx − µ1

ˆ 1

0
ϕtwdx − µ2

ˆ 1

0
z (x, 1, t) wdx + ρ1

ˆ 1

0
ϕtwtdx

−
γτ0

κ

ˆ 1

0
ψtqdx +

δγ

κ

ˆ 1

0
ψqdx.

We apply Young’s inequality, Poincaré’s inequality and using the inequalities in Lemma

3.4, we find (3.45),
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such that by using (3.13) we obtain

ˆ 1

0
| f (ψ)ψ|dx ≤

ˆ 1

0
|ψ|θ|ψ||ψ|dx

≤ ‖ψ‖θ2(θ+1)‖ψ‖2(θ+1)‖ψ‖

≤ c1

ˆ 1

0
ψ2

xdx.

This completes the proof of Lemma 3.5. �

Now, following [82], we define the functional

I3 (t) :=
ˆ 1

0

ˆ 1

0
e−2τρz2 (x, ρ, t) dρdx. (3.46)

Then the following result holds.

Lemma 3.6. Let (ϕ, ψ, θ, q, z) be the solution of (3.15)-(3.17), then we have

dI3 (t)
dt

≤ −I3 (t) −
c1

2τ

ˆ 1

0
z2 (x, 1, t) dx +

1
2τ

ˆ 1

0
ψ2

t (x, t) dx, (3.47)

where c1 is a positive constant.

Proof. Differentiating (3.46) with respect to t and using the last equation in (3.15), we

have

d
dt

(ˆ 1

0

ˆ 1

0
e−2τρz2 (x, ρ, t) dρdx

)
= −

1
τ

ˆ 1

0

ˆ 1

0
e−2τρzzρ (x, ρ, t) dρdx

= −

ˆ 1

0

ˆ 1

0
e−2τρz2 (x, ρ, t) dρdx

−
1
2τ

ˆ 1

0

ˆ 1

0

∂

∂ρ

(
e−2τρz2 (x, ρ, t)

)
dρdx.

The above estimate implies that there exists a positive constant c1 such that (3.47) holds.

�

In order to obtain a negative term of
´ 1

0 ψ
2
t dx, we introduce, the following functional:

(see [53])

I4(t) := ρ2ρ3

ˆ 1

0

(ˆ x

0
θ(t, y)dy

)
ψt (t, x) dx. (3.48)

Then we have the following estimate.



existence and exponential stability of a Timoshenko system in thermoelasticity 77

Lemma 3.7. Let (ϕ, ψ, θ, q, z) be the solution of (3.15)-(3.17). Then for any ε4, ε
′
4 > 0,

we have

d
dt

I4(t) ≤
(
−γρ2 +

ε4ρ2κ

2

)ˆ 1

0
ψ2

t dx +

(
ε′4ρ3

2
(b + κc) +

κρ3c
ε5

)ˆ 1

0
ψ2

xdx

+
ε′4κρ3c

2

ˆ 1

0
ϕ2

xdx +

(
γρ3 +

ρ3

2ε′4
(b + 2κ) + κρ3ε5

)ˆ 1

0
θ2dx

+
ρ2κ

2ε4

ˆ 1

0
q2dx. (3.49)

Proof. Differentiating (3.48) and using the third equation in (3.15), we have

d
dt

I4(t) =

ˆ 1

0

(ˆ x

0
ρ3θtdy

)
ρ2ψtdx +

ˆ 1

0

(ˆ x

0
ρ3θdy

)
ρ2ψttdx

= −

ˆ 1

0

(ˆ x

0
(κqx + γψtx) dy

)
ρ2ψtdx

+

ˆ 1

0

(ˆ x

0
ρ3θdy

)
(bψxx − κ (ϕx + ψ) − f (ψ) − γθx) dx,

= −γρ2

ˆ 1

0
ψ2

t dx − ρ2κ

ˆ 1

0
qψtdx − bρ3

ˆ 1

0
θψxdx

+κρ3

ˆ 1

0
θϕdx − κρ3

ˆ 1

0

(ˆ x

0
θdy

)
ψdx −

ˆ 1

0

(ˆ x

0
ρ3θdy

)
f (ψ)dx + γρ3

ˆ 1

0
θ2dx,

By using Young’s inequality and Poincaré’s inequality, we obtain (3.49). �

Now, in order to obtain a negative term of
´ 1

0 θ
2dx we introduce the following functional

I5(t) := −τ0ρ3

ˆ L

0
q(t, x)

(ˆ x

0
θ(t, y)dy

)
dx. (3.50)

Then we have the following estimate.

Lemma 3.8. Let (ϕ, ψ, θ, q, z) be the solution of (3.15)-(3.17). Then for any ε5, ε
′
5 > 0,

we have

dI5 (t)
dt

≤

(
−ρ3κ +

ε5ρ3δc
2

)ˆ 1

0
θ2dx +

ε′5τ0γ

2

ˆ 1

0
ψ2

t dx

+

(
τ0κ +

ρ3δ

2ε5
+
τ0γ

2ε′5

) ˆ 1

0
q2dx. (3.51)

The above Lemma was proved in [53, Inequality (33)].
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Proof of Theorem 3.2

To prove Theorem 3.2, we define for N, N2, N4, N5 > 0, the Lyapunov functional L:

L (t) := NE (t) + I1 (t) + N2I2 (t) + I3 (t) + N4I4 (t) + N5I5 (t) . (3.52)

Now, combining (4.20), (3.42), (3.45), (3.47), (3.49) and (3.51), we get

d
dt

L (t) ≤
{

K
2ε1

+ N2

(
−b +

cµ1ε2

2
+

cµ2ε2

2
+
δγε2c

2κ
+ c1

)
+ N4

(
ε′4ρ3

2
(b + κc) +

κρ3c
ε5

)} ˆ 1

0
ψ2

xdx

+

{
−K + ε1

(K
2

+
µ2c
2

)
+ N4

ε′4κρ3c
2

}ˆ 1

0
ϕ2

xdx − I3 (t)

+

{
−CN +

µ2

2ε1
+ N2

µ2

2ε2
−

c1

2τ

}ˆ 1

0
z2 (x, 1, t) dx (3.53)

+

{
−CN + N2

(
µ1

2ε2
+
ρ1

2ε2

)
+ ρ1

}ˆ 1

0
ϕ2

t dx

+

{
N2

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)
+

1
2τ

+ N4

(
−γρ2 +

ε4ρ2κ

2

)
+ N5

ε′5τ0γ

2

}ˆ 1

0
ψ2

t dx

+

{
−Nδ + N2

(
γτ0

2κε2
+

δγ

2κε2

)
+ N4

ρ2κ

2ε4
+ N5

(
τ0κ +

ρ3δ

2ε5
+
τ0γ

2ε′5

)}ˆ 1

0
q2dx

+

{
N4

(
γρ3 +

ρ3

2ε′4
(b + 2κ) + κρ3ε5

)
+ N5

(
−ρ3κ +

ε5ρ3δc
2

)} ˆ 1

0
θ2dx.

At this point, we have to choose our constants very carefully. First, choosing ε1, ε2, ε4

and ε5 small enough, such that

ε2

(cµ1

2
+

cµ2

2
+
δγc
2κ

)
≤

b − c1

2
, ε1

(K
2

+
µ2c
2

)
≤

K
2
, ε4 ≤

γ

κ
, ε5 ≤

κ

δc
.

After that, we can choose N2 large enough such that

N2 ≥
2K
bε1

.

Moreover, we pick N4 large enough so that

N4
γρ2

4
≥ N2

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)
+

1
2τ
.

Once N2 and N4 are fixed, we take ε′4 small enough such that

ε′4 ≤ min
{

N2b
4N4 (ρ3 (b + κc) + κρ3c/ε5)

,
K

2N4κρ3c

}
.



existence and exponential stability of a Timoshenko system in thermoelasticity 79

Next, let N5 be large enough such that

N5ρ3κ

4
≥ N4

(
γρ3 +

ρ3

2ε′4
(b + 2κ) + κρ3ε5

)
.

After that, we fix ε′5 small enough such that

ε′5 ≤
N4γρ2

4N5τ0γ
.

Finally, once all the above constants are fixed, we choose N large enough such that


CN
2
≥ max

{
µ2

2ε1
+ N2

µ2

2ε2
,N2

(
µ1

2ε2
+
ρ1

2ε2

)
+ ρ1

}
,

Nδ
2
≥ N2

(
γτ0

2κε2
+

δγ

2κε2

)
+ N4

ρ2κ

2ε4
+ N5

(
τ0κ +

ρ3δ

2ε5
+
τ0γ

2ε′5

)
.

Consequently, there exists a positive constant η1, such that (3.53) becomes

d
dt

L (t) ≤ −η1

ˆ 1

0

(
ψ2

t + ψ2
x + ϕ2

t + (ϕx + ψ)2 + θ2 + q2
)

dx − η1

ˆ 1

0

ˆ 1

0
z2 (x, ρ, t) dρdx,

(3.54)

which implies by (3.35), that there exists also η2 > 0, such that

d
dt

L (t) ≤ −η2E (t) , ∀t ≥ 0. (3.55)

Moreover, we have the following:

Lemma 3.9. For N large enough, there exist two positive constants β1 and β2 depending

on N, N1, N2, N4, N5, ε1, ε2, ε4, ε
′
4, ε5 and ε′5 such that

β1E (t) ≤ L (t) ≤ β2E (t) , ∀t ≥ 0. (3.56)

Proof. The proof of Lemma 3.9, can be shown with the same method as in [53, In-

equality (29)], with small modifications. For convenience of the reader, we give the

proof here. Indeed, let

H (t) = I1 (t) + N2I2 (t) + I3 (t) + N4I4 (t) + N5I5 (t)

and show that

|H (t)| ≤ CE (t) ,
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for some constant C > 0. From (3.41), (3.44), (3.46), (3.48) and (3.50) we obtain

H (t) ≤

∣∣∣∣∣∣
ˆ 1

0
ρ1ϕtϕdx +

µ1

2

ˆ 1

0
ϕ2dx

∣∣∣∣∣∣ + N2

∣∣∣∣∣∣
ˆ 1

0

(
ρ2ψtψ + ρ1ϕtw −

γτ0

κ
ψq

)
dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
ˆ 1

0

ˆ 1

0
e−2τρz2 (x, ρ, t) dρdx

∣∣∣∣∣∣ + N4

∣∣∣∣∣∣ρ2ρ3

ˆ 1

0

(ˆ x

0
θ(t, y)dy

)
ψt (t, x) dx

∣∣∣∣∣∣
+N5

∣∣∣∣∣∣−τ0ρ3

ˆ 1

0
q(t, x)

(ˆ x

0
θ(t, y)dy

)
dx

∣∣∣∣∣∣ .
By using, the trivial relation

ˆ 1

0
ϕ2dx ≤ 2

ˆ 1

0
(ϕx + ψ)2 dx + 2

ˆ 1

0
ψ2

xdx,

Young’s and Poincaré’s inequalities, we get

|H (t)| ≤ α1

ˆ 1

0
ϕ2

t dx + α2

ˆ 1

0
ψ2

t dx + α3

ˆ 1

0
(ϕx + ψ)2 dx + α4

ˆ 1

0
ψ2

xdx + α5

ˆ 1

0
θ2dx

+α6

ˆ 1

0
q2dx +

ˆ 1

0

ˆ 1

0
z2 (x, ρ, t) dρdx, (3.57)

where the positive constants α1, ..., α6 are determined as follows:

α1 =
1
2

(ρ1 + N2ρ1) , α2 =
1
2

(N2ρ2 + N4ρ2ρ3) , α3 = ρ1c,

α4 =
1
2

(N2γτ0c
κ

+ N2ρ1c2 + N2ρ2c
)
, α5 =

1
2

(N4ρ2ρ3c + N5τ0ρ3c) ,

α6 =
1
2

(
N2
γτ0

κ
+ N5τ0ρ3

)
.

According to (3.57), we have

|H (t)| ≤ ĈE (t)

for

Ĉ =
max {α1, α2, α3, α4, α5, α6}

min {ρ1, ρ2, ρ3,K, b, κ, 1, γ, δ, τ0}
.

Thus, we obtain

L − NE (t) ≤ ĈE (t) .

So, we can choose N large enough so that β1 = N − Ĉ, β2 = N + Ĉ > 0. Then (3.56)

holds true.
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Combining (3.55) and (3.56), we conclude that there exists Λ > 0, such that

d
dt

L (t) ≤ −ΛL (t) , ∀t ≥ 0. (3.58)

A simple integration of (3.58) leads to

L (t) ≤ L (0) e−Λt, ∀t ≥ 0. (3.59)

Again, the use of (3.56) and (3.59) yields the desired result (3.40). This completes the

proof of Theorem 3.2. �

Remark 3.10. It is an interesting open problem to look whether or not the heat conduc-

tion is strong enough to stabilize system (3.15)-(3.17) (at least polynomially) in the case

when µ2 ≥ µ1.

.



Chapter 4

Global nonexistence of solution of a
system wave equations with nonlinear
damping and source terms

4.1 Introduction

The study of the interaction between the source term and the damping term in the wave

equation

utt − ∆u + a |ut|
m−2 ut = b |u|p−2 u, in Ω × (0,T ) , (4.1)

where Ω is a bounded domain of RN , N ≥ 1 with a smooth boundary ∂Ω, has an exciting

history.

It has been shown that the existence and the asymptotic behavior of solutions depend

on a crucial way on the parameters m, p and on the nature of the initial data. More

precisely, it is well known that in the absence of the source term |u|p−2 u then a uniform

estimate of the form

‖ut (t)‖2 + ‖∇u (t)‖2 ≤ C, (4.2)

holds for any initial data (u0, u1) = (u(0), ut(0)) in the energy space H1
0 (Ω) × L2 (Ω) ,

where C is a positive constant independent of t. The estimate (4.2) shows that any local

solution u of problem (4.1) can be continued in time as long as (4.2) is verified. This

result has been proved by several authors. See for example [34, 38]. On the other hand

in the absence of the damping term |ut|
m−2 ut, the solution of (4.1) ceases to exist and

82
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there exists a finite value T ∗ such that

lim
t→T ∗
‖u (t)‖p = +∞, (4.3)

the reader is refereed to Ball [8] and Kalantarov & Ladyzhenskaya [38] for more details.

When both terms are present in equation (4.1), the situation is more delicate. This case

has been considered by Levine in [43, 44], where he investigated problem (4.1) in the

linear damping case (m = 2) and showed that any local solution u of (4.1) cannot be

continued in (0,∞) × Ω whenever the initial data are large enough (negative initial en-

ergy). The main tool used in [43] and [44] is the ”concavity method”. This method

has been a widely applicable tool to prove the blow up of solutions in finite time of

some evolution equations. The basic idea of this method is to construct a positive func-

tional θ (t) depending on certain norms of the solution and show that for some γ > 0,

the function θ−γ (t) is a positive concave function of t. Thus there exists T ∗ such that

lim
t→T ∗

θ−γ (t) = 0. Since then, the concavity method became a powerful and simple tool to

prove blow up in finite time for other related problems. Unfortunately, this method is

limited to the case of a linear damping. Georgiev and Todorova [22] extended Levine’s

result to the nonlinear damping case (m > 2). In their work, the authors considered the

problem (4.1) and introduced a method different from the one known as the concavity

method. They showed that solutions with negative energy continue to exist globally ’in

time’ if the damping term dominates the source term (i.e.m ≥ p) and blow up in finite

time in the other case (i.e.p > m) if the initial energy is sufficiently negative. Their

method is based on the construction of an auxiliary function L which is a perturbation

of the total energy of the system and satisfies the differential inequality

dL (t)
dt
≥ ξL1+ν (t) (4.4)

In [0,∞) , where ν > 0. Inequality (4.4) leads to a blow up of the solutions in finite

tim t ≥ L (0)−ν ξ−1ν−1, provided that L (0) > 0. However the blow up result in [22]

was not optimal in terms of the initial data causing the finite time blow up of solutions.

Thus several improvement have been made to the result in [22] (see for example [42,

45, 62, 93]. In particular, Vitillaro in [93] combined the arguments in [22] and [42] to

extend the result in [22] to situations where the damping is nonlinear and the solution

has positive initial energy.
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In [95], Young, studied the problem

utt − ∆ut − div
(
|∇u|α−2

∇u
)
− div

(
|∇ut|

β−2
∇ut

)
+ a |ut|

m−2 ut = b|u|p−2u, (4.5)

in (0,T )×Ω with initial conditions and boundary condition of Dirichlet type. He showed

that solutions blow up in finite time T ∗ under the condition p > max {α,m} , α > β, and

the initial energy is sufficiently negative (see condition (ii) in [95][Theorem 2.1]). In

fact this condition made it clear that there exists a certain relation between the blow-up

time and |Ω|([95][Remark 2]).

Messaoudi and Said-Houari [60] improved the result in [95] and showed that the blow

up of solutions of problem (4.5) takes place for negative initial data only regardless of

the size of Ω.

To the best of our knowledge, the system of wave equations is not well studied, and

only few results are available in literature. Let us mention some of them. Milla Miranda

and Medeiros [63] considered the following system utt − ∆u + u − |v|ρ+2
|u|ρ u = f1 (x)

vtt − ∆v + v − |u|ρ+2
|v|ρ v = f2 (x) ,

(4.6)

in Ω×(0,T ) .By using the method of potential well, the authors determined the existence

of weak solutions of system (4.6). Some special cases of system (4.6) arise in quantum

field theory which describe the motion of charged mesons in an electromagnetic field.

See [87] and [36]. Agre and Rammaha [3] studied the system utt − ∆u + |ut|
m−1 ut = f1 (u, v) ,

vtt − ∆v + |vt|
r−1 vt = f2 (u, v) ,

(4.7)

in Ω × (0,T ) with initial and boundary conditions of Dirichlet type and the nonlinear

functions f1 (u, v) and f2 (u, v) satisfying

f1(u, v) = b1|u + v|2(ρ+1)(u + v) + b2|u|ρu|v|(ρ+2)

f2(u, v) = b1|u + v|2(ρ+1)(u + v) + b2|u|(ρ+2)|v|ρv,
(4.8)

They proved, under some appropriate conditions on f1(u; v) , f1(u; v) and the initial data,

several results on local and global existence, but no rate of decay has been discussed.

They also showed that any weak solution with negative initial energy blows up in finite

time, using the same techniques as in [22]. Recently, the blow up result in [3] has
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been improved by Said-Houari [83] by considering certain class of initial data with

positive initial energy. Subsequently, the paper [83] has been followed by [85], where

the author proved that if the initial data are small enough, then the solution of (4.7) is

global and decays with an exponential rate if m = r = 1 and with a polynomial rate

like t−2/(max(m,r)−1) if max (m, r) > 1. Several authors and many results appeared in the

literature see for example [[9],[75]]

In this chapter, we consider the following system of wave equations
utt − ∆ut − div

(
|∇u|α−2

∇u
)
− div

(
|∇ut|

β1−2
∇ut

)
+ a1 |ut|

m−2 ut = f1 (u, v) ,

vtt − ∆vt − div
(
|∇v|α−2

∇v
)
− div

(
|∇vt|

β2−2
∇vt

)
+ a2 |vt|

r−2 vt = f2 (u, v) ,
(4.9)

where the functions f1 (u, v) and f2 (u, v) satisfying (4.8). In (4.9), u = u (t, x) , v =

v (t, x) , x ∈ Ω, a bounded domain of RN (N ≥ 1) with a smooth boundary ∂Ω, t > 0

and a1, a2, b1, b2 > 0 and β1, β2, m, r ≥ 2, α > 2. System (4.9) is supplemented by the

following initial and boundary conditions (u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω

u(x) = v(x) = 0 x ∈ ∂Ω,
(4.10)

Our main interest in this chapter is to prove a global nonexistence result of solutions of

system (4.9) - (4.10) for large initial data. We use the method in [83] with the necessary

modification imposed by the nature of our problem. The core of this method relies on

the use of an auxiliary function L in order to obtain a differential inequality of the form

(4.4) which leads to the desired result.

4.2 Preliminaries

In this section, we introduce some notations and some technical lemmas to be used

throughout this paper. By ‖.‖q, we denote the usual Lq(Ω)-norm. The constants C, c, c1, c2, . . . ,

used throughout this paper are positive generic constants, which may be different in var-

ious occurrences. We define

F (u, v) =
1

2 (ρ + 2)

[
b1 |u + v|2(ρ+2) + 2b2 |uv|ρ+2

]
.

Then , it is clear that, from (4.8),we have
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u f1 (u, v) + v f2 (u, v) = 2 (ρ + 2) F (u, v) . (4.11)

The following lemma was introduced and proved in [58]

Lemma 4.1. There exist two positive constants c0 and c1 such that

c0

2 (ρ + 2)

(
|u|2(ρ+2) + |v|2(ρ+2)

)
≤ F (u, v) ≤

c1

2 (ρ + 2)

(
|u|2(ρ+2) + |v|2(ρ+2)

)
. (4.12)

And the energy functional

E (t) =
1
2

(
‖ut‖

2
2 + ‖vt‖

2
2

)
+

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
−

ˆ
Ω

F (u, v) dx. (4.13)

Let us know define a constant rα as follows :

rα =
Nα

N − α
, i f N > α, rα > α i f N = α, and rα = ∞ i f N < α. (4.14)

The inequality below is a key element in proving the global existence of solution. A

similar version of this lemma was first introduced in [83]

Lemma 4.2. Suppose that α > 2, and 2 < 2(ρ + 2) < rα. Then there exists η > 0 such

that the inequality

‖u + v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2 ≤ η
(
‖∇u‖αα + ‖∇v‖αα

) 2(ρ+2)
α (4.15)

holds.

Proof. It is clear that by using the Minkowski inequality, we get

‖u + v‖22(ρ+2) ≤ 2(‖u‖22(ρ+2) + ‖v‖22(ρ+2)),

the embedding W1,α
0 ↪→ L2(ρ+2) (Ω) , gives

‖u‖22(ρ+2) ≤ C‖∇u‖2α ≤ C(‖∇u‖αα)
2
α ≤ C(‖∇u‖αα + ‖∇v‖αα)

2
α ,

and similary , we have

‖v‖22(ρ+2) ≤ C‖∇u‖αα + ‖∇v‖αα)
2
α
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Thus, we deduce from the above estimates that

‖u + v‖22(ρ+2) ≤ C(‖∇u‖αα + ‖∇v‖αα)
2
α (4.16)

also, Hölder’s and Young’s inequalities give us

‖uv‖(ρ+2) ≤ ‖u‖2(ρ+2)‖v‖2(ρ+2) ≤ C(‖∇u‖22(ρ+2) + ‖∇v‖22(ρ+2)) ≤ C(‖∇u‖αα + ‖∇v‖αα)
2
α . (4.17)

Collecting the estimates (4.16) and (4.17), then (4.15) holds. This completes the proof

of lemma (4.2) �

Lemma 4.3. Let ν > 0 be a real positive number and L be a solution of the ordinary

differential inequality
dL(t)

dt
≥ ξL1+ν(t) (4.18)

defined in [0,∞).

If L(0) > 0, then the solution ceases to existe for t ≥ L(0)−νξ−1ν−1.

Proof. Direct integration of (4.18) gives:

L−ν(0) − L−ν(t) ≥ ξνt,

Thus we obtain the following estimate:

Lν(t) ≥
[
L−ν(0) − ξνt

]−1
. (4.19)

It is clear that the right-hand side of (4.19) is unbounded when

ξνt = L−ν(0).

This completes the proof of lemma 4.3 �

Lemma 4.4. Let (u, v) be the solution of system (4.9) - (4.10) then the energy functional

is a non-increasing function, that is for all t > 0

dE (t)
dt

= −‖∇ut‖
2
2 − ‖∇vt‖

2
2 − ‖∇ut‖

β1
β1
− ‖∇vt‖

β2
β2
− a1‖ut‖

m
m − a2‖vt‖

r
r (4.20)

Proof. We multiply the first equation in (4.9) by ut and second equation by vt and inte-

grate over Ω, using integration by parts, we obtain (4.20) �
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4.3 Global nonexistence result

In this section, we prove that, under some restrictions on the initial data and under som

restrictions on the parameter α,β1,β2,m, r then the lifespan of solution of problem (4.9)-

(4.10) is finite

Theorem 4.5. Suppose that β1, β2, m, r ≥ 2, α > 2, ρ > −1 such that β1, β2 < α,

and max {m, r} < 2(ρ + 2) < rα, where rα is the Sobolev critical exponent of W1,α
0 (Ω) .

defined in (4.14).Assume further that

E (0) < E1,
(
‖∇u0‖

α
α + ‖∇v0‖

α
α

) 1
α > ζ1

Then, any weak solution of (4.9)-(4.10) cannot exist for all time .Here the constants E1

and ζ1 are defined in (4.5).

In ordre to prove our result and for the sake of simplicity , we take b1 = b2 = 1 and

introduce the following :

B = η
1

2(ρ+2) , ζ1 = B
−2(ρ+2)

2(ρ+2)−α , E1 =

(
1
α
−

1
2 (ρ + 2)

)
ζα1 , (4.21)

where η is the optimal constant in (4.15).

The following lemma allows us to prove a blow up result for a large class of initial data.

This lemma is similar to the one in [83] and has its origin in [93]

Lemma 4.6. Let (u, v) be a solution of (4.9)-(4.10). Assume that α > 2, ρ > −1. Assume

further that E (0) < E1 and

(
‖∇u0‖

α
α + ‖∇v0‖

α
α

) 1
α > ζ1. (4.22)

Then there exists a constant ζ2 > ζ1 such that

(
‖∇u‖αα + ‖∇v‖αα

) 1
α > ζ2, (4.23)

and [
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

] 1
2(ρ+2) ≥ Bζ2, ∀t ≥ 0. (4.24)
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Proof. We first note that, by (4.13) and the definition of B, we have

E (t) ≥
1
α

(
‖∇u‖αα + ‖∇v‖αα

)
−

1
2 (ρ + 2)

[
|u + v|2(ρ+2) + 2 |uv|ρ+2

]
≥

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
−

η

2 (ρ + 2)
(
‖∇u‖αα + ‖∇v‖αα

) 2(ρ+2)
α

≥
1
α
ζα −

η

2 (ρ + 2)
ζ2(ρ+2), (4.25)

where ζ =
[
‖∇u‖αα + ‖∇v‖αα

] 1
α . It is not hard to verify that g is increasing for 0 < ζ < ζ1,

decreasing for ζ > ζ1, g (ζ)→ −∞ as ζ → +∞, and

g (ζ1) =
1
α
ζα1 −

B2(ρ+2)

2 (ρ + 2)
ζ

2(ρ+2)
1 = E1,

where ζ1 is given in (4.21). Therefore, since E (0) < E1, there exists ζ2 > ζ1 such that

g (ζ2) = E (0) .

If we set ζ0 =
[
‖∇u (0) ‖αα + ‖∇v (0) ‖αα

] 1
α , then by (4.25) we have g (ζ0) ≤ E (0) = g (ζ2) ,

which implies that ζ0 ≥ ζ2.

Now, establish (4.23), we suppose by contradiction that

(
‖∇u0‖

α
α + ‖∇v0‖

α
α

) 1
α < ζ2,

for some t0 > 0; by the continuity of ‖∇u (.) ‖αα + ‖∇v (.) ‖αα we can choose t0 such that

(
‖∇u (t0) ‖αα + ‖∇v (t0) ‖αα

) 1
α > ζ1.

Again, the use of (4.25) leads to

E (t0) ≥ g
(
‖∇u (t0) ‖αα + ‖∇v (t0) ‖αα

)
> g (ζ2) = E (0) .

This is impossible since E (t) ≤ E (0) , for all t ∈ [0,T ) . Hence, (4.23) is established.

To prove (4.24), we make use of (4.13) to get

1
α

(
‖∇u0‖

α
α + ‖∇v0‖

α
α

)
≤ E (0) +

1
2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
.
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Consequently, (4.23) yields

1
2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
≥

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
− E (0)

≥
1
α
ζα2 − E (0)

≥
1
α
ζα2 − g (ζ2) (4.26)

=
B2(ρ+2)

2 (ρ + 2)
ζ

2(ρ+2)
2 .

Therefore, (4.26) and (4.21) yield the desired result. �

Proof. Proof of Theorem 4.5

We suppose that the solution exists for all time and set

H (t) = E1 − E (t) . (4.27)

By using (4.13) and (4.27) we get

H
′ (t) = ‖∇ut‖

2
2 + ‖∇vt‖

2
2 + ‖∇ut‖

β1
β1

+ ‖∇vt‖
β2
β2

+ a1‖ut‖
m
m + a2‖vt‖

r
r.

From (4.20) , It is clear that for all t ≥ 0, H
′ (t) > 0. Therefore , we have

0 < H (0) ≤ H (t)

= E1 −
1
2

(
‖ut‖

2
2 + ‖vt‖

2
2

)
−

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
+

1
2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
. (4.28)

From (4.13) and (4.23), we obtain, for all t ≥ 0,

E1 −
1
2

(
‖ut‖

2
2 + ‖vt‖

2
2

)
−

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
< E1 −

1
α
ζα1 = −

1
2 (ρ + 2)

ζα1 < 0.

Hence,

0 < H (0) ≤ H (t) ≤
1

2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
, ∀t ≥ 0.

Then by (4.12), we have

0 < H (0) ≤ H (t) ≤
c1

2 (ρ + 2)

[
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

]
, ∀t ≥ 0. (4.29)
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We then define

L (t) = H1−σ (t) + ε

ˆ
Ω

(uut + vvt))dx, (4.30)

for ε small to be chosen later and

0 < σ ≤ min
{

1
2
,

α − m
2 (ρ + 2) (m − 1)

,
α − r

2 (ρ + 2) (r − 1)
,

(α − 2)
2 (ρ + 2)

,
α − β1

2 (ρ + 2) (β1 − 1)
,

α − β2

2 (ρ + 2) (β2 − 1)

}
(4.31)

Our goal is to show that L (t) satisfies the differential inequality (4.4). Indeed, taking

the derivative of (4.30), using (4.9)and adding subtracting εkH(t), we obtain

L
′

(t) = (1 − σ) H−σ (t) H
′

(t) + εkH (t) + ε

(
1 +

k
2

) (
‖ut‖

2
2 + ‖vt‖

2
2

)
+ε (1 − k)

ˆ
Ω

F (u, v) − εkE1 (4.32)

−ε

ˆ
Ω

∇u∇utdx − ε
ˆ

Ω

∇v∇vtdx

+ε

(
k
α
− 1

)
(‖∇u‖αα + ‖∇v‖αα)

−ε

ˆ
Ω

|∇ut|
β1−2
∇ut∇udx − ε

ˆ
Ω

|∇vt|
β2−2
∇vt∇vdx

−εa1

ˆ
Ω

|ut|
m−2 utudx − εa2

ˆ
Ω

|vt|
r−2 vtvdx.

We then exploit Young’s inequality to get for µi, λi, δi > 0 i = 1, 2

ˆ
Ω

∇u∇utdx ≤
1

4µ1
‖∇u‖22 + µ1 ‖∇ut‖

2
2

ˆ
Ω

∇v∇vtdx ≤
1

4µ2
‖∇v‖22 + µ2 ‖∇vt‖

2
2 (4.33)

and

ˆ
Ω

|∇ut|
β1−1
∇udx ≤

λ
β1
1

β1
‖∇u‖β1

β1
+
β1 − 1
β1

λ
−β1/(β1−1)
1 ‖∇ut‖

β1
β1

ˆ
Ω

|∇vt|
β2−1
∇vdx ≤

λ
β2
2

β2
‖∇v‖β2

β2
+
β2 − 1
β2

λ
−β2/(β2−1)
2 ‖∇vt‖

β1
β1

(4.34)

and also
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ˆ
Ω

|ut|
m−2 utudx ≤

δm
1

m
‖u‖mm +

m − 1
m

δ−m/(m−1)
1 ‖ut‖

m
m

ˆ
Ω

|vt|
r−2 vtvdx ≤

δr
2

r
‖v‖rr +

r − 1
r

δ−r/(r−1)
2 ‖vt‖

r
r (4.35)

A substitution of (4.33)-(4.35)) in (4.32) and using (4.12) yields

L
′

(t) ≥ (1 − σ) H−σ (t) H
′

(t) + εkH (t) + ε

(
1 +

k
2

) (
‖ut‖

2
2 + ‖vt‖

2
2

)
+ε

(
c0

2 (ρ + 2)
−

kc1

2 (ρ + 2)

) (
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
− εkE1

−
ε

4µ1
‖∇u‖22 − µ1ε ‖∇ut‖

2
2 −

ε

4µ2
‖∇v‖22 − εµ2 ‖∇vt‖

2
2

+ε

(
k
α
− 1

) (
‖∇u‖αα + ‖∇v‖αα

)
− ε

λ
β1
1

β1
‖∇u‖β1

β1
− ε

β1 − 1
β1

λ
−β1/(β1−1)
1 ‖∇ut‖

β1
β1

−ε
λ
β2
2

β2
‖∇v‖β2

β2
− ε

β2 − 1
β2

λ
−β2/(β2−1)
2 ‖∇vt‖

β1
β1
− a1ε

δm
1

m
‖u‖mm

−a1ε
m − 1

m
δ−m/(m−1)

1 ‖ut‖
m
m − a2ε

δr
2

r
‖v‖rr − a2ε

r − 1
r

δ−r/(r−1)
2 ‖vt‖

m
m . (4.36)

Let us choose δ1, δ2, µ1, µ2, λ1, and λ2 such that

δ−m/(m−1)
1 = M1H−σ (t)

δ−r/(r−1)
2 = M2H−σ (t)

µ1 = M3H−σ (t)

µ2 = M4H−σ (t)

λ
−β1/(β1−1)
1 = M5H−σ (t)

λ
−β2/(β2−1)
2 = M6H−σ (t)

(4.37)

for M1, M2, M3, M4, M5 and M6 large constants to be fixed later. Thus, by using

(4.37),and for

M = M3 + M4 + (β1 − 1)M5/β1 + (β2 − 1)M6/β2 + (m − 1)M1/m + (r − 1)M2/r
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then, inequality (4.36) takes the form

L
′

(t) ≥ ((1 − σ) − εM) H−σ (t) H
′

(t) + εkH (t) + ε

(
1 +

k
2

) (
‖ut‖

2
2 + ‖vt‖

2
2

)
+ε

(
c0

2 (ρ + 2)
−

kc1

2 (ρ + 2)

) (
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
− εkE1

+ε

(
k
α
− 1

) (
‖∇u‖αα + ‖∇v‖αα

)
(4.38)

−
ε

4M3
Hσ (t) ‖∇u‖22 −

ε

4M4
Hσ (t) ‖∇v‖22

−
a1ε

m
M−(m−1)

1 Hσ(m−1) (t) ‖u‖mm −
a2ε

r
M−(r−1)

2 Hσ(r−1) (t) ‖v‖rr

−ε
M−(β1−1)

5

β1
Hσ(β1−1) (t) ‖∇u‖β1

β1
− ε

M−(β2−1)
6

β2
Hσ(β2−1) (t) ‖∇u‖β2

β2
,

We then use the two embedding L2(ρ+2) (Ω) ↪→ Lm (Ω) , W1,α
0 ↪→ L2(ρ+2) (Ω) and (4.29)

to get

Hσ(m−1) (t) ‖u‖mm ≤ c2

(
‖u‖2σ(m−1)(ρ+2)+m

2(ρ+2) + ‖v‖2σ(m−1)(ρ+2)
2(ρ+2) ‖u‖m2(ρ+2)

)
≤ c2

(
‖∇u‖2σ(m−1)(ρ+2)+m

α + ‖∇v‖2σ(m−1)(ρ+2)
α ‖∇u‖mα

)
. (4.39)

Similarly, the embedding L2(ρ+2) (Ω) ↪→ Lr (Ω) , W1,α
0 ↪→ L2(ρ+2) (Ω) and (4.29) give

Hσ(r−1) (t) ‖v‖rr ≤ c3

(
‖v‖2σ(r−1)(ρ+2)+r

2(ρ+2) + ‖u‖2σ(r−1)(ρ+2)
2(ρ+2) ‖v‖r2(ρ+2)

)
≤ c3

(
‖∇v‖2σ(r−1)(ρ+2)+r

α + ‖∇u‖2σ(r−1)(ρ+2)
α ‖∇v‖rα

)
. (4.40)

Furthermore, the two embedding W1,α
0 ↪→ L2(ρ+2) (Ω) , Lα(Ω) ↪→ L2(Ω), yields

Hσ (t) ‖∇u‖22 ≤ c4

(
‖u‖2σ(ρ+2)

2(ρ+2) ‖∇u‖22 + ‖v‖2σ(ρ+2)
2(ρ+2) ‖∇u‖22

)
≤ c4

(
‖∇u‖2σ(ρ+2)+2

α + ‖∇v‖2σ(ρ+2)
α ‖∇u‖2α

)
(4.41)

and

Hσ (t) ‖∇v‖22 ≤ c5

(
‖∇u‖2σ(ρ+2)

α ‖∇v‖2α + ‖∇v‖2σ(ρ+2)
α ‖∇v‖2α

)
(4.42)

= c5

(
‖∇u‖2σ(ρ+2)

α ‖∇v‖2α + ‖∇v‖2σ(ρ+2)+2
α

)
.



Global nonexistence of solution of a system wave equations with nonlinear damping
and source terms 94

Since max(β1, β2) < α then we have

Hσ(β1−1) (t) ‖∇u‖β1
β1
≤ c6

(
‖∇u‖2σ(β1−1)(ρ+2)

α ‖∇u‖β1
α + ‖∇v‖2σ(β1−1)(ρ+2)

α ‖∇u‖β1
α

)
= c6

(
‖∇u‖2σ(β1−1)(ρ+2)+β1

α + ‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α

)
. (4.43)

and

Hσ(β2−1) (t) ‖∇v‖β2
β2
≤ c7

(
‖∇u‖2σ(β2−1)(ρ+2)

α ‖∇v‖β2
α + ‖∇v‖2σ(β2−1)(ρ+2)

α ‖∇v‖β2
α

)
= c7

(
‖∇u‖2σ(β2−1)(ρ+2)

α ‖∇v‖β2
α + ‖∇v‖2σ(β2−1)(ρ+2)+β2

α

)
. (4.44)

for some positive constants c2, c3, c4, c5, c6 and c7. By using (4.31) and the algebraic

inequality

zν ≤ (z + 1) ≤
(
1 + 1

a

)
(z + a) , ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0, (4.45)

we have, for all t ≥ 0,

‖∇u‖2σ(m−1)(ρ+2)+m
α ≤ d

(
‖∇u‖αα + H (0)

)
≤ d

(
‖∇u‖αα + H (t)

)
,

‖∇v‖2σ(r−1)(ρ+2)+r
α ≤ d

(
‖∇v‖αα + H (t)

)
,

‖∇u‖2σ(ρ+2)+2
α ≤ d

(
‖∇u‖αα + H (t)

)
,

‖∇v‖2σ(ρ+2)+2
α ≤ d

(
‖∇v‖αα + H (t)

)
,

‖∇u‖2σ(β1−1)(ρ+2)+β1
α ≤ d

(
‖∇u‖αα + H (t)

)
,

‖∇v‖2σ(β2−1)(ρ+2)+β2
α ≤ d

(
‖∇v‖αα + H (t)

)
,

(4.46)

where d = 1 + 1/H (0) . Also keeping in mind the fact that max(m, r) < α , using Yong’s

inequality, the inequality (4.45) togrther withe (4.31), we conclude
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

‖∇v‖2σ(m−1)(ρ+2)
α ‖∇u‖mα ≤ C

(
‖∇v‖αα + ‖∇u‖αα

)
,

‖∇u‖2σ(r−1)(ρ+2)
α ‖∇v‖rα ≤ C

(
‖∇u‖αα + ‖∇v‖αα

)
,

‖∇v‖2σ(ρ+2)
α ‖∇u‖2α ≤ C

(
‖∇v‖αα + ‖∇u‖αα

)
,

‖∇u‖2σ(ρ+2)
α ‖∇v‖2α ≤ C

(
‖∇u‖αα + ‖∇v‖αα

)
,

‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α ≤ C
(
‖∇v‖αα + ‖∇u‖αα

)
,

‖∇u‖2σ(β2−1)(ρ+2)
α ‖∇v‖β2

α ≤ C
(
‖∇u‖αα + ‖∇v‖αα

)
,

(4.47)

where C is a generic positive constant. Taking into account (4.39)- (4.47) , then, (4.38)

takes the form

L
′

(t) ≥ ((1 − σ) − εM) H−σ (t) H
′

(t) + ε

(
1 +

k
2

) (
‖ut‖

2
2 + ‖vt‖

2
2

)
+ε

([
k/α − 1 − kE1ζ

−a
2

]
−CM−(m−1)

1 −CM−(r−1)
2 (4.48)

−
C
4

M−1
3 −

C
4

M−1
4 −CM−(β1−1)

5 −CM−(β2−1)
6 − 1

) (
‖∇u‖αα + ‖∇v‖αα

)
+ε

(
k −CM−(m−1)

1 −CM−(r−1)
2 −

C
4

M−1
3 −

C
4

M−1
4

−CM−(β1−1)
5 −CM−(β2−1)

6

)
H (t)

+ε

(
c0

2 (ρ + 2)
−

kc1

2 (ρ + 2)

) (
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
,

for some constant k. Using k = c0/c1, we arrive at

L
′

(t) ≥ ((1 − σ) − εM) H−σ (t) H
′

(t) + ε

(
1 +

c0

2c1

) (
‖ut‖

2
2 + ‖vt‖

2
2

)
+ε

(
c −CM−(m−1)

1 −CM−(r−1)
2 −

C
4

M−1
3 −

C
4

M−1
4 (4.49)

−CM−(β1−1)
5 −CM−(β2−1)

6 − 1
) (
‖∇u‖αα + ‖∇v‖αα

)
+ε

(
c0/c1 −CM−(m−1)

1 −CM−(r−1)
2 −

C
4

M−1
3 −

C
4

M−1
4

−CM−(β1−1)
5 −CM−(β2−1)

6

)
H (t) ,
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where c = k/α − 1 − kE1ζ
−2
2 = c0/ (c1α) − 1 − (c0/c1) E1ζ

−2
2 > 0 since ζ2 > ζ1.

At this point, and for large values of M1, M2, M3, M4, M5 and M6, we can find positive

constants Λ1 and Λ2 such that (4.49) becomes

L
′

(t) ≥ ((1 − σ) − Mε) H−σ (t) H
′

(t) + ε

(
1 +

c0

2c1

) (
‖ut‖

2
2 + ‖vt‖

2
2

)
+εΛ1

(
‖∇u‖αα + ‖∇v‖αα

)
+ εΛ2H (t) . (4.50)

Once M1, M2, M3, M4, M5 and M6 are fixed (hence, Λ1 and Λ2), we pick ε small enough

so that ((1 − σ) − Mε) ≥ 0 and

L (0) = H1−σ (0) +

ˆ
Ω

[u0.ut + v0.vt] dx > 0.

From these and (4.50) becomes

L
′

(t) ≥ εΓ
(
H (t) + ‖ut‖

2
2 + ‖vt‖

2
2 + ‖∇u‖αα + ‖∇v‖αα

)
. (4.51)

Thus, we have L (t) ≥ L (0) > 0, for all t ≥ 0. Next, by Holder’s and Young’s inequali-

ties, we estimate

(ˆ
Ω

u.ut (x, t) dx +

ˆ
Ω

v.vt (x, t) dx
) 1

1−σ

≤ C
(
‖u‖

τ
1−σ
2(ρ+2) + ‖ut‖

s
1−σ
2 + ‖v‖

τ
1−σ
2(ρ+2) + ‖vt‖

s
1−σ
2

)
≤ C

(
‖∇u‖

τ
1−σ
α + ‖ut‖

s
1−σ
2 + ‖∇v‖

τ
1−σ
α + ‖vt‖

s
1−σ
2

)
(4.52)

for
1
τ

+
1
s

= 1. We take s = 2 (1 − σ) , to get
τ

1 − σ
=

2
1 − 2σ

. By using (4.31) and

(4.45) we get

‖∇u‖

2
(1 − 2σ)
α ≤ d

(
‖∇u‖αα + H (t)

)
,

and

‖∇v‖

2
(1 − 2σ)
α ≤ d

(
‖∇v‖αα + H (t)

)
, ∀t ≥ 0.
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Therefore, (4.52) becomes

(ˆ
Ω

u.ut (x, t) dx +

ˆ
Ω

v.vt (x, t) dx
) 1

1−σ

≤ C
(
‖∇u‖αα + ‖∇v‖αα + ‖ut‖

2
2 + ‖vt‖

2
2 + H (t)

)
, ∀t ≥ 0. (4.53)

Also, since

L
1

1−σ (t) =

(
H1−σ (t) + ε

ˆ
Ω

(u.ut + v.vt) (x, t) dx
) 1

(1−σ)

≤ C

H (t) +

∣∣∣∣∣ˆ
Ω

(u.ut (x, t) + v.vt (x, t)) dx
∣∣∣∣∣ 1
(1−σ)

 (4.54)

≤ C
[
H (t) + ‖∇u‖αα + ‖∇v‖αα + ‖ut‖

2
2 + ‖vt‖

2
2

]
, ∀t ≥ 0,

combining withe (4.54) and (4.51), we arrive at

L
′

(t) ≥ a0L
1

1−σ (t) , ∀t ≥ 0. (4.55)

Finally, a simple integration of (4.55) gives the desired result.This completes the proof

of Theorem (4.5) �
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