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Resumé

ans cette thése, nous étudions une classe des equations différentielles doublement
Dstochastiques retrogrades (EDDSR). Dans le premiére partie, notre contribution
consiste & établir I’existence et I'unicité lorsque le coefficient f est faiblement monotone et
a une croissance générale et que la condition terminale £ et de carré intégrable et aussi
donnons une application a des équations différentielles partielles stochastique (EDPS). Nos
démonstrations sont basées sur des techniques d’approximation.

Dans le méme esprit mais avec des techniques différentes, nous prouvons des nouveaux
résultats d’existence dans deux autres directions. Tout d’abord, nous prouvons le résultat
d’existence d’une solution minimale au EDDSR avec un barriére continu et dirigée par le
sauts de poisson lorsque le coefficient est continu dans (Y, Z,U) et a une croissance linéaire.
Nous étudions également ce type d’équation sous la condition de croissance linéaire et de la
continuité a gauche en y sur le générateur. Deuxiémement, nous prouvons aussi I’existence
et unicité des solutions aux équations différentielles doublement stochastiques rétrogrades
réfléchies anticipées dirigées par une famille de martingales de teughels, nous montrons égale-
ment le théoréme de comparaison pour une classe spéciale équations différentielles doublement
stochastiques rétrogrades réfléchies anticipées dans des conditions légerement plus fortes. De
plus, nous obtenons un résultat d’existence et d’unicité de la solution de I’équation précédente
lorsque, S = —oc¢ i.e., K = 0. La nouveauté de notre résultat réside dans le fait que nous
permettons & 'intervalle de temps d’étre infini.

Phrases-clé: Equations différentielles doublement stochastiques retrogrades; Equations
différentielles doublement stochastiques retrograde réfléchie; Equation différentielle partielle
stochastique; Solution faible de sobolev; Inégalité de Bihari, Mesure aléatoire de Poisson,

Théoréeme de comparaison.
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Abstract

n this thesis, we study a class of baclward doubly stochastic differential equations
I(BDSDES in short). In a first part, our contribution is to establish existence and
uniqueness when the coefficient f is is weakly monotonous and has general growth and the
terminal condition £ is only square integrable and give application to the homogenization of
stochastic partial differential equations (SPDE’s). Our demonstrations are based on approx-
imation techniques.

In the same spirit but with different techniques we prove the new existence results in two
other directions. First, we prove the existence result of minimal solution to the RBDSDE
with poisson jumps when the coefficient is continuous in (Y, Z, U) and has linear growth. Also,
we study this type of equation under the condition of linear growth and the continuity left
inand the continuity left in y on the generator. Second, existence and uniqueness of solutions
to the reflected anticipated backward doubly stochastic differential equation equations driven
by teughles martingales (RABDSDES in short), we also show the comparison theorem for a
special class of reflected ABDSDEs under some slight stronger conditions. Furthermore we
get a existence and uniqueness result of the solution to the previous equation when, S = —oo
i.e., K = 0. The novelty of our result lies in the fact that we allow the time interval to be
infinite.

Key-phrases: Backward doubly stochastic differential equations; Reflected backward doubly
stochastic differential equations; Stochastic partial differential equation; Sobolev weak solu-

tion; Bihari inequality, Random Poisson measure, Comparison theorem.
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Index of notations

Index of notations

The different symbols and abbreviations used in this thesis.

(Q,F,P) Probability space.

{W,0<t<T} Brownian motion.

o(B) o — algebre generated by B.

F/ o — algebre generated by 7).

Fhr o — fields generated by {Bs; — B;;t < s < T}

o — fields generated by F}" U F/.

G =F"VFE, The collection (G),c(o 7 is a filtration.
a.e Means almost everywhere with respect to the Lebesgue measure.
a.s Means almost surely with respect to the probability measure.
o Set of function of class C*, whose partial derivatives
' of order less then or egal to k are bounded.
J <X§I) The determinan to the Jacobian matrix of X%?.
LY([0,T]) Is the space of the functions whose absolute value is integrable.
R? d — dimensional real Euclidean space.
RExd The set of all £ x d real matrixes.
L? (RY, 7 () d) ( Be the weight IL? space with weight 7 (z) endowed with the following
norm, ||ul|2 = [ |u (@)’ 7 (z) da.
M2 (0.7, RY) ( The set of d — dimensional, F; — measurable processes {¢;;t € [0,T]},
such that EfOT || dt < 0.
& (0’ T ]Rd) ( The set of continuous F; — measurable processes {¢;;t € [0,T]},
which satisfy E(supg<;<r le]?) < 0.
2 ( Be the space of real valued sequences (7,),, suchthat EZTO r? < oo,
| and o]} = T2
M2, ([0,T];1%) ( Are the corresponding spaces of [?>-valued processes equipped with
and the norm ||g||?% = ]EfoT S ‘gogi) : dt < oo associated to the
S3,([0,77;1%) H; — measurable processes.

vil



Index of notations

£2(0,T, i, RY)

M? (0,7, R?)

AZ

L2> L2 (HT)

E(X), E(|F)
SDEs

BSDEs
BDSDFEs
RBDSDEs
RBDSDEJs
RABDSDEs
SPDEs

The space of mappings U : Q x [0,T] x E — R? which are P ® £
measurable such that, ||Ut||i2(o,T,g,Rd) = EfOT ||Ut||2L2(E,£,A,Rd) dt < oo,
where P @ £ denoted the o-algebra of F;-predectable sets of Q x [0,T7],
and ||Ut||iQ(E’57>\’Rd) = [, U (e)] X (de)..

The set of d — dimensional, 7; — measurable processes {¢;;t € [0,7]},

~\ 7~

2
such that E (fOT o4 dt) < 0.

Set of continuous, increasing, F;-measurable process K
such that K : [0, 7] x Q — [0, +o0( with Ky =0, E (K7)* < 40c0.

Set of Fr — (resp Hr) measurable random variables & :  — R*

kwithEygE<+oo.

Expectation at X and conditional expectation.

Stochastic differential equation.

Backward stochastic differential equation.

Backward doubly stochastic differential equation.

Reflected backward doubly stochastic differential equation.

Reflected backward doubly stochastic differential equation with poisson jump.
Reflected anticipated backward doubly stochastic differential equation.

Stochastic partial differential equation.
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Introduction

0.1 Historical of Backward Doubly Stochastic Differ-
ential Equations.

t was mainly during the last decade that the theory of backward doubly stochastic
Idifferential equations (BDSDE for short) took shape as a distinct mathematical dis-
cipline. This theory has found a wide field of applications as in stochastic optimal problems,
see Han, Peng and Wu [I1], Zhang and Shi [31] and stochastic partial differential equations
(SPDESs) see Z. Wu, F. Zhang [29] and Zhu, Q., Shi, Y [34], we are especially concerned in
this thesis with the last connection. The nonlinear Backward doubly stochastic differential

equation are equations of the following type:
T T - T
Y; =€+/ f(s,Ys, Zy) ds+/ 9(s,Ys, Zs)dB —/ ZdW,,  0<t<T (ESH9)
t t t

with two different directions of stochastic integrals, i.e., the equation involves both a standard
(forward) stochastic integral dWW; and a backward stochastic integral d B,. Was firstly initiated
by Pardoux and Peng [24] they have proved the existence and uniqueness under uniformly
Lipschitz conditions and they give probabilistic interpretation for the solutions of a class
of semilinear SPDEs where the coefficients are smooth enough, the idea is to connect the

following BDSDEs system

vie = h(XE) 4 [T f (X Y 2y dr + [T g (r, X0 Y 26 d B — [T 2w,

S

X" o= x+ [[o(XE")dr+ [0 o (XE7)dW,,

X



Introduction

with the following semilinear SPDE,

T

u(s,z) =h(zr)+ / (Lu(r,z) + f(r,z,u(r,z),0*Vu(r,z)))dr

S

T —
+/ g(ryz,u(r,z),0"Vu(r,x))dB,, t<s<T,

where

1 0? 0 . «
L= 52(%3’)@4‘;51‘8—%7 with (ai;) := 00"

27‘7

The result of Pardoux and Peng [24], several works have attempted to relax the Lipschitz
condition and the growth of the generator function; see Bahlali et all [7] have provide the
existence and uniqueness of a solution for BDSDE with superlinear growth generators, Z. Wu,
F. Zhang [29] gave the existence and uniqueness result of BDSDEs with locally monotone
assumptions, in which the coefficient f is assumed to be locally monotone in the variable y
and locally Lipschitz in the variable z.

In addition, Bahlali et all [5] prove the existence and uniqueness of solutions with uni-
formly Lipschitz coefficients to the following reflected backward doubly stochastic differential
equations (RBDSDEs for schort )

T T T T
Y, = §+/ f(s,Ys, Zs)der/ g(s, Y5, Zs)d§5+/ dKS—/ ZdW,, 0 <t <T, (E%)9)
t t t t

The role of the nondecreasing continuous process (Kt)te[o,T] is to puch upward the process Y

in order to keep it above S, it satisfies the skorohod condition

T
/ (Ys - Ss) sz =0.
0

The existence of a maximal and a minimal solution for RBDSDESs with continuous generator
is also established.

Note that when ¢ = 0 and S = —o0 i.e., K = 0 the previous backward doubly stochastic
differential equations becomes a classical backward stochastic differential equation (BSDE)

and can be related to semilinear and quasi linear partial differential equations (PDEs).
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0.2 Our results

In this thesis, we present three new results in the theory of BDSDEs.

1. We establish existence and uniqueness results for the previous type of multidimen-
sional backward doubly stochastic differential equations (Eg’f ’9) , for the case where
the generator f is weak monotonicity and general growth with respect to (Y, Z). Also
we establish the existence and uniqueness of probabilistic solutions to some stochastic
PDEs by using the solution of BDSDE with weak monotonicity and general growth

generator. See [I8] (submitted).

Mansouri, Badreddine, Saouli, M, A, ouahab. (2019). Backward Doubly SDEs and

SPDEs with weak Monotonicity and General Growth Generators.

2. We prove the existence of a minimal and a maximal solution to the following reflected
backward doubly stochastic differential equations with poisson jumps ( RBDSDEPs in

short)

Yo =€+ [ f(s. e Z,Uds + [ g(5,Ye, 2, UYAB, + [} dE,
— [ Zaw, — [ [LUs(e)fi(ds,de), 0<t<T,  (EP&/9).

when the generator has a linear growth condition and left continuity in y on the gen-
erator, the case where the generator is continuous in (Y, Z, U) and has a linear growth
is also study. We state a new version of a comparison principle which allows us to

compare the solutions to RBDSDEs. See [20]

Mansouri, Badreddine, Saouli, M, A, ouahab. (2018). Reflected Discontinuous Back-
ward Doubly Stochastic Differential Equation With Poisson Jumps. Journal of Numer-

ical Mathematics and Stochastics, 10 (1) : 73-93.

3. Motivated by the above results and by the result introduced by Xiaoming Xu [30],
we establish the existence and uniqueness of the solution to the reflected ABDSDE
(RABDSDES) driven by teugels martingales associated with a Lévy process where the

coefficient of this BDSDE depend on the future and present value of the solution (Y, Z) .

xi



Introduction

We also show the comparison theorem for a special class of reflected ABDSDEs under
some slight stronger conditions. Furthermore we get a existence and uniqueness result
of the solution to the previous equation when, S = —oo i.e., K = 0. The novelty of our
result lies in the fact that we allow the time interval to be infinite. See [17] (Submitted;

February, 05, 2019; In Filomat journal).

Mansouri, Badreddine, Saouli, M, A, ouahab. (2019). Reflected solutions of Anticip-
ated Backward Doubly SDEs driven by Teugels Martingales.
arXiv preprint arXiv:1703.09105.

0.3 Outline of the thesis.

he organization of this thesis is as follows: In Chapter 1, we present, under classical
Tassumptions and by means of a fixed point, an existence and uniqueness theorem
for solutions of BDSDE’s. In particular, we obtain a result for BDSDE’s with Lipschitz
coefficient. Then, we state BDSDE’s with continuous coefficient. A comparison theorem for
BDSDE’s is also presented.

Chapter 2, is devoted to the study of existence and uniqueness results for backward
doubly SDE with superlinear growth generators.

In Chapter 3, we prove existence and uniqueness results of solution to the multidimen-
sional backward doubly stochastic differential equation. Our contribution in this topic is to
weaken the Lipschitz assumption on the data (&, f, g), see [18]. This is done with weak mono-
tonicity and general growth coefficient f and an only square integrable terminal condition &

i.e. f and g satisfying the following assumptions:
o dP x dt-a.e., z € R**4 y — f(w,t,y, z) is continuous.

e f satisfies the weak monotonicity condition in y, i.e., there exist a nondecreasing
and concave function k(-) : RY — RT with k(u) > 0 for u > 0, £(0) = 0 and

Jos kM (u)du = 400 such that dP x dt-a.e.V (y1,y2) € R*, z € RF*4,

<y1 - y27f (tvwvyhz) - f(t,w,yg,z» <k (’yl - y2}2> .

xii
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e f is lipschitz in z, uniformly with respect to (w,t,y) i.e., there exists a constant ¢ > 0

such that dP x dt-a.e.,
|f(w,t,y, 2) = f(w,t,y,2)| <clz— z’!.
e There exists a constant ¢ > 0 and a constant 0 < o < }L such that dP x dt-a.e.,
|g(w,t,y, 2)—g (w,t,y/,z'> ‘ < c‘y —yl‘ +a‘z - z”.
e f has a general growth with respect to y, i.e., dP x dt-a.e., Yy € R*

|f(t,w,y,0) | < |f(tw,0,0) | +¢(|y]),

where ¢ : Rt — R is increasing continuous function.
e and f(t,w,0,0) € M?(0,T,R¥),  g(t,w,0,0) € M?(0,T,RF).

More precisely, let (f,,) be a sequence of processes which converges to f locally uniformly
and (&,) a sequence of random variable which converge to ¢ in IL? (Q2), then the solutions Y,
of BDSDE (&, f,) converges to Y the solution of (£, f). Also we prove the existence and
uniqueness of Sobolev solution for some SPDEs by constructing it with the help of some
BDSDE with weak monotonicity and general growth generator.

In Chapter 4, we present the existence and uniqueness results of solution to the re-
fleccted backward doubly stochastic differential equation. In particular, we obtain a result
for reflected BDSDE’s with Lipschitz coefficient and continuous coefficient.

In Chapter 5, we prove the existence result of RBDSDE with poisson jumps (E P&y )
More generally, our results in this part focus essentially in two directions, see [20].

First, we study the existence of a minimal and a maximal solution to the reflected
backward doubly stochastic differential equation with poisson jumps (RBDSDEPs in short)
where the coefficient is continuous in the variables Y, Z and U and has linear growth i.e. f

and ¢ satisfying the following assumptions:

xiii
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e There exists C' > 0 s.t. for all (t,w,y,2,u) € [0,T] x A x Rx R x L2 (E,E,\|R),
(tw,y, 2 u) €[0,T] x 2 x Rx R? x L?(E,E,\R)

[f 8w,y z,u)] < C(1+ |yl + |z + |ul),

}g(t,w,y,z,u) —g(t,w,y/,z/,u/)|2 < C”y—yllz—l—a{‘z—z/f—i— ’u—u/ 2}.

e For fixed w and ¢, f(t,w,-,,-) is continuous.

Also, we study the existence of a minimal and a maximal solution for RBDSDEPs under
a linear growth condition and left continuity in y on the generator i.e.f and g satisfying the

following assumptions:

e There exists a positive process f; € M? (0, T,R) such thatV (t,y, z,u) € [0,T] x B? (R),
|f (6 y,z,u)| < fi(w) + C(lyl + [2] + |ul) -

e f(t,-,z,u): R — Ris aleft continuous and f (¢,y,-,) is a continuous.

e There exists a continuous fonction 7 : [0, 7] x B? (R) satisfying for y >y, (z,2') € R*,

(u,u') € (L* (E,E,\R))

7 (&, 2, u)] < C(lyl + |2] + |ul),

f(t,w,y,z,u)—f(t,w,y',z’,u') 27(t7y_y/72_2/7u_u,)'

e There exist constant C' > 0 and a constant 0 < «a < 1 such that for every (w,t) €

Q% [0,7) and (y,5') € R?, (2,2) € (RY)?, (u,u) € (L2 (E, €, A\ R))’
+ )u — u/‘ } .

In Chapter 6, motivated by the above results we prove the existence and uniqueness

’
Zz—Z

!/ ! ! 2 /2

of solutions to the following anticipated BDSDE driven by teughles martingales associated

xiv
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by lévy process (ABDSDE in short),

Vi = &+ [ f(s, A, ASY)ds + [T g(s, A, ACYYA B, + [ dK, — 2, [T 290" t e 0,T],
Yy, Zi) = (i, ), telT, T+ p|,

and Y; > S, as. for any t € [0,T + p] where A, = (Y5, Z,), A2 = (Yiip(5)s Zstu(s)) » and

¢ :[0,T] — R%, and ¢ : [0,T] — R% are continuous functions satisfying:

e There exists a constant p > 0 such that for all ¢ € [0,7]],

t+¢(t) <T +p, t4+1 () <T+p.

e There exists a constant M > 0 such that for each ¢t € [0,7] and for all nonnegative

integrable functions A (-),

ft (s+¢(s )ds<MfT+ph )ds,
L5 h(s+ 4 (s)ds < M [ h(s)ds,

by means of the fixed-point theorem where the coefficients of these BDSDEs depend on the
future and present value of the solution (Y, 7). We also show the comparison theorem for a
special class of reflected ABDSDEs under some slight stronger conditions. Furthermore we
get a existence and uniqueness result of the solution to the previous equation when, S = —oo
i.e., K = 0. The novelty of our result lies in the fact that we allow the time interval to be

infinite see [17].

XV



Part one:

Backward Doubly Stochastic Differential
Equation

his part is intended to give a thorough description of BDSDE’s and then we present

Tin Chapter 1, existence and uniqueness results under classical Lipshitz conditions
see Pardoux. E, Peng. S, [24], also we present a comparison theorem and the existence result
of BDSDE under continuous coefficient, see [27]. The existence and uniqueness of solution

to BDSDE with superlinear growth generators is presented in Chapter 2, for more detail see

[7]. In Chapter 3, we present our contribution in this part, see [I8] which is the existence

and uniqueness of the solution for multidimensional backward doubly stochastic differential

equation whose coefficient f has a waek monotonicity and general growth. We establish also

the existence and uniqueness of probabilistic solutions to some semilinear stochastic partial

differential equations (SPDEs) under the same assumptions. By probabilistic solution, we

mean a solution which is representable throughout a BDSDEs

XVl



Chapter 1

A background on Backward Doubly
SDEs.

This Chapter is organized as follow:

e In section one, we present a backward doubly stochastic differential equations (BDSDEs)

with a Lipschtiz coefficien and a square integrable terminal datum.

e In section two, we state the comparison theorem which allows us to compare the

solutions of BDSDEs.

e In section three, we study BDSDE with continuous coefficient.

1.1 Backward Doubly SDEs with Lipschtiz coefficient.

Let (2, F, P) be a complete probability space. For T' > 0, let {W;,0 <t < T} and
{B:,0 <t < T} be two independent standard Brownian motion defined on (2, F, P) with
values in R? and R, respectively.

Let FV 1= 0(W;0 < s <t) and F. := 0(Bs — By;t <5 <T), completed with P-null
sets. We put,

./Tt ::ftWVEéT.

1



Chapitre 1.A background on Backward Doubly SDEs.

It should be noted that (F;) is not an increasing family of sub o—fields, and hence it is not
a filtration.

Let f:Qx[0,T] x R x R*"— RY, g:Qx[0,T] x R x R*" — R%* he measurable
functions such that, for every (y, z) € R? x R&>" (. y,2) € M?(0,T,R%) and g(.,y,2) €
M?(0,T, R,

The following hypotheses are satisfied for some strictly positive finite constant C' and 0 <
a < 1 such that for any (y1; 21), (y2; 22) € R x R*T

(H 1) |f(t7w7y1721) - f(t,w,y2,22)|2 <C [|y1 - y2|2 + ||Zl - Z2||2] )

‘g<t7w7y1721) - g(t7w7y27’22)|2 < C‘yl - y2|2 T« Hzl - ’22H2'

Throughout this paper, (- ; -) will denote the scalar product on R, i.e (x;y) := Zzg Tilis

for all (z;y) € R?: Sometimes, we will also use the notation x * y to designate (z;).
We point out that by C' we always denote a finite constant whose value may change from

one line to the next, and which usually is (strictly) positive.

1.1.1 Existence and uniqueness theorem.

Suppose that we are given a terminal condition & € L? (Q, Fr, P).

Definition 1.1 A solution of equation (Ef’f’g) is a couple (Y, Z) which belongs to the space
S® ([07 T]aRd) x M? (O,T, Rd”) and satisfies (Eéfvg),

Theorem 1.1 Let & be a square integrable random variable. Assume that (H.1) are satisfied.

Then equation (E9¢) has a unique solution.

Let us first establish the result in Theorem for BDSDEs, where the coefficients f, g do
not depend on (Y; Z). More precisely, let f : Qx [0, T]— R, g: Qx [0, T] — R satisfy
(H.1), and let £ be as before. We consider the following BDSDE,

T T T
Yt:§+/ f(s)ds+/ g(s)dﬁs—/ Z.dW,, 0<t<T (E.1)



Chapitre 1.A background on Backward Doubly SDEs.

Then we have the following result.

Proposition 1.1 Assume that (H.1) are satisfied. Then equation (E.1) has a unique solu-

tion.

Proof. Existance: To show the existence, we consider the filtration G; := FV v FZ and

the martingale

M= e+ [ s+ [ o,

Qt) : (1.1)

which is clearly a square integrable martingale by (H.1). An extension of It6’s martingale
representation theorem yields the existence of a G;-progressively measurable process Z; with

values in R%¥™" such that

T T
E/ 1Z.]|ds < 400 and My — Mt+/ Z,dW,. (1.2)
0

t

We subtract the quantity f(f f(s)ds + fot g(s)d%S from both sides of the martingale in (1.1)

and we employ the martingale representation in (1.2) to obtain

vi=et [ st [ oiB. - [ zaw,

vi=B (e [ s+ [ oiBa).

It remains to show that Y; and Z; are in fact F;-adapted. For Y;, this is obvious since for

where

each t,

Y, =E ([|F Vv FP)

where

T T -
szT—i—/O f(s)ds—l—/o g(s)dByg,
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is F; V FP-mesurable. Using the fact that F7 is independent of F; V o (I'), we deduce that

Y; = E (| 7). Moreover, we have

/tT ZdWs =& + /tT f(s)ds + /tTg(S)dR -Y,

and the right-hand side is F}" V F’-mesurable. Hence, from It6’s martingale representation
theorem, Z,,t < s < T is FV V F{% adapted. Consequently Z, is " V F/%, measurable, for
any t < s, so it is " V F/%, measurable.

Uniqueness. Let (Y, Z) and <}~/, Z) be two solution of (F.1) and define 6 € {Y, Z}, Af =
0 — 6. Then the triplet (AY, AZ) solves the equation

T
AY; +/ AZdW, =0, te€][0,T].
t
[t6’s formula implies

T
E|AYt|2+E/ IAZJ2dW, =0, tel0,T].

t

The proof of Proposition 1.1 is complete. m

We will also need the following It6-formula.

Lemma 1.1 Let o € S*([0,T],R"), 8 € M*([0,T],R"), v € M?([0,T],R**?), § €
M?([0,T],R"*9) de such that

T T T
o = o + Bsd8+/ %st—/ 0sdWs, 0<t<T
0 0 0
Then, for any function ¢ € C* (R™), we have

bla)=bla0) + [ (ol )ds + / Bt [ (Foe), s,

I e
- —/ Tr [gzﬁ () %% ds + —/ T?“ (cvs) 0 5*] ds
2 Jo 2 Jo



Chapitre 1.A background on Backward Doubly SDEs.

In particular,

T T - T
|| = || + 2/ o Bsds + 2/ (s, v5d B s) + 2/ (g, 6sdWy)
0 0 0

g 2 g 2
[ udPas s [ s s
0 0

Proof. See E, Pardoux; S, Peng [24]. =
We are now in a position to give the proof of Theorem 1.1.
Proof. It remains to show the existence which will be obtained via a fixed point of the

contraction of the function ® defined as follows

d: D — D

where D the space of couple process (Y., Z.) € S? ([O, T] ;Rd) x M? ([0, T ;Rdx”), endowed

with the norm

1Y, 2)||5 = (E UOTeﬁs (m|2ds+/tT||Zs\|2> @Dé.

Let ® be the map from D into itself which to (Y, Z) associates ¢ (Y, Z) = ()7, Z ) where the
couple (Y, Z;)o< < € D and satisfies the equation (E*/9). Thanks to Proposition (1.1), the

mapping @ is well defined. Let <}7, Z ) and <}7l, Z '> be two elements of D such that
(Y, 2) = @ (f/, Z) , (Y, Z) — 3 <YZ) ,

where ()7, Z) and (f//, Z’) is the solution of the BDSDE (E57f’9) associated with
(f,f(s,f/s, Z),9(s,Ys, ZS)) and (f, f(s, Y., Z0),9(s, Y, Z;)) We use the following notation
AV, =T, — U, and AV, =T, — T,

Then, we get

T . » )
E/ el (|AYS|2 + ||AZ5||2) ds < 7E/ B3 (‘AY; n HAZS
t t

2
> ds,
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where 0 < v < 1. Thus, the mapping ® is a strict contraction on D and it has a unique fixed
point (Y., Z.) € D. Consequently, (Y., Z.) € 82 ([0,7];R%) x M? ([0,T];R*") is the unique

solution of BDSDE (Eg’f 79). Finally we complete the proof of Theorem 1.1. =

1.2 Comparison principle.

In this section our objective is to present a comparison result for the following equations for

j=1,2
T T ]
Vi =6 4 /fJ s, Y3, Z9) ds+/ g(s,Y?, Z1)d B, —/ Zidw,,  te[0,T]. (1.3)
t t

Theorem 1.2 Assume that the BDSDE associated with dates (£, f1,9,T),

(resp (EQ, g, T)) has a solution (Y}', Z})icio.ry, ( resp (Y2, Zf)te[O’T]). Fach one satisfy-

ing the assumption (H.1), assume moreover that:

&<
vVt <T, S} <S2
FY Y Z) < f (4 Y Zy)

Then we have P — a.s., Y;' < Y.

+
Proof. Let us show that (Y;l - Y:) = 0, using the equations (1.3), by the notation

5. =68 — 62, we get
T T - T
= §+/ (fY(s, Y, Z0) = f2(s, Y2, Z2)) ds—i—/ (9(s, Y, Z)) —g(s, Y2, Z22)) dB —/ ZdW.
t t t
Applying Tanaka-Ito’s formula and taking expectation, we get

| () [ B [ 150y |21 a5 <8[©° 28 [ (1) (P08 2 - 32, 22) s

T
”E/t Loy 1905 Y, Z21) = (5, Y2, 22| dss,
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Since ftT( 8) (g9(s, Y}, Z1) — g(s, Y2 ZZ))dES and ftT (K)JFZSdI/Vs are a uniformly integ-

)8 ) T8

rable martingale, we get

E{‘(E)Jr‘er/tTl{Kw} HZstds} g?E/tT (T (P (YL 20) — f2(5, Y2 22) ds

T
-I—E/t 1{Y5>0}Hg s, Y 2N —g(s, Y2, 72 H ds,

since (€1 — €2)" = 0. We obtain, by hypothesis (H.1), and Young’s inequality the following

inequality

I:2E/t (V)" (fi(s, Y Z0) — f2(s, Y2, Z22)) ds
= ZE/t [(}75)—’— (fl(sanlvzg) - f1(57}/s27Z§)) + (st)_'— (f1(57§/327Zs2) - f2(57}/s27252))i| ds

: :Il+]27

where

=28 [ (V)" (£ 20 - Y2 20 ds.

T
L = 2E/ (Vo)™ (f'(5,Y2,22) = f2(s,Y2, 22)) ds < 0.
t
From (H.1) and Young’s inequality, it follows that

I <L <2CE[" (V)" (Vi Ys|+ |21 — Zs|]) ds,

<(2c+&)Bj]

Y)*)st +(1-a)E [’ L{,50) |V,|* ds

again we applying the assumption (H.1) for g, we get
o+ |2 T2
B|(v) | <cm [ |7 as
t

L2
By Gronwall’s inequality, it follows that E U (Yt)’L‘ } =0, finally, we have ;' < Y,. m
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1.3 Backward Doubly SDEs with continuous coefficient.

In this section we are interested in weakening the conditions on f. We assume that f

and ¢ satisfy the following assumptions:
(CL.1)Let f: Ox [0, T]xRxRI— R, g: Qx[0,T] x RxR? — R be measurable functions
such that, for every (y, z) € R x R?, f(.,y,2) € M?(0,T,R) and g(.,y,2) € M?(0,T,R)
(C1.2) There exists C > 0 s.t. for all (t,w,y,2z) € [0,T] x 2 x R x R4, (t,w,y',z') €

[0,7] x Q x R x R?

[f(tw,y,2)] < C(L+ [yl +[2]),

|g(t7w7y7z) _g(t7w7y,7’z,)‘2 < C!y—y,|2—|—a”z—le2.
(C1.3) For fixed w and ¢, f(t,w,-,-) is continuous.

Theorem 1.3 [see Theorem 4.1 in [27]] Assume that (C1.1) — (C1.3) holds. Then Eq
(ES19) admits a solution (Y, Z) € D*(R). Moreover there is a minimal solution (Y*,Z*)
of BDSDE (Eé’f’g) in the sense that for any other solution (Y, Z) of Eq. (Eg’f’g), we have
Y*<Y.

We still assume that [ = d = 1. Before giving the proof of Theorem 1.3, we define, as the
classical approximation can be proved by adapting the proof given in J. J. Alibert and K.

Bahlali [2], the sequence f, (t,w,y, z) associated to f,

fo (t,w,y,2) = inf [f (t,w,y/,z’)+n(}y—y/‘+\z—z'lﬂ

(y/,z’)GRXRd

then for n > K, f,, is jointly measurable and uniformly linear growth in y; 2 with constant
K.

Given ¢ € L2, by Theorem 1.1, there exist two pair of processes (Y, Z") and (U.,V)),
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which are the solutions to the following BDSDESs, respectively,

T T o /T
Y =¢ +/ fu(s, Y Z0)ds +/ g(s, Y], Zs")dBS/ Z0dWs, 0 <t <T,
t ¢ t

T T — T
z@:g+/ F@U@KW&+/‘A&U&%MBS—/)KM%,Ogtgﬂ
t t t

where F(s,w,U, V)= K (1+|U|+ |V]|). From Theorem 1.2 and lemma 1 of [I5], we get
for all, t and Vn < m,

Y <Y< U, (1.4)

Lemma 1.2 [see Lemma 4.2 in [27]] Assume that (C'1.1)—(C1.3) is in force. Then there

exists a constant A > 0 depending only on K, C, a, & and T such that:
Y2 <A N2y <4, (Ullge <A V][ <A

Proof. First of all, we prove that |U|| and ||V]| are all bounded. Clearly, from (1.4) there

exist a constant B depending only on K, C, «, T and &, such that
T T
(B [ 2Py < B, (B [ UL < B Ve < B
0 0
Applying It6’s formula to |U,|?, we have

T T
L2 = | + 2 / UF(s, Uy, V)ds + 2 / Usg(s, Us, V.)dB,
t

t

T T T
—2/ @uwn+/‘m&mngmw—/|mmm (1.5)
t t t

From (C1.2), for all @ < o’ < 1, there exists a constant C'(a’) > 0 such that

l9(t,u,0)* < Cla)(|ul? + [g(t, 0,0)*) + o' v]” (1.6)
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From (1.5) and (1.6), it follows that

T T T
O + [ [Vids < |67 + 2 [ I+ 0+ Vs +2 [ Uigls, U VB,
t t

t
T T T
—2/ USVSdWs—l—C’(aI)/ (\Us]2+\g(t,0,0)\2)d$+a// VARE
t

1—|—a

t t
<!$\2+K2(T—t)+0 / lg(t,0,0)|*ds + \V|ds

2K2
+ (142K +C(a) / \U,|?ds

T T
+2/ Usg(s,Us,VS)dBS—Q/ UV, dW,.
t t

Taking expectation, we get by Young’s inequality,

!

11—« T ’ T
2+ 25 [ IViPds < BOSP+ KT+ Cla) [ latt0,0)Pd

, 2K? r
+(1+2K +C(a) + - a,)E/ \U,|*ds
T ' T
+2F ( sup | Usg(s, US,VS)dBS|> +2F ( sup | USVSdWSD )

0<t<T t 0<t<T t

(1.7)

By B-D-G’s inequality, we deduce

1
2

T T
E ( sup | Usg(s,Us,Vs)stl) < C,E </ U[* lg(s, US,VS)!QdS) ,
0

0<t<T Ji
1 . 1
(sup |Us|2) ( / |g<s,Us,v;>|2ds) |

o<t<T 0

< 202C(a (/ U2 + |g(s,0,0) ds)

N

<C,E

1
+§HUHsz+QCf@ I4lyyer (1.8)
In the same, way, we have
T 1 )
E(sup | USVSdWS|> §§HUH82+201'D V] g2 - (1.9)
0<t<T t

10
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From Egs. (1.7), (1.8) and (1.9), it follows that

!

1 - T ’ T
(o —— / |Vsl|*ds < E {\§|2+K2T+C(a ) (1 +4C]f)/ |g(t,0,0)|2ds]
t t
+2 (142K +C(a) (144C2) +4C; <1+a) ) A
—
_ 1-— ozAz
2 7

that is ||U]| s < 4, V|| e < A. From Eq. (1.4), it easily follows that ||Y"||s. < A.

Next, we prove that boundedness of ||Z"|| ... Applying It6’s formula to |Y;*|* and taking

expectation, it follows that

T T T
E[Y/+E / 2 ds < B|¢[* + 2B / Y7 fo(s, Y7, Z0)ds + B / lg(s, Y, 20| ds.
t t

t

From the well-known Young’s inequality, it follows that

B (1P + ) 1200 ds) < Bl +B () (0 e+ 52 [0 1220 ds)
T ( J; (€@ llg(s,0,0,0)|* +a'|Z21%) ds) + K (T = 1).

where C' = 1+ 2K + C(a) + 12_—[;, , and we know 0 < o’ < 1 from Eq. (1.5). Then

127 < A2,

1—

where A%: = 2 (C”Tfp + KT+ B¢+ C(a)E (fOT ||g(5,0,0,0)|\2ds)> . The prove is

complete. m

Lemma 1.3 [see Lemma 4.3 in [27]] Assume that (C1.1) — (C1.3) is in force. Then the
sequence (Y™, Z™) converges a.s. in S*(0,T,R) x M?(0,T,R).

Proof. Let ny > K. Since Y" is increasing and bounded in 8? (0,7, R) we deduce from the

dominated convergence theorem that Y™ converges in S (0, T, R). We shall denote by Y the

11
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limit of Y. Applying It6’s formula to [Y;* — Y;|?, we get for n, m > ng,

T T
B (I v [ 120 2 Pas) <28 00 - (Y20 - fuls Y2 d
t t

T
1E / g(s, Y, Z1) — g(s, Y™, Zm)| 2 ds.
t

we deduce that

T
B (mn v [z - Z;”Fds)
' 1
2

S 2 (E/tT (}/sn - }/sm>2 d5)2 (E/tT (fn(s,}/sn7Z;L> - fm(sv}/sm7Z;n))2 dS)

T
+ E/ (CIY" =YY" +a|Z8 = Z?) ds.
t

Since f, and f,, are uniformly linear growth and (Y™, Z") is bounded, similarly to Lemma

1.2, there exists a constant K > 0 depending only on K, C, T and &, such that
T T
B (I - vt [ 1ze-zfas) <m [ (&I - v alz - 20 as
t t

So

] ]
KT
B[ 120 - Zrds < E(sup m"—m),

s€[0,T7]
thus Z" is a Cauchy sequence in M? (0, T, R), from which the result follows. m

Proof. of Theorem 1.3 [see pages 107 and 108 in [27]]. =

12



Chapter 2

Backward Doubly SDEs and SPDEs

with superlinear growth generators.

n this Chapter we present a multidimensional backward doubly stochastic differen-
Itial equations (BDSDEs) with a superlinear growth generator and a square integrable
terminal datum. As application, we establish the existence and uniqueness of probabilistic
solutions to some semilinear stochastic partial differential equations (SPDEs) with superlin-

ear growth gernerator. By probabilistic solution, we mean a solution which is representable

throughout a BDSDEs.

Definition 2.1 A solution of equation (Eg’f’g) is a couple (Y, Z) which belongs to the space
S% ([0, T],R*) x M2 (0,T,R*?) and satisfies (ES9).

We consider the following assumptions:
(H2.1) f is continuous in (y, 2) for a.e. (t,w).

(H2.2) There exist K >0, M >0, and n € L' (Q; L*([0,7])) such that,

<y7 f(tawaya Z)> S M + M‘y|2 + K’yHZl P — a.s., a.e.t € [07T]

13
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(H2.3) g is continuous in (., y, z) and there exist L > 0,0 < A < 1,0 < oy < 1, and

m, 0 <t <T verify E’fOT |ng|&llds < oo such that,
(i) l9(t,y. 2) — g(t.y', 2 )P < Lly —y'|* — Az — 2/~
(i4) l9(ty, 2)| <+ Lly[* + Al2|™

(H2.4) There exist M; >0, 0<a <2, o >1 and 7€ L¥([0,T] x Q) such that:

[f(t,w,y,2)] < 7+ Ma(Jy|* + |2[*).

(H2.5) There exists v € L2 (Q; L2([0,T])), a real valued sequence (Ay)y>; and constants
Ms > 1, r >0 such that:

(1)) VN >1, 1< Ay <N".

(17) limpy_oo An = 00.

(7i1) For every N € N* and every y, ¢ z, 2’ such that |y|, |¢/|, |z|, |2/| < N, we have

(=o', f(ty, 2)—f (Y, 2 ) L ppswyeny < Maly—y'|*log An+Mo|y—y/||z2—2'|\/log AN+ Mo AN

T
For n € N, we define p,(f) := E/ sup |f(s,y,2)|ds.
0

lyl,|z[<n

Let us give some remarks about the previous assumptions.

1. In assumptions (H2.2) and (H2.3), the conditions v < ; and A < 1 can be replaced

by the condition : 2y + A < 1.

2. The parameter a; appearing in assumption (H2.3) has a role in the construction of
solution. More precisely, it allows to identify the backward stochastic integral driven

by B.

3. Assumption (H2.2) shows expresses the fact that the generator f can have a superlinear

growth on y and z.

14
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4. The term 1y, )<y} appearing in assumption (H2.5) allows to cover generators with

stochastic Lipschitz condition.

2.1 Existence and uniqueness of solutions.

Theorem 2.1 Let £ be a square integrable random variable. Assume that (H2.1)-(H2.5)

are satisfied. Then equation (E/9%) has a unique solution.

Proof. See Bahlai et all [7]. =

Let us recall the following approximation lemma which will be useful in the sequel.

Lemma 2.1 Let f satisfy (H2.1)- (H2.5). Then there exists a sequence (f,) such that,
(a) For each n, f, is bounded and globally Lipschitz in (y, z) a.e. t and P-a.s.w.

There exists M' > 0, such that:

(b) sup, |fu(t,w,y,2)| <7+ M +M(|y|*+|2|%), for ae. (t,w).

(c) Sup <y, fult,w,y,2) > < n+ M + My]* + K|yl|lz|, for ae. (t,w).

(d) For every N, pn(fo — f) — 0 as n — oo.

Proof. Let p, : R x R*" — R, be a sequence of smooth functions with compact support
which approximate the Dirac measure at 0 and which satisfy [ p,(u)du = 1. Let ¢, : R? —
R, be a sequence of smooth functions such that 0 < ¢, < 1, ¢,(u) = 1 for |u| < n and
@n(u) = 0 for |u| > n + 1. Likewise we define the sequence v, from R¥" to R,. We put,
fon(t,y,2) = Lg<gy [ [t (y, 2) — u)pg(uw)dup,(y)n(z). For n € N*, let g(n) be an integer
such that ¢(n) > n +n®. It is not difficult to see that the sequence f,, := fyn)n satisfy all
the assertions (a)-(d).

2.2 Stability of solutions.

Let (f,) be a sequence of processes which are F;-progressively measurable for each n.

Let (&,) be a sequence of random variables which are Fr-measurable for each n and such that

15
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E(|&]%) < 0o. We will assume that for each n, the BDSDE (E7/»9%) corresponding to the
data (f,,g,&,) has a (not necessarily unique) solution. Each solution to equation (E/m9:4)
will be denoted by (Y/*, Z»). Let (Y, Z) be the unique solution of the BDSDE E:9¢). We

also assume that :

(H2.6) Forevery N, py(fn — f) — 0 as n — oo.
(H2.7) E(]& —€]*) — 0asn — oo .
(H2.8) There exist K > 0, M > 0 and n € L' (€; L'([0,T])) such that,

Sup<y7 fn<t7w7y7 Z)> < Me + *]\4|y|2 + K‘yHZ| P — a.s., a.e.t € [OvT]
(H2.9) There exist M; > 0,0 < a <2, o/ >1and 7 € L¥([0,T] x Q) such that:
sup [ fo(t, w, 4, 2)| < 7 + Ma(Jyl® + [2]%).

Theorem 2.2 Let f, g and & be as in Theorem 2.1. Assume that (H2.1)-(H2.9) are

satisfied. Then, for all ¢ < 2 we have

T
lim (]E sup |V —Yt\q—i-E/ | Z 1 —Zs|qd3) =0.
0

n—+oo 0<t<T

Proof. See Bahlai et all [7]. =

2.3 Application to Sobolev solutions of SPDESs

Let o and b be two functions which satisfy

[ bec? (RRY) and o e C} (RY,RFT),

and

1 0? 0 , \
L= §Z(aij)m + ;bia_xi’ with (ai;) == oo™

\ 4.J

16
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Let 0 < ¢ < 2 be fixed. Let H be the set of random fields u(t,z),0 <t < T,z € R* such

that, for every (¢, ), u(t,z) is F{%-measurable and

Jully = B [ Qutra) + o) ) e ] < o

The couple (H, ||.||#) is a Banach space.

The SPDE under consideration is,

(’]D(ﬁg)) U(S,l‘) - h(x) - /S {Eu(n .I‘) —|—f(7“,x,u(7‘, x)ao'*VU(T, [E)}dfr

T
—l—/ g (ryz,u(r,z),c*Vu(r, x)) d%r, t<s<T,

Definition 2.2 We say that u is a Sobolev solution to SPDE (PY9), if u € H and for any
p € Co([0,T] x RY),

/Rk/ f(ryz,u(r,x), 0" Vu(r, z))e (ra:)drd:c—i—/Rk/ (r,z,u(r,z),c*Vu(r, z))p (ra:)dB dr
/Rk/ u(r, ) )(7« x)drdx —|—/ u(r, z)p(r, )dx —/ h(x)p(T, z)dx (2.1)

Rk
——//Uurxagprxdrdx—//udw [(b— A)g](r,z)drdz,
RF R¥

. . . Oa;;
where A is a d-vector whose coordinates are defined by A; = 5 ZZ | Far

This subsection is devoted to the study of the existence and uniqueness of Sobolev
solutions to SPDE (P(9)) by using a decoupled system of SDE-BDSDEs. To this end, we

will connect the SPDE (P9 with the following system of SDE-BDSDE.

wer = [y i o (x aw, 22
t t

¢ tx g t t t g ¢ ¢ t o) ’ t
Y;I =h (Xf ) _'_/ f (r7 XrJ?Y;’x’ er) dr +/ 9 (7‘, XTJI’Y;“@’ ZT@) dB, — / ZT’IdWT'

(2.3)

17
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Our goal consists to establish the existence and uniqueness of solutions u to SPDE (P(:9))

such that u(t, X5*) =Y and Vu(s, X0*) = Zb*.

S

Assumptions.

We assume that there exist § > 0 such that

(H2.10) % belongs to L2(R¥, e~%ldz; RY), that is [u, |h (2)|* e *1ldz < oc.
(H2.11) f(t,x,.,.) is continuous for a.e. (t,z)

(H2.12) There exist M > 0, K > 0 and n € L'([0, T] x R¥, e~%*ldtdz; R,) such that,

(0, f(t 2,9, 2)) < nit,x) + My + Klyllz|  P-as.aet € [0,T).

T
(H2.13) / / g (t,2,0,0)" e°ldtde < 0o and there existe L > 0,0 <A <1 0<a; <
Rk Jo

1, and 5 € La1 ([0, T] x R¥, e9#ldtdz; R, ), such that,
(Z) ‘g (taxaya’z) —4g (t7x7y/7 Z/)|2 S L |y - y/|2 - A |Z — Z,|2 .

(44) lg(t, 2y, 2)] <n'(t,x) + L|y|** + Az|™

(H2.14) There exists M; > 0,0 < a < 2, ¢/ > 1 and 7 € L¥([0,7] x R¥, e~ 7ldtdz; R,)
such that

|f(tw,y, 2)] <t x) + My ([yl* + |2]7).

(H2.15) There exist My > 0 such that, for every N € N,V y, v/, z, 2/ such that |y|, [¢/], |2], |2/ <

N, we have

1
(y—v, ft,x,y,2) — ft,z,y, 7)) < Mylog N (N + |y—y’2) + v/ Mylog Ny — 3/ ||z — 2/|.

The proof of the following lemma can be found for instance in [I3], 14] and in [§].

18
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Lemma 2.2 There exist a constant Ksp > 1, such that for any t < s < T and ® €

L' (Q x R¥, Pee"ldx)

K1 [/Rk ycb(x)ye-“da;] <E [/Rk @ (X107 e“”xldz] < Ksr {/Rk |<I>(x)|e_5|“”d4 .

Moreover for any ¥ € L' (2 x [0, T] x R* x Pdt ® e~°1*ldz)

T
Ksr [/ / (s,z)|ds e 5|x|dx} <E [/ / | (s, X07)| ds e‘sx|dx} :
RE J1 t
<K5T{// 3x|dse‘5|xda:].
Rk Jt

Theorem 2.3 Under assumptions (H2.10)-(H2.15), the SPDE (PY9) admits a unique

Sobolev solution u such that for every t € [0, T
u(s, X)) =Y and o*Vu(s, X0") = ZL* for a.e. (s,w,x) in [t, T] x Q x R

where {(Xb*, Yo, Zb7) t < s < T} is the unique solution of the SDE-BDSDE (2.2)-(2.3).
The following lemma can be proved by arguing as in Theorem 2.1 and Theorem 2.2.

Lemma 2.3 Assume (H2.10)-(H2.15) be satisfied. Let (X"*) be the unique solution of
SDE (2.2) and (Y, Z"") be the unique solution of BDSDE (2.9). Let f™ be a sequence of

functions we construct as in Lemma 2.1. For a fized n € N*, let (Y™"*, Z™'*) be the unique

solution of the BDSDE

t,
Y'Sn,t T X I / fn T, Xﬁ,x7 }/Tn,t,x, Z;L,t,z)dr

T
+/ g( ’Xﬁaz’ n( Xtﬂc Ynta: Zntx)dBT_/ Zf’t’xdWT.
s t

Then,
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(i) there exists K(T,t,x) € L*(e~"ldx) such that:

T T
supE |sup | Y522 + sup |YE*|? + 7752 ds + 7m0 2ds| < K(T,t,
p plY, plY, i . b, 1),

n s<T s<T s s

(i) for every q < 2,

T
lirf (E sup |Y/"h* — Y79 4 E/ | Z0h — Zﬁ’x|qu> = 0.
n—-00 0

0<s<T

Proof of Theorem 2.3. The uniqueness of solutions follows from the uniqueness of BDSDE
(2.3). We shall prove the existence, for detail of the demonstration see Bahlai et all [7]. The

prove is from the following path:

Step 1. Approzimation of the problem (PW9)).

Step 2. Convergence of the problem (PY™9)).

Step 3. u (s, X)) =Y and o*Vu(s, XL*) = 71",

Step 4. u is a Sobolev solution to the problem (PY9)).
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Chapter 3

Backward Doubly SDEs and SPDEs
with weak Monotonicity and General

Growth Generators.

In this Chapter we deal with multidimensional backward doubly stochastic differential
equations (BDSDEs) with a weak monotonicity and general growth generators and

a square integrable terminal datum. We show the existence and uniqueness of solutions.

As application, we establish the existence and uniqueness of probabilistic solutions to some

semilinear stochastic partial differential equations (SPDEs) with a weak monotonicity and

general growth generators. By probabilistic solution, we mean a solution which is represent-

able throughout a BDSDESs.
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Growth Generators.

Assumptions.

We consider the following assumptions:
(H3.1) dP x dt-a.e., z € R**4 y — f(w,t,y,2) is continuous.

(H3.2) f satisfies the weak monotonicity condition in y, i.e., there exist a nondecreasing and
concave function k(-) : RT — RT with k (u) > 0foru > 0, k(0) = 0and [, k™' (u)du = +o0

such that dP x dt-a.e.,V (y1, 1) € R?*, 2 € Rk*4,
2
<y1 - y27f (taUJ,?Jl,Z) - f(taway2>z>> <k <‘yl - y2} > :

(H3.3) i) f is lipschitz in z, uniformly with respect to (w,t,y) i.e., there exists a constant

¢ > 0 such that dP x dt-a.e.,
|f(w,t,y,z) — f(w,t,y,2") ‘ < c‘z - z".
ii) There exists a constant ¢ > 0 and a constant 0 < a < i such that dP x dt-a.e.,
|g(w,t,y,z) -9 (w,t,y/,z’> ‘ < c‘y —y/‘ +a‘z - z".
(H3.4) f has a general growth with respect to y, i.e., dP x dt-a.e., Vy € R*
|f(t,w,y,0) | < |f(t,w,0,0)|+¢(|y]),

where ¢ : Rt — R" is increasing continuous function.

(H3.5)
f(t,w,0,0) € M?(0,T,RF),
g (t,w,0,0) € M2 (0,7, RF).
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3.1 The main results.

Theorem 3.1 Let{ € L2, assume that (H3.1)—-(HS3.5) are satisfied. Then equation (E/9<)

has a unique solution.

3.1.1 Estimate for the solutions of BDSDE (Ef’fvg).

We will use the following assumption on f and g.

(H3.6) dP x dt-a.e., ¥(y,z) € RF x Rk*d

(o f (w,y2)) <0 (Jyl*) + Alyllz] + [ylow

where ) is a positive constante, o; is a positive and (F;) progressively measurable processus

with £ fOT }at|2dt < oo and (+) is a nondecreasing concave function from R* to itself with
$(0) = 0.

(H3-7) dP x dt-a.e., V(y7 z) c R* x Rkxd
g (tw2) [P < Al + 2]+

with A is a positive constant such that v < }L and 7, is a positive and (F;) progressively

measurable processes with F fOT nedt < oo.

Proposition 3.1 Let f and g satisfy (H3.6) and (H3.7), let (Y;, Zi)icjo,r) be a solution to
the BDSDE with parameters (§,T, f,g). Then for each § > 0 there exists a constants K > 0

depending only on 6, A and v such that
(i) for each 0 <t <T:

T T 1 T
E( sup |Y:|°) +E (/ ]Zs\zds) < (E\§]2+2/ ¥ (B|Y;[?) ds + —]E/ EARE
t t t

0<s<T )

—l—E/tTnsds)Kexp (K(T —1)).

(i) Moreover for each 0 > 0 there exists a constants K > 0 and depending only on 6, \ and
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v such that for 0 <r <t <T:

T
E( > +E (/ | Z,|2ds J—"T)
t<u<T t

< (E(Ifl2lﬁ) w2 [T @ E)) s

1 T T
+ 5B (/ |o,|* ds fr) + 2 (/ nsds
t t

Proof. For the first part, applying It6’s formula to |Y;|? yields that, for each 0 < ¢ < T, we

]—"T) )& exp (KT).

have

T T T
ek +/ |Zs[Pds = |€° + 2/ (Y, f(s,Ys, Z5))ds + 2/ (Ya,g(s,Y, Z,))dB,
t t t

T T
9 / (Y, Z:)dW, + / 195, Ya, Z,)|ds,
t t

taking expectation, we get

T T T
E|Yt|2+E/ |Z,|* ds =E|§|2+2E/ (Y;,f(saY;,Zs)>d8+2E/ (Ye g (5. Ys, Z))dB,
t t t

T T
—2E/ <YS,ZS>dWS+E/ \g(s, Yz, Z,)|? ds.
t t
Now, by (H3.6) and Young’s inequality, we have

T
2 [0 ¥es Zos <2 [ (6OV) + XYLl 2]+ ¥ ) s
' T
/ ¢ (Y ds+(2)\2+6)/ Vi ds
t

+/T |2 /T Zs|2 )
t 5 t 2 ’

Then by (H3.7), we have

1 T T T
E|Yt|2+<——v)E/ \ZS|2ds§E|§|2+2E/ ¢(|YS|2)ds+(2)\2+/\+5)E/ Y, |? ds

2 t t t
1 7 T
+—E/ |05|2ds+E/ nNsds.
6 t t
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Since f;(}@,ZS>dWS and f;(n,g(sjn,Zs))st are a uniformly integrable martingale. For

each 0 <t < T, we have the following inequality

<%—7>E/tT]ZS|2d8 <E(A), (3.1)

where,

) T ) T ) 1 T ) T
A, = [€] +2/ (Y] )ds+(2/\2+)\+6)/ Y| ds+g/ o ds+/ Nsds.
t t

t t

Furthermore, it follows from the Burkholder-Davis-Gundy and Young’s inequality, we have

ff<Yts> Zs>dWs > S QCpE (SuptgugT |Yu’ LT ’Z8‘2d8) )

2072 T
< %E (SuptgugT ’Yu‘2) + 1+2va (ft ’Zs‘2d5> ,

2K (SUPtgugT

< 00,
and

T S 1 2 2 T 2
216 (SuptSuST fu <}/;79 (57}/37 ZS)>dBS ) S EE (SuptguST |Yu| ) + 6C'pIE’f() |g (87}/;97 Zs)| dS,

< (; +2eC) B (supreyer Yal?) + VeCLB foT |Z|* ds + cCyE foT ns|” ds,

Q.

\

(3.2)
By assumptions (H3.6), (H3.7) and using (3.1) — (3.2), we have for C' > 0 the following
inequality,

T
E ( sup \Yf) +]E/ 1Z,|>ds < CE (A,),
t

0<s<T
Gronwall’s Lemma, Fubini’s theorem and Jensen’s inequality, in view of the concavity con-

dition of ¢ (), then there exists a constant K > 0 such that ¢ € [0, T]

T T K T
E ( sup |YS|2> +E/ | Z,?ds < (KE\§|2+2K/ Y(B|Ys|?)ds + FE/ |os|?ds
t t t

0<s<T

T
+ KE/ 77st> exp (K (T —1t)).
t
For the second part, we use the conditional expectation with respect to F, instead of using the
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mathematical expectation. Using the Burkholder-Davis-Gundy, 2ab < "’—: + €b? inequalities

and assumption (H3.7), we have

T
) <CE | suwp |Yu|\/ / l9(s,Ys, Z,) P ds| F, |
t<u<T t

fr> ; (3.3)
Cz T 02 T
2 f,.> + ”TPE </ ARE fT) + ETPE </ Nsds ]—}),
t t

T
/ (Ye, (s, Vs, Z.))d B,

E ( sup

t<u<T
1 2 Cy g 2
—E|( sup |V || F |+ —=E / lg(s, Yy, Zs)|" ds
26 t<u<T 2 t

\C?
< (z+ )5
2¢ 2 t<u<T

< Q.

IN

B () (Y, Zo)aw,

Applying It6’s formula to |Y;|?, V¢ € [0,T], and we using (H3.6), (H3.7), (3.3),
) =0 and

T 2
) < 20,,13( — (/ |ZS|2ds) ]—})
t<u<T t
2 T
g—E( >+ -CIE </ 1 Z,|? ds
€ t<u<T t

T
2E( s [ (v za,

7))

we have for any 0 <r <t < T

T
E< )+E(/ | Z,)? ds Fr)
t<u<T t

3
<E((A)|F) + (— + 6)\05) E ( 2 fr>
€ t<u<T

T
+(§C§+%+(1+EC§)”}/)E</ Z,|? ds| F, >+EC2 </ Nsds
t t

Since 0 < v < ;11 it is enough to take C’z L and ¢ 4’\; 9 we get

7).

3049 r
E< sup |Yu]2+/ \Z,|? ds )< i E( sup ]Yu\2+/ 1 Z,|? ds J-})
t<u<T t 4N +9 t<u<T t

E((At)|fr)+4)\?i’_9 (/tdeS fr>,
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. 3A+9 :
since 0 < 3555 < 1, we obtain

T
E( sup |Yu|2+/ |Z,|* ds
t

t<u<T
< AN+9

")

(Baoz) + g8 ( [ nas|z)).

from which together with Gronwall’s Lemma, Fubini’s theorem and Jensen’s inequality, in

view of the concavity condition of 1 () then there exists a constants K > 0 such that for

0<r<tT

T
]—"T) +E (/ | Z,|? ds ]—"T)
t

< (80617 +2 [ v EWPIE) s+ 58 ([ lndas

T
+2E (/ Nsds
t

Hence the required result. m

E< sup |Yu]2

t<u<T

%)

]—"T) )& exp (KT)

3.1.2 Existence and uniqueness result.

Now we can give proof of Theorem 3.1, let us start with studying the uniqueness part.

Proof of uniqueness.

Proof. Suppose that f and g satisfies the assumption (H3.1) — (H3.5). Let (Y}, Z})
and (Y2, Z2) be two solutions of the BDSDE with parameters (¢, T, f,g). Then (Y, Z;) =
(V' = Y2 Z} — Z?) is a solution to the following BDSDE

T T T
Yt:/ f(S,YS,Zs)der/ g(s,Ys,ZS)dBS—/ Zdw,,  telo,T],
t t t
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where for each (Y3, Z;) € RF x R¥*4

f (.Y Z))
g(taEaZt) :g(taﬁ—i_Y?;Zt—i_Zf) _g(taY;aZf)

FOY+ Y2 2+ 27) — [ (6Y2 2D,

It follows from (H3.2) and (H3.3) (i) that dP x dt — a.e.,

Y, f(t.Y,2))y=(Y,f(t,Y+Y* Z+ 2% — f(t,Y* Z?))

<k([7]") +e|7]]2],

then the assumption (H3.6) is satisfied for the generator f (s, Y., ZS) of BDSDE with v (u) =
k(u), A=c¢, op = 0.
It follows from (H3.3) (ii) that dP x dt — a.e.,

5 (t,Y,2)]* <22 |V | + 2% | 2],

then the assumption (H3.7) is satisfied for the generator g (s, Y., ZS) of BDSDE with v = 2a?
and n; = 0.
Thus, it follow from Proposition 3.1 (i) that there exists a constant K > 0 depending only

on 0, A and v such that, for each 0 <t <T', we have

T T
E ( sup ‘YSF) +E (/ ‘ZS}st) < C/ <k: <]E sup }Yuf)) ds,
0<s<T t t s<u<T

where C' = 2K exp (KT) in view of [, k™' (u)du = oo, Bihari’s inequality yields that,

T
E(sup v+ [ |Zs\2ds> —0,
0<s<T t

The proof of the uniqueness part of Theorem 3.1 is then complete. ®

vVt € (0,7
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Proof of Existence.

Let ¢ be a function of C'*° (Rk, ]R*) with the closed unit as compact support, and satisfies
Jgr @ (v) dv = 1. For each n > 1 and each (w,t,Y) € Q x [0, 7] x R¥, we set

fo (6, Y2, Vi) = 0 f (8,5, Vi) * ¢ (nY7)

=nF ; (v, V) o (n(Y; —v))dv. (3.4)

Then f, is an (F;)-progressively measurable process for each Y € R¥ and

fn(t,Yt,Vt)Z/Rk <th >¢
[ et w) o) 9
{v:lo]<1}

Let us turn to the existence part. The proof will be split into three lemmas and after the

proof of Theorem 3.1.

Lemma 3.1 Let f and g satisfies the hypothesis (H3.1)-(H3.5), V € M? (O,T, ]R’”d) and

£el? (fT, ]Rk) , if there exists a positive constant B such that

dP—a.s.,|§|§5 ddet—a.e.,}g(t,w,0,0H§6 {f(t,w,0,0)}Sﬁ and |Vt}§ﬁ.
(3.6)

Then there exists a unique solution to the following BDSDE:
T T - T
Y, :§+/ f(s,Ys,Vs)der/ g(s,Ys, Vi) dB —/ ZdWs te€|0,T]. (3.7)
t t t
Proof. Tt follows from (H3.3) (i), (H3.4) and (3.6) that, for each Y € R* dP x dt — a.e.,
|f(s,Ys, Vo] B+ B+ 9 (Vi) (3.8)

Thus, checked from (3.4) that for each n > 1, f,,(¢,Y;, V) is locally lipschitz in Y uniformly

with respect to (t,w). Furthermore, for each n > 1 and Y € R*, it follows from (3.5) and
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(3.8) that dP x dt — a.e.,

| £t Y3, V)| = | A %,Vtﬁb(v) do,

{vilol<1}

S(Cﬁ+5+9@(lYt|+1))/ b0)dv=chtB+e(Vi+1). (39)

{v:|v|<1}

Now, for some large enough integer v > 0 which will be chosen later, let p, be a smooth
function such that 0 < p, < 1, p,(Y;) = 1 for |Y;| < w and p,(Y;) = 0 as soon as |Y;| > u+ 1.
Then for each n > 1, the function p, (Y;) fn (¢,Y:, V) is globally lipschitz in Y, uniformly
with respect to (t,w).

Thus, from Pardoux-Peng [24], we know that for each n > 1, the following BDSDE has a

unique solution (Y}, Z}"),co 7 :

T T — T
Yt'"=€+/ pu(YS")fn(s,Y;",VS)ds—i—/ g(syﬂna%)st—/ ZgdWs, 0<t<T.
t t t

(3.10)
It follows from (H3.2) and (3.5) that for each n > 1 and (Y;!,Y?) € R?* dP x dt — a.e.,

V=Y (V) £ Y2V < [ k(= YP) oo =k (|17 - vP).
{v:|v[<1}
(3.11)
For each n > 1 and Y; € R*, combing (3.9) and (3.11) yields that dP x dt — a.e.,

(Y, pu (Y1) fr (8, Y2, V1)) = pu (Vo) (Y, f (8,2, VA)),

<k (V") + Vil (eB+ B+ ¢ (1)),

Then the assumption (H3.6) is satisfied for the generator p, (Y;") f. (¢,Y;",V;) of BDSDE
(3.10) with ¢ (u) =k (u), A =0,0, =cB+ 5+ p(1).
It follows from (H3.3) (ii) that dP x dt — a.e.,

g (£, Y, VPP <209 (8, Y, Vi) — g (£,0,0)[* +2[g (¢,0,0) ],

<A Y+ da? Vi + 219 (£,0,0).
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Then the assumption (H3.7) is satisfied for the generator ¢ (¢,Y;",V;) of BDSDE (3.10) with
A =4c% v =4a? and n; = 2|g (t,w,0,0) |
Thus, it follow from Proposition 3.1 (ii) with § = 1 that there exists a constant K > 0

depending only on d, A and v such that, for each 0 < r <t < T, we have

)

< <E(|£|2|]-"r) +2/t k(E (Y| F))ds+ (cB+ B+ (1) T

T
E (Y| 7)) +E (/ \Z" ds
t

T
wan ([ lotsw0.00%ds
t

E) )& exp (RT)
Note § = K exp (I_(T) and using the (3.6), we get

i ﬂ)

T
<0B* + 29‘/ k(B ([Y?F))ds+0(cB+ B+ ¢ (1) T + 408°T.
t

T
B(v|7) +B ([ 1zRas
t

Furthermore, since k (-) is a nondecreasing and concave function with & (0) = 0 it increases
at most linearly, i.e., there exists A > 0 such that k (z) < A(z + 1) for each x > 0, yields

that

T
E (Y| 7) +E</ 127 ds .7-}) <OBP(AT +1)+20A+0(cB+ B+ (1)*T

T
+ 29A/ E(|Y2]*| F) ds.
t

By Gronwall’s lemma and with r = ¢, yields that

T
peran ([ 1) <o
t

where u? = (63% (4T + 1) +2A0+ 0 (cB+ B+ ¢ (1)) T) exp (240T). By the previous in-
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equality, yields that for each n > 1 and V¢t € [0, 7]

VP <

B(J) 12 ds) <

(3.12)

By (3.10) and (3.12), we can conclude that (Y;", Z}"),c( 7y solves the following BDSDE:
T T . T
:§+/ Fuls, Y V) ds+/ g(s,Y",V,)dB, —/ ZndW,, 0<t<T. (3.13)
t t t

In the sequel, we shall show that ((Y;”, Zt")te[0 T]) is Cauchy sequence in the space
’ neN*

8% (0,T,R*) x M? (0, T, RF*7) .

In fact, for each n > 1 and m > 1, let AY,"" =Y = Y™ and AZ,"" = Z' — Z}". Then for

each 0 <t<T

T
AY;"™ = / A (s, AY™ V) ds+/ Ag™™ (s ,A}f:vm,m)st—/ AZ"M AW,
t
(3.14)

where

Afrm (s, AY™ Vo) = fr (s, AY™ + Y V) = fin (5, Y, V5)
Ag™™ (s, AY™ Vi) = g (s, AV + Y V) — g (s, Y™, Vi) .

It follows from (3.11) that for each AY,"™ € R¥, dP x dt — a.e.,
(A, AP AV V) < K (IAYPE) + AV L (6 Y V) = f (Y V)

Then the assumption (H3.6) is satisfied for the generator Af™™ (¢, AY;"™ V;) of BDSDE
(3.14) with ¢ (u) =k (u), A=0, oy = |fu (t, Y/, V}) — [ (£, Y, Vi) |.
It follows from (H3.3) (ii) that dP x dt — a.e.,

[Ag™™ (£, A VI < e AV
Then the assumption (H3.7) is satisfied for the generator Ag™™ (¢, AY,"™ V;) of BDSDE
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(3.14) with A =¢, v =0 and 7, = 0.
Thus, it follow from Proposition 3.1 (i) with 6 = 1 that there exists a constant K > 0

depending only on §, A and v such that, for each 0 <t < T

T T
E ( sup \AY;””F) +E (/ |AZm™? ds) < 2(9/ k <E sup |AYu”’m|2) ds (3.15)
t t

0<s<T s<u<T

T
+9E/ ’fn (Sﬂ}gmuvs)_fm (S»Kma‘@)ﬁdé’,
t

where § = K exp (K (T —1t)).
On the other hand, it follows from (3.5) that, for each n,m > 1, s € [0,T] and each AY™™ &

R, dP x dt — a.e.,

50X )~ S (YD < [ (e = ) = (83 - 2 o )

{vilol<1}

and also from (3.8), we get

(v = V) = (B - W) [ <200+ D)+ B+ 5)

< Q.

Using the continuity of f in y, we have

n m

n,Mm— 00

applying Lebesgue’s dominated convergence theorem, we get

lim | fo (8, Y™, V2) = fon (8, Y7, V) | = 0.

7,Mm—00
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On the other hand, we obtain dP x dt — a.e.,

[t Y V0) = Fult Y V2] /q} L 1) 4B+ B)6 (v) dv,

<2(¢(u+1) +cf+ ) < o0,
applies again Lebesgue’s dominated convergence theorem,yields that

T
fim B[ |f (570 = f (53 [ds =0, (3.16)
t

n,1M—00

Now, taking the lim sup in (3.15) and by Fatou’s lemma, monotonicity and continuity of % (-)

and (3.16) , we get

T
lim sup (]E ( sup |AYZ“"]2) +E (/ IAZm™|? ds))
n,m—oo OSSST t
T
< 29/ k( lim sup]E( sup |AYu"’m|2>> ds
: n,M—00 s<u<T

Thus, in view of [j, k™" (u) du = oo, Bihari’s inequality yields that, for each 0 <t < T

T
lim E < sup |AYS”m|2> +E (/ |AZ§’m|2d5) =0,
n,M—00 0<s<T ;

which means that ((K",Zf)temﬂ) is Cauchy sequence in the space S* (0,7, R¥) x

neN*
M?Z (0,7, RF*)

Let (Y, Zt),cj7) be the limit process of the sequence <(Y;", Zf)te[O,TO in the process

neN*

space S? (0,7, R*) x M? (0, T, R¥*?).
On one hand, using (3.5), (3.9) and (3.12), we have

|fals, Y V)| < B+ B4V +1),

< B+B+eutl) <oo
by definition of f,, and applying (H3.1), we have that f, converge simply to f. Thus by
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Lebesgue’s dominated convergence theorem, we have

T
lim }fn (s, Y, V) — f(s,Ys, Vs) {ds =0.

n—oo

Other hand, from the continuity properties of the stochastic integral, it follows that

— 0,

S

[ g (s, YV — [Ty

T n
/, ZSdWs—j;

SUPg<i<T

SUDg<t<T s| — 0, asn — oo in probability.

from wich it follow that Y™ converge uniformly in ¢ to Y i.e., lim,, (SUPogtST Y, — Y}D =
0. Finally, we pass to the limit n — oo in (3.13), we deduce that (Y, Zt)te[o,T] solve BDSDE
(3.7). m

Lemma 3.2 Let f and g satisfies the hypothesis (H3.1)-(H3.5), V € M? ((LT, R’”d) and

£el? (FT, ]Rk) , if there exists a positive constant 5 such that
dP — a.s., |§{ <pB dP xdt—a.e., }g(t,w,0,0) { <pB and ’f(t,w,0,0) | < B. (3.17)

Then there ezists a unique solution to the BDSDE (3.7).

Proof. In this lemma, we will eliminate the bounded condition with respect to the processes

(Vi)icjo,r) in Lemma 3.1. For each n > 1 and Z € R¥*d " denote ¢, (Z) = supZ('%, then
qn = | S ,n). 1t tollows rom Lemma 3.1, that for each n > 1, there
Z A Z It follows from L 3.1, that f hn > 1, th

exists a solution (Y;", Z}"),c(o 7 to the following BDSDE

T T T
—ct [ revna@ds [ g6 YnaW)dB. - [ ziaw, o<e<T.
t t t
(3.18)
In the sequel, we shall show that ((Y;”, Zf)te[o T]> is a Cauchy sequence in the space
’ neN*

S? (0,7, RF) x M? (0, T, R4) .
In fact, for each n > 1 and m > 1, let AY,"" =Y —Y/" and AZ"™" = Z]) — Z".

35



Chapitre 3.Backward Doubly SDEs and SPDEs with weak Monotonicity and General
Growth Generators.

Then for each 0 < ¢t < T

T T T
AY™ = / A (s, AY™ V) ds + / Agr™ (s, AY™™ V,)dB, — / AZ AW,
t t t
(3.19)

where

Afrm (s, AY™ Vo) = f (s, AY™ + Y™ g (Vi) = [ (8, Y™ am (Vi)
Agm™ (s, AY™ Vi) = g (s, AV + Y, g (Ve)) — 9 (8, Y™ i (V3)) -

S S

(H3.6) and (H3.7) is satisfied for the generator A f™™ (¢, AY,"™ V;) with ¥ (u) = k (u), A =
0, 00 = [f (£, Y™ g (Vi) = f (£, Y™, gm (V1)) respectively Ag™™ (t, AY™™, V;) with v = a
and 7, = 0 of BDSDE (3.19).

Indeed by (H3.2), we get

(AVP7 A (0 AV V) < b (JAYS™F) AV (6Y 7 4o (V) = F (17, g (V)]
and by (H3.3) (i7), we have
[Ag™™ (8, Y V)P < 26 |AY P 4 207 |00(Ve) — am (VI

Thus, it follow from Proposition 3.1 (i) with 6 = 1 that there exists a constant K > 0

depending only on §, A and v such that, for each 0 <t < T

T
E ( sup |AY§M\2> +E (/ \Azg»mEdS)
0<s<T t

T T
< (2K / k(BIAY, ") ds + KB / (5. Y 0 (V) = £ (5, Y2 g (Vo)) s

£2K0%B [ 10,(V2) = (V" ds) exp (K (T = 0),
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using (H3.3) (i) and 6 = K exp (K (T —t)), we get

T
E ( sup |AYs”m|2) +E (/ |AZ§’m|2ds>
0<s<T t

T T
< 29/ k (BE|AY™*) ds + 0 (c + 2a?) E/ n (V2) — gm (V3)|? ds. (3.20)
t t
since k (z) < A (1 + x), we obtain

T
E ( sup \AYS”’mF—i—/ ]AZ:’m|2 ds)
t

0<s<T

T T
< 20AT + 29A/ E ( sup |AYU"’m|2) ds + 0 (c +2a°) E/ \an (V2) — qm (V) [? ds.
¢

sSusT t

Applying Gronwall’s Lemma and (a — b)* < a® + 0%, yields that for each ¢ € [0,7] and each

n,m>1

T
]E( sup \AY;"’m\2+/ ]AZ:’mF ds)
t

0<s<T

< (29AT+9(0+2a2)E / (Ian (V)P + lam (Vo)) ds) exp (20AT)

T
< (29AT +20 (c+20%) E / V. |? ds) exp (20AT) .
0
By taking the lim sup in (3.20), we have

T
lim sup E(Sup |AYSn’m|2+/ |AZ§’m|2dS)
¢

n,M—00 0<s<T

T T
<lim sup (29/ k(B |AYS”’m|2) ds + 6 (c +2a°) E/ 00 (V2) — gm(V3)[? ds) ,
¢

n,Mm—00 t

by Fatou’s lemma, monotonicity and continuity of % (-), we have

T
lim sup E(sup |AYSn’m|2+/ |AZ§’m|2ds)

n,M—00 0<s<T t

T T
g29/ k(lim sup E\AYSW\?) ds+9(c+2042)E/ Hm sup g, (V) — gm (Vi)|* ds.
t t

n,m—00 n,m—00
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since

T
B[ tim sup g, (V) g (Vo) ds =0
t

n,Mm—00

Thus, in view of [, k=1 (u) du = oo, Bihari’s inequality yields that, for each 0 <t < T

T
lim sup E(sup |AYS”’m|2+/ |AZ§’m|2ds> = 0.

n,M—00 0<s<T t

We know that ((Yt", Zf%ggﬂ)
M2 (0’ T, kad) )

is Cauchy sequence in the process space S? (0, T, Rk) X

neN*

Let (Y, Zi),ci07) be the limit process of the sequence <(Yt", Z)iepo T]> in the process
’ ’ neN*

space S? (0,T,R*) x M? (0, T, R¥*?).

Applying (H3.1), (H3.3) (i), (H3.4), (3.17) and Lebesgue’s dominated convergence theorem,

we have
T

lim |f(87Y'sn7qn (‘/S))_f(sﬂ}/s?VS)}dSZOv

n—oo 0

from wich it follow that Y converge uniformly in ¢ to Y i.e., lim, (SUPogth Y — Y}|) =
0. Finally, we pass to the limit n — oo in (3.18), we deduce that (Y}, Z),c( 1) solve BDSDE

(3.7). m

Lemma 3.3 Let f and g satisfies the hypothesis (H3.1)-(H3.5) and & € L? (Fr,R¥), if

there exists a positive constant 5 such that
dP — a.s., |£‘ <pB dP xdt—a.e., |g(t,w,0,0) ‘ <pB and ‘f (t,w,0,0) | <pB. (3.21)

Then there exists a unique solution to the BDSDE (E$9).

Proof. By Lemma 3.2, we can construct the iterative sequence. Let us set as usual (Y0, Z?) =

(0,0) and define recursively, for each n > 1

T T — T
Yt”:§+/ f(s,YS”,ZS”_l)der/ g(s,l@”,zg—l)st—/ ZMdWs,  t€10,T7.
t t

t

(3.22)
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It follows from (H3.2) and (H3.3) (i) that dP x dt — a.e.,

(VI f (5, YZ070)) = (VL F (5,20, 207Y) = £ (5,0, 2070 + f (5.0, 207),

< k([YIP) + 1Y (e] 27+ 1f (5,0,0)])

then the assumption (H3.6) is satisfied for the generator f (s,Y, Z"~!) of BDSDE (3.22)
with ¢ (u) = k (u), A= 0, o = | Z | + | f (£,0,0)] .
It follows from (H3.3) (ii) that dP x dt — a.e.,

lg (6.7, Zp )| <4 P + 402 | 2071 + 219 (£,0,0),

then the assumption (H3.7) is satisfied for the generator g (¢,Y;*, Z{'"') of BDSDE (3.22)
with v = 402, A = 4¢? and 7, = 2|g(t,0,0)|*.
Thus, it follow from Proposition 3.1 (i) that there exists a constant K > 0 depending only

on 0, A and v such that, for each 0 <t <T

T
E ( sup \Ys"|2) +E (/ ]ZQ]st)
0<s<T ¢

T K T
< <K]E\§]2+2K/t k (E ( sup \Kﬁf)) ds+7E/t (e| 221 + |£(5,0,0)])" ds

r€(s,T]

4 2KE/t 9(5.0.0)Fds ) exp (K(T ~1)).

By = K exp (K (T — 1)), wenote H(t) = (]E €2+ 2B [T | (5,0,0)* ds + 2B [ |g (5,0,0)\2d3>.
Using (3.21), we have H(t) < 042 (1 + 2- 4 2T') = 0h. Therefore

T T 2902 T 9
E(sup |YS"\2)+E (/ \Zgy2ds) §9h+29/ kB sup [V ds+—]E/ |Zr71|" ds.
0<s<T t t r€(s,T] 0 t
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Since k () < A(1+x), we get

T
E < sup |YS”|2> +E (/ \Z"? ds>
0<s<T t

T P
< 0h+2AOT+2A0/ E ( sup |YT”|2> ds+%E/ | 2271 ds.
t

re(s, T

Let us set ¥y = max {7 — 22 T — 122 0} . Then for each ¢ € [;,T] ,we have exp (K (T —t)) <

2, thus # < 2K and

T
E ( sup |YS”|2> +E (/ |Z§‘\2ds>
0<s<T ¢

T ) AKE (T e
<2Kh+4KAT +4AK | E|( sup |Y"]? ] ds+ E [ |Z)7Y ds.
t t

r€(s,T] d

we take § = 16K c2, obtain

1 T
E ( sup |}/sn‘2 +/ |Zn| dS) < 2Kh+4KAT+4AK/ ( sup |Y"‘ > dS_i_ZE/ !anfl‘QdS'
t t

0<s<T re(s,T]

Applying Gronwall’s lemma yields that for each t € [¢;, T

T 1 (T

E ( sup |V +/ |Zg|2ds> < (2Kh + 4K AT + —E/ |Zg—1{2ds) exp (4AK (T —t)).
0<s<T ¢ 4 /i

For each t € [, T], we have exp (4AK (T —t)) < 2, then we deduce for each n > 1

1 T
E(SUP Yo +/ IZQIst) §4Kh+8KAT+§E/ |z ds,
t

0<s<

T
§4Kh+8KAT+%E(sup vt +/ ]Zg—lfds),

0<s<T

1
<4Kh+8KAT + 3 (4Kh + 8K AT)

l n—2 n—2|2
8 (g, b [ 2
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consequently with (Y%, Z?) = (0,0), we get

T
B (s 0+ [ |z as)
0<s<T t

1
§4Kh+8KAT+5(4Kh+8KAT)+--.+

(4Kh + 8K AT)

gn—1
1 11— (H"
S AR+ 8KAT + 5 (4Kh + 8K AT) 1—21 :
T2
1 n

< 8Kh + 16K AT — (4Kh + 8K AT) (5) :

< 8Kh+ 16K AT. (3.23)
In the sequel, in each n > 1 and m > 1, let AY,"" =Y,*— Y™ and AZ;"™" = Z'— Z". Then
vt e [0,7)

T
Ay;n,m _/ Afn,m (S,AYtSn’m,AZ:il’mil) ds
t

T T
+ / Ag™m™ (s, AYS”’m, AZf’l’m’l) dB, — / AZ;""deS, (3.24)
t t

where

Afn,m <S7A}/Sn7m7 AZL?—Lm—l) — f (S, Ay;mm + }/sm7 AZL?—Lm—l + Z;n—l) _ f <S7y;m7 Zsm—l)’
Agn,m (S,AY;n’m,AZ?_Lm_I) =g (8,A}/;n’m + Y;m’ AZS_I’m_l + Z;n—l) —g (S,Y;m, Z;n—l)_

It follows from (H3.2) and (H3.3) that dP x dt — a.e.,

<A}/tn,m’ Af‘n/m, (t, A}/;n,m, AZzl—l,m—l)>
= (AY (B AV Y 20 < f (Y 20 ),

<k (JAY ) + (AP ] (6 20 = (LY 2]

Then the assumption (H3.6) is satisfied for the generator Af™™ (¢, AY;"™, AZtnfl’m*l) of

BDSDE (3.24) with ¢ (u) =k (u), A= 0, oy = | f (£, Y™, Z7) = £ (¢, Y™, Z"7Y)|.
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It follows from (H3.3) (ii) that dP x dt — a.e.,
[Agrm (8 AY " Az < 20 |AY P 4 [azp .

Then the assumption (H3.7) is satisfied for the generator Ag™™ (¢, AY;"™", AZt"_l’m_l) of
BDSDE (3.24) with, A = 2¢%, v = 2a? and 7, = 0.
Thus, it follow from Proposition 3.1 (i) that there exists a constant K > 0 depending only

on 0, A and ~ such that, for each 0 <t <T
T
E ( sup |AYS"’m|2> +E (/ |AZ§’m|2ds)
0<s<T t
T K T 9
< <2K [ @AYy s+ B [ Ry 2 - ps Y2 ds) exp (K (T~ 1)).
t t

Let us set ¢y = max {T — 22,0} . Then for each ¢ € [¢;,T], we have exp (K(T —t)) < 2

and

T
E ( sup |AYS”’"‘|2> +E (/ |AZ§’m|2ds>
0<s<T t

2 T
2he E/ |Azr= b P s,
t

T
§4K/ k(B|AY™) ds +
t

take § = 8K c?, we have

T
E ( sup |AYS"m|2) +E (/ |AZ§’m|2d3)
0<s<T ¢

T T
< 4K/ k (B|AY™™ ) ds + iE/ |ASZ”*1’m*1]2ds. (3.25)
t t

Taking the limsup in (3.25), using Fatou’s lemma, (3.23), monotonicity and continuity of

k (-), we have

T
lim sup <E ( sup |AY8”m|2) +E (/ |AZ§’m|2d$))
n,Mm—00 0<s<T t

T T
1
< 4K / k (lim sup E ]AY;”’m]Q) ds +lim sup ZLE/ ’AZ;“l’mfl 2 ds.
¢ t

n,Mm—00 n,Mm—00

42



Chapitre 3.Backward Doubly SDEs and SPDEs with weak Monotonicity and General
Growth Generators.

Thus, in view of [, k=" (u) du = oo, Bihari’s inequality yields that, for each ¥y <t < T

T
lim sup (E < sup |AY$”’m|2) +E (/ |AZ:’m|2ds)> =0,
n,m— 00 0<s<T t

we know that <(Y;”, Zt")teth])neN* is Cauchy sequence in the process space S> (191, T, ]Rk) X
M2 (9, T, R*4)

Let (Y},Zt)tewlﬂ be the limit process of the sequence ((K”,Zf)te[ﬁhT])neN* in the pro-
cess space S? (191,T, Rk) x M? (191,T, RkXd). On the other hand, since Z]' converge in
M? (191, T, R’“Xd) to Z;, then there exists a subsequence wich will denote Z;' such that Vn,
Z1 — Zy, dt @ dP — a.s. and sup,, |Z}'| is dt ® dP integrable. Therefore by (H3.3) (i) and

(H3.4), we have
| (.Y, 287) [ < e Z87H| + £ (5,0,0) [ + ¢ ([Y7]) < oo,
applying (H3.1) and (H3.3) (i), we have

lim [f (5,2, 2071) = [ (s.Ye, Zo) | = lim |f (5,5, Z070) = £ (5,5, Z) |

n—oo

<clim |Z]7' = Z| =0,

n—oo

thus, f(s, Y™, Z" ') converge simply to f (s, Y;, Z,). Then by Lebesgue’s dominated conver-

gence theorem, we have

T

lim |f (s, YD, Z27Y) = f(s,Ys, Z,) |ds = 0.

n—oo t

From wich it follow that Y converge uniformly in ¢ € [¢1, T] to Y i.e., lim, .o (Supy, ;<1 |Y" — Y3|) =
0. Now, we pass to the limit n — oo in (3.22), we follows that (Y3, Z;),cy, 51 solve BDSDE
(Eg’f ’9) . Note that T'— ¢; > 0 and depends only on ¢ and A, we can repeat the above
operation in finite steps to obtain a solution to the BDSDE (Eé’fh") on [Ug, ], [93,9s], ...,

and then on [0,7]. m

43



Chapitre 3.Backward Doubly SDEs and SPDEs with weak Monotonicity and General
Growth Generators.

Proof. of Theorem 3.1. Firstly we approximate f (¢,Y;, Z;) and £ by a sequence whose

elements satisfy the bound assumption in Lemma 3.3.

For each n > 1, define ¢,(x) = (el for each x € R*, and let
gn = {n (5) and fn (ta th Zt) = f (ta Y;h Zt) - f (tv 07 O) + (f (ta Oa O)) ) (326)

clearly, the f, satisfies (3.21), we have

lim E|¢, — g|2 =0 and limE (/T |an (f (5,0,0)) = f (s,0,0) |2ds> =0. (3.27)
0

n—oo n—oo

For each n > 1, let (Y,", Z}"),c (o7 denote the unique solution to the following BDSDE
T T - T
Y =¢&, +/ fo (s, Y, Z0)ds +/ g(s, Y, Z")dB s — / ZMdWs, 0<t<T. (3.28)
t t t

In the sequel, in each n > 1 and m > 1, let AY,"" = Y;» = Y™, AZM" = Z — Z]" and

Agmm = ¢, — ¢, Then Vt € [0, T]

T
AY"™ = AEMT / [AF™ (s, AY" AZP™) ds + Ag™™ (s, AY]"™, AZI™) dB, — AZI™dW,}
t

(3.29)

where

AT (s, AYPMAZI™) = [ (s, AV + Y AZP™ + Z7) — fin (s, Y Z])
Aghm (s, AY™ AZPT) = g (8, AYI Y AZEIT + Z0) — g (s, Y, Z7)

By add and subtract, we get

<A§/Sn,m7 Afn,m (S,AYSn’m,AZ:’m»
- <AYVsn7m7 fm (3’ Asznym + }/sm7 AZ;Lm + Z;n) - fm (87 }/sm7 Z;n»

FAAYI™, fo (5, A 4 YT AZE™ 4 Z0) — fo (s, AV £ Y AZET 4 Z0)).
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It follows from (H3.2) and (H3.3) (i) and (3.26) that dP x dt — a.e.,

<A}/;n,m7 Afn,m (S, A}/;/Lm’ AZ;’L77TL)>
= (AYP™ (5, AV LY AZDT 4 20— [ (s, YZ0) — f (.Y Z0) 4 f (s, Y 20)
AV o (f (5,0,0)) = g (f (5,0,0))),

<k (JAY ™) + e[ AY JAZE"] 4 [AY] g, (f (,0,0)) = g (f (5,0,0))].

Then the assumption (H3.6) is satisfied for the generator A f™™ (s, AY*™ AZ™™) of BDSDE

(3'29) with ¢ (u> =k (u) s A=c, 00 = ‘Qn (f (t7 0, 0)) — dm (f <t707 0))| :
It follows from (H3.3) (ii) that dP x dt — a.e.,

|Ag™™ (s, AV ™ AZE™) [P = |g (5, AY™ 4+ Y AZE™ 4 Z0) — g (5, Y, 20 [,

< 2| AYP™ 4 202 AZP™|

Then the assumption (H3.7) is satisfied for the generator Ag™™ (s, AY""™ AZ"™) of BDSDE
(3.29) with, A = 2¢%, v = 2a? and 7; = 0.
Thus, it follow from Proposition 3.1 (i) with § = 1 that there exists a constant K > 0

depending only on §, A and v such that, for each 0 <t < T
T T
E ( sup |AYS”””|2> +E (/ |AZ§’m|2ds) < OB |AE™™) + 29/ k (E ( sup |AYT,”””|2>) ds
0<s<T t t 0<r<s
g 2
08 [ a0 (£(510.0) = g (£ (5,0.0) P ds. (3.30)
t

where § = K exp (K (T —t)). Since k (z) < A(1 + x), we have

T
E ( sup |AY]"™ 2) +E (/ |AZm™ 2 ds)
0<s<T t

T
< OB |AE™™? + 2AT0 + 2A0/ E ( sup |AYT"7’”|2) ds
t

0<r<s

+mthﬂmw»wMﬂmew
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Using (3.27), we obtain

T
E ( sup |AYS"m|2) +E (/ |AZ™ ds>
0<s<T t

T T
< 29E|gy2+2AT9+2A9/ E ( sup |Ayrn7m|2> ds+29E/ |f (5,0,0)[" ds.
t t

0<r<s

Applying Gronwall’s lemma yields that for each t € [0, 7] and each n,m > 1

T
E ( sup |AY8”’""”\2> +E (/ \AZQ’m\zds)
0<s<T t

T
< <29AT +20E |¢]* + 26E/ £ (5,0,0))? ds> exp (20AT) ,
t

< Q.

Taking the limsup in (3.30) and by previous inequality, Fatou’s lemma, monotonicity and

2 d8>

T
< 0E (lim sup |, — §m|2) + 20/ k (lim sup E ( sup |AY;”m|2)> ds
t

n,M—00 n,Mm— 00 s<r<T

continuity of k (+) , we have

T
lim sup E(Sup |AYT”’m|2+/ |AZmm
t

n,M—00 t<r<T

T
+0E/ lim sup |gn (F(5,0,0)) — g (f (5,0,0)) ds,
t

T
= 29/ k (lim sup E ( sup \AY;"’"|2)> ds.
t n,m—0o0 s<r<T

Thus, in view of [, k™" (u) du = co, Bihari’s inequality yields that for each 0 <¢ < T

T
lim sup E(sup |AY,,”’m\2+/ \AZ;””Pd:;) = 0.
¢

7,1M—00 t<r<T

We know that ((Yt", Z7) te[o,T]) is Cauchy sequence in the process space S?2 (0, T, ]Rk) X

neN*

M2 (0, T, RF*) .

Let (Y:, Zt)icjo7 be the limit process of the sequence ((ytn’ Zf)te[o’ﬂ)neN* in the process
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space S? (0,T,R*) x M? (0, T,R**?). Using (H3.3) (i) and (H3.4), we have
[ (Y7 20 | = | 20+ | (£,0,0) [+ ¢ ([¥[7]) < oo,

applying (H3.1), and (3.26) , we have f,(s, Y, Z) converge simply to f(s,Ys, Zs). Then by
Lebesgue’s dominated convergence theorem, we have

T
lim ‘fn (&KHJZ;L)_JC(SJK?ZS)‘dS:O
t

n—o0

From wich it follow that Y™ converge uniformly in ¢ to Y. Now, we pass to the limit n — oo
in (3.28), we deduce that (Y;, Zt)te[o,T] solve BDSDE (E4/9).

Thus we prove the existence part and finally complete the proof of Theorem 3.1. m

3.1.3 Application to SPDEs.

n this section we connect BDSDEs with weak monotonicity and general growth gener-
Iators with the correspondent SPDEs and give the sobolev solution of the SPDEs.

Notation and definition

CF set of function of class C*, whose partial derivatives of order less then or egal to k are

bounded. Given z € R?, b € C? (R%,R?) and o € C} (R?, R¥*?), denote by (X!*; t < s <T)

the unique strong solution of the SDEs following
dX" =b(X")ds + o (XP)dW,, X[ =u. (3.31)

It’s well know that [E (suptgng | Xt P ) < oo for any p > 1, we recall that the stochastic
flow associated to the diffusion processes (X% t < s <T)is (Xsm; reR t<s< T) and
the inverse flow is denote by X*. & — X' is differentiable and we denote by .J (X’ﬁ””) the
determinant of the Jacobian matrix of X%, which is positive and satisfies .J (X'tt x) =1

For ¢ € C2° (R?) we define the process ¢ : 2x [0, T]xR? — R by ¢ (s, z) = ¢ (X;x) J (X;x) :

Let 7 : R? — R, be an integrable continues positive function and L2 (Rd,ﬂ' (x) da:) be the
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weight IL? space with weight 7 (z) endowed with the following norm

2 = [ ) (@) do

Let us take the weight 7 (z) = exp (F (z)), where F' : R? — R is a continues, moreover we
assume that there exist some R > 0 such that F' € C? for |z| > R, we need the following

result of generalized equivalence of norm.

Lemma 3.4 There exist two positive constant Ky, ki wich depend on T, ©, such that for

any t <s<T and ® € L' (Q x R, P&r (z) dx)

k:1< Rd|<1>(x)|7r(x)dm) gE( 5 ‘CI)(X?”’)M(x)dx) < K1< Rd|<1>(x)|7r(x)dx).

Moreover for any ¥ € L' (Qx [0, T] x R? x Pdt ® 7 (z) dx)

(/R/ (s,2)| ds 7 (= dm><E</R/ sxgw)|dm<x)dg;>,
(/R/t sg;\dm()dx).

Proof. Using the change of variable y = X", we get

E ( 5 @ (X7)| 7 (2) dx) = | lew)E (n (X§:y> J (Xty)> dy,
(! (Ke) = (227)

™ (y)

T (y) dy.

J(X0¥)m(X0Y)
m(y)

the first claim follows. The second claim can be proved similarly. =

By Lemma 5.1 in Bally-Matoussi [§], k1 < E ( ) < K, for any y € R¥, s € [t,T],

Now begin to study the following SPDEs

u(s,x) =h(x) +/ (Eu (ryx) + f(r,z,u(r,z),0"Vu(r,z)) )dr

(p(f,g)) T
H
—i—/ g(ryz,u(r,x),0"Vu(r,z))dB,, t<s<T,
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where

1 9? 0 : .

2%
Let ‘H be the set of random fields {u (t,2),0<t<T, x€ Rd} such that for every (¢,x),

u (t,x) is F-measurable and

Jul = E(/R /OTqu(r, 2) P+ (0" V) (r,2) [dr 7 () dir) < oo.

The couple (H, || - ||#) is a Banach space.

Definition 3.1 We say that u is a Sobolev solution to SPDE (PY9)), if u € H and for any
¢ € Co>®([0,T] x RY)

T T .
/ f(ryz,u(r,z),0"Vu(r,z)) ¢ (r,z) drdz + / / g(r,x,u(r,x),0"Vu(r,z)) ¢ (r,z)dB,dz

R Js Rd Js
T
:/ / u(r,x)M(r,x)drdx+/ u(r,x)gp(r,x)dw—/ h(z)p(T,x)dx
Rd Jg or Rd Rd
1 T T

~ 5 / / c*u(r,x)o*p (r,x)drdr — / / udiv( (b — A) @) (r,z) drdz, (3.32)

Rd Js Rd Js

3 3 1 d 80,1']'
where A is a d-vector whose coordinates are defined by A; == 5> 7, o

In this section well study the Sobolev solution of (P(f 79)) with weak monotonicity and general
growth. For f: [0, T] x RYx RE x RF*d — RF g1 [0, T] x RIx RF x R¥*4 — R h - R4 — R,

The main idea is to connect (P(f 79)) with the following BDSDE for each s € [t, T

T
Vi n (X)X Y 2 de

T — T
+ / g (r, XP" Y, Z) dB, — / ZE AW, (3.33)

s

where (X5%;0 < s < T) is the solution of SDEs (3.31).
Our object consists to establish the existence and uniqueness of solutions v to SPDEs (P(f ’9))

such that u (s, X*) = Y5* and 0*Vu (s, X1*) = ZL*.
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We consider the following assumptions (A3):

(A3.1) For (¢,7) fixed dP x dt-a.e., v € RY 2 € R*4 y — f(w,t,x,y,2) is continuous and
S fOT |f (t,2,0,0)|* dir (z) dz < co.

(A3.2) f satisfies the weak monotonicity condition in y, i.e., there exist a nondecreasing and
concave function k() : R* — R* with &k (u) > 0 for u > 0, k£ (0) = 0 and [, k™" (u)du = +o0

such that dP x dt-a.e..Vyi, 1, € R¥, 2z € RF*¥4 g ¢ RY
<y1 - y27f(t7w7x7y172> - f(t7w7x7y27z)> S k <|y1 - 92‘2) .

(A3.3) i) f is lipschitz in z, uniformly with respect to (w,t,x,y) i.e., there exists a constant

¢ > 0 such that dP x dt-a.e.,

|f(w.t,2,y,2) = [ (w,t,2,y,2) | <clz— 72|

i) [r fOT g (t,,0,0)| dtm (x) dz < oo and for (¢,z) fixed there exists a constant ¢ > 0 and

a constant 0 < a < }1 such that dP x dt-a.e.,
‘9(W7ta$,ya Z) - g (w7taxaylazl> | S C{?/ - y,| +O[|Z - Z,|'

(A3.4) f have a general growth with respect to y, i.e., dP x dt-a.e., V (z,y) € R? x RF

|f(t,w,x,y,0){ < ’f(t,w,x,0,0)‘-l—gD({y

)

where ¢ : Rt — RT is increasing continuous function.
(A3.5) h belongs to L? (RY, 7 (z) dz; R¥).
Now by Lemma 3.4, Fubini’s theorem and using (A3.1), (A3.3)(i7) and (A3.5), we have for

a.e. r € R?
’ t,x 2 g t,x 2 tzy |2
E / | (r, X%, 0,0)] dr+/ g (r, X57,0,0) | dr + [h (X57)]7) < . (3.34)
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Hence, it follows from Theorem 3.1, that BDSDEs (3.33) admit a unique solution (Y}*, Z*)
such that Y/, ZL* are F/V v FL measurable for any s € [0, 7.
Moreover, by Proposition 3.1 (i) it’s easy to check for each § > 0 that there exists a constant

K > 0 depending only on §, A and  such that, for each 0 <t < T

T
= (g, bof) o ([ 12t )
0<s<T t
T 1 T 9
< (E|h(X§f’) |2+2/ k(E[Y ")) d5+5E/ | f (r, X17,0,0)|" ds
t t

T
+ QE/ g (7", var’ 0, ()) ds)Kexp (K(T-T)),
t
using (3.34) and since k (z) < A (1 + x), we have

T T
E<S“P \YJ“}Q*/ }Z§“|2d5) £c+29AT+29A/ E (|[Y2"P?) ds,
¢ t

0<s<T

where 0 = K exp (K (T — T)) . Finally, applying Gronwall’s lemma, we obtain

T
E ( sup |Y.§’1"2 —l—/ ‘Zﬁ’xfds) < (c+20AT)exp (20AT) < 0. (3.35)
t

0<s<T
Now, we are state the main result of this section.

Theorem 3.2 Under hypothesis (A3), the SPDEs (P(f’g)) admits a unique Sobolev solution
w. Moreover u (t,z) = Y, where (Y{, Z5%) cocr 18 the unique solution of the BDSDEs

s

(3.33) and

u(s, X)) =Y and (0*Vu)(s,X0") = ZL",  forae. (s,w,z) in [t,T] x Q x R%.

s 7

(3.36)

We first consider the following SPDEs:

T
u™ (t,x) = h(x) —{—/ (Lu™ (r,z) + f (ryz,u" (r,z) ,0*Vu™ (r,2)) )dr
(p(f,gvu”)) . t
+/ g (ryz,u" (r,x),c"Vu" (r,z)) dgr, t<s<T.
t
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We need the following results.

Proposition 3.2 Under the assumptions (A3). Let (X"*) be the unique solution of SDFEs
(3.31) and for a fixzed n € N*, let (Y% Z™5%) be the unique solution of the BDSDEs

T
Y;n,t,:c — h (X;lx) +/ f (7", Xﬁ,:c’ 1/721,75,:1:7 Z;L,t,x) dT

T . T
+ / g (r, X070 200 d B, — / ZPHE AW, (3.37)
s t
Then for any s € [t, T
an,sx;”” =Yy Zf’&X?m =7 forae. relsT], v€ R

Proof. The proof is similar to the proof of Proposition 3.4 in Q. Zhang and H. Zhao [32]. =
Using Proposition 3.1, by the same computation as in (3.35), we have that the sequence

(Yien Zben) are bounded in 8% (0,7, RF) x M2 (0, T,RF*9), i.e.,

T
sup E < sup ‘Y;’I’”|2 +/ |Z§’$’”‘2ds) < 0. (3.38)
n t

0<s<T

Also by Proposition 3.1 applying with &k (-) = ¢(:), o, = 0, = 0, A = 2¢% and v = 2022,
we can proof by the same computation as in Theorem 3.1, that (}gt’rv",zgw)se[m is a
Cauchy sequence in the process space S? (0,7, R*) x M? (0, T,R¥*?) | i.e., there exists a
(Y, Z5%) eromy € S? (0, T, R¥) x M? (0, T, R¥*4) such that

s

T
B ( sup |Y®" — Yst’xf + / |z — Zﬁ’x|2 ds) — 0, asn — oo. (3.39)
t

0<s<T

Under the assumptions (A3) if we define u” (t,z) = ;""" and o*Vu" (t, ) = Z""". Then by

a direct application of Proposition 3.2, and Fubini’s Theorem, we have

u” (S,Xﬁ’””) =Y a*Vu" (S,Xi’x) = 7" forae. s € [t,T],r € R (3.40)
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Theorem 3.3 Under hypothesis (A3), if we define u™ (s,z) = Y. Then the SPDEs

(P(ﬁg’“”)) admits a unique Sobolev solution u™, where (Y""*, Z;“t’m)se[t,ﬂ 1s the unique solu-

tion of the BDSDEs (3.37) and
u" (s, X57) =Y and  o*Vu (s, X)) = ZM for (s,w, ) in [t, T]x QxR (3.41)

Proof. Existence. For each (s, ) € [t,T] ® R?, define u" (s, z) = Y»** and 0*Vu" (s,7) =
Zmte | where (Y0, Zmb0) € 8% (0,T,RF) x M2 (0,7, R¥?) is the solution of Eq (3.37).
Then by (3.40)

u (s, X0*) =Yh, o*Vu" (s, X)) = 7, for ae. se[t,T], z€R%.
Set

F (s, x) = f(s,2,u" (s,x),0"Vu" (s,2))

G" (s,x) = g (s,z,u" (t,2),0"Vu" (s, 1))

Then (Y™, Z"*) € 8% (0, T,R*) x M? (0, T, R*%) solve
T T — T
YT = b (X7") + / F (r, X7 dr + / G" (r,X}")dB, — / ZI AW, .
s s t
Moreover, by Lemma 3.4 and (3.38), we have

E (/]Rd /tT (Ju" (s,2)]* + |o*Vu" (s, 2)|*) dsm (x) dx)

T
< l]E (/ / (‘1@””‘2 + |Z§’t’x‘2) dsm (z) dx) ,
ka1 Ré Jt

< Q.
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From (A3.3) (i) and (A3.4), we have

E (/R /tT|F” (s,2)|* ds w(m)dm)

<m([ [ (el (5, ) 1f (5,20, 00 + i (1 (5, 2))?) dsm (2) ) <o

And from (A3.3) (ii) , we have

E (/R /tT\G” (s,x)]QdSW(x)d:U) < .

Using a some ideas as in the proof of Theorem 2.1 in Bally and Matoussi [§] similar to the
argument as in section 4 in [33], we know that u" (¢, z) is the Sobolev solution of the following

SPDE:
u(t,x) = h(x) + fST (ﬁu” (r,x) + F" (r,x) )dr

- (3.42)
+ e (r,2)dB,, t<s<T.

Noting that by the definition of F™ (r,x) and G™ (r,z), from (3.41), we have that u" is the
Sobolev solution of Eq (P(f 79’“n)).

Uniqueness

Let u™ be a solution of Eq (P(f ’9’“n)). Define the same notation in the existence part for F™
and G", since u™ is a solution, so £ (fRd ftT (lu" (s,2))* + |o*Vur (s, 2)[?) dsm (x) dm) < 0.

From a similar computation as in existence part, we have

E (/R /tT (1F" (s, 2)[2 + |G (s, 2)[%) ds 7 () d:v) < oo.

Then, for (3.41) it follows from Proposition 2.3 in Bally and Matoussi [8] that, for and
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¢ €Cx(RY), ae. s€t,T], as

/Rd/s (r, z) g, Tx)dx—i—/Rdu”(f,«’x)gbt(r?x)dx
_/ ()qbt(Txdx—/ /Rd (r,z) L*¢¢ (r,x) drdx

/Rd/s (r,x) ¢y (r,x drdm+/ / Gn<r,$)¢t(7“,x)d<§rdx,

Now using ¢; (r,z) = ¢ <Xﬁz> J ()A(ﬁx) and by a change of variable, we get

/Rd u" (r,z) ¢p(r, x)de = / u" (r, X") ¢ () da,

R4

| p@ o= [ 5 6@

//F”rx o (ryx drd:z:—//F” , XY ¢ (x) drda,
Rd Js Rd Js

/Rd 8 G"(rm)qﬁt(rx)dB da:—/ /5 G" (s, X}7) ()dB dz,

by a change of variable y = X’»* and integration by part formula, we obtain

/Rd/s " (r,x) doy (1, ) d
:/R/ (0"Vu) (r, X17) 6 () AW, d:c+/ / (r,2) L6, (r, ) drda.

Hence,

/Rdu” (r. X2) (b(m)dx_/ h(X77) ¢ deF/Rd/S F" (s, X0") ¢ (x) drdx
/Rd . Gn th (z)dBrdSU—/Rd/s (c*Vu™) (ﬂXﬁ’I)(b(:c)dWrdaz.

From the arbitrariness of ¢ we know that {u" (r, X2*), (¢*Vu™) (r,X}*), t <r <T} is a

solution of the following BDSDE
T T - T
Y] = h(Xp") + / F" (r, X77) dr + / G" (r X;)dB, — / Zrhrdw,, t < s <T.
s s t
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Then from the definitions of F™ and G™ it follows that {u" (r, X1*) , (¢*Vu") (r, Xt*), t <r < T}
solve BDSDE (3.37) .

If there is another solution 4" to Eq. (P(f ’g’un)), then by the same procedure, we can find
another solution (Y/St’"”””, Zﬁx”) solve the BDSDE (3.37), where

a" (s, X)) = ymbe, oV (s, X0") = zmte foraes € [t,T], © € R
By Theorem 3.1, the solution of Eq. (3.37) is unique, therefore
ynte — ymbe, for aesc[t,T], xR

Now, applying Lemma 3.4 again, we have

E(Aglwmn@wy—wwawfww@ym)
(L]

So @" (s,z) = u" (s,x), for a.e. s € [0,T], x € R? a.s..Uniqueness is proved. m

b, T n,t,x
}/;977 _Y;77

Q@W@ym):o.

Proposition 3.3 Under assumptions (A), let (Y, Z;") be the solution of Eq. (3.33). If

we define u (s, ) = YI*, then 0*Vu (s, x) exists for a.e. s € [t,T], v € R? a.s., and
u(s, X*) =Y}, o*Vu(s, X)) = Z4* for ae. s € [t,T], r € R%. (3.43)

Proof. See Proposition 4.2 in Q. Zhang, and H. Zhao [32]. =
In the rest part of this section, we study Eq (P(f ’9)) . Then by Theorem 3.3, Proposition 3.3,

Lemma 3.4 and estimation (3.39), we have

/Rd /t (|Un (s,2) —u (5>$)|2 + |o*Vu" (s,x) — o*Vu (s, x)|2) dsm(x)dx

1 g n t,x t,x\ |2
< —E <|u (S,XS’ ) —u (S,XS’ )| +
k1 Rd Jt

— 0, as n — 00. (3.44)

o*Vu" (s, Xﬁx) —o*Vu (3, X;m) }2> dsm (x) dx) ,
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With (3.44) we prove the Theorem 3.2 in this section.

Proof. of Theorem 3.2: Existence, by Lemma 3.4 and (3.33), we see that
o*Vu (t,x) = Z,7, for ae.te€[0,T], v € R

Also, by Lemma 3.4 and (3.35), we have

B (/R /tT (Ju (s, 2) + 0"V (5, 2)2) dsm () dx)

< iI[*] (/ /T (}Yt’x|2 + ‘Zt’w‘2> dsm (z) dx)
- ]{31 Ra J¢ s s ’

< 00.

Now we will prove that u satisfies the definition 3.1. Let ¢ € C1*°([0, 7] x R?), since for any

n, u” is a Sobolev solution to the problem (P ’9’“")), we then have

/Rd/STu”(r,w)W(r,x)drdm+Adun(r,x)w(r,x>dx_/Rdh(x)gp(T’x)dx
- %/Rd /STU*U” (r,@) 0% (r,2) drdx—/Rd /STu"div((b—A) ¢) (r,x) drdx
:/Rd sTf(T,I,u" (r,z),o*"Vu" (r,x))p (r,z) drdz

T —
—I—/ / g(r,z,u™ (r,x),0"Vu" (r,x))e (r,x) d B .dx, (3.45)
R Js

By proving that along a subsequence (3.45) converges to (3.32) in .2 (), we have that u (¢, z)

satisfies (3.32). We only need to show that along a subsequence as n — 0o

Jpa fsT (f (ryz,u™ (r,2),0"Vu" (r,x)) — f (r,z,u(r,z),0*Vu(r,z)) )¢ (r,z) drdz — 0,
S fST (9 (r,z,u™ (r,x),0*Vu" (r,z)) — g (r,z,u(r,z),0"Vu (r,z)) )¢ (r,z) dgrda: — 0.

Firstly. Since ¢ € C%° then ¢ is belong in L2 (Rd X [s,T],dt ® d:p) and by Cauchy-Schwartz
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inequality, we have

2

/Rd/ (r,z,u" (r,z),0*Vu" (r,x)) — f (r,z,u(r,z),0"Vu(r,z)) )¢ (r,z) drdz

< /Rd/s ‘f(r,x,u” (r,x),o*Vu" (r,z)) — f(r,z,u(r,z),0"Vu(r,z)) |27r (z) drdx

X /Rd /ST %drdx,

! 2
< C/Rd/ ‘f (ry,z,u™ (r,x),0"Vu" (r,z)) — f (r,z,u(r,z),0"Vu(r, z)) | 7 (z) drdzx.

Also we have by Lemma 3.4, and by definition of u™ (r, X>*), o*Vu" (r, X5*) that,

/Rd/ (ryz,u” (ryz),0"Vu" (r,x)) — f(r,z,u(r,z), 0"Vu(r,z)) ‘2dr7r (x)dz,

<am [ [ 17y 200 g e, 2 P )
R Js

using (A3.3) (i) and (a + b)* < 2a* + 2b?, we have

T
E / / 1 (raa, Y00 2059 — f (0, Yo, 25%) [P (a) da
Rd Js

T
< ZCE/ / |z — Zﬁ”:}zdrw (x) dz
R Js

T
+ 2E/ / }f (ryx, Y58 Z5%) — f(r,x, Y% Z57) |2dr7r (x) d.
Rd Js
We only need to prove that
! 2
]E/ / | f (2, Y25, Z50) — f(r2, Y0, Z9%) |“dra () dv — 0, as n — oo.
Re Js
Applying assumption (A3.1), we have

lim }f (ryx, Y58 Z5%) — f(r,x, Y% Z57) {2 =0.

n—oo

Since E [, ftT |Z§’“””’”|2 dsm (z) dx < oo, then there exists a subsequence which we still denote

Zben — 7% such that B [o, ftT | Zb%? ds () dx < oo, using (3.38), (A3.3) (i) and (A3.4),
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we have

T
E/ / | f (r,z, Y% Z57) ‘2dr7r (x)dx
Rd Js

T 2
< E/ / (chﬁ”"’fl2 +[f (r,2,0,0)* + ¢ ( sup IK"’S””I) > drm (x) da,
Rd Js t<r<T

< 00.
According to the Lebesgue’s dominated convergence Theorem, it follows that
T 2
]E/ / | f (2, Y250, Z5%) — f(r,2, Y%, Z2%) |“drr (z) do — 0, as n — oo,
Rd Js
which implies that

T
lim / f(ryx,u" (r,z),0c"Vu" (r,x)) o(r, z)drdz
R Js

n—oo

= / : f(ryz,u(r,z), 0" Vu(r,z)) ¢ (r,z) drdz.
R Js

Secondly It remains to prove that [p, fsTg (ryz,u™ (r,z),0*Vu" (r,x)) ¢ (r,z) d?rda:, tends
to [pa fSTg (r,z,u(r,z),c*Vu(r,z)) ¢ (r,x) dB,dz,as n tends to co.

Arguing as in the proof of Theorem 3.1, we get the following limit in probability as n — oo,
I g (r, Xt um (r, X57) 0"V (r, X62)) d B, — [i g (r, X5 0 (s, X7) 0"V (r, X07)) d B,

By Lemma 3.4, (3.35) and (3.38), we have

J.

< 00,

/ (g (ryz,u" (r,x),0"Vu" (r,x)) — g (r,z,u(r,z),c"Vu (r,x)) )gp (r,x)m (x) d?r gt (r)dx

ie. fST (g(r,z,u™ (r,z),0*Vu" (r,z)) — g(r,z,u(r,z) ,0*Vu(r,z))) e (r,z) 7 () d%r belongs

to L' (RY, 77 (2) dz) .
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Growth Generators.

Hence, using Lemma 3.4 we get, for every s € [0, 7]

L
1

< — E
_kl R4

/ (g (ryx,u” (r,x),0*Vu™ (r,x)) — g (r,z,u (r,x) ,0*Vu (r, x)) )gp (r,x)m (x) dET a ! (r)dx

T
/ (9 (r Xp% " (r, X77) 0"V (1, Xp7)) = g (r X0 (r, X07) 0"V (r, X07) )

< (1, X07)| o7 (X07) d B, () do,
T
= ki / E/ (g (T7 Xﬁ’mv }/rn’t’xa Z?t’m) -9 (T7 X?wa }/Tt,m7 qu’x>) ) (T, Xﬁ’x) ™ (Xﬁ’x> d%,«ﬂ'_l (]}) dx.
1 JRd s

Since

(
sup, B [ (g (r, X2, Y00, Z00) — g (r, X, Y0, Z5%) o (r, Xb%)m (XE*) d B, < oo,

and

S g G, X0 Y, Zpsny — g (r, X3, Y00, Z60)) @ (v, XE%) w0 (X0*) d B,

| converges to 0 in probability,

it follows according to the Lebesgue’s dominated convergence theorem that

T
B [ (g (r X070, Z00) g (n XY Z6)  (n X0) 7 (X07) B, =0

Therefore u(t,r) satisfies (3.32), i.e. it is a Sobolev solution of (P(/9)). Theorem 3.2. is

proved. m
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Part Two:

Reflected Backward Doubly Stochastic
Differential Equation-The General Case.

his part is devoted to the study of existence and uniqueness results for Reflected
TBDSDE’S (RBDSDEsS in short). In Chapter 4, we present the existence and unique-
ness result of RBDSDE under classical Lipshitz conditions see [5]. In Chapter 5, we present
our contribution in this part see [20] which is the existence of a minimal and a maximal

solution to the Reflected BDSDE with jumps (RBDSDEJ in short) under a linear growth

condition and left continuity in y on the generator, the case where the generator has a linear

growth and is continuous in (Y, Z,U) is also study, we state a new version of a comparison

principle which allows us to compare the solutions to RBDSDEs. In chapter 6 we deal with

reflected anticipated backward doubly stochastic differential equations (RABDSDESs) driven

by teughels martingales associated with Lévy process see [17], we obtain the existence and

uniqueness of solutions to these equations by means of the fixed-point theorem where the

coefficients of these BDSDEs depend on the future and present value of the solution (Y, Z),

we also show the comparison theorem for a special class of reflected ABDSDEs under some

slight stronger conditions, the novelty of our result lies in the fact that we allow the time

interval to be infinite, furthermore we get a existence and uniqueness result of the solution

to the previous equation when, S = —cco i.e., K = 0.
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Chapter 4

Reflected Backward Doubly SDEs.

In this chapter, we study the case where the solution is forced to stay above a given
stochastic process, called the obstacle. We obtain the real valued reflected backward

doubly stochastic differential equation:
T T - T T

m:§+/ f(s,Ys,Zs)ds—i—/ g(s,Ys,Zs)st—l—/ sz—/ ZdW., 0<t<T. (4.1)
t t t t

We establish the existence and uniqueness of solutions for equation (4.1) under uniformly

Lipschitz condition on the coefficients. We give here a method which allows us to overcome

this difficulty in the Lipschitz case. The idea consists to start from the penalized basic

RBDSDE where f and g do not depend on (y;z). We transform it to a RBDSDE with

f = g = 0, for which we prove the existence and uniqueness of a solution by penalization

method. The section theorem is then only used in the simple context where f = g = 0 to

prove that the solution of the RBDSDE (with f = g = 0) stays above the obstacle for each

time. The (general) case, where the coefficients f, g depend on (y; z), is treated by a Picard

type approximation.
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Chapitre 4. Reflected Backward Doubly SDEs.

Assumption and definition

We consider the following conditions:

(H4.1) f: [0, T] x QxR xR - R; g:[0,T] x Q2 x R x R? — R be jointly measurable such
that for any (y,z) € R x R4, f(-,w,y,2) € M?(0,T,R) and g(-,w,y,2) € M?(0,T,R).
(H4.2) There exist constant C' > 0 and a constant 0 < « < 1 such that for every (w,t) €

Q% [0,7] and (y,y') € R?, (z,2) € (Rd)2

‘f(t,w,y,z) - f(t,cu,y',z/)}2 <C Dy—yl‘z + |Z— z/ﬂ ,

‘g(tawaya 2) _g<t7w7y/azl)‘2 < C}y—ylf —FOK}Z - Z/|2.

(H4.3) The terminal value £ be a given random variable in 1.2.
(H4.4) (Si),>, is a continuous progressively measurable real valued process satisfying

E <sup0§t§T (S;“)2> < 400 and St < ¢, P-almost surely.

Definition 4.1 A solution of a equation (4.1) is a (R, R, ]R+) -valued Fi-progressively meas-

urable process (Y, Z, K )te[O,T] wich satisfies

)Y € S2(0,T,R), Z € M?(0,T,RY), K € A%,
i) Yo =+ [1 f(s,Ys, Z)ds + [ g(s,Ys, Z)d By + [l dK, — [" Z,dW,, 0<t<T,
it) S, <Y, 0<t<T and [ (Yi—S8;)dK;=0.

Comparison Theorem

Lemma 4.1 Let 0 and 6%be two square integrable and Gr-measurable random variables and
01, 6% : [0,T] x Q x R — R be two measurable functions. For j € {1,2}, let (Y7, Z7)be a
solution of the following BSDE:

Y/ =&+ [/ 09(s,Yd)ds + — [ ZIdw,
E (suptST |Ytj|2 + ftT ik ds) < 0.

Assume that,
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Chapitre 4. Reflected Backward Doubly SDEs.

i) For every G;-adapted process {Y;, 0 <t < T} satisfying E (SuPth |Ytj|2> < o0, §(s,Y;)
is Gi-adapted and satisfies B (ftT 169(s,Yy)|” ds) < 0.

i) 01 uniformly Lipschitz in the variable y, uniformly with respect (t,w) .

i1) 0 < 6% a.s.

i) 0, Y;2) < 0%(t,Y?) dP x dt a.e.

Then,

YP<Y? 0<t<Tas.

2
Proof. Applying Ito’s formula to )(Yt1 — Yt2)+‘ and using the fact that n! < n?, we obtain

1 2\t 2 g 1 2|2
‘(Yt Y7) ‘ + | sy |20 = 22 ds
t

T T
gz/ (Y=Y (6 (5,Y)) - 0 (s,yg))ds_Q/ (! - Y2 (7' - 22) aw..
t t

Using the fact that k' is Lipschitz and Gronwall’s lemma, we get (Y;! — Y;2)*™ = 0, for all

0 <t < T as. Which implies that ;! <Y? forall 0 <¢t<T,as. m

4.1 Existence and uniqueness result to a RBDSDE with
Lipschitz condition.

Theorem 4.1 Assume that (H4.1) — (H4.4) holds. Then Eq (4.1) admits a unique solution
(Y, Z,K) € 8% x M? x L2

We first consider the following simple RBDSDE, with f, g independent from (Y, 7).

Yi=¢+ [ f(s)ds+ Kr— K, + [ g(s)dB, — [ Z,aw,,
Y, >S5, vVi<T, a.s., (4.2)
J (Y = Sg) dK, = 0.

Proposition 4.1 There exists a unique process (Y, Z, K) which solves equation (4.2).
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Chapitre 4. Reflected Backward Doubly SDEs.

Proof. By [24], for n € N, let (V,", Z}")o<,<p denotes the unique pair of processes, with

values in R x R? satisfying: (Y™, Z") € S? x M? and

T T T T
" =&+ / f(s)ds+ n/ (Ss —Y™Tds + / g(s)dBs — / ZrdWs.
t t t t

We define,
=&+ [ f(s)ds+ [ g(s)dB,,
Sp =5+ fo s)ds + fo s) dBs,
Y, =Y+ fo s)ds + [ g(s)dB,.
We have,

T T
7?:5+n/ (E—?j)ws—/ Z"dWs. (4.3)
t t

Let A, = EY [5 V sups<r S } Then there exists a G;-predictable process v € L2([0, T x 2, R%)

such that
T
A= Ag— / oWV, (4.4)
t

Since (S, — A,)T = 0, we have

T T
AN = A+ n/ (Ss — Ay Tds — / Vs dWi. (4.5)
t t

By Lemma 4.1, we have for all n € N

Vi=E% [ <Y, <V, "

< Ay = E% [EV sups<rS,] -
Set Y, :=sup, 7? and Y; := sup, Y;". Since A, > S, we then have for every n,

(E - ?Z)Jr(As - ?Z) = (E - 7:)+(As - SS) + (Ss - ?Z)+(§s - 7?) > 0.
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Therefore, using It6’s formula, we obtain

T T
A =TIP [ - ZiPds = |Ar - P — 2 [ (- VIR - s
t . t
2 [ (A =T - 20,
t

T
<Ay =8 =2 [ (A= VD). - Z)a,
t
Passing to expectation, we get

T
E/ Ivs — Z7|*ds < E|sup(Ss — &)
0

s<T

Coming back to equation (4.3) and using equation (4.4) , we obtain

nfy (Ss=YMrds =n [ (S, =Yi)tds = (Y5 =)+ [y ZudW,,
< (Mo—8)+ Jy Zrdw,

S (AT - E) + foT(Zg - 78>dWs-

Which yield that

T T
S, — Y™M*Tds)? < 2(Ap — €)? 7" — ~v4)2ds.
<n/0< " s><2<Tf>+2/O<sv>s

Passing to expectation

T T
Bln [ (8.= 7)o = Bn [ (5= V)" asp,
T
<2E(Ar— 8P+ 2 [ (20— )ds
0

< 4E|sup(S, — &)

s<T

Hence, there exist a nondecreasing and right continuous process K satisfying F(K2) < oo

66



Chapitre 4. Reflected Backward Doubly SDEs.

such that for a subsequence of n (which still denoted n) we have for all ¢ € L2(Q;C(]0,T7)),

T T
limE/ wsn(Ss — Y ds = E/ 0 dK,.
n 0 0
Let N € N* and n, m > N. We have
T T
(YP —vm)? < 2/ (Ss = YM)n (S, =Y ds+ 2/ (Ss = YN)m (S, —Y)™") " ds
T r
2 [z ez -ymaw. - [z -zt s
t t

By B-D-G inequality’s, there exists a constant C' such that

T T
lim sup (E (sup (Y] — th)Q) +E / \zn — Z™)? ds> <2CE / (S, = YV) dK,.
0 0

n,m t<T

Letting N tends to oo, by using a Lebesgue’s theorem we obtain

T T
lim sup (E (sup (Y — Y;m)z) + E/ \Zr — Z™)? ds) < ZC'E/ (Ss — Y;) dK.
0 0

n,m t<T

Let
V= G+ n/ (SS - Y”) ds — / Zndw.,.
t t
Since S < €, the comparison theorem Lemma 4.1, shows that, for every n we have, Vt €

0,7], Y, > ?t" a.s. Let o be a G;—stopping time, and 7 = 0 A T. We have
o~ — T_
Y = EY97 {STe”(TT) + n/ Sse"(ST)ds} .

It is not difficult to see that Y™ converges to S, a.s. Therefore Y, > S, a.s., and hence

Y, >S5S, a.s.
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Using section theorem, we get, a.s. for every t € [0, T], Y; > S;, which implies that
lim sup (E (sup ;" =ynr ) +E/ \zn — Z™)? ds> =0,
n,m t<T

T
and E/ (Ss —Ys)dK, = 0.
0

We deduce that (Y, K) is continuous and there exists Z in IL? such that Z" converges strongly
in L2 to Z. Finally, it is not difficult to check that (Y, Z, K) satisfies equation (4.2). m
Proof. Existence for general case (Theorem 4.1). We define a sequence (Y", Z*, K}') o< y<p

as follows. Let Y2 =S;, Z? =0 and for t € [0,7] and n € N*,

Yitt = et [T (s, Y, 20 ds + [ g (s, YR, Z0)dBy + [ dKY — [T Z0+ldw,,
}/;n—f—l 2 St a.s.,

fOT (st—i-l _ Ss) dK;H—l —0.

Such sequence (Y, Z™, K™), exists by the previous step.

Put V"' =yt _yn, By Ito’s formula, we have,

’—n—l—l

T
/ a ds:Q/ VIO (F (Y0 28— f (.Y 20Y)) ds
t

T
+/ Y (K k) +2/ Vo (s, Y0 20 — g (s, Y0, 207Y) dB,
" t

s

S

T T
_2/ Yn+1—71+1dW +/ |g (S,Y;n,Z;L) —q (87}/871—1’ Z;L—l) }2 ds.
t t

Therefore, It6’s formula applied to ]y|2 Pt shows that:

—nt1]|? T —n+1|?
‘ ‘ Pt — / Bsds—l—/ e’ |7, ‘ ds
t
T 1
—2 [ VI (f (s, Y, 20 — f (s, YN, Z07Y)) ds + / Y (AR — dKT)
t
T n+1-—=n+1
+2/ (s, Y", Z7) — (s,n"—l,zg—l))st—Q/ Y, Z, T dW,
t t

T
+/ P g (s, Y, Zm) — g (s, Y4, 22 [P ds.
t
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Using the fact that ftT eﬁ“’?:ﬂ (dK" — dK") < 0 and taking expectation, we get for every

6> 0:

—n+1 2

Z

s

+1 Tt 2 T
<‘_n ) Pt — BE </ ‘YZ eﬂs) ds + E/ e’ ds
t t

T —n+1 2 2L T —n |2 —n |2
< 2L6E/ v eﬁsds—kTE/ (V2 + 2] e#as
t t

T —n|2 T —n 2
+LE/ e’ Y] ds+aE/ |Z,|" e™ds.
t t

This implies that,

T
(‘_"“‘ >eﬁt_ (8 +2L0) E (/ )?Z“ 2658) ds+E/ ‘_”“‘ ds
t
T T
< (m%) B[ VI eras+ (w%) B[ 7 s
t t

Choose § = (14_La), C = 1—1—% (L + 1_70‘) ,and 8 = —2L§ — C, we have

E/ < ‘Ynﬂ )eﬁsds
1 12 112
§( —;—a) E/ (C’ i —I—‘Zi‘ )eﬁsds.
¢

Since 4% < 1, there exists (Y, Z) in M? x M? such that (Y™, Z") converges to (Y, Z) in

—n—+1

‘ |z

M? x M2, 1t is not difficult to deduce that Y™ converges to Y in S2.
It remains to prove that (Y, Z, K) is a solution to RBDSDE. By Proposition 4.1, there exists

(Y, Z, K) which satisfies,
o T T T
Y, zf—i—/ f(s,Ys, Zs) ds—i—KT—Kt—i—/ g (s,Ys, Zs) dBy —/ Z AW, (4.6)
t t t

(Y, Z,Kp) € 82 x M?> x L?, Y, > S,, (K,) is continuous nondecreasing, K, = 0 and
fOT (715 - St) th = 0
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We shall prove that (Y, Z) = (Y, Z). By Ito’s formula, we have

T
(Y;n+1 - ?t)Q - / |Z§L+1 - 73‘2d8
t

T T
:2/ (Y V) (f(s, Y, Z0) = (5, Ye, Z)ds +2 | (Y = V) (dK™! — dK,)
t

T T
+/ (Y™ =Y ) (g(s, Y, Z7) — g(s, Ys, Zs))dB, +2/ (Y V) (20 = Z,)dW,
t

T
T / 19(s, Y7, Z1) — g(s, Yo, Z,) 2ds.
t

Taking expectation and using the fact that ftT(Y"+1 ~ Y ) (K™ —dK,) <0, we get

S

T
B —Y,)* + E/ |zt — Z?ds
t

T T
<2E / (Y V) (f(s, Y2, Z0) — [(s,Ys Z)ds + E / 90, Y7 27) — g(s, Y, Z,)|ds
t t

T T T
<C (E/ [yt —?sdeerE/ m”—}ngdHE/ yzg—zsy%zs).
t 0 0

Using Growall’s lemma and letting n tends to co we obtain Y, = Y; and Z;, = Z,, dP x dt
a.e.

Uniqueness. It follows from the comparison theorem which will be established below. m

4.2 RBDSDEs with continuous coefficient

In this section we prove the existence of a solution to RBDSDE where the coefficient is
only continuous.
We consider the following assumptions
(H4.5) 1) for a.e (t,w), the map (y, z) — f(¢,y, 2) is continuous.
ii) There exist constants x > 0, L > 0 and « €]0, 1], such that for every (t,w) € © x [0,T]

and (y,z) € R x RY,

[f oy, 2)| < K (1+ [yl + |z])

9ty 2) =gty 2 <Lly—y[ +ale =2
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Theorem 4.2 Under assumptions (H4.1), (H4.3), (H4.4) and (H4.5), the RBDSDE
(4.1) has an adapted solution (Y, Z, K) which is a minimal one, in the sense that, if (Y, Z) is

any other solution we have Y < Y P —a.s.
Before giving the proof of Theorem 4.2, we recall the following classical lemma.

Lemma 4.2 Let f:[0;T] x Q x R — R be a measurable function such that:

(a) For almost every (t,w) € [0;T] x Q, x — f (t,z) is continuous,

(b) There exists a constant K > 0such that for every (t,x) € [0; T| xR | f (t,x)| < K (1 + |z|)
a.s.

Then, the sequence of functions

o () = min (f(y) —nle—yl),

yeQP
is well defined for each n > K and satisfies:

1) for every (t,x) € [0;T] x RY, | f, (t,2)] < K (1 + |z]) a.s..

(1)

(2) for every (t,x) € [0;T] x R4, x — f(t,x) is continuous is increasing.

(3) for everyn > K (t,z,y) € [0;T] x (]Rd)2, Ifo (t,2) — fu (ty)| <nlx—y|.

(4) If x, — x as n — +oo then for every t € [0;T], f. (t,z,) — f(t,x) as n — +o0.

Since ¢ satisfies (H4.3), we get from Theorem 4.1, that for every n € N*, there exists a
unique solution {(Y}", Z", K}*), 0 <t < T} for the following RBDSDE

Y =€+ [1 fuls, Y0, Z0)ds + Ki — KP + [ g(s, Y, Z0VdB, — [ ZrdW,, 0 <t <T,
Y;n Z St, Vi S T, a.s.,
S (Ve —S)dKT = 0.

We consider the function defined by

FHtu,v) = k(1 + |ul + Jv]).
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Since, | (¢, u,v) — f1(t, v, v")| < k(Ju — |+ |v —0']), then similar argument as before shows

that there exists a unique solution ((Us, Vj, K),0 < s < T) to the following RBDSDE:

Ut = 5 + LT fl(sa US7 ‘/Zs)ds + KT - Kt + ftT 9(3, U87 V;)dBS - j;gT ‘/desa
Ut 2 St, Vt S T, a.s., (48)
[ (U, — Sy) dK, = 0.

We need also the following comparison theorem.

Theorem 4.3 Let (&, f,9,5) and (5, f.q. S) be two RBDSDEFEs. Each one satisfying all the
previous assumptions (H4.1), (H4.2), (H4.3) and (H4.4). Assume moreover that:

i) € <€ as.

i) f(ty;2) < f(ty;2) dP x dt a.e V(y.z) € R x R

iWi)S, < S, 0<t<T as.

Let (Y, Z, K) be a solution of RBDSDE (¢, f,q,5) and <Y, Z, K) be a solution of RBDSDE
(é.£.9.9)

Then,

V, <Y, 0<t<T a.s.

Proof. Applying It6’s formula to }(Yt —-YH" 2, and passing to expectation, we have

2 T 12
B =) + B [ 1|2~ 2] ds
t

- 2E/T (VoY) (5% z) — 7 (s.1).2)) ) ds
+2E/T (Y - YS')+ (dK, — dK")

2
1{Y5>Y;}d8'

T
+E/ ‘g(S,YS,ZS)—g(S,n,,Z;)
t

Since on the set {Y; > Y/}, we have Y; > S] > S;, then
T /Jr T /Jr
/ <Y—Y> (dKS—dK;):—/ <Y—Y> dK’ < 0.
¢ ¢
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Since f is Lipschitz, we have on the set {Y; > Y/},

2 T
+ E/ 1{Y<>Ys'}
t

1 T
< <3L+ —L2) E/
€ t

+(6+a)E/tT

+ /|2
E‘(Yt—Yt’) Z,— 7| ds

, 2
Y = Y| lyvsvds

;12
ZS — Zs 1{y5>y;}d8.

We now choose € = 1_7‘1, and C = 3L + %LZ, to deduce that

2 _ T , 2
Blwi-vy| < [ |w-v)|as
t

The result follows now by using Gronwall’s lemma. =

Lemma 4.3 Let (Y™, Z") be the process defined by equation (4.7). Then,
i) For everyn € N, Y2 <Y <Y <U, Vt<T, as.

ii) There exists Z € M?* such that Z" converges to Z € M?.

Proof. Assertion i) follows from Theorem 4.3. We shall prove ).

[to’s formula yields

T T T
E|Yy)? +E/ |Z"|2ds = E|¢|? +2E/ n”fn(s,yj,zg)deE/ S dK!
0 0 0

T
+ E/ lg(s, Y™, ZM))* ds.
0
02
But, assumption (H4.5) and the inequality 2ab < — -+ rb* for r > 0, show that:
T

1
QY fol(s, YD, Z0) < =Y PP 41 | fuls, Y, Z0)
T

IN

1
VST (s (L Y] 1Z2D)°

and

1
l9(s, Y2 ZOP < (L4 e) LY P+ (L4 e)a| Z0* + (1 + 2)lg(s,0, 0)*.
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Hence

T T T
E/ |Z7ds < C + (m2+(1+e)a)E/ yzg|2ds+2E/ S.AK™,
0 0 0

T
<C+ (re?+ (14 ¢e)a) E/ | Z7|ds + BE(K})?.
0
On the other hand, we have from (4.7)
T T T
Kb vy — e / (s, Y™, 2 ds — / o(s, Y™, Z")dB, + / Zndw,, (4.9)
0 0 0

then

T
E(K})?*<C (1 - E/ \Zg\zds) :
0

which yield that
T T
E/ 1Z2ds < C' + (re* + (1 +e)a + BC) E/ |Z; [P ds.
0 0

Choosing r =¢ = = we obtain

1—o
2(k2+a+C)?

T
E/ |Z"%ds < C.

0

For n,p > K, 1td’s formula gives:

T T
By —Y?P +E / 27— Z2Pds = 2E / CYP)(fuls, Y Z1) — fo(s, Y2, Z7))ds
0 0
T

T
+2F — YP)dK" + 2E / (YP = Y")dK?P
0 0

T
+E / 9(s, Y, Z7) — g(s,YP, Z7)|* ds.

o

But
T T
E/ (Y] = YP)dK? = E/ (Ss = YP)dK? <0.
0 0
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Similarly, we have E [ (Y? — Y/)dK? < 0.

s

Therefore,

T T
E / 27— ZPPds < 2F / (Y2 = YP)(ful(s, Y2 Z0) — f(s, Y?, Z7))ds
0 0

T
h / l9(s, Y2, Z3) = 9(s, Y2, Z0) ds.
0
By Hoélder’s inequality and the fact that ¢ is Lipschitz, we get

T T
B[ \zr-zPas<E [ (7 vy
0 0

T T
+C’E/ |YS"—YSP\2ds+aE/ |z — Z7|2ds.
0 0

Since sup,, EfOT |fu(s, Y Z™)|? < C, we obtain,
T T
E/ |2 — ZP*ds < C (E/ (Y — Y;’)st) :
0 0

Hence

T
E/ | Z — ZP|*ds — 0; as n,p — oo.
0

Thus (Z"),>1 is a cauchy sequence in M?(R%), which end the proof of this Lemma. =
Proof. of Theorem 4.2. Put Y; := sup,Y,". The arguments used in the proof of the previ-
ous Lemma allow us to show that (Y, Z") — (Y, Z) in M?x M?. Then, along a subsequence
which we still denote (Y™, Z"), we get (Y™, Z") — (Y, Z), dt ® dP a.e. Then, using Lemma
4.2, we get fo(t,Y,", Z") — f(t,Y:, Z;) AP x dt a.e.

On the other hand, since Z" — Z in M?(R?), then there exists A € M?(R) and a sub-
sequence which we still denote Z™ such that Vn, |Z"| < A, Z" — Z, dt ® dP a.e.

Moreover from (H4.5), and Lemma 4.3, we have

|f (8, Z0)] < k(1 +sup Y| + Ay) € L*([0,T], dt), P —a.s.
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Chapitre 4. Reflected Backward Doubly SDEs.

It follows from the dominated convergence theorem that

E Jy 1fa(s, Y] Z0) = f(5,Ys, Zo) ds —> 0. By (H4.2), we have
T T T
E/ lg(s, Y, Z) — g(s,Ys, Z,)Pds < CE/ Y — Y, 2ds + aE/ |Z" — Z,|*ds — 0,
0 0 0 n—oe
Let
o T T T_
Yt:§+/ f(s,}Q,Zs)ds+KT—Kt+/ g(s,YS,ZS)dBS—/ Z AW, (4.10)
t t t

Ze MY €S8% Krel? Y, >S5, (K,) is continuous and nondecreasing, Ky = 0 and

fOT (Y — S;) dK; = 0. By Ito’s formula we have

(Y;tn - 715)2 = 2/T()/sn - ?s)(fn(‘s:y:en’ Z:) - f(S,Y;, Zs)ds + 2/T(E/sn - Ys)(szn - sz)

T T
+ / (V" = V) (g(s,Y", Z0) — (s, Yo, Z.))dBy + 2 / Y7 V)2 — Z)dW,
t t

T T
s [ ot vz — gt Vo) Pas - [ 122 - Z s
t t
Passing to expectation and using the fact that ftT(Ys” —Y)(dK" — dK,) <0, we get

T T
EY"-Y,)*+ E/ |Z" — Z,|*ds < QE/ (Y =Y ) (fuls, Y, Z) — f(5,Ys, Z4)ds
t

s
t

T
LB / 9(s, Y, Z7) — g(s, Yo, Z,)2ds.
t

Letting n goes to oo, we have Y, =Y, and Z, = Z, dP x dt a.e.
Let (Y*, Z*, K*) be a solution of (4.1). Then, by Theorem 4.3, we have for every n € N*,

Y™ < Y*. Therefore, Y is a minimal solution of (4.1). m

Remark 4.1 Using the same arguments and the following approximating sequence

(t,x) = sup (f(y) =nlz —yl),

one can prove that the RBDSDE (4.1) as a mazimal solution.
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Chapter 5

Reflected Discontinuous Backward
Doubly Stochastic Differential

Equation With Poisson Jumps.

In this Chapter we prove the existence of a solution to a following Backward Doubly
Stochastic Differential Equations with Poisson Jumps (RBDSDEPs) and with one con-

tinuous barrier

T T - T T T
Y, = §+/ f(s,As)ds—l—/ g(s,As)st—i-/ dKS—/ ZSdWS—/ / Us(e) fi(ds,de), 0 <t <T,
t t t t t E
(5.1)

where A; = (Y5, Zs, Us) and the generator is continuous and also we study the RBDSDEPs

with a linear growth condition and left continuity in y on the generator.
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Chapitre 5. Reflected Discontinuous Backward Doubly SDE With Poisson Jumps.

5.1 Preliminaries.

Let (2, F, P) be a complete probability space. For T > 0, We suppose that (F3), is
generated by the following three mutually independent processes:
(i) Let {W;,0 <t <T} and {B;,0 <t < T} be two standard Brownian motion defined on
(92, F, P) with values in R? and R, respectively, for any d € N*.
(i) Let random Poisson measure p on E X R, with compensator v (dt, de) = A (de) dt, where
the space £ = R—{0} is equipped with its Borel field £ such that {{i ([0,¢] x A) = (u —v) ([0,¢] x A)}
is a martingale for any A € & satisfying A (A) < co. A is a ¢ finite measure on £ and satisfies
J (LA \e|2) A (de) < 0.
Let FV :=o(W;0<s<t), F':=0(u;0<s<t)and F :=0(B,— Byt <s<T),
completed with P-null sets. We put, 7, := FV vV F vV F/". Tt should be noted that (F;),

is not an increasing family of sub oc—fields, and hence it is not a filtration.
e Notice the set B2 (R) =R x R¢ x L2 (E,&, \,R).

e Notice also the space D? (R) = 8% (0, T, R) x M? (0, T, R?) x A x L* (0, T, i, R) endowd

with the norm

1Y, Z, K, U)||D2(R) = ||Y||s2(o,T,R) + ||Z||M2(0,T,Rd) + ||K||A2 + ||U||£2(O,T,ﬁ,R) )

is a Banach space.
e We may ofter write || instead of ||Ut]|ig( B.EAR) for a sake simplicity.

e For d € N*, |-| stands for the Euclidian norm in R? x [0,77] .

The result depends on the following extension of the well-krown It6’s formula. Its proof

follows the same way as lemma 1.3 of [24]

Lemma 5.1 Leta € 8% (0,T,R*), (8,7) € (M? (Rk))2 ,n € M2 (R ando € £*(0,T, i, R¥)

such that:

t t t t t
ap = g + / Beds + / vsdBg + / NsdWs + / dK, + / / os(e) fi(ds,de),
0 0 0 0 0o JE
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then (7)

t

t t
jaul? = Jaol? + 2 / (a5, B,)ds + 2 / (@0, 7)dB, +2 / (s, ) AW, +2 / (0, dK,)

t
+2//<as,a( (ds,de)) /|’ys| ds—i—/ 7] ds+//|as )? A (de) ds
0o JE

+ Z (Aas)2,

0<s<t

T T
E|at|2+]E/ |775|2d3+E/ /|0S (e)|2/\(de) ds
¢ t JE

T T T
§E|aT|2+2E/ <ozs,65>ds+2E/ <as,sz>+E/ el? ds.
t t t

5.1.1 Reflected BDSDE with Jumps.

In this subsection, we assume that f and g satisfy the following assumptions (H5) on
the data (&, f,g,9):
(H5.1) f: [0, T]xQxRxRIx L2 (E,E,\,R) — R; g : [0, T x QxRxRIx L2 (E,E,\,R) — R
be jointly measurable such that for any (y,z,u) € R x RY x L2 (E,E,\,R), f(-,w,y,z,u) €
M?2(0,T,R) and g(-,w,y,z,u) € M?(0,T,R).

(H5.2) There exist constant C' > 0 and a constant 0 < a < 1 such that for every (w,t) €

Q% [0,7] and (y,5) € R?, (2,2) € (RY)?, (u, ) € (L2 (E,&,\R))

}f(tawayazau) _f(tvwvy,7zl7ul)‘2 < C [‘y_yl‘2+ ‘Z_Z,|2+ ‘U_UI}Q] )

‘g(tawaywzau) _g(tuwuylazlau,)f S C‘y_y,‘z—i_a{‘z_zlf—i_ ‘U’_ulf}'

(H5.3) The terminal value £ be a given random variable in 1.2

(H5.4) (S),5¢, is a continuous progressively measurable real valued process satisfying

E (SUPogth (Sj)2> < 400, where S; :=max(S5;,0).
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(H5.5) Sy < ¢, P-almost surely.

Definition 5.1 A solution of a reflected BDSDEPs is a quadruple of processes (Y, Z, K,U)

wich satisfies

(

)Y € S*(0,T,R), Ze M*(0,T,RY), K € A%, U € £2(0,T, 1, R),
i) Yy = €+ [ f(5,Ys, 2, Uds + [ g(s,Ys, Z,,U,)d B,

+ [LdK, — [ Zaw, — [ LU, () fi(ds,de), 0 <t <T,

| iii) S, <V, 0<t<T and [ (Y~ S)dE, =0.

Theorem 5.1 Assume that (H5.1) — (H5.5) holds. Then Eq (5.1) admits a unique solution
(Y, Z,K,U) € D? (R).

Proof. Main method is Snell envelope and the fixed point theorem, see [10]. m

5.2 Comparison theorem.

Given two parameters (¢!, f1,¢g,T) and (&2, f2,9,T), we considere the reflected BDSDEPs,
i=1.2

Vi = g+ [T s Y2 2L U s + [T gs Y, 2, UDE,

) S

(5.2)
+ [TaKi — [T Ziaw, — [ [LUi(e) fi(ds,de), 0 <t <T.

Theorem 5.2 Assume that the reflected BDSDEP associated with dates (&%, f*,9,T),
(resp <§2,f2,g,T>> has a solution (Y,', Z}, K}, Ulwepomy), ( resp (Y2, Z2, K2 UR)eiorr)-

FEach one satisfying the assumption (H5), assume moreover that:

£ <&
vVt <T, S} <S2
fl (t7§/t) Zt7 Ut) S f2 (tvyta Zt7 Ut) .

Then we have P — a.s.,

v <y,
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+
Proof. Let us show that <Yt1 - Yf) = 0, using the equation (5.2), we get

T

T
:5+/ (f'(s, Y} ZLUY) = f2(s, Y2, 22,U72)) ds+/ (dK} — dK?)
t
T
+/ (g(s,Y;,Zg,Uj)—g(s,Yf,Zf,Uf))dB —/ ZdW, — / / fi (ds, de) .
t t
Where V; = Y;!=Y2 and Z, = Z}—22. Since [ (V.) " (g(s, Y2, Z1,U) — g(s, V2, 22, U2)) d B,

and j; ( ) Z,dW, are a uniformly integrable martingale. Then taking expectation, we get

by applying Lemma 5.1

E‘(E)+‘2+E/j1{ﬁ>o}HZSH2ds+]E/tT[El{YS>O}|US ()| A (de) ds

T
<B|(©7 +28 [ ()7 (P6YLZLUY - P Y2 Z202) ds
t
T T
+2E/t (Y:e)+ (szl - sz2) +E/t 1{37S>0} Hg(";anslaZslaUsl) _9(573/372527[]52)”2618

Since on the set {Y} > Y}, we have Y} > 52 > S} then

& -e*

5 (V)T dKY —dik?) = — [T (Y. TdK? <0,

S

we get

E{’(E)+’2+/tT1{YS>O}HZSHQdH/tT/;{bO}]Us(e)]QA(de)ds}

< ZE/ (V)" (fi(s, Y 2L UL — f2(s, Y2, Z2,U2)) ds

t
T
* E/ 1{Ys>0} Hg(‘S?}/slu Zslv Usl) o g(S7Y;27 ZS27 U82)H2d8’
t
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we obtain, by hypothesis (H5.2), and Young’s inequality the following inequality
T —
2B [ (V)" (£ 2800 - P Y2, 22, U2) ds
t
o2 T = 12 ~ 12
< (2C 4 2¢C?) ]E/ V5| ds + elE/ (1{Y_>0} |Z,| +/ Levsop [T A (de)) ds,
t t ° g U°

also we applying the assumption (H5.2) for g, we get

lg(s, Y2, 22,U2) = g(s, Y2, 22, U3)||* < C Vi ds + a { | Z)" + || Ol [agienny |-

Then, we have the following inequality

B {|60° [+ [ 1ozl s+ [ [ 15y 0@ Ao ds)

< (20+2€C’)E/tT|}7S+‘2d3+6_1E/tT (1{YS>0} |ZS|2+[El{YS>O} 0, (e)!ZA(de)> ds
w08 [C1 1P as v am [y g |2 s [ 1, 1000 A s,

_ (2C+260+C)E/tT|1{j|2ds

T T
et n{ [ zfa [ 0P @),

chossing € and o such that 0 < e ! + o < 1, we have

2

T
E((th)+ §(2C+260+C)E/ VF| ds,
t

using Gronwall’s lemma implies that

finally, we have, Y;! <Y,'. =
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5.3 Reflected BDSDEPs with continuous coefficient.

In this section we are interested in weakening the conditions on f. We assume that f
and ¢ satisfy the following assumptions:
(H5.6) There exists C' > 0 s.t. for all (t,w,y,2,u) € [0,T] x A x Rx R% x L?(E,&,\R),
(t,w,y 2 u) €[0,T] x 2 x Rx R? x L2 (E,E,\,R)

[f(tw,y,z,u)] < C(1+ |yl + |2+ Jul),

2}‘

}g(t,w,y,z,u) —g(t,w,y/,z/,u/)|2 < C‘y—yllz—l—oz{‘z—z/f—{— ‘u—ul

(H5.7) For fixed w and ¢, f(t,w,,-,-) is continuous.

The theree next Lemmas will be useful in the sequel.

Lemma 5.2 Let f: [0, T] x QxR x R4 x L?(E,E,\,R) — R be a mesurable function such

that:

1. For a.s. every (t,w) € [0,T] X Q, f (t,w,y, z,u) is a continuous.

2. There exists a constant C > 0 such that for every (t,w,y, z,u) € [0,T] x Q x R x R? x

L2(E,E,\R), |f (tw,y, z,u)] < C(1+ [y + |2] + [ul)

Then exists the sequence of fonction f,

foltwyzwy = it [f (w2 ) o (jy =y e =2 e— )]
(y',z’,u,)el’)&(R)

15 well defined for each n > C, and it satisfies, dP X dt — a.s.

(i) Linear growth: ¥n > 1, (y,z,u) € B2 (R), |fu (t,w,y, z,u)] < C (1 + |y| + |2| + |u]) .

(1) Monotonicity inn Y y, z,u, f,(t,w,y,z,u) is increases in n.

(i1i) Convergence: ¥V (t,w,y,z,u) € [0,T] x Q x BX(R), if (t,w, Yn, 2n, Un) — (t,w,y,2,u),
then fr (t,w, Yn, 2n, un) — [ (t,w,y, z,u).

(iv) Lipschitz condition: ¥n > 1, (t,w) € [0,T] x Q, V(y,2,u) € B*(R) and (y,2',u') €
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B2 (R), we have

fn (tawayWZ?u) _fn (t7w7y/72/7u/>‘ <n (‘y_y/‘ + |Z_Z/| + ‘U—U//‘> :

Now given ¢ € L2, n € N, we consider (Y, 2", K", U™) and (resp (V, N, K, M)) be solutions
of the following reflected BDSDEPs:

(
Y;n =¢+ j;gT fn(s7 Y;n’ Z;L, Uf)ds + LTQ(Sv Y;n’ Z?? Usn)dgs

+ [TdKr — [T zraw, — [T [ U™ (e) fi(ds,de), 0 <t <T, (5.3)
| S <Y 0<t<T, and [) (V) - S)dK} = 0.
)
Vi=&+ [T F(s, Vi, No, My)ds + [ g(s, Vi, Noy M,)d B,
+ [T dK, — [T Naw, — [ [, M, (e) i (ds,de), 0 <t <T, (5.4)

| Si<Vi 0<t<T. and [ (Vi—S)dK, =0,

where F(s,w,V,N,M)=C 1+ |V|+ |N|+ |M]).

Lemma 5.3 (i) a.s. for all, t and ¥n <m, Y* <YY" <V,
(17) Assume that (H5.1), (H5.3) — (H5.7) is in force. Then there exists a constant A > 0

depending only on C, a, & and T such that:

||Un||LQ(O,T7,]7R) < A, |1Z" < A.

1PV (0,7,R?)

Proof. The prove of the (7) follow from comparison theorem. It remains to prove (i7), by

Lemma 5.1, we have

T T
Em"|2+E/ |Zg|2ds+E/ /\Ug (e)]* X (de) ds (5.5)
t E

t

T T T
<E|¢]® + 2B / Y fo(s, Y2, 20, UT)ds + 2B / Y'dK" + B / lg(s, Y2, 20, U™ ds.
t t t
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By (7) in lemma 5.2, we have

T T
0B [ Y7 (s, Y, 20, U)ds < 2CE / YL+ Y2 4 20 4 U7 ds
t t -
gTC2+]E(/ <|Y"| +20 Y ds—l— |Y”| )d>
t

g n|2 02 n|2 n 2
+E N2+ W A2 [ US ()P A(de) [ ds )
t

§T02+<1+20+7+—) / Y% ds
1

eu( [ (wil e [ 0r @A) as)

also by the hypothesis associated with g, we get

lg(s, Y2, Z2,UD|P < (14 €) |lg(s, Y- ,ZS,US)—9(870,0,0)\\2+TH9(8 0,0,0)||*,
1+e¢

<U+9ONP + A+ af{IZe + 10 xmens | +—— llg(s,0,0,0)[.

Chossing 71 = v = % Then, we obtain the following inequality

B (1P + 1200 ds + 7 [ 102 () A (de) ds)
<BIEP+TC+ (1420 4+ + (14 C) B f [Y2 ds + 2 f) Y] dK?
+(5+0+aa) {Bf1Z0Pds + B [ [, 100 ()P A(de)ds |+ 2B [ [lg(5,0,0,0)|” ds.

Consequently, we have

T
[ (|Z:|2+ / |U:<e>|2x<de>) ds
t E
€ r 2 r 2 2
< 5+(1+€)0¢ E ]Zg[ ds + ]Ug(e)‘ )\(de)ds —i—A—I—QE‘Kéﬁ—Kﬂ ,
t t E

where

E ¢ +TC? + B [ [|9(s,0,0,0)|* ds + 3B (supge,r (S5)°)

4T (1 +20 442 4 (14¢) C) E (sup, |Y;"[*) .
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Now chossing ¢ and « such that 0 < % + (1 +¢€) a < 1, we obtain
T T
E/ |27 ds + E/ / U™ (e)> A (de) ds < A + 0B |K» — K|?. (5.6)
t t E
On the other hand, we have from Eq.(5.3)

T T -
Kp— Kp =Y ¢ / fals, Y7, 20, UMY ds — / o(s, Y7, 20 UMd B,
t t

T T
+ / ZrdWs + / / U (e) i (ds, de) .
¢ t JE

Using the Holder’s inequality and assupmtion (H5.6), we have

T T
E|K— K'? < Cy + Cy (E/ |Zg|2ds+E/ [wa () \ (de) ds>,
t

t

From inequality (5.6), we get
T T
E/ (|Z§|2 +/ U7 ()] A (d@) ds < A+901+902E/ <|Z§|2 +/ U7 ()] A (de)) s,
0 E t E
Finally chossing 6 such that 0 < 6C5 < 1, we obtain
T T
E/ |Zg|2ds+]E/ / U™ (e)]* A (de) ds < A+ 0C, < .
t t E

The prove of Lemma 5.3 is complet. m
Lemma 5.4 Assume that (H5.1), (H5.3) — (H5.7) is in force. Then the sequence (Z™,U™)
converges a.s. in M? (0,T,R?) x £*(0,T, i1, R).

Proof. Let ny > K. From Eq.(5.3), we deduce that there exists a process Y € 82 (0,7, R)

such that Y™ — Y a.s., as n — 0o. Applying Lemma 5.1 to |Y;" — th|2, for n, m > ng

B (1 =Y+ f) 120 = 2P ds + f) [ U2 (e) = U () A (de) ds)
< 2E J;T (Yn - }/sm) (fn(S?}/snv Zga Usn) - fm(sv Ysm7 Zg”? U;n)) ds

s

2 [T (Y = Y) (dK? — dK™) + B [ ||g(s, Y2, Z0,U) — g(s, Y™, Z, UM ds.
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—Y") (dK? — dK]") < 0, we deduce that

T T
E/ |Zp—zgn|2ds+15/ /\Uf(e)—U;" (e)? A (de) ds
t t E

T
2B [ (7YY (s VI 20 UD) ol Y 22U ds
t

S

Since ftT (Y.

T
IE / lg(s, Y, 28, UT) — g(s, Y, 2, U™)| P ds.
t

Using Holder’s inequality and assumption (H5.6) for g, we deduce that

(1-—a)E {/ |z — Zm)? ds+/ /|U” Sm(e)\?A(de)ds}
oF (s, Y7 20 UM) — fols, Y, 2 U™ d yr_ym?2q
< (/ Fuls )= fnls : ) (/\ - )

T
+ CE/ Y? — Y™ ds.
t

Applying assumption (H5.6) for f and the boundedness of the sequence (Y™, Z™ U"), we

deduce that

T T T
(1—0) {E/ ]Z[‘—Zf"”|2ds+E/ /\Ug (e) —U™ (e)|2)\(de)ds} gcteE/ Y — Y™ ds,
t t E t

where the constant C*® > 0 depend only C, o and T.
Which yields that (Z2"),., respectively (U"), -, is a cauchy sequence in M? (O, T, Rd) , Te-
spectively in £* (0, T, fi, R) . Then there exists (Z,U) € M?(0,T,R?) x £*(0,T, i,R) such

that

/\Z" Z\ds+E/ /|U” (e)]* A (de)ds — 0, asn — oo.

Theorem 5.3 Assume that (H5.1), (H5.3) — (H5.7) holds. Then Eq (5.1) admits a solution
(Y, Z,K,U) € D? (R). Moreover there is a minimal solution (Y*,Z* U*, K*) of RBDSDEP

(5.1) in the sense that for any other solution (Y, Z,U, K) of Eq. (5.1), we have Y* <Y
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Proof. From Eq.(5.3), it’s readily seen that (Y™) converges in S% (0,T,R), dt ® dP — a.s. to
Y € 82(0,7,R). Otherwise thanks to Lemma 5.4 there exists two subsequences still noted

as the whole sequence (Z"), ., respectively (U"), ., such that

EfOT]Zg—Zs]2ds—>Oasn—>oo, and EfOTfE\Uf(e)—Us(e)]2)\(de)ds—>(),asn—>oo.

Applying Lemma 5.2, we have f, (¢,Y", 2", U") — f(t,Y,Z,U) and the linear growth of f,

implies
[ (B, 20, UP)| < © <1 +sup (V7] + 27| + |Um>> e L' ([0,7];df).

Thus by Lebesgue’s dominated convergence theorem, we deduce that for almost all w and

uniformly in ¢, we have
T
E/ fu (s, Y, Z2 U ds—>E/ f(s,Ys, Zs,Us) ds.
t
We have by (H5.6) the following estimation

T
E/ lg(s, Y2, Z2,U%) = 9(5, Y, Zs, Us) | ds
t

T T T
gOE/ yY;”—}nger@E/ |Z§—ZS\2ds+aE/ /yUg(e)—Us(e)y2A(de)ds—>o,
t t t E

as n — 00, using Burkhoélder-Davis-Gundy inequality, we have

Esupyycr | [, Z2dW, — ftT -0,
E supo< i< ftTfE U (e) i (ds, de) ft [ Us (e) iu(ds, de) ‘ — 0,
Esupyeier | [i 9(s, Y, Z2,UNd B — [ g(s, Y, Zs, Uy)
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Let the following reflected BDSDEPs with data (&, f, g, S)

(Ves? 0,7,R), ZeM>(0,T,RY), KeA, Uecl*0,TjR),
V=6t [1 f(s,Ye, 20, Uds + [ g(s,Y,, Z, U)AB, + [ dK,

— [ Zyaw, — [ [, U (e) fi(ds, de) ,

$i <V, 0<t<T and [ (Vi-S,)dK, =0,

Hence along a subsequence, we derive that

~ |2 A
K Y? - Y;f S QELT (Y;n - sz) (fn(57§/;nazga U:) - f(S,Y;,ZS, Us))ds

128 [ (Y7 = V2) (K2 = ) + B [T Nlg(s, Y2, 22, U2) = (5, Ve, Zo, US| ds

~ 2 ~ 12
—E [ [, |\U"(e) = Uy (e)| A(de)ds —B [ |20 — Z,| ds.

Using the fact that ]EftT <st — f@) (dK? — dK) <0, we get

2 T
+5f [
t JE

< 9E / (V= 92) (s Y7 Z0.07) = f(s. Ve, Z,,U,)) ds
t

A

2 T .12
E U? (e) — Us (e)| A(de)ds+ E/ Zt —Zg| ds
t

Y =Y
T

T
1E / g(s, Y2, Z0U™) — gls, Yo, Zo, UL || ds.
t

letting n — oo, we have Y; = f/t, U, = ﬁt and Z, = Zt dP x dt — a.e.
Let (Y*, Z*,U*, K*) be a solution of (5.1). Then by Theorem 5.2, we have for any n € N*,

Y™ < Y*. Therefore, Y is a minimal solution of (5.1). m

5.4 Reflected BDSDEPs with discontinuous coefficient.

In this section we are interested in weakening the conditions on f. We assume that f

satisfy the following assumptions:
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(H5.8) There exists a positive process f; € M? (0,7, R) such that

V(ty,zu) €[0,T] x B2 (R), |f(t.y,2u)| < fi(w)+C(|lyl+ 2] + Ju]).

(H5.9) f(t,,z,u): R — R is a left continuous and f (¢,y,-,) is a continuous.

(H5.10) There exists a continuous fonction 7 : [0, 7] x B2 (R) satisfying for y > ¢/, (2,2') €
R, (u,u') € (L* (E, &\ R))?

7ty 2,u)| < Oyl + [2] + [ul)

f(taway7z7u) _f(taway,7zlau/) Z W(t7y_yl7z_zlau_u,) :
(H5.11) g satisfies (H5.2).

Existence result.

The two next Lemmas will be useful in the sequel.

Lemma 5.5 Assume that 7 satisfies (H5.10) , g satisfies (H5.11) and h belongs in M? (0, T, R).
For a continuous function of finite variation A belong in A? we consider the processes

(Y,Z,U) € §2(0,T,R) x M?(0,7,R?) x £*(0,T, ii,R) such that:

() Vi=€+ [ (7 (s.Ys, Z,U,) + h(s)) ds+ [, g(s,Ys,
+ [TdA, — [ Zaw, — [T [ U, (e) fi(ds,de), 0 <t <
(@) [V, dA, > 0.

_ _ <
7, Ug)d B
T,

Then, we have
(1) The RBDSDEPs (5.7) admits a minimal solution (fft, Zy, Ay, Ut> e D?*(R).
(2) if h(t) >0 and £ > 0, we have Y; > 0, dP x dt — a.s.
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Proof. (1) Obtained from a previous part.

(2) Applying lemma 5.1 to !Y;_‘Q, we have

s (I + [ g 0P as s [ [ 1 007 Ao a5
<E <|§ : _2/th; (7 (.Y 20, U) + 1 (s) ds—Z/tTYSdAS)

Since h (t) > 0, £ > 0 and using the fact that fOT Y, dA, > 0, we obtain
T T
=2 = 12 ~ 2
BV B [ 1 2P+ B [ [ 15 |0 @F Ade) as
t t E
T - T R
< —2]E/ Yo (s, Y, Zs, Us) ds+E/ Liv.<op |l9(s, Y, Zo, UL) | ds.
t t
According to assumptions (H5.11), we get

BI 4B [ 1y 2P+ B [ [ 15y |0 @F Ade) as

T T
< —2E/ Y7 (s, Yy, Zs, Uy) d8+0E/ liv.<o1 |Vi[*ds
t t

T T
= 112 = 2
" aE/ s, oy I1Z2] [ s + aE/ / Ly, <o |0 () A (de) s,
t t E
applying assumption (H5.10) and using Young’s inequality, we have

S

T_ _ _ _ T _ 9 1 T _ 9 T _ 9
_2E/ Yo (S,YS,ZS,US)dS§2C’E/ V| ds+ZE/ Y, | ds—i—QEC’?E/ | Z||" ds
t t t t
]_ T —_ 12 2 T — 2
—i——E/ V|7 ds + 2¢C ]E/ /’Us (e)|” A (de) ds.
2¢J; t JE

Then

E}Z_|2+]E/tT1{YS<O} y|Zsy|2ds+E/tT/E1{YS<O}\US ()|* A (de) ds
< (3O+e—1)E/tT\Y;}2ds+ (a+2602)E/tT1{YS<O} <|\ZS|\2+/E}US (e)}z/\(de)) ds
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Therefore, choosing €, a and C such that 0 < a +2¢C? < 1 and using Gronwall’s inequality,
we have
B[V, | =0,
P — a.s. for all t € [0,7]. Finally implies that Y; > 0, P —a.s. for all t € [0,7]. =
Now by Theorem 5.3 above, we consider the processes (37;0, 70 KD, UE) (Y0, Z0 K2, UY)

and sequence of processes (f@”, Zt”, f(t", (7?) respectively minimal solution of the following
n>0

RBDSDEP:s for all ¢ € [0, 7]

() o=+ [ [-c (|7

+ [TaK? — [T 20aw, — [T [, U (e) fu (ds,de), 0 <t < T,

+‘Z§‘+ ¢

) = £ ds+ [ 9(s, 70 20.00)d B,

(ii) Y2 > S, (58)
| Gii) fy (V20— 8,) ak? =0,
([ (1) YO =c+ [TIC(YO] + 120 + U] + fi)ds + [ g(s, Y2, 2°,U0)d B,
+ " ng—ft 20w, — [ [LU%(e) fi(ds,de), 0 <t <T, 59)
(ir) Y2 > S,
(ii7) fo 0 S,)dK? =0,

and

(

(i) Yr=¢+ ftT [f(s’{/;hl?anq’ 071)ds + (87}7871 N/ Ugflﬂ ds
+ 7 g(s, Y2, 20, U0 d B+ [ dRy — [T Z0aw, — [ [, U7 (e) i (ds,de), 0 <t < T,
(i) Yr > S,

(i17) fo(s >dK”—O

(5.10)

Lemma 5.6 Under the assumptions (H5.3) — (H5.5) and (H5.8) — (H5.11), we have for any
n>1andte0,7T]

0 nt1 0
Vo<V <V <Y,

92



Chapitre 5. Reflected Discontinuous Backward Doubly SDE With Poisson Jumps.

Proof. For any n > 0, we set

opy =P = s

and

Awnﬂ(s’ 5f/sn+17 52;1-"-1, 5(jsn+1)

| = U5, Y 4 Y 6200 4 20, U+ U7) — (s, Y, 22, 07).
Using Eq.(5.10), we have

T T
Sy = / [ 5,0 sz 5Un+1> +9n+1] d3+/ Ag"“(s,(537;"+1,(5Z§+1,5U§+1)d§3

T
+ / d K”“ — / SZm AW, — / / SU™ (e) fi(ds, de)
t

where
gr+l = AfnJrl(s’é}Zn’éZg,éU:) -7 <5,5}78”,52§,6(7§> >0,
and

60 = f(s, V0, 70,079 +C(‘Y0

U£)+fs>0, Yn > 0.

According to the assumptions on f and g, we can show that 6° and Ag"™, Vn > 0 satisfy
all assumption of lemma 5.5. Moreover, since f(t” is a continuous and increasing process, for
all n >0, 6K "+l is a continuous process of finite variation and using the same argument as

in first part. We can show that

[ a(oe) - [ i) w(fem =)

T - T B -
— /0 (Y'tn+1 _ Y;n) dKZ%H _ /0 (Y'tn+1 o Y;n) thn 2 0.

Applying lemma 5.5 we deduce that 6Y;"*! > 0, ie. Yt > YV ¥Vt € [0,T], we have

Yt >y > vy
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Now we shaw prove that Y;"*! < V%, by definition, we obtain

0 n+1
Yy Y,

T
_/ L0 (Y2 4120+ |000) + 1] = £, V7 22,07 (s, 67040, 6200 507+ ) s,
t

T T
+/ (9(57}/:907227(]3) _g(sjzn+172g+l’[7:+l)) d<§8+/ (ng_dngrl)
t t

|
—
N
/N

+
@\%
/N

where

A=

0 41
Yo=Y,

YO }7Sn+1’ i

72— 70 aw, - [ ' [ (020 -0 @) (s e

- [ (el

g5, Y2, 20,U%) = (s, Y21, 204,074 ) d B,

— Z;‘“‘ +

U — Ug“D + AT ds

dK° — df(;‘“) + / ' (ZQ - Zg“) dw, — / ' / (Ug (€) — O+ (e)) fi (ds, de)
t t E

|20 2| |00 = T | 0 120+ (U9 )+ f S (s, Vi, 2, )=

m (3,5}7;”“,(52?“, 5(7;‘*1) > 0. Also using lemma 5.5 we deduce that Y — Y;"*1 > 0, i.e.

Y0 > fft"“, for all ¢ € [0, T]. Thus, we have for all n > 0

VP >y >y > V0 dP x dt —a.s., Yt €[0,T).

Lemma 5.7 (see saisho [26]) Let (k") oy be a sequence of continuous and bounded variation

functions from [0,T] to R, such that

i) sup, Var (k") < C' < 4o0.

i1) lim,,, 1o kK™ = k uniformly on [0,T].

iii) Let (f™)

neN

be a sequence of cadlag functions from [0, T] to R,such that lim,, o f" = f

uniformly on [0,T] .

Then for any t € [0,T], we have:

i[5y = [ 5 )a,

n—-4oo
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Theorem 5.4 Under assumption (H5.1), (H5.3)—(Hb5.5) and (H5.8)—(H5.11), the RBDSDEPs
(5.1) has a solution (Y, Zy, Ki, Up)o<i<r € D* (R) .

Y/tn

< max ({/to’ Yt0> < | for all ¢ € [0,T], we have

2 2
)g]E(sup >+E(sup ’Y;0}2)<oo.
0<t<T 0<t<T

Therefore, we deduce from the Lebesgue’s dominated convergence theorem that <3~/t">

Proof. Since

vy Y

sup & ( sup

n 0<t<T

n>0
converges in §? (0,7, R) to a limit Y.

On the other hand from (5.10), we deduce that
~ ~ T ~ ~ ~ ~ ~ ~
Tt = Wt [ Y2 20, 00ds (5, 08740,620,607) | ds
0
T 5 5 5 — T 5
- / g(s, Y Zn+t Urthd B, + / AR — / ZM AW, — / / U™ (e) fi (ds, de)
0 0 0

applying Lemma 5.1, we obtain

2+E/0 ds+]E//

<BIe 4 om [T (1o, 50,2, 00) (s, V0241, 60) ) s
0

E ’}70”“ A (de) ds

T 5 T B 5 B 2
o [Fisaree s [ g vz o as
0 0
From (H5.8) and (H5.10), we get

(£ ¥ 20,00 4w (1,850,020, 00741 ) )

< [T {0 +20 (|72 + 2] + 6] +0<fc"“\ v|z] Uf“D}
fi (W) 2 |y 2 o2, 207 |y 2 2ol
< 5 + 2 + t + | t—— 61 2 |7t € 2 |t
—|—O an+1 Yn_|_1 + 6_3 Zn—l—l 2 Yn—l—l + 6_4 U?‘H—l
t 263 t 264 2 ! 7
:7'{'?,

95
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where

1 20% 207 (% (7 ~ 2

S+ P+ —+ —+—+—+C ||

2 62 263 264

3 €1 | 5nl? € | ~n|? ft(w)
— |z — U —_

2 +2 ¢ +2 o)t 2

Also applying (H5.11), we obtain the following inequality

~ ~ ~ 2 ~ - ~ 2
ots, T2, 20, 0| < 2 g 700, 200, 004 = 9(5,0,0,0)| | +2119(5,0,0,0)

2 -
+2a{ .

<20 |Y!

+ ‘ﬁ”“

2 2
+21]g(s,0,0,0)[|".

Using Young’s inequality, we get

T B 5 T 1 - 2
2E/ YR < 2E/ S, dK" <~ ( sup |5t|2) +0E‘K$+1’ :
0 0

— 0 0<t<T

Therefore, there exists a constant C' independent of n such that for any ¢;, where ¢ = 1 : 4,

we derive

g

§C+(€3+2Q)E/

+€1E/

Moreover, since

Zn+1

ds +E U”+1

A (de) ds

Zn+t ds + (€4 +20) E U"Jrl (e) )\ (de) ds (5.11)

ds + 62E (e)| A(de)ds+ OB ‘K”“

T
f(%+1 _ }"'/On—i-l . g _ /0 |:f<57)~/;n, Z;L, Usn)ds + (3;5{2”4_1752?4_1’50?4_1)] ds

T B 5 B — T N T B
—/ g(s,}g"“,zg“,U:“)stJr/ ZQ“dWer/ /U:+1 (e) fi (ds, de),
0 0 0 E
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Using Holder’s inequality and assumption (H5.8), (H5.10), we have that

2§01+02(E/0T( 2>ds+E/OT/E(

we come back to inequality (5.11), we obtain

“f,

< (C+0C) + (e +602)E/
0

2
n
Zs

U (e)

@)‘2) X (de) ds) |

B[R

Zn+1

ds+E U"Jrl

A (de) ds

d8+ 62+902 )dS

d5+(64+2a+902 / /

we taking €; = €5 = ¢y and €3 = ¢4 = €, we have

E/O ds+E//

< (C+0C) + (e + 0Cy) {E/O
+(e+002+2a)E/0T<

6

A (de) ds,

T
+(€3+2a+902)E/
0

A (de) ds

ds—HE

de) ds}

e i +

U+ (e)

"\ (de)) ds,

E

we chossing €, § and « such that 0 < (€4 0Cs + 2a) < 1, we get

a8

< (C +6C) + (0 + 0Cs) {E/O

U™ (e)| A (de)ds

ds —|—E/ /
1=n—1

< (C+06Ch) (e0 + 0Cs)" + (eo + 0C3)" {E/

=0

Z““) ds+E

de)d}
ds+E/O

Now chossing ¢y, # and C5 such that ¢g+60C5 < 1 and notting E fOT < NS

(e)ds}.

: QA(de)) ds <

0o. Obtain

L2 8
sup,en B [) |20 ds < oo and  sup,enE [ [ (U2

(e)‘2 A(de)ds < o0,

97



Chapitre 5. Reflected Discontinuous Backward Doubly SDE With Poisson Jumps.

consequently, we deduce that

_ 2
E)KL}“‘ < 0.
Now we shall prove that (Z”,[N(”,[Nf”) is a Cauchy sequence in M? (0,7,R?) x A? x
£2(0,T, i, R), set T = f(s, Y1 Z0-1 U 4 rr (s, oY 62", 502) , we have
. 3 T T o o o
Tr-ve = [ mernyass [ (o7 2000) - o5,V 20,07 B,
¢ t

+/tT (aks - a7 ‘/tT (z: - 2z0) dWs—/tT/E(U?<e>—0?(e>)ﬂ(ds,de),

- 2
applying Lemma 5.1 to ’5Y8”’m , we have

[ I

<9E /t ! (yn _ Ym) (I —T) ds + 2K /t ' (yfsnﬂ _ Y") (dK? — dK?””)

2

_f/sm

~ - 2 ~ ~ 2 - 2
B[ - ¥ Zr-zr -

(de) ds

2

T
B[ (st ¥ 22,00 - gt 7, 200 )| s,
t

since ftT (575" - }7;7”> (df(;‘ - df(;”) < 0, we obtain

o |7 [ e

<2E / (V7 - 1) (00~ 7y ds + B / (966, 70, 22.07) — g5, 72 20,07

N 2
Zm — U (e)| A(de)ds

2

ds.

Applying Holder’s inequality and assumption (H5.11), we deduce that

kel -efe ]
L R 1)
e

2

-zl 0 (e)

Y (de)}

ds.
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The boundedness of the sequence (37”, Zn K", U ”), we deduce that

T
A = sup (E/ yrg%) <00
neN 0

This yields that

t-oz [ AR
<4AE(/ i) vos [

Which yields that <Z”>n>0 respectively (U”)

zn — Zm

2

Y" Y™ ds.

S S

is a Cauchy sequence in M? (O,T , Rd)
n>0

respectively in £% (0,7, i1, R) . Then there exists (Z,U) € M? (0, T,R?) x £2 (0, T, ji,R) such
that,

2
—Us(e)| A(de) =0, asn— oo. (5.12)

T, 9 T
E/ ‘ZQ—ZS ds+E/ /
t t E

On the other hand, applying Burkholder-Davis-Gundy inequality and (5.12), we obtain

. . 2

ESUP@QST ftT Z;LdWS — ftT Z;L — Zs ds — 0,
N 2

E supg< < ftT [ U2 (e) i (ds, de) ft [ Us (e) fu(ds de)’

< EftTfE)Ug () — U, (e)’ A (de) ds — 0,

2
s SEftT

T — |2
Esupge,<r | [, 9(s, Y, Z0,U") dB, —ft (5,Ys, Zs,Uy)d B
ds—l—oz]EftTfE T (e)

2
<CE [' — U, (e)| A(de)ds — 0,

Y —Y,

S

ds—i—ozEL

Z" — 7,

S

as n — oo. Therefore, from the properieties of (f, ), we have
Do = f(s, V2 207 00 o (5,000,022, 007 ) = f(5,Y5, Z4, U,
P —a.s., for all t € [0,T] as n — oco. Then follows by dominated convergence theorem that

T
E/ " — f(s,Y,, Zy, Uy)|* ds — 0.
0
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Since (Y” Zn o, rg) converges in S? (0, T, R) x M2 (0, T, R%) x £2 (0, T, ji, R) x M? (0, T, R)

)

2

and

~ ~ 2
E(Sup ]K;L—K? +

0<t<T

Y-y

t ~ ~
/0 (Zs 7 )dWS

2

2 N _ 2
)SE(‘YU"—%"L + sup (
0<t<T

t 5 N ~ ~ ~ ~ -
| (ot 7 2200 = 5,720 2.0 ) B
0

/ot[E (T2 () = T2 (€)) i (ds, de)

+ E sup
0<t<T

Y

T
—I—E/ " —T™*ds + B sup
0

0<t<T

for any n, m > 0, we deduce that

E(sup ‘f(f—f(tm

0<t<T

2
)=

as n, m — oo. Consequently, there exists a F;—measurable process K wich value in R such
that

K" — K,

2
E < sup ) — 0, asn— oc. (5.13)
0<t<T

Finally, we have

(o Vel (=]

as n — o0o. Obviously, Ky = 0 and {K;;0 <t < T} is a increasing and continuous process.

- 2 - -
vr Y, +‘Kt"—Kt 77, 0 (e) — U, (e)

"\ (de)) ds) 0,

From (5.10), we have for all n > 0, 17;” > S, ¥t € [0,T], then Y; > S;, ¥t € [0,T].

On the other hand, from the result of Saisho, we have

S

T, . T
/ (Y" — Ss> dK? — / (Ys; — Ss)dKs, P —a.s., asn— oc.
0 0

Using the identity fOT <§~/S" — SS> df(g = 0 for all n > 0, we obtain fOT (Yy — S5)dKs = 0.
Letting n — 400 in Eq. (5.10), we prove that (i, Z¢, K¢, Up),e(q 1 is solution to (5.1).
Let (Yi, Z.,U,, K,) be a solution of (5.1). Then by Theorem 5.2, we have for any n € N*,

Y™ <Y.. Therefore, Y is a minimal solution of (5.1). m
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Chapter 6

Reflected solutions of Anticipated
Backward Doubly SDEs driven by

Teugels Martingales.

n this chapter, we deal with reflected anticipated backward doubly stochastic differ-
Iential equations (RABDSDESs) driven by Teugels martingales associated with Lévy
process. We obtain the existence and uniqueness of solutions to these equations by means
of the fixed-point theorem where the coefficients of these BDSDEs depend on the future and

present value of the solution (Y, Z) . We also show the comparison theorem for a special class

of reflected ABDSDEs under some slight stronger conditions. The novelty of our result lies

in the fact that we allow the time interval to be infinite.
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Chapitre 6. Reflected solutions of Anticipated Backward Doubly SDEs driven by Teugels
Martingales.

Xiaoming Xu in [30] extended of the result introduced by Peng and Yang [24] to the
following anticipated BDSDE (ABDSDE in short)

— e+ [T fs, Ao, A2V ds + [T g(s, A, A)d B, — [T ZdW,, te[0,T],
(Y;‘J Zt) = (ntaﬁt)a te [T7T+ p} )

(6.1)

where A, = (Y5, Z,), AY = (Ys+¢(s), Z st s)) and ¢ : [0,7] — R%, and ¢ : [0,T] — R% are
continuous functions satisfying:

(A) There exists a constant p > 0 such that for all £ € [0,T7],
t+o(t) <T+p, t+(t) <T+p.

(B) There exists a constant M > 0 such that for each ¢ € [0,7] and for all nonnegative

integrable functions A (-),

[ h(s + ¢ (s))ds < M [T h(s)ds,
and

L5 h(s+ 4 (s))ds < M [ h(s)ds.

In the paper of Nualart et al [22], a martingale representation theorem associated to
Lévy processes was proved, then it is natural to extend BSDEs driven by Brownian motion
to BSDEs driven by a Lévy process [23]. In the work of Ren et al [12] and [25], the authors
proved the existence and uniqueness of solutions of BDSDEs driven by Teugels martingales
associated with a Lévy process without barrier, under Lipschitz conditions on the generator
f. These results were important from a pure mathematical point of view as well as from an
application point of view in the world of finance.

In this chapter, motivated by the above results and by the result introduced by Xiaoming

Xu [30], we establish the existence and uniqueness of the solution to the reflected ABDSDE
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Martingales.

(RABDSDES) driven by teugels martingales associated with a Lévy process,

Vi =&+ [ (s, Ay ASY)ds + [T g(s, A, AOVYA B, + [T dK, — 2, [T ZPdHD e (0, 1),

(Y;f;Zt) = (ntaﬁt)7 te [T7T+p}a
(6.2)

and Y; > S, as. for any ¢ € [0, + p] where Ay = (Y, Zy), A2 = (Yoio(e)s Zstu(s)) » 19
derived by mean of the fixed-point theorem. Furthermore we get a existence and uniqueness
result of the solution to the previous equation when, S = —oc i.e., K = 0.

Let X; = {X;,t >0} be the lévy process defined on a complete probability space
(QF,P, By, Li;0 <t <T). It is well known that X; has a characteristic function of the
form

E9% = exp {iaﬁt - 5026% + t/ (e — 1 —ifx1{y<y) v (dz) |,
R

where a € R, 02 > 0, and the lévy measure v is a measure defined in R* and satisfies:

/R(l A z%) v (dz) < oo,

Je > 0, f(_E o eMN7ly (dr) < oo, for same A > 0. This implies that the random variables X,

have moments of all orders, i.e.
/ z|" v (dz) < oo, Vi > 2,
R

and that the characteristic function E** is analytic in a neighborhood of 0. Moreover, it
will ensure the existence of the predictable representation (see [22]), wich we will use in our
proofs. We refer to [3] for a detailed account of 1évy processes.

Following [22], 23], we define, for every i = 1,2, ..., the so-called power-jump processes

{Xt(i)a t> 0} and their compensated version{Y;(i) =x_E [Xt(i)} ;U2 0} ; also called
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the Teugels martingales, as follows:

X=X, LV=> (ALY, fori>2,

0<s<t

Y0 - xO _g [Xt@] — xR [Xf“} , for all i > 1.

)

An orthonormalized procedure can be applied to the martingales Yt(i in order to obtain

a set of pairwise strongly orthonormal martingales {H (i)}pl in the sense that each H® is a

linear combination of the Y, j =1, ... i:
HY =¥ + ¢ ¥V 4 4 ey,

[H O H (j)} ;1 # 7 and {[H O H (i)] N 0} are uniformly integrable martingale with

initial value 0, i.e.,

It was shown in [23] that the coefficients ¢; 5, correspond to the orthonormalization of the
polynomials 1, z, z?, ...with respect to the measure y (dxr) = x?v (dx)+02dy(dx). The resulting
processes H) = {H® ¢ > 0} are called the orthonormalized ith-power-jump processes.

The following It6 formula, which is a useful tool in our work. Its proof follows the same

way as lemma 1.3 of [24]

Lemma 6.1 Let o € S ([0,T];R), 8, v and o € M3,([0,T];R) such that

t t t 0 t
o = ag + / Bsds + / vsdBs + / dK, + Z/ Ugi)st(i),
0 0 0 = Jo

then

t t t oot
|ozt|2 = |@0|2 + 2/ o Beds + 2/ asYsdBg + 2/ agdK + 2 Z/ asggi)ngi)
0 0 0 = Jo

t [ <IN t
R
0 0

i=1 j=1
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note that (HY, HW), = §,;t, we have

t t t 0 t
E\at|2:E<|a0]2+2/0 asﬁsds+2/0 ades—/O |78\2ds+2/0 (a§i>)2ds>.
i=1

Remark 6.1 In the case where S = —oo (i.e., ABDSDFEs without lower barrier), the process

K has no effect i.e., K = 0.

Definition 6.1 A solution of equation (6.2) is a triple (Y, Z, K) which belongs to the space
BZ,([0, T + p], R) x A? and satisfies (6.2) such that:

S, <Yy, 0<t<T+p,
S (Yo = 8, ) dE, = 0.

Remark 6.2 In the setup of Problem (6.2) the process S (-) play the role of reflecting barrier.

Remark 6.3 The state process Y () is forced to stay above the lower barrier S (), thanks to

the action of the increasing reflection process K (-).

In the following Proposition, we are going to discuss the equation (6.2) has a unique solution
with f, g do not depend on the value or the future value of (Y, 7), i.e., P-a.s.,f (t,w,y, 2,7, () =
f(t,w) and g (t,w,y, z,7, () = g (t,w), for any (t,y, z, 7, (), which will play a key role in the

two subsection 6.1.1 and 6.1.2.

Proposition 6.1 [see [25]] Assume & € L2 (Hr), there exists a unique triple of processes

(Y, Zy, Ky) € B3, ([0, T + p] ,R) x A? solve the following reflected BDSDEs,

— o+ [ f(s)ds + [ g(s)dB, + Kr — K, — Y0, [T 20an",  te0,T],
}/;5>St7 tE [0,T]7 fO (Yt—St)th:O
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6.1 Main results and proofs

Assumptions
We assume that f and g satisfy the following assumptions (H6):
(H6.1) (i) There exist a constant ¢ > 0 such that for any (r,7) € [0,T + p|?, (t,w,y, z, 7, (),
(tw,y 2, %.8) € [0,T] x QxR x 12 x SE (0, + plsR) x M ((0,T + p] ),
, 2
w927 () 1€ () = F(w, 9, 4.7 () € ()]

< (=i +lle= 21+ 87 [ln ) = £ 0P + [Jo (9 - {09

2
IZ] ) .
(ii) There exists a constant ¢ > 0, 0 < a1 < % and 0 < ap < ﬁ satisfying 0 < o + aoM < %,

such that

(6,0, ,2,7 (1) € () = glts0,5 2.7 ), (0)

2

<c(ly =g +E n (r) = 7 (1)]°) + an [z = 2|l + aaB7 | ¢ (/) = € ()

2

(H6.2) For any (t,w,y,z,m,(),
T
B [ (1£(5:,0.0,0,0)] + lg(s.0, . 2.7 O ds < o6,
0

(H6.3) The terminal value &7 be a given random variable in L? (Hr).

We consider also the following assumptions (B6):

(B6.1) (S),5, is a continuous progressively measurable real valued process satisfying
E <Sup0§t§T+p (S;r)2> < 400, where S :=max(S5;,0).

(B6.2) For any t € [T, T + p], S; < n;, P-almost surely.
(B6.3) (1;,9:) € S ([T, T + p;R) x M3, ([T, T + p]; %) .

(B6.4) (K})icjo.r] is a continuous, increasing process with Ky = 0 and B (K7)* < +o0.
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6.1.1 Existence and uniqueness of solution for the Reflected ABDSDE.

In this subsection we study the anticipated BDSDEs with reflection under Lipschitz continu-

ous generator.

Theorem 6.1 Let f, g satisfies the hypothesis (H6), (B6) and (A), (B) are hold. Then

the reflected ABDSDEs (6.2) has a unique solution (Yi, Zs, Kt)eior ) -

Proof. Let D the space of couple process (U.,V)) € 8 ([0, + p] ; R?) x M3, ([0,T + p|; 1?)
such that U, > S; for t € [0,T] and (U, Vi) = (m,9¢) for t € [T,T + p] endowed with the

T+p =00 - %
/ P | Y, P ds + Z }ZS(’)} ds :
0

=1

norm

Y, 2)]]5 = (E

Given (U.,V.) € D, we consider the following ABDSDEs with reflection

(Vo= + [ F(5.60.,090)ds + [ g(s.6,,09")d B,
+ [, -, [T 2P aH te 0,17, ©3
(Yi, Z2) = (1. ). te[T.T+p), |

| Yi> S, te[0 1], f) (i—S)dK, =0,

where 0, = (U,_,V,), 0% = (Uer(;ﬁ(s)f; ‘/s+w(s)) , which has a unique solution (Y., Z., K.) €
S2([0,T + p|,R) x M3, ([0,T + p];1?) x A? according to Proposition 6.1. Construct the
mapping ® is well defined from D into itself by (Y;, Z;) = ® (U, V}), then (Y., Z)) is the
unique solution of system (6.3).

Let <(7t_, f/t) be another element of D and define (fft, Zt> = <Ut_, \Z) , then the couple
(AY;, AZ;) solve the ABDSDEs with reflection

AY, = [T Af(s)ds + [T Ag(s)dB, + [Fd(AK) —Y=r [T azPdH | t e (0,T],
(AY;H AZt) = (Oa 0) ) te [T7T + p] :

where for a function h € {f, g}, Ah(s) = h(s,0,,09%) — h(s,0,,0°), 6, = (Us,, ‘N/s),
éf’w = <US+¢(S),, ‘~/;+¢(S)> and A\I’S = \I’S — q/s.
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For 3 € R*, applying 1t6’s formula for /! IAY;*, we get

T T T
e’ |AY;]? + 5/ e’ |AY,_|* ds = 2/ P AY,_Af(s)ds + 2/ eBSAYS_Ag(s)dES
t t t
T 1=00

+2/ P AY,_d(AK,) —2/ Z *AY,_ AZDdHD
t

+ / e |Ag(s)|* ds — / P AY,_ ZAZ&)AZ&)CJ[HS’),H&)}.
t

t ij=1

Noting that |, eﬁSAYS,d(AKs) < 0, using that [ e AY, Ag(s)dB., [ Y= P AY, Az dHY

Vi>1and fo eBSAZs(i)AZs(j)d([Hs(i),Hg)} - <H§i),H§ )) for i # j are uniformly

i,j=1

integrable martingales and taking the mathematical expectation on bath sides, we obtain

T 1=00

T
E€6t|A}/t|2_'_6E/ G'BS|AY9_|2d8+E/ Zeﬂs’AZLgi)Pds
! toi=1

T T
< ZE/ eﬂSAY;Af(s)ds—i—E/ e’ |Ag(s)|” ds,
t t

Hence for inequality 2ab < €,a? + § and hypothesis (H6),

’ Bs e Bs 2 c+cMy g 2 2
2B [ eP°AY,Af(s)ds <E ere” |AY, | + e” (|AU-|* + ||AVS]|2) | ds,
t t €1
and also
’ 2 e 2 2
E/ 7 | Ag(s) | ds gE/ [(c+ M) e |AUL_2 + (a1 + asM) & | AV, 3] ds
t t
Then, we have

T T+p
Eeﬂt|AY;|2+(ﬁ—el)E/ eﬁS|AY;_|2ds+E/ e || AZ,||% ds
t

t

T+p
<E (/ {(CtCM +c+ cM) e |AU,_|* + ((ozl + M) + (C+€CM)) ePs ||AVS||122] ds> ,
t 1 1
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which implies

T+p T+p
(B — el)E/ e’ |AYS_|2ds+E/ | AZ,|[% ds
t t

e M M
SE(/ {(c—l—c —|—c+cM> 655|AUS_|2—|—<(a1—|—042M)+<C+EC ))eﬂSHAVSH;} ds),
t 1

€1
M T+p T+p
< <(a1 + asM) + (C+C )) (EQE/ 658|AU3_|2d3+E/ || AV % ds) :
€1 t t
ceteM 4 ot e
where €5 = o teted

). Hence if we choose €1 aj, as such that ¢ = (a; + M) +

(a1+a2M)+<%

(c+cM> < 1 and choose 3 = €; + €5, then we deduce

T+p T+p T+p
E/ 62658|AY;_|2d3+E/ | |AZ|% ds < éE/ s (62|AUS_|2+ ||AV8||122)ds.
t t t

Thus, the mapping ® is a strict contraction on D and it has a unique fixed point (Y., Z.) € D,
according to Proposition 6.1, we know Y. € 8%, ([0, T+ pl ;]Rd) .

Consequently, (Y., Z.) € 8% ([0,T + p];R?) x M3, ([0,T + p|;1?) is the unique solution of
reflected ABDSDE (6.2). The proof is complete. ®

In the next subsection, we will study Problem (6.1) in the case where S; = —oc0, that is, we
will establish the existence and uniqueness of the solution to the backward doubly stochastic

differential equation with teughles martingales associated by lévy process (6.1) .

6.1.2 Existence and uniqueness of solution for the ABDSDE

In this subsection we study the anticipated BDSDEs without reflection under Lipschitz con-

tinuous generator.

Theorem 6.2 Assume that (A), (B), (H6) and (B6.3) are satisfied. Then the equation
(6.1) has a unique solution (Y, Z;) € S ([0, T + p]; R) x M3, ([0,T + p]; 1?).
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Firstly we start proving equation (6.1) has a unique solution with f, ¢ do not depend on the

value or the future value of (Y, 7). More precisely, given f, g such that

B[ wpa) <o
E(ATW@WdQ<<m.

Proposition 6.2 Given &r € L2 (Hr), the following BDSDEs,

Y=+ [ fls)ds+ [T g(s)dB,— 2, [T Z20aHY, te(o,T],

has a unique solution (Y;, Z;) € 8% (10,7 + p] ; R) x M3, ([0,T + p] ;1?).

Proof. Existence. We consider the following filtration
gt = f;tL \ ferpu
and the G; square integrable martingale
T T -
M, = E% (§T +/ f(s)ds—i—/ g(s)st) , tel0,1].
t t

Thank’s to the prédictable representation property in Nualart et al [22] yields that there
exist Z € Mg ([0,77;1?) such that

1=00 ,t
M, = M, + Z/ Zéz‘)dHS(i)’
i=1 Y0

hence

1=00 T
My =M+ / ZOdH.
i=1 V1
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Let

vi= = [ stons = [ o).

— % (gT + /tT f(s)ds + /tTg(S)dES) ,

= Mr — Z/t Zg)dHS) _/o f(s)ds—/o g(s)d By,
i=1

from which, we deduce that
Vimer [ s+ [ g0)iB.- Y [ 20an
t t 1 Jt

we deduce that the triplet (Y, Z) solves (6.1). Next we show that (Y, Z) are in fact H;-
adapted, it is obvious that
Y, =B (T|H: vV 7))

where

T T -
F:§T—|—/0 f(s)ds—i—/o g(s)d B,

is .7:(% Vv J’:(ET +p,~mesurable. Using the fact that f(ft is independent of H; V o (I"), we deduce

that Y; = E9% (T") . Moreover, we have

y / ZOdHD = & 1 / f(s)ds + / o(s)dB, — Vi,
i=1 Yt t t

and the right-hand side is f(% \ F(fT +,~mesurable.
Uniqueness. Let (Y, Z) and (17, Z) be two solution of (6.1) and define 0 € {Y,Z}, A0 =

0 — . Then the triplet (AY, AZ) solves the equation

j=oo T
AY; + Z/ AZDdHD =0, tel0,T].
i=1 Y1
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[t6’s formula implies

T 1=00

E|AYt|2+]E/ S e |azi ds =0, telo,T].
to=1

The proof of Proposition 6.2 is complete. =
We are now in a position to give the proof of Theorem 6.2.
Proof. It remains to show the existence which will be obtained via a fixed point of the

contraction of the function ® defined as follows

®: D - D

where D the space of couple process (Y., Z.) € 8% ([0,T + p|;R) x M3, ([0,T + p|;1?), such

)d)

Let ® be the map from D into itself which to (Y, Z) associates ® (Y, Z) = (17, Z) where

that (Yi, Z¢)r<icry, = (V1) endowed with the norm

(Y, 2)llg = (E

T+p =00 .
[ e (m_ﬁ ds+ Y |20
0 i=1

the couple (Y;, Z;)yoq € D is such that (Y, Zi)reiery, = (i, ¥;) and satisfies the equation
(6.1). Thanks to Proposition 6.2, the mapping ® is well defined. Let <§~/, Z) and (37', Z’)

be two elements of D such that
Y, Z) =& (ff, Z) , (Y, Z) ) <YZ> ,

where (17, Z ) and (37', Z’) is the solution of the ABDSDE (6.1) associated with

(6 (5,00, 02%), (5,0, 00%)) and (€, £(s, 0,000, (s, 0., 02%))

such that 0, = (V- 2, ), 02 = (Vorotors Zosut ) - 0 = (Voo Z0) and 0% = (V] i+ Ziruie)
We use the following notation for h € {f, g}, Ah(s) = h(s,0,,02%) — h(s,§;,9~;¢’¢), AT, =

U, — U and AY, =¥, — U

Then, to obtain this result, we use the same calculation used in subsection 6.1.1, but we take
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S =—ooie., K=0. For 8 € R, we get

T+p

T+p
E/ * (&2 | AY,_ [P +||AZ,|[%) ds < éE/ Bs (62 ‘AY_
¢ ¢

2[L) as

where 0 < ¢ < 1 and €5 > 0. Thus, the mapping ® is a strict contraction on D and it has a
unique fixed point (Y., Z.) € D.

Consequently, (Y.,Z) € 8% ([0,T + p];R) x M3,([0,T + p];1*) is the unique solution of
ABDSDE (6.1). Finally we complete the proof of Theorem 6.2. m

Remark 6.4 In (6.2), z'fftTg(s,Ys,ZS,}/;+¢(S),ZS+w(S))d§ =0,5 =—o00 and K. =0, then

we have

=&+ [T f(5,Ag, A2V)ds — S, [T Z0aHD,  teo,T],

(Y4, Z2) = (ne,9:) te T, T+p|.

G. Zong [37] study the previous anticipated BSDE driven by teugels martingale and obtained

an existence and uniqueness theorem.

6.1.3 Comparison theorem

In general we do not have a comparison result for solutions of BDSDEs driven by Lévy
process, reflected or not.

In this subsection our objective is to obtain a comparison result for the following equations

for j =1,2

— &+ [T s, Y, 20 Y0,  ds+ [ g(s, Y, YP VB,

87 7 st¢(s)— » L stg(s)—
+L dKi -2, [ 2VaH?, telo,1],
Y =, te[I,T+ )],
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Theorem 6.3 Assume that (H6), (B6) and (A), (B) are satisfied. Assume moreover

that:
e Forallt € [0,T],y €R, z€l? f*(t,y,z,-) is increasing.

For any t € [T, T + p|, £ < &}, P-almost surely.

For any t € [0,T + p], S? < S}, P-almost surely.

f2 (t yt ?Zt7yt+¢(t )<f1 <t yt 7ztayt+¢ ) dt x dP — a.s..

For all i € N let Z' denote the [2—valued stochastic process such that its ¢ first com-

ponent are equal to those of Z2 and its N\ {1,2,...,i} last components are equal to

those of Z!. With this notation, we define, for i € N

i PR ZEN Y ) = MY 2 Y )
t )

(Ztl,(i) — Z2 (2)) {Zl (1)7522 ,(d )}

satisfying that > ., mAHY > -1, P —a.s, .

Then, we have that almost surely for any time ¢, Y2 < Y;!.

Proof. Set the following reflected BDSDE,

Yf=§%+fff%y3 Z3YL o ds+ [T g(s, Y3V, )dB,

51 ¥ sto(s)- L oto(s)-
+ [ dKkE =, [ 28V, telo,T],
V3=, te T, T+p].

We set the following notations
f f (t Y;fl 7Zt17Y;5+¢(t ) fz(t7}/;1—72t17y;»¢(t)7) > 07
and

et =&, Y=Y'-Y Z=7'-7° K=K'-K’

Bl
I
B
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Then the triple process (37, Z, K ) can be regarded as the solution to the following linear
reflected BDSDE

V=&t [T [(f FaY wg‘Zﬁ“) ds +b.V. dB, + df(s] S (T Z29aH?, te [0,7),

Y, =, te [T, T+p|,

f2(t7 }/tlfa Ztl’ }/t%‘ﬂﬁ(t)—) B f2(t’ Y;:i’ Ztl’ Y:Hﬁ(t)_)

at — 9
(Yil— - Y?—) 1{5’,},#3’5’,}
b - 9(57}/:91—7}/;14,(;5(5)7) - 9(87}/;93—7}/;l+¢(s)7)
t —_— .

(Ytl— - Ytg—) 1{Yt1_7eyt3_}
Let I'y, s € [t,T], be solution of the linear stochastic differential equation
t
r,=1 +/ [ydAg,
0

where A; = fot asds + fot bsdBs+ Y 2, fg Wingi). Now applying Itd’s formula to I',Y;, we get

T T T
LYy =Tk [ Ceati [ Vedns [Cary
t t t
=T, - / Do | fotaYe +) w20 | ds— / T, bV, dB, — / T,_dK,
00 T o ) T 3 T B
+) / I, ZOdH® + / Y, Ty ayds + / T, b,Y, dB,
i=1 t t t
+Y / Y, IrldHD +3 ") / P, miZ9d [HD, HY)]
i=1 7/t i=1 j=1"*

T T 0 T 0o T
=TV, - / T, f.ds — / I, dK, — / T, 7 Z0ds + / I, ZWaH?
o0 T _ ) ‘ 0o 00 T o A ‘
#> [ Vet + 0 [ roaz0aln, n),
=1

i=1 j=1"71
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Taking conditional expectation w.r.t. H;, we get

T T
Y, =E (PTYT +/ Iy f.ds +/ I, dK,
t t

Ht) )

since Yp =& >0,y >0, f; > 0 and dK, > 0, we have
Y; >0,

we conclude that ¥;' > Y3 a.s..

Set
T T =
V=G + [ Y3 Z0Y0 0 )ds + [ (s, Y2, YD 4 )d B
+ [l =2 [P Z2Wan, telo,T],
Yi=n, te[l,T+K].

since t € [0,T],y € R, z € 2, f2(t,y,2,-) is increasing and Y,;! > Y3, we know that for
almost all ¢, Y > Y, a.s..

For n = 5,6, ..., we consider the following ABDSDEs:

Y = 5%+ftT (s, Yt zn vyt 7)ds+ﬁTg(3,Y;"__1 N 7)d<§8

» Ls— s+o(s) T s+g(s)
+ [Tdkr =2, [T z0OaH?, te 0,17,
Y;fn:ntza tell\T+p],

similarly, for almost all ¢

}/;423/;52}/;62...>y;”2..., a.s..

From the proof of Theorem 6.1, we know that (Y, Z" K") is a Cauchy sequence in
S ([0, T + p]; RY) x M3, ([0,T + p] ;1) x A%

Denoting their limits by (Y, Z, K), and taking limits in the above iterative equations, we have
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that (Y, Z, K) satisfies the following ABDSDE:

H
Y;f - 512“ + LT f2<87 }/5—7 ZS7 Yjs-l—qﬁ(s)—)ds —+ J;T g(sa }/S—a }/s—i—qb(s)—)st
+ [l -, [T ZPaH ), telo,T],

Y =03, te[T,T+p].

By Theorem 6.1, we know for almost all £, ¥; = Y2, a.s..

Since for almost all ¢, ;' > Y;? > Y,* >V}, a.s.. it hold immediately for almost all ¢
Y >Y? as.

Then the proof is complete. m

Remark 6.5 By the same way used in the proof of Theorem 6.3 we can easily proof the
comparison theorem of the ABDSDE without reflection (i.e., S = —oc), for this, it is enough
to take K = 0.
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(General conclusion

n this work, we discussed three new existence results for different categories to backward
Idoubly stochastic differential equations (BDSDE for short). In this Phd thesis, we
have the existence result to the BDSDE with weak assumptions and related to quasi linear
stochastic partial differential equations (SPDEs). Also we have extended some results for
BDSDE driven by a Brownian motions to case of BDSDEs with jumps.
Finally, following this study, several perspectives are considered. It would be interesting

to prove the existence result in the following problems:

e Reflected Backward Boubly SDE with jumps in infinite-horizon under weak assump-

tions.
e Reflected Mean field Backward Doubly Stochastic Differential Equations with jumps.

e BDSDE with a quadratic coefficient.
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