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Abstract

Throughout this thesis, we focused our aim on the problem of optimal control under a

risk-sensitive performance functional, where the systems studied are given by a backward

stochastic di¤erential equation, fully coupled forward-backward stochastic di¤erential equa-

tion, and fully coupled forward-backward stochastic di¤erential equation with jump. As a

preliminary step, we use the risk neutral which is an extension of the initial control system

where the set of admissible controls are convex in all the control problems, and an optimal

solution exists. Then, we study the necessary as well as su¢ cient optimality conditions for

risk sensitive performance, we illustrate our main results by giving applied examples of risk

sensitive control problem. The �rst is under linear stochastic dynamics with exponential

quadratic cost function. The second example deals with an optimal portfolio choice problem

in �nancial market specially the model of control cash �ow of a �rm or project. The last

one is an example of mean-variance for risk sensitive control problem applied in cash �ow

market.

Key words: Fully coupled forward backward stochastic di¤erential equation, Optimal

control, Risk-sensitive, Necessary Optimality Conditions, Su¢ cient Optimality Conditions,

Mean variance, Cash �ow.
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Résumé

Dans cette thèse, on s�interesse au problèmes du contrôle optimal avec une fonction de per-

formance de risque sensible, où les systèmes étudiés sont dé�nis par: des équations di¤éren-

tielles stochastiques rétrogrades, des équations di¤érentielles stochastiques progréssivement

rétrogrades fortement couplée et des équations di¤érentielles stochastiques progréssivement

rétrogrades fortement couplée avec saut. Au début du travail, on utilise le facteur de risque

neutre, qui est l�extension du système de contrôle initial dans lequel l�ensemble de valeur

est convexe dans tous les les problèmes de contrôle et où une solution optimale existe.

Après, on étudie les conditions nécessaires et su¢ santes d�optimalité pour une performance

de risque sensible. A la �n on illustrate nos principaux résultats par donner trois exemples

d�application de problème de contrôle de risque sensible. Le premier concerne la dynamique

stochastique linéaire avec une fonction de coût quadratique exponentielle. Le deuxième traite

d�un problème de choix de portefeuille optimal sur le marché �nancier, notamment le modèle

de contrôle cash-�ow d�une entreprise ou d�un projet. Le dernier est un exemple de variance

moyenne pour un problème de contrôle risque sensible appliqué au marché cash-�ow.

Mots clés: Equation di¤érentielle stochastique progréssivement rétrograde fortement couplée,

risque sensible, contrôle optimal, conditions nécessaires d�optimalités, conditions su¢ santes

d�optimalités, variance moyenne, cash-�ow.
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Symbols and Abbreviations

Symbols and Abbreviations
Here we give the di¤erent symbols and abbreviations used in this thesis.

Symbols

(Ft)t�0 : Filtration.

(
;F) : Measurable space:

P : Probability measure with respect to risk-neutral.

P� : Probability measure with respect to risk-sensitive.

(
;F ;P) : Probability space.�

;F ; (Ft)t�0 ;P

�
: Filtred probability space.

W : Brownian motion.

W � : P� � Brownian motion.
~N � : P� � compensator Poisson measure.
~N : The compensated Poisson measure.

FW
t : Filtration generated by Brownian motion.

FN
t : Filtration generated by Poisson measure.

FW; eN
t : Filtration generated by two mutually independent processes Brownian

motion and Poisson measure.

J� (:) : Risk-sensitive functional cost.eJ� (:) : Risk-neutral functional cost.

H� (:) : Risk-sensitive Hamiltonian functional.eH� (:) : Risk-neutral Hamiltonian functional.

U : The set of values taken by control v:

U : The set of all admissible controls.

u : Optimal control.

vi



Symbols and Abbreviations

Abbreviations

a.e : Almost everywhere.

a.s : Almost surely.

BSDE : Backward stochastic di¤erential equation.

cadlàg : Continu à droite limité à gauche (right continuous

with left limits).

FBSDE : Forward-backward stochastic di¤erential equation.

HARA : Hyperbolic absolute risk aversion.

SMP : Stochastic maximum principle.
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Introduction

Problems of optimization take their essence in the permanent for man to �nd the optimal

solution to his di¢ culties. Whether in the world of �nance, physics, economy, biology, games

theory industry, or health...., the interest is often focused on optimizing systems that evolve

over time.

The history can be traced too early in 1827, botanist Robert Brown [6] published his ob-

servation about micro objects that pollen particles suspended on the surface of water will

traverse continuously in an unpredictable way. This kind of motion is named the Brownian

motion to indicate its randomness and continuity.

After that, Albert Einstein [13] developed a physics model to support his statement that

atoms exist, that means he used the notion of Brownian motion to describe the physics in-

vestigation and proved that the position of particle can be follow by some normal distribution.

Unfortunately, the mathematical description is not very correct in view of mathematicians.

Besides the works of Einstein, in 1923, and Wiener [38] did provide a correct mathematical

de�nition of the stochastic process observed by Brown and described by Einstein, which is

the Brownian motion that we used.

The �rst version of the stochastic maximum principle was extensively established in the

1970�s by Bismut [5, 4], Kushner [22], Bensoussan [3] and Haussmann [18].

Stochastic control problems for the forward-backward system have been studied by many

authors. The �rst contribution of control problem of the forward-backward system is made

by Peng [29]; he obtained the stochastic maximum principle with the control domain being

convex. Xu [39] established the maximum principle for this kind of problem in the case

where the control domain is not necessary convex, with uncontrolled di¤usion coe¢ cient and
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Introduction

a restricted cost functional. The work of Peng [29] (convex control domain ) is generalized

by Wu [36], where the system is governed by a fully coupled forward backward stochastic

di¤erential equation. Shi and Wu [33], have established stochastic maximum principle to

the fully coupled FBSDE where the control domain is not necessary convex, and without

controlled di¤usion coe¢ cient under some monotonicity assumptions. Ji and Zhou [19] used

the Ekeland variational principle to establish a maximum principle of controlled FBSDE

systems, while the forward state is constrained in a convex set at the terminal time, and apply

the result to state constrained stochastic linear-quadratic control models, and a recursive

utility optimization problem is investigated. Yong [40] completely solved the problem of

�nding necessary conditions for optimal control of fully coupled FBSDEs, he considered an

optimal control problem for general coupled FBSDEs with mixed initial-terminal conditions

and derived the necessary conditions for the optimal controls when the control domain is not

assumed to be convex, and the control variable appears in the di¤usion coe¢ cient.

In this thesis we are interested in the stochastic optimal control resolution by Pontryagin�s

Stochastic Maximum Principle (SMP in short) type and under Risk-Sensitive performance.

We solve the problem by using the approach developed by Djehiche, Tembine and Tempone

[11]. Their contribution can be summarized as follows. They have established a stochastic

maximum principle for a class of risk-sensitive mean-�eld type control problems, where the

distribution enters only through the mean of state process, this means that the drift, di¤usion,

and terminal cost functions depend on the state, the control and the means of state process.

In the risk-sensitive control problem, in our second study we extended both of the results

of Chala [8] and of Djehiche et al. [11], to a fully coupled case, is to establish a necessary,

as well as su¢ cient optimality conditions, of Pontryagin�s maximum principle type, for risk-

sensitive performance functionals. We solve the problem by using the approach developed

by Djehiche, Tembine and Tempone in [11]. In particular the best view of the last paper

that can be found is: We can establish the necessary optimality condition without using the

dynamic programming principle.

The existence of an optimal solution for forward-backward system has been solved in [2]

2



Introduction

to achieve the objective of our paper [20], and to establish necessary as well as a su¢ cient

optimality conditions for this model, we give the stochastic maximum principle for risk-

sensitive performance functional. Or at �rst we translated the risk-sensitive control problem

by using an auxiliary process, then we obtained the SMP associated to this translated problem

by using yong�s theorem in ( Yong [40]) Theorem 3.1). After that, and according to the

transformation that we did to the intermediate adjoint processes, and using the logarithmic

transformation established by El Karoui and Hamadene [14] we established the necessary

optimality conditions for risk sensitive problem.

Finally, the last work in this subject by used the fully coupled forward-backward with jump

system, with �nancial application, can be found in the paper of Khallout and Chala [21].

The previous work has been established with risk sensitive performance functional. Besides

of that, we note here that paper of Shi and Wu [31] was in the case where the set of admissible

controls is convex, and [32] in the general case with application to �nance. Ma and Liu [24]

who deal with the risk-sensitive control problem for mean-�eld stochastic delay di¤erential

equations (MF-SDDEs in short) with partial information, and under the assumptions that

the control domain is not convex and the value function is non-smooth, they have established

a SMP.

Our goal in this thesis is to treat pontryagin�s maximum principle under risk sensitive func-

tional for di¤erent systems: Backward stochastic di¤erential equation, fully coupled forward-

backward stochastic di¤erential equation, fully coupled backward-forward stochastic di¤er-

ential equation with jump. This problem under consideration is not a simple extension from

the mathematical point of view, but also provides interesting models in many applications,

such as: mathematical �nance, optimal control...ect. The proofs of our main results is based

on spike variation method based on theorem -as a preliminary step- of stochastic maximum

principle for the risk neutral control problem.

This thesis is organized as follows:

Chapter 01: (The content of this chapter has been used as the project of the chapter book

in Chala et al [7].)
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In this �rst chapter, we develop the general framework used in this thesis. We start dis-

cussing the standard risk-sensitive structures, and how constructions of this kind can give a

rigorous treatment. We investigate in this chapter the �nancial market of risk-sensitive for

the dynamic with and without jumps di¤usion, by using Girsanov�s theorems, and in virtue

of Itô�s formula.

Chapter 02: (The content of this chapter has been used as the project of the published paper

Khallout & Chala [20] in Asian Journal of Control.)

In the third chapter, we study the necessary as well as su¢ cient optimality conditions where

the system is given by a fully coupled forward-backward stochastic di¤erential equation with a

risk-sensitive performance functional. At the end of this chapter, we illustrate our main result

by giving two examples of risk sensitive control problem under linear stochastic dynamics

with exponential quadratic cost function, the second example deals with an optimal portfolio

choice problem in �nancial market specially the model of control cash �ow.

Chapter 03: (The content of this chapter has been used as the project of the paper of

Khallout & Chala [21].)

In the last chapter, we extend the result of the second chapter where the system is given by a

fully coupled forward-backward stochastic di¤erential equation with jump, and we illustrate

our new main result by giving an example of mean-variance for risk sensitive control problem

applied in cash �ow market.

The content of this thesis is the subject of the following works:

1. Chala, A. Khallout, R. Hefayed, D. The use of Girsanov�s Theorem to Describe Risk-

Sensitive Problem and Application To Optimal Control. Stochastique Di¤erential

Equations, Tony G. Deangelo, ISBN: 978-1-53613-809-2, 117-154, Nova 2018.

2. Khallout, R. Chala, A. (2019). A Risk-Sensitive Stochastic Maximum Principle for

Fully Coupled Forward-Backward Stochastic Di¤erential Equations with Applications.

Published in Asian Journal of Control, 1-12, DOI: 10.1002/asjc.2020.

3. Khallout, R. Chala, A. Risk-sensitive Necessary and Su¢ cient Optimality Conditions

4
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for Fully Coupled Forward-Backward Stochastic Di¤erential Equations with Jump dif-

fusion and Finantial Applications. arXiv:1903.02072.
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Chapter 1

Expected exponential utility and

Girsanov�s theorem

This chapter has been considered as a part of book�s chapter [7], we develop the general

framework used in our papers [8, 9, 17, 20, 21]. The starting point for the discussion will

be the standard risk-sensitive structures, and how constructions of this kind can be given a

rigorous treatment. We investigate in this chapter the �nancial market of risk-sensitive for

the dynamic with and without jumps di¤usion, by using Girsanov�s theorems, and in virtue

of Itô�s formula, Lévy-Itô�s formula.

1.1 Problem formulation

Let
�

;F ;

�
FW
t

�
t2[0;T ] ;P

�
be a �ltred probability space satisfying the usual conditions, in

which a one�dimensional Brownian motion W = (W (t) : 0 � t � T ) is de�ned. We assume

that
�
FW
t

�
t2[0;T ] is de�ned by 8t � 0; FW

t = � (W (s) ; for any s 2 [0; t]) _N ; where N

denotes the totality of P�null sets. Let M2 ([0; T ] ;R) denote the set of one dimensional

jointly measurable random processes f't; t 2 [0; T ]g which satisfy:

(i) : E
�Z T

0

j'tj2 dt
�
<1; (ii) : 't is

�
FW
t

�
t2[0;T ] measurable, for any t 2 [0; T ] :

We denote similarly by S2 ([0; T ] ;R) the set of continuous one dimensional random processes

which satisfy:

6



Chapter 01. Expected exponential utility and Girsanov�s theorem

(i) : E
�
sup
0�t�T

j'tj2
�
<1; (ii) : 't is

�
FW
t

�
t2[0;T ] measurable, for any t 2 [0; T ] :

Let T be a strictly positive real number, and U be a non empty subset of R:

In the next, we will discuss a result, which called the Girsanov�s Theorem, it plays the

important role in the application especially in economics, and optimal control. In Girsanov�s

theorem application, we can visit the papers [8, 11, 14, 17, 20]. We can now show the versions

of the Girsanov�s Theorem. In the application of Itô calculus, Girsanov�s theorem get used

frequently since it transforms a class of process to Brownian motion with an equivalent

probability measure transformation see [16].

De�nition 1.1 Let
�

;F ;

�
FW
t

�
t2[0;T ] ;P

�
be a probability space satisfying the usual condi-

tions. Let Q be another probability measure on FT : We say that Q is equivalent to P j FT if

P j FT � Q and Q� P j FT ; or equivalently, if P and P� have the same zero sets in FT :

Remark 1.1 By the Radon-Nikodym�s theorem, this is the case if and only if we have

dQ (w) = Z (T ) dP (w) on FT ; and

dP (w) = Z�1 (T ) dQ (w) on FT :

Where Z (T ) is called the Radon�Nikodym derivative

Theorem 1.1 (Girsanov, 1960, [16]): Assume that W (t) is a Brownian motion on

the probability space (
;F ;P) with underlying �ltration
�
FW
t

�
t2[0;T ]. Let f (t) be a square

integrable stochastic process adapts to
�
FW
t

�
t2[0;T ] ; such that

EP
�
exp

�
1

2

Z T

0

f 2 (t) dt

��
<1; (1.1)

for all t 2 [0; T ] ; then WQ (t) = W (t)�
Z t

0

f (s) ds is a Brownian motion with respect to an

equivalent probability measure Q given by

dQ
dP

= Z (T ) =: exp

�Z T

0

f (t) dWt �
1

2

Z T

0

f 2 (t) dt

�
:

7



Chapter 01. Expected exponential utility and Girsanov�s theorem

Remark 1.2 Using di¤erential form, we can also say, if dWQ (t) = dW (t)� f (t) dt: Then

WQ (t) is a Brownian motion with respect to (w.r.t) the probability measure Q.

Remark 1.3 The condition EP
�
exp

�
1
2

Z T

0

f 2 (t) dt

��
<1 is su¢ cient and not necessary,

called the Novikov�s condition.

For more details the reader can see the Øksendal�s book [26] pages 155-160.

In the next, we will discuss some special cases, to be able to investigate the model of risk-

sensitive control in next chapter

1.2 Financial market of the risk-sensitive

1.2.1 Factor dynamic without jump di¤usion

We model the dynamics of the investor with di¤usion process as a following SDE

dx (t) = b (t; x (t)) dt+ �dW (t) ; and x0 = x: (1.2)

We consider a �nancial market in which two asset (securities) can be investment choices, the

�rst one is risk-free is called also bond (foreign currency deposit for example), whose price

S0 (t) at time t is given by

dS0 (t)

S0 (t)
= r (t) dt or (=r (t; x (t)) dt):

The second risky asset is called stock, whose price S1 (t) at time t is given by

dS1 (t)

S1 (t)
= � (t) dt+ � (t) dW (t) or (=� (t; x (t)) dt+ � (t; x (t)) dWt);

where r (t; x (t)) is bond function interest rate, � (t; x (t)) is function stock price volatility

rate, and � (t; x (t)) is called the expected rate of return.

Now let us consider an investor wants who want to invested in the risk-free (foreign currency

8



Chapter 01. Expected exponential utility and Girsanov�s theorem

deposit for example) and the stock, and whose decisions cannot a¤ect the prices in the

�nancial market.

De�nition 1.2 (Self-Financial ) The market is called self-�nancial if there is no infusion

or withdrawal of funds over [0; T ] :

We assume also that our market is to be self-�nancial, we denote by V (t) the amount of the

investor�s wealth, and u (t) is the proportion of the wealth invested in the stock at time t;

then � (t) = u (t)V (t) is the amount stock and (1� u (t))V (t) is the amount in the bond,

that means the investor has V (t)� u (t)V (t) = V (t)� � (t) savings in a bank.

Then wealth dynamics of the investor who wants to invest in the �nancial market has the

following form
dV (t)

V (t)
= (V (t)� � (t))

dS0 (t)

S0 (t)
+ � (t)

dS1 (t)

S1 (t)
:

Honestly, the wealth of the investor is described by

dV (t)

V (t)
= (V (t)� � (t)) r (t; x (t)) dt+ � (t) (� (t; x (t)) dt+ � (t; x (t)) dW (t))

= (V (t)� � (t)) r (t; x (t)) dt+ � (t)� (t; x (t)) dt

+ � (t)� (t; x (t)) dW (t)

= V (t) r (t; x (t)) dt� � (t) r (t; x (t)) dt+ � (t)� (t; x (t)) dt

+ � (t)� (t; x (t)) dW (t)

= fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt (1.3)

+ � (t)� (t; x (t)) dW (t) :

De�nition 1.3 An admissible strategy is an (Ft)t�0-adapted and square integrable process �

with values in R such that (1:3) has a strong solution (V (t))t2[0;T ] that satis�es

E
�Z T

0

jV (t)j dt
�
<1; the set of all the admissible strategies will be denoted by Uad:

The investor wants to maximize his (or her) expected utility (HARA type) over the set Uad

9



Chapter 01. Expected exponential utility and Girsanov�s theorem

in some terminal time T > 0 :

J� (� (:)) =
1

�
E
�
V � (T )

�
: (1.4)

By choosing an appropriate portfolio choice strategy � (:), where the exponent � > 0 is called

risk-sensitive parameter. If we put � = 1 the utility (1:4) is reduced to the usual risk-neutral

case, the expectation under the probability measure P is denoted by E.

Lemma 1.1 We can rewrite the expectation of E
�
V � (T )

�
in (1:4) in term of the exponential

expected of integral criterion as

J� (� (:)) =
1

�
V � (0)E�

�
exp

�
�

Z T

0

h (t; x (t) ; � (t)) dt

��
:

E� is the new expectation with respect to the probability measure P�:

Proof. Applying the Itô�s formula to logarithmic wealth value

lnV � (t) = � lnV (t) = �f (V (t)) ; we have

�d (f (V (t))) = �d (lnV (t))

= � @f
@t
(t; V (t)) dt+ � @f

@x
(t; V (t)) dV (t)

+� 1
2
@2f
@x2
(t; V (t)) hdV (t) ; dV (t)i

= � 1
V (t)

dV (t) + � 1
2

�
� 1
V 2(t)

�
�2 (t)�2 (t; x (t))V 2 (t) dt

= � (fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt

+� (t)� (t; x (t)) dW (t))� 1
2
��2 (t)�2 (t; x (t)) dt:

Then, by taking the integral from zero to T with respect to time, the exponential expectation

10



Chapter 01. Expected exponential utility and Girsanov�s theorem

gets the form

J� (� (:)) = 1
�
E
�
V � (T )

�
= 1

�
E
�
exp

�
lnV � (T )

��
= 1

�
E [exp (� lnV (T ))]

= 1
�
E
h
exp

�
�f (V (0)) + �

R T
0
fV (t) r (t; x (t)) + (� (t; x (t))

�r (t; x (t)))� (t)g dt+ �
R T
0
� (t)� (t; x (t)) dW (t)

�1
2
�
R T
0
�2 (t)�2 (t; x (t)) dt

�i
= 1

�
E
h
exp

�
lnV � (0) + �

R T
0
fV (t) r (t; x (t)) + (� (t; x (t))

+�
R T
0
� (t)� (t; x (t)) dW (t)

+�
R T
0
� (t)� (t; x (t)) dW (t)� 1

2
�
R T
0
�2 (t)�2 (t; x (t)) dt

�i
= 1

�
exp

�
lnV � (0)

�
E
h
exp

�
�
R T
0
fV (t) r (t; x (t)) + (� (t; x (t))

�r (t; x (t)))� (t)g dt+ �
R T
0
� (t)� (t; x (t)) dW (t)

�1
2
�
R T
0
�2 (t)�2 (t; x (t)) dt

�i
:

Then, we get

J� (� (:)) = 1
�
V � (0)E

h
exp

�
�
R T
0
fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt

+�� (t)� (t; x (t)) dW (t)� 1
2
�
R T
0
�2 (t)�2 (t; x (t)) dt

�1
2
�2
R T
0
�2 (t)�2 (t; x (t)) dt+ 1

2
�2
R T
0
�2 (t)�2 (t; x (t)) dt

�i
= 1

�
V � (0)E

h
exp

n�
�1
2
�2
R T
0
�2 (t)�2 (t; x (t)) dt

+�
R T
0
� (t)� (t; x (t)) dW (t)

�
� 1

2
�
R T
0
�2 (t)�2 (t; x (t)) dt

+1
2
�2
R T
0
�2 (t)�2 (t; x (t)) dt+ �

R T
0
fV (t) r (t; x (t))

+ (� (t; x (t))� r (t; x (t)))� (t)g dtg]

= 1
�
V � (0)E [I1 � I2] ;

11
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where

I1 = exp

�
�1
2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt+ �

Z T

0

� (t)� (t; x (t)) dW (t)

�
;

I2 = exp

�
�1
2
�

Z T

0

�2 (t)�2 (t; x (t)) dt+
1

2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt

+�

Z T

0

fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt
�

= exp

�
�

Z T

0

�1
2
(� � 1)�2 (t)�2 (t; x (t)) dt+ �

Z T

0

fV (t) r (t; x (t))

+ (� (t; x (t))� r (t; x (t)))� (t)g dt)

= exp

�
�

Z T

0

h (t; x (t) ; � (t)) dt

�
;

and

h (t; x (t) ; � (t))

= �1
2
(� � 1)�2 (t)�2 (t; x (t)) + V (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t) :

In virtue of Novikov�s condition (1:1) from Girsanov�s Theorem 1:1; we get

E
�
exp��2 (t)

�
� C: (1.5)

By applying Girsanov�s transformation (see the theorem 1:1), the stochastic integral term

can be deleted, and according to the condition (1:5) ; we get

dP�

dP
= exp

�
�1
2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt+ �

Z T

0

� (t)� (t; (t)) dW (t)

�
;

for some positive constants � and C .

12
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Hence

J� (� (:)) =
1

�
E
�
V � (T )

�
=
1

�
V � (0)E [I1 � I2]

=
1

�
V � (0)E

�
dP�

dP
� exp

�
�

Z T

0

h (t; x (t) ; � (t)) dt

��
=
1

�
V � (0)E�

�
exp

�
�

Z T

0

h (t; x (t) ; � (t)) dt

��
:

E� is the new expectation with respect to probability measure P�; and we denote by

W � (t) =W (t)� �

Z t

0

� (s)� (s; x (t)) ds;

a standard Brownian motion under the probability measure P�:

As a conclusion, for every 0 � s � t � T; our dynamics (1:2) satis�es the SDE

dx (t) = b (t; x (t)) dt+ �dW (t)

= b (t; x (t)) dt+ �d

�
W � (t) + �

Z t

0

� (s)� (s; x (s)) ds

�
= b (t; x (t)) dt+ �dW � (t) + ��� (t)� (t; x (t)) dt

= (b (t; x (t)) + ��� (t)� (t; xt)) dt+ �dW (t) :

An auxiliary criterion function of the expected utility, whose the investor want to maximize,

is given by eJ� (� (:)) = 1

�
V � (0)E�

�
exp

�
�

Z T

0

h (t; x (t) ; � (t)) dt

��
:

The proof is completed.

1.2.2 Factor dynamic with jump di¤usion process

In all what follows, we will work on the classical probability space
�

;F ;

n
FW; eN
t

o
t�T

;P
�
;

such that F0 contains all the P�null sets, FT = F for an arbitrarily �xed time horizon T ,

13
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and
n
FW; eN
t

o
t�T

satis�es the usual conditions. We assume that the �ltration
n
FW; eN
t

o
is

generated by the following two mutually independent processes:

(i) fW (t)gt�0 is a one-dimensional standard Weiner motion:

(ii) Poisson random measure N on [0; T ]� �; where � � R�f0g : We denote by
�
FW
t

�
t�T

(resp
�
FN
t

�
t�T ) the P�augmentation of the natural �ltration ofW ( respN). Obviously,

we have

Ft := �

�Z s

0

Z
A

N (d�; dr) ; s � t; A 2 B (�)
�
_ � [W (s) ; s � t] _N ;

where N contains all P�null sets in F , and �1_�2 denotes the ���eld generated by �1[�2:

We assume that the compensator of N has the form � (dt; d�) = m (d�) dt; for some positive

and ���nite Lévy measure m on �; endowed with its Borel ���eld B (�) : We suppose thatZ
�

1^j�j2m (d�) <1; and write eN = N�mdt for the compensated jump martingale random

measure of N:

Notation 1.1 We need to de�ne some additional notations. Given s � t; let us introduce

the following spaces

S2 ([0; T ] ;R) the set of R- valued adapted cadlàg processes P such that

kPkS2([0;T ];R) := E
"
sup
r2[0;T ]

jP (r)j2
# 1
2

< +1:

M2 ([0; T ] ;R) is the set of progressively measurable R�valued processes Q such that

jjQjjM2([0;T ];R) := E
�Z T

0

jQ (r)j2 dr
� 1
2

< +1:

L2 ([0; T ] ;R) is the set of B ([0; T ]� 
) 
 B (�) measurable maps K : [0; T ] � 
 � � ! R

such that

kKkL2([0;T ];R) := E
�Z T

0

Z
�

jK (r; �)j2m (d�) dr
� 1
2

< +1;

we denote by E the expectation with respect to P.

14
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First of all, we must de�ned the Poison random measure eN (dt; d�) as
eN (dt; d�) =

8><>: N (dt; d�) if j�j � R;

N (dt; d�)�m (d�) if j�j < R;
(1.6)

where (j�j � R) � B (R) ; such that m (j�j � R) <1:

We denote here that W (t) is the Brownian motion given in measurable space (
;F) :

Now, we come to the important Itô�s formula for Itô�Lévy processes: If x (t) is given by

8><>:
dx (t) = A (t; x (t�)) dt+B (t; x (t�)) dW (t) +

Z
R

 (t; x (t) ; �) eN (dt; d�) ;

x (0) = x;

(1.7)

and f : R2 ! R is a C2 function, is the process Y (t) = f (t; x (t)).

Let xc (t) be the continuous part of x (t), i.e., xc (t) is obtained by removing the jumps term

from x (t). Then an increment in Y (t) stems from an increment in xc (t) plus the jumps

(coming from eN (dt; d�)). Hence in view of the classical Itô formula we would guess that.
Lemma 1.2 (Lévy-Itô formula I for Lévy processes): Let us consider the dynamic

system with jump di¤usion which given by (1:7) : Then; the Lévy-Itô�s formula with respect

to model with jump is

d (f (t; x (t))) =
@f

@t
(t; x (t)) dt+

@f

@x
(t; x (t)) dxc (t)

+
1

2

@2f

@x2
(t; x (t)) hdx (t) ; dx (t)i

+

Z
R
(f (t; x (t�) + 
 (�; x (t�)))� f (t; x (t�))) eN (dt; d�) :

It can be proved that our guess is correct. Since

8><>:
dxc (t) =

�
A (t; x (t))�

Z
(j�j<R)


 (�; x (t�))m (d�)

�
dt+B (t; x (t�)) dW (t) ;

x (0) = x:

This gives the following Lemma.

15
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Lemma 1.3 (Lévy-Itô formula II for Lévy processes): Suppose x (t) 2 R is an Itô�

Lévy process of the form (1:7) ; where the condition (1:6) is satis�ed for some R � 0; Let

f : R2 ! R is a C2 function, is the process Y (t) = f (t; x (t)). Then Y (t) is again an

Itô�Lévy process and

df (t; x (t)) =
@f

@t
(t; x (t)) dt+

@f

@x
(t; x (t)) dx (t) +

1

2

@2f

@x2
(t; x (t)) hdx (t) ; dx (t)i

+

Z
j�j<R

�
f (t; x (t�) + 
 (t; �))� f (t; x (t�))� @f (t; x (t�))

@x

 (t; �)

�
m (d�)

+

Z
R
(f (t; x (t�) + 
 (t; �))� f (t; x (t�))) eN (dt; d�) :

(1.8)

Example 1.1 (The Geometric Lévy Processes): Consider the following di¤erential

equation (SDE with jump di¤usion)

dx (t)

x (t�)
= adt+ bdWt +

Z
R
c (t; �) eN (dt; d�) ; (1.9)

where a; b are constants and c (t; �) � �1: If we put Y (t) = ln x (t) ; then by Lévy-Itô�s

formula (1:8) from Lemma 1:3; we get

df (t; x (t)) =
@f

@t
(t; x (t)) dt+

@f

@x
(t; x (t)) dx (t) +

1

2

@2f

@x2
(t; x (t)) hdx (t) ; dx (t)i

+

Z
j�j<R

�
f (t; x (t�) + 
 (t; �))� f (t; x (t�))� @f (t; x (t�))

@x

 (t; �)

�
m (d�)

+

Z
R
(f (t; x (t�) + 
 (t; �))� f (t; x (t�))) eN (dt; d�)

=
1

x (t)
x (t) (adt+ bdW (t))� 1

2

1

x2 (t)
b2x2 (t) dt

+

Z
j�j<R

�
ln (x (t�) + c (t; �)x (t�))� ln (x (t�))� 1

x (t�)
c (t; �)x (t�)

�
m (d�)

+

Z
R
fln (x (t�) + c (t; �)x (t�))� ln (x (t�))g eN (dt; d�)

=

�
a� 1

2
b2
�
dt+ bdW (t) +

Z
j�j<R

(ln (1 + c (t; �))� c (t; �))m (d�)

+

Z
R
(ln (1 + c (t; �))) eN (dt; d�) :
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Then

Y (t) = Y (0) +

Z t

0

�
a� 1

2
b2
�
ds+ b

Z t

0

dW (s)

+

Z t

0

Z
j�j<R

(ln (1 + c (s; �))� c (s; �))m (d�) ds

+

Z t

0

Z
R
(ln (1 + c (s; �))� c (s; �)) eN (ds; d�) :

This gives the explicit solution of equation (1:9) by the following expression

x (t) = x (0) exp
��
a� 1

2
b2
�
t+ bdW (t)

+

Z t

0

Z
j�j<R

(ln (1 + c (s; �))� c (s; �))m (d�) ds

+

Z t

0

Z
R
(ln (1 + c (s; �))) eN (ds; d�)� :

In the next, we will discuss a result, which called the Girsanov�s theorem for Lévy processes,

it plays also the important role in the application especially in economics, and in optimal

control, see the application part for this transformation in the papers [10, 31]. We can now

show the versions of the Girsanov�s Theorem.

Theorem 1.2 (Girsanov�s Theorem I for Itô-Lévy Processes): The dynamics with

jump di¤usion process can be described as a following SDE with jumps di¤usion

8><>:
dx (t) = b (t; x (t�) ; w) dt+ � (t; x (t�) ; w) dW (t) +

Z
R

 (t; x (t�) ; �; w) eN (dt; d�) ;

x (0) = x

:

(1.10)

Assume there exist predictable processes u (t) = u (t; w) ; and � (t; �) = � (t; �; w) such that

� (t)u (t) +

Z
R

 (t; �) � (t; �)m (d�) = � (t) for a.a (t; w) 2 [0; T ]� 
; (1.11)
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and such that the process

Z (t) := exp

�
�
Z t

0

u (s) dW (s)� 1
2

Z t

0

u2 (s) ds (1.12)

+

Z t

0

Z
R
ln (1� � (s; �)) eN (ds; d�)

+

Z t

0

Z
R
fln (1� � (s; �)) + � (s; �)gm (d�) ds

�
;

is well-de�ned and satis�ed

E [Z (T )] = 1: (1.13)

De�ne the probability measure Q on FT by dQ (w) = Z (T ) dP (w) : Then x (t) is local mar-

tingale with respect to Q:

Proof. See [26] theorem 1.31 page 15.

Theorem 1.3 (Girsanov�s Theorem II for Itô-Lévy Processes): Assume there exist

predictable processes u (t) ; and � (t; �) � 1 such that the process (1:12) exist for 0 � t � T;

and satis�es (1:13) : De�ne the probability measure Q on FT by

dWQ (t) = u (t) dt+ dW (t) ; (1.14)

and eNQ (dt; d�) = � (t; �)m (d�) dt+ eN (dt; d�) : (1.15)

ThenWQ (:) is a Brownian motion with respect to Ft and Q; and eNQ (:; :) is (Ft;Q)-compensator
Poisson measure of N (:; :) ; in the sense that the process

M (t) :=

Z t

0

Z
R

 (s; �) eNQ (ds; d�) , 0 � t � T;

is a local (Ft;Q)� martingale, for all predictable processes 
 (s; �) such that

Z T

0

Z
R
(
 (s; �))2 (1� � (t; �))m (d�) ds <1 a.s.

18
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Proof. See [26] theorem 1.33 pages 17-19.

Theorem 1.4 (Girsanov�s Theorem III for Itô-Lévy Processes): Let x (t) be as (1:10)

in theorem 1:2: Let u (t) ; and � (t; �) be Ft�predictable processes satisfying (1:11). Let Q;

WQ and eNQ be as de�ned in Theorem 1:3 Then in terms of WQ and eNQ the precess x (t) can
be represented by

dx (t) = f (t) dt+ � (t) dWQ (t) +

Z
R

 (t; �) eNQ (dt; d�) ;

where

f (t) = b (t)� � (t)u (t) +
Z
R

 (t; �) � (t; �)m (d�) :

Proof. See [26] theorem 1.35 page 20.

The application of the Girsanov�s transformation can be found in economics, in fact as the

dynamic of the wealth value. For this end, we will investigate some applications.

The dynamic state of the investor with jump di¤usion process can be described as the fol-

lowing SDE with jumps di¤usion

8><>:
dx (t) = b (t; x (t�)) dt+ � (t; x (t�)) dW (t) +

Z
R

 (t; �) eN (dt; d�) ;

x (0) = x:

: (1.16)

We consider a �nancial market in which two asset (securities) can be investment choices,

the �rst one is called a globally risk-free asset called also bond (foreign currency deposit for

example), whose price S0 (t) at time t is given by

8><>:
dS0 (t)

S0 (t)
= r (t; x (t)) dt;

S0 (0) = s0:

The second risky asset is called stock, whose price S1 (t) at time t is given by

8><>:
dS1 (t)

S1 (t)
= � (t; x (t)) dt+ � (t; x (t)) dW (t) +

Z
R
� (t; �) eN (dt; d�) ;

S1 (0) = s1:
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Where r (t; x (t)) is bond function interest rate, � (t; x (t)) is function stock price volatility

rate, and � (t; x (t)) is called the expected rate of return, and � (:; �) 2 R; satis�es

�1 � � (:; �) � +1; in additional, the function � (:; �) satis�es
Z
�0

j� (:; �)j2m (d�) < +1:

Now let us consider an investor who wants to invest in the risk-free (foreign currency deposit

for example) and the stock, and whose decisions cannot a¤ect the prices in the �nancial

market. We assume also that our market be self-�nancial, we denote by V (t) be the amount

of the investor�s wealth, and u (t) is the proportion of the wealth invested in the stock at

time t; then � (t) = u (t)V (t) is the the amount stock, and (1� u (t))V (t) is the amount in

the bond, that�s mean the investor has V (t)� u (t)V (t) = V (t)� � (t) savings in a bank.

Then, the wealth dynamics of the investor who want invests in the �nancial market has the

following form
dV (t)

V (t�)
= (V (t)� � (t))

dS0 (t)

S0 (t)
+ � (t)

dS1 (t)

S1 (t)
:

In fact, the wealth of the investor is described by

dV (t)

V (t�)
(1.17)

= (V (t)� � (t)) r (t; x (t)) dt

+ � (t)

�
� (t; x (t)) dt+ � (t; x (t)) dW (t) +

Z
R
� (t; �) eN (dt; d�)�

= (V (t)� � (t)) r (t; x (t)) dt+ � (t)� (t; x (t)) dt+ � (t)� (t; x (t)) dW (t)

+

Z
R
� (t) � (t; �) eN (dt; d�)

= V (t) r (t; x (t)) dt� � (t) r (t; x (t)) dt+ � (t)� (t; x (t)) dt+ � (t)� (t; x (t)) dW (t)

+

Z
R
� (t) � (t; �) eN (dt; d�)

= fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt+ � (t)� (t; x (t)) dW (t)

+

Z
R
� (t) � (t; �) eN (dt; d�) :

De�nition 1.4 An admissible strategy is an (Ft)t�0-adapted and square integrable process �

with values in R such that (1:17) has a strong solution (V (t))t2[0;T ] that satis�es
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E
�Z T

0

jV (t)j dt
�
<1: Then; the set of all the admissible strategy is denoted by Uad:

The investor wants to maximize his (or her) expected utility (hyperbolic absolute risk aver-

sion) HARA type, over the set Uad in some terminal time T > 0 :

J� (� (:)) =
1

�
E
�
V � (T )

�
: (1.18)

By choosing an appropriate portfolio choice strategy � (:), where the exponent � > 0 is called

risk-sensitive parameter. If we put � = 1 the utility (1:18) reduced to the usual risk-neutral

case, the expectation under the probability measure P is denoted by E.

Lemma 1.4 We can rewrite the expectation E
�
V � (T )

�
described in the equation (1:18) in

term of the exponential expected of integral criterion as

J� (� (:)) =
1

�
V � (0)E�

�
exp

�
�

Z T

0

h (t; x (t) ; � (t) ; �) dt

��
:

E� is the new expectation with respect to probability measure P�; and the function h is given

by

h (t; x (t) ; � (t) ; �) = �1
2
(� � 1)�2 (t)�2 (t; x (t)) + V (t) r (t; x (t))

+ (� (t; x (t))� r (t; x (t)))� (t)

+

Z
j�j<R

�
1

�

h
(1 + � (t) � (t; �))� � 1

i
� � (t) � (t; �)

�
m (d�) :

Proof. Applying the Lévy-Itô�s formula in Lemma 1:3 to logarithmic wealth value
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lnV � (t) = � lnV (t) = �f (t; V (t)) ; we have

�d (f (t; V (t))) (1.19)

= �d (lnV (t))

= �
@f

@t
(t; V (t)) dt+ �

@f

@x
(t; V (t)) dV (t)

+ �
1

2

@2f

@x2
(t; V (t)) hdV (t) ; dV (t)i

+ �

Z
j�j<R

�
f
�
t; V

�
t�
�
+ �(t; �)

�
� f

�
t; V

�
t�
��
� @f (t; V (t�))

@x
� (t; �)

�
m (d�)

+ �

Z
R

�
f
�
t; V

�
t�
�
+ �(t; �)

�
� f

�
t; V

�
t�
��� eN (dt; d�)

= �
1

V (t)
dV (t) + �

1

2

�
� 1

V 2 (t)

�
�2 (t)�2 (t; xt)V

2 (t) dt

+ �

Z
j�j<R

(ln (V (t) + V (t)� (t) � (t; �))� ln (V (t))� � (t) � (�))m (d�)

+ �

Z
R
(ln (V (t) + V (t)� (t) � (t; �))� ln (V (t))) eN (dt; d�) :

Hence

�

Z
j�j<R

�
ln
�
V
�
t�
�
+ V

�
t�
�
� (t) � (t; �)

�
� ln

�
V
�
t�
��
� � (t) � (�)

�
m (d�)

= �

Z
j�j<R

(ln (1 + � (t) � (t; �))� � (t) � (�))m (d�)

=

Z
j�j<R

�
ln (1 + � (t) � (t; �))� � �� (t) � (�)

�
m (d�)

=

Z
j�j<R

�
ln (1 + � (t) � (t; �))� + 1� (1 + � (t) � (t; �))�

�
m (d�)

+ �

Z
j�j<R

�
1

�

h
(1 + � (t) � (t; �))� � 1

i
� � (t) � (t; �)

�
m (d�) : (1.20)
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By substituting the equation (1:20) into (1:19) ; we get

exp � lnV (T ) = exp

�
V � (0) + �

Z T

0

fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt

� 1
2
�

Z T

0

�2 (t)�2 (t; x (t)) dt+ �

Z T

0

� (t)� (t; x (t)) dW (t)

+

Z
j�j<R

�
ln (1 + � (t) � (t; �))� + 1� (1 + � (t) � (t; �))�

�
m (d�)

+ �

Z
j�j<R

�
1

�

h
(1 + � (t) � (t; �))� � 1

i
� � (t) � (t; �)

�
m (d�)

+�

Z
R
ln (1 + � (t) � (t; �)) eN (dt; d�)� :

Then we get after taking the expectation

1

�
E [V (T )] =

1

�
E [exp � lnV (T )]

=
1

�
V � (0)E

�
exp

�
�

Z T

0

fV (t) r (t; x (t)) + (� (t; xt)� r (t; x (t)))� (t)g dt

� 1
2
�

Z T

0

�2 (t)�2 (t; x (t)) dt+ �

Z T

0

� (t)� (t; x (t)) dW (t)

+

Z
j�j<R

�
ln (1 + � (t) � (t; �))� + 1� (1 + � (t) � (t; �))�

�
m (d�)

+ �

Z
j�j<R

�
1

�

h
(1 + � (t) � (t; �))� � 1

i
� � (t) � (t; �)

�
m (d�)

+�

Z
R
ln (1 + � (t) � (t; �)) eN (dt; d�)�� :

23



Chapter 01. Expected exponential utility and Girsanov�s theorem

Then

1

�
E [V (T )]

=
1

�
V � (0)E

�
exp

�
�

Z T

0

(fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt)

+ �

Z T

0

� (t)� (t; x (t)) dW (t)� 1
2
�

Z T

0

�2 (t)�2 (t; x (t)) dt

� 1
2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt+
1

2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt

+

Z
j�j<R

�
ln (1 + � (t) � (t; �))� + 1� (1 + � (t) � (t; �))�

�
m (d�)

+ �

Z
j�j<R

�
1

�

h
(1 + � (t) � (t; �))� � 1

i
� � (t) � (t; �)

�
m (d�)

+�

Z
R
ln (1 + � (t) � (t; �)) eN (dt; d�)�� :

We have

1

�
E [V (T )]

=
1

�
V � (0)E

�
exp

�
�1
2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt+ �

Z T

0

� (t)� (t; x (t)) dW (t)

+

Z T

0

Z
j�j<R

�
ln (1 + � (t) � (t; �))� + 1� (1 + � (t) � (t; �))�

�
m (d�) dt

+�

Z T

0

Z
R
ln (1 + � (t) � (t; �)) eN (dt; d�)�

� exp
�
�1
2
�

Z T

0

�2 (t)�2 (t; x (t)) dt+
1

2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt

+ �

Z T

0

Z
j�j<R

�
1

�

h
(1 + � (t) � (t; �))� � 1

i
� � (t) � (t; �)

�
m (d�) dt

+�

Z T

0

fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt
��

=
1

�
V � (0)E [I1 � I2] ;
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where

I1 = exp

�
�1
2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt+ �

Z T

0

� (t)� (t; x (t)) dW (t)

+

Z T

0

Z
j�j<R

�
ln (1 + � (t) � (t; �))� + 1� (1 + �� (t) � (t; �))�

�
m (d�) dt

+�

Z T

0

Z
R
ln (1 + � (t) � (t; �)) eN (dt; d�)� ;

I2 = exp

�
�

Z T

0

�1
2
(� � 1)�2 (t)�2 (t; x (t)) dt

+ �

Z T

0

fV (t) r (t; x (t)) + (� (t; x (t))� r (t; x (t)))� (t)g dt

+ �

Z T

0

Z
j�j<R

�
1

�

h
(1 + � (t) � (t; �))� � 1

i
� � (t) � (t; �)

�
m (d�) dt

= exp

�
�

Z T

0

h (t; x (t) ; � (t) ; �) dt

�
;

and

h (t; x (t) ; � (t) ; �) = �1
2
(� � 1)�2 (t)�2 (t; x (t)) dt+ V (t) r (t; x (t))

+ (� (t; x (t))� r (t; x (t)))� (t)

+

Z
j�j<R

�
1

�

h
(1 + � (t) � (t; �))� � 1

i
� � (t) � (t; �)

�
m (d�) :

We have the Novikov�s condition for Lévy processes (see Theorem 1.36 page 20 in [26]).

E
�
exp

�
1

2

Z T

0

u2 (t) dt+

Z T

0

Z
R
�2 (t; �) eN (dt; d�)�� � 1: (1.21)
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By applying Girsanov�s transformation, the stochastic integral term can be delated, and

according to the assumption (1:21) ; we get

dP�

dP
= exp

�
�1
2
�2
Z T

0

�2 (t)�2 (t; x (t)) dt+ �

Z T

0

� (t)� (t; x (t)) dW (t)

+

Z T

0

Z
j�j<R

�
ln (1 + � (t) � (t; �))� + 1� (1 + � (t) � (t; �))�

�
m (d�) dt

+�

Z T

0

Z
R
ln (1 + � (t) � (t; �)) eN (dt; d�)� ;

for some constants �; C are positive. Hence

J� (� (:)) =
1

�
E
�
V � (T )

�
=
1

�
V � (0)E [I1 � I2]

=
1

�
V � (0)E

�
dP�

dP
exp

�
�

Z T

0

h (t; x (t) ; � (t) ; �) dt

��
=
1

�
V � (0)E�

�
exp

�
�

Z T

0

h (t; x (t) ; � (t) ; �) dt

��
:

E� is the new expectation with respect to probability measure P�:

As a conclusion.

Lemma 1.5 Our dynamics (1:16) satis�es the following SDE with jump

dx (t) = f (t; x (t) ; �; � (t)) dt+ �dW � (t) +

Z
R

 (t; �) eN � (ds; d�) ;

where the function f is given by

f (t; x (t) ; �; � (t)) = b (t; x (t))� ��� (t)� (t; x (t))�
Z
j�j<R

(1 + � (t) � (t; �))�m (d�) :

Proof. Applying the Girsanov�s transformation given in theorem 1:3: We denote by

W � (t) =W (t) + �

Z t

0

� (s)� (s; x (s)) ds;
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is a standard brownian motion under the probability measure P�; and the P��compensated

Poison random measure is given by

Z t

0

Z
j�j<R

eN � (ds; d�) =

Z t

0

Z
j�j<R

eN (ds; d�) + Z t

0

Z
j�j<R

(1 + � (t) � (s; �))�m (d�) ds:

For every 0 � s � t;

dx (t) = b (t; x (t)) dt+ �dB (t) +

Z
R

 (t; �) eN (dt; d�)

= b (t; x (t)) dt+ �d

�
W � (t)� �

Z t

0

� (s)� (s; xs) ds

�
+

Z
R

 (t; �)

�Z
j�j<R

eN � (ds; d�)�
Z
j�j<R

(1 + � (t) � (t; �))�m (d�) dt

�
= b (t; x (t)) dt+ �dW � (t)� ��� (t)� (t; x (t)) dt�

Z
j�j<R

(1 + � (t) � (t; �))�m (d�) dt

+

Z
R

 (t; �) eN � (ds; d�) :

=

�
b (t; x (t))� ��� (t)� (t; x (t))�

Z
j�j<R

(1 + � (t) 
 (t; �))�m (d�)

�
dt+ �dW � (t)

+

Z
R

 (t; �) eN � (ds; d�) :

If we denote by

f (t; x (t) ; �; � (t)) = b (t; x (t))� ��� (t)� (t; x (t))�
Z
j�j<R

(1 + � (t) � (t; �))�m (d�) :

Then we get

8><>:
dx (t) = f (t; x (t) ; �; � (t)) dt+ �dW � (t) +

Z
R

 (t; �) bN (ds; d�) ;

x (0) = x0:

The proof is completed.
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In the next, we will give an auxiliary criterion function of the expected utility whose wants

the investor maximized as

eJ� (� (:)) = 1

�
V � (0)E�

�
exp

�
�

Z T

0

h (t; x (t) ; � (t) ; �) dt

��
:

We sum up, we have seen that the risk-sensitive asset problem is equivalent to the stochastic

control problem of minimizing the cost function

eJ� (� (:)) = E� �exp�� Z T

0

h (t; x (t) ; � (t) ; �) dt

��
:

Here the value 1
�
V � (0) plays no role important any more for the optimization problem, so

we can put 1
�
V � (0) = 1:

1.2.3 Mean-Variance of loss functional

We require the following condition

A�T := exp �

�Z T

0

h (t; x (t) ; � (t)) dt

�
; (1.22)

and we can put also

	(T ) :=

Z T

0

h (t; x (t) ; � (t)) dt: (1.23)

The risk-sensitive of loss functional is given by

� (�) (1.24)

:=
1

�
log

�
E
�
exp �

�Z T

0

h (t; x (t) ; � (t)) dt

���
=
1

�
log (E [exp �	(T )]) :

Lemma 1.6 Let � (�) be the loss functional has written as (1:24) ; where 	(T ) is given by

(1:23) : Then, if the risk-sensitive index � is small, the loss functional � (�) can be expanded
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as

E [	 (T )] +
�

2
Var (	 (T )) +O

�
�2
�
: (1.25)

Proof. The limited development of the function f (x) = exp (�x) with rang two in the

neighborhood of zero is given by

f (x) = exp (�x) =

2X
k=0

(�x)k

k!
= 1 + �x+

1

2
(�x)2 +O

�
�2
�
:

Then, by replacing x by 	(T ), we get

exp (�	(T )) = 1 + �	(T ) +
1

2
(�	(T ))2 +O

�
�2
�
:

By taking expectation, we have

E [exp (�	(T ))] = E
�
1 + �	(T ) +

1

2
(�	(T ))2 +O

�
�2
��

= 1 + �E [	 (T )] +
�2

2
E
�
	2 (T )

�
+O

�
�2
�
:

Then

logE [exp (�	(T ))] = log
�
1 + �E [	 (T )] +

�2

2
E
�
	2 (T )

�
+O

�
�2
��

:

If we take X = �E [	 (T )] + �2

2
E [	2 (T )] + o (�2) ; and by using the limited development of

the function g (X) = ln(1 +X) , with rang two in neighborhood of zero

g (X) = ln(1 +X) =

2X
k=1

(�1)k�1

k
Xk:
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Then

logE [exp (�	(T ))]

= �E [	 (T )] +
�2

2
E
�
	2 (T )

�
+O

�
�2
�

+ (�1) 1
2

�
�E [	 (T )] +

�2

2
E
�
	2 (T )

�
+ o

�
�2
��2

+O(�2)

= �E [	 (T )] +
�2

2
E
�
	2 (T )

�
� �2

2
(E [	 (T )]) 2

� �4

4

�
E
�
	2 (T )

��
2 + :::+O

�
�2
�

= �E [	 (T )] +
�2

2

�
E
�
	2 (T )

�
� (E [	 (T )]) 2

�
+O

�
�2
�

= �E [	 (T )] +
�2

2
Var (	 (T )) +O

�
�2
�
:

This implies that

� (�) =
1

�
logE [exp (�	(T ))] = E [	 (T )] +

�

2
Var (	 (T )) +O

�
�2
�
:

The proof is completed.
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Chapter 2

Pontryagin�s risk-sensitive stochastic

maximum principle for fully coupled

FBSDE with applications

In this chapter, we are interested in the problem of optimal control where the system is given

by a fully coupled forward-backward stochastic di¤erential equation with a risk-sensitive

performance functional. As a preliminary step, we use the risk neutral which is an extension

of the initial control problem where the admissible controls are convex, and an optimal

solution exists.Then, we study the necessary as well as su¢ cient optimality conditions for risk

sensitive performance. At the end of this chapter, we illustrate our main result by giving two

examples of risk sensitive control problem under linear stochastic dynamics with exponential

quadratic cost function.The second example deals with an optimal portfolio choice problem

in �nancial market specially the model of control cash �ow of a �rm or project where, for

instance, we can set the model of pricing and managing an insurance contract.

2.1 Formulation of the problem

Let
�

;F ; (Ft)t�0 ;P

�
be a �ltred probability space satisfying the usual conditions, in which

a d�dimensional Brownian motion W = (Wt : 0 � t � T ) is de�ned. We assume that (Ft)
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is de�ned by 8t � 0; Ft = � (W (r) ; 0 � r � t) _N ; where N denote the totality of P�null

sets. For any n 2 N; letM2 ([0; T ] ;Rn) denotes the set of n dimensional jointly measurable

random processes f't; t 2 [0; T ]g which satisfy:

(i) : E
�Z T

0

j'tj2 dt
�
<1;

(ii) : 't is
�
F (W )
t

�
measurable, for a:e: t 2 [0; T ] :

We denote similarly by S2 ([0; T ] ;Rn) the set of continuous n dimensional random processes

which satisfy:

(i) : E
�
sup
0�t�T

j'tj2
�
<1;

(ii) : 't is
�
F (W )
t

�
measurable, for any t 2 [0; T ] :

Let T be a strictly positive real number and U is a convex nonempty subset of Rk:

De�nition 2.1 An admissible control v is a process with values in U such that

E
�Z T

0

jvtj2 dt
�
<1: We denote by U the set of all admissible controls.

For any v 2 U , we consider the following fully coupled forward-backward system

8>>>><>>>>:
dxvt = b (t; xvt ; y

v
t ; z

v
t ; vt) dt+ � (t; xvt ; y

v
t ; z

v
t ; vt) dWt;

dyvt = �g (t; xvt ; yvt ; zvt ; vt) dt+ zvt dWt;

xv0 = x (0) , yvT = a;

(2.1)

where b : [0; T ]�Rn�Rm�Rn�d�U ! Rn; � : [0; T ]�Rn�Rm�Rn�d�U !Mn�d (R) ;

g : [0; T ]� Rn � Rm � Rn�d � U ! Rm:

We de�ne the criterion to be minimized, with initial and terminal risk-sensitive cost func-

tional, as follows

J� (v) = E
�
exp �

�
� (xvT ) + 	 (y

v
0) +

Z T

0

f (t; xvt ; y
v
t ; z

v
t ; vt) dt

��
; (2.2)

where � is the risk-sensitive index, and � : Rn ! R; 	 : Rm ! R;

f : [0; T ]� Rn � Rm � Rn�d � U ! R:

The control problem is to minimize the functional J� over U , if u 2 U is an optimal control,
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that is

J� (u) = inf
v2U

J� (v) : (2.3)

Next, we give some notations � = (xvt ; y
v
t ; z

v
t )
� ;

and M (t;�) =:

0BBBB@
�GTg

GT b

GT�

1CCCCA (t;�) ;
We use the Euclidean norm j:j in R. All the equalities and inequalities, mentioned in this

paper, are in the sense of dt� dP almost surely on [0; T ]� 
: We assume that

Assumption 2.1 For each � 2 Rn � Rm � Rn�d, M (t;�) is an Ft�measurable process

de�ned on [0; T ] with M (t;�) 2M2
�
[0; T ] ;Rn � Rm � Rn�d

�
:

Assumption 2.2 M(t; :) satis�es Lipschitz conditions: There exists a constant k > 0; such

that jM (t;�)�M (t;�0)j � k j�� �0j 8 �; �0 2 Rn � Rm � Rn�d, 8t 2 [0; T ]:

The following monotonic conditions introduced in Peng and Wu [29], are the main assump-

tions in this paper.

The coe¢ cients g; b and � are G�monotone i.e., there exists a nondegenerate m�n�matrix

G such that, for every �xed (w; t) the mappingM (t;�) is monotonous in (x; y; z) in the sense

of the assumption

Assumption 2.3 hM (t;�)�M (t;�0) ;�� �i � �1 jG (x� x0)j2 � �2 jG (y � y0)j2 ;

8 � = (x; y; z)� ; �0 = (x0; y0; z0)� 2 Rn � Rm � Rn�d, 8 t 2 [0; T ]; where �1 and �2 are given

nonnegative constants with �1 + �2 > 0:

Proposition 2.1 For any given admissible control v (:), we assume that 2:1�2:3 hold. Then

the fully coupled FBSDE (2:1) has the unique solution (xvt ; y
v
t ; z

v
t ) 2 (M2 (0; T ;Rn � Rm))2�

S2
�
0; T ;Rn�d

�
:

Proof. The proof can be seen in Peng and Wu [29].

A control that solves the problem f(2:1) ; (2:2) ; (2:3)g is called optimal. Our goal is to es-

tablish necessary, as well as su¢ cient conditions of optimality, satis�ed by a given optimal
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control, in the form of stochastic maximum principle with a risk-sensitive performance func-

tional type.

We also assume that

Assumption 2.4 i)b; �; g; f; � and 	 are continuously di¤erentiable with respect to (xv; yv; zv; v) :

ii) The derivatives of b; �; g and f are bounded by C (1 + jxvj+ jyvj+ jzvj+ jvj) :

iii) The derivatives of �; 	 are bounded by C (1 + jxvj ) and C (1 + jyvj ) respectively.

Under the above assumptions, for every v 2 U equation (2:1) has a unique strong solution

and the function cost J� is well de�ned from U into R.

2.2 Risk-sensitive stochastic maximum principle of fully

coupled forward-backward control problem type

First of all, we may introduce an auxiliary state process �vt which is the solution of the

following stochastic di¤erential equation (SDE in short):

d�vt = f (t; xvt ; y
v
t ; z

v
t ; vt) dt; �v0 = 0:

From the above auxiliary process, the fully coupled forward-backward type control problem

is equivalent to

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

inf
v2U

E [exp � f� (xvT ) + 	 (yv0) + �vTg] = inf
v2U

E [� (xvT ; yv0 ; �vT )] ;

subject to

d�vt = f (t; xvt ; y
v
t ; z

v
t ; vt) dt;

dxvt = b (t; xvt ; y
v
t ; z

v
t ; vt) dt+ � (t; xvt ; y

v
t ; z

v
t ; vt) dWt;

dyvt = �g (t; xvt ; yvt ; zvt ; vt) dt+ zvt dWt;

�v0 = 0; xv0 = xv (0) , yvT = a:

(2.4)

We denote by A�T := exp �
�
� (xvT ) + 	 (y

v
0) +

Z T

0

f (t; xvt ; y
v
t ; z

v
t ; vt) dt

�
; and we can put also
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�T := � (x
v
T ) +	 (y

v
0) +

Z T

0

f (t; xvt ; y
v
t ; z

v
t ; vt) dt; the risk-sensitive loss functional is given by

�� :=
1

�
logE

�
exp �

�
� (xvT ) + 	 (y

v
0) +

Z T

0

f (t; xvt ; y
v
t ; z

v
t ; vt) dt

��
=
1

�
logE [exp f��Tg] :

When the risk-sensitive index � is small, the functional �� can be expanded as E [�T ] +
�
2
V ar (�T ) + O (�2) ; where, V ar (�T ) denotes the variance of �T : If � < 0; the variance of

�T ; as a measure of risk, improves the performance ��, in which case the optimizer is called

risk seeker. But, when � > 0; the variance of �T worsens the performance ��, in which case

the optimizer is called risk averse. The risk-neutral loss functional E (�T ) can be seen as

a limit of risk-sensitive functional �� when � ! 0, for more details the reader can see the

chapter�s book [7]:

Notation 2.1 We will use the following notation throughout the paper. For � 2
n
b; �; f; g;H�; eH�

o
,

we de�ne 8>>>><>>>>:
� (t) = � (t; xvt ; y

v
t ; z

v
t ; vt) ;

@� (t) = � (t; xvt ; y
v
t ; z

v
t ; vt)� � (t; xut ; y

u
t ; z

u
t ; ut) ;

�� (t) =
@�
@�
(t; xvt ; y

v
t ; z

v
t ; vt) ; � = x; y; z:

Where vt in an admissible control from U .

We assume that the assumptions 2:1; 2:2; 2:3 and 2:4 hold, we may apply the stochastic

maximum principle for risk-neutral of fully coupled forward-backward type control from

Yong [40] to augmented state dynamics (�; x; y; z) to derive the adjoint equation. There exist

unique Ft�adapted pairs of processes ((p1; q1) ; (p2; q2) ; (p3; q3)) ; which solve the following
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system matrix of backward SDEs

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

d�!p (t) =

0BBBB@
dp1 (t)

dp2 (t)

dp3 (t)

1CCCCA =

0BBBB@
0 0 0

fx (t) bx (t) gx (t)

-fy (t) -by (t) -gy (t)

1CCCCA
0BBBB@

p1 (t)

p2 (t)

p3 (t)

1CCCCA dt

0BBBB@
0 0 0

0 �x (t) 0

0 -�y (t) 0

1CCCCA
0BBBB@

q1 (t)

q2 (t)

q3 (t)

1CCCCA dt�

0BBBB@
q1 (t)

q2 (t)

q3 (t)

1CCCCA dWt;

0B@ p1 (T )

p2 (T )

1CA = ��AT

0B@ 1

�x (x
u
T )

1CA ; and p3 (0) = ��	y (yu0 )AT ;

(2.5)

with E

"
3X
i=1

sup
0�t�T

jpi (t)j2 +
2P
i=1

Z T

0

jqi (t)j2 dt
#
<1; and

q3 (t) = Tr

264
0B@ fz (t) bz (t)

�z (t) gz (t)

1CA
0B@ p1 (t) q2 (t)

p2 (t) p3 (t)

1CA
375 :

To this end, we may de�ne (2:5) in the compact form as:

8>>>>>>>>>>><>>>>>>>>>>>:

d�!p (t) =

0BBBB@
dp1 (t)

dp2 (t)

dp3 (t)

1CCCCA = F (t) dt� � (t) dWt

0B@ p1 (T )

p2 (T )

1CA = ��AT

0B@ 1

�x (x
u
T )

1CA ; and p3 (0) = ��	y (yu0 )AT ;

where

� (t) =

0BBBB@
q1 (t)

q2 (t)

q3 (t)

1CCCCA ;
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F (t) =

0BBBB@
0 0 0

fx (t) bx (t) gx (t)

-fy (t) -by (t) -gy (t)

1CCCCA
0BBBB@

p1 (t)

p2 (t)

p3 (t)

1CCCCA

+

0BBBB@
0 0 0

0 �x (t) 0

0 -�y (t) 0

1CCCCA
0BBBB@

q1 (t)

q2 (t)

q3 (t)

1CCCCA :

We suppose here that eH� is the Hamiltonian associated with the optimal state dynamics

(�u; xu; yu; zu) ; and the pair of adjoint processes (�!p (t) ;�!q (t)) given by

eH� (t; �ut ; x
u
t ; y

u
t ; z

u
t ; ut;

�!p (t) ;�!q (t))

:=

0BBBB@
f (t)

b (t)

g (t)

1CCCCA (�!p (t))� +
0BBBB@
0

� (t)

0

1CCCCA (�!q (t))� :

Theorem 2.1 Assume that 2:1; 2:2; 2:3 and 2:4 hold. If (�u; xu; yu; zu) is an optimal solu-

tion of the risk-neutral control problem (3:4) ; then there exist pairs of Ft�adapted processes

((p1; q1) ; (p2; q2) ; (p3; q3)) that satisfy (2:5) ; such that

eH�
v (t) (vt � ut) � 0; (2.6)

for all u 2 U ; almost every t 2 [0; T ] ; and P�almost surely, where eH�
v (t) is de�ned in

notation 2:1.

2.2.1 How to �nd the new adjoint equation ?

As we said, Theorem 2:1 is a good SMP for the risk-neutral of forward backward control

problem. We follow the approach used in [8; 11]; and suggest a transformation of the adjoint

processes (p1; q1) ; (p2; q2) and (p3; q3) in such a way to omit the �rst component (p1; q1) in

(2:5) ; and to obtain the SMP in terms of only the last two adjoint processes, that we denote by
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((ep2; eq2) ; (ep3; eq3)). Noting that dp1 (t) = q1 (t) dWt and p1 (T ) = ��A�T ; the explicit solution

of this backward SDE is

p1 (t) = ��E
�
A�T j Ft

�
= ��V �

t ; (2.7)

where

V �
t := E

�
A�T j Ft

�
; 0 � t � T: (2.8)

As a good look of (2:7) ; it would be natural to choose a transformation of (�!p ;�!q ) into an

adjoint process (ep; eq) ; where ep1 (t) = 1

�V �
t

p1 (t) = �1:

We consider the following transform

ep (t) =
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA :=
1

�V �
t

�!p (t) ; 0 � t � T: (2.9)

By using (2:5) and (2:9) ; we have

ep (T ) :=
0B@ ep1 (T )ep2 (T )

1CA = �

0B@ 1

�x (x
u
T )

1CA ; and ep3 (0) = �	y (yu0 ) :
The following properties of the generic martingale V � are essential in order to investigate the

properties of these new processes (ep (t) ; eq (t)) :
The process �� is the �rst component of the Ft�adapted pair of processes

�
��; l

�
; which is

the unique solution to the following quadratic backward SDE

8><>: d��t = �
�
f (t) + �

2
jl (t)j2

	
dt+ l (t) dWt;

��T = 	(y
u
0 ) ;

(2.10)

where

E
�Z T

0

jl (t)j2 dt
�
<1:

In the next, we will state and prove the necessary conditions of optimality for the system
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driven by fully coupled FBSDE with a risk sensitive performance functional type. To this

end, let us summarize and prove some lemmas that we will use thereafter.

Lemma 2.1 Suppose that 2:4 holds. Then

E
�
sup
0�t�T:

����t ��2� � CT ; (2.11)

In particular, V � solves the following linear backward SDE

dV �
t = �l (t)V �

t dWt; V �
T = A�T : (2.12)

Hence, the process de�ned on
�

;F ;

�
F (W )
t

�
t�0

;P
�
by

L�t :=
V �
t

V �
0

= exp

�Z t

0

�l (s) dWs �
�2

2

Z t

0

jl (s)j2 ds
�
; 0 � t � T; (2.13)

is a uniformly bounded Ft�martingale.

Proof. First we prove (2:11) : We assume that 2:4 holds; f; � and 	 are bounded by a

constant C > 0; we have

0 < e�(2+T )C� � A�T � e(2+T )C�: (2.14)

Therefore, V � is a uniformly bounded Ft�martingale satisfying

0 < e�(2+T )C� � V �
t � e(2+T )C�; 0 � t � T: (2.15)

The su¢ cient conditions of the Logarithmic transform established in ( [14], Proposition 3.1)

can be applied to the martingale V � as follows

V �
t = exp

�
���t + �

Z t

0

f (s) ds

�
; 0 � t � T;

and V � (0) = exp (��0) = E
�
A�T
�
: It is easy to see from (2:15) ; and the boundedness of f
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that

E
�
sup
0�t�T:

����t ��2� � CT ;

where CT is a positive constant that only depends on T; and the boundedness of f; and 	:

Second, we may �nd the explicit form of (2:12) ; by using the second Itô�s formula to

V �
t = exp

�
���t + �

Z t

0

f (s) ds

�
:

d
�
V �
t

�
= d

�
exp

�
�

Z t

0

f (s) ds

�
: exp

�
���t

��
= �f (t) exp

�
���t + �

Z t

0

f (s) ds

�
+ �

�
d��t

�
: exp

�
���t + �

Z t

0

f (s) ds

�
+
1

2
�2l2 (t) : exp

�
���t + �

Z t

0

f (s) ds

�
dt

= �l (t)V �
t dWt:

Now, we can prove (2:13) ; by starting from the integral form of (2:12), such that V �
t =

�

Z t

0

l (s)V � (s) dWs: On the other hand, we have

V �
t = exp

�
�

Z t

0

f (s) ds

�
: exp

�
���t

�
:

By replacing ��t in (2.10) ; we have

V �
t

V �
0

= exp

�Z t

0

�l (s) dWs �
�2

2

Z t

0

jl (s)j2 ds
�
:= L�t :

In view of (2:11) ; the last expression (2:13) is a uniformly bounded Ft-martingale.

Lemma 2.2 The second and the third risk-sensitive adjoint equations for (ep2 (t) ; eq2 (t)) ;
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(ep3 (t) ; eq3 (t)) and �V � (t) ; l (t)
�
become

8>>>>>>>>>><>>>>>>>>>>:

dep2 (t) = H�
x (t) dt+ (eq2 (t) + �l (t) ep2 (t)) dW �

t ;

dep3 (t) = �H�
y (t) dt�H�

z (t) dW
�
t ;

dV �
t = �l (t)V �

t dWt;

V �
T = A�T ;ep2 (T ) = ��x (xT ) ; ep3 (0) = �	y (y0) :

(2.16)

The solution
�ep (t) ; eq (t) ; V � (t) ; l (t)

�
of the system (2:16) is unique, such that

E
�
sup
0�t�T

jep (t)j2 + sup
0�t�T

��V �
t

��2 + Z T

0

�
jeq (t)j2 + jl (t)j2� dt� <1; (2.17)

where

H�

0B@t; xt; yt; zt;
0B@ ep2 (t)eq2 (t)

1CA ;

0B@ ep3 (t)
0

1CA ; V �
t ; l (t)

1CA (2.18)

= b (t) ep2 (t) + � (t) eq2 (t) + (g (t)� zt�l (t)) ep3 (t)� f (t) :

Proof. We want to identify the processes e� and e� such that
dep (t) = �e� (t) dt+ e� (t) dWt:

By applying Itô�s formula to the process �!p (t) = �V �
t ep (t) ; and using the expression of V � in

(2:12) ; we obtain
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dep (t) = 1

�V �
t

0BBBB@
0 0 0

fx (t) bx (t) gx (t)

-fy (t) -by (t) -gy (t)

1CCCCA
0BBBB@

p1 (t)

p2 (t)

p3 (t)

1CCCCA dt

+
1

�V �
t

0BBBB@
0 0 0

0 �x (t) 0

0 -�y (t) 0

1CCCCA
0BBBB@

q1 (t)

q2 (t)

q3 (t)

1CCCCA dt� �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA e� (t) dt

� 1

�V �
t

0BBBB@
q1 (t)

q2 (t)

q3 (t)

1CCCCA dWt + �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t) dWt:

By identifying the coe¢ cients, we get the di¤usion term

e� (t) = � 1

�V �
t

0BBBB@
q1 (t)

q2 (t)

q3 (t)

1CCCCA+ �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t) ;

and the drift term of the process ep (t)

e� (t) = 1

�V �
t

0BBBB@
0 0 0

-fx (t) -bx (t) -gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@

p1 (t)

p2 (t)

p3 (t)

1CCCCA

+
1

�V �
t

0BBBB@
0 0 0

0 -�x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@

q1 (t)

q2 (t)

q3 (t)

1CCCCA+ �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA e� (t) :
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Using the relation ep (t) = 1

�V �
t

�!p (t) ; the di¤usion coe¢ cient e� (t) will be

e� (t) = �
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA+ �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t) ;

and the drift term of the process ep (t)

e� (t) =
0BBBB@
0 0 0

-fx (t) -bx (t) -gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA

+

0BBBB@
0 0 0

0 -�x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA+ �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA e� (t) :

We �nally obtain

dep (t) = �
0BBBB@
0 0 0

-fx (t) -bx (t) -gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA dt

�

0BBBB@
0 0 0

0 -�x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA dt� �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA e� (t) dt
+ e� (t) dWt:

It is easily veri�ed that

dep1 (t) = e�1 (t) [��l1 (t) dt+ dWt] ; ep1 (T ) = �1:
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In view of (2:13) ; we may use Girsanov�s theorem 1:3 to claim that

dep1 (t) = e�1 (t) dW �
t ; P� � as: ep1 (T ) = �1;

where

dW �
t = ��l (t) dt+ dWt; (2.19)

is a P��Brownian motion, where, dP�
dP

���
Ft
:= L�t = exp

�Z t

0

�l (s) dWs � �2

2

Z t

0

jl (s)j2 ds
�
;

0 � t � T: But according to (2:14) and (2:13) ; the probability measures P� and P are

in fact equivalent. Hence, noting that ep1 (t) := 1

�V �
t

p1 (t) is square-integrable, we get that

ep1 (t) = EP� [ep1 (T ) j Ft] = �1: Thus, its quadratic variation Z T

0

jeq1 (t)j2 dt = 0: This implies
that, for almost every 0 � t � T; eq1 (t) = 0; P� and P�a.s.

dep (t) = �
0BBBB@
0 0 0

-fx (t) -bx (t) -gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA dt

+

0BBBB@
0 0 0

0 -�x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA dt+ e� (t) dW �
t :

Now we use the relation e� (t) = �
0BBBB@
eq1 (t)eq2 (t)eHz (t)

1CCCCA+ �
0BBBB@

l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t) ; in the equation above,
to obtain
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dep (t) = �
0BBBB@
0 0 0

-fx (t) -bx (t) -gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA dt (2.20)

�

0BBBB@
0 0 0

0 -�x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA dt

+

8>>>><>>>>:�
0BBBB@
eq1 (t)eq2 (t)
fz (t) ep1 (t) + bz (t) ep2 (t) + gz (t) ep3 (t) + �z (t) eq2 (t)

1CCCCA

+�

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t)
9>>>>=>>>>; dW �

t :

Therefore, the second and third components of ep2 and ep3 given by (2:20) ; are given by
dep2 (t) = fbx (t) ep2 (t) + gx (t) ep3 (t) + �x (t) eq2 (t)� fx (t)g dt (2.21)

+ feq2 (t) + �l2 (t) ep2 (t)g dW �
t ;

dep3 (t) (2.22)

= �fby (t) ep2 (t) + gy (t) ep3 (t) + eq2 (t)�y (t)� fy (t)g dt

� f�fz (t) + bz (t) ep2 (t) + gz (t) ep3 (t) + �z (t) eq2 (t)� �l3 (t) ep3 (t)g dW �
t ;

and the second and third risk-sensitive adjoint equations for (ep2; eq2) ; (ep3; eq3) and �V �; l
�
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become 8>>>>>>>>>><>>>>>>>>>>:

dep2 (t) = H�
x (t) dt+ (eq2 (t) + �l2 (t) ep2 (t)) dW �

t ;

dep3 (t) = �H�
y (t) dt�H�

z (t) dW
�
t ;

dV �
t = �l (t)V �

t dWt;

V �
T = A�T ;ep2 (T ) = ��x (xT ) ; ep3 (0) = �	y (y0) :

(2.23)

The solution
�ep; eq; V �; l

�
of the system (2:23) is unique, such that

E
�
sup
0�t�T

jep (t)j2 + sup
0�t�T

��V �
t

��2 + Z T

0

�
jeq (t)j2 + jl (t)j2� dt� <1;

where

H� (t) := H�

0B@t; xt; yt; zt;
0B@ ep2 (t)eq2 (t)

1CA ;

0B@ ep3 (t)
0

1CA ; V �
t ; l (t)

1CA
= b (t) ep2 (t) + � (t) eq2 (t) + (g (t)� zt�l (t)) ep3 (t)� f (t) :

This completed the proof.

Theorem 2.2 (Risk-Sensitive Stochastic Maximum Principle): We assume that 2:4 holds, if

(xu; yu; zu; u) is an optimal solution of the risk-sensitive control problem f(2:1) ; (2:2) ; (2:3)g,

then there exist pairs of Ft-adapted processes
�
V � (t) ; l (t)

�
; and

0B@ ep2 (t)eq2 (t)
1CA ;

0B@ ep3 (t)
0

1CA
that satisfy (2:16) ; (2:17) such that

H�
v (t) (v � u) � 0; (2.24)

for all u 2 U , almost every 0 � t � T and P-almost surely, where the Hamiltonian eH�
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associated with (2:4) ; is given by

eH� (t; �ut ; x
u
t ; y

u
t ; z

u
t ;
�!p t;�!q t) (2.25)

=
�
�V �

t

	
H�

0B@t; xut ; yut ; zut ;
0B@ ep2 (t)eq2 (t)

1CA ;

0B@ ep3 (t)
0

1CA ; V �
t ;

0B@ l2 (t)

l3 (t)

1CA
1CA ;

and H� is the risk-sensitive Hamiltonian given by (2:18) :

Proof. To arrive at a risk-sensitive stochastic maximum principle expressed in terms of the

adjoint processes (ep2; eq2) ; (ep3; eq3) and �V �; l
�
, which solve (2:16). Hence, since V � > 0; the

variational inequality (2:6) translates into H�
v (t) � 0; for all u 2 U , almost every 0 � t � T

and P-almost surely.

2.3 Risk sensitive su¢ cient optimality conditions

This section is concerned with a study of the necessary condition of optimality (2:24) when

it becomes su¢ cient.

Theorem 2.3 (Risk neutral su¢ cient optimality conditions) Assume that �(:) and 	(:) are

convex and for all (x; y; z; v) 2 Rn�Rm�Rn�d�U the function eH�(:; x; y; z; v; :; :) is concave

and for any v 2 U such that E
�Z T

0

jvj 2dt
�
<1 then, u is an optimal control of the problem

f(2:1) ; (2:2) ; (2:3)g, if it satis�es (2:6).

Proof. Let u be an admissible control (candidate to be optimal) for any v 2 U , we have

J� (v)� J� (u)

= E [exp f�	(yv0) + �� (xvT ) + ��vTg]� E [exp f�	(yu0 ) + �� (xuT ) + ��uTg] :
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Since 	 and � are convex and by applying Taylor�s expansion, we get

J� (v)� J� (u)

� E [�AT (�vT � �uT )] + E [��x (xuT )AT (xvT � xuT )] + E [�	y (yu0 )AT (yv0 � yu0 )] :

According to (2:5), we remark that p1 (T ) = �AT , p2 (T ) = ��x (x
u
T )AT and

p3 (0) = �	y (y
u
0 )AT ; then

J� (v)� J� (u) (2.26)

� E [p1 (T ) (�vT � �uT )] + E [p2 (T ) (xvT � xuT )] + E [p3 (0) (yv0 � yu0 )] :

We apply Itô�s formula to p1 (t) (�vt � �ut )

d (p1 (t) (�
v (t)� �u (t))) = (�v (t)� �u (t)) dp1 (t) + p1 (t) d (�

v (t)� �u (t))

+ h(�v � �u) ; p1it dt
;

then Z T

0

(p1 (t) (�
v (t)� �u (t))) dt =

Z T

0

(f (t; xv (t) ; yv (t) ; zv (t) ; vt)�

f (t; xu (t) ; yu (t) ; zu (t) ; ut)) q1 (t) dWt

+

Z T

0

(f (t; xv (t) ; yv (t) ; zv (t) ; vt)�

f (t; xu (t) ; yu (t) ; zu (t) ; ut)) p1 (t) dt

We apply expectation, we get

E [p1 (T ) (�vT � �uT )] = E
�Z T

0

(f (t; xvt ; y
v
t ; z

v
t ; vt)� f (t; xut ; y

u
t ; z

u
t ; ut) p1) dt

�
; (2.27)

We apply also Itô�s formula to p2 (t) (xvt � xut )

d (p2 (t) (x
v (t)� xu (t))) = (xv (t)� xu (t)) dp2 (t) + p2 (t) d (x

v (t)� xu (t))

+ hxv � xu; p2it dt
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then Z T

0

d (p2 (t) (x
v (t)� xu (t))) =

Z T

0

(b (t; xv (t) ; yv (t) ; zv (t) ; vt)�

b (t; xu (t) ; yu (t) ; zu (t) ; ut)) p2 (t) dt

+

Z T

0

(� (t; xv (t) ; yv (t) ; zv (t) ; vt)�

� (t; xu (t) ; yu (t) ; zu (t) ; ut)) p2 (t) dWt

+

Z T

0

� (fx (t) p1 + bx (t) p2 + �x (t) q2

+gx (t) p3) (x
v
t � xut ) dt

+

Z T

0

q2 (t) (x
v
t � xut ) dWt

We apply expectation, we get

E [p2 (T ) (xvT � xuT )] (2.28)

= E
�Z T

0

ffx (t; xut ; yut ; zut ; ut) p1 (t) + bx (t; x
u
t ; y

u
t ; z

u
t ; ut) p2 (t)

+�x (t; x
u
t ; y

u
t ; z

u
t ; ut) q2 (t) + gx (t; x

u
t ; y

u
t ; z

u
t ; ut) p3 (t)

+�x (t; x
u
t ; y

u
t ; z

u
t ; ut) q2 (t)g (xvt � xut ) dt]

+E
�Z T

0

(b (t; xvt ; y
v
t ; z

v
t ; vt)� b (t; xut ; y

u
t ; z

u
t ; ut) p2 (t)) dt

�
+E

�Z T

0

(� (t; xvt ; y
v
t ; z

v
t ; vt)� � (t; xut ; y

u
t ; z

u
t ; ut) q2 (t)) dt

�
;

And We apply also Itô�s formula to p3 (t) (yvt � yut ),

d (p3 (t) (y
v (t)� yu (t))) = (yv (t)� yu (t)) dp3 (t) + p3 (t) d (y

v (t)� yu (t))

+ hyv � yu; p3it dt
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then Z T

0

d (p3 (t) (y
v (t)� yu (t))) =

Z T

0

(g (t; xv (t) ; yv (t) ; zv (t) ; vt)�

g (t; xu (t) ; yu (t) ; zu (t) ; ut)) p3 (t) dt

+

Z T

0

(zv (t)� zu (t)) p3 (t) dWt

+

Z T

0

� (fy (t) p1 + by (t) p2 + �y (t) q2

+gy (t) p3) (y
v
t � yut ) dt

+

Z T

0

� (fz (t) p1 + bz (t) p2 + �z (t) q2

+gz (t) p3) (y
v
t � yut ) dWt

We apply expectation, we get

E [p3 (0) (yv0 � yu0 )] (2.29)

= E
�Z T

0

(g (t; xvt ; y
v
t ; z

v
t ; vt)� g (t; xut ; y

u
t ; z

u
t ; ut)) p3 (t) dt

�
� E

�Z T

0

(fy (t; x
u
t ; y

u
t ; z

u
t ; ut) p1 (t) + gy (t; x

u
t ; y

u
t ; z

u
t ; ut) p3 (t)) (y

v
t � yut ) dt

�
� E

�Z T

0

(fz (t; x
u
t ; y

u
t ; z

u
t ; ut) p1 (t) + gz (t; x

u
t ; y

u
t ; z

u
t ; ut) p3 (t)) (z

v
t � zut ) dt

�
:

By replacing (2:27) ,(2:28) and (2:29) into (2:26) ; and using the fact that the Hamiltonian

can written by the relationship (2:25) ; we have

J� (v)� J� (u)

�E
�Z T

0

�
H� (t; xvt ; y

v
t ; z

v
t ; vt; ept; eqt)�H� (t; xut ; y

u
t ; z

u
t ; ut; ept; eqt)� dt�

+ E
�Z T

0

H�
x (t; x

u
t ; y

u
t ; z

u
t ; vt; ept; eqt) (xvt � xut ) dt

�
+ E

�Z T

0

H�
y (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (yvt � yut ) dt

�
+

�Z T

0

H�
z (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (zvt � zut ) dt

�
:
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Since the Hamiltonian eH� is concave with respect to (x; y; z; v), we have

E
�Z T

0

�
H� (t; xvt ; y

v
t ; z

v
t ; vt; ept; eqt)�H� (t; xut ; y

u
t ; z

u
t ; ut; ept; eqt)� dt�

� E
�Z T

0

H�
x (t; x

u
t ; y

u
t ; z

u
t ; vt; ept; eqt) (xvt � xut ) dt

�
+ E

�Z T

0

H�
y (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (yvt � yut ) dt

�
+ E

�Z T

0

H�
z (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (zvt � zut ) dt

�
+ E

�Z T

0

H�
v (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (vt � ut) dt

�
;

or, equivalently,

E
�Z T

0

H�
v (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (vt � ut) dt

�
� E

�Z T

0

�
H� (t; xvt ; y

v
t ; z

v
t ; vt; ept; eqt)�H� (t; xut ; y

u
t ; z

u
t ; ut; ept; eqt)� dt�

+ E
�Z T

0

H�
x (t; x

u
t ; y

u
t ; z

u
t ; vt; ept; eqt) (xut � xut ) dt

�
+ E

�Z T

0

H�
y (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (yut � yut ) dt

�
+ E

�Z T

0

H�
z (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (zut � zut ) dt

�
:

Then

J� (v)� J� (u) � E
�Z T

0

H�
v (t; x

u
t ; y

u
t ; z

u
t ; ut; ept; eqt) (vt � ut) dt

�
:

In virtue of the necessary condition of optimality (2:6) ; the last inequality implies that

J� (v)� J� (u) � 0: Then, the theorem is improved.

Theorem 2.4 (Risk sensitive su¢ cient optimality conditions) Assume that �(:) and 	(:)

are convex and for all (x; y; z; v) 2 Rn � Rm � Rn�d � U the function H�(:; x; y; z; v; :; :) is

concave and for any v 2 U such that E
�Z T

0

jvj 2dt
�
<1 then, u is an optimal control of the

problem f(2:1) ; (2:2) ; (2:3)g, if it satis�es (2:24).

Remark 2.1 This is not our aim to provide elaborate existence results for optimal controls.
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It should just be noted that usual existence results require some convexity on the dynamics

since their proof usually relies on weak compactness properties. The result given below, whose

early version was obtained by Filippov in [15], is standard.

2.4 Applications

2.4.1 Example 01: Application to the linear quadratic risk-sensitive

control problem

We provide a concrete example of risk-sensitive forward backward stochastic linear quadratic

problem, and we give the explicit optimal control and validate our major theoretical results

in Theorem 2:3 (su¢ cient optimality conditions). Consider the following linear quadratic of

risk-sensitive control problem

8>>>>>>>>>>><>>>>>>>>>>>:

inf
v2U
E
�
exp �

�
1
2
yv0 +

1
2
xvT +

Z T

0

1
2
v2t dt

� �
;

subject to

dxvt = (Atx
v
t +Btvt) dt+ (Ctx

v
t +Dtvt) dWt;

dyvt = � (Rtxt + atyt + ctzt) dt+ ztdWt;

x0 = 0, yvT = a;

(2.30)

where At; Bt; Ct; andDt are n�n bounded progressively measurable matrix-valued processes.

We assume that the term 2Atp2 (t) (x
v
t � xut ) is positive.

Recall that AT := exp �

�
1
2
yv0 +

1
2
xvT +

Z T

0

1
2
v2t dt

�
: Instantly, we give the Hamiltonian eH�

de�ned by

eH� (t; xt; yt; zt; vt; p (t) ; q (t)) =
1

2
v2t p1 (t) + (Atx

v
t +Btvt) p2 (t) + (Ctx

v
t +Dtvt) q2 (t)

+ (Rtxt + atyt + ctzt) p3 (t) :
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Our adjoint equation to be de�ned in the current system as

8>>>>>>><>>>>>>>:

dp1 (t) = �q1 (t) dWt;

dp2 (t) = (Atp2 (t) + Ctq2 (t) +Rtp3 (t)) dt� q2 (t) dWt;

dp3 (t) = � (atp3 (t)) dt� (ctp3 (t)) dWt;

p1 (T ) = �AT ; p2 (T ) = �xTAT ; p3 (0) = �y0AT :

(2.31)

We have eH�
x (t; xt; yt; zt; vt; p (t) ; q (t)) = Atp2 (t) + Ctq2 (t) +Rtp3 (t) ;eH�

y (t; xt; yt; zt; vt; p (t) ; q (t)) = atp3 (t) ; eH�
z (t; xt; yt; zt; vt; p (t) ; q (t)) = ctp3 (t) ;

and eH�
v (t; xt; yt; zt; vt; p (t) ; q (t)) = vtp1 (t)+Btp2 (t)+Dtq2 (t) :Maximizing the Hamiltonian

yields

ut = �
1

p1 (t)
(Btp2 (t) +Dtq2 (t)) : (2.32)

Theorem 2.5 ( Risk-sensitive su¢ cient optimality condition for linear quadratic control

problem): The function (2:32), for all t 2 [0; T ], is the unique optimal control for the linear

quadratic control problem (2:30), where (xt; yt; zt) is the solution of the following FBSDE8>>>><>>>>:
dxvt = (Atx

v
t +Btvt) dt+ (Ctx

v
t +Dtvt) dWt;

dyvt = � (Rtxt + atyt + ctzt) dt+ ztdWt;

x0 = 0, yvT = a:

Proof. From the de�nition of the cost functional J�, we have

J� (vt)� J� (ut) = E
�
exp �

�
1

2
yv0 +

1

2
xvT +

Z T

0

1

2
v2t dt

��
� E

�
exp �

�
1

2
yu0 +

1

2
xuT +

Z T

0

1

2
u2tdt

��
:

We put �T =
Z T

0

1
2
v2t dt; and applying Taylor�s expansion, we get

J� (vt)� J� (ut) = E [p1 (T ) (�vT � �uT )] + E [p2 (T ) (xvT � xuT )] (2.33)

+ E [p3 (0) (yv0 � yu0 )] :
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We apply Itô�s formula to p1 (t) (�vt � �ut ), p2 (t) (x
v
t � xut ) and p3 (t) (y

v
t � yut ), and used the

explicit forms of the adjoint equations (2:31), to get

E [p1 (T ) (�vT � �uT )] = E
�Z T

0

�
1

2

�
v2t � u2t

�
p1 (t)

�
dt

�
; (2.34)

E [p2 (T ) (xvT � xuT )] (2.35)

= E
�Z T

0

(Atp2 (t) + Ctq2 (t) +Rtp3 (t)) (x
v
t � xut ) dt

�
+ E

�Z T

0

((Atx
v
t +Btvt)� (Atxut +Btut)) p2 (t) dt

�
� E

�Z T

0

((Ctx
v
t +Dtvt)� (Ctxut +Dtut)) q2 (t) dt

�
;

and

E [p3 (0) (yv0 � yu0 )]

=E
�Z T

0

((Rtx
v
t + aty

v
t + ctz

v
t )� (Rtxut + aty

u
t + ctz

u
t )) p3 (t) dt

�
(2.36)

� E
�Z T

0

atp3 (t) (y
v
t � yut ) dt

�
� E

�Z T

0

ctp3 (t) (z
v
t � zut ) dt

�
:

We replace (2:34), (2:35) ; and (2:36) into (2:33), we obtain

J� (vt)� J� (ut)

=
1

2
E
�Z T

0

((vt � ut) (vt � ut) p1 (t) + 2ut (vt � ut) p1 (t)) dt

�
+ E

�Z T

0

Btp2 (t) (vt � ut) dt

�
+ E

�Z T

0

Dtq2 (t) (vt � ut) dt

�
+ E

�Z T

0

2Atp2 (t) (x
v
t � xut ) dt

�
:

And then, because of 2Atp2 (t) (xvt � xut ) being nonnegative, we have

J� (vt)� J� (ut) � E
�Z T

0

(utp1 (t) +Btp2 (t) +Dtq2 (t)) (vt � ut) dt

�
;
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By replacing ut with its value in (2:32), we obtain

J� (vt)� J� (ut) � E
�Z T

0

(� (Btp2 (t) +Dtq2 (t))

+Btp2 (t) +Dtq2 (t)) (vt � ut) dt]

= 0:

Then, we get J� (vt)� J� (ut) � 0: The proof is completed.

2.4.2 Example 02: Application to risk sensitive stochastic optimal

portfolio problem

Now we return to the problem of optimal portfolio stated in the motivating example, and deal

with the linear quadratic risk sensitive stochastic optimal control problem shown in section

01, and apply the risk sensitive necessary optimality condition (Theorem 2:2).

Our state dynamics is 8><>: dxt = (�vt + rxt) dt+ �dWt;

x0 = m0;
(2.37)

and 8><>: dyt = (�cxt + �yt) dt+ ztdWt;

yT = 0:
(2.38)

The cost functional is the following expected exponential form

J (v (:)) = E
�
exp

�
�

Z T

0

�
(� � 1)�2

2
v2t +

�
1

2
�2 +m0 + (r � c)xt

�
vt + r

�
dt

��
: (2.39)

The investor wants to maximize (2:39) subject to (2:37) and (2:38) by taking v (:) over U .
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The Hamiltonian function (3:18) gets the form

H� (t) := H� (t; xt; yt; zt; ep2 (t) ; eq2 (t) ; ep3 (t) ; l (t) ; vt)
= b (t) ep2 (t) + � (t) eq2 (t) + fg (t)� �l (t) ztg ep3 (t)� f (t) :

= (�vt + rxt) ep2 (t) + �eq2 (t)
+ f(�cxt + �yt)� �l (t) ztg ep3 (t)
�
�
(� � 1)�2

2
v2t +

�
1

2
�2 +m0 + (r � c)xt

�
vt + r

�
:

Let (xu (t) ; u (t)) be an optimal pair, the adjoint equations (2:21) ; (2:22) are given by

8><>: dep2 (t) = H�
x (t) dt+ f�l2 (t) ep2 (t) + eq2 (t)g dW �

t ;ep2 (T ) = 0; (2.40)

and 8><>: dep3 (t) = �H�
y (t) dt�H�

z (t) dW
�
t ;ep3 (0) = 0: (2.41)

Maximizing the Hamiltonian yields

ut =
�

(� � 1)�2 ep2 (t) + (r � c)

(� � 1)�2x
u
t �

1

(� � 1)�2

�
1

2
�2 +m0

�
: (2.42)

By substituting (2:42) into the SDE (2:37) and (2:40) gives

8>>>>><>>>>>:
dxut =

��
r � � (r � c)

(� � 1)�2

�
xut +

�2

(� � 1)�2 ep2 (t)
�
dt+ �dWt

� �

(� � 1)�2
�
1
2
�2 +m0

�
dt;

xu (0) = m0;

(2.43)
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and

8>>>><>>>>:
depu2 (t) = n�r � �(r�c)

(��1)�2

� epu2 (t)� cepu3 (t) + (r�c)2
(��1)�2x

u
t +

�(r�c)
(��1)�2

�
1
2
�2 +m0

�o
dt

+(�l2 (t) epu2 (t) + equ2 (t)) dW �
t ;epu2 (T ) = 0:

(2.44)

Therefore, an optimal solution (xut ; epu2 (t) ; ut) can be obtained by solving the system of fully

coupled FBSDE (2:43) and (2:44) ; unfortunately, in such a system it is di¢ cult to �nd the

explicit solution. To solve the fully coupled FBSDE f(2:43) ; (2:44)g, we use the similar

technique as in [41], we conjecture the solution to (2:43) and (2:44) is related by

epu2 (t) = A (t)xut +B (t) ; (2.45)

for some deterministic di¤erentiable functions A (t) and B (t) : Applying Itô�s formula to

(2:45) ; we get

8>>>>><>>>>>:
depu2 (t) = �� �A (t) + A (t)

�
r � �(r�c)

(1��)�2

�
+ A2 (t) �

(1��)�2

�
xut

+A (t) �
(1��)�2B (t) +

�
B (t)� �

(1��)�2
�
1
2
�2 +m0

��
dt+ A (t)�dWt;

epu2 (T ) = 0:
(2.46)

On the other hand, by substituting (2:45) into (2:44) ; and using (2:19) ; we obtain

8>>>>>>><>>>>>>>:

depu2 (t) = nhA (t)�r � �(r�c)
(��1)�2

�
� (r�c)2

(��1)�2

i
xut

+B (t)
�
r � �(r�c)

(��1)�2

�
� cepu3 (t) + �(r�c)

(��1)�2
�
1
2
�2 +m0

�
� equ3 (t) �l1 (t)o dt

+equ3 (t) dWt;epu2 (T ) = 0:
(2.47)

By equating the coe¢ cients of (2:47) and (2:46) ; we have equ3 (t) = �A (t) ; where A (t) is the
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solution of the following Riccati type equation

8><>:
�
A (t)� A2 (t) �

(1��)�2 + 2A (t)
�
r � �(r�c)

(��1)�2

�
� (r�c)2

(��1)�2 = 0;

A (T ) = 0;
(2.48)

and B (t) is the solution of the following equation

8>>>>>>><>>>>>>>:

�
B (t) +B (t)

�
A (t) �

(��1)�2 � r + �(r�c)
(��1)�2

�
+A (t)��l1 (t)

+cepu3 (t)� �(r�c�1)
(1��)�2

�
1
2
�2 +m0

�
= 0;

B (T ) = 0:

(2.49)

Finally, we can have the optimal control in the following state feedback form by using (2:42)

and (2:45) ; then

ut =
1

(� � 1)�2 (�A (t)� (r � c))xut +
�

(� � 1)�2B (t) +
1

(� � 1)�2

�
1

2
�2 +m0

�
; (2.50)

where A (t) ; B (t) are determined by (2:48) and (2:49) respectively:

Theorem 2.6 We assume that the pair (A (t) ; B (t)) has the unique solution given by (2:48)

and (2:49) : Then the optimal control of the problem (2:37) � (2:39) has the state feedback

form (2:50) :

Remark 2.2 It is important to remark that the solution of the function B (t) in the form

(2:49) is dependent on the solution of ep3 (t) : If we put ep3 (t) =  (t) yt + ' (t) ; for smooth

deterministic functions  ; and '; by using the similar technique as optimal solution in the

last paragraph, to the optimal solution (yu (t) ; epu3 (t) ; u (t)), then the solutions of functions  ;
and ' yield respectively the equations

8>>>><>>>>:
�
 (t) + 2� (t) = 0;

�
' (t) + 2�' (t)�  (t) (zt + xt) = 0;

 (0) = 0; and ' (0) = 0:

(2.51)
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2.4.3 Solution of the deterministic functions A (t) and B (t) via Ric-

cati equation

In the best of our knowledge, it is hard to �nd the explicit solution to Riccati equation in

general. But in our case, we can �nd the explicit solution of (2:48) for its constant coe¢ cients.

For simplicity, we rewrite the Riccati equation (2:48) as follows

8><>:
�
A (t)� A2 (t)�+ 2A (t) � + 
 = 0;

A (T ) = 0;

where we denote � = � �
(1��)�2 ; � = r � �(r�c)

(1��)�2 ; and 
 = � (r�c)2
(��1)�2 : For convenience, we

suppose that �0 = �2 + �
 > 0; we obtain

dt =
dA (t)

�A2 (t)� 2�A (t)� 

:

By derivation for both terms in above equation, we get

T � t =

Z T

t

dA (s)

A2 (s)�� 2A (s) � � 


=
1

�

Z T

t

dA (s)

A2 (s)� 2�
�
A (s)� 


�

=
1

�

Z T

t

dA (s)�
A (s)� ��

p
�2+�


�

��
A (s)� �+

p
�2+�


�

�

=
1

2
p
�2 + �


Z T

t

0@ 1

A (s)� �+
p
�2+�


�

� 1

A (s)� ��
p
�2+�


�

1A dA (s) :

Using the simple technique of integration calculus, we have

2
p
�2 + �
 (T � t) =

"
ln

������ +
p
�2 + �


�

������ ln
������ �

p
�2 + �


�

�����
#

�
"
ln

�����A (t)� � +
p
�2 + �


�

������ ln
�����A (t)� � �

p
�2 + �


�

�����
#
:
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This implies

�A (t)�
�
� +

p
�2 + �


�
�A (t)�

�
� �

p
�2 + �


� = �� �p�2 + �


� +
p
�2 + �


exp
�
2
p
�2 + �
 (T � t)

�
:

This concludes

A1 (t) =

�
� +

p
�2 + �


��
1 + exp

�
�2
p
�2 + �
 (T � t)

��
�

�
1 +

�+
p
�2+�


��
p
�2+�


exp
�
�2
p
�2 + �
 (T � t)

�� :

In fact the Riccati equation (2:48) has another solution

A2 (t) =

�
� +

p
�2 + �


��
1� exp

�
�
p
�2 + �
 (T � t)

��
�

�
1� �+

p
�2+�


��
p
�2+�


exp
�
�
p
�2 + �
 (T � t)

�� :

We must reject this solution because of the portfolio choice problem, if we denote

� =

�
� +

p
�2 + �


�
�

; � =
� +

p
�2 + �


� �
p
�2 + �


; and � =

�
� �

p
�2 + �


�
�

: (2.52)

Then we have

A (t) =
� + �� exp

�
�
p
�2 + �
 (T � t)

�
1� � exp

�
�
p
�2 + �
 (T � t)

� : (2.53)

We put

� (t) = A (t)
�2

(1� �)�2
� c

�
1 +

�

(1� �)�2

�
; (2.54)

� (t) = A (t)

�
�

(1� �)�2

�
1

2
�2 +m� r

�
+ ��l1 (t)

�
�
�ep3 (t) + c

(1� �)�2

�
1

2
�2 +m� r

��
;
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we rewrite (2:49) as follows

8><>:
�
B (t) +B (t)� (t) + � (t) = 0;

B (T ) = 0:
(2.55)

The explicit solution of equation (2:55) is

B (t) = exp

�Z T

t

� (s) ds

�Z T

t

� (s) exp

�
�
Z T

s

� (r) dr

�
ds; (2.56)

where � (t) and � (t) are determined by (2:54) :

Corollaire 2.1 The explicit solution of Riccati equation (2:48) is given by (2:53) ; and the

equation (2:49) has an explicit solution given by (2:56) ; where the constants coe¢ cients �; �;

and � are given by (2:52) ; � (t) and � (t) are determined by (2:54) ; and the system (2:51) :

Corollaire 2.2 We assume that the pair (A (t) ; B (t)) has the unique solution given by

(2:53), (2:56) and (2:51) : Then the optimal control of the problem (2:37) � (2:39) has the

state feedback form (2:50) ; where the constants coe¢ cients �; �; �; � (t) and � (t) are given

by (2:52) ; and (2:54) respectively.

61



Chapter 3

Pontryagin�s risk-sensitive stochastic

maximum principle for fully coupled

FBSDE with jump di¤usion and

�nantial application

Throughout this chapter, we focus our aim on the problem of optimal control under a

risk-sensitive performance functional, where the system is given by a fully coupled forward-

backward stochastic di¤erential equation with jump. The risk neutral control system has been

used as preliminary step, where the set of admissible controls is convex, and the optimal

solution exists. The necessary as well as su¢ cient optimality conditions for risk-sensitive

performance are proved. At the end, we illustrate our main result by giving an example of

mean-variance for risk sensitive control problem applied in cash �ow market.

3.1 Problem formulation and assumptions

In all what follows, we will be worked on the classical probability space
�

;F ; (F)t�T ;P

�
;

such that F0 contains all the P�null sets, FT = F for an arbitrarily �xed time horizon T ,

and (Ft)t�T satis�es the usual conditions. We assume that the �ltration (F)t�T is generated
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by the following two mutually independent processes

(i) (W (t))t�0 is a one-dimensional standard Brownian motion:

(ii) Poisson random measure N on [0; T ]� �; where � � R�f0g : We denote by
�
FW
t

�
t�T

( resp.
�
FN
t

�
t�T ) the P�augmentation of the natural �ltration of W ( resp. N).

Obviously, we have

Ft := �

�Z s

0

Z
A

N (d�; dr) ; s � t; A 2 B (�)
�
_ � [W (s) ; s � t] _N ;

where N contains all P�null sets in F , and �1_�2 denotes the ���eld generated by �1[�2:

We assume that the compensator of N has the form � (dt; d�) = m (d�) dt; for some positive

and ���nite Lévy measure m on �; endowed with its Borel ���eld B (�) : We suppose thatZ
�

1^j�j2m (d�) <1; and write ~N = N�mdt for the compensated jump martingale random

measure of N:

Notation 3.1 We need to de�ne some additional notations. Given s � t; let us introduce

the following spaces

S2 ([0; T ] ;R) the set of R- valued adapted cadlàg processes P such that

kPkS2([0;T ];R) := E
"
sup
r2[0;T ]

jP (r)j2
# 1
2

< +1:

M2 ([0; T ] ;R) is the set of progressively measurable R�valued processes Q such that

jjQjjM2([0;T ];R) := E
�Z T

0

jQ (r)j2 dr
� 1
2

< +1:

L2 ([0; T ] ;R) is the set of B ([0; T ]� 
) 
 B (�) measurable maps R : [0; T ] � 
 � � ! R

such that

kRkL2([0;T ];R) := E
�Z T

0

Z
�

jR (r)j2m (d�) dr
� 1
2

< +1;

we denote by E the expectation with respect to P

Let T be a strictly positive real number and U is a convex nonempty subset of R:
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De�nition 3.1 Let U be a nonempty closed subset in R: An admissible control is a U�valued

measurable Ft�adapted process v; such that kvkS2 < 1: We denote by U the set of all

admissible controls.

For all v 2 U , we consider the following fully coupled forward-backward with jump system

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

dx (t) = b (t; x (t) ; y (t) ; z (t) ; r (t; :) ; v (t)) dt

+� (t; x (t) ; y (t) ; z (t) ; r (t; :) ; v (t)) dW (t)

+

Z
�


 (t�; x (t�) ; y (t�) ; z (t�) ; r (t�; �) ; v (t�) ; �) ~N (dt; d�)

dy (t) = �g (t; x (t) ; y (t) ; z (t) ; r (t; :) ; v (t)) dt+ z (t) dW (t)

+

Z
�

r (t; �) ~N (dt; d�)

x (0) = d; y (T ) = a; t 2 [0; T ]

(3.1)

where b : [0; T ] � R � R � R � � � U ! R; � : [0; T ] � R � R � R � � � U ! R, g :

[0; T ]�R�R�R� ��U ! R: and 
 : [0; T ]�R�R�R� ��U �! R are given maps.

If (x (:) ; y (:) ; z (:) ; r (:; :)) is the unique solution of (3:1) associated with v (:) 2 U .

The functional cost of the risk-sensitive type is given by

J� (v) (3.2)

= E
�
exp �

�Z T

0

f (t; x (t) ; y (t) ; z (t) ; r (t; :) ; v (t)) dt+ �(xv (T )) + 	 (yv (0))

��
;

where � : R! R; 	 : R! R; f : [0; T ]�R�R�R���U ! R are given maps, and � > 0

is called the risk-sensitive parameter.

Our risk-sensitive stochastic optimal control problem is stated as follows: For given

(t; x (t) ; y (t) ; z (t) ; r (t; :)) 2 [0; T ]� R4; minimize (3:2) subject to (3:1) over U :

inf
v2U

J� (v) = J� (u) : (3.3)

A control that solves the problem f(3:1) ; (3:2) ; (3:3)g is called optimal. Our goal is to estab-

lish a necessary optimality conditions as well as a su¢ cient optimality conditions, satis�ed
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by a given optimal control, in the form of stochastic maximum principle (SMP in short).

We give some notations � = (xv (t) ; yv (t) ; zv (t) ; rv (t; :))>, where (:)> denotes the transport

of the matrix,

and M (t;�) =

0BBBB@
b

�

�g

1CCCCA (t;�) :
We introduce the following assumptions.

H1 :

For each � 2 R � R � R, M (t;�) is an Ft�measurable process de�ned on [0; T ] with

M (t;�) 2M2 ([0; T ] ;R� R� R� �) :

H2 :

M(t; :) satis�es Lipschitz conditions: There exists a constant k > 0; such that

jM (t;�)�M (t;�0)j � k j���0j 8�;�0 2 R� R� R� �;8t 2 [0; T ]:

The following monotonic conditions introduced in [37], are the main assumptions in this

paper.

H3 :

hM (t;�)�M (t;�0) ;���i � � j���0j2 ; for every� = (x; y; z; r)� and�0 = (x0; y0; z0; r0)� 2

R� R� R� �, 8 t 2 [0; T ]; where � is a positive constant.

U is a convex subset of R:

Proposition 3.1 For any given admissible control v (:) and under the assumptions (H1),

(H2) and (H3), the fully coupled FBSDE with jump di¤usion (3:1) admits an unique solution

(xv (t) ; yv (t) ; zv (t) ; rv (t; :)) 2 (M2 ([0; T ] ;R� R� �))2 � S2 ([0; T ] ;R� �) :

Proof. The proof can be seen in [37].

Next, we assume that

H4 :

i)b; �; g; f; � and 	 are continuously di¤erentiable with respect to (xv; yv; zv; rv (:)) :
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ii) All the derivatives of b; �; g and f are bounded by

C (1 + jxvj+ jyvj+ jzvj+ jvj+ jrvj) :

iii) The derivatives of �; 	 are bounded by C (1 + jxvj) and C (1 + jyvj) respectively.

Under the above assumptions, for every v 2 U equation (3:1) has a unique strong solution

and the function cost J� is well de�ned from U into R.

3.2 Risk-neutral necessary optimality conditions

First of all, we may introduce an auxiliary state process �v (t) which is solution of the following

stochastic di¤erential equation (SDE in short):

d�v (t) = f (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) dt; �v (0) = 0:

From the above auxiliary process, the fully coupled forward-backward type control problem

is equivalent to

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

inf
v2U

E [exp � f� (xv (T )) + 	 (yv (0)) + � (T )g] ;

subject to

d�v (t) = f (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) dt;

dxv (t) = b (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) dt

+� (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) dW (t)

+

Z
�


 (t; x (t�) ; y (t�) ; z (t�) ; r (t�; �) ; v (t�) ; �) ~N (dt; d�) ;

dyv (t) = �g (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) dt+ zv (t) dW (t)

+

Z
�

rv (t; �) ~N (dt; d�) ;

�v (0) = 0; xv (0) = d, yv (T ) = a:

(3.4)

We denote by

A�T := exp �

�
� (xv (T )) + 	 (yv (0)) +

Z T

0

f (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) dt

�
;
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and we can put also

�T := � (x
v (T )) + 	 (yv (0)) +

Z T

0

f (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) dt;

the risk-sensitive loss functional is given by

�� :=
1

�
logE [exp f� (xv (T )) + 	 (yv (0))

+

Z T

0

f (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) dt

��
=
1

�
logE [exp f��Tg] :

When the risk-sensitive index � is small, the functional �� can be expanded as E (�T ) +
�
2
V ar (�T ) + O (�2) ; where, V ar (�T ) denotes the variance of �T : If � < 0; the variance of

�T ; as a measure of risk, improves the performance ��, in which case the optimizer is called

risk seeker. But, when � > 0; the variance of �T worsens the performance ��, in which case

the optimizer is called risk averse. The risk-neutral loss functional E (�T ) can be seen as

a limit of risk-sensitive functional �� when � ! 0, for more details the reader can see the

papers [11]; [7]:

Notation 3.2 We will use the following notation throughout this paper.

For � 2
n
b; �; f; g;H�; eH�

o
, we de�ne

8>>>>>>><>>>>>>>:

� (t) = � (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) ;

@� (t) = � (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t))

�� (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; u (t)) ;

�� (t) =
@�
@�
(t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; v (t)) ; � = x; y; z; r (:) :

and 
 (t�; �) it means that the function 
 is càdlag.

Where vt in an admissible control from U .

We assume that (H1), (H2); (H3) and (H4) hold, we might apply the SMP for risk-neutral

of fully coupled forward-backward type control from Yong [40]; to augmented state dynamics
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(�; x; y; z; r) and derive the adjoint equation. There exist unique Ft�adapted of processes

(p1; q1; �1) ; (p2; q2; �2) ; (p3; q3; �3) ; which solve the following systemmatrix of backward SDEs

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

d�!p (t) =

0BBBB@
dp1 (t)

dp2 (t)

dp3 (t)

1CCCCA

= �

0BBBB@
0 0 0

fx (t) bx (t) gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@

p1 (t)

p2 (t)

p3 (t)

1CCCCA dt

�

0BBBB@
0 0 0

0 �x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@

q1 (t)

q2 (t)

q3 (t)

1CCCCA dt

+

Z
�

0BBBB@
0 0 0

0 
x (t�; �) 0

0 
y (t�; �) 0

1CCCCA
0BBBB@

�1 (t; �)

�2 (t; �)

�3 (t; �)

1CCCCAm (d�) dt

+

0BBBB@
q1 (t)

q2 (t)

q3 (t)

1CCCCA dW (t) +

Z
�

0BBBB@
�1 (t; �)

�2 (t; �)

�3 (t; �)

1CCCCA ~N (dt; d�)

0B@ p1 (T )

p2 (T )

1CA = �AT

0B@ 1

�x (x
u
T )

1CA
p3 (0) = �	y (y

u (0))AT ;

(3.5)

with E

"
3X
i=1

sup
0�t�T

jpi (t)j2 +
2X
i=1

Z T

0

jqi (t)j2 dt
#
<1; and

q3 (t) = �Tr

264
0B@ fz (t) bz (t)

�z (t) gz (t)

1CA
0B@ p1 (t) q2 (t)

p2 (t) p3 (t)

1CA
375+ Z

�


z (t�; �)�2 (t; �)m (d�) ;

�3 (t; �) = �Tr

264
0B@ fr (t) br (t)

�r (t) gr (t)

1CA
0B@ p1 (t) q2 (t)

p2 (t) p3 (t)

1CA
375+ Z

�


r (t�; �)�2 (t; �)m (d�) :
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To this end we may de�ne (3:5) in the compact form as

8>>>>>>>>>>><>>>>>>>>>>>:

d�!p (t) =

0BBBB@
dp1 (t)

dp2 (t)

dp3 (t)

1CCCCA = �F (t) dt+ �(t) dW (t) +

Z
�

R (t; �) ~N (dt; d�)

0B@ p1 (T )

p2 (T )

1CA = �AT

0B@ 1

�x (x
u
T )

1CA ; and p3 (0) = �	y (y
u (0))AT ;

where

F (t) =

0BBBB@
0 0 0

fx (t) bx (t) gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@

p1 (t)

p2 (t)

p3 (t)

1CCCCA

+

0BBBB@
0 0 0

0 �x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@

q1 (t)

q2 (t)

q3 (t)

1CCCCA

�
Z
�

0BBBB@
0 0 0

0 
x (t�; �) 0

0 
y (t�; �) 0

1CCCCA
0BBBB@

�1 (t; �)

�2 (t; �)

�3 (t; �)

1CCCCAm (d�) ;

� (t) =

0BBBB@
q1 (t)

q2 (t)

q3 (t)

1CCCCA ;

and

R (t; :) =

0BBBB@
�1 (t; :)

�2 (t; :)

�3 (t; :)

1CCCCA :

We suppose here that eH� be the Hamiltonian associated with the optimal state dynamics
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(�u; xu; yu; zu; ru(:)); and the triplet of adjoint processes (�!p (t) ;�!q (t) ;�!� (t; :)) is given by

eH� (t; �u (t) ; xu (t) ; yu (t) ; zu (t) ; r (t; :) ; u (t) ;�!p (t) ;�!q (t) ;�!� (t; :))

=

0BBBB@
f (t)

b (t)

g (t)

1CCCCA (�!p (t))> +
0BBBB@
0

� (t)

0

1CCCCA (�!q (t))>

�
Z
�

0BBBB@
0


 (t�; �)

0

1CCCCA (�!� (t; �))>m (d�) :

Theorem 3.1 Assume that (H1), (H2); (H3) and (H4) hold.

If (�u (:) ; xu (:) ; yu (:) ; zu (:) ; r(:; :)) is an optimal solution of the risk-neutral control problem

(3:4) ; then there exist Ft�adapted processes

((p1; q1; �1) ; (p2; q2; �2) ; (p3; q3; �3)) that satisfy (3:5) ; such that

eH�
v (t) (vt � ut) � 0; (3.6)

for all u 2 U ; almost every t and P�almost surely, where eH�
v (t) is de�ned in notation (3:2).

Proof. For more details the reader can see paper [40] with the result of paper [35]:

3.2.1 Steps to �nd the transformed adjoint equation

As we said, Theorem 3:1 is a good SMP for the risk-neutral of forward backward control

problem. We follow the same approach used in [8; 11]; and suggest a transformation of the

adjoint processes (p1; q1; �1 (:)) ; (p2; q2; �2 (:)) ; (p3; q3;�3 (:)) in such a way to omit the �rst

component (p1; q1; �1 (:)) in (3:5) ; and to obtain the SMP (3:6) in terms of only the last

two adjoint processes, that we denote them by ((ep2; eq2; e�2 (:)) ; (ep3; eq3; ; e�3 (:))). Noting that
dp1 (t) = q1 (t) dWt +

Z
�

�1 (t; �) ~N (dt; d�) and p1 (T ) = �A�T ; the explicit solution of this

backward SDE is

p1 (t) = �E
�
A�T j Ft

�
= �V � (t) ; (3.7)
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where

V � (t) := E
�
A�T j Ft

�
; 0 � t � T: (3.8)

As a good look of (3:7) ; it would be natural to choose a transformation of (ep; eq; e� (:)) instead
of (�!p ;�!q ;�!� (:)) ; where ep1 (t) = 1

�V � (t)
p1 (t) = 1:

We consider the following transform

ep (t) =
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA :=
1

�V � (t)
�!p (t) ; 0 � t � T: (3.9)

By using (3:5) and (3:9) ; we have

ep (T ) :=
0B@ ep1 (T )ep2 (T )

1CA =

0B@ 1

�x (x
u (T ))

1CA ; and ep3 (0) = 	y (yu (0)) :
The following properties of the generic martingale V � are essential in order to investigate the

properties of these new processes (ep (t) ; eq (t) ; e� (t; :)) :
As is proved in [21]; the process �� is the �rst component of the Ft�adapted pair of processes�
��; l; L(:)

�
which is the unique solution to the following quadratic backward SDE with jump

di¤usion8>>>>>>>>><>>>>>>>>>:

d�� (t) = �
�
f (t) + �

2
jl (t)j2 + �

2

Z
�

jL (t; �)j2m(d�)

+

Z
�

�
exp (�r (t; �))� 1

�
� r (t; �)

�
m(d�)

�
dt+ l (t) dW (t)

�
Z
�

�
exp (�r (t; �))� 1

�

�
~N (dt; d�) +

Z
�

L (t; �) ~N (dt; d�) ;

�� (T ) = �x (x
u (T )) + 	 (yu (0)) ;

(3.10)

where

E
�Z T

0

jl (t)j2 dt+
Z T

0

Z
�

jL (t; �)j2m(d�)dt
�
<1:
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Lemma 3.1 Suppose that (H4) holds. Then

E
�
sup
0�t�T:

���� (t)��2� � CT : (3.11)

In particular, V � solves the following linear backward SDE

dV � (t) = �l (t)V � (t) dW (t) + �V � (t)

Z
�

L (t; �) ~N (dt; d�) ; V � (T ) = A�T : (3.12)

Hence, the process de�ned on
�

;F ;

�
F (W;N)
t

�
t�0

;P
�
by

L�t :=
V �(t)
V �(0)

= exp

�Z t

0

�l (s) dW (s)� �2

2

Z t

0

jl (s)j2 ds+
Z t

0

Z
�

L (s; �) ~N (ds; d�)

�
Z
�

n
exp(�r(t;�))�1

�

o
~N (dt; d�)� �2

2

Z t

0

Z
�

jL (s; �)j2m(d�)ds

�
Z
�

�
exp(�r(t;�))�1

�
� r (t; �)

�
m(d�)

�
; 0 � t � T;

(3.13)

is a uniformly bounded F�martingale.

Proof. First we prove (3:11) : We assume that (H4) holds; f; � and 	 are bounded by a

constant C > 0; we have

0 < e�(2+T )C� � A�T � e(2+T )C�: (3.14)

Therefore, V � is a uniformly bounded Ft�martingale satisfying

0 < e�(2+T )C� � V � (t) � e(2+T )C�; 0 � t � T: (3.15)

The complete proof see the Lemma 3.1 page 405 [8].

In the next, we will state and prove the necessary optimality conditions for the system driven

by fully coupled FBSDE with jumps di¤usion with a risk sensitive performance functional

type. To this end, let us summarize and prove some lemmas that we will use thereafter.
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Lemma 3.2 The second and the third risk-sensitive adjoint equations of the solution

(ep2 (t) ; eq2 (t) ; e�2 (t; �)) ; (ep3 (t) ; eq3 (t) ; e�3 (t; :)) and �V � (t) ; l (t) ; L (t; :)
�
become

8>>>>>>>>>>>><>>>>>>>>>>>>:

dep2 (t) = �H�
x (t) dt+ (eq2 (t)� �l (t) ep2 (t)) dW �

t +

Z
�

(e�2 (t; �)� �L (t; �) ep2 (t)) ~N � (dt; d�) ;

dep3 (t) = �H�
y (t) dt�

�
H�
z (t)� �l (t) ep3 (t)� dW �

t �
Z
�

(rHr (t)� �L (t; �) ep3 (t)) ~N � (dt; d�) ;

dV � (t) = �V � (t) l (t) dWt + �V � (t)

Z
�

L (t; �) ~N (dt; d�) ;

V � (T ) = A� (T ) ;

ep2 (T ) = �x (xT ) ; ep3 (0) = 	y (y (0)) :
(3.16)

The solution
�ep (t) ; eq (t) ; e� (t; :) ; V � (t) ; l (t) ; L (t; :)

�
of the system (3:16) is unique, such that

E
�
sup
0�t�T

jep (t)j2 + sup
0�t�T

��V � (t)
��2 + Z T

0

�
jeq (t)j2 + jl (t)j2 (3.17)

+

Z
�

�
je� (t; �)j2 + jL (t; �)j2�m (d�)� dt� <1;

where

H�
�
t; x (t) ; y (t) ; z (t) ; r(t; :); ep (t) ; eq (t) ; e� (t; �) ; V � (t) ; l (t) ; L (t; :)

�
= f (t) + b (t) ep2 + � (t) eq2 + (g (t)� �z (t) l (t)) ep3
+

Z
�

f
 (t�; �) e�2 (t; �)� (g (t)� �r (t; �)L (t; �)) ep3g�m (d�) :
(3.18)

Proof. We want to identify the processes e�; e� and e
 such that
dep (t) = �e� (t) dt+ e� (t) dW (t) +

Z
�

e
 �t�; �� eN (d�; dt)
By applying Itô�s formula to the process �!p (t) = �V � (t) ep (t) ; and using the expression of
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V � in (3:12) ; we obtain

dep (t) = �

266664 1
�V �(t)

0BBBB@
0 0 0

fx (t) bx (t) gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@

p1 (t)

p2 (t)

p3 (t)

1CCCCA

+ 1
�V �(t)

0BBBB@
0 0 0

0 �x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@

q1 (t)

q2 (t)

q3 (t)

1CCCCA� �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA e� (t)

� 1
�V �(t)

Z
�

0BBBB@
0BBBB@
0 0 0

0 
x (t�; �) 0

0 
y (t�; �) 0

1CCCCA
0BBBB@

�1 (t; �)

�2 (t; �)

�3 (t; �)

1CCCCA

��
Z
�

0BBBB@
L1 (t; �)

L2 (t; �)

L3 (t; �)

1CCCCAe
 (t)
1CCCCAm(d�)

377775 dt

+

266664 1
�V �(t)

0BBBB@
q1 (t)

q2 (t)

q3 (t)

1CCCCA� �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t)
377775 dW (t)

+

266664 1
�V �(t)

Z
�

0BBBB@
�1 (t; �)

�2 (t; �)

�3 (t; �)

1CCCCA� �

Z
�

0BBBB@
L1 (t; �)

L2 (t; �)

L3 (t; �)

1CCCCA ep (t)
377775 eN (d�; dt)

By identifying the coe¢ cients, and using the relation ep (t) = 1

�V � (t)
�!p (t) ; the di¤usion

coe¢ cient eq (t) will be

e� (t) =
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA� �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t) ;
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the drift term of the process ep (t)

e� (t) =
0BBBB@
0 0 0

fx (t) bx (t) gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA

+

0BBBB@
0 0 0

0 �x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA

+�

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA e� (t)� Z
�

0BBBB@
0BBBB@
0 0 0

0 
x (t�; �) 0

0 
y (t�; �) 0

1CCCCA0BBBB@
�1 (t; �)

�2 (t; �)

�3 (t; �)

1CCCCA� �

0BBBB@
L1 (t; �)

L2 (t; �)

L3 (t; �)

1CCCCAe
 (t�; �)
1CCCCAm (d�) :

the jump di¤usion gets the form

e
 (t�; :) =
0BBBB@
e�1 (t; :)e�2 (t; :)e�3 (t; :)

1CCCCA� �

0BBBB@
L1 (t; :)

L2 (t; :)

L3 (t; :)

1CCCCA ep (t) :
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Finally, we obtain

dep (t) = �

266664
0BBBB@
0 0 0

fx (t) bx (t) gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA

+

0BBBB@
0 0 0

0 �x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA� �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA e� (t)

�
Z
�

0BBBB@
0BBBB@
0 0 0

0 
x (t�; �) 0

0 
y (t�; �) 0

1CCCCA
0BBBB@

�1 (t; �)

�2 (t; �)

�3 (t; �)

1CCCCA

��

0BBBB@
L1 (t; �)

L2 (t; �)

L3 (t; �)

1CCCCAe
 (t; �)
1CCCCAm (d�)

377775 dt

+

266664
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA� �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t)
377775 dW (t)

+

Z
�

266664
0BBBB@
e�1 (t; �)e�2 (t; �)e�3 (t; �)

1CCCCA� �

0BBBB@
L1 (t; �)

L2 (t; �)

L3 (t; �)

1CCCCA ep (t)
377775 eN (d�; dt) :

It is easily veri�ed that

8><>:
dep1 (t) = eq1 (t) [��l1 (t) dt+ dW (t)] +

Z
�

e�1 (t; �) h��L1 (t; �)m(d�)dt+ eN (d�; dt)i
ep1 (T ) = 1:

In view of (3:13) ; we may use Girsanov�s Theorem to claim that

8><>:
dep1 (t) = eq1 (t) dW � (t) +

Z
�

e�1 (t; �) eN � (d�; dt)

ep1 (T ) = 1;

; P� � as;
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where,

dW � (t) = ��l (t) dt+ dW (t)eN � (d�; dt) = ��L (t; �)m (d�) + eN (d�; dt) ; (3.19)

W � (t) is a P��Brownian motion and eN � (�; t) is a P��compensator Poisson measure, where,

dP�
dP

���
Ft
:= L�t = exp

�Z t

0

�l (s) dW (s)� �2

2

Z t

0

jl (s)j2 ds+
Z t

0

Z
�

L (s; �) ~N (ds; d�)

�
Z
�

�
exp (�r (t; �))� 1

�

�
~N (dt; d�)� �2

2

Z t

0

Z
�

jL (s; �)j2m(d�)ds

�
Z
�

�
exp (�r (t; �))� 1

�
� r (t; �)

�
m(d�)

�
0 � t � T:

But according to (3:13) and (3:14) ; the probability measures P� and P are in fact equivalent.

Hence, noting that ep1 (t) := 1

�V � (t)
p1 (t) is square-integrable, we get that

ep1 (t) = EP� [ep1 (T ) j Ft] = 1:
Thus, its quadratic variation

Z T

0

jeq1 (t)j2 dt = 0: This implies that, for almost every 0 � t � T;

eq1 (t) = 0; P� and P�a.s. Now we use the relations

eq (t) =
0BBBB@
eq1 (t)eq2 (t)
� eHz (t)

1CCCCA� �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t) ;

and

e� (t; :) =
0BBBB@
e�1 (t; :)e�2 (t; :)
�rr

eH (t)

1CCCCA� �

0BBBB@
L1 (t; :)

L2 (t; :)

L3 (t; :)

1CCCCA ep (t) ;
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in the equation above, to obtain

dep (t) = �

8>>>><>>>>:

0BBBB@
0 0 0

fx (t) bx (t) gx (t)

fy (t) by (t) gy (t)

1CCCCA
0BBBB@
ep1 (t)ep2 (t)ep3 (t)

1CCCCA

+

0BBBB@
0 0 0

0 �x (t) 0

0 �y (t) 0

1CCCCA
0BBBB@
eq1 (t)eq2 (t)eq3 (t)

1CCCCA

+

Z
�

0BBBB@
0 0 0

0 
x (t�; �) 0

0 
y (t�; �) 0

1CCCCA
0BBBB@

�1 (t; �)

�2 (t; �)

�3 (t; �)

1CCCCAm (d�)

9>>>>=>>>>; dt

+

8>>>><>>>>:

0BBBB@
eq1 (t)eq2 (t)

�fz (t) ep1 � bz (t) ep2 � gz (t) ep3 � �z (t) eq2

+

Z
�


z (t�; �) e�2 (t; �)m (d�)

1CCCCA+ �

0BBBB@
l1 (t)

l2 (t)

l3 (t)

1CCCCA ep (t)
9>>>>=>>>>; dW � (t)

+

Z
�

8>>>><>>>>:

0BBBB@
e�1 (t; �)e�2 (t; �)
�fr (t) ep1 � br (t) ep2 � gr (t) ep3 � �r (t) eq2

+

Z
�


r (t�; �) e�2 (t; �)m (d�)

1CCCCA� �

0BBBB@
L1 (t; �)

L2 (t; �)

L3 (t; �)

1CCCCA ep (t)
9>>>>=>>>>;
eN � (d�; dt) :

(3.20)
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Therefore, the second and third components of ep2 and ep3 in (3:20) ; are given by
8>>>>>>>><>>>>>>>>:

dep2 (t) = �ffx (t) + bx (t) ep2 (t) + gx (t) ep3 (t) + �x (t) eq2 (t)
�
Z
�


x (t�; �) e�2 (t; �)m (d�)� dt
+ feq2 (t)� �l2 (t) ep2 (t)g dW � (t) +

Z
�

fe�2 (t; �)� �L2 (t; �) ep2 (t)g eN � (d�; dt) ;

ep2 (T ) = �x (xT ) ;

(3.21)

and 8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

dep3 (t) = �ffy (t) + by (t) ep2 (t) + gy (t) ep3 (t) + �y (t) eq2 (t)
+�l3 (t) eq3 (t)� Z

�


y (t�; �) e�2 (t; �)m (d�)� dt
�fffz (t) + bz (t) ep2 (t) + gz (t) ep3 (t) + �z (t) eq2 (t)g
+

Z
�


z (t�; �) e�2 (t; �)m (d�) + �l3 (t) ep3 (t)� dW � (t)

�
R
�
ffr (t) + br (t) ep2 (t) + gr (t) ep3 (t) + �r (t) eq2 (t)

�
Z
�

(
r (t�; �) e�2 (t; �) + �L3 (t; �) ep3 (t))m (d�)� eN � (d�; dt) ;

ep3 (0) = 	y (y (0)) ;

(3.22)

or in equivalent expression the adjoint equations for (ep2; eq2) ; (ep3; eq3) ; (e�2; e�3) and �V �; l; L
�

become8>>>>>>>>>>>><>>>>>>>>>>>>:

dep2 (t) = �H�
x (t) dt+ (eq2 (t)� �l2 (t) ep2) dW � (t) +

Z
�

fe�2 (t; �)� �L2 (t; �) ep2 (t)g eN � (d�; dt) ;

dep3 (t) = �H�
y (t) dt�H�

z (t) dW
� (t)�

Z
�

rH�
r (t)

eN � (d�; dt) ;

dV � (t) = �l (t)V � (t) dW (t) + �V � (t)

Z
�

L (t; �) eN (d�; dt) ;
V � (T ) = A� (T ) ;

ep2 (T ) = �x (x (T )) ; ep3 (0) = 	y (y (0)) :
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The solution
�ep; eq; e�; V �; l; L

�
of the system (3:16) is unique, such that

E
�
sup
0�t�T

jep (t)j2 + sup
0�t�T

��V � (t)
��2 + Z T

0

�
jeq (t)j2 + jl (t)j2

+

Z
�

�
je� (t; �)j2 + jL (t; �)j2�m (d�)� dt� <1;

where

H� (t) := H� (t; x (t) ; y (t) ; z (t) ; ru (t; �) ; ep2 (t) ; eq2 (t) ;ep3 (t) ; e�2 (t; �) ; V � (t) ; l (t) ; L (t; �)
�

= f (t) + b (t) ep2 + � (t) eq2 + (g (t) + z (t) �l (t)) ep3
�
Z
�

f
 (t�; �) e�2 (t; �)� (g (t) + r (t; �)L (t; �)) ep3gm (d�) :
The proof is completed.

Theorem 3.2 (Risk-Sensitive necessary optimality conditions): We assume that (H4) holds,

if (xu (:) ; yu (:) ; zu (:) ; ru (:; :) ; u (:)) is an optimal solution of the risk-sensitive control prob-

lem f(3:1) ; (3:2) ; (3:3)g, then there exist Ft-adapted processes
�
V � (t) ; l (t) ; L (t; �)

�
; and

(ep2 (t) ; eq2 (t)) ; (ep3 (t)) ; (e�2 (t; :)) that satisfy (3:16) ; (3:17) such that
H�
v (t) (vt � ut) � 0; (3.23)

for all u 2 U , almost every 0 � t � T and P-almost surely.

Proof. The Hamiltonian eH� associated with (3:4) ; is given by

eH� (t; �u (t) ; xu (t) ; yu (t) ; zu (t) ; ru (t; :) ;�!p u (t) ;�!q u (t) ;�!� u (t; :))

=
�
�V � (t)

	
H� (t; xu (t) ; yu (t) ; zu (t) ; rut (t; :) ; ep2 (t) ; eq2 (t) ; ep3 (t)

; e�2 (t; :) ; V � (t) ; l2 (t) ; l3 (t) ; L2 (t; :) ; L3 (t; :)
�
;

andH� is the risk-sensitive Hamiltonian given by (3:18) : To arrive at a risk-sensitive stochastic

maximum principle expressed in terms of the adjoint processes (ep2; eq2) ; (ep3; eq3) ; (e�2; e�3)and�
V �; l; L

�
, which solve (3:16). Hence, since V � > 0; the variational inequality (3:6) translates

into H�
v (t) � 0; for all u 2 U , almost every 0 � t � T and P-almost surely.
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3.3 Risk sensitive su¢ cient optimality conditions

This section is concerned with a study of the necessary condition of optimality (3:23) when

it becomes su¢ cient.

Theorem 3.3 (Risk neural su¢ cient optimality conditions)Assume that �(:) and 	(:) are

convex and for all (x; y; z; r; v) 2 R � R � R � � � U the function eH�(:; x; y; z; ; r; v; :; :; :)

is concave, and for any v 2 U such that E jvj 2 < 1: Then, u is an optimal control of the

problem f(3:1) ; (3:2) ; (3:3)g, if it satis�es (3:6).

Proof. Let u be an admissible control (candidate to be optimal) for any v 2 U , we have

J� (v)� J� (u) = E [exp f�	(yv (0)) + �� (xv (T )) + ��v (T )g]

�E [exp f�	(yu (0)) + �� (xu (T )) + ��u (T )g] :

Since 	 and � are convex, and applying Taylor�s expansion, we get

J� (v)� J� (u) � E [�AT (�v (T )� �u (T ))] + E [��x (xu (T ))AT (xv (T )� xu (T ))]

+E [�	y (yu (0))AT (yv (0)� yu (0))] :

According to (3:5), we remark that p1 (T ) = �AT , p2 (T ) = ��x (x
u (T ))AT and p3 (0) =

�	y (y
u (0))AT ; then

J� (v)� J� (u) � E [p1 (T ) (�vT � �uT )] + E [p2 (T ) (xv (T )� xu (T ))]

+E [p3 (0) (yv (0)� yu (0))] :
(3.24)

We apply Itô�s formula to p1 (t) (�v (t)� �u (t)),

d (p1 (t) (�
v (t)� �u (t))) = (�v (t)� �u (t)) dp1 (t) + p1 (t) d (�

v (t)� �u (t))

+ h(�v � �u) ; p1it dt+
Z
�

h(�v � �u) ; p1itm (d�) dt
;
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We apply expectation, we get

E [p1 (T ) (�v (T )� �u (T ))] = E
�Z T

0

(f (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt)�

f (t; xu (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut)) p1 (t) dt] :

(3.25)

And we apply also Itô�s formula to p2 (t) (xv (t)� xu (t))

d (p2 (t) (x
v (t)� xu (t))) = (xv (t)� xu (t)) dp2 (t) + p2 (t) d (x

v (t)� xu (t))

+ hxv � xu; p2it dt+
Z
�

hxv � xu; p2itm (d�) dt;

We apply expectation, we get

E [p2 (T ) (xv (T )� xu (T ))] =

E
�Z T

0

� (fx (t) p1 + bx (t) p2 + �x (t) q2

+gx (t) p3 +

Z
�


x (t�; �)�2 (�; t)m (d�)
�
(xvt � xut ) dt

�
+E

�Z T

0

(b (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt)�

b (t; xu (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut)) p2 (t) dt]

+E
�Z T

0

(� (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt)�

� (t; xu (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut)) q2 (t) dt]

+E
�Z T

0

Z
�

(
 (t; xv (t�) ; yv (t�) ; zv (t�) ; rv (t�; �) ; vt�)�


 (t; xu (t�) ; yu (t�) ; zu (t�) ; ru (t�; �) ; ut�))� (t; �)m (d�) dt] ;

(3.26)

We apply also Itô�s formula to p3 (t) (yv (t)� yu (t))

d (p3 (t) (y
v (t)� yu (t))) = (yv (t)� yu (t)) dp3 (t) + p3 (t) d (y

v (t)� yu (t))

+ hyv � yu; p3it dt+
Z
�

hyv � yu; p3itm (d�) dt
;
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We apply expectation, We get

E [p3 (0) (yv (0)� yu (0))] =

E
�Z T

0

(g (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt)

�g (t; xu (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut)) p3 (t) dt]

�E
�Z T

0

(fy (t) p1 (t) + by (t) p2 (t) + gy (t) p3 (t) + �y (t) q2 (t)

+

Z
�


y (t�; �)�2 (t; �)m (d�)
�
(yv (t)� yu (t)) dt

�
�E

�Z T

0

(fz (t) p1 (t) + bz (t) p2 (t) + gz (t) p3 (t) + �z (t) q2 (t)

+

Z
�


z (t�; �)�2 (t; �)m (d�)
�
(zv (t)� zu (t)) dt

�
�E

�Z T

0

Z
�

(fr (t) p1 (t) + br (t) p2 (t) + gr (t) p3 (t) + �r (t) q2 (t)

+
r (t�; �)�2 (t; �)) (rvt (�)� rut (�))m (d�) dt] :

(3.27)

By replacing (3:25) ,(3:26) and (3:27) into (3:24) ; we have

J� (v)� J� (u)

� E
hR T
0

� eH� (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt; p (t) ; q (t) ; � (t; :))�eH� (t; xu (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut; p
u (t) ; qu (t) ; � (t; :))

�
dt
i

�E
�Z T

0

eH�
x (t; x

u (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut; p
u (t) ; qu (t) ; � (t; :)) (xv (t)� xu (t)) dt

�
�E

�Z T

0

eH�
y (t; x

u (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut; p
u (t) ; qu (t) ; � (t; :)) (yv (t)� yu (t)) dt

�
�E

�Z T

0

eH�
z (t; x

u (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut; p
u (t) ; qu (t) ; � (t; :)) (zv (t)� zu (t)) dt

�
�E

�Z T

0

r eH�
r (t; x

u (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut; p
u (t) ; qu (t) ; � (t; :))

(rv (t; :)� ru (t; :)) dt] :
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Since the Hamiltonian eH� is concave with respect to (x; y; z; r; v), we have

E
�Z T

0

eH�
v (t; x

u (t) ; yu (t) ; zu (t) ; ru (t; :) ; ut; p
u (t) ; qu (t) ; � (t; :)) (vt � ut) dt

�
� E

hR T
0

� eH� (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt; p
u (t) ; qu (t) ; �u (t; :))�eH� (t; xv (t) ; yv (t) ; zv (t) ; rv (t; :) ; ut; p

u (t) ; qu (t) ; �u (t; :))
�
dt
i

+E
�Z T

0

eH�
x (t; x

v (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt; p
u (t) ; qu (t) ; �u (t; :)) (xv (t)� xu (t)) dt

�
+E

�Z T

0

eH�
y (t; x

v (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt; p
u (t) ; qu (t) ; �u (t; :)) (yv (t)� yu (t)) dt

�
+E

�Z T

0

eH�
z (t; x

v (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt; p
u (t) ; qu (t) ; �u (t; :)) (zv (t)� zu (t)) dt

�
+E

�Z T

0

r eH�
r (t; x

v (t) ; yv (t) ; zv (t) ; rv (t; :) ; vt; p
u (t) ; qu (t) ; �u (t; :))

(rv (t; :)� ru (t; :)) dt] :

Then

J� (v)� J� (u)

� E
�Z T

0

eH�
v (t; x

v (t) ; yv (t) ; zv (t) ; rv (t; :) ; ut; p
u (t) ; qu (t) ; �u (t; :)) (vt � ut) dt

�
:

In virtue of the necessary condition of optimality (3:6) the last inequality implies that J� (v)�

J� (u) � 0: Then, the theorem is improved.

Theorem 3.4 (Risk sensitive su¢ cient optimality conditions)Assume that �(:) and 	(:) are

convex and for all (x; y; z; r; v) 2 R� R� R� �� U the function H�(:; x; y; z; ; r; v; :; :; :) is

concave, and for any v 2 U such that E jvj 2 < 1: Then, u is an optimal control of the

problem f(3:1) ; (3:2) ; (3:3)g, if it satis�es (3:23).

3.4 Example: Mean-Variance (Cash-�ow)

Now we return to the problem of optimal portfolio stated in the motivating example, and

apply the risk sensitive necessary optimality condition (Theorem 3:2).
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Our state dynamics is

8><>:
dx (t) = (�v (t)� cx (t)) dt+ �v (t) dW (t) +

Z
�

v (t) (1 + r (t; �)) eN (d�; dt) ;
x (0) = m0 = d;

(3.28)

and 8><>:
dy (t) = (�v (t)� cx (t) + �y (t)) dt+ z (t) dW (t) +

Z
�

r (t; �) eN (d�; dt) ;
y (T ) = 0 = a:

(3.29)

The cost functional is

J� (v (:)) = exp
n
� eJ� (v (:))o ;

where eJ is the neutral cost functional given by the following expected with an exponential
form see section 1.2.3

eJ� (v (:)) = �

2
E (	T � a) 2 + E (	T ) + o

�
�2
�
; (3.30)

Where 	T = (xT + y0). The investor wants to minimize (3:30) subject to (3:28) and (3:29)

by taking v (:) over U , the mean�variance portfolio selection problem is to �nd u(t) which

minimize

Var(	T ) = E (xT + y0 � a) 2

The Hamiltonian function (3:18) gets the form

H� (t) := H� (t; x (t) ; y (t) ; z (t) ; r (t; �) ; ep2 (t) ; eq2 (t) ; ep3 (t) ; e�2 (t; :) ; l (t) ; L (t; :) ; vt)
= f (t) + b (t) ep2 (t) + � (t) eq2 (t) + fg (t)� �l (t) z (t)g ep3 (t)
+

Z
�

f
 (t�; �) e�2 (t; �)� (g (t)� �L (t; �) r (t; �)) ep3 (t)gm (d�)
= (�v (t)� cx (t)) ep2 (t) + �v (t) eq2 (t) + f(�v (t)� cx (t) + �y (t))� �l (t) z (t)g ep3 (t)
�
Z
�

fv (t) (1 + r (t; �)) e�2 (t; �)� ((�v (t)� cx (t) + �y (t))� �L (t; �) r (t; �))

ep3 (t)gm (d�) :
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Then, to get the optimal control, the derivative of the above Hamiltonian with respect to the

control process gives us

H�
u (t) := H�

u (t; x (t) ; y (t) ; z (t) ; r (t; :) ; ep2 (t) ; eq2 (t) ; ep3 (t) ; e�2 (t; :) ; l (t) ; L (t; :) ; vt)
= �ep2 (t) + �eq2 (t) + Z

�

(1 + r (t; �)) e�2 (t; �)m (d�)
= 0

(3.31)

Let (xu (t) ; u (t)) be an optimal pair, the adjoint equation (3:21) ; is given by

8>>>><>>>>:
depu2 (t) = c (epu2 (t) + cepu3 (t)) dt+ (equ2 (t)� �l2 (t) epu2 (t)) dW � (t)

+

Z
�

(e�2 (t; �)� �L2 (t; �) epu2 (t)) eN � (d�; dt) ;

epu2 (T ) = 1 + � (xT � y0 � a) :

By using of 3:19; we get

8>>>>>>>><>>>>>>>>:

depu2 (t) =
��
c+ �2l2 (t) +

R
�
�2L2 (t; �)m (d�)

� epu2 (t) + cepu3 (t)� �l (t) equ2
�
R
�
�L (t; �) e�u2 (t; �)m (d�)	 dt+ (equ2 (t)� �l2 (t) epu2 (t)) dW (t)

+

Z
�

(e�2 (t; �)� �L2 (t; �) epu2 (t)) eN (d�; dt) ;
epu2 (T ) = 1 + � (xT � y0 � a) :

(3.32)

Therefore, an optimal solution (xut ; epu2 (t) ; ut) can be obtained by solving the system FBSDE
with jumps di¤usion (3:28) and (3:32) ; unfortunately, in such system is di¢ cult to �nd the

explicit solution, to this end we use the similar technique as in [41] see also [40], we conjecture

the solution to (3:28) and (3:32) is related by

epu2 (t) = A (t)xu (t) +B (t) ; (3.33)

for some deterministic di¤erentiable functions A (t) and B (t) : Applying Itô�s formula to
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(3:33) ; we get

8>>>>><>>>>>:
depu2 (t) = �

�
A (t)xu (t) + A(t)(�ut � cxu (t)) +

�
B (t)

�
dt+ A (t)�utdW (t)

+

Z
�

A(t) (1 + r (t; �))ut eN (d�; dt) ;
depu2 (T ) = A (T )xu (T ) +B (T ) :

(3.34)

On the other hand, by substituting (3:33) into (3:32) ; and denote by

equ3 (t) = (�l2 (t) epu2 (t)� equ2 (t))e�3 (t; :) = e�2 (t; :)� �L2 (t; :) epu2 (t) : (3.35)

By using the Girsanov�s transformation in (3:32) ; as in section 2 lemma (3:1), we obtain

8>>>><>>>>:
depu2 (t) = ��

c+ �2l2 (t) +
R
�
�2L2 (t; �)m (d�)

� epu2 (t) + cepu3 (t)� �l (t) equ3 (t)	 dt
+equ3 (t) dW (t) +

Z
�

e�3 (t; �) eN (d�; dt) ;
epu2 (T ) = 1 + � (xT � y0 � a) :

:

(3.36)

By equating the coe¢ cients and the �nal conditions of (3:36) with (3:34) ; we have

e�3 (t; �) = A(t) (1 + r (t; :))ut;equ3 (t) = �utA (t) ;

A (T ) = �;

B (T ) = 1� � (y0 + a) :

(3.37)

By identifying (3:35) with (3:37) ; we can rewrite

equ2 (t) = �l2 (t) (A (t)x
u (t) +B (t)) + �utA (t) ;

and

e�u2 (t; :) = �L2 (t; :) (A (t)x
u (t) +B (t)) + r (t; :)utA (t) ;

then replacing the both equations (3:37), and the last equations of equ2 (t) and e�u2 (t; :) into
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(3:31), we have,

� (A(t)xu (t) +B(t)) + �ep3 (t) + ��l (t) (A(t)xu (t) +B(t)) + �2A(t)ut

+
R
�

�
(1 + r (t; �)) �L (t; �) (A(t)xu (t) +B(t)) + (1 + r (t; �))2A(t)ut � �ep3 (t)	m (d�)

= 0;

then we get,

u (t; xt) = �
�
�+ ��l (t) +

R
�
(1 + r (t; �)) �L (t; �)m (d�)

�
(A(t)xu (t) +B(t)) + �ep3 (t)

A(t)G (t)
;

(3.38)

where G (t) = �2 �
Z
�

(1 + r (t; �)) 2m (d�) :

In the other side, we have from (3:34) and (3:36) : Then

ut = �
�
A (t)xu (t)� 2cA(t)xu (t)� cB(t) +

�
B (t)� cepu3 (t)

A (t)
�
�+ ��l (t) +

R
�
(1 + r (t; �)) �L (t; �)m (d�)

� : (3.39)

From (3:38) and (3:39), we have

8>><>>:
�
A (t) =

(
2c+

�
�+ ��l (t) +

R
�
(1 + r (t; �)) �L (t; �)m (d�)

�
2

G (t)

)
A(t);

A(T ) = �:

(3.40)

and8>><>>:
�
B (t) =

(
c+

�
�+ ��l (t) +

R
�
(1 + r (t; �)) �L (t; �)m (d�)

�
2

G (t)

)
B(t) + cepu3 (t) ;

B(T ) = 1� � (y0 + a) :

(3.41)
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Then the explicit solutions of (3:40) ; and (3:41) have the form

8>>>>>>><>>>>>>>:

A(t) = � exp

Z T

t

(
2c+

�
�+ ��l (s) +

R
�
(1 + r (s; �)) �L (s; �)m (d�)

�
2

G (s)

)
ds;

B(t) = (1� � (y0 + a)) exp

Z T

t

"(
c+

�
�+ ��l (s) +

R
�
(1 + r (s; �)) �L (s; �)m (d�)

�
2

G (s)

)
B(s) + cepu3 (s)] ds:

(3.42)

Remark 3.1 It�s very important to remark that the solution of the function B (t) in the

form (3:42) is depend to the solution of ep3 (t) : If we put ep3 (t) =  (t) y (t)+' (t) ; for smooth

deterministic functions  ; and '; by using the similar technique as an optimal solution in

the last paragraph, to the triplet (yu (t) ; epu3 (t) ; u (t)). Then the solutions of  ; and ' yield
respectively the equations

8>>>><>>>>:
�
 (t) = �2 2 (t)� (2��2A(t)� �2l2(t)) (t) ;

�
' (t) = (� (t) + �2l2(t)� �)' (t) +K(t);

 (0) = �; and ' (0) = 1� � (y0 � a) :

(3.43)

The main result in this section, can be given in the form of maximum principle of mean

variance problem with risk sensitive performance.

Theorem 3.5 We assume that the pair (A (t) ; B(t)) has unique solution given by (3:42), the

pair (' (t) ;  (t)) has also the explicit solution of the system (3:43). Then the optimal control

of the problem (3:28), (3:29) and (3:30) has the state feedback form

u (t; xt; yt; rt (:)) =

�
�
�+ ��l (t) +

R
�
(1 + r (t; �)) �L (t; �)m (d�)

�
(A(t)xu (t) +B(t)) + � ( (t) yu (t) + ' (t))

A(t)G (t)
:
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This thesis contains two main results. The �rst one is the necessary optimality condition for

the systems of fully coupled FBSDE, fully coupled FBSDE with jump under risk sensitive

performance, which are mentioned respectively by the following theorems (2:2; 3:2) using an

almost similar scheme as in Djechiche et al [11]. The second main result, suggests su¢ cient

optimality conditions of the above systems, and mentioned respectively by the following

theorems (2:3; 3:3). The proofs is based on the convexity conditions of the Hamiltonians

functions, the initial and terminal terms of the performance functions.

� If we put in our �rst example of [20] At = Bt = Ct = Dt = 0; we get the same result

as in [8], and the su¢ cient optimality conditions are similar to those in the paper of

Chala [9].

� Our results in Kallout and Chala [20], can be compared with the maximum principle

obtained by Djechiche et al [11], and we note here that our study is the result�s extension

of Chala [8], [9].

� In our results of Kallout and Chala [21], we study the generale case - we add the jumps

di¤usion term to our system in Kallout and Chala [20]-. This result discussed as a third

resullt�s generalization of Chala [8] [9].

� On the other hand, in the case where the system is governed by mean �eld type, we

may take the existing paper established by Djechiche et al [11]. We have generalized the

result of Kallout and Chala [20] into the fully coupled stochastic di¤erential equation

governed by mean �eld type, and this problem to be thoroughly addressed in our future
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paper, and will be compared with [24].

� Remarkably, the risk sensitive control problem studied by Lim and Zhou in [23] is

di¤erent from ours.
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