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Abstract

In this thesis, we are concerned with stochastic optimal control of systems governed by forward-

backward stochastic differential equations of mean field type. The first part of this thesis is ded-

icated to the existence and uniqueness of solutions for systems of forward-backward stochastic

differential equation of mean-field type. We use here, the Picard’s iteration method.

In the second part, we study the existence of optimal solution of optimal control problem driven

by a linear backward stochastic differential equations of mean field type (MF-FBSDE) with non

linear cost, where the control domain and the cost functions are assumed convex. The second

main result established in this part is a necessary as well as sufficient conditions of optimality

satisfied by an optimal control for this kind of stochastic control problem, the proof of this result

is based on the convex optimization principle.

In the third part, we consider stochastic control problems for a system of forward backward

stochastic differential equations of mean field (MF-FBSDEs) with uncontrolled diffusion. Our

interest goes particularity to the questions of existence of optimal relaxed control as well as exis-

tence of optimal strict control for a nonlinear MF-FBSDEs. We derive also necessary and sufficient

optimality conditions for both relaxed and strict control problems.

The second and the third parts of this thesis are project of paper submitted in international jour-

nal.
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Abstract

In the last chapter, we prove the existence of optimal relaxed control as well as optimal strict con-

trol for nonlinear MF-FBSDEs with controlled diffusion. This part is published as paper:

R.Benbrahim, B.Gherbal, Existence of Optimal Controls for Forward-Backward Stochastic Differential

Equation of Mean-field Type, Journal of Numerical Mathematics and Stochastic, 9(1): 33-47, 2017.

Key words: Mean-field, forward backward stochastic differential equation, stochastic control, re-

laxed control, strict control, existence, necessary and sufficient conditions, tightness, S-topology.
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Résumé

Dans cette thèse nous nous sommes intéressés au contrôle stochastique optimal des équations dif-

férentielles stochastiques progressives rétrogrades de type champ moyen. Nous présentons dans

la première partie, l’existence et l’unicité des solutions pour des systèmes d’équations différen-

tielles stochastiques progressives rétrogrades (EDSPRs) de type champ moyen. Dans ce cas on

utilise la méthode d’itération de Picard.

Dans la deuxième partie, nous étudions l’existence d’une solution optimale du problème de con-

trôle optimal pour des EDSPRs de type champ moyen linéaires avec coût non linéaire, où le do-

maine de contrôle et les fonctions de coût sont supposés convexes. Un deuxième résultat essentiel

dans cette partie, est d’établir les conditions nécessaires et suffisantes d’optimalité satisfaites par

le contrôle optimal strict pour ce genre de problème de contrôles stochastiques, la preuve de ce

résultat est basée sur le principe d’optimisation convexe.

Dans la troisième partie, nous considérons un problème du contrôle stochastique pour des sys-

tèmes d’EDSPRs de type champ moyen. Notre intérêt va en particulier vers les questions d’existence

de contrôle optimal relaxé et l’existence de contrôle optimal strict pour les EDSPRs de type champ

moyen . Nous établirons aussi des conditions nécessaires et suffisantes d’optimalités pour les

deux problèmes de contrôle relaxé et strict.

Les deuxième et troisième parties de cette thèse sont un projet d’article soumis dans un journal

viii



Résumé

international.

Dans le dernier chapitre, nous prouvons l’existence d’un contrôle relaxé optimal et d’un contrôle

strict optimal pour les EDSPRs de type champ moyen non linéaires à diffusion contrôlée. Cette

partie est publiée sous forme d’un article :

R.Benbrahim, B.Gherbal, Existence of Optimal Controls for Forward-Backward Stochastic Differential

Equation of Mean-field Type, Journal of Numerical Mathematics and Stochastic, 9(1): 33-47, 2017.

Mots clés: Champ moyen, équation différentielle stochastique progressive rétrograde, contrôle

stochastique, contrôle relaxé, contrôle strict, existence, conditions nécessaires et suffisantes, ten-

sion, la S-topologie.
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Symbols and Abbreviations

The different symbols and abbreviations used in this thesis

Symbols

R : Real numbers.

Rn : n-dimensional real Euclidean space.

Rn×d : The set of all (n× d) real matrixes.

(Ω,F ,P) : Probability space.

(Ft)t≥0 : Filtration.

(Ω,F , (Ft)t≥0,P) A filtered probability space.

E[x] : Expectation at x.

E[x|Ft] : Conditional expectation.

(Wt)t≥0 : Brownian motion.

δ(da) : The Dirac measure.

µ : The relaxed control.

U : The set of values taken by the strict control u.

U : The set of admissible strict controls.

V : The space of positive Radon measures on [0; 1]× U .

x



Symbols and Abbreviations

J(.) : The cost function.

u∗ : Optimal strict control.

µ∗ : Optimal relaxed control.

H : The Hamiltonian.

R : The set of relaxed controls.

CV (.) : The conditional variation

Abbreviations

SDEs : Stochastic differential equations.

BSDEs : Backward stochastic differential equations.

FBSDE : Forward-backward stochastic differential equations.

MF-FBSDE : Forward-backward stochastic differential equations of mean field type.

càdlàg : Right continuous with left limits.

a.s Almost surely.
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Introduction

I
n 1993 Antonelli in [3], studied the system of forward-backward stochastic differential

equations in the first time, and since then it has become very useful in stochastic con-

trol problems and mathematical finance. Therefore, certain important problems in math-

ematical economics and mathematical finance, especially in the optimization problem, can be

formulated to be FBSDEs. There are two important approaches to the general stochastic opti-

mal control problem. One is the Bellman dynamic programming principle, which results in the

Hamilton-Jacobi-Bellman equation. The other is the maximum princible. This last approach has

been established in many papers, see Xu in [34], Wu [33] and Peng and Wu [32]. In 2009, a new

kind of backward stochastic differential equations called mean-field BSDEs has been introduced

by Buckdahn, Djehiche, Li and Peng [9], which were derived as a limit of some highly dimen-

sional system of FBSDEs, corresponding to a large number of particles. Since that, many authors

treated the system of this kind of Mckean-Vlasov type (see [28] and [1]). In this respect we refer

the reader also to [8] and [2].

The existence of solution for mean-field FBSDEs systems has been proved by Carmona and Du-

larue [11]. A maximum principle for fully coupled MF-FBSDEs has been treated by Li and Liu

[27], where the control domain is not assumed to be convex. A maximum principle for mean-field

FBSDEs with jumps has been investigated by Hafayed [18] and also in Hafayed et al. [19]. See
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Introduction

also [20] for systems of MF-FBSDEs driven by Teugels martingales.

In this work, we prove existence of optimal controls for systems governed by the following MF-

FBSDEs 

dXt = b(t,Xt,E[α (Xt)], vt)dt+ σ(t,Xt,E[β (Xt)], vt)dWt

dYt = −f(t,Xt,E[γ (Xt)], Yt,E[δ (Yt)], vt)dt+ ZtdWt + dNt

X0 = x0, YT = g(XT ,E[λ (XT )]), t ∈ [0, T ],

(1)

where b, α, σ, β, f, γ, λ, g and λ are given functions, (Wt, t ≥ 0) is a standard Brownian motion,

defined on some filtered probability space (Ω,F ,P), satisfying the usual conditions. X,Y, Z are

square integrable adapted processes and N a square integrable martingale that is orthogonal to

W . The control variable vt, called strict control, is a measurable, Ft− adapted process with values

in a compact metric space U .

We shall consider a functional cost to be minimized, over the set U of a admissible strict controls,

as the following:

J(v·) := E
[
l (XT ,E [θ (XT )]) + k (Y0,E [ρ (Y0)])

+
∫ T

0
h
(
t,Xt,E [ϕ (Xt)] , Yt,E

[
ψ
(
Yt
)]
, vt
)
dt
]
,

(2)

where l, θ, k, ρ, h, ϕ and ψ are appropriate functions.

The considered system and the cost functional, depend on the state of the system and also on the

distribution of the state process, via the expectation of some function of the state. The mean-field

FBSDEs (1) called McKean-Vlasov systems are obtained as the mean square limit of an interacting

particle system of the form

dXi,n
t = b(t,Xi,n

t , 1
n

n∑
j=1

A
(
Xj,n
t

)
, vt)dt+ σ(t,Xi,n

t , 1
n

n∑
j=1

B
(
Xj,n
t

)
, vt)dWt

dY i,nt = −f(t,Xi,n
t , 1

n

n∑
j=1

C
(
Xj,n
t

)
, Y i,nt , 1

n

n∑
j=1

D
(
Y j,nt

)
, vt)dt+ Zi,nt dW i

t + dN i
t ,

(3)

2



Introduction

where
(
W i
· , i ≥ 0

)
is a collection of independent Brownian motion. The system of mean-field FBS-

DEs (1) occur naturally in the probabilistic analysis of financial optimization and control problems

of the McKean-Vlasov type. This kind of approximation result is called "propagation of chaos",

which says that when the number of particles (or players) tends to infinity, the equations defining

the evolution of the particles could be replaced by a single equation (McKean-Vlasov equation).

The existence of strict optimal controls for stochastic differential equations, follows from the

Roxin-type convexity condition (see [13, 16, 26]). Without this condition, a strict optimal con-

trol may fail to exist. The idea is then to introduce a new class R of admissible relaxed control in

which, the controller chooses at time t, a probability measure qt (da) on the control set U , rather

than an element ut ∈ U .

Fleming [14] derived the first existence result of an optimal relaxed control for SDEs with un-

controlled diffusion coefficient by using compactification techniques. The case of SDEs with con-

trolled diffusion coefficient has been solved by El-Karoui et al. [13], where the optimal relaxed

control is shown to be Markovian. See also Haussmann and Lepeltier [21]. Existence of optimal

control for FBSDEs has been proved by Bahlali, Gherbal and Mezerdi [5], see also Buckdahn et

al [10]. In Bahlali, Gherbal and Mezerdi [6] an existence of optimal control for linear BSDEs has

been proved and this result has been extended to a system of linear backward doubly SDEs by

Gherbal [15]. For systems of mean-field SDEs, Bahlali et al in [7] proved the existence of optimal

controls, where the diffusion coefficient is not controlled.

Our main goal in this thesis is to prove existence of optimal control as will as establish neces-

sary and sufficient optimality conditions for systems governed by FBSDEs of mean-field type.

We prove in first, the existence of a strong strict optimal control (that is adapted to the initial fil-

tration) for a control problem governed by linear MF-FBSDEs and establish also necessary and

sufficient conditions of optimality for this problem by using the convex optimization principle

3



Introduction

. The second main result is to prove the existence of optimal relaxed controls as will as optimal

strict controls, for non linear MF-FBSDEs systems with uncontrolled diffusion. Our approch is

based on tightness properties of the distributions of the processes defining the control problem

and the Skorokhod’s selection theorem on the space D (of càdlàg processes), endowed with the

Jakubowski S-topology [24]. Moreover, when the Roxin convexity condition is fulfilled, we prove

that the optimal relaxed control is in fact strict. We establish also necessary as well as sufficient

optimality conditions for both relaxed and strict control problems by using the convex perturba-

tion method. The third mean result, is to peove existence of optimal controls for systems of non

linear MF-FBSDEs with controlled diffusion coefficient. Our results extend in particular those in

[5], [6] and [7].

In this thesis, we are interested by the existence of an optimal control where the state equation, as

well as the cost function are of mean field type. It is organized as follows:

• In the first chapter ( Existence and uniqueness of solution of Forward-Backward stochas-

tic differential equation of Mean field type): We present, the existence and uniqueness

theorem for solution of MF-FBSDE’s where the coefficients were assumed to be Lipschitz.

• In the second chapter ( Existence of an optimal strict control and optimality conditions

for linear FBSDEs of mean-field type): In this chapter, we prove the existence of a strong

strict optimal control for a control problem governed by linear MF-FBSDEs and we derive

also necessary and sufficients conditions for optimality for this control problem of linear

MF-FBSDEs.

• In the third chapter ( Existence of optimal solutions and optimality conditions for optimal

control problems of MF-FBSDEs systems with uncontrolled diffusion): We present and

prove the main result concerning the existence of relaxed optimal controls and strict optimal

4



Introduction

controls for non linear MF-FBSDEs with uncontrolled diffusion coefficient. We establish

also in this chapter necessary as well as sufficient optimality conditions for both relaxed

and strict control problems.

• In the fourth chapter ( Existence of optimal solutions for optimal control problems of

MF-FBSDEs systems with controlled diffusion): We prove the existence of optimal con-

trols for systems governed by non linear MF-FBSDEs with controlled diffusion coefficient,

by using the weak convergence techniques for the associated MF-FBSDEs on the space of

continuous functions and on the space of cádlág functions endowed with the Jakubowski

S-topology. Moreover, when the Roxin convexity condition is fulfilled, we get that the set

of strict control coincides with that of relaxed control.

5



CHAPTER 1

Existence and uniqueness of solution

of FBSDE of Mean field type
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PT

ER 1
Existence and uniqueness of solution of FBSDE of Mean

field type

I
n this chapter, we presente and prove a theorem of existence and uniqueness of so-

lutions for systems of forward-backward stochastic differential equation of mean-field

type, where the coefficient of the system depend not only on the state process, but also

on the distribution of the state process, via the expectation of some function of the state. We use

the Picard’s iteration method.

1.1 Preliminaries

Let (Wt) be a d-dimensional Brownian motion, defined on a probability filtered space (Ω,F , (Ft)t≥0,P),

satisfying the usual conditions. We also shall introduce the following two spaces of processes :

M2([0, T ];Rm) : the set of jointly measurable, processes
{
Yt, t ∈

[
0, T

]}
with values in Rm such

7



Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

that Yt is Ft-measurable for a.e. t ∈ [0, T ], and satisfy

E
[∫ T

0

|Yt|2 dt
]
<∞.

Let S2([0, T ];Rn) : the set of jointly measurable, processes
{
Xt, t ∈

[
0, T

]}
with values in Rn such

that Xt is Ft-measurable for a.e. t ∈ [0, T ], and satisfy

E
[

sup
0≤t≤T

|Xt|2
]
<∞.

For any positive number T > 0, we consider the system of the following froward-backward

stochastic differential equations of mean-field type:

Xt = x+
∫ t

0
b(s,Xs,E[α (Xs)])ds+

∫ t
0
σ(s,Xs,E[β (Xs)])dWs

Yt = g(XT ,E[λ (XT )]) +
∫ T
t
f(s,Xs,E[γ (Xs)], Ys,E[δ (Ys)])ds−

∫ T
t
ZsdWs,

(1.1)

where (H1.0):

b : [0, T ]× Rn × Rn → Rn,

σ : [0, T ]× Rn × Rn → Rn×d,

f : [0, T ]× Rn × Rn × Rm × Rm → Rm,

g : [0, T ]× Rn × Rn → Rm,

α, β, λ, γ : [0, T ]× Rn × Rn → Rn,

δ : [0, T ]× Rm × Rm → Rm,

are a given bounded and continuous functions.

8



Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

1.2 Existence and uniqueness

To establesh the result of existence and uniqueness of solution for systems of forward-backward

stochastic differential equations of mean-field type we need to the following assumptions:

(H1). Assuming that the functions b, α, σ, β, f, γ, λ, g and λ satisfy assumption (H1) if there exist

two constant k and k1 such that they satisfy both (H1.0) and the following properties:

(H1.1) for every t ∈ [0, T ], ∀ (x1, x2, x
′
1, x
′
2) ∈ R4n, (y1, y2, y

′
1, y
′
2) ∈ R4m,

|f (t, x1, x
′
1, y1, y

′
1)− f (t, x2, x

′
2, y2, y

′
2)| ≤ k (|x1 − x2|+ |x′1 − x′2|+ |y1 − y2|+ |y′1 − y′2|) ,

|b (t, x1, x
′
1)− b (t, x2, x

′
2)| ≤ k (|x1 − x2|+ |x′1 − x′2|) ,

|σ (t, x1, x
′
1)− σ (t, x2, x

′
2)| ≤ k (|x1 − x2|+ |x′1 − x′2|) ,

|α (x1)− α (x2)| ≤ k |x1 − x2| , |β (x1)− β (x2)| ≤ k |x1 − x2| ,

|γ (x1)− γ (x2)| ≤ k |x1 − x2| , |λ (x1)− λ (x2)| ≤ k |x1 − x2| ,

|δ (y1)− δ (y2)| ≤ k |y1 − y2| , |g (x1, x
′
1)− g (x2, x

′
2)| ≤ K (|x1 − x2|+ |x′1 − x′2|) .

(H1.2) for every t ∈ [0, T ], ∀ (x1, x2) ∈ R2n, (y1, y2) ∈ R2m,

|b (t, x1, x2)|+ |σ (t, x1, x2)|+ |g (t, x1, x2)| ≤ k1 (1 + |x1|+ |x2|) ,

|α (x1)|+ |β (x1)|+ |γ (x1)|+ |λ (x1)| ≤ k1 (1 + |x1|) ,

|f (t, x1, x2, y1, y2)) ≤ k1 (1 + |x1|+ |x2|+ |y1|+ |y2|) , |δ (y1)| ≤ k1 (1 + |y1|) .

(H1.3) : f(., 0, 0, 0, 0) ∈M2([0, T ];Rm) .

9



Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Theorem 1.2.1 Under the assumptions (H1). For any condition initial X0 = x ∈ L2(Ω, (F0),P,Rn),

the MF-FBSDEs (1.1) has a unique solution (Xt, Yt, Zt) ∈ S2([0, T ] ,Rn)×S2([0, T ] ,Rm)×M2([0, T ];Rm×d)

satisfies:

(i) (Xt)0<t<T and (Yt)0<t<T are continuous.

(ii) E
[

sup
0≤t≤T

|Xt|2 + sup
0≤t≤T

|Yt|2 +
∫ T

0
||Znt ||2dt

]
<∞.

Proof.

1-Existence: We first prove the existence of solution, the initial condition x ∈ L2(Ω, (F0),P,Rn) is

fixed.

Let (Xt, Yt, Zt)0<t<T be a possible solution of the problem (1.1). Using Picard’s iteration method.

Let as define the following sequence (Xn
t , Y

n
t , Z

n
t )n∈N such that X0 = Y 0 = Z0 = 0

and (Xn+1
t , Y n+1

t , Zn+1
t ) is the unique solution of the MF-FBSDE (1.1), defined as follows:

Xn+1
t = x+

∫ t
0
b(s,Xn

s ,E[α (Xn
s )])ds+

∫ t
0
σ(s,Xn

s ,E[β (Xn
s )])dWs

Y n+1
t = g(Xn

T ,E[λ (Xn
T )]) +

∫ T
t
f(s,Xn

s ,E[γ (Xn
s )], Y ns ,E[δ (Y ns )])ds−

∫ T
t
Zn+1
s dWs.

(1.2)

And such that the stochastic integrals are well defined because it is clear by recurrence that for

every n > 0,Xn+1
t is continuous and adapted, so the process σ(s,Xn

s ,E[β (Xn
s ) is too.

First, we prove the existence of solution of MFSDE in (1.1), for t ∈ [0, T ], first checking by recur-

rence on n that there exists a constant Cn such that for all t ∈ [0, T ]

E
[
|Xn

t |2
]
≤ Cn. (1.3)

Suppose that E
[
|Xn

t |2
]
≤ Cn, and we show that

E
[
|Xn+1

t |2
]
≤ Cn.

10



Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

We have

[
|Xn+1

t |2
]

= |x+

∫ t

0

b(s,Xn
s ,E [α(X

n
s )])ds+

∫ t

0

σ(s,Xn
s ,E [β(Xn

s )])dWs|2.

Applying the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we obtain

|Xn+1
t |2 ≤ 3

(
|x|2 +

(∫ t

0

|b(s,Xn
s ,E [α(X

n
s )])|ds

)2

+

(∫ t

0

||σ(s,Xn
s ,E [β(Xn

s )])||dWs

)2
)
.

Passing to the expectation, we get

E
[
|Xn+1

t |2
]
≤ 3(|x|2 + E

[(∫ t

0

|b(s,Xn
s ,E [α(X

n
s )] |ds

)2
]

+E

[(∫ t

0

σ(s,Xn
s ,E [β(Xn

s )])dWs

)2
]

). (1.4)

By the isometry of Itô’s, the theoreme of Fubini and the linear growth condition, we have

E

[(∫ t

0

σ(s,Xn
s ,E [β(Xn

s )])dWs

)2
]

= E
[∫ t

0

||σ(s,Xn
s ,E [β(Xn

s )])||2ds
]

(1.5)

≤ E
[∫ t

0

K2(1 + |Xn
s |2ds

]
=

∫ t

0

K2
(
1 + E

[
|Xn

s |2
])
ds.

By the inequalities of Cauchy-Schwarz , we have

E

[(∫ t

0

|b(s,Xn
s ,E [α(X

n
s )])|ds

)2
]
≤ E

[(∫ t

0

ds

)(∫ t

0

|b(s,Xn
s ,E [α(X

n
s )])|2ds

)]
(1.6)

≤ TE
[∫ t

0

K2(1 + |Xn
s |2)ds

]
.

Replacing (1.5) and (1.6) in (1.4), we get

E
[
|Xn+1

t |2
]
≤ 3(|x|2 + TE

[∫ t

0

K2(1 + |Xn
s |2)ds

]
+

∫ t

0

K2(1 + E
[
|Xn

s |2
]
)ds)

≤ C + C

∫ t

0

E
[
|Xn

s |2
]
ds, for t ∈ [0, T ], and C > 0.

11



Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Then (1.3) is proved.

We will increase by recurrence

E
[

sup
0≤t≤T

|Xn+1
t −Xn

t |2
]
.

For every n > 0, we have

Xn+1
t −Xn

t =

∫ t

0

(
b(s,Xn

s ,E [α(X
n
s )] )− b(s,Xn−1

s ,E[α(X
n−1
s )])

)
ds

+

∫ t

0

(
σ(s,Xn

s ,E [β(Xn
s )])− σ(s,Xn−1

s ,E[β(X
n−1
s )])

)
dW s.

Applying Doob’s inequality, we obtain

E

[
sup
s∈[0,t]

∣∣Xn+1
s −Xn

s

∣∣2] ≤ 2E

[∣∣∣∣∫ t

0

(
b(s,Xn

s ,E[α(X
n
s )])− b(s,Xn−1

s ,E[α(X
n−1
s )])

)
ds

∣∣∣∣2
]

+2E

[∣∣∣∣∫ t

0

(
σ(s,Xn

s ,E[β(Xn
s )])− σ(s,Xn−1

s ,E[β(Xn−1
s )])

)
dW s

∣∣∣∣2
]
.

By the inequalities of Cauchy-Schwarz and Buckholders-Davis-Gundy, we have

E

[
sup
s∈[0,t]

∣∣Xn+1
s −Xn

s

∣∣2] ≤ 2TE
[∫ t

0

∣∣∣b(s,Xn
s ,E[α(X

n
s )])− b(s,Xn−1

s ,E[α(X
n−1
s )])

∣∣∣2 ds]
+2E

[∫ t

0

∣∣∣σ(s,Xn
s ,E[β(Xn

s )])− σ(s,Xn−1
s ,E[β(X

n−1
s )])

∣∣∣2 ds] .
Applying the condition of Lipschitz, we obtain

E

[
sup
s∈[0,t]

∣∣Xn+1
s −Xn

s

∣∣2] ≤ 2Tk

∫ t

0

E
[∣∣Xn

s −Xn−1
s

∣∣2 +
∣∣∣E[α(X

n
s )− α(X

n−1
s )]

∣∣∣2] ds
+2k

∫ t

0

E
[∣∣Xn

s −Xn−1
s

∣∣2 +
∣∣∣E[β(Xn

s )− β(X
n−1
s )]

∣∣∣2] ds
≤ 2k(T + 1)

∫ t

0

E
[∣∣Xn

s −Xn−1
s

∣∣2 + k
∣∣Xn

s −Xn−1
s

∣∣2] ds
≤ 2k(T + 1)(1 + k)

∫ t

0

E
[∣∣Xn

s −Xn−1
s

∣∣2] ds.
12



Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Then

E

[
sup
s∈[0,t]

∣∣Xn+1
s −Xn

s

∣∣2] ≤ C ∫ t

0

E

[
sup
r∈[0,s]

∣∣Xn
r −Xn−1

r

∣∣2] ds. (1.7)

We repeat the same method, applying Doob’s inequality, to
∣∣Xn

t −Xn−1
t

∣∣, we obtain

∣∣Xn
s −Xn−1

s

∣∣2 ≤ 2T

∫ s

0

∣∣∣b(r,Xn−1
r ,E[α(X

n−1
r )])− b(r,Xn−2

r ,E[α(X
n−2
r )])

∣∣∣2 dr
+2

∫ s

0

∣∣∣σ(r,Xn−1
r ,E

[
β(Xn−1

r )
]
)− σ(r,Xn−2

r ,E[β(X
n−2
r )])

∣∣∣2 dr.
Using the fact that b, σ,α and β are Lipshitz functions, we obtain

E

[
sup
r∈[0,s]

∣∣Xn
r −Xn−1

r

∣∣2] ≤ C ∫ s

0

E
[∣∣Xn−1

r −Xn−2
r

∣∣2] dr
≤ C

∫ s

0

E

[
sup
k∈[0,r]

∣∣Xn−1
k −Xn−2

k

∣∣2] dr. (1.8)

Replacing (1.8) in (1.7), we get

E

[
sup
s∈[0,t]

∣∣Xn+1
t −Xn

t

∣∣2] ≤ C∫ t

0

E

[
sup
r∈[0,s]

|Xn
r −Xn−1

r |2
]
ds

≤ C
∫ t

0

(
C

∫ s

0

E

[
sup
k∈[0,r]

|Xn−1
k −Xn−2

k |2
]
dr

)
ds

≤ C2E

[
sup
k∈[0,r]

|Xn−1
k −Xn−2

k |2
]∫ t

0

(∫ s

0

dr

)
ds

≤ C2E

[
sup
k∈[0,r]

|Xn−1
k −Xn−2

k |2
]∫ t

0

sds

≤ C2E

[
sup
k∈[0,r]

|Xn−1
k −Xn−2

k |2
] [

s2

2

]t
0

≤ C2 t
2

2
E

[
sup
k∈[0,r]

|Xn−1
k −Xn−2

k |2
]
.

In the same way as (1.7) and (1.8), we have

E

[
sup
k∈[0,r]

∣∣Xn−1
k −Xn−2

k

∣∣2] ≤ C ∫ r

0

E

[
sup
l∈[0,k]

∣∣Xn−2
l −Xn−3

l

∣∣2] dk. (1.9)

13



Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Replacing (1.8) and (1.9) in (1.7), we oblain

E

[
sup
s∈[0,t]

∣∣Xn+1
t −Xn

t

∣∣2] ≤ C∫ t

0

E

[
sup
r∈[0,s]

|Xn
r −Xn−1

r |2
]
ds

≤ C2

∫ t

0

(∫ s

0

E

[
sup
k∈[0,r]

|Xn−1
k −Xn−2

k |2
]
dr

)
ds

≤ C3

∫ t

0

(∫ s

0

(∫ r

0

E

[
sup
l∈[0,k]

|Xn−2
l −Xn−3

l |2
]
dk

)
dr

)
ds

≤ C3E

[
sup
l∈[0,k]

|Xn−2
l −Xn−3

l |2
]∫ t

0

(∫ s

0

(∫ r

0

dk

)
dr

)
ds

≤ C3E

[
sup
l∈[0,k]

|Xn−2
l −Xn−3

l |2
]∫ t

0

(∫ s

0

rdr

)
ds

≤ C3E

[
sup
l∈[0,k]

|Xn−2
l −Xn−3

l |2
]∫ t

0

s2

2
ds

≤ C3 t
3

3!
E

[
sup
l∈[0,k]

|Xn−2
l −Xn−3

l |2
]
.

By recurrence on n, it follows that

E

[
sup
t∈[0,T ]

∣∣Xn+1
t −Xn

t

∣∣2] ≤ (CT )n+1

n!
E

[
sup
t∈[0,T ]

∣∣X1
t −X0

t

∣∣2] ≤ D (CT )n

n!
. (1.10)

By applying Chebyshev’s inequality, we have

P

[
sup
t∈[0,T ]

∣∣Xn+1
t −Xn

t

∣∣ > 1

2n+1

]
≤ D (C)n

n!
/(

1

2n+1
= 4D

(4C)n

n!
.

Which implies that

∞∑
n=0

P

[
sup
t∈[0,T ]

∣∣Xn+1
t −Xn

t

∣∣ > 1

2n+1

]
≤ 4D

∞∑
n=0

(4C)n

n!
= 4De4C <∞.

Therefore, by the Borel-Cantelli lemma

P

[
sup
t∈[0,T ]

∣∣Xn+1
t −Xn

t

∣∣ > 1

2n+1
,∀n ∈ N

]
= 0.
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Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Which mean

P

[
sup
t∈[0,T ]

∣∣Xn+1
t −Xn

t

∣∣ ≤ 1

2n+1
,∀n ∈ N

]
= 1.

Thus, there exists n0 ∈ N such that

sup
t∈[0,T ]

∣∣Xn+1
t −Xn

t

∣∣ ≤ 1

2n+1
, for n ≥ n0, (1.11)

with probability equal to 1. Passing to the sum we get

sup
t∈[0,T ]

|Xm
t −Xn

t | ≤
m∨n∑

k=m∧n−1

sup
t∈[0,T ]

∣∣Xk+1
t −Xk

t

∣∣ ≤ m∨n∑
k=m∧n−1

1

2k+1
≤ 1

2m∧n
.

For m∧n ≥ n0(w) or m∨n = maxm, k. Then the process (Xn)n≥0 is a Cauchy sequence. So there

is a continuous process (Xt)t∈[0,T ], such as

sup
t∈[0,T ]

|Xn
t −Xt| → 0, when n→∞, with probability 1. (1.12)

So, P-a.s, Xn
t converges to a continuous process Xt. It is very easy to check that Xt is for MF-SDE

part in (1.1) by going to the limit in the equation of recurrence for Xn
t . Passing now to solve the

second equation of recurrence for Y nt . Let’s prove that the sequence (Y nt ,
∫ T
.
Znt dWt) is Cauchy

sequence in the space of Banach.
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Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Applying Itô’s formula to eat|Y n+1
t − Y nt |2, we get

d(eat|Y n+1
t − Y nt |2) = aeat(Y n+1

t − Y nt )2dt+ 2eat(Y n+1
t − Y nt )d(Y n+1

t − Y nt )

+ eatd
〈
Y n+1 − Y n, Y n+1 − Y n

〉
t

= aeat(Y n+1
t − Y nt )2dt

− 2
〈
eat(Y n+1

t − Y nt )2, f(t,Xn
t ,E[γ (Xn

t )], Y nt ,E[δ (Y nt )])

− f
(
t,Xn−1

t ,E[γ
(
Xn−1
t

)
], Y n−1

t ,E[δ
(
Y n−1
t

)
]
)
〉dt

+ 2
〈
eat(Y n+1

t − Y nt )2, Zn+1
t − Znt

〉
dWt + eat(Zn+1

t − Znt )2dt.

Passing to the integral between t and T, we obtain

eaT
∣∣g(Xn

T , E[λ(Xn
T )])− g(Xn−1

T , E[λ(Xn−1
T )])

∣∣2 − eat|Y n+1
t − Y nt |2

= a

∫ T

t

eas(Y n+1
s − Y ns )2)ds

− 2

∫ T

t

〈
eas(Y n+1

s − Y ns )2, f(s,Xn
s ,E[γ (Xn

s )], Y ns ,E[δ (Y ns )])

− f(s,Xn−1
s ,E[γ

(
Xn−1
s

)
], Y n−1

s ,E[δ
(
Y n−1
s

)
]) 〉dt

+ 2

∫ T

t

〈
eas(Y n+1

s − Y ns )2, Zn+1
s − Zns

〉
dWs +

∫ T

t

eas||Zn+1
s − Zns ||2ds.

And then,

eat|Y n+1
t − Y nt |2 +

∫ T

t

eas||Zn+1
s − Zns ||2ds

= eaT
∣∣g(Xn

T , E[λ(Xn
T )])− g(Xn−1

T , E[λ(Xn−1
T )])

∣∣2
+ 2

∫ T

t

〈
eas(Y n+1

s − Y ns )2, f(s,Xn
s ,E[γ (Xn

s )], Y ns ,E[δ (Y ns )])

− f(s,Xn−1
s ,E[γ

(
Xn−1
s

)
], Y n−1

s ,E[δ
(
Y n−1
s

)
]) 〉dt

− 2

∫ T

t

〈
eas(Y n+1

s − Y ns )2, Zn+1
s − Zns

〉
dWs.
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Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Taking expectation and using the Lipshitz condition, we get

E
[
eat|Y n+1

t − Y nt |2
]

+ E

[∫ T

t

eas||Zn+1
s − Zns ||2ds

]

≤ KE
[
eat|Xn

T −Xn−1
T |2

]
− aE

[∫ T

t

eas|Y n+1
s − Y ns |2ds

]

+ 2KE

[∫ T

t

eas|Y n+1
s − Y ns |(|Xn

s −Xn−1
s |+ |Y sT − Y n−1

s |)ds

]
.

From the Yong’s formula, for every ε > 0, (2ab) ≤ 1
ε2a

2 + ε2b2, we have

E
[
eat|Y n+1

t − Y nt |2
]

+ E

[∫ T

t

eas||Zn+1
s − Zns ||2ds

]

≤ KE
[
eat|Xn

T −Xn−1
T |2

]
− aE

[∫ T

t

eas|Y n+1
s − Y ns |2ds

]

+K2ε2E

[∫ T

t

eas|Y n+1
s − Y ns |2ds

]

+
1

ε2
E

[∫ T

t

eas(|Xn
s −Xn−1

s |+ |Y ns − Y n−1
s |)2ds

]
.

Applying the inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain

E
[
eat|Y n+1

t − Y nt |2
]

+ E

[∫ T

t

eas||Zn+1
s − Zns ||2ds

]

≤ KE
[
eat|Xn

T −Xn−1
T |2

]
+

2

ε2
E

[∫ T

t

eas|Xn
s −Xn−1

s |2ds

]

+ (K2ε2 − a)E

[∫ T

t

eas|Y n+1
s − Y ns |2ds

]
+

2

ε2
E

[∫ T

t

eas|Y ns − Y n−1
s |2ds

]
.

Choosing a and ε such that 2
ε2 = 1

2 and 4K2 − a = 0, then

E
[
eat|Y n+1

t − Y nt |2
]

+ E

[∫ T

t

eas||Zn+1
s − Zns ||2ds

]

≤ KE
[
eat|Xn

T −Xn−1
T |2

]
+

1

2
E

[∫ T

t

eas(|Xn
s −Xn−1

s |2 + |Y sT − Y n−1
s |2)ds

]
.
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Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Then for t = 0, we get

E
[

sup
0≤t≤T

eat|Y n+1
t − Y nt |2

]
+ E

[∫ T

0

eas||Zn+1
s − Zns ||2ds

]
(1.13)

≤ KE
[
eat|Xn

T −Xn−1
T |2

]
+
c

2
E
[

sup
0≤t≤T

eat|Xn
t −Xn−1

t |2
]

+
C

2
E
[

sup
0≤t≤T

eat|Y nt − Y n−1
t |2ds

]
.

We repeat the same method, applying the Itô’s formula to |Y nt − Y n−1
t |2, we get

E
[

sup
0≤t≤T

eat|Y nt − Y n−1
t |2

]
+ E

[∫ T

0

eas||Zns − Zn−1
s ||2ds

]

≤ KE
[
eat|Xn−1

T −Xn−2
T |2

]
+
c

2
E
[

sup
0≤t≤T

eat|Xn−1
t −Xn−2

t |2
]

+
C

2
E
[

sup
0≤t≤T

eat|Y n−1
t − Y n−2

t |2ds
]
.

Which implies that

E
[

sup
0≤t≤T

eat|Y nt − Y n−1
t |2

]
≤ KE

[
eat|Xn−1

T −Xn−2
T |2

]
(1.14)

+
c

2
E
[

sup
0≤t≤T

eat|Xn−1
t −Xn−2

t |2
]

+
C

2
E
[

sup
0≤t≤T

eat|Y n−1
t − Y n−2

t |2ds
]
.

Replacing (1.14) in (1.13), we have

E
[

sup
0≤t≤T

eat|Y n+1
t − Y nt |2

]
+ E

[∫ T

0

eas||Zn+1
s − Zns ||2ds

]

≤ KE
[
eat|Xn

T −Xn−1
T |2

]
+
c

2
E
[

sup
0≤t≤T

eat|Xn
t −Xn−1

t |2
]

+K ′E
[
eat|Xn−1

T −Xn−2
T |2

]
+
C

2
E
[

sup
0≤t≤T

eat|Xn−1
t −Xn−2

t |2
]

+
C ′

22
E
[

sup
0≤t≤T

eat|Y n−1
t − Y n−2

t |2ds
]
.
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Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

Which implies that

E
[

sup
0≤t≤T

eat|Y n+1
t − Y nt |2

]
+ E

[∫ T

0

eas||Zn+1
s − Zns ||2ds

]

≤ K
(
E
[
eat|Xn

T −Xn−1
T |2

]
+ E

[
eat|Xn−1

T −Xn−2
T |2

]
+ ...+ E

[
eat|X1

T −X0
T |2
] )

+
C

2

(
E
[

sup
0≤t≤T

eat|Xn
t −Xn−1

t |2
]

+ E
[

sup
0≤t≤T

eat|Xn−1
t −Xn−2

t |2
]

+ ..

...+ E
[

sup
0≤t≤T

eat|X1
t −X0

t |2
] )

+
C ′

2n
E
[

sup
0≤t≤T

eat|Y 1
t − Y 0

t |2ds
]
.

It follows immediately that

E
[

sup
0≤t≤T

eat|Y n+1
t − Y nt |2

]
+ E

[∫ T

0

eas||Zn+1
s − Zns ||2ds

]
≤ D′

2n

Consequently, (Xn, Y n, Zn)n∈N is Cauchy sequence, so convergent. Then, there is a triple stochas-

tic process (Xt, Yt, Zt) such that

E
[

sup
0≤t≤T

|Xn
t −Xt|

]
→ 0, E

[
sup

0≤t≤T
|Y nt − Yt|

]
→ 0 and E

[∫ T

0

||Znt − Zt||

]
→ 0,

when n→∞, with a probability equal to 1.

X = lim
n→∞

Xn
t , Y = lim

n→∞
Y nt and Z = lim

n→∞
Znt .

It is easy to check that (X,Y, Z) is a solution of MF-FBSDE (1.1), it just to passing to the limit in

(1.2).

2-Uniqueness: Let us prove the uniqueness of solutions of the system (1.1).

Suppose that (X,Y, Z) and (X ′, Y ′, Z ′) two solutions of the system (1.1) such that X0 = X
′

0 = x,
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Chapter 1. Existence and uniqueness of solution of FBSDE of Mean field type

and for all 0 ≤ t ≤ T,

Xt −X ′t =

∫ t

0

(b(s,Xs,E[α (Xs)])− b(s,X ′s,E[α (X ′s)]))ds

+

∫ t

0

(σ(s,Xs,E[β (Xs)])− σ(s,X ′s,E[β (X ′s)]))dWs,

and

Yt − Y ′t = g(XT ,E[λ (XT )])− g(X ′T ,E[λ (X ′T )])

+

∫ T

t

(f(s,Xs,E[γ (Xs)], Ys,E[δ (Ys)])− f(s,X ′s,E[γ (X ′s)], Y
′
s ,E[δ (Y ′s )]))ds

−
∫ T

t

(Zs − Z ′s)dWs.

Applying the inequality (a+ b)2 ≤ 2a2 + 2b2, we get

E[|Xt −X ′t|2] ≤ 2E[|
∫ t

0

(b(s,Xs,E[α (Xs)])− b(s,X ′s,E[α (X ′s)]))ds|2]

+2E[|
∫ t

0

(σ(s,Xs,E[β (Xs)])− σ(s,X ′s,E[β (X ′s)]))dWs|2].

According to Cauchy, Schwarz’s inequality and Lipschitz condition, we have

E[|
∫ t

0

(b(s,Xs,E[α (Xs)])− b(s,X ′s,E[α (X ′s)]))ds|2]

≤ TE[

∫ t

0

|b(s,Xs,E[α (Xs)])− b(s,X ′s,E[α (X ′s)])|2ds]

≤ TK2

∫ t

0

E[|Xs −X ′s|2]ds.

By the isometry of Itô and Lipschitz condition we have,

E[|
∫ t

0

(σ(s,Xs,E[β (Xs)])− σ(s,X ′s,E[β (X ′s)]))dWs|2]

≤ E[

∫ t

0

||σ(s,Xs,E[β (Xs)])− σ(s,X ′s,E[β (X ′s)])||2ds]

≤ K2

∫ t

0

E[|Xs −X ′s|2]ds.
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Then

E[|Xt −X ′t|2] ≤ 2TK2

∫ t

0

E[|Xs −X ′s|2]ds+ 2K2

∫ t

0

E[|Xs −X ′s|2]ds.

≤ (2TK2 + 2K2)

∫ t

0

E[|Xs −X ′s|2]ds.

Using the Granwall lemma, we get

E[ sup
0≤t≤T

|Xt −X ′t|2] = 0. (1.15)

On the other hand, applying Itô’s formula to |Yt − Y ′t |2, we get

d|Yt − Y ′t |2 = 2|Yt − Y ′t |d(Yt − Y ′t ) + d〈Y − Y ′, Y − Y ′〉t.

By passage to the integral from t to T and taking the expectation, we have

E
[

sup
0≤t≤T

|Yt − Y ′t |2
]

+ E

[∫ T

0

||Zt − Z ′t||2dt

]
≤ E

[
|g(XT ,E[λ (XT )])− g(X ′T ,E[λ (X ′T )])|2

]
+2E

[∫ T

0

〈Yt − Y ′t , f(s,Xs,E[γ (Xs)], Ys,E[δ (Ys)])− f(s,X ′s,E[γ (X ′s)], Y
′
s ,E[δ (Y ′s )])〉ds.

Applying Lipschizt condition, we get

E
[

sup
0≤t≤T

|Yt − Y ′t |2
]

+ E

[∫ T

0

||Zt − Z ′t||2dt

]
≤ K2E

[
|XT −X ′T |2

]
+2KE

[∫ T

0

|Yt − Y ′t |(|Xt −X ′t|+ |Yt − Y ′t |ds

]
.

By 2ab ≤ a2 + b2, we have

E
[

sup
0≤t≤T

|Yt − Y ′t |2
]

+ E

[∫ T

0

||Zt − Z ′t||2dt

]
≤ K2E

[
|XT −X ′T |2

]
+K2E

[∫ T

0

|Yt − Y ′t |2
]

+2E

[∫ T

0

|Xt −X ′t|2
]

+ 2E

[∫ T

0

|Yt − Y ′t |ds

]
.
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Then

E
[

sup
0≤t≤T

|Yt − Y ′t |2
]

+ E

[∫ T

0

||Zt − Z ′t||2dt

]
≤ K2E

[
|XT −X ′T |2

]
+2TE

[
sup

0≤t≤T
|Xt −X ′t|2

]
+ (K2 + 2)E

[∫ T

0

|Yt − Y ′t |2ds

]
.

By (1.15), we have E
[

sup
0≤t≤T

|Xt −X ′t|2
]

= 0, so

E
[

sup
0≤t≤T

|Yt − Y ′t |2
]

+ E

[∫ T

0

||Zt − Z ′t||2dt

]
≤ CE

[∫ T

0

|Yt − Y ′t |2ds

]
. (1.16)

We derive from this inequality, two inequalities

E
[

sup
0≤t≤T

|Yt − Y ′t |2
]
≤ CE

[∫ T

0

|Yt − Y ′t |2ds

]
. (1.17)

E

[∫ T

0

||Zt − Z ′t||2dt

]
≤ CE

[∫ T

0

|Yt − Y ′t |2ds

]
. (1.18)

Applying Granwall’s inequality in (1.17) gives

E
[

sup
0≤t≤T

|Yt − Y ′t |2
]

= 0.

E

[∫ T

0

||Zt − Z ′t||2dt

]
= 0.

The uniqueness is proved.
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ER 2
Existence of an optimal strict control and optimality

conditions for linear FBSDEs of mean-field type

I
n this chapter, we consider a stochastic control problem governed by a linear forward

backward stochastic differential equation of mean field type with non linear functional

cost. The system here depend on state and also on the distribution of the state process.

The cost functional is also of mean field type. Under the convexity of the domain of control

and the cost functions, we prove the existence of strong optimal strict control ( which adapted

to the initial filtration) by using the strong convergence and Mazur’s theorem. We establish also

necessary as will as sufficient optimality conditions for this kind of linear control problem by

using convex optimization principle.
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2.1 Formulation of the problem and assumptions

We consider a stochastic control problem for the following linear FBSDEs of mean-field type

dXu
t =

(
A.Xu

t +B.E [Xu
t ] + C.ut

)
dt+

(
D.Xu

t + E.E [Xu
t ] + F.ut

)
dWt

dY ut = −
(
A.Xu

t +B.E [Xu
t ] + C.Y ut +D.E [Y ut ] + E.Zut + F .E [Zut ] +G.ut

)
dt

+Zut dWt,

Xu
0 = x, Y uT = ξ,

(2.1)

and a cost functional:

J(u·) := E
[
l (Xu

T ,E [Xu
T ]) + k (Y u0 ,E [Y u0 ])

+
∫ T

0
h
(
t,Xu

t ,E [Xu
t ] , Y ut ,E [Y ut ] , Zut ,E [Zut ] , ut

)
dt
]
,

(2.2)

where A,B,C,D,E, F,A,B,C,D,E, F and G are matrices of suitable sizes.

The solution (Xu
· , Y

u
· , Z

u
· ) takes values in Rn × Rm × Rm+d and the control variable u· is in

U := {u· ∈M2([0, T ];Rk) | ut ∈ U, a.e.t ∈ [0, T ],P− a.s.},

with U ⊆ Rk. Note that we have an additional constraint that a control must be square-integrable

just to ensure the existence of solutions of (2.1) under u·. The optimal control problem can be

stated as follows:

Problem (L): Minimize (2.2) subject to (2.1) over U .

Now we introduce the following assumptions:

(H2.1) : The set U ⊆ Rk is convex and compact, and the functions l, k and h are convex.
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2.2 Existence of optimal control

Theorem 2.2.1 Under (H2.1), if Problem (L) is finite, then it admits an optimal solution.

Proof. Let (Xn
· , Y

n
· , Z

n
· , u

n
· ) be a minimizing sequence satisfies

lim
n→∞

J (un· ) = inf
v·∈U

J (v·) .

Since U is a compact set then, the sequence (un· )n≥0 is relatively compact.

Thus, there exists a subsequence (which is still labeled by (un· )n≥0) such that

un· −→ ũ·, weakly inM2
(
[0, T ];Rk

)
.

Applying Mazur’s theorem, there exists a sequence of convex combinations defined as follows

ûn· =
∑
k≥0

βknu
k+n
· (with βkn ≥ 0, and

∑
k≥0

βkn = 1),

satisfies

ûn· → ũ· strongly inM2
(
[0, T ];Rk

)
. (2.3)

Since the set U ⊆ Rk is convex and compact, it follows that ũ· ∈ U .

Let (X̂n
· , Ŷ

n
· , Ẑ

n
· ) and (X̃·, Ỹ·, Z̃·) be the solutions of the linear MF-FBSDE (2.1), corresponding to

ûn· and ũ· respectively. Then let us prove

(X̂n
t , Ŷ

n
t ) converges strongly to (X̃t, Ỹt) in S2

(
[0, T ];Rn+m

)
, (2.4)

and ∫ T

0

Ẑns dWs converges strongly to
∫ T

0

Z̃sdWs in M2
(
[0, T ];Rm+d

)
. (2.5)
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We have

|X̂n
t − X̃t| ≤ |

∫ t

0

(
A.(X̂n

s − X̃s) +B.(E[X̂n
s ]− E[X̃s]) + C.(ûns − ũs)

)
ds|

+|
∫ t

0

(
D.(X̂n

s − X̃s) + E.(E[X̂n
s ]− E[X̃s]) + F.(ûns − ũs)

)
dWs|,

which implies that

sup
0≤s≤t

|X̂n
s − X̃s|2 ≤∫ t

0

(
‖A‖2.( sup

0≤r≤s
|X̂n

r − X̃r|2) + ‖B‖2.( sup
0≤r≤s

|E[X̂n
r ]− E[X̃r]|2) + ‖C‖2.|ûns − ũs|2

)
ds

+ sup
0≤s≤t

(
∣∣ ∫ t

0

(
D.(X̂n

s − X̃s) + E.(E[X̂n
s ]− E[X̃s]) + F.(ûns − ũs)

)
dWs

∣∣)2,

using the Burkholder-Davis-Gundy inequality, we have

E
[

sup
0≤s≤T

|X̂n
s − X̃s|)2

]
≤ K1

∫ t

0

E
[

sup
0≤r≤s

|X̂n
r − X̃r|2

]
ds+K1E

[ ∫ t

0

|ûns − ũs|2ds
]
.

If we set f(t) = E
[

sup
0≤s≤T

|X̂n
s − X̃s|2

]
, then

f(t) ≤ K1

∫ t

0

f(s)ds+K1E
[ ∫ t

0

|ûns − ũs|2ds
]
.

By applying Gronwall’s lemma, there exists a positive constant K such that :

E
[

sup
0≤s≤T

|X̂n
s − X̃s|2

]
≤ KE

[ ∫ t

0

|ûns − ũs|2ds
]
.

Since (ûn· ) converges strongly to ũ· inM2([0, T ];Rk), we get

lim
n→∞

E
[

sup
0≤s≤T

|X̂n
s − X̃s|2

]
= 0. (2.6)
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On the other hand, applying Itô’s formula to
∣∣∣Ŷ nt − Ỹt∣∣∣2, we obtain

|Ŷ nt − Ỹt|2 +

∫ T

t

‖Ẑns − Z̃s‖2ds = 2

∫ T

t

〈Ŷ ns − Ỹs, A.(X̂n
s − X̃s) +B.(E[X̂n

s ]− E[X̃s])

+C.(Ŷ ns − Ỹs) +D.(E[Ŷ ns ]− E[Ỹs]) + E.(Ẑns − Z̃s) + F .(E[Ẑns ]− E[Z̃s]) +G(ûns − ũs)〉ds

−2

∫ T

t

〈Ŷ ns − Ỹs, Ẑns − Z̃s〉dWs.

Thus

E
[

sup
t∈[0,T ]

|Ŷ nt − Ỹt|2
]

+ E
[ ∫ T

0

‖Ẑns − Z̃s‖2ds
]

≤ 2E
[ ∫ T

0

〈Ŷ ns − Ỹs, A.(X̂n
s − X̃s) +B.(E[X̂n

s ]− E[X̃s]) + C.(Ŷ ns − Ỹs)

+D.(E[Ŷ ns ]− E[Ỹs]) + E.(Ẑns − Z̃s) + F .(E[Ẑns ]− E[Z̃s]) +G.(ûns − ũs)〉ds
]
.

Applying Young’s formula, to show that

E
[

sup
t∈[0,T ]

|Ŷ nt − Ỹt|2
]

+ E
[ ∫ T

0

‖Ẑns − Z̃s‖2ds
]
≤ 1

α
E
[ ∫ T

0

|Ŷ ns − Ỹs|2ds
]

+7αKE
[ ∫ T

0

(
|X̂n

s − X̃s|2 + |Ŷ ns − Ỹs|2 + ‖Ẑns − Z̃s‖2 + |ûns − ũs|2
)
ds
]
.

Choosing α = 1
14K , we obtain

E
[

sup
t∈[0,T ]

|Ŷ nt − Ỹt|2
]

+
1

2
E
[ ∫ T

0

‖Ẑns − Z̃s‖2ds
]
≤ (14K +

1

2
)E
[ ∫ T

0

|Ŷ nt − Ỹt|2ds
]

(2.7)

+
1

2
E
[ ∫ T

0

|X̂n
s − X̃s|2ds

]
+

1

2
E
[ ∫ T

0

|ûns − ũs|2ds
]
.

From the inequality (2.7), we derive two inequalities

E
[

sup
t∈[0,T ]

|Ŷ nt − Ỹt|2
]
≤ (14K +

1

2
)E
[ ∫ T

0

|Ŷ nt − Ỹt|2ds
]

(2.8)

+
1

2
E
[ ∫ T

0

|X̂n
s − X̃s|2ds

]
+

1

2
E
[ ∫ T

0

|ûns − ũs|2ds
]
,
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and

1

2
E
[ ∫ T

0

‖Ẑns − Z̃s‖2ds
]
≤ (14K +

1

2
)E
[ ∫ T

0

|Ŷ nt − Ỹt|2ds
]

+
1

2
E
[ ∫ T

0

|X̂n
s − X̃s|2ds

]
+

1

2
E
[ ∫ T

0

|ûns − ũs|2ds
]
. (2.9)

Applying Gronwall’s lemma to (2.8) and by taking limit as n → ∞, and using (2.3) and (2.6), we

obtain (2.4). Finally, we deduced directly from (2.3), (2.4) and (2.9) that

E
[ ∫ T

0

‖Ẑns − Z̃s‖2ds
]
−→ 0, as n→∞,

which implies (2.5) by applying the isometry of Itô.

Let us prove that ũ· is an optimal control.

Let (Xn
· , Y

n
· , Z

n
· , u

n
· ) be a minimizing sequence such that

lim
n→∞

J (un· ) = lim
n→∞

E
[
l (Xn

T ,E [Xn
T ]) + k (Y n0 ,E [Y n0 ])

+
∫ T

0
h
(
t,Xn

t ,E [Xn
t ] , Y nt ,E [Y nt ] , Znt ,E [Znt ] , unt

)
dt
]

= inf
v·∈U

J (v·) .

By the continuity of l, k and h, we have

J (ũ·) = E
[
l
(
X̃T ,E[X̃T ]

)
+ k

(
Ỹ0,E[Ỹ0]

)
+
∫ T

0
h
(
t, X̃t,E[X̃t], Ỹt,E[Ỹt], Z̃t,E[Z̃t], ũt

)
dt
]

= lim
n→∞

E
[
l
(
X̂n
T ,E[X̂n

T ]
)

+ k
(
Ŷ n0 ,E[Ŷ n0 ]

)
+
∫ T

0
h
(
t, X̂n

t ,E[X̂n
t ], Ŷ nt ,E[Ŷ nt ], Ẑnt ,E[Ẑnt ], ûnt

)
dt
]
.
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Since l, k and h are convex, it follows that

J (ũ·) ≤ lim
n→∞

∑
k≥0

βknE
[
l
(
Xk+n
T ,E

[
Xk+n
T

])
+ k

(
Y k+n

0 ,E
[
Y k+n

0

])
+

∫ T

0

h
(
t,Xk+n

t ,E
[
Xk+n
t

]
, Y k+n
t ,E

[
Y k+n
t

]
, Zk+n

t ,E
[
Zk+n
t

]
, uk+n
t

)
dt
]

= lim
n→∞

∑
k≥0

βknJ
(
uk+n
·

)
,

≤ lim
n→∞

∑
k≥1

βkn Max
1≤k≤i(n)

J
(
uk+n
·

)
,

≤ lim
n→∞

Max
1≤k≤i(n)

J
(
uk+n
·

)∑
k≥1

βkn,

= lim
n→∞

J
(
u
n+i(n)
·

)
,

= inf
v·∈U

J (v·) .

2.3 Necessary and sufficient conditions of optimality for a

linear MF-FBSDE

Recall that the set U is convex, then the classical way to derive necessary optimality conditions

satisfied by the strict optimal control is to use the convex perturbation method.

Let ũ· be an optimal strict control and denote by (X̃t, Ỹt, Z̃t) the solution of (2.1) associated with

ũ·. Then, we define the following perturbation (convex perturbation)

uεt = ũt + ε (vt − ũt) ,

where, ε > 0 is sufficiently small and v· is an arbitrary element of U such that E
[
|v·|2

]
<∞.
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It is clear that the control uε· is admissible and let (Xε
t , Y

ε
t , Z

ε
t ) be the solution of (2.1) controlled

by uε.

By the optimality of ũ·, the necessary conditions for optimality will be derived from the fact that

0 ≤ lim
ε→0

1

ε
(J (uε· )− J (ũ·))

= lim
ε→0

1

ε
(J (ũ· + ε (v· − ũ·))− J (ũ·))

= 〈J ′ (ũ·) , v· − ũ·〉 .

The following assumptions will be in force throughout this section.

(H2.2) : l, k and h are continuously differentiable with respect to (x, x′) ,

(y, y′) and (x, x′, y, y′, z, z′) respectively;

(H2.3) : the derivatives of l, k and h with respect to (x, x′) , (y, y′)

and (x, x′, y, y′, z, z′) respectively, are bounded.

To establish a necessary and sufficient conditions for optimality, we use the convex optimization

principle (see Ekeland-Temam ([12], prop 2.1, page 35).

Due to convexity of the set U and the fact that J is convex in ũ·, continuous and Gâteaux-

differentiable with continuous derivative J ′, we can apply the convex optimization principle,

to get

(ũ· minimize J)⇔ 〈J ′ (ũ·) , v· − ũ·〉 ≥ 0;∀v· ∈ U . (2.10)

31



Chapter 2. Existence of an optimal strict control and optimality conditions for linear
FBSDEs of mean-field type

Now we calculate the Gâteaux derivative of J at a point ũ· and in the direction (v· − ũ·), we obtain

〈J ′ (ũ·) , v· − ũ·〉 = E
[
〈lx(X̃T ,E[X̃T ]), Xv

T − X̃T 〉
]

+ E
[
〈lx′(X̃T ,E[X̃T ]),E[Xv

T − X̃T ]〉
]

+E
[
〈ky(Ỹ0,E[Ỹ0]), Y v0 − Ỹ0〉

]
+ E

[
〈ky′(Ỹ0,E[Ỹ0]),E[Y v0 − Ỹ0]〉

]
+E

[∫ T

0

(
〈hx(t, ũt), X

v
t − X̃t〉+ E

[
〈hx′(t, ũt),E[Xv

t − X̃t]〉
])
dt

]

+E

[∫ T

0

(
〈hy(t, ũt), Y vt − Ỹt〉+ E

[
〈hy′(t, ũt),E[Y vt − Ỹt]〉

])
dt

]

+E

[∫ T

0

(
〈hz(t, ũt), Zvt − Z̃t〉+ E

[
〈hz′(t, ũt),E[Zvt − Z̃t]〉

])
dt

]

+E

[∫ T

0

〈hv(t, ũt), vt − ũt〉dt

]
.

With the notation hδ(t, ũt) := hδ(t, X̃t,E[X̃t], Ỹt,E[Ỹt], Z̃t,E[Z̃t], ũt), with δ = x, x′, y, y′, z, z′, v.

Which implies that

〈J ′ (ũ·) , v· − ũ·〉 = E
[
〈lx(X̃T ,E[X̃T ]) + E[lx′(X̃T ,E[X̃T ])], Xv

T − X̃T 〉
]

+E
[
〈ky(Ỹ0,E[Ỹ0]) + E[ky′(Ỹ0,E[Ỹ0])], Y v0 − Ỹ0〉

]
+E

[∫ T

0

〈hx(t, ũt) + E[hx′(t, ũt)], X
v
t − X̃t〉dt

]

+E

[∫ T

0

〈hy(t, ũt) + E[hy′(t, ũt)], Y
v
t − Ỹt〉dt

]

+E

[∫ T

0

〈hz(t, ũt) + E[hz′(t, ũt)], Z
v
t − Z̃t〉dt

]

+E

[∫ T

0

〈hv(t, ũt), vt − ũt〉dt

]
. (2.11)

The main result in this section is the following

Theorem 2.3.1 (Necessary and sufficient conditions for optimality). Let ũ· be an admissible control with

corresponding trajectories (X̃·, Ỹ·, Z̃·). Then ũ· is optimal if and only if, there exists a unique triple of
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Ft-adapted process (Pu· , ψ
u
· , Q

u
· ) solution of the following stochastic equations (called adjoint equations),

−dPut =
(
Hx (t, ut) + E[Hx′ (t, ut)]

)
dt− ψut dWt,

dQut =
(
HY (t, ut) + E[Hy′ (t, ut)]

)
dt+

(
Hz (t, ut) + E[Hz′ (t, ut)]

)
dWt,

PuT = lx (Xu
T ,E[Xu

T ]) + E[lx′ (X
u
T ,E[Xu

T ])],

Qu0 = ky (Y u0 ,E[Y u0 ]) + E[ky′ (Y
u
0 ,E[Y u0 ])],

(2.12)

such that

〈Hv(t, ũt), vt − ũt〉 ≥ 0, ∀vt ∈ U , a.e, as, (2.13)

where Hδ(t, ũt) := Hδ(t, X̃t,E[X̃t], Ỹt,E[Ỹt], Z̃t,E[Z̃t], ũt, P̃t, ψ̃t, Q̃t), and the Hamiltonian function is

defined by

H (t, x,E[x], y,E[y], z,E[z], v, P, ψ,Q) := 〈P,Ax+BE[x] + Cv〉

+ 〈ψ,Dx+ EE[x] + Fv〉+ h (t, x,E[x], y,E[y], z,E[z], v)

+
〈
Q,Ax+BE[x] + Cy +DE[y] + Ez + FE[z] +Gv

〉
.

Proof. The adjoint equations (2.12) can be rewritten as follows

−dPut =
(
Put A+ ψut D +QutA+ hx(t, ut) + E[Put B + ψut E +QutB + hx′(t, ut)]

)
dt

−ψut dWt,

dQut =
(
Qut C + hy(t, ut) + E[

(
QutD + hy′(t, ut)]

)
dt+

(
QutE + hz(t, ut)

+E[
(
Qut F + hz′(t, ut)]

)
dWt,

PuT = lx (Xu
T ,E[Xu

T ]) + E[lx′ (X
u
T ,E[Xu

T ])],

Qu0 = ky (Y u0 ,E[Y u0 ]) + E[ky′ (Y
u
0 ,E[Y u0 ])],
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Therefore after recalling also (2.12), the equality (2.11) becomes

〈J ′ (ũ·) , v· − ũ·〉 = E
[
〈P̃T , Xv

T − X̃T 〉
]

+ E
[
〈Q̃0, Y

v
0 − Ỹ0〉

]
+E
[ ∫ T

0

〈hx(t, ũt) + E[hx′(t, ũt)], X
v
t − X̃t〉dt

]
+ E

[ ∫ T

0

〈hy(t, ũt) + E[hy′(t, ũt)], Y
v
t − Ỹt〉dt

]
+E
[ ∫ T

0

〈hz(t, ũt) + E[hz′(t, ũt)], Z
v
t − Z̃t〉dt

]
+ E

[ ∫ T

0

〈hv(t, ũt), vt − ũt〉dt
]
. (2.14)

Applying integration by part to 〈P̃t, Xv
t − X̃t〉 and 〈Q̃t, Y vt − Ỹt〉, passing to integral on [0, T ] and

take the expectations to deduce

E
[
〈P̃T , Xv

T − X̃T 〉
]

= −E
[ ∫ T

0

〈Q̃tA+ hx(t, ũt) + E[Q̃tB + hx′(t, ũt)], X
v
t − X̃t〉dt

]
+E
[ ∫ T

0

〈P̃t, C(vt − ũt)〉dt
]

+ E
[ ∫ T

0

〈ψ̃t, F (vt − ũt)〉dt
]
, (2.15)

and

E
[
〈Q̃0, Y

v
0 − Ỹ0〉

]
= −E

[ ∫ T

0

〈hy(t, ũt) + E[hy′(t, ũt)], Y
v
t − Ỹt〉dt

]
(2.16)

+E
[ ∫ T

0

〈Q̃t, A(Xv
t − X̃t) +B(E[Xv

t ]− E[X̃t)] +G(vt − ũt)〉dt
]

−E
[ ∫ T

0

〈hz(t, ũt) + E[hz′(t, ũt)], Z
v
t − Z̃t〉dt

]
.

Combining (2.15), (2.16) and (2.14), we obtain

〈J ′(ũ·), v· − ũ·〉 = E
[ ∫ T

0

〈P̃tC + ψ̃tF + Q̃tG+ hv(t, ũt), vt − ũt)〉dt
]
.

On the other hand, let us calculate the Gâteaux derivative ofH at a point ũ in the direction (v − ũ),

we get

E
[ ∫ T

0

〈Hv(t, ũt), vt − ũt〉dt
]

= E
[ ∫ T

0

〈P̃tC + ψ̃tF + Q̃tG+ hv(t, ũt), vt − ũt)〉dt
]

= 〈J ′(ũ·), v· − ũ·〉. (2.17)
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Combines (2.17) and (2.11), we obtain

(ũ· minimize J)⇔ E
[ ∫ T

0

〈Hv(t, ũt), vt − ũt〉dt
]
≥ 0,∀v· ∈ U .

It follows that

E
[
〈Hv(t, ũt), vt − ũt〉

]
≥ 0, dt− a.e.

Now, let Θ be an arbitrary element of the σ-algebra Ft, and set

µt = vt1Θ + ũt1Ω−Θ.

It is clear that µ· is an element of U .

Applying the above inequality with v·, we show that

E
[
1Θ〈Hv(t, ũt), vt − ũt〉

]
≥ 0, ∀Θ ∈ Ft.

Which implies that

E
[
〈Hv(t, ũt), vt − ũt〉/ Ft

]
≥ 0.

Since the quantity inside the conditional expectation is Ft-measurable, so the result is proved.
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uncontrolled diffusion

I
n this chapter, we study the existence of optimal control for systems, governed by non

linear forward-backward stochastic differential equations of mean field type, we prove

the existence of optimal relaxed control for this system of MF-FBSDEs. The proof of the

first main result is based on tightness results of the distributions of the processes defining the

control problem and the Skorokhod representation theorem on the Skorokhod space, equipped

with the S-topology of Jakubowski [24] . Furthermore, when the Roxin convexity condition is

fulfilled, we prove that the optimal relaxed control is in fact strict. The second main result in this

chapter is to establish necessary as well as sufficient optimality conditions for both relaxed and

strict control problems for system of non linear MF-FBSDE.
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Chapter 3. Existence of optimal solutions and optimality conditions for optimal control
problems of MF-FBSDEs systems with uncontrolled diffusion

3.1 Statement of the problems and assumptions

3.1.1 Strict control problem

We study the existence of strict optimal controls for systems governed by the following FBSDE of

mean-field type

Xt = x+
∫ t

0
b(s,Xs,E[α (Xs)], us)ds+

∫ t
0
σ(s,Xs,E[β (Xs)])dWs

Yt = g(XT ,E[λ (XT )]) +
∫ T
t
f(s,Xs,E[γ (Xs)], Ys,E[δ (Ys)], us)ds

−
∫ T
t
ZsdWs − (NT −Nt) ,

(3.1)

and the expected cost on the time interval [0, T ] is given by

J(u·) := E
[
l (XT ,E [θ (XT )]) + k (Y0,E [ρ (Y0)])

+
∫ T

0
h
(
t,Xt,E [ϕ (Xt)] , Yt,E

[
ψ
(
Yt
)]
, ut
)
dt
]
,

(3.2)

where ut is a strict control, (Wt, t ≥ 0) is a d-dimensional Brownian motion defined on some fil-

tered probability space
(

Ω,F , (Ft)t≥0 ,P
)

and N is a square integrable martingale that is orthog-

onal to W.

Our objective is to minimize the cost function (3.2), over the set of admissible controls, which are

a Ft-measurable processes valued in a compact metric space U ⊂ Rk.

It should be noted that the probability space and the Brownian motion may change with the

control u. Therefore, we need to have another definition of the admissible control, gives as follows:

Definition 3.1.1 A 6-tuple u· =
(

Ω,F , (Ft)t≥0 ,P,W·, v·
)

is called ω-admissible strict control, and

(Xt, Yt, Zt) a ω-admissible triple if:
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i)-
(

Ω,F , (Ft)t≥0 ,P
)

is a filtered probability space satisfying the usual conditions;

ii)-Wt is an d-dimensional standard Brownian motion defined on
(

Ω,F , (Ft)t≥0 ,P
)

;

iii)-vt is an Ft-adapted process on (Ω,F ,P) taking values in the action space U ;

iv)-(Xt, Yt, Zt) is the unique solution of the MF-FBSDE (3.1) on
(

Ω,F , (Ft)t≥0 ,P
)

under vt.

The set of all ω-admissible controls is denoted by Uω.

Our stochastic optimal control problem under the weak formulation can be stated as follows:

Minimize (3.2) over Uω. We say that the ω-admissible control u∗ is ω-optimal control, if it satisfies

J (u∗· ) = inf
u·∈Uω

J (u·) . (3.3)

3.1.2 Relaxed control problem

To proof the existence of optimal solution of our strict control problem {(3.1), (3.2), (3.3)} one

typically seeks a certain compactness structure. The weak formulation enables us to find the

compactness of the image measure of some processes involved on a certain functional space.

However, because the control v is measurable only in t and there is no convenient compactness

property on the space of measurable functions, we need to embed it in a larger space with proper

compactness. The idea is then to replace the U -valued process vt with P (U)-valued process (µt),

where P (U) is the space of probability measures equipped with the topology of weak conver-

gence. These measure valued control are called relaxed control. If µt (da) = δvt (da) is a Dirac

measure charging vt for each t, then we get a strict control problem as a special case of the relaxed

one.
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We denote byV the space of positive Radon measures on [0, T ]×U , whose projections on [0, T ] co-

incide with Lebesgue measure dt. Equipped with the topology of stable convergence of measures,

V is a compact metrizable space, (see Jacod and Mémin [23]).

The system in this case, is then driven by the following MF-FBSDE

Xt = x+
∫ t

0

∫
U
b(s,Xs,E[α (Xs)], u)µs (du) ds+

∫ t
0
σ(s,Xs,E[β (Xs)])dWs

Yt = g(XT ,E[λ (XT )]) +
∫ T
t

∫
U
f(s,Xs,E[γ (Xs)], Ys,E[δ (Ys)], u)µs (du) ds

−
∫ T
t
ZsdWs − (NT −Nt) .

(3.4)

Because of the the possibility of change of the probability space and the Brownian motion, the

definition of admissible relaxed control is given by:

Definition 3.1.2 A 6-tuple q· =
(

Ω,F , (Ft)t≥0 ,P,W·, µ·
)

is called ω-admissible relaxed control, and

(Xt, Yt, Zt) a ω-admissible triple if:

i)-
(

Ω,F , (Ft)t≥0 ,P
)

is a filtered probability space satisfying the usual conditions;

ii)-Wt is an d-dimensional standard Brownian motion defined on
(

Ω,F , (Ft)t≥0 ,P
)

;

iii)-µt is Ft-progressively measurable and such that for each t, 1]0,t] · π is Ft- measurable, taking values in

V;

iv)-(Xt, Yt, Zt) is the unique solution of the MF-FBSDE (3.4) on
(

Ω,F , (Ft)t≥0 ,P
)

under µt.

The set of all admissible relaxed controls is denoted byR.

Accordingly, the cost functional to be minimized over the setR of admissible relaxed control, well

be given by:

J(µ·) := E
[
l (XT ,E [θ (XT )]) + k (Y0,E [ρ (Y0)])

+
∫ T

0
h
(
t,Xt,E [ϕ (Xt)] , Yt,E

[
ψ
(
Yt
)]
, u
)
µt (du) dt

]
.

(3.5)
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A relaxed control q∗· is called optimal if it satisfies

J (q∗· ) = inf
q·∈R

J (q) . (3.6)

3.1.3 Notation and assumptions

We now introduce the following spaces of processes:

M2([0, T ];Rm) : the set of jointly measurable, processes
{
Yt, t ∈

[
0, T

]}
with values in Rm such

that Yt is Ft-measurable for a.e. t ∈ [0, T ], and satisfy

E
[∫ T

0

|Yt|2 dt
]
<∞.

Let S2([0, T ];Rn) : the set of jointly measurable, processes
{
Xt, t ∈

[
0, T

]}
with values in Rn such

that Xt is Ft-measurable for a.e. t ∈ [0, T ], and satisfy

E
[

sup
0≤t≤T

|Xt|2
]
<∞.

C ([0, T ] ;Rn) : the space of continuous functions from [0, T ] to Rn, equipped with the topology of

uniform convergence.

D ([0, T ] ;Rm) : the Skorokhod space of càdlàg functions from [0, T ] to Rm, that is functions which

are continuous from the right with left hand limits, equipped with the S-topology of Jakubowski

(see [24], [25]).

Let us assume the following conditions
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(H3.1) Assume that the functions

b : [0, T ]× Rn × Rn × U → Rn,

σ : [0, T ]× Rn × Rn → Rn×d,

f : [0, T ]× Rn × Rn × Rm × Rm × U → Rm,

g : Rn × Rn → Rm,

α, β, λ, γ : Rn → Rn,

δ : Rm → Rm,

are bounded and continuous. Moreover, assume that there exist a constant K > 0, such that for

every (x1, x2, x
′
1, x
′
2) ∈ R4n, (y1, y2, y

′
1, y
′
2)R4m,

|f (t, x1, x2, y1, y2, u)− f (t, x′1, x
′
2, y
′
1, y
′
2, u)| ≤ K (|x1 − x′1|+ |x2 − x′2|+ |y1 − y′1|+ |y2 − y′2|) ,

|b (t, x1, x2, u)− b (t, x′1, x
′
2, u)| ≤ K (|x1 − x′1|+ |x2 − x′2|),

|σ (t, x1, x2)− σ (t, x′1, x
′
2)| ≤ K (|x1 − x′1|+ |x2 − x′2|) ,

|α (x1)− α (x′1)| ≤ K |x1 − x′1| , |β (x1)− β (x′1)| ≤ K |x1 − x′1| ,

|γ (x1)− γ (x′1)| ≤ K |x1 − x′1| , |λ (x1)− λ (x′1)| ≤ K |x1 − x′1| ,

|δ (y1)− δ (y′1)| ≤ K |y1 − y′1| , |g (x1, x2)− g (x′1, x
′
2)| ≤ K (|x1 − x′1|+ |x2 − x′2|) .
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(H3.2) Assume that the functions

h : [0, T ]× Rn × Rn × Rm × Rm × U → R,

l : Rn × Rn → Rn

k : Rm × Rm → Rm

θ, ϕ : Rn → Rn,

ρ, ψ : Rm → Rm,

are bounded and continuous and there exist a constantK > 0, such that for every (x1, x2, x
′
1, x
′
2) ∈

R4n, (y1, y2, y
′
1, y
′
2)R4m,

|h (t, x1, x2, y1, y2, u)− h (t, x′1, x
′
2, y
′
1, y
′
2, u)| ≤ K (|x1 − x′1|+ |x2 − x′2|+ |y1 − y′1|+ |y2 − y′2|) .

3.2 Existence of optimal relaxed controls

Our results in this paper extends those of [5], [6] and [7] to a systems governed by FBSDE of

mean-field type.

Theorem 3.2.1 Under conditions (H3.1)− (H3.2), the relaxed control problem {(3.4), (3.5), (3.6)} has

an optimal solution.

To prove this theorem, we need some auxiliary results on the tightness of the distributions of the

processes defining the control problem.
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Let qn· =
(

Ωn,Fn, (Fnt )t≥0 ,Pn,Wn
· , µ

n
·

)
be a minimizing sequence, that is lim

n→∞
J (qn· ) = inf

q·∈R
J (q·) .

Let (Xn, Y n, Zn) be the unique solution of the following MF-FBSDE associated with µn

Xn
t = x+

∫ t
0

∫
U
b (s,Xn

s ,E [α (Xn
s )] , u)µns (du) ds+

∫ t
0
σ (s,Xn

s ,E [β (Xn
s )]) dWn

s ,

Y nt = g (Xn
T ,E [λ (Xn

T )]) +
∫ T
t

∫
U
f (s,Xn

s ,E [γ (Xn
s )] , Y ns ,E [δ (Y ns )] , u)µns (du) ds

−
∫ T
t
Zns dW

n
s .

(3.7)

Lemma 3.2.2 Let (Xn, Y n, Zn) be the unique solution of the system (3.7). There exists a positive constant

K such that

sup
n
E

[
sup

0≤t≤T
|Xn

t |2 + sup
0≤t≤T

|Y nt |
2

+

∫ T

0

‖Znt ‖2dt

]
≤ K. (3.8)

Proof. Let us show that

sup
n
E
[

sup
0≤t≤T

|Xn
t |2
]
< +∞.

We have

E
[
|Xn

t |
2
]
≤ 3E

[
|x|2
]

+ 3E

[∣∣∣∣∫ t

0

∫
U

b (s,Xn
s ,E [α (Xn

s )] , u)µns (du) ds

∣∣∣∣2
]

+ 3E

[∣∣∣∣∫ t

0

σ (s,Xn
s ,E [β (Xn

s )]) dWn
s

∣∣∣∣2
]
.

Using isometry of Itô, Cauchy-Schwarz inequality, the boundedness of b, σ and Burkholder-Davis-

Gundy’s inequality, there exists a constant K which does not depend on n such that

sup
n
E
[

sup
0≤t≤T

|Xn
t |2
]
< K.
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On the other hand, applying Itô’s formula to |Y nt |2, we obtain

E

[
|Y nt |2 +

∫ T

t

‖Zns ‖2ds

]
= E

[
|g(Xn

T ,E [λ (Xn
T )])|2

]
+2E

[∫ T

t

∫
U

〈Y ns , f (s,Xn
s ,E [γ (Xn

s )] , Y ns ,E [δ (Y ns )] , u)〉µns (du)ds

]

≤ E
[
|g(Xn

T ,E [λ (Xn
T )])|2

]
+ E

[∫ T

t

|Y ns |2ds

]

+E

[∫ T

t

∫
U

|f (s,Xn
s ,E [γ (Xn

s )] , Y ns ,E [δ (Y ns )] , u)|2 µns (du)ds

]
.

Using the boundedness of g and f and by Gronwall’s lemma, it follows that

sup
n
E

[
sup

0≤t≤T
|Y nt |2 +

∫ T

0

‖Zns ‖2ds

]
< +∞.

Lemma 3.2.3 The sequence of distributions of (Xn,Wn, Y n,
∫ ·

0
Zns dW

n
s ) is tight on the space

∆ := C ([0, T ] ;Rn) × C
(
[0, T ] ;Rd

)
× D ([0, T ] ;Rm) × D

(
[0, T ] ;Rm×d

)
endowed with the topology

of uniform convergence for the first and second factor and endowed with the S-topology of Jakubowski

(see[24]) for the third and forth factor.

Proof. According to Kolmogorov’s theorem (see Ikeda and Watanabe [22] page 18), we need to

verify that

E
[
|Xn

t −Xn
s |

4
]
≤ K1 |t− s|2 ,

E
[
|Wn

t −Wn
s |

4
]
≤ K2 |t− s|2 ,

for some constants K1 and K2 independent from n.
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We have

E
[
|Xn

t −Xn
s |

4
]
≤ CE

[∣∣∣∣∫ t

s

∫
U

b (s,Xn
s ,E [α (Xn

s )] , u)µns (du) ds

∣∣∣∣4
]

+ CE

[∣∣∣∣∫ t

s

σ (s,Xn
s ,E [β (Xn

s )]) dWn
s

∣∣∣∣4
]
.

Using Burkholder-Davis-Gundy’s inequality to the martingale part and the boundedness of b and

σ, we obtain

E
[
|Xn

t −Xn
s |

4
]
≤ CE

[(∫ t

s

∫
U

|b (s,Xn
s ,E [α (Xn

s )] , u)|2 µns (du) ds

)2
]

+ CE
[(∫ t

s

|σ (s,Xn
s ,E [β (Xn

s )])|2 ds
)2 ]

≤ K1 |t− s|2 .

The second inequality by the same method.

Let us prove that (Y n· ,
∫ ·

0
Zns dW

n
s ) is tight on the space D ([0, T ] ;Rm)× D

(
[0, T ] ;Rm×d

)
.

Let 0 = t0 < t1 < ... < tn = T . We define the conditional variation by

CV (Y n· ) := supE

[∑
i

∣∣∣E(Y nti+1
− Y nti

)
| FW

n

ti

∣∣∣] ,
where the supremum is taken over all partitions of the interval [0, T ]. By the same method given

in [31], we get

CV (Y n· ) ≤ KE

[∫ T

0

∫
U

|f (s,Xn
s ,E [γ (Xn

s )] , Y ns ,E [δ (Y ns )] , u) |µns (du) ds

]
,

where K is a constant depending only on t. Hence combining conditions (H3.1) and Lemma

(3.2.2), we deduce that

sup
n

[
CV (Y n· ) + sup

0≤t≤T
E [|Y nt |] + sup

0≤t≤T
E

[∣∣∣∣∣
∫ T

0

Zns dW
n
s

∣∣∣∣∣
]]

< +∞.
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Thus the Meyer-Zheng tightness criteria is fulfilled (see [30]), then the sequences Y n· and

∫ ·
0
Zns dW

n
s are tight.

Lemma 3.2.4 The familly of distributions of the relaxed control (µn)n is tight in V.

Proof. Since [0, T ] × U is compact, then by applying Prokhorov’s theorem, the space V of prob-

ability measures on [0, T ] × U is then compact. Since (µn)n valued in the compact space V, then

the familly of distributions associated to (µn)n is tight.

3.2.1 Proof of theorem 3.2.1

Let (qn· )n≥0 be a minimizing sequence and (Xn, Y n, Zn) be the unique solution of the mean-field

FBSDE (3.7). Using Lemmas 3.2.3 and 3.2.4, it follows that the sequence of processes

πn :=
(
µn, Xn,Wn, Y n,

∫ ·
0
Zns dW

n
s

)
is tight on the spaceV×∆. Then by the Skorokhod representa-

tion theorem, there exists a probability space
(

Ω̃, F̃ , P̃
)

, a sequences π̃n =
(
µ̃n, X̃n, W̃n, Ỹ n,

∫ ·
0
Z̃ns dW̃

n
s

)
and π̃ =

(
µ̃, X̃, W̃ , Ỹ ,

∫ ·
0
Z̃sdW̃s

)
defined on this space and a countable subsetD of [0, T ] such that

on Dc, we have

(a1) for each n ∈ N, law(πn) ≡ law(π̃n),

(a2) there exists a subsequence (π̃nk) of (π̃n) , still denoted (π̃n) , which converges to π̃, P̃-a.s. on

the space V×∆,

(a3) (Ỹ n,
∫ ·

0
Z̃ns dW̃

n
s ) converges to the càdlàg processes (Ỹ ,

∫ ·
0
Z̃sdW̃s), dt× P̃-a.s. Also Ỹ nT → ỸT ,

P̃-a.s.

(a4) sup
0≤t≤T

∣∣∣X̃n
t − X̃t

∣∣∣→ 0, P̃-a.s.

(a5) (µ̃n) converges in the stable topology to µ̃, P̃-a.s.

47



Chapter 3. Existence of optimal solutions and optimality conditions for optimal control
problems of MF-FBSDEs systems with uncontrolled diffusion

According to property (a1), we have

X̃n
t = x+

∫ t
0

∫
U
b
(
s, X̃n

s ,E[α(X̃n
s )], u

)
µ̃ns (du) ds+

∫ t
0
σ
(
s, X̃n

s ,E[β(X̃n
s )]
)
dW̃n

s ,

Ỹ nt = g
(
X̃n
T ,E[λ(X̃n

T )]
)

+
∫ T
t

∫
U
f
(
s, X̃n

s ,E[γ(X̃n
s )], Ỹ ns ,E[δ(Ỹ ns )], u

)
µ̃ns (du) ds

−
(
Ñn
T − Ñn

t

)
,

(3.9)

where Ñn
t =

∫ t
0
Z̃ns dW̃

n
s .

Using properties (a2), (a3), (a4), (a5) , under (H3.1) and passing to the limit in the MF-FBSDE

(3.9), one can show that there exists a countable set D ⊂ [0, T ) such that

X̃t = x+
∫ t

0

∫
U
b
(
s, X̃s,E[α(X̃s)], u

)
µ̃s (du) ds+

∫ t
0
σ
(
s, X̃s,E[β(X̃s)]

)
dW̃s, t > 0

Ỹt = g
(
X̃T ,E[λ(X̃T )]

)
+
∫ T
t

∫
U
f
(
s, X̃s,E[γ(X̃s)], Ỹs,E[δ(Ỹs)], u

)
µ̃s (du) ds

−
(
ÑT − Ñt

)
, t ∈ [0, T ]�D.

Since Ỹ and Ñ are càdlàg, then one can get for every t ∈ [0, T ]

Ỹt = g
(
X̃T ,E[λ(X̃T )]

)
+

∫ T

t

∫
U

f
(
s, X̃s,E[γ(X̃s)], Ỹs,E[δ(Ỹs)], u

)
µ̃s (du) ds

−
(
ÑT − Ñt

)
.

Now, let F̃s = F X̃,Ỹ ,µ̃s , the minimal admissible and complete filtration generated by

(X̃r, Ỹr, µ̃r, r ≤ s). One can show easely that Ñ is a F̃s-martingale. Therefore by the martingale

decomposition theorem, there exist a process Z̃ ∈M2([0, T ] ;Rm×d) such that

Ñt =

∫ t

0

Z̃sdW̃s + M̃t, and
〈
M̃, W̃

〉
t

= 0,

which implies that

Ỹt = g
(
X̃T ,E[λ(X̃T )]

)
+

∫ T

t

∫
U

f
(
s, X̃s,E[γ(X̃s)], Ỹs,E[δ(Ỹs)], u

)
µ̃s (du) ds

−
∫ T

t

Z̃sdW̃s −
(
M̃T − M̃t

)
,
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To finish the proof of our result (Theorem 3.2.1), it remains to proof that µ̃ is an optimal relaxed

control (which minimize the cost functional J over the setR of admissible relaxed control).

Using properties (a1)-(a5), we get

inf
q·∈R

J (q·) = lim
n→∞

J (qn· ) = lim
n→∞

J (q̃n· ) ,

= lim
n→∞

E [l (Xn
T ,E[θ(Xn

T )]) + k (Y n0 ,E[ρ(Y n0 )])

+

∫ T

0

∫
U

h (t,Xn
t ,E[ϕ(Xn

t )], Y nt ,E[ψ(Y nt )], u)µnt (du) dt

]

= lim
n→∞

E
[
l
(
X̃n
T ,E[θ(X̃n

T )]
)

+ k
(
Ỹ n0 ,E[ρ(Ỹ n0 )]

)
+

∫ T

0

∫
U

h
(
t, X̃n

t ,E[ϕ(X̃n
t )], Ỹ nt ,E[ψ(Ỹ nt )], u

)
µ̃nt (du) dt

]

= E
[
l
(
X̃T ,E[θ(X̃T )]

)
+ k

(
Ỹ0,E[ρ(Ỹ0)]

)
+

∫ T

0

∫
U

h
(
t, X̃t,E[ϕ(X̃t)], Ỹt,E[ψ(Ỹt)], u

)
µ̃t (du) dt

]

= J (q̃·) ,

then theorem (3.2.1) is proved.

3.3 Existence of optimal strict control

To prove existence of optimal solution to the strict control problem {(3.1), (3.2), (3.3)}, we need

the Roxin’s condition (see Yong and Zhou, [35] p. 69), given by

(H3.3) : (Roxin-type convexity condition): The set

(b, f, h) (t, x, x′, y, y′, U) := {bi (t, x, x′, u) , fj (t, x, x′, y, y′, u)

, h (t, x, x′, y, y′, u)�u ∈ U, i = 1, · · · , n, j = 1, · · · ,m},
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is convex and closed in Rn+m+1.

Proposition 3.3.1 Assume that (H3.1)-(H3.2) and (H3.3) hold. Then, the optimal relaxed control µ̃t

has the form of a Dirac measure charging a strict control ũt, (i.e, µ̃t (du) = δũt (du)).

Proof. We put

∫
U

b
(
t, X̃t,E[α(X̃t)], u

)
µ̃t (du) := b̃ (t, w) ∈ b (t, x, x′, U) ,∫

U

f
(
t, X̃t,E[γ(X̃t)], Ỹt,E[δ(Ỹt)], u

)
µ̃t (du) := f̃ (t, w) ∈ f (t, x, x′, y, y′, U) ,∫

U

h
(
t, X̃t,E[ϕ(X̃t)], Ỹt,E[ψ(Ỹt)], u

)
µ̃t (du) := h̃ (t, w) ∈ h (t, x, x′, y, y′, U) .

Under (H3.3) and the measurable selection theorem (see Li-Yong [29] p. 102, Corollary 2.26),

there is a U -valued, F X̃,Ỹ ,µ̃-adapted process ṽ, such that for every t ∈ [0, T ] \ D and w ∈ Ω̃,

(
f̃ , h̃

)
(t, w) = (f, h)

(
t, X̃ (t, w) , X̃ ′ (t, w) , Ỹ (t, w) , Ỹ ′ (t, w) , ṽ (t, w)

)
,

b̃ (t, w) = b
(
t, X̃ (t, w) , X̃ ′ (t, w) , ṽ (t, w)

)
.

Hence, for every t ∈ [0, T ] \ D and w ∈ Ω̃, we have

∫
U

b
(
t, X̃t,E[α(X̃t)], u

)
µ̃t (du) = b

(
t, X̃t,E[α(X̃t)], ṽt

)
,∫

U

f
(
t, X̃t,E[γ(X̃t)], Ỹt,E[δ(Ỹt)], u

)
µ̃t (du) = f

(
t, X̃t,E[γ(X̃t)], Ỹt,E[δ(Ỹt)], ṽt

)
,∫

U

h
(
t, X̃t,E[ϕ(X̃t)], Ỹt,E[ψ(Ỹt)], u

)
µ̃t (du) = h

(
t, X̃t,E[ϕ(X̃t)], Ỹt,E[ψ(Ỹt)], ṽt

)
.

Since X̃ is continuous and (Ỹ·,
∫ ·

0
Z̃tdW̃t) is cadlàg, then the process (X̃t, Ỹt, Z̃t) satisfies for each

t ∈ [0, T ], the following system of MF-FBSDE

X̃t = x+
∫ t

0
b
(
s, X̃s,E[α(X̃s)], ṽs

)
ds+

∫ t
0
σ
(
s, X̃s,E[β(X̃s)]

)
dW̃s

Ỹt = g
(
X̃T ,E[λ(X̃T )]

)
+
∫ T
t
f
(
s, X̃s,E[γ(X̃s)], Ỹs,E[δ(Ỹs)], ṽs

)
ds

−
∫ T
t
Z̃sdW̃s −

(
M̃T − M̃t

)
.
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Moreover,

J(q̃) = E

[
l
(
X̃T ,E[θ(X̃T )]

)
+ k

(
Ỹ0,E[ρ(Ỹ0)]

)
+

∫ T

0

∫
U

h
(
t, X̃t,E[ϕ(X̃t)], Ỹt,E[ψ(Ỹt)], u

)
µ̃t (du) dt

]

= E

[
l
(
X̃T ,E[θ(X̃T )]

)
+ k

(
Ỹ0,E[ρ(Ỹ0)]

)
+

∫ T

0

h
(
t, X̃t,E[ϕ(X̃t)], Ỹt,E[ψ(Ỹt)], ṽt

)
dt

]

= J(ũ),

where ũ =

(
Ω̃, F̃ ,

(
F̃t
)
t≥0

, P̃, W̃ , ṽ

)
. Which ends the proof.

3.4 Necessary and sufficient optimality conditions for re-

laxed and strict control problems

In this section, we establish necessary as well as sufficient optimality conditions for both relaxed

and strict control problems.

3.4.1 Necessary and sufficient optimality conditions for relaxed control

We start by establish necessary and sufficient optimality conditions for existence of optimal re-

laxed control. To simplify the calculations, let α = λ = β = γ = θ = ϕ = 1Rn , δ = ρ = ψ = 1Rm

and the system (3.4) becomes

Xµ
t = x+

∫ t
0

∫
U
b(s,Xµ

s ,E[Xµ
s ], u)µs (du) ds+

∫ t
0
σ(s,Xµ

s ,E[Xµ
s ])dWs

Y µt = g(Xµ
T ,E[Xµ

T ]) +
∫ T
t

∫
U
f(s,Xµ

s ,E[Xµ
s ], Y µs ,E[Y µs ], u)µs (du) ds

−
∫ T
t
Zµs dWs,

(3.10)
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and the functional cost to be minimize over the set of relaxed controlsR is given by

J(µ·) := E
[
l (Xµ

T ,E [Xµ
T ]) + k (Y µ0 ,E [Y µ0 ])

+
∫ T

0

∫
U
h
(
t,Xµ

t ,E [Xµ
t ] , Y µt ,E [Y µt ] , u

)
µt (du) dt

]
.

(3.11)

We say that a relaxed control q· is an optimal control if

J(q·) = inf
µ·∈R

J(µ·). (3.12)

Recall that the set of relaxed controls is convex, then to establish necessary optimality condition

we use the convex perturbation method. Let q· be an optimal relaxed control with associated tra-

jectories (Xq
t , Y

q
t , Z

q
t ) solution of the MF-FBSDEs (3.10). Then, we can define a perturbed relaxed

control by

qεt = qt + ε(µt − qt),

where ε > 0 is sufficiently small and µ· is an arbitrary element of R. Denote by (Xε
t , Y

ε
t , Z

ε
t ) the

solution of (3.10) corresponding to qε· .

We shall consider in this section the following assumptions.

• (H3.4) (Regularity conditions)

(i) the mappings b, g, σ, l are bounded and continuously differentiable with respect to (x, x′),

and the functions f, h and k are continuously differentiable with respect to (x, x′, y, y′)

and (y, y′), respectively,

(ii) the derivatives of b, g, σ, f with respect to the above arguments are continuous and bounded,

(iii) the derivatives of h are bounded by C(1 + |x|+ |x′|+ |y|+ |y′|),

(iv) the derivatives of l and k are bounded by C (1 + |x|+ |x′|) and C (1 + |y|+ |y′|) respectively,

for some positive constant C.
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3.4.1.1 Estimates

Using the optimality of q·, the variational inequality will be derived from the following inequality

0 ≤ J(qε)− J(q).

For this end, we need some results.

Proposition 3.4.1 Under assumptions (H3.1)− (H3.2) , we have

lim
ε→0

(
sup

0≤t≤T
E
[
|Xε

t −X
q
t |2
])

= 0, (3.13)

lim
ε→0

(
sup

0≤t≤T
E
[
|Y εt − Y

q
t |2
])

= 0, (3.14)

lim
ε→0

E

[∫ T

0

‖Zεt − Z
q
t ‖2dt

]
= 0. (3.15)

Proof. We calculate (Xε
t −X

q
t ),

Xε
t −X

q
t =

∫ t

0

[∫
U

b (s,Xε
s ,E [Xε

s ] , u) qεs(du) −
∫
U

b (s,Xq
s ,E [Xq

s ] , u) qs(du)

]
ds

+

∫ t

0

[
σ (s,Xε

s ,E [Xε
s ])− σ (s,Xq

s ,E [Xq
s ])
]
ds.

Using the definition of qεt and taking expectation to get

E
[
|Xε

t −X
q
t |2
]
≤ CE

[ ∫ t

0

∣∣∣∣∫
U

b (s,Xε
s ,E [Xε

s ] , u) qs(du) −
∫
U

b (s,Xq
s ,E [Xq

s ] , u) qs(du)

∣∣∣∣2 ds]
+Cε2E

[ ∫ t

0

∣∣∣∣∫
U

b (s,Xε
s ,E [Xε

s ] , u)µs(du) −
∫
U

b (s,Xε
s ,E [Xε

s ] , u) qs(du)

∣∣∣∣2 ds]
+CE

[ ∫ t

0

|σ (s,Xε
s ,E [Xε

s ])− σ (s,Xq
s ,E [Xq

s ])|2 ds
]
.

Using the fact that b and σ are uniformly Lipschitz with respect to x, x′, to obtain

E
[
|Xε

t −X
q
t |2
]
≤ CE

[ ∫ t

0

|Xε
t −X

q
t |2ds

]
+ Cε2.
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Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality, we can show (3.13).

On the other hand, applying Itô’s formula to (Y εt − Y
q
t )2 and taking expectation to get

E
[
|Y εt − Y

q
t |2
]

+ E

[∫ T

t

‖Zεs − Zqs‖2ds

]
= E

[
|g(Xε

T ,E[Xε
T ])− g(Xq

T ,E[Xq
T ])|2

]
+2E

[ ∫ T

t

〈Y εs − Y qs ,
∫
U

f (s,Xε
s ,E [Xε

s ] , Y εs ,E [Y εs ] , u) qεs(du)

−
∫
U

f (s,Xq
s ,E [Xq

s ] , Y qs ,E [Y qs ] , u) qs(du)〉ds
]
.

Thus

E
[
|Y εt − Y

q
t |2
]

+ E

[∫ T

t

‖Zεs − Zqs‖2ds

]
≤ E

[
|g(Xε

T ,E[Xε
T ])− g(Xq

T ,E[Xq
T ])|2

]
+E

[∫ s

0

|Y εt − Y qs |2ds
]

+ E
[ ∫ T

t

∣∣∣∣∫
U

f (s,Xε
s ,E [Xε

s ] , Y εs ,E [Y εs ] , u) qεs(du)

−
∫
U

f (s,Xq
s ,E [Xq

s ] , Y qs ,E [Y qs ] , u) qs(du)

∣∣∣∣2 ds].
Using the definition of qεt , we obtain

E
[
|Y εt − Y

q
t |2
]

+ E

[∫ T

t

‖Zεs − Zqs‖2ds

]
≤ E

[
|g(Xε

T ,E[Xε
T ])− g(Xq

T ,E[Xq
T ])|2

]
+E

[∫ t

0

|Y εs − Y qs |2ds
]

+ Cε2E
[ ∫ T

t

∣∣∣∣∫
U

f (s,Xε
s ,E [Xε

s ] , Y εs ,E [Y εs ] , u)µs(du)

−
∫
U

f (s,Xε
s ,E [Xε

s ] , Y εs ,E [Y εs ] , u) qs(du)

∣∣∣∣2 ds]
+CE

[ ∫ T

t

∣∣∣∣∫
U

f (s,Xε
s ,E [Xε

s ] , Y εs ,E [Y εs ] , u) qs(du)

−
∫
U

f (s,Xq
s ,E [Xq

s ] , Y qs ,E [Y qs ] , u) qs(du)

∣∣∣∣2 ds].
Since f and g are uniformly Lipschitz with respect to their arguments, we have

E
[
|Y εt − Y

q
t |2
]

+ E

[∫ T

t

‖Zεs − Zqs‖2ds

]
≤ KE

[∫ t

0

|Y εs − Y qs |2ds
]

+ Πε
t , (3.16)

where

Πε
t = 2CE

[
|Xε

T −X
q
T |

2
]

+ 2CE
[ ∫ t

0

|Xε
s −Xq

s |2ds
]

+ Cε2.
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From (3.12) we can show that

lim
ε→0

Πε
t = 0. (3.17)

We derive from the inequality (3.16), two inequalities

E
[
|Y εt − Y

q
t |2
]
≤ KE

[∫ t

0

|Y εs − Y qs |2ds
]

+ Πε
t , (3.18)

and

E

[∫ T

t

‖Zεs − Zqs‖2ds

]
≤ KE

[∫ t

0

|Y εs − Y qs |2ds
]

+ Πε
t . (3.19)

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality in (3.17) and using (3.13)

and (3.17) to get (3.14). Finally (3.15) derived from (3.19), (3.14) and (3.17).

Proposition 3.4.2 Let
(
X̂t, Ŷt, Ẑt

)
, be the solution of the following variational equations

of MF-FBSDE (3.10)

dX̂t =
∫
U
bx (t,Xq

t ,E [Xq
t ] , u) qt(du)X̂tdt+ E

[∫
U
bx′ (t,X

q
t ,E [Xq

t ] , u) qt(du)E[X̂t]
]
dt

+
(
σx (t,Xq

t ,E [Xq
t ] , u) X̂t + E

[
σx′ (t,X

q
t ,E [Xq

t ] , u)E[X̂t]
])
dWt

+
(∫
U
b (t,Xq

t ,E [Xq
t ] , u) qt(du)−

∫
U
b (t,Xq

t ,E [Xq
t ] , u)µt(du)

)
dt

dŶt = −(
∫
U
fx(t, ηqt , u)qt(du)X̂t + E

[∫
U
fx′(t, η

q
t , u)qt(du)E[X̂t]

]
+
∫
U
fy(t, η

q
t , u)qt(du)Ŷt + E

[∫
U
fy′(t, η

q
t , u)qt(du)E[Ŷt]

]
)dt

−(
∫
U
f (t,Xq

t ,E [Xq
t ] , Y qt ,E [Y qt ] , u) qt(du)−

∫
U
f (t,Xq

t ,E [Xq
t ] , Y qt ,E [Y qt ] , u)µt(du))dt

+ẐtdWt,

X̂0 = 0, ŶT = gx (Xq
T ,E[Xq

T ]) X̂T + E
[
gx′ (X

q
T ,E[Xq

T ])E[X̂T ]
]
,

(3.20)
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where (t, ηqt , u) := (t,Xq
t ,E [Xq

t ] , Y qt ,E [Y qt ] , u). We have the following estimates

lim
ε→0

E

[∣∣∣∣1ε (Xε
t −X

q
t )− X̂t

∣∣∣∣2
]

= 0, (3.21)

lim
ε→0

E

[∣∣∣∣1ε (Y εt − Y
q
t )− Ŷt

∣∣∣∣2
]

= 0, (3.22)

lim
ε→0

E

[∣∣∣∣1ε (Zεt − Z
q
t )− Ẑt

∣∣∣∣2
]

= 0. (3.23)

Proof. For simplicity, denote by

X εt =
1

ε
(Xε

t −X
q
t )− X̂t,Yεt =

1

ε
(Y εt − Y

q
t )− Ŷt,Zεt =

1

ε
(Zεt − Z

q
t )− Ẑt. (3.24)

i) Let us prove (3.21). From (3.10), (3.20) and notations (3.24), we have

X εt =
1

ε

∫ t

0

[∫
U

b (s,Xε
s ,E [Xε

s ] , u) qεs(du)−
∫
U

b (s,Xq
s ,E [Xq

s ] , u) qεs(du)

]
ds

+
1

ε

∫ t

0

[∫
U

b (s,Xq
s ,E [Xq

s ] , u) qεs(du)−
∫
U

b (s,Xq
s ,E [Xq

s ] , u) qs(du)

]
ds

+
1

ε

∫ t

0

[σ (s,Xε
s ,E [Xε

s ])− σ (s,Xq
s ,E [Xq

s ])] dWs

−
∫ t

0

∫
U

bx (s,Xq
s ,E [Xq

s ] , u) qs(du)X̂sds−
∫ t

0

E
[∫

U

bx′ (s,X
q
s ,E [Xq

s ] , u) qs(du)E[X̂s]

]
ds

−
∫ t

0

(
σx (s,Xq

s ,E [Xq
s ]) X̂s + E

[
σx′ (s,X

q
s ,E [Xq

s ])E[X̂s]
])
dWs

−
∫ t

0

(∫
U

b (s,Xq
s ,E [Xq

s ] , u) qs(du)−
∫
U

b (s,Xq
s ,E [Xq

s ] , u)µs(du)

)
ds.

Using the definition of qεs and taking expectation, we obtain

E
[
|X εt |2

]
≤ CE

[∫ t

0

∫ 1

0

∫
U

|bx (s,Λεs, u)X εt |2qs(du)dλds

]
+CE

[∫ t

0

∫ 1

0

∫
U

|E [bx′ (s,Λ
ε
s, u)E[X εt ]] |2qs(du)dλds

]
+CE

[∫ t

0

∫ 1

0

|σx (s,Λεs)X εt |2dλds
]

+CE
[∫ t

0

∫ 1

0

|E [σx′ (s,Λ
ε
s)E[X εt ]] |2dλds

]
+ CE

[
|Φεt |2

]
,
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where (t,Λεs, u) :=
(
t,Xq

s + λε(X εs + X̂s),E[Xq
s + λε(X εs + X̂s)], u

)
, and

Φεt =

∫ t

0

∫ 1

0

∫
U

bx (s,Λεs, u) (Xε
s −Xq

s )µs(du)dλds

+

∫ t

0

∫ 1

0

∫
U

E [bx′ (s,Λ
ε
s, u)E[Xε

s −Xq
s ]]µs(du)dλds

+

∫ t

0

∫ 1

0

(σx (s,Λεs) (Xε
t −Xq

s ) + E [σx′ (s,Λ
ε
s)E[Xε

s −Xq
s ]]) dλdWs

+

∫ t

0

∫ 1

0

∫
U

(
bx (s,Λεs, u) X̂s + E

[
bx′ (s,Λ

ε
s, u)E[X̂s]

])
qs(du)dλds

+

∫ t

0

∫ 1

0

(
σx (s,Λεs) X̂t + E

[
σx′ (s,Λ

ε
s)E[X̂s]

])
dλdWs

−
∫ t

0

∫
U

bx (s,Xq
s ,E[Xq

s ], u) X̂sqs(du)ds

−
∫ t

0

∫
U

E
[
bx′ (s,X

q
s ,E[Xq

s ], u)E[X̂s]
]
qs(du)ds

−
∫ t

0

∫
U

(
σx (s,Xq

s ,E[Xq
s ]) X̂s + E

[
σx′ (s,X

q
s ,E[Xq

s ])E[X̂s]
])
dWs,

using the fact that bx, bx′ , σx, σx′ are continuous and bounded to get

E
[
|X εt |2

]
≤ CE

[∫ t

0

|X εs |2ds
]

+ CE
[
|Φεt |2

]
, (3.25)

and

lim
ε→0

E
[
|Φεt |2

]
= 0. (3.26)

By using (3.26), Granwall’s lemma and Burkholder-Davis-Gundy inequality in (3.25), one can

show (3.21).

ii) Let us prove (3.22) and (3.23). We put

(t,∆ε
s, u) :=

(
t,Xq

s +λε(X εs + X̂s),E[Xq
s +λε(X εs + X̂s)], Y

q
s +λε(Yεs + Ŷs),E[Y qs +λε(Yεs + Ŷs)], u

)
.
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From (3.20) and (3.24) we have

dYεt = −
∫ 1

0

( ∫
U
fy (t,∆ε

t , u) qt(du)Yεt + E
[∫
U
fy′ (t,∆

ε
t , u) qt(du)E[Yεt ]

]
+ Ψε

t

)
dλdt+ Zεt dWt

YεT = 1
ε (g (Xε

T ,E[Xε
T ])− g (Xq

T ,E[Xq
T ]))−

(
gx′ (X

q
T ,E[Xq

T ]) X̂T + E
[
gx′ (X

q
T ,E[Xq

T ])E[X̂T ]
])
,

(3.27)

where

Ψε
t =

∫
U

fx (t,∆ε
t , u) qt(du)X εt + E

[∫
U

fx′ (t,∆
ε
t , u) qt(du)E[X εt ]

]
+

∫
U

fx (t,∆ε
t , u)µt(du) (Xε

t −X
q
t ) + E

[∫
U

fx′ (t,∆
ε
t , u)µt(du)E[(Xε

t −X
q
t )]

]
+

∫
U

fy (t,∆ε
t , u)µt(du) (Y εt − Y

q
t ) + E

[∫
U

fy′ (t,∆
ε
t , u)µt(du)E[(Y εt − Y

q
t )]

]
−
( ∫

U

fx (t,∆ε
t , u) qt(du) (Xε

t −X
q
t ) + E

[∫
U

fx′ (t,∆
ε
t , u) qt(du)E[(Xε

t −X
q
t )]

]
−
∫
U

fy (t,∆ε
t , u) qt(du) (Y εt − Y

q
t ) + E

[∫
U

fy′ (t,∆
ε
t , u) qt(du)E[(Y εt − Y

q
t )]

] )
.

Using the fact that the derivatives fx, fx′ , fy, fy′ are continuous and bounded and from (3.13),(3.14)

and (3.21), we show

lim
ε→0

E
[
|Ψε
t |2
]

= 0. (3.28)

Applying Itô’s formula to |Yεt |2 we obtain

E
[
|Yεt |2

]
+ E

[∫ T

t

‖Zεs‖2ds

]
= E

[
|YεT |2

]
+ 2E

[∫ T

t

∫ 1

0

〈Yεs ,
∫
U

fy (s,∆ε
s, u) qs(du)Yεs

+E
[∫

U

fy′ (s,∆
ε
s, u) qs(du)E[Yεs ]

]
+ Ψε

s〉dλds
]
.
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Hence,

E
[
|Yεt |2

]
+ E

[∫ T

t

‖Zεs‖2ds

]
≤ E

[
|YεT |2

]
+ E

[∫ T

t

|Yεs |2ds

]

+3E

[∫ T

t

∫ 1

0

(∣∣∣∣∫
U

fy (s,∆ε
s, u) qs(du)Yεs

∣∣∣∣2
+

∣∣∣∣E [∫
U

fy (s,∆ε
s, u) qs(du)E[Yεs ]

]∣∣∣∣2 + |Ψε
s|

2

)
dλds

]
.

Since fy, fy′ are bounded we get

E
[
|Yεt |2

]
+ E

[∫ T

t

‖Zεs‖2ds

]
≤ CE

[∫ T

t

|Yεs |2ds

]
+

(
E
[
|YεT |2

]
+ CE

[∫ T

t

∫ 1

0

|Ψε
s|

2
dλds

])
.

We derive from this inequality two inequalities

E
[
|Yεt |2

]
≤ CE

[∫ T

t

|Yεs |2ds

]
+

(
E
[
|YεT |2

]
+ CE

[∫ T

t

∫ 1

0

|Ψε
s|

2
dλds

])
. (3.29)

E

[∫ T

t

‖Zεs‖2ds

]
≤ CE

[∫ T

t

|Yεs |2ds

]
+

(
E
[
|YεT |2

]
+ CE

[∫ T

t

∫ 1

0

|Ψε
s|

2
dλds

])
. (3.30)

On the other hand we have

E
[
|YεT |2

]
= E

[∣∣∣∣1ε (g (Xε
T ,E[Xε

T ])− g (Xq
T ,E[Xq

T ]))

−
(
gx′ (X

q
T ,E[Xq

T ]) X̂T + E
[
gx′ (X

q
T ,E[Xq

T ])E[X̂T ]
])∣∣∣2]

≤ 2E
[∫ 1

0

∣∣∣(gx (ΛεT )− gx (Xq
T ,E[Xq

T ])) X̂T

∣∣∣2 dλ]
+2E

[∫ 1

0

∣∣∣E [(gx′ (ΛεT )− gx′ (Xq
T ,E[Xq

T ]))E
[
X̂T

]]∣∣∣2 dλ]
+2E

[∫ 1

0

|gx (ΛεT )X εT + E [gx′ (Λ
ε
T )E [X εT ]]|2 dλ

]
.

Since gx, g′x are continuous and bounded, using (3.21) to get

lim
ε→0

E
[
|Yεt |2

]
= 0. (3.31)
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Now, applying Gronwall’s lemma, Burkholder-Davis-Gundy inequality and using (3.28) and

(3.31) to obtain (3.22) and from (3.22), (3.28) and (3.31) we get (3.23).

Proposition 3.4.3 (Variational inequality) Let (H3.1) hold. Let q· be an optimal relaxed control with

associated trajectories (Xq·
t , Y

q·
t , Z

q·
t ). Then, for any element µ· ofR, we have

0 ≤ E
[
lx(Xq

T ,E[Xq
T ])X̂T

]
+ E

[
lx′(X

q
T ,E [Xq

T ])E[X̂T ]
]

+E
[
ky(Y

q
0 ,E[Y q0 ])Ŷ0

]
+ E

[
ky′(Y

q
0 ,E[Y q0 ])E[Ŷ0]

]
+E

[ ∫ T

0

∫
U

(
hx(t,∆q

t , u)X̂t + E
[
hx′(t,∆

q
t , u)E[X̂t]

]
+hy(t,∆

q
t , u)Ŷt + E

[
hy′(t,∆

q
t , u)E[Ŷt]

] )
qt(da)dt

]
+E

[ ∫ T

0

( ∫
U

h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)µt(du)

−
∫
U

h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)qt(da)
)
dt
]
. (3.32)

Proof. From the optimality of q· we have

0 ≤ E [l(Xε
T ,E[Xε

T ])− l(Xq
T ,E[Xq

T ])] + E [k(Y ε0 ,E[Y ε0 ])− k(Y q0 ,E[Y q0 ])]

+E
[ ∫ T

0

( ∫
U

h(t,Xε
t ,E[Xε

t ], Y εt ,E[Y εt ], u)qεt (du)−
∫
U

h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)qt(da)
)
dt
]
.

Using the definition of qεt we get

0 ≤ E [l(Xε
T ,E[Xε

T ])− l(Xq
T ,E[Xq

T ])] + E [k(Y ε0 ,E[Y ε0 ])− k(Y q0 ,E[Y q0 ])]

+εE
[ ∫ T

0

( ∫
U

h(t,Xε
t ,E[Xε

t ], Y εt ,E[Y εt ], u)µt(du)−
∫
U

h(t,Xε
t ,E[Xε

t ], Y εt ,E[Y εt ], u)qt(da)
)
dt
]

+E
[ ∫ T

0

∫
U

(
h(t,Xε

t ,E[Xε
t ], Y εt ,E[Y εt ], u)− h(t,Xq

t ,E[Xq
t ], Y qt ,E[Y qt ], u)

)
qt(da)dt

]
.
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Thus

0 ≤ E
[∫ 1

0

(
lx(ΛεT )X̂T + E

[
lx′(Λ

ε
T )E[X̂T ]

])
dλ

]
+ E

[∫ 1

0

(
ky(Λ

ε
0)Ŷ0 + E

[
ky′(Λ

ε
0)E[Ŷ0]

])]
+E

[ ∫ T

0

∫ 1

0

∫
U

(
hx(t,∆ε

t , u)X̂t + E
[
hx′(t,∆

ε
t , u)E[X̂t]

]
(3.33)

+hy(t,∆
ε
t , u)Ŷt + E

[
hy′(t,∆

ε
t , u)E[Ŷt]

] )
qt(da)dλdt

]
+E

[ ∫ T

0

( ∫
U

h(t,Xε
t ,E[Xε

t ], Y εt ,E[Y εt ], u)− h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)
)
qt(da)dt

]
+ Ξεt ,

where Ξεt is given by

Ξεt = E
[∫ 1

0

(lx(ΛεT )X εT + E [lx′(Λ
ε
T )E[X εT ]]) dλ

]
+ E

[∫ 1

0

(ky(Λ
ε
0)Yε0 + E [ky′(Λ

ε
0)E[Yε0 ]]) dλ

]
+E

[ ∫ T

0

∫ 1

0

∫
U

(
hx(t,∆ε

t , u)(Xε
t −X

q
t ) + E [hx′(t,∆

ε
t , u)E[(Xε

t −X
q
t )]]

+hy(t,∆
ε
t , u)(Y εt − Y

q
t ) + E [hy′(t,∆

ε
t , u)E[(Y εt − Y

q
t )]]

)
µt(da)dλdt

]
−E

[ ∫ T

0

∫ 1

0

∫
U

(
hx(t,∆ε

t , u)(Xε
t −X

q
t ) + E [hx′(t,∆

ε
t , u)E[(Xε

t −X
q
t )]]

+hy(t,∆
ε
t , u)(Y εt − Y

q
t ) + E [hy′(t,∆

ε
t , u)E[(Y εt − Y

q
t )]]

)
qt(da)dλdt

]
+E

[ ∫ T

0

∫ 1

0

∫
U

(
hx(t,∆ε

t , u)X εt + E [hx′(t,∆
ε
t , u)E[X εt ]] + hy(t,∆

ε
t , u)Yεt

+E [hy′(t,∆
ε
t , u)E[Yεt ]]

)
qt(da)dλdt

]
.

Since the derivatives lx, lx′ , ky, ky′ , hx, hx′ , hy, hy′ are continuous and bounded, then by using

(3.13), (3.14), (3.21), (3.22) and the Cauchy-Schwartz inequality we show that

lim
ε→0

E
[
|Ξεt |2

]
= 0.

Then let ε go to 0 in (3.33), we get the variational inequality.
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3.4.1.2 Necessary optimality conditions for relaxed control

Let us introduce the adjoint equations of the MF-FBSDE (3.10) and then gives the maximum prin-

ciple.

Define the Hamiltonian H from [0, T ]× Rn × Rn × Rm × Rm × U × Rn × Rn×d × Rm to R by

H(t, x,E[x], y,E[y], µ, P,K,Q) := −P
∫
U

b(t, x,E[x], u)µ(du) + Kσ(t, x,E[x])

+Q

∫
U

f(t, x,E[x], y,E[y], u)µ(du) +

∫
U

h(t, x,E[x], y,E[y], u)µ(du). (3.34)

Theorem 3.4.4 (Necessary optimality conditions for relaxed control) Assume that (H3.1)-(H3.4) hold.

Let q· ∈ R an optimal relaxed control. Let (Xq, Y q, Zq) be the associated solution of MF-FBSDE (3.10).

Then there exists a unique solution (P q,Kq, Qq) of the following adjoint equations of MF-FBSDE (3.10):

dP qt = −
(
Hx(t, φqt ) + E

[
Hx′(t, φ

q
t )
])
dt+Kq

t dWt,

dQqt =
(
Hy(t, φ

q
t ) + E

[
Hy′(t, φ

q
t )
])
dt+

(
Hz(t, φ

q
t ) + E

[
Hz′(t, φ

q
t )
])
dWt,

Qq0 = ky(Y
q
0 ,E[Y q0 ]) + E

[
ky′(Y

q
0 ,E[Y q0 ])

]
,

P qT = lx(Xq
T ,E[Xq

T ]) + E
[
lx′(X

q
T ,E[Xq

T ])
]

+ gx(Xq
T ,E[Xq

T ])QqT + E
[
gx′(X

q
T ,E[Xq

T ])E[QqT ]
]
,

(3.35)

such that

H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], qt, P
q
t ,K

q
t , Q

q
t )

≤ H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], µt, P
q
t ,K

q
t , Q

q
t ), a.e. t, P− a.s., ∀µ ∈ P(U), (3.36)

where (t, φqt ) := (t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], qt, P
q
t ,K

q
t , Q

q
t ).

62



Chapter 3. Existence of optimal solutions and optimality conditions for optimal control
problems of MF-FBSDEs systems with uncontrolled diffusion

Proof. By the values of Qq0 and P qT in (3.35), the inequality variational (3.32) becomes

0 ≤ E
[
〈P qT , X̂T 〉

]
− E

[
gx(Xq

T ,E[Xq
T ])QqT + E

[
gx′(X

q
T ,E[Xq

T ])E[QqT ]
]]

+E
[
〈Qq0, Ŷ0〉

]
+ E

[ ∫ T

0

∫
U

(
hx(t,∆q

t , u)X̂t + E
[
hx′(t,∆

q
t , u)E[X̂t]

]
+hy(t,∆

q
t , u)Ŷt + E

[
hy′(t,∆

q
t , u)E[Ŷt]

] )
qt(da)dt

]
+E

[ ∫ T

0

( ∫
U

h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)µt(du)

−
∫
U

h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)qt(da)
)
dt
]
. (3.37)

Now applying Itô’s formula to compute 〈P qt , X̂t〉 and 〈Qqt , Ŷt〉 and taking the expectations we

derive

E
[
〈P qT , X̂T 〉

]
= − E

[ ∫ T

0

〈Qqt
∫
U

(
fx(t,∆q

t , u) + E
[
fx′(t,∆

q
t , u)

])
qt(du)

+

∫
U

(
hx(t,∆q

t , u) + E
[
hx′(t,∆

q
t , u)

])
qt(du), X̂t〉dt

]
+ E

[ ∫ T

0

P qt
( ∫

U

b(t,Xq
t ,E[Xq

t ], u)qt(du)−
∫
U

b(t,Xq
t ,E[Xq

t ], u)µt(du)
)
dt
]
,

and

− E
[
〈Qq0, Ŷ0〉

]
= E

[
〈QqT , ŶT 〉

]
+ E

[ ∫ T

0

〈Qqt ,
∫
U

(
fx(t,∆q

t , u)X̂t + E
[
fx′(t,∆

q
t , u)E[X̂t]

])
qt(du)〉dt

]
−E
[ ∫ T

0

〈
∫
U

(
hy(t,∆

q
t , u) + E

[
hy′(t,∆

q
t , u)

])
qt(du), Ŷt〉dt

]
+ E

[ ∫ T

0

Qqt
( ∫

U

f(t,∆q
t , u)qt(du)−

∫
U

f(t,∆q
t , u)µt(du)

)
dt
]
.

Then for every µ ∈ R, the inequality (3.37) becomes

0 ≤ E
[ ∫ T

0

(
H(t,Xq

t ,E[Xq
t ], Y qt ,E[Y qt ], qt, P

q
t ,K

q
t , Q

q
t )−H(t,Xq

t ,E[Xq
t ], Y qt ,E[Y qt ], µt, P

q
t ,K

q
t , Q

q
t )
)
dt
]
.

Therefore inequality (3.36) follows by a standard arguments.
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3.4.1.3 Sufficient optimality conditions for relaxed control

In this subsection we study when the necessary conditions for optimality in Theorem 3.4.4 become

sufficient as well.

Theorem 3.4.5 (Sufficient optimality conditions for relaxed control) Assume that (H3.1)-(H3.4) hold.

Given q· ∈ R, let (Xq, Y q, Zq) and (P q,Kq, Qq) be the corresponding solutions of the MF-FBSDEs (3.10)

and (3.35) respectively. Suppose that l, k, h and the function H(t, ·, ·, ·, ·, qt, P qt ,K
q
t , Q

q
t ) are convex.

Then (Xq, Y q, Zq, q·) is an optimal solution of the control problem {(3.10), 3.11), (3.12)} if it satisfies

(3.36).

Proof. Let q· ∈ R be arbitrary (candidate to be optimal), and let (Xq, Y q, Zq) denote the trajectory

associated to q·. For any µ· ∈ Rwith associated trajectory (Xµ, Y µ, Zµ), we have

J(µ·)− J(q·) = E
[
l(Xµ

T ,E[Xµ
T ])− l(Xq

T ,E[Xq
T ])
]

+ E
[
k(Y µ0 ,E[Y µ0 ])− k(Y q0 ,E[Y q0 ])

]
+ E

[ ∫ T

0

( ∫
U

h(t,Xµ
t ,E[Xµ

t ], Y µt ,E[Y µt ], u)µt(du)−
∫
U

h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)qt(du)
)
dt
]
.

Since l and k are convex, we get

l(Xµ
T ,E[Xµ

T ])− l(Xq
T ,E[Xq

T ]) ≥ 〈lx(Xq
T ,E[Xq

T ]), Xµ
T −X

q
T 〉+ E

[
〈lx′(Xq

T ,E[Xq
T ]),E[Xµ

T −X
q
T ]〉
]
,

k(Y µ0 ,E[Y µ0 ])− k(Y q0 ,E[Y q0 ]) ≥ 〈ky(Y q0 ,E[Y q0 ]), Y µ0 − Y
q
0 〉+ E

[
〈ky′(Y q0 ,E[Y q0 ]),E[Y µ0 − Y

q
0 ]〉
]
.

Thus

J(µ·)− J(q·) ≥ 〈lx(Xq
T ,E[Xq

T ]), Xµ
T −X

q
T 〉+ E

[
〈lx′(Xq

T ,E[Xq
T ]),E[Xµ

T −X
q
T ]〉
]

+ 〈ky(Y q0 ,E[Y q0 ]), Y µ0 − Y
q
0 〉+ E

[
〈ky′(Y q0 ,E[Y q0 ]),E[Y µ0 − Y

q
0 ]〉
]

+ E
[ ∫ T

0

( ∫
U

h(t,Xµ
t ,E[Xµ

t ], Y µt ,E[Y µt ], u)µt(du)−
∫
U

h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)qt(du)
)
dt
]
.
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Therefore after recalling also (3.35) one gets

J(µ·)− J(q·) ≥ E
[
〈P qT , X

µ
T −X

q
T 〉
]
− E

[
〈gx(Xq

T ,E[Xq
T ])QqT + E

[
gx′(X

q
T ,E[Xq

T ])E[QqT ]
]
, Xµ

T −X
q
T 〉
]

+ E
[
〈Qq0, Y

µ
0 − Y

q
0 〉
]

+ E
[ ∫ T

0

( ∫
U

h(t,Xµ
t ,E[Xµ

t ], Y µt ,E[Y µt ], u)µt(du)

−
∫
U

h(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)qt(du)
)
dt
]
. (3.38)

Applying Itô’s formula to 〈P qt , X
µ
t −X

q
t 〉 and 〈Qqt , Y

µ
t − Y

q
t 〉 , and take the expectations to obtain

E
[
〈P qT , X

µ
T −X

q
T 〉
]

= E
[ ∫ T

0

〈P qt ,
∫
U

b(t,Xµ
t ,E[Xµ

t ], u)µt(du)−
∫
U

b(t,Xq
t ,E[Xq

t ], u)qt(du)〉dt
]

+E
[ ∫ T

0

〈Kq
t , σ(t,Xµ

t ,E[Xµ
t ])− σ(t,Xq

t ,E[Xq
t ])〉 dt

]
−E

[ ∫ T

0

〈Hx(t, φqt ) + E[Hx′(t, φ
q
t )], X

µ
t −X

q
t 〉dt

]
, (3.39)

and

E
[
〈Qq0, Y

µ
0 − Y

q
0 〉
]

= E
[
〈QqT , Y

µ
T − Y

q
T 〉
]
− E

[ ∫ T

0

〈Hy(t, φ
q
t ) + E[Hy′(t, φ

q
t )], Y

µ
t − Y

q
t 〉dt

]
+ E

[ ∫ T

0

〈Qqt ,
∫
U

f(t,Xµ
t ,E[Xµ

t ], Y µt ,E[Y µt ], u)µt(du)

−
∫
U

f(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], u)qt(du)〉dt
]
. (3.40)

By using (3.39) and (3.40) in inequality (3.38) and apply the fact that (3.34), we get

J(µ·)− J(q·) ≥ E
[ ∫ T

0

(
H(t, φµt )−H(t, φqt )

)
dt
]
− E

[ ∫ T

0

〈Hx(t, φqt ) + E[Hx′(t, φ
q
t )], X

µ
t −X

q
t 〉dt

]
− E

[ ∫ T

0

〈Hy(t, φ
q
t ) + E[Hy′(t, φ

q
t )], Y

µ
t − Y

q
t 〉dt

]
. (3.41)

Since g is convex we have

E
[ 〈
QqT
(
gx(Xq

T ,E[Xq
T ]) + E

[
gx′(X

q
T ,E[Xq

T ])
])
, Xµ

T −X
q
T

〉 ]
≤ E

[
QqT
(
g(Xµ

T ,E[Xµ
T ])− g(Xq

T ,E[Xq
T ])
)]

= E
[
Y µT − Y

q
T

]
.
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On the other hand, by the convexity of H(t, x, x′, y, y′, q, P,K,Q) in (x, x′, y, y′) and its linearity in

q, then by using the clarke generalized gradient of H evaluated at (x, x′, y, y′), we obtain

H(t, φµt )−H(t, φqt ) ≥ Hx(t, φqt )
(
Xµ
t −X

q
t

)
+ E

[
Hx′(t, φ

q
t )E[Xµ

t −X
q
t ]
]

+Hy(t, φ
q
t )
(
Y µt − Y

q
t

)
+E
[
Hy′(t, φ

q
t )E[Y µt − Y

q
t ]
]
.

Therefore, applying this inequality in (3.41) gives

J(µ·)− J(q·) ≥ 0,∀µ ∈ R.

The theorem is proved.

3.4.2 Necessary and sufficient optimality conditions for strict control

In this part, we shall derive necessary and sufficient optimality condition for strict control prob-

lem and shows that it follows from the relaxed one. This strict control problem is governed by the

following MF-FBSDE

Xv
t = x+

∫ t
0
b(s,Xv

s ,E[Xv
s ], vs)ds+

∫ t
0
σ(s,Xv

s ,E[Xv
s ])dWs

Y vt = g(Xv
T ,E[Xv

T ]) +
∫ T
t
f(s,Xv

s ,E[Xv
s ], Y vs ,E[Y vs ], vs)ds−

∫ T
t
Zvs dWs,

(3.42)

and the functional cost to be minimize over the set of admissible strict controls Uw is given by

J(v·) := E
[
l (Xv

T ,E [Xv
T ]) + k (Y v0 ,E [Y v0 ]) +

∫ T
0
h
(
t,Xv

t ,E [Xv
t ] , Y vt ,E [Y vt ] , vt

)
dt
]
. (3.43)

We say that a strict control u· is an optimal control if

J(u·) = inf
v·∈Uw

J(v·). (3.44)
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We denote by

Rδ = {µ· ∈ R/ µ = δv : v ∈ Uw},

the set of all relaxed controls in the form of Dirac measure charging a strict control. Denote by

P(Uδ) the action set of all relaxed controlRδ.

3.4.2.1 Necessary optimality conditions for strict control

Define the Hamiltonian H in the strict control problem from [0, T ] × Rn × Rn × Rm × Rm × U ×

Rn × Rn×d × Rm to R by

H(t, x,E[x], y,E[y], v, P,K,Q) := −Pb(t, x,E[x], v) + Kσ(t, x,E[x])

+Qf(t, x,E[x], y,E[y], v) + h(t, x,E[x], y,E[y], v). (3.45)

Theorem 3.4.6 (Necessary optimality conditions for strict control) Let u· ∈ Uw an optimal strict control.

Let (Xu, Y u, Zu) be the associated solution of MF-FBSDE (3.42). Then there exists a unique solution

(Pu,Ku, Qu) of the following adjoint equations of MF-FBSDE (3.42):

dPut = −
(
Hx(t, φut ) + E

[
Hx′(t, φut )

])
dt+Ku

t dWt,

dQut =
(
Hy(t, φut ) + E

[
Hy′(t, φut )

])
dt+

(
Hz(t, φut ) + E

[
Hz′(t, φut )

])
dWt,

Qu0 = ky(Y
u
0 ,E[Y u0 ]) + E

[
ky′(Y

u
0 ,E[Y u0 ])

]
,

PuT = lx(Xu
T ,E[Xu

T ]) + E
[
lx′(X

u
T ,E[Xu

T ])
]

+ gx(Xu
T ,E[Xu

T ])QuT + E
[
gx′(X

u
T ,E[Xu

T ])E[QuT ]
]
,

(3.46)
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such that

H(t,Xu
t ,E[Xu

t ], Y ut ,E[Y ut ], ut, P
u
t ,K

u
t , Q

u
t ) (3.47)

≤ H(t,Xu
t ,E[Xu

t ], Y ut ,E[Y ut ], vt, P
u
t ,K

u
t , Q

u
t ), a.e. t, P− a.s., ∀v ∈ Uw,

where φut := (Xu
t ,E[Xu

t ], Y ut ,E[Y ut ], ut, P
u
t ,K

u
t , Q

u
t ).

Proof. Note that the strict control u· embedded into the space V in the sense that u· is corre-

sponding with the Dirac measure λu·(dt, da) = δu·(du) with the propriety: For any bounded and

uniformly continuous function ϕ(t, x, x′, y, y′, u) we have

ϕ(t, x, x′, y, y′, ut) =

∫
U

ϕ(t, x, x′, y, y′, u)δut(du) := ϕ(t, x, x′, y, y′, λu). (3.48)

Hence by the necessary optimality condition for relaxed controls (Theorem 3.4.4), there exist a

unique solution (P qt ,K
q
t , Q

q
t ) of (3.35) such that

H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], qt, P
q
t ,K

q
t , Q

q
t )

≤ H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], µt, P
q
t ,K

q
t , Q

q
t ), a.e. t, P− a.s., ∀µ ∈ R,

and sinceRδ ⊂ Rwe have

H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], qt, P
q
t ,K

q
t , Q

q
t ) (3.49)

≤ H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], µt, P
q
t ,K

q
t , Q

q
t ), a.e. t, P− a.s., ∀µ ∈ Rδ.

Using the fact that if µ ∈ Rδ, then there exist vt ∈ Uδ ⊂ U such that µ = δv, and we have proved in

section 3.2 (Proposition 3.3.1) that the optimal relaxed control qt(du) = δut(du) with ut an optimal
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strict control, then we can show that

(Xq
t , Y

q
t , Z

q
t ) = (Xu

t , Y
u
t , Z

u
t ), (Xµ

t , Y
µ
t , Z

µ
t ) = (Xv

t , Y
v
t , Z

v
t ),

(P qt ,K
q
t , Q

q
t ) = (Put ,K

u
t , Q

u
t ), (Pµt ,K

µ
t , Q

µ
t ) = (P vt ,K

v
t , Q

v
t ), (3.50)

H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], qt, P
q
t ,K

q
t , Q

q
t ) = H(t,Xu

t ,E[Xu
t ], Y ut ,E[Y ut ], ut, P

u
t ,K

u
t , Q

u
t ),

H(t,Xµ
t ,E[Xµ

t ], Y µt ,E[Y µt ], µt, P
µ
t ,K

µ
t , Q

µ
t ) = H(t,Xv

t ,E[Xv
t ], Y vt ,E[Y vt ], vt, P

v
t ,K

v
t , Q

v
t ).

Using (3.49) and (3.50) we get (3.47). The proof is completed.

3.4.2.2 Sufficient optimality conditions for strict control

We shall try to shows if the necessary optimality conditions for strict control (3.47) becomes suffi-

cient.

Theorem 3.4.7 (Sufficient optimality conditions for strict control) Assume that the function l, k, h and

H(t, ·, ·, ·, ·, ut, Put ,Ku
t , Q

u
t ) are convex. Then (Xu

· , Y
u
· , Z

u
· , u·) is an optimal solution of the strict control

problem {(3.42), (3.43), (3.44)} if it satisfies (3.47).

Proof. Let ut be an arbitrary element of Uδ such that the necessary optimality conditions for strict

control (3.47) hold, i.e.

H(t,Xu
t ,E[Xu

t ], Y ut ,E[Y ut ], ut, P
u
t ,K

u
t , Q

u
t )

≤ H(t,Xu
t ,E[Xu

t ], Y ut ,E[Y ut ], vt, P
u
t ,K

u
t , Q

u
t ), a.e. t, P− a.s., ∀v ∈ Uδ,

and by applying the embedding mentioned in (3.48), one can show that

H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], qt, P
q
t ,K

q
t , Q

q
t )

≤ H(t,Xq
t ,E[Xq

t ], Y qt ,E[Y qt ], µt, P
q
t ,K

q
t , Q

q
t ), a.e. t, P− a.s., ∀µ ∈ Rδ.
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Thus by sufficient optimality conditions for relaxed control (Theorem 3.4.5) we have

J(q·) = inf
µ·∈Rδ

J(µ·),

and from Proposition 3.3.1, we have proved that the optimal relaxed control is a Dirac measure

charging in optimal strict control (qt(du) = δut(du)), then we can show that

J(u·) = inf
v·∈Uw

J(v·).

The prove is completed.
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Existence of optimal solutions for optimal control problems

of MF-FBSDEs systems with controlled diffusion

I
n this chapter, we prove the existence of optimal controls for systems governed by forward-

backward stochastic differential equations of mean-field type (MF-FBSDEs) with con-

trolled diffusion, in which the coefficients depend not only on the state process, but also

on the distribution of the state process, via the expectation of some function of the state. Moreover

the cost functional is also of mean-field type. We prove this result of existence by using the weak

convergence techniques for the associated MF-FBSDEs on the space of continuous functions and

on the space of cádlág functions endowed with the Jakubowski S-topology. Moreover, when the

Roxin convexity condition is fulfilled, we get that the set of strict control coincides with that of

relaxed control.
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4.1 Statement of the problems and assumptions

4.1.1 Strict control problem

We study the existence of strict optimal controls for systems governed by the following FBSDE of

mean-field type

Xt = x+
∫ t

0
b(s,Xs,E[α (Xs)], us)ds+

∫ t
0
σ(s,Xs,E[β (Xs)], us)dWs

Yt = g(XT ,E[λ (XT )]) +
∫ T
t
f(s,Xs,E[γ (Xs)], Ys,E[δ (Ys)], us)ds−

∫ T
t
ZsdWs − (MT −Mt) ,

(4.1)

where b, α, σ, β, f, γ, δ, g and λ are given functions, (Wt, t ≥ 0) is a d-dimensional Brownian mo-

tion, defined on some filtered probability space
(

Ω,F , (Ft)t≥0 ,P
)

satisfying the usual conditions.

X,Y, Z are square integrable adapted processes and M a square integrable martingale that is or-

thogonal to W . The control variable ut, called strict control, is a measurable, Ft− adapted process

with values in a compact metric space U .

The expected cost on the time interval [0, T ] is given by

J(u·) := E
[
l (XT ,E[θ (XT )]) + k (Y0,E[ρ (Y0)])

+
∫ T

0
h
(
t,Xt,E [ϕ (Xt)] , Yt,E

[
ψ
(
Yt
)]
, ut
)
dt
]
,

(4.2)

where l, θ, k, ρ, h, ϕ and ψ are appropriate functions.

Our objective is to minimize the cost function (4.2), over the set of admissible controls.

It should be noted that the probability space and the Brownian motion may change with the

control u. Therefore, we need to have another definition of the admissible control, gives as follows:
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Definition 4.1.1 A 6-tuple υ· =
(

Ω,F , (Ft)t≥0 ,P,W·, u·
)

is called ω-admissible strict control, and

(Xt, Yt, Zt) a ω-admissible triple if:

i)-
(

Ω,F , (Ft)t≥0 ,P
)

is a filtered probability space satisfying the usual conditions;

ii)-Wt is an d-dimensional standard Brownian motion defined on
(

Ω,F , (Ft)t≥0 ,P
)

;

iii)-ut is an Ft-adapted process on (Ω,F ,P) taking values in the action space U ;

iv)-(Xt, Yt, Zt) is the unique solution of the MF-FBSDE (4.1) on
(

Ω,F , (Ft)t≥0 ,P
)

under ut.

The set of all ω-admissible controls is denoted by Uω.

Our stochastic optimal control problem under the weak formulation can be stated as follows:

Minimize (4.2) over Uω. We say that the ω-admissible control υ∗ is ω-optimal control, if it satisfies

J (υ∗· ) = inf
υ·∈Uω

J (υ) . (4.3)

4.1.2 Assumptions

Let us assume the following conditions (H4.1) Assume that the functions

b : [0, T ]× Rn × Rn × U → Rn,

σ : [0, T ]× Rn × Rn × U → Rn×d,

f : [0, T ]× Rn × Rn × Rm × Rm × U → Rm,

g : [0, T ]× Rn × Rn → Rm,

α, β, λ, γ : [0, T ]× Rn × Rn → Rn,

δ : [0, T ]× Rm × Rm → Rm,

74



Chapter 4. Existence of optimal solutions for optimal control problems of MF-FBSDEs
systems with controlled diffusion

are bounded and continuous. Moreover assume that there exists K > 0, such that for every

(x1, x2, x
′
1, x
′
2) ∈ R4n, (y1, y2, y

′
1, y
′
2)R4m,

|f (t, x1, x2, y1, y2, u)− f (t, x′1, x
′
2, y
′
1, y
′
2, u)| ≤ K (|x1 − x′1|+ |x2 − x′2|+ |y1 − y′1|+ |y2 − y′2|) ,

|b (t, x1, x2, u)− b (t, x′1, x
′
2, u)| ≤ K (|x1 − x′1|+ |x2 − x′2|),

|σ (t, x1, x2, u)− σ (t, x′1, x
′
2, u)| ≤ K (|x1 − x′1|+ |x2 − x′2|) .

Also, the functions α, β, γ, λ are uniformly Lipschitz in x and δ is uniformly Lipschitz in y.

(H4.2) Assume that the functions

l : [0, T ]× Rn × Rn → R,

k : [0, T ]× Rm × Rm → R,

h : [0, T ]× Rn × Rn × Rm × Rm × U → R,

ϕ, θ : [0, T ]× Rn × Rn → Rn,

ψ, ρ : [0, T ]× Rm × Rm → Rm,

are bounded and continuous. Moreover assume that

|h (t, x1, x2, y1, y2, u)− h (t, x′1, x
′
2, y
′
1, y
′
2, u)| ≤ K (|x1 − x′1|+ |x2 − x′2|+ |y1 − y′1|+ |y2 − y′2|) .

(H4.3) (U, d) is a compact metric space.

(H4.4) (Roxin-type convexity condition): The set

(
b, σσT , f, h

)
(t, x, x′, y, y′, U) := {bi (t, x, x′, u) ,

(
σσT

)ij
(t, x, x′, u) ,

f j (t, x, x′, y, y′, u) , h (t, x, x′, y, y′, u)�u ∈ U, i = 1, · · · , n, j = 1, · · · ,m},
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is convex and closed in Rn+m+1.

To proof the existence of optimal solution of our strict control problem {(4.1) , (4.2) , (4.3)} , we

need a certain structure of compactness. The weak formulation allows us to find the compactness

of the image measure of some processes involved on a certain functional space. However, because

the control u is measurable only in t and there is no convenient compactness property on the space

of measurable functions, we need to embed it in a larger space with proper compactness.

We denote by V the space of positive Radon measures µ on [0, T ]× U such that

µ([0, s]× U) = s,∀ ∈ [0, T ]. (4.4)

Equipped with the topology of stable convergence of measures, V is a compact metrizable space,

(see Jacod and Mémin [23]). On the other hand, by (4.4), µ can be represented as

µ(dt, du) = µ(t, du)dt, where µ(t, du) is a probability measure on U for almost all t and is deter-

mined uniquely except on a t-null set. In this context, any U -valued measurable process u· may

be embedded into V in which u· corresponds to the Dirac measure δu·(dt, da) as follows: for any

bounded and uniformly continuous functions $ we have

$(t, x, ut) =

∫
U

$(t, x, u)δu·(t, da) := $̂(t, x, δu·). (4.5)

4.2 Existence of optimal controls

Our results in this paper extends those of [5] and [7] to a systems governed by FBSDE of mean-

field type and with controlled diffusion coefficient.

Theorem 4.2.1 Under conditions (H4.1)-(H4.4), the strict control problem {(4.1) , (4.2) , (4.3)} has an
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optimal solution.

To prove this theorem, we need some auxiliary results on the tightness of the distributions of the

processes defining the control problem.

Let υn· =
(

Ωn,Fn, (Fnt )t≥0 ,Pn,Wn
· , u

n
)

be a minimizing sequence, that is lim
n→∞

J (υn· ) = inf
υ·∈Uω

J (υ·) .

Let (Xn, Y n, Zn) be the unique solution of the following MF-FBSDE

Xn
t = x+

∫ t
0
b (s,Xn

s ,E [α (Xn
s )] , uns ) ds+

∫ t
0
σ (s,Xn

s ,E [β (Xn
s )] , uns ) dWn

s ,

Y nt = g (Xn
T ,E [λ (Xn

T )]) +
∫ T
t
f (s,Xn

s ,E [γ (Xn
s )] , Y ns ,E [δ (Y ns )] , uns ) ds

−
∫ T
t
Zns dW

n
s ,

(4.6)

Lemma 4.2.2 Let (Xn, Y n, Zn) be the unique solution of the system (4.6). There exists a positive constant

C such that

sup
n
E

(
sup

0≤t≤T
|Xn

t |2 + sup
0≤t≤T

|Y nt |
2

+

∫ T

t

||Zns ||2ds

)
≤ C. (4.7)

Proof. Its easily to show that

sup
n
E
[

sup
0≤t≤T

|Xn
t |2
]
< +∞.

By using the boundedness of b and σ and using Burkholder-Davis-Gundy’s inequality.

On the other hand, applying Itô’s formula to |Y nt |2, we obtain

E

[
|Y nt |2 +

∫ T

t

||Zns ||2ds

]
= E

[
|g(Xn

T ,E [λ (Xn
T )])|2

]
+2E

[∫ T

t

〈Y ns , f (s,Xn
s ,E [γ (Xn

s )] , Y ns ,E [δ (Y ns )] , uns )〉ds

]

≤ E
[
|g(Xn

T ,E [λ (Xn
T )])|2

]
+ E

[∫ T

t

|Y ns |2ds

]

+E

[∫ T

t

|f (s,Xn
s ,E [γ (Xn

s )] , Y ns ,E [δ (Y ns )] , uns )|2 ds

]
.
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Using the boundedness of g and f and by Gronwall’s lemma, it follows that

sup
n
E

[
sup

0≤t≤T
|Y nt |2 +

∫ T

t

||Zns ||2ds

]
< +∞.

Lemma 4.2.3 The sequence of distributions of the processes (Xn,Wn, Y n,
∫ ·

0
Zns dW

n
s ) is tight on the

space Γ := C ([0, T ] ;Rn)×C
(
[0, T ] ;Rd

)
×D ([0, T ] ;Rm)×D

(
[0, T ] ;Rm×d

)
endowed with the topology

of uniform convergence for the first and second factor and endowed with the S-topology of Jakubowski

(see[24]) for the third and fourth factor.

Proof. According to Kolmogorov’s theorem (see Ikeda and Watanabe [22] page 18), we need to

verify that

E
[
|Xn

t −Xn
s |

4
]
≤ K1 |t− s|2 ,

E
[
|Wn

t −Wn
s |

4
]
≤ K2 |t− s|2 ,

for some constants K1 and K2 independent from n.

We have

E
[
|Xn

t −Xn
s |

4
]
≤ CE

[∣∣∣∣∫ t

s

b (s,Xn
s ,E [α (Xn

s )] , uns ) ds

∣∣∣∣4
]

+ CE

[∣∣∣∣∫ t

s

σ (s,Xn
s ,E [β (Xn

s )] , uns ) dWn
s

∣∣∣∣4
]
.
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Using Burkholder-Davis-Gundy’s inequality to the martingale part and the boundedness of b

and σ, we obtain

E
[
|Xn

t −Xn
s |

4
]
≤ CE

[(∫ t

s

|b (s,Xn
s ,E [α (Xn

s )] , uns )|2 ds
)2
]

+ CE
[(∫ t

s

|σ (s,Xn
s ,E [β (Xn

s )] , uns )|2 ds
)2 ]

≤ K1 |t− s|2 .

The second inequality is obvious.

Let us prove that (Y n· ,
∫ ·

0
Zns dW

n
s ) is tight on the space D ([0, T ] ;Rm)× D

(
[0, T ] ;Rm×d

)
.

Let 0 = t0 < t1 < ... < tn = T . We define the conditional variation by

CV (Y n· ) := supE

[∑
i

∣∣∣E(Y nti+1
− Y nti

)
�FW

n

ti

∣∣∣] ,
where the supremum is taken over all partitions of the interval [0, T ]. By the same method given

in [31], we get

CV (Y n· ) ≤ CE

[∫ T

0

|f (s,Xn
s ,E [γ (Xn

s )] , Y ns ,E [δ (Y ns )] , uns ) |ds

]
,

whereC is a constant depending only on t. Hence combining conditions (H4.1) and Lemma 4.2.2,

we deduce that

sup
n

[
CV (Y n· ) + sup

0≤t≤T
E [|Y nt |] + sup

0≤t≤T
E
[∣∣∣∣∫ t

0

Zns dW
n
s

∣∣∣∣]] < +∞.

Thus the Meyer-Zheng tightness criteria is fulfilled (see [30]), then the sequences Y n· and
∫ ·

0
Zns dW

n
s

are tight.

Lemma 4.2.4 The familly of distributions of the relaxed control
(
δun·
)
n

is tight in V.
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Proof. Since [0, T ] × U is compact, then by applying Prokhorov’s theorem, the space V of proba-

bility measures on [0, T ] × U is then compact. Since
(
δun·
)
n

valued in the compact space V, then

the familly of distributions associated to
(
δun·
)
n

is tight.

4.2.1 Proof of theorem 4.2.1

Proof. Using Lemmas 4.2.3 and 4.2.4, it follows that the sequence of processes

ηn :=
(
δun· , X

n
· ,W

n
· , Y

n
· ,
∫ ·

0
Zns dW

n
s

)
is tight on the space V×Γ. Then by the Skorokhod represen-

tation theorem, there exists a probability space
(

Ω̃, F̃ , P̃
)

, a sequences

η̃n =
(
π̃n, X̃n, W̃n, Ỹ n,

∫ ·
0
Z̃ns dW̃

n
s

)
and η̃ =

(
π̃, X̃, W̃ , Ỹ ,

∫ ·
0
Z̃sdW̃s

)
defined on this space and a

countable subset D of [0, T ] such that on Dc, we have

(i) for each n ∈ N, law(ηn) ≡ law(η̃n),

(ii) there exists a subsequence (η̃nk) of (η̃n) , still denoted (η̃n) ,which converges to η̃, P̃-a.s. on the

space V× Γ,

(iii) (Ỹ n,
∫ ·

0
Z̃ns dW̃

n
s ) converges to the càdlàg processes (Ỹ ,

∫ ·
0
Z̃sdW̃s), dt×P̃-a.s. Also Ỹ nT → ỸT . P̃

(iv) sup
0≤t≤T

∣∣∣X̃n
t − X̃t

∣∣∣→ 0, P̃-a.s.

(v) (π̃n) converges in the stable topology to π̃, P̃-a.s.

Set 

F̃nt :=
(
σ(W̃n

s , X̃
n
s , Ỹ

n
s , s ≤ t) ∨ (π̃n)−1(Bt(V))

)
,

F̃t :=
(
σ(W̃s, X̃s, Ỹs, s ≤ t) ∨ (π̃)−1(Bt(V))

)
,

where Bt(V) is defined by

Bt(V) := σ
(
{π ∈ V | π(φs) ∈ B} : s ∈ [0, t], B ∈ B(R)

)
,
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π ∈ V is a linear functional on C([0, T ]× U) in the way:

π(φ) :=

∫ T

0

∫
U

φ(t, u)π(dt, du),∀φ ∈ C([0, T ]× U),

and φt(s, u) := φ(s ∧ t, u).

According to property (i), we have the following MF-FBSDE on
(

Ω̃, F̃ , {F̃nt }t≥0, P̃
)



X̃n
t = x+

∫ t
0

∫
U
b(s, X̃n

s ,E[α(X̃n
s )], u)π̃ns (du) ds+

∫ t
0

∫
U
σ(s, X̃n

s ,E[β(X̃n
s )], u)π̃ns (du) dW̃n

s ,

Ỹ nt = g(X̃n
T ,E[λ(X̃n

T )]) +
∫ T
t

∫
U
f(s, X̃n

s ,E[γ(X̃n
s )], Ỹ ns ,E[δ(Ỹ ns )], u)π̃ns (du) ds

−(Ñn
T − Ñn

t ),

(4.8)

and by notation (4.5), we have

X̃n
t = x+

∫ t
0
b̂(s, X̃n

s ,E[α(X̃n
s )], π̃ns )ds+

∫ t
0
σ̂(s, X̃n

s ,E[β(X̃n
s )], π̃ns )dW̃n

s ,

Ỹ nt = g(X̃n
T ,E[λ(X̃n

T )]) +
∫ T
t
f̂(s, X̃n

s ,E[γ(X̃n
s )], Ỹ ns ,E[δ(Ỹ ns )], π̃ns )ds

−(Ñn
T − Ñn

t ),

(4.9)

where Ñn
t =

∫ t
0
Z̃ns dW̃

n
s .

Since W̃n
· is an {F̃nt }t≥0-Brownian motion, all the integrals in (4.8) and in (4.9) are well-defined.

Using properties (ii), (iii), (iv),(v), under (H4.1)-(H4.4) and passing to the limit in the MF-FBSDE

(4.9), one can show that there exists a countable set D ⊂ [0, T ) such that

X̃t = x+ B̃(t) + Σ̃(t), t > 0

Ỹt = g(X̃T ,E[λ(X̃T )]) + (F̃ (T )− F̃ (t))− (ÑT − Ñt), t ∈ [0, T ]�D,

(4.10)

Since Ỹ and Ñ are càdlàg, then one can get for every t ∈ [0, T ]

Ỹt = g(X̃T ,E[λ(X̃T )]) + (F̃ (T )− F̃ (t))− (ÑT − Ñt).
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Also we have

inf
u·∈Uω

J (u·) = lim
n→∞

J
(
δun·
)

= lim
n→∞

J(π̃n· )

:= lim
n→∞

Ẽ
[
l(X̃n

T , Ẽ[θ(X̃n
T )]) + k(Ỹ n0 , Ẽ[ρ(Ỹ n0 )])

+
∫ T

0
ĥ
(
t, X̃n

t , Ẽ[ϕ(X̃n
t )], Ỹ nt , Ẽ[ψ(Ỹ nt

)
], π̃nt )dt

]
,

= Ẽ
[
l(X̃T , Ẽ[θ(X̃T )]) + k(Ỹ0, Ẽ[ρ(Ỹ0)]) + H̃(T )

]
,

(4.11)

The rest of the proof is inspired from Yong and Zhou [35]. Let us consider the sequence

an(s) := σ̂σ̂T (s, X̃n
s ,E[β(X̃n

s )], π̃ns ), s ∈ [0, T ]. Setting

bin(s) := b̂i(s, X̃n
s ,E[α(X̃n

s )], π̃ns ), i = 1, · · · , n,

aikn (s) := σ̂σ̂T (s, X̃n
s ,E[β(X̃n

s )], π̃ns ), i = 1, · · · , n, k = 1, · · · , d,

f jn(s) := f̂ j(s, X̃n
s ,E[γ(X̃n

s )], Ỹ ns ,E[δ(Ỹ ns )], π̃ns ), j = 1, · · · ,m,

hn(s) := ĥ(s, X̃n
s ,E[ϕ(X̃n

s )], Ỹ ns ,E[ψ(Ỹ ns )], π̃ns ),

Since bin → bi, i = 1, · · · , n, f jn → f j , j = 1, · · · ,m, hn → h, aikn → aik weakly, and

bi(s, ω) ∈ bi(s, X̃s(ω),E[α(X̃s(ω))], U), (4.12)

(σσT )ik(s, ω) ∈ (σσT )ik(s, X̃s(ω),E[β(X̃s(ω))], U),

f j(s, ω) ∈ f j(s, X̃s(ω),E[γ(X̃s(ω))], Ỹs(ω),E[δ(Ỹs(ω))], U),

h(s, ω) ∈ h(s, X̃s(ω),E[ϕ(X̃s(ω))], Ỹs(ω),E[ψ(Ỹs(ω))], U),

∀(s, ω) ∈ [0, T ]× Ω̃, i, k = 1, · · · , n, j = 1, · · · ,m.

From (4.10), (H4.4) and a measurable selection theorem (see Li-Yong [29], p. 102, Corollary 2.26),
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there is a U -valued, F̃t-adapted process ũ· such that

b(s, ω) = b(s, X̃s(ω),E[α(X̃s(ω))], ũs(ω)), (4.13)

σσT (s, ω) = σσT (s, X̃s(ω),E[β(X̃s(ω))], ũs(ω)),

f(s, ω) = f(s, X̃s(ω),E[γ(X̃s(ω))], Ỹs(ω),E[δ(Ỹs(ω))], ũs(ω)),

h(s, ω) = h(s, X̃s(ω),E[ϕ(X̃s(ω))], Ỹs(ω),E[ψ(Ỹs(ω))], ũs(ω)).

Since Σ̃(t) given in (4.10), is an F̃t-martingale, we have

〈Σ̃n〉(t) =

∫ t

0

σ̂σ̂T (s, X̃n
s ,E[β(X̃n

s )], π̃ns )ds ≡
∫ t

0

an(s)ds,

where 〈Σ̃n〉 is the quadratic variation of Σ̃n. Thus Σ̃n(Σ̃n)T (t) −
∫ t

0
an(s)ds is an F̃t-martingale

and from the fact that

∫ t

s

an(r)dr converges weakly to
∫ t

s

σσT (r, X̃r,E[α(X̃r)], ũr)dr,

we can show that Σ̃(Σ̃)T (t)−
∫ t

0
σσT (r, X̃r,E[α(X̃r)], ũr)dr is an F̃t-martingale. Which implies

〈Σ̃〉(t) =

∫ t

0

σ̂σ̂T (s, X̃s,E[β(X̃s)], ũs)ds.

By a martingale representation theorem, there is an extension space
(
Ω,F ,F t,P

)
of
(

Ω̃, F̃ , F̃t, P̃
)

on which lives an d-dimensional F t-Brownian motion W t such that

Σ̃(t) =

∫ t

0

σ(s, X̃s,E[β(X̃s)], ũs)dW s. (4.14)

Similarly, one can show that

B̃(t) =

∫ t

0

b(s, X̃s,E[α(X̃s)], ũs)ds, (4.15)

F̃ (t) =

∫ t

0

f(s, X̃s,E[γ(X̃s)], Ỹs,E[δ(Ỹs)], ũs)ds,

H̃(t) =

∫ t

0

h(s, X̃s,E[ϕ(X̃s)], Ỹs,E[ψ(Ỹs)], ũs)ds.
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Also, since Ñ is a F̃s-martingale. Therefore by the martingale decomposition theorem, there exist

a process Z̃ ∈M2([0, T ] ;Rm×d) such that

Ñt =

∫ t

0

Z̃sdW s + M̃t, and
〈
M̃,W

〉
t

= 0. (4.16)

Putting the values of Σ̃(t), B̃(t), F̃ (t), Ñt, H̃(t) (from (4.14),(4.15),(4.16)) into (4.10) and (4.11), we

get 

X̃t := x+
∫ t

0
b(s, X̃s,E[α(X̃s)], ũs)ds+

∫ t
0
σ(s, X̃s,E[β(X̃s)], ũs)dW s, t ≥ 0,

Ỹt := g(X̃T ,E[λ(X̃T )]) +
∫ T
t
f(s, X̃s,E[γ(X̃s)], Ỹs,E[δ(Ỹs)], ũs)ds−

∫ T
t
Z̃sdW s

−(M̃T − M̃t), t ∈ [0, T ] ,

and

inf
u·∈Uω

J (u·) = Ẽ
[
l(X̃T , Ẽ[θ(X̃T )]) + k(Ỹ0, Ẽ[ρ(Ỹ0)]) +

∫ T
0
ĥ
(
t, X̃t, Ẽ[ϕ(X̃t)], Ỹt, Ẽ[ψ(Ỹt

)
], ũt)dt

]
= J (υ̃·) .

By the Definition 4.1.1 , we arrive that υ̃· :=
(
Ω,F , {F t}t≥0,P,W ·, ũ·

)
is an ω-optimal control.
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T
he S-topology has been introduced by Jakubowski [24], as a topology defined on the

Skorokhod space of càdlàg functions D
(
[0, T ] ;Rk

)
. This topology is weaker than the

Skorokhod topology and the tightness criteria are easier to establish. This criteria is

the same as that of the Meyer and Zheng topology [30].

Let Na,b(Y ) denotes the number of up-crossing of the function Y ∈ D([0;T ];Rm) in a given level

a < b. We recall some facts about the S-topology.

Proposition A.1. (A criteria for S-tight). A sequence (Y n)n>0 is S-tight if and only if it is relatively

compact on the S-topology.

Proposition A.2. Let (Y n)n>0 be a family of stochastic processes in D([0;T ];Rm). Then this family is

tight for the S-topology if and only if (‖Y n‖)n and
(
Na,b(Y n)

)
n

are tight for each a < b.

We recall (see Meyer & Zheng [30] and Jakubowski [24],[25]) that for a familly (Y n)n of quasi-

martingales on the probability space
(

Ω, {Ft}0≤t≤T ,P
)
, the following condition insures the tight-

ness of the familly (Y n)n on the space D ([0, T ] ;Rm) endowed with the S-topology

sup
n

(
sup

0≤t≤T
E |Y nt |+ CV (Y n)

)
< +∞,

where, for a quasi-martingale Y n, CV (Y n) stands for the conditional variation of Y on [0, T ], and
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is defined by

CV (Y n) = supE

[∑
i

∣∣E (Y nti+1 − Y nti
)
| Fnti

∣∣] ,
where the supremum is taken over all partitions of [0, T ].

The process Y is call quasimartingale if CV (Y ) < +∞. When Y is a Ft-martingale, CV (Y ) = 0.

Proposition A.3. (The a.s. Skorokhod representation ). Let (D, S) be a topological space on which there

exists a countable family of S-continuous functions separating points in Y . Let {Y n}n∈N be a uniformly

tight sequence of laws on D. In every subsequence {Y nk} one can find a further subsequence {Y nkl} and

stochastic processes
{
Y l
}

defined on
(
[0, T ] ,B[0,T ], l

)
such that

Y l ∼ Y nkl , l = 1, 2, ... (1)

for each w ∈ [0, T ]

Y l (w)→
S
Y 0 (w) , as l→ +∞, (2)

and for each ε > 0, there exists an S-compact subset Kε ⊂ D such that

P
({
w ∈ [0, T ] : Y l (w) ∈ Kε, l = 1, 2, ...

})
> 1− ε. (3)

One can say that (2) and (3) describe "the almost sure convergence in compacts" and that (1), (2)

and (3) define the strong a.s. Skorokhod representation for subsequences ("strong" because of

condition (3)).

Proposition A.4. Let (Y n, Mn) be a multidimensional process in D([0, T ]; Rm) converging to

(Y, M) in the S-topology. Let (FY nt )t≥0 (resp. (FYt )t≥0) be the minimal complete admissible
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filtration for Y n (resp.Y ). We assume that sup
n
E
[
sup0≤t≤T |Mn

t |2
]
< CT ∀T > 0, Mn is a FY n-

martingale and M is a FY -adapted. Then M is a FY -martingale.

Proposition A.5. Let (Y n)n>0 be a sequence of processes converging weakly in D([0, T ]; Rm) to Y . We

assume that sup
n
E
[
sup0≤t≤T |Y nt |2

]
< +∞. Hence, for any t ≥ 0, E

[
sup

0≤t≤T
|Yt|2

]
< +∞.
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Conclusion

I
n this thesis, we have proved the existence of optimal solutions of an optimal control

problem . In particular, the problems are governed by non linear forward-backward

stochastic differential equations of mean-field type (MF-FBSDEs), in which the coeffi-

cients of the system depend not only on the state process, but also on the distribution of the state

process. Moreover, the cost functional is also of mean-field type. The basic idea behind the proof

of this result is the relaxed control, which is needed in order to provide some compact structure.

Moreover, under the Roxin’s convexity condition, the set of strict controls coincides with that of

relaxed controls. An open question is to prove this result, where the generator depends on the

second backward variable Z. There is a serious difficulty in this case, this difficulty consists in

finding a natural assumption ensuring the tightness of the second variable Z.

When the control problem is governed by a linear MF-FBSDEs as in chapter 2, we have not needed

to use the same techniques as nonlinear case, but we have proved the existence of a strong optimal

strict control which is adapted to the initial filtration by using the convexity of the cost function

and the Mazur’s theorem. In this case the generator depending explicitly upon the second back-

ward variable Z.
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Conclusion

A special case is that in which both l, k and h are convex quadratic functions. The control problem

(Problem (L) in chapter 2) is then reduced to a stochastic linear quadratic optimal control problem.
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