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RESUME

Résumé

Cette thèse de doctorat s’inscrit dans le cadre de l’analyse stochastique dont le thème

central est : les conditions nécessaires et suffisantes sous forme du maximum stochastique

de type champ moyen d’optimalité avec information partielle et ces applications. L’objectif

de ce travail est d’étudier des problèmes d’optimisation stochastique. Il s’agira ensuite de

faire le point sur les conditions nécessaires et suffisantes d’optimalité avec information

partielle pour un systeme gouverné par des équations différentielles stochastiques de type

champ moyen. Cette thèse s’articule autour de trois chapitres :

Le premier chapitre est essentiellement un rappel. Le candidat présente quelques concepts

et résultats qui lui permettent d’aborder son travail ; tels que les processus stochastiques,

l’espérance conditionnelle, les martingales, les formules d’Ito, les classes de contrôles sto-

chastiques, . . . etc.

Dans le deuxième chapitre, on a établi et on a prouvé les conditions nécessaires et suf-

fisantes de presque optimalité d’order ελ vérifiées par un contrôle optimal stochastique,

pour un systeme différentiel gouverné par des équations différentielles stochastiques EDSs.

Le domaine de contrôle stochastique est supposé convexe. La méthode utilisée est basée

sur le lemme d’Ekeland. Les résultats obtenus dans le chapitre 2, sont tous nouveaux et

font l’objet d’un premier article intitulé :

Boukaf Samira & Mokhtar Hafayed, & Ghebouli Messaoud : ”A study on optimal control

problem with ελ-error bound for stochastic systems with application to linear quadratic pro-

blem”, International Journal of Dynamics and Control, Springer DOI : 10.1007/s40435-

015-0178-x (2017) Volume 5, Issue 2, pp 297–305 (2017).

Dans le troisième chapitre, on a démontré le principe du maximum stochastique sous

l’information partielle, où le systeme est gouverné par des équations différentielles sto-

chastiques progressives rétrogrades avec un processus de Lévy. Aussi, comme application,
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RESUME

on a traité un problème d’optimization en finance. Les résultats obtenus dans le chapitre

3 sont tous nouveaux et font l’objet d’un deuxième article intitulé :

Mokhtar Hafayed, & Ghebouli Messaoud & Samira Boukaf & Yan Shi : ”Partial informa-

tion optimal control of mean-field forward-backward stochastic system driven by Teugels

martingales with applications” (2016) DOI 10.1016/j.neucom. 2016.03.002. Neurocompu-

ting, Vol 200 pages 11–21 (2016).
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Abstract

This thesis is concerned with stochastic control of mean-field type. The central theme is

the necessary and sufficient conditions in the form of the Pontryagin’s stochastic maxi-

mum of the mean-field type for optimality with partial information and some applications.

Recently, the main purpose of this thesis is to derive a set of necessary as well as suffi-

cient conditions of optimality with partial information, where the system is governed by

stochastic differential equations of the mean field type. This thesis is structured around

three chapters :

The first chapter is essentially a reminder. we presents some concepts and results that allow

us to prove our results, such as stochastic processes, conditional expectation, martingales,

Ito formulas, class of stochastic control, etc. In the second chapter, we have proved the

necessary and sufficient conditions of near-optimality of order ελ satisfied by an optimal

stochastic control, where the system is governed by stochastic differential equations EDSs.

The stochastic control domain is assumed to be convex. The method used is based on the

Ekeland lemma. The results obtained in Chapter 2 are all new and are the subject of a

first article entitled :

Boukaf Samira & Mokhtar Hafayed and Ghebouli Messaoud : A study on optimal control

problem with ελ-error bound for stochastic systems with application to linear quadratic pro-

blem, International Journal of Dynamics and Control, Springer DOI : 10.1007 / s40435-

015-0178-x (2017), Volume 5, Issue 2, pp 297–305 (2017).

In the third chapter, we have proved the stochastic maximum principle under partial

information, where the system is governed by forward backward stochastic differential

equations (FBSDEs) deriven by Lévy process. These results have been applied to solve an

optimization problem in finance. Moreover, as an application, we study a partial informa-

tion mean-variance portfolio selection problem, driven by Teugels martingales associated

with Gamma process, where the explicit optimal portfolio strategy is derived in feedback
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form. The results obtained in Chapter 3 are all new and are the subject of a second article

entitled :

Mokhtar Hafayed, & Ghebouli Messaoud & Samira Boukaf & Yan Shi : Partial information

optimal control of mean-field forward-backward stochastic system driven by Teugels mar-

tingales with applications (2016) DOI 10.1016/j.neucom. 2016.03.002. Neurocomputing,

Vol 200 pages 11–21 (2016)..
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Symbols and Acronyms

Symbols and Acronyms
— a.e. almost everywhere

— a.s. almost surely

— càdlàg continu à droite, limite à gauche

— cf. compare (abbreviation of Latin confer )

— e.g. for example (abbreviation of Latin exempli gratia)

— i.e,. that is (abbreviation of Latin id est)

— HJB The Hamilton-Jacobi-Bellman equation

— SDE : Stochastic differential equations.

— BSDE : Backward stochastic differential equation.

— FBSDEs : Forward-backward stochastic differential equations.

— FBSDEJs : Forward-Backward stochastic differential equations with jumps.

— PDE : Partial differential equation.

— ODE : Ordinary differential equation.

— R : Real numbers.

— R+ : Nonnegative real numbers.

— N : Natural numbers.

—
∂f

∂x
, fx : The derivatives with respect to x.

— P⊗dt : The product measure of P with the Lebesgue measure dt on [0, T ] .

— E (·) , E (· | G) Expectation ; conditional expectation

— σ (A) : σ−algebra generated by A.

— IA : Indicator function of the set A.

— FX : The filtration generated by the process X.

— W (·), B(·) : Brownian motions

— FBt the natural filtration generated by the brownian motion B(·),

— F1 ∨ F2 denotes the σ-field generated by F1 ∪ F2.

7



Chapitre 1

Introduction

We can look to optimal control theory as a set of tools that help us to optimize a dyna-

mical system evolving over a time with respect to differential equations. It is modeled as a

vector u which is called the control. The optimized control should minimize an application

which is called the cost function. There are two main methods to do that :

1. The Pontryagin Maximum Principal.

2. The Bellman’s Dynamic Programming.

1.1 Stochastic processes

1.1.1 Filtration

Definition 1.1.1 A filtration on (Ω,F ,P) is an increasing family (Ft)t∈[0,T ] of σ− fields

of F : Fs ⊂ Ft ⊂ F for all 0 6 s 6 t < T . Fs is interpreted as the information known at

time t.

1.1.2 Stochastic process

Definition 1.1.2 A stochastic process is a collection of random variables {Xt, t ∈ I}

Usually t represents time, and I is the set of indices.
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1.1.3 Brownian Motion

Definition 1.1.3 A random process {W (t), t ∈ [0,+∞)} is called a standard Brownian

motion if

1. W (0) = 0;

2. for all 0 6 t1 < t2, W (t2)−W (t1) v N(0, t2 − t1) ;

3. W (t) has independant increments. That is, for all 0 6 t1 < t2 < t3 <, · · · , tn,

the random variables W (t2) −W (t1), W (t3) −W (t2), · · · ,W (tn) −W (tn − 1) are

independent ;

4. W (t) has continuos sample paths ;

1.1.4 Levy processes

Definition 1.1.3 A process (X(t))t>0 defined on a probability space (Ω,F,P) is said to

be a Levy process if the following conditions hold :

a) The trajectories of X are a.s right continuous with aleft limit.

b) P(X0 = 0) = 1

c) for all 0 6 s 6 t, Xt −Xs ; has the same distribution as Xt−s ;

d) 0 6 s 6 t, Xt −Xs is independent of (Xu, u 6 s) ;

1.2 Formulations of stochastic optimal control problems

In this section, we present two mathematical tools (strong and weak formulations) of

stochastic optimal control problems .

9



Introduction

1.2.1 Strong formulation

If
(
Ω,F , {Ft}t∈[0,T ],P

)
is a filtred probability space on which a Brownian motion W (t)

is defined, consider the following controlled stochastic differential equation :

 dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t),

x(0) = x0 ∈ Rn,
(1.1)

where

f : [0, T ]× Rn × A −→ Rn,

σ : [0, T ]× Rn × A −→ Rn×d,

and x(·) is the variable of state.

The function u(·) represents the controller’s action. The controller at time t has some

information which is respresented by the filtration u but is not sure about the future of

trajectory which let him unable to take any decision before this time.

The control u (·) is an element of the set

U [0, T ] = {u : [0, T ]× Ω −→ A such that u (·) is {Ft}t∈[0,T ] − adapted}.

We introduce the cost functional as follows

J(u(·)) .
= E

[∫ T

0

l(t, x(t), u(t))dt+ g(x(T ))

]
, (1.2)

where
l : [0, T ]× Rn × A −→ R,

g : Rn −→ R.

Definition 1.1. Let
(
Ω,F , {Ft}t∈[0,T ],P

)
be given satisfying the usual conditions and let

W (t) be a given d-dimensional standard {Ft}t∈[0,T ]-Brownian motion. A control u(·) is

10



Introduction

called an admissible control, and (x(·), u(·)) an admissible pair, if

Définition 1.2.1 i) u(·) ∈ U [0, T ];

ii) x(·) is the unique solution of equation (2.1) ;

iii) l(·, x(·), u(·)) ∈ L1
F ([0, T ] ;R) and g(x(T )) ∈ L1

FT (Ω;R) .

1.2.2 Weak formulation

When it comes to solving stochastic optimal control the weak formulation mathematical

aspect, and On the contrary to the strong formulation the filtred probalility space on

which we define the Brownian motion are not all fixed.

Definition 1.2.A 6-tuple
(
Ω,F , {Ft}t∈[0,T ],P,W (·) , u (·)

)
is called weak-admissible control

and (x(·), u(·)) an weak admissible pair, if

Définition 1.2.2 1.
(
Ω,F , {Ft}t∈[0,T ],P

)
is a filtered probability space satisfying the

usual conditions ;

2. W (·) is an d-dimensional standard Brownian motion defined on
(
Ω,F , {Ft}t∈[0,T ],P

)
;

3. u(·) is an {Ft}t∈[0,T ]−adapted process on (Ω,F ,P) taking values in U ;

4. x(·) is the unique solution of equation (2.1),

5. l(·, x(·), u(·)) ∈ L1
F ([0, T ] ;R) and g(x(T )) ∈ L1

F (Ω;R) .

The set of all weak admissible controls is denoted by Uw ([0, T ]). Sometimes, might write

u(·)) ∈ Uw ([0, T ]) instead of
(
Ω,F , {Ft}t∈[0,T ],P,W (·) , u (·)

)
∈ Uw ([0, T ]) .

Our stochastic optimal control problem under weak formulation can be formulated as

follows :

Problem 1.2. The objective is to minimize the cost functional given by equation (3.2) over

the of admissible controls Uw ([0, T ]) .Namely, one seeks π∗(·) =
(
Ω,F , {Ft}t∈[0,T ],P,W (·) , u (·)

)
∈

Uw ([0, T ]) such that

J(π∗(·)) = inf
π(·)∈Uw([0,T ])

J(π(·)).

11
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1.3 Methods to solving optimal control problem

Two fundamental methods for studing optimal control are Bellman’s dynamic program-

ming method and Pontryagin’s maximum principle.

1.3.1 The Dynamic Programming Principle.

In Bellman’s dynamic programming the solution to an optimization problem is given by

A sequence of sub-optimal solutions by minimizing or maximizing the Hamiltonian or

generalized Hamiltonian in the HJB equation.

The Bellman principle. Let (Ω,F ,P) be a probability space with filtration {Ft}t∈[0,T ],

satisfying the usual conditions, T > 0 a finite time, and W a d-dimensional Brownian

motion defined on the filtered probability space
(
Ω,F ,P, {Ft}t∈[0,T ]

)
.

We consider the state stochastic differential equation

dx(s) = f(s, x(s), u(s))ds+ σ(s, x(s), u(s))dW (s), s ∈ [0, T ] (1.3)

The control u = u(s)0≤s≤T is a progressively measurable process valued in the control set

U , a subset of Rk, satisfies a square integrability condition. We denote by U ([t, T ]) the set

of control processes u.

Conditions. To ensure the existence of the solution to SDE-(??), the Borelian functions

f : [0, T ]× Rn × U −→ Rn

σ : [0, T ]× Rn × U −→ Rn×d

satisfy the following conditions :

|f(t, x, u)− f(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)| ≤ C |x− y| ,

12
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|f(t, x, u)|+ |σ(t, x, u)| ≤ C [1 + |x|] ,

for some constant C > 0. We define the gain function as follows :

J(t, x, u) = E
[∫ T

t
l(s, x(s), u(s))ds+ g(x (T ))

]
, (1.4)

where

l : [0, T ]× Rn × U −→ R,

g : Rn −→ R,

Some restrictions on f and g are necessary so that the expectation quoted above is well

defined. The aim is to maximize the gain function. We define the value function as follows :

V (t, x) = sup
u∈U([t,T ])

J(t, x, u), (1.5)

where x(t) = x is the initial state given at time t. For an initial state (t, x) , we say that

u∗ ∈ U ([t, T ]) is an optimal control if

V (t, x) = J(t, x, u∗).

Theorem 1.1. Let (t, x) ∈ [0, T ]× Rn be given. Then we have

V (t, x) = sup
u∈U([t,T ])

E

[∫ t+h

t

l(s, x(s), u(s))dt+ V (t+ h, x(t+ h))

]
, for t ≤ t+ h ≤ T.

(1.6)

Proof. The proof of the dynamic programming principle is a classical one, and we refer

the reader to Yong and Zhou [98].

The Hamilton-Jacobi-Bellman equation The HJB equation is the infinitesimal version

of the dynamic programming principle. It is formally derived by assuming that the value

13
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function is C1,2 ([0, T ]× Rn) , applying Itô’s formula to V (s, xt,x(s)) between s = t and

s = t+ h, and then sending h to zero into (1.5). The classical HJB equation associated to

the stochastic control problem (1.5) is

−Vt(t, x)− sup
u∈U

[LuV (t, x) + l(t, x, u)] = 0, on [0, T ]× Rn, (1.7)

where Lu is the second-order infinitesimal generator associated to the diffusion x with

control u

LuV = f(x, u).DxV +
1

2
tr (σ (x, u)σᵀ (x, u)D2

xV ) .

This partial differential equation (PDE) is often written also as :

−Vt(t, x)−H(t, x,DxV (t, x), D2
xV (t, x)) = 0, ∀(t, x) ∈ [0, T ]× Rn, (1.8)

where for (t, x,Ψ, Q) ∈ [0, T ]×Rn×Rn×Sn (Sn is the set of symmetric n×n matrices) :

H(t, x,Ψ, Q) = sup
u∈U

[
f(t, x, u).Ψ +

1

2
tr (σσᵀ (t, x, u)Q) + l(t, x, u)

]
. (1.9)

The function H is sometimes called Hamiltonian of the associated control problem, and

the PDE (1.7) or (1.8) is the dynamic programming or HJB equation.

There is also an a priori terminal condition :

V (T, x) = g(x), ∀x ∈ Rn,

which results from the very definition of the value function V .

The classical verification approach The classical verification approach consists in finding

a smooth solution to the HJB equation, and to check that this candidate, under suitable

sufficient conditions, coincides with the value function. This result is usually called a

verification theorem and provides as a byproduct an optimal control. It relies mainly on

14
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Itô’s formula. The assertions of a verification theorem may slightly vary from problem to

problem, depending on the required sufficient technical conditions. These conditions should

actually be adapted to the context of the considered problem. , a verification theorem is

generally stated as follows :

Theorem 1.2. LetW be a C1,2 function on [0, T ]×Rn and continuous in T , with suitable

growth condition. Suppose that for all (t, x) ∈ [0, T ]×Rn, there exists u∗(t, x) mesurable,

valued in U such that W solves the HJB equation :

0 = −Wt(t, x)− sup
u∈U

[LuW (t, x) + l(t, x, u)]

= −Wt(t, x)− Lu∗(t,x)W (t, x)− l(t, x, u∗(t, x)), on [0, T ]× Rn,

together with the terminal condition W (T, ·) = g on Rn, and the stochastic differential

equation :

dx(s) = f(s, x(s), u∗(s, x (s)))ds+ σ(s, x(s), u∗(s, x (s)))dW (t),

admits a unique solution x∗, given an initial condition x(t) = x. Then, W = V and

u∗ (s, x∗) is an optimal control for V (t, x).

A proof of this verification theorem can be found in book, by Yong & Zhou [98].

1.3.2 The Pontryagin’s maximum principle

Kushner [50, 51] was one of the leading mathematicians to work on stochastic maximum

principle. A more develloping works have been done by a lot of research workers a mong

them Bensoussan [8], Peng [76]. The Maximum Principle was first set to teal with the

deterministic control problems in 1956 and we can look to it as a generalisation of the

calculus of variations.

The maximum principle. The idea is to perturbe the solution and use the Taylor

expansion at the state trajectory and tending the perturbation to zero :
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 dx(t) = f(t, x(t), u(t))dt, t ∈ [0, T ] ,

x(0) = x0,
(1.10)

where

f : [0, T ]× R×A −→ R,

the cost function to be minimized shoud be as follows :

J(u (·)) =
∫ T

0
l(t, x(t), u(t)) + g(x (T )), (1.11)

such that

l : [0, T ]× R×A −→ R,

g : R −→ R.

Where l and g are affecting the running cost and the terminal cost respectively.

We now assume that there exists a control u∗(t) which is optimal, i.e.

J(u∗ (·)) = inf
u
J(u (·)).

If x∗(t) is a solution to (1.10) and u∗(t) is its optimal control by perturbing the optimal

control by using the spike variation methode :

uε(t) =

 v for τ − ε ≤ t ≤ τ,

u∗(t) otherwise.
(1.12)

xε(t) is the solution of (1.10) with respect uε(t) we consider that x∗(t) is equal xε(t) up to

t = τ − ε and that
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xε(τ)− x∗(τ) = (f(τ, xε(τ), v)− f(τ, x∗(τ), u∗ (τ)))ε+ o (ε)

= (f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ)))ε+ o (ε) ,
(1.13)

where the second equality holds since xε(τ) − x∗(τ) is of order ε. We look at the Taylor

expansion of the state with respect to ε. Let

z(t) =
∂

∂ε
xε(t) |ε=0,

i.e. the Taylor expansion of xε(t) is

xε(t) = x∗ (t) + z(t)ε+ o(ε). (1.14)

Then, by (1.13)

z (τ) = f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ)). (1.15)

By deriving and using the chain rule :

dz(t) =
∂

∂ε
dxε(t) |ε=0

=
∂

∂ε
f(t, xε(t), uε(t))dt |ε=0

= fx(t, x
ε(t), uε(t))

∂

∂ε
xε(t)dt |ε=0

= fx(t, x
∗(t), u∗(t))z(t)dt,

if we let l = 0 this implies that :

0 ≤ ∂

∂ε
J(uε)

∣∣∣∣
ε=0

=
∂

∂ε
g (xε(T )) |ε=0

= gx (xε(T ))
∂

∂ε
xε(T ) |ε=0

= gx (x∗(T )) z(T ).
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Let’s now define the adjoint equation


dΨ(t) = −fx(t, x∗(t), u∗(t))Ψ(t)dt, t ∈ [0, T ] ,

Ψ(T ) = gx(x
∗(T )).

Then it follows that

d(Ψ(t)z(t)) = 0,

i.e. Ψ(t)z(t)) = constant. By the terminal condition for the adjoint equation we have

Ψ(t)z(t) = gx(x
∗(T ))z(T ) ≥ 0, for all 0 ≤ t ≤ T.

In particular, by (1.15)

Ψ(τ) (f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ))) ≥ 0.

Since τ was chosen arbitrarily, this is equivalent to

Ψ(t)f(t, x∗(t), u∗(t)) = inf
v∈U

Ψ(t)f(t, x∗(t), v), for all 0 ≤ t ≤ T.

By an iterative substitution we obtain

H(t, x∗(t), u∗(t),Ψ(t)) = inf
v
H(t, x∗(t), v,Ψ(t)) for all 0 ≤ t ≤ T, (1.16)

where H is the so-called Hamiltonian (sometimes defined with a minus sign which turns

the minimum condition above into a maximum condition) :

H(x, u,Ψ) = l(x, u) + Ψf(x, u),
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and the adjoint equation is given by


dΨ(t) = −(lx(t, x

∗(t), u∗(t)) + fx(t, x
∗(t), u∗(t))Ψ(t))dt,

Ψ(T ) = gx(x
∗(T )).

(1.17)

Equations (1.16) and (1.17) characterize the Hamiltonian system .

Stochastic maximum principle : A stochastic optimal control is the natural extention

of the deterministic one by interchanging an ODE with an SDE :

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t))dW (t), t ∈ [0, T ] , (1.18)

where f and σ are deterministic functions and the last term is an Itô integral with respect

to a Brownian motion W defined on a probability space
(
Ω,F , {Ft}t∈[0,T ],P

)
.

More generally, the diffusion coefficient σ may has an explicit dependence on the control :

t ∈ [0, T ] .

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), (1.19)

The cost function for the stochastic case is the expected value of the cost function (1.11),

i.e. we want to minimize

J(u (·)) = E

[∫ T

0

l(t, x(t), u(t)) + g(x (T ))

]
.

For the case (1.18) the adjoint equation is given by the following Backward SDE :


−dΨ(t) = {fx(t, x∗(t), u∗(t))Ψ(t) + σx(t, x

∗(t))Q(t)

+(lx(t, x
∗(t), u∗(t))}dt−Q(t)dW (t),

Ψ(T ) = gx(x
∗(T )).

(1.20)

A solution to this backward SDE is a pair (Ψ(t), Q(t)) which satisfies (1.20). The Hamil-
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tonian is

H(x, u,Ψ(t), Q(t)) = l(t, x, u) + Ψ(t)f(t, x, u) +Q(t)σ(t, x),

and the maximum principle reads for all 0 ≤ t ≤ T,

H(t, x∗(t), u∗(t),Ψ(t), Q(t)) = inf
u∈U

H(t, x∗(t), u,Ψ(t), Q(t)) P− a.s. (1.21)

Noting that there is also third case : if the state is given by (1.19) but the action

space A is assumed to be convex, it is possible to derive the maximum principle in a local

form. This is accomplished by using a convex perturbation of the control instead of a spike

variation, see Bensoussan 1983 [8]. The necessary condition for optimality is then given

by the following : for all 0 ≤ t ≤ T

E

∫ T

0

Hu(t, x
∗(t), u∗(t),Ψ∗(t), Q∗(t)) (u− u∗(t)) ≥ 0.

1.4 Some classes of stochastic controls

Let (Ω,F ,Ft≥0, P ) be a complete filtred probability space.

1. Admissible control An admissible control is Ft-adapted process u(t) with values in

a borelian A ⊂ Rn

U := {u(·) : [0, T ]× Ω→ A : u(t) is Ft-adapted} . (1.22)

2. Optimal control The optimal control problem consists to minimize a cost functional

J(u) over the set of admissible control U . We say that the control u∗(·) is an optimal

control if

J(u∗(t)) ≤ J(u(t)), for all u(·) ∈ U .
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3. Near-optimal control Let ε > 0, a control is a near-optimal control (or ε-optimal) if

for all control u(·) ∈ U we have

J(uε(t)) ≤ J(u(t)) + ε. (1.23)

See for some applications.

4. Singular control An admissible control is a pair (u(·), ξ(·)) of measurable A1 ×

A2−valued, Ft−adapted processes, such that ξ(·) is of bounded variation, non-decreasing

continuous on the left with right limits and ξ(0−) = 0. Since dξ(t) may be singular with

respect to Lebesgue measure dt, we call ξ(·) the singular part of the control and the process

u(·) its absolutely continuous part.

5. Feedback control : We say that u (·) is a feedback control if u (·) depends on the

state variable X(·). If FXt the natural filtration generated by the process X, then u (·) is

a feedback control if u (·) is FXt −adapted.

6. Impulsive control. Impulse control : Here one is allowed to reset the trajectory at

stopping times (τi) from Xτi− (the value immediately before i) to a new (non-anticipative)

value Xτi , resp., with an associated cost L
(
Xτi− , Xτi

)
. The aim of the controlled is to

minimizes the cost functional :

E

∫ T

0

exp

[
−
∫ t

0

C(X(s), u(s))ds

]
K(X(t), u(t))

+
∑
τi<T

exp

[
−
∫ τi

0

C(X(s), u(s))ds

]
g(Xτ , Xτi−)

+ exp

[
−
∫ τi

0

C(X(s), u(s))ds

]
h(X(T )).

7. Ergodic control Some stochastic systems may exhibit over a long period a stationary

behavior characterized by an invariant measure. This measure, if it does exists, is obtained
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by the average of the states over a long time. An ergodic control problem consists in

optimizing over the long term some criterion taking into account this invariant measure.

(See Pham [77], Borkar [10]). The cost functional is given by

lim sup
T→+∞

1

T
E

∫ T

0

f(x(t), u(t))dt.

8. Robust control In the problems formulated above, the dynamics of the control system

is assumed to be known and fixed. Robust control theory is a method to measure the

performance changes of a control system with changing system parameters. This is of

course important in engineering systems, and it has recently been used in finance in relation

with the theory of risk measure. Indeed, it is proved that a coherent risk measure for an

uncertain payoff x(T ) at time T is represented by :

ρ(−X(t)) = sup
Q∈S

EQ(X(T )),

where S is a set of absolutly continuous probability measures with respect to the original

probability P.

9. Partial observation control problem It is assumed so far that the controller com-

pletely observes the state system. In many real applications, he is only able to observe

partially the state via other variables and there is noise in the observation system. For

example in financial models, one may observe the asset price but not completely its rate

of return and/or its volatility, and the portfolio investment is based only on the asset price

information. We are facing a partial observation control problem. This may be formulated

in a general form as follows : we have a controlled signal (unobserved) process governed

by the following SDE :

dx (t) = f (t, x (t) , y (t) , u (t)) dt+ σ (t, x (t) , y (t) , u (t)) dW (t) ,
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and

dy (t) = g (t, x (t) , y (t) , u (t)) dt+ h (t, x (t) , y (t) , u (t)) dB (t) ,

where B (t) is another Brownian motion, eventually correlated with W (t) . The control

u(t) is adapted with respect to the filtration generated by the observation F Y
t and the

functional to optimize is :

J (u (·)) = E

[
h (x (T ) , y(T )) +

∫ T

0

g (t, x (t) , y(t), u (t)) dt

]
.

10. Random horizon In classicla problem, the time horizon is fixed until a deterministic

terminal time T . In some real applications, the time horizon may be random, the cost

functional is given by the following :

J (u (·)) = E

[
h (x (τ)) +

∫ τ

0

g (t, x (t) , y(t), u (t)) dt

]
,

where τ s a finite random time.

11. Relaxed control The idea is then to compactify the space of controls U by exten-

ding the definition of controls to include the space of probability measures on U . The

set of relaxed controls µt (du) dt, where µt is a probability measure, is the closure un-

der weak* topology of the measures δu(t)(du)dt corresponding to usual, or strict, controls.

This notion of relaxed control is introduced for deterministic optimal control problems

in Young (Young, L.C. Lectures on the calculus of variations and optimal control theory,

W.B. Saunders Co., 1969.) (See Borkar [10]).
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CHAPITRE II

A study on optimal control problem with ελ−error bound for stochastic

systems with applications to linear quadratic problem
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A study on optimal control problem

with ελ−error bound for stochastic

systems with applications to linear

quadratic problem

Abstract. In this part, we study near-optimal stochastic control problem with ελ−error

bound for systems governed by nonlinear controlled Itô stochastic differential equations

(SDEs in short). The control is allowed to enter into both drift and diffusion coefficients

and the control domain need be convex. The proof of our main result is based on Ekeland’s

variational principle and some approximation arguments on the state variable and adjoint

process with respect to the control variable. Finally, as an example, the linear quadratic

control problem is given to illustrate our theoretical results.

AMS Subject Classification : 93E20, 60H10.

Keywords : Stochastic control with ελ−error bound, Weak maximum principle, Necessary

and sufficient of conditions of near-optimality, Ekeland’s variational principle, Convex
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perturbation.

2.1 Introduction

Stochastic near-optimization is as sensible and important as optimization for both theory

and applications. In this work, we consider stochastic control problem with ελ−error bound

for systems driven by non linear controlled SDEs of the form


dx (t) = f (w, t, x (t) , u (t)) dt+ σ (w, t, x (t) , u (t)) dW (t) ,

x(0) = ξ,

(2.1)

where (W (t))t∈[0,T ] is a standard n−dimensional Brownian motion defined on the filtered

probability space (Ω,F , (Ft)t∈[0,T ] , P ). The filtration Ft is a canonical filtration of W (t)

augmented by P -null sets. The initial condition ξ is an F0-measurable random variable.

We associate to this state equation the following cost functional

J (u (·)) = E

[
h (x (T )) +

∫ T

0

g (w, t, x (t) , u (t)) dt

]
, (2.2)

and the value function is defined as

V = inf
u(·)∈U

{J (u (·))} . (2.3)

The maximum principle has been and remains an important tool in many situations in

which optimal control plays a role. Near-optimization is as sensible and important as op-

timization for both theory and applications. The theory of stochastic near-optimization

was introduced by Zhou [100]. Various kinds of near-optimal stochastic control problems

have been investigated in [31, 28, 32, 37, 43, 44, 88, 99, 48]. The necessary and suffi-

cient conditions of near-optimal mean-field singular stochastic control have been studied
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in Hafayed and Abbas [31]. The necessary and sufficient conditions for near-optimality for

mean-field jump diffusions with applications have been derived by Hafayed, Abba and Ab-

bas [28]. Near-optimality necessary and sufficient conditions for singular controls in jump

diffusion processes have been investigated in Hafayed and Abbas [32]. In Hafayed, Veverka

and Abbas [37], the authors extended Zhou’s maximum principle of near-optimality [100]

to singular stochastic control. The near-optimal stochastic control problem for jump dif-

fusions has been investigated by Hafayed, Abbas and Veverka [43]. The near-optimality

necessary and sufficient conditions for classical controlled FBSDEJs with applications to

finance have been investigated in Hafayed, Veverka and Abbas [44]. Stochastic maximum

principle of near-optimal control of fully coupled forward-backward stochastic differential

equation has been investigated in Tang [88]. Near-optimal stochastic control problem for

linear general controlled FBSDEs has been studied in Zhang, Huang and Li [99]. The

near-optimal control problem for recursive stochastic problem has been studied in Hui,

Huang, Li and Wang [48].

It is shown that the near-optimal controls in stochastic control problems, as the alter-

native to the exact optimal ones, are of great importance for both the theoretical analysis

and practical application purposes due to its nice structure and broad-range availability

as well as feasibility. The near-optimal controls in stochastic control problems are more

available than the exact optimal ones, in the sense that the near-optimal controls always

exist, while the exact optimal stochastic controls may not even exist in many situations.

Moreover, since there are many near-optimal controls, it is possible to select among them

appropriate ones that are easier for analysis and implementation. This justifies the use of

near-optimal stochastic controls, which exist under minimal hypothesis and are sufficient

in most practical cases.

Motivated by the arguments above and inspired by [100, 31, 28, 32, 43, 99], our purpose

in this work is to derive a first-order necessary and sufficient conditions for any near-

optimal stochastic control with ελ−error bound, where the diffusion coefficient can contain
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a control variable, and the control domain is necessarily convex. The proof of our main

result is based on Ekeland’s variational principle [21] and some approximation arguments

on the state variable and adjoint process with respect to the control variable. As an

applications, a linear quadratic control problem is discussed.

The rest of the chapter is organized as follows. In the second section we present the

assumptions and the formulation of the problem. The necessary conditions for any near-

optimal stochastic control is given in the third section. The sufficient conditions are given

in the fourth section. An application to the linear quadratic control problem is given in

the last section.

2.2 Assumptions and Preliminaries

Let (Ω,F , (Ft)t∈[0,T ] , P ) be a fixed filtered probability space satisfying the usual conditions,

in which a n−dimentional Brownian motion W (t) is defined. We list some notations that

will be used throughout this work. Any element x ∈ Rd will be identified to a column

vector with ith component, and the norm |x| =
∑d

i=1 |xi|. We denote A∗ the transpose of

any vector or matrix A. We denote sgn(·) the sign function. For a function Ψ, we denote

by Ψx the gradient or Jacobian of a scalar function Ψ with respect to the variable x.

We denote by L2
F([0, T ] , Rn) the Hilbert space of Ft−adapted processes (x (t)) such that

E
∫ T

0
|x (t)|2 dt < +∞.

Throughout this work we assume the following.

Let σ : Ω × [0, T ] × Rn×Rm→Rn ⊗ Rn, f : Ω × [0, T ] × Rn×Rm→Rn, g : Ω × [0, T ] ×

Rn×Rm→ R, h : Ω × Rn→ R, are Borel measurable functions such that ∀ (w, t, x, y, u)

∈ Ω× [0, T ]× Rn × Rn × Rm.

Assumption (H1) f, σ, g and h are continuously differentiable with respect to x, u,

dominated by C(1 + |x|), and their derivatives are bounded functions.

Assumption (H2)
∣∣ ∂ρ
∂u

(w, t, x, u)− ∂ρ
∂u

(w, t, y, v)
∣∣ ≤ C(|x− y|β + |u− v|β), for ρ := f, σ
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and β ∈ (0, 1).

Assumption (H3) The derivatives ∂f
∂x
, ∂σ
∂x
, ∂g
∂x
, ∂g
∂u

are Lipschitz in x, u and hx is Lipschitz

in x.

Definition 1.2.1.. Let T > 0 be a fixed strictly positive real number and U be a nonempty

compact convex subset of Rm. An admissible control is defined as a function u (·) : [0, T ]×

Ω −→ U which is Ft-predictable, such that the SDE-(2.1) has a unique solution and write

u (·) ∈ U . The set U is called the set of admissible controls.

From assumption (H1), the SDE-(2.1) has a unique strong solution given by

x (t) = ξ +

∫ t

0

f (w, s, x(s), u(s)) ds+

∫ t

0

σ (w, s, x(s), u(s)) dW (s).

The criteria to be minimized over the set of admissible controls given in (3.2) is well

defined.

We introduce the adjoint equation for our control problem (2.1)-(3.2) as follows


−dp (t) = [∂f

∗

∂x
(w, t, x (t) , u (t)) p (t) + ∂σ∗

∂x
(w, t, x (t) , u (t)) q (t)

+ ∂g
∂x

(w, t, x (t) , u (t))]dt− q (t) dW (t) ,

p (T ) = hx (x (T )) ,

(2.4)

and the Hamiltonian associated with our control problem (2.1)-(3.2) is given as

H (t, x, u, p (t) , q (t)) = p (t) f (t, x, u) + q (t)σ (t, x, u) + g (t, x, u) . (2.5)

To simplify our notation, we suppress ”w” in f (w, t, x (t) , u (t)) and write f (t, x (t) , u (t))

for f (w, t, x (t) , u (t)) . Similarly for the functions f, σ, g, h.

We aim at using Ekeland’s variational principle [21] to establish necessary conditions of

ε-optimality satisfied by a sequence of ε-optimal controls.

Lemma 1.2.1. (Ekeland’s Lemma [21]) Let (E, d) be a complete metric space and f :
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E → R be a lower semi-continuous and bounded from below. If for each ε > 0, there

exists uε ∈ E satisfies f (uε (·)) ≤ infu(·)∈E (f (u (·))) + ε. Then for any δ > 0, there exists

uδ (·) ∈ E such that

(1) f
(
uδ (·)

)
≤ f (uε (·)) .

(2) d
(
uδ (·) , uε (·)

)
≤ δ.

(3) f
(
uδ (·)

)
≤ f (u (·)) + ε

δ
d
(
uδ (·) , u (·)

)
, for all u (·) ∈ E.

To apply Ekeland’s variational principle to our problem, we must define a distance d on

the space of admissible controls such that (U , d) becomes a complete metric space. For

any u (·), v (·) ∈ U we lay

d (u (·) , v (·)) =

[
E

∫ T

0

|u (t)− v (t)|2 dt
] 1

2

. (2.6)

2.3 Stochastic maximum principle with ελ−error bound

Our goal in this section is to derive necessary conditions with ελ−error bound for SDEs

with controlled diffusion coefficient, where the control domain is necessarily convex. We

give the definition of ε-optimal control as given in [100].

Definition 1.3.1. For a given ε > 0 the admissible control uε (·) is ε-optimal if

|J (uε (·))− V | ≤ Q (ε) ,

where Q is a function of ε satisfying limε→0Q (ε) = 0. The estimater Q (ε) is called an

error bound. If Q (ε) = Cεδ for some δ > 0 independent of the constant C, then uε (·)

is called ε-optimal control with order εδ. If Q (ε) = ε, the admissible control uε (·) called

ε−optimal.

Now we are able to state and prove the Pontryagin’s maximum principle of ε-optimality

for our control problem, which is the main result in this section.

Theorem 1.3.1. Assume that (H1), (H2) and (H3) hold. For any λ ∈
[
0, 1

2

)
, there exists
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a positive constant C = C (λ) such that for each ε > 0 and any ε-optimal control uε(·)

there exists a constant C > 0 such that for all u ∈ U

E

∫ T

0

∂H

∂u
(t, xε (t) , uε (t) , pε (t) , qε (t)) (u (t)− uε (t))dt ≥ −Cελ, dt− a.e., (2.7)

where xε (·) denotes the solution of the state equation (2.1) and the pair (pε (·) , qε (·)) is

the solution of the adjoint equation (3.4) associated with uε.

To prove the above Theorem, we need the following auxiliary results on the variation of

the state and adjoint processes with respect to the control variable.

Lemma 1.3.2. Let xu (t) and xv (t) be the solution of the state equation (2.1) associated

with u (·) and v (·) respectively. Then there exists a positive constant C such that, for

α > 0 :

E

[
sup

0≤t≤T
|xu (t)− xv (t)|α

]
≤ Cd

α
2 (u (·) , v (·)) .

Proof.

First we assume α ≥ 2. Using Hölder’s and Burkholder-Davis-Gundy inequalities, we

obtain

E [|xu (t)− xv (t)|α] ≤ E
∣∣∣∫ t0 (f (s, xu (s) , u(s))− f (s, xv (s) , v (s)))ds

+
∫ t

0
(σ (s, xu (s) , u (s))− σ (s, xv (s) , v (s))) dW (s)

∣∣∣α
≤ CE

∫ t
0
|f (s, xu (s) , u (s))− f (s, xv (s) , v (s))|α ds

+CE
∫ t

0
|σ (s, xu (s) , u (s))− σ (s, xv (s) , v (s))|α ds

by adding and subtracting f (s, xv (s) , u(s)) , σ (s, xv (s) , u(s)) and applying the Lipschitz
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continuity of the coefficients f and σ it holds that

E [|xu (t)− xv (t)|α] ≤ CE

∫ t

0

|xu (s)− xv (s)|α ds+ CE

∫ t

0

|u (s)− v (s)|α ds

≤ CE

∫ t

0

|xu (s)− xv (s)|α ds+ C

[
E

∫ t

0

|u (s)− v (s)|2 ds
]α

2

,

using Gronwall’s inequality, we get the desired inequality.

Now, we assume 0 < α < 2. Since 2
α
> 1, then by using Hölder’s inequality and the above

result, we have

E [|xu (t)− xv (t)|α] ≤
[
E |xu (t)− xv (t)|2

]α
2 ≤ Cd

α
2 (u(·), v(·)) .

This completes the proof of Lemma 1.3.2. �

Lemma 1.3.3. Let (pu (t) , qu (t)) and (pv (t) , qv (t)) be two adjoint processes correspon-

ding to u and v respectively. Then we have the following estimate : for any α ≥ 1

E

∫ T

0

( |pu (t)− pv (t)|α + |qu (t)− qv (t)|α)dt ≤ Cdα (u (·) , v (·)) .

Proof. First we denote by p (t) = (pu (t) − pv (t)) and q (t) = (qu (t) − qv (t)), then

(p̃ (t) , q̃ (t)) satisfies the following backward stochastic differential equation :


−dp̃ (t) = [∂f

∗

∂x
(t, xu (t) , u (t)) p̃ (t) + ∂σ∗

∂x
(t, xu (t) , u (t)) q̃ (t)

+G (t)]dt− q̃ (t) dW (t) ,

p̃ (t) = hx (xu (T ))− hx (xv (T )) ,
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where the process G (t) is given by

G (t) = (∂f
∂x

(t, xu (t) , u (t))− ∂f
∂x

(t, xv (t) , v (t)))pv (t)

+(∂σ
∂x

(t, xu (t) , u (t))− ∂σ
∂x

(t, xv (t) , v (t)))qv (t)

+( ∂g
∂x

(t, xu (t) , u (t))− ∂g
∂x

(t, xv (t) , v (t))).

Let η be the solution of the following linear SDE


dηt = [∂f

∂x
(t, xu (t) , u (t)) ηt + |p̃ (t)|α−1 sgn(p̃ (t))]dt

+[∂σ
∂x

(t, xu (t) , u (t)) ηt + |q̃ (t)|α−1 sgn(q̃ (t))]dW (t) ,

η0 = 0,

(2.8)

where sgn (y) ≡ (sgn(y1), sgn(y2), ..., sgn(yn))∗ for any vector y = (y1, y2, .., yn)∗. It is

worth mentioning that since ∂f
∂x

and ∂σ
∂x

are bounded and the fact that

E

∫ T

0

{∣∣|p̃ (t)|α−1 sgn (p̃ (t))
∣∣2 +

∣∣|q̃ (t)|α−1 sgn (q̃ (t))
∣∣2} dt <∞,

then the SDE (2.8) has a unique strong solution. Let γ ≥ 2 such that 1
γ

+ 1
α

= 1 then we

get

E
{

supt≤T |ηt|
γ} ≤ CE

∫ T
0

{
|p̃ (t)|αγ−γ + |q̃ (t)|αγ−γ

}
dt

= CE
∫ T

0
{|p̃ (t)|α + |q̃ (t)|α} dt.

(2.9)

Now applying Itô’s formula to p (t) ηt on [0, T ] and taking expectations, we obtain

E (p̃ (t) ηT − p̃(0)η0) = E

∫ T

0

−G (t) ηtdt+ E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt,

34



Chapitre 2

using the fact that η0 = 0 we can easily show that

E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt = E

∫ T

0

G (t) ηtdt+ E(p̃ (T ) ηT )

= E

∫ T

0

G (t) ηtdt+ E [(hx (xu (T ))− hx (xv (T ))) ηT ] ,

by applying Hölder’s inequality to the right hand side, it holds that

E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt ≤
[
E

∫ T

0

|G (t)|α dt
] 1
α
[
E

∫ T

0

|ηt|γ dt
] 1
γ

+ [E |hx(xu (T ))− hx(xv (T ))|α]
1
α [E |ηT |γ]

1
γ

using inequality (2.9), it holds that

E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt ≤ C

[
E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt

] 1
γ

{[
E

∫ T

0

|G (t)|α dt
] 1
α

+C [E |hx(xu (T ))− hx(xv (T ))|α]
1
α

}
,

which implies that

[
E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt

]1− 1
γ

≤ C

[
E

∫ T

0

|G (t)|α dt
] 1
α

+ C [E |hx(xu (T ))− hx(xv (T ))|α]
1
α ,

thus

E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt ≤ CE

∫ T

0

|G (t)|α dt

+ CE |hx(xu (T ))− hx(xv (T ))|α .
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Since hx is Lipschitz in x and due to Lemma 1.3.2, we have

E {|hx(xu (T ))− hx(xv (T ))|α} ≤ Cdα(u(·), v(·)). (2.10)

We proceed to estimate the first term on the right hand side, then we have

E

∫ T

0

|G (t)|α dt ≤ E

∫ T

0

{∣∣∣∣∂f∂x (t, xu (t) , u (t)) − ∂f

∂x
(t, xv (t) , v (t))

∣∣∣∣ |pv (t) |

+

∣∣∣∣∂σ∂x (t, xv (t) , u (t)) − ∂σ

∂x
(t, xv (t) , v (t))

∣∣∣∣ |qv (t) |+
∣∣∣∣∂g∂x (t, xu (t) , u (t))

−
∣∣∣∣∂g∂x (t, xv (t) , v (t))

∣∣∣∣∣∣∣∣}α dt

≤ CE

∫ T

0

∣∣∣∣∂f∂x (t, xu (t) , u (t))− ∂f

∂x
(t, xv (t) , v (t))

∣∣∣∣α |pv (t)|α dt

+ CE

∫ T

0

∣∣∣∣∂σ∂x (t, xu (t) , u (t))− ∂σ

∂x
(t, xv (t) , v (t))

∣∣∣∣α |qv (t)|α dt

+ CE

∫ T

0

∣∣∣∣∂g∂x (t, xu (t) , u (t))− ∂g

∂x
(t, xv (t) , v (t))

∣∣∣∣α dt
= I1 + I2 + I3.

Using the bounded of pv (t) and Hölder’s inequality with 1
2/(2−α)

+ 1
2/α

= 1 we have

I1 ≤ C

[
E

∫ T

0

∣∣∣∣∂f∂x (t, xu (t) , u (t)) − ∂f

∂x
(t, xv (t) , v (t))

∣∣∣∣ 2α
2−α

dt

]1−α
2

×
[
E

∫ T

0

|pv (t)|2 dt
]α

2

,

adding and subtracting ∂f
∂x

(t, xu, v) , then by using the Lipschitz continuity on ∂f
∂x

(t, xu, v)

in x and u (Assumption (H3)) and Lemma 1.3.2, we have

I1 ≤ Cdα (u(·), v (·)) .
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Using similar argument developed above, we can prove I2 + I3 ≤ Cdα (u(·), v (·)) . Then

we conclude

E

∫ T

0

|G (t)|α dt ≤ Cdα (u (·) , v (·)) . (2.11)

Finally, combining (2.10) and (2.11), the proof of Lemma 1.3.3 is complete �

Lemma 1.3.4 (Maximum principle for ε-optimality). For each ε > 0 there exists uε (·) ∈

U processes pε(t) and qε(t) such that, ∀u (·) ∈ U

E

∫ T

0

∂H

∂u
(t, xε, uε, pε(t), qε(t)) (u (t)− uε (t)) dt ≥ −Cελ, dt− a.e. (2.12)

Proof. Applying Ekeland’s variational principle with δ = ε1/2 there exists an admissible

control uε such that

(i) d (uε (·) , uε (·)) ≤ ε1/2,

(ii) J (uε (·)) ≤ J (u (·)) , for any u (·) ∈ U where

J̄ (u (·)) := J (u (·)) + ε1/2d (uε (·) , uε (·)) . (2.13)

Notice that uε (·) which is ε-optimal for the initial cost J is optimal for the new cost J

defined by (2.13).

Let us denote uε,θ (·) a perturbed control given by uε,θ(t) = uε(t) + θ (v (t)− uε (t)) . By

using the fact that

(i) J (uε (·)) ≤ J(uε,θ (·)), (ii) d(uε (·) , uε,θ (·)) ≤ Cθ, we get

J(uε,θ (·))− J(uε (·)) ≥ −ε1/2d(uε (·) , uε,θ (·)) ≥ −Cε1/2θ. (2.14)

Dividing (2.14) by θ and sending θ to zero we get

d

dθ

(
J(uε,θ (t))

) ∣∣∣
θ=0
≥ −Cε

1
2 ≥ −Cελ. (2.15)

37



Chapitre 2

Arguing as in [8] for the left hand side of inequality (2.15), the desired result follows �

Proof of Theorem 1.3.1.

First, for each ε > 0 by using Lemma 1.3.4, there exists uε (·) and Ft−adapted processes

pε(t) and qε(t) such that, ∀u(·) ∈ U :

E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t)) dt ≥ −Cελ, dt− a.e.

Now, to prove (3.11) it remains to estimate the following difference :

E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt

− E
∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt.

First, by adding and subtracting E
∫ T

0
∂H
∂u

(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt, we have

E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε(t))dt

− E
∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt

≤ E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (uε (t)− uε (t))dt

+ E

∫ T

0

(
∂H

∂u
(t, xε, uε, pε (t) , qε (t))− ∂H

∂u
(t, xε, uε, pε (t) , qε (t)))

× (u (t)− uε (t))dt

= I1 + I2,
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by using Schwarz inequality and the bounded of ∂H
∂u

in integral sense, we get

I1 ≤ E

∫ T

0

∣∣∣∣∂H∂u (t, xε, uε, pε (t) , qε (t))

∣∣∣∣ |(uε (t)− uεt)| dt

≤

[
E

{∫ T

0

∣∣∣∣∂H∂u (t, xε, uε, pε (t) , qε (t))

∣∣∣∣2 dt
}] 1

2 [
E

{∫ T

0

|(uε (t)− uεt)|
2 dt

}] 1
2

≤ Cd (uε(·), uε(·)) ≤ Cε
1
2 .

Let us turn to the second term, it holds that

I2 = E

∫ T

0

(
∂H

∂u
(t, xε, uε, pε (t) , qε (t)) − ∂H

∂u
(t, xε, uε, pε (t) , qε (t))

)
(u (t)− uε (t)) dt

= E

∫ T

0

[pε(t)
∂f

∂u
(t, xε(t), uε(t))− pε (t)

∂f

∂u
(t, xε (t) , uε (t))] (u (t)− uε (t)) dt

+ E

∫ T

0

[qε(t)
∂σ

∂u
(t, xε (t) , uε(t))− qε (t)

∂σ

∂u
(t, xε (t) , uε (t))] (u (t)− uε (t)) dt

+ E

∫ T

0

[
∂g

∂u
(t, xε (t) , uε(t))− ∂g

∂u
(t, xε (t) , uε (t))] (u (t)− uε (t)) dt

= J1 + J2 + J3.

We estimate the first term on the right hand side J1 by adding and subtracting pε (t) ∂f
∂u

(t, xε(t), uε(t))

then we have

J1 ≤ E
∫ T

0
|pε(t)− pε (t)|

∣∣∂f
∂u

(t, xε(t), uε(t)) (u (t)− uε (t))
∣∣ dt

+E
∫ T

0

∣∣∂f
∂u

(t, xε(t), uε(t)) − ∂f
∂u

(t, xε (t) , uε (t)))pε (t) (u (t)− uε (t))| dt.
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First, by adding and subtracting ∂f
∂u

(t, xε (t) , uε(t)) it holds that

J1 ≤ E
∫ T

0
|pε(t)− pε (t)|

∣∣∂f
∂u

(t, xεt , u
ε
t) (u (t)− uε (t))

∣∣ dt
+E

∫ T
0

∣∣∂f
∂u

(t, xε(t), uε(t))− ∂f
∂u

(t, xε (t) , uε(t))
∣∣ |pε (t) (u (t)− uε (t))| dt

+E
∫ T

0

∣∣∂f
∂u

(t, xε (t) , uε(t))− ∂f
∂u

(t, xε (t) , uε (t))
∣∣ |pε (t) (u (t)− uε (t))| dt

= J1
1 + J2

1 + J3
1.

Using Hölder inequality, the bounded of ∂f
∂u
, Lemma 1.3.2 and integral properties of ad-

missible controls, we obtain, for 1
γ

+ 1
α

= 1,

J1
1 ≤

[
E
{∫ T

0

∣∣∂f
∂u

(t, xε(t), uε(t)) (u (t)− uε (t))
∣∣γ dt}] 1

γ
[
E
{∫ T

0
|pε(t)− pε (t)|α dt

}] 1
α

≤ C
(
E
{∫ T

0
|pε(t)− pε (t)|α dt

}) 1
α

≤ C (dα (uε(·), uε(·)))
1
α ≤ Cε

1
2 .

To estimate the second term J2
1 we use assumption (H2), then we have

J2
1 ≤ CE

∫ T

0

|xε(t)− xε (t)|β |pε (t) (u (t)− uε (t))| dt,

using Hölder inequality, where 1
γ

+ 1
α

= 1 then a simple computations gets

J2
1 ≤ C

(
E

∫ T

0

|xε(t)− xε (t)|αβ |pε (t)|α
) 1

α
(
E

∫ T

0

|(u (t)− uε (t))|γ dt
) 1

γ

≤ C

(
E

∫ T

0

|xε(t)− xε (t)|αβ |pε (t)|α
) 1

α

,
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applying Hölder inequality for 1
2/(2−α)

+ 1
2/α

= 1 it holds that

J2
1 ≤ C

[(
E

∫ T

0

|xε(t)− xε (t)|
2αβ
2−α

) 2−α
α

×
(
E

∫ T

0

|pε (t)|α.
2
α

)α
2

] 1
α

≤ C
(
d

2αβ
2−α (uε(·), uε(·))

) 2−α
2
. 1
α ≤ Cελ.

Next by applying assumption (H2) and Hölder inequality then we can proceed to estimate

J3
1 as follows

J3
1 ≤ CE

∫ T

0

|uε(t)− uε (t)|β |pε (t)| |(u (t)− uε (t))| dt

≤ C

(
E

∫ T

0

|uε(t)− uε (t)|αβ |pε (t)|α dt
) 1

α
(
E

∫ T

0

|(u (t)− uε (t))|γ dt
) 1

γ

≤ C

((
E

∫ T

0

|uε(t)− uε (t)|
2αβ
2−α dt

) 2−α
2
(
E

∫ T

0

|pε (t)|α
2
α dt

) 2
α

) 1
α

≤ Cεβ.

Using similar arguments developed above for J2 and J3, then a simple computations we can

prove that I1 ≤ Cελ. Applying similar method developed above for I2 and I3 we conclude

E
∫ T

0
∂H
∂u

(t, xε, uε, pε(t), qε(t)) (u (t)− uε(t))dt

−E
∫ T

0
∂H
∂u

(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt ≤ Cελ.

(2.16)

Finally combining (2.12) and (2.16) the proof of Theorem 1.3.1 is complete. �

2.4 Sufficient conditions for ε-optimality

In this section, we will prove that under an additional hypothesis, the ε-maximum

condition on the Hamiltonian function is a sufficient condition for ε-optimality.

Theorem 1.4.2. Assume that H (t, ·, ·, pε(·), qε(·)) is convex for a.e. t ∈ [0, T ] , P − a.s,
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and h is convex. Let (uε(·), xε(·)) be a ε-optimal solution of the control problem (2.1)-(3.2)

and (pε (t) , qε (t)) be the solution of the adjoint equation associated with uε(·). If for some

ε > 0 and for any u(·) ∈ U :

E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε(t))dt ≥ −Cελ, (2.17)

then uε(·) is an ε-optimal control of order ελ, i.e.,

J (uε(·)) ≤ inf
v(·)∈U

J (v(·)) + Cελ,

where C is a positive constant independent from ε.

Proof. Let uε(·) be an arbitrary element of U (candidate to be ε−optimal) and xε(·) is

the corresponding trajectory. For any v(·) ∈ U and its corresponding trajectory xv(·), we

have
J (uε(·))− J (v(·)) = E

∫ T
0

(g (t, xε (t) , uε (t))− g (t, xv (t) , v (t))) dt

+E [h (xε (T ))− h (xv (T ))] .

Since h is convex, we have

J (uε(·))− J (v(·))

≤ E [hx (xε (T )) (xε (T )− xv (T ))] + E

∫ T

0

(g (t, xε (t) , uε (t))− g (t, xv (t) , v (t))) dt,

replacing hx (xε(T )) with its value, see (3.4) we have

J (uε(·))− J (v(·)) ≤ E [pε (T ) (xε (T )− xv (T ))]

+E
∫ T

0
(g (t, xε (t) , uε (t))− g (t, xv (t) , v (t))) dt.

(2.18)

On the other hand, by applying Itô’s formula to pε (T ) (xε (T )− xv (T )) , and by taking
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expectation, we obtain

E [pε (T ) (xε (T )− xv (T ))]

= E
∫ T

0
(H (t, xε (t) , uε (t) , pε (t) , qε (t))−H (t, xv (t) , v, pε (t) , qε (t)))dt

−E
∫ T

0
∂H
∂x

(t, xε (t) , uε (t) , pε (t) , qε (t)) (xε (t)− xv (t)) dt

−E
∫ T

0
(g (t, xε (t) , uε (t))− g (t, xv (t) , v (t))) dt,

(2.19)

then by combining (2.18) and (2.19) we have

J (uε(·))− J (v(·)) ≤ E
∫ T

0
(H (t, xε, uε, pε (t) , qε (t))−H (t, xv, v, pε (t) , qε (t)))dt

−E
∫ T

0
∂H
∂x

(t, xε, uε, pε (t) , qε (t)) (xε (t)− xv (t)) dt.

(2.20)

Since H is convex in (x, u) we obtain

H (t, xε, uε, pε (t) , qε (t))−H (t, xv, v, pε (t) , qε (t))

≤ ∂H
∂x

(t, xε, uε, pε (t) , qε (t)) (xε (t)− xv (t))

+∂H
∂u

(t, xε, uε, pε (t) , qε (t)) (uε (t)− v (t)) ,

then by using the necessary optimality conditions (2.17), it follows that

Cελ ≥ H (t, xε, uε, pε (t) , qε (t))−H (t, xv, v, pε (t) , qε (t))

−∂H
∂x

(t, xε, uε, pε (t) , qε (t)) (xε (t)− xv (t)) .

(2.21)

Finally combining (2.20) and (2.21) the desired result follows. �
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2.5 Application : linear quadratic control problem

In this section, we consider a linear quadratic control problem as a particular case of

our control problem. First, we restrict ourselves to the one dimensional case. We assume

that T = 1 and the convex control domain be U = [0, 1] , f(t, x (t) , u (t)) = −u (t) ,

σ(t, x (t) , u (t)) = u (t) , g(t, x (t) , u (t)) = 1
2
u2 (t) and h(x (t)) = x (t).

Consider the following stochastic control problem


dx (t) = −u (t) dt+ u (t) dW (t) ,

x(0) = 1
2
,

(2.22)

and the cost functional being

J (u(·)) = E

{
x(1) +

∫ 1

0

1
2
u2 (t) dt

}
. (2.23)

The Hamiltonian function gets the form

H (t, x, u, p (t) , q (t)) = (q (t)− p (t))u+
1

2
u2, (2.24)

and the corresponding adjoint equation is given as follows

− dp (t) = q (t) dW (t) , p(1) = 1. (2.25)

It is clear that (p (t) , q (t)) = (1, 0) is the only unique adapted solution to (2.25). Moreover,

the Hamiltonian function has the form

H (t, x, u, p (t) , q(t)) = −u+
1

2
u2. (2.26)

If the admissible control uε(·) is ε−optimal in the sense that J (uε (·)) ≤ infu(·)∈U J (u (·))+
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ε, then by applying Theorem 1.3.1, we obtain for any u ∈ [0, 1] .

E

∫ 1

0

(uε (t)− 1) (u (t)− uε (t)) dt ≥ −Cελ. (2.27)

For example, a simple computation shows that the admissible control uε (t) = 1−ε, satisfies

the above inequality, where ε > 0 is sufficiently small. Conversely, for the sufficient part,

let uε (t) = 1−ε which satisfy (3.51) candidate to be ε-optimal. Since H is convex in u and

by using Theorem 1.4.2 it follows that uε (t) satisfies inequality (3.51), which means that

uε(·) is ε-optimal for our control problem (3.45)-(3.46), and its corresponding trajectory

is

xε (t) =
1

2
− (1− ε)t+ (1− ε)W (t) .

2.6 Concluding remarks and future research

In this chapter, necessary and sufficient conditions for near-optimal control with ελ−error

bound for SDEs have been established. Linear quadratic control problem has been stu-

died to illustrate our theoretical results. If we assume that ε = 0, our maximum principle

(Theorem 1.3.1 ) reduces to maximum principle of optimality developed in Benssoussan

[8].

An open questions are to establish necessary and sufficient conditions for near-optimality

with ελ−error bound for SDEs with impulse control, Linear quadratic stochastic control

with ελ−error bound for SDEs with impulse and SDEs with random jumps. We will work

for this interesting issue in the future research.
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CHAPITRE-III
Partial information optimal control of mean-field

forward-backward stochastic system driven by Teugels
martingales with applications
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Partial information optimal control of

mean-field forward-backward stochastic

system driven by Teugels martingales

with applications

Abstract. In this chapitre, we consider the partial information optimal control of a mean-

field forward-backward stochastic systems (FBSDEs), driven by orthogonal Teugels mar-

tingales associated with some Lévy processes having moments of all orders, and an inde-

pendent Brownian motion. We establish necessary and sufficient conditions of optimality

by applying convex variation method and duality techniques. As an application, we study

a partial information mean-variance portfolio selection problem, driven by Teugels mar-

tingales associated with Gamma process, where the explicit optimal portfolio strategy is

derived in feedback form.

Keywords. Stochastic process. Optimal control. Teugels martingales. Lévy processes. Partial
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information. Mean-field forward-backward stochastic system. Convex variation method. feedback

control.

AMS Subject Classification : 60H10, 93E20.

3.1 Introduction

We study partial information optimal control for mean-field forward-backward stochastic

differential equation (MF-FBSDEs), driven by Teugels martingales associated with some

Lévy processes having moments of all orders and an independent Brownian motion of the

form :

dxv(t) = b(t, xv(t), E(xv(t)), v(t))dt

+
d∑
j=1

σj(t, xv(t), E(xv(t)))dW j(t)

+
∞∑
j=1

gj(t, xv(t−), E(xv(t−)), v(t))dHj(t)

dyv(t) = −f(t, xv(t), E(xv(t)), yv(t), E(yv(t)),

zv(t), E(zv(t)), qv(t), E(qv(t)), v(t))dt (3.1)

+
d∑
j=1

zv,j(t)dW j(t) +
∞∑
j=1

qv,j(t−)dHj(t)

xv(0) = x0, y
v(T ) = h(xv(T ), E(xv(T ))),

where H(t) = (Hj(t))j≥1 are pairwise strongly orthonormal Teugels martingales, asso-

ciated with some Lévy processes having moments of all orders, W (·) is a standard d-

dimensional Brownian motion, and b, f, σ, g and h are given maps.
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The criteria to be minimized associated with the state equation (2.1) is defined by

J (v(·))

:= E

{∫ T

0

`(t, xv(t), E(xv(t)), yv(t), (3.2)

zv(t), E(zv(t)), qv(t), E(qv(t)), v(t))dt

+ φ(xv(T ), E(xv(T ))) +ϕ(yv(0), E(yv(0)))} ,

where `, φ, and ϕ are an appropriate functions.

Noting that the Teugels martingales H(t) = (Hj(t))j≥1 are a natural martingales,

which generate the Hilbert space of square integrable martingales, with respect to the

natural filtration of a Lévy process having moments of all orders. The MF-FBSDE asso-

ciated with Lévy processes (2.1) occur naturally in the probabilistic analysis of financial

optimization problems.

Partial information or incomplete information means that the information available to

the controller is possibly less than the whole information. That is, any admissible control

is adapted to a subfiltration (Gt)t of (Ft)t. This kind of problem, which has potential ap-

plications in mathematical finance and mathematical economics, arises naturally, because

it may fail to obtain an admissible control with full information in real world applications.

The stochastic systems related to Lévy processes have been investigated by many au-

thors. For example, [62, 64, 68, 87, 89, 70, 71, 9, 55, 35, 29]. In Meng and Tang [62]

the authors investigated the general stochastic optimal control problem for the stochastic

systems driven by Teugels martingales and an independent multi-dimensional Brownian

motion and recently, they prove the corresponding stochastic maximum principle. Optimal

control problem for a backward stochastic control systems associated with Lévy processes

under partial information has been studied in Meng, Zhang and Tang [64]. The stochastic

linear-quadratic problem with Lévy processes was studied by Mitsui and Tabata [68] and

Tang and Wu [87]. Optimal control of BSDEs driven by Teugels martingales have been
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studied in Tang and Zhang [89]. Backward stochastic differential equations and Feynman-

Kac formula for Lévy processes, with applications in finance have been investigated in

Nualart and Schoutens [70]. A predictable representations for Lévy processes with recent

examples have been studied in Nualart and Schoutens [71], where the authors proved a

martingale representation theorem for Lévy processes satisfying some exponential moment

condition. We refer the readers to [70, 71, 9] for Lévy processes, Teugels martingales with

some examples. Maximum principle for anticipated recursive stochastic optimal control

problem with delay and Lévy processes has been proved in Li and Wu [55]. Partial infor-

mation maximum principle for mean-field SDEs, driven by Teugels martingales associated

with Lévy processes has been proved in Hafayed, Abbas and Abba [35]. Necessary and

sufficient conditions for optimal singular control for mean-field systems driven by Teugels

martingales have been established in Hafayed, Abba and Abbas [29].

Maximum principle for forward-backward stochastic control system with random jumps

and application to finance has been obtained in Shi and Wu [?]. The general stochastic

maximum principle for fully coupled controlled FBSDEs has been studied by Yong [97]

and Wu [93]. Partial information maximum principle for BSDEs with application has been

studied in Huang, Wang and Xiong [47]. A maximum principle for optimal control problem

of fully coupled forward-backward stochastic systems with partial information has been

studied by Meng [63]. A good account and an extensive list of references on stochastic

optimal control for FBSDEs can be found in [97, 93, 58].

Mean-field maximum principle for optimal stochastic control has been investigated by

many authors, see for instance, [31, 24, 26, 12, 5, 54, 80, 79]. Second order necessary

and sufficient conditions of near-optimal singular control for mean-field SDE have been

established in Hafayed and Abbas [31] The maximum principle for optimal control of mean-

field FBSDEJs has been studied in Hafayed [24]. Singular optimal control for MF-FBSDEs

and applications to finance have been investigated in Hafayed [26]. A general maximum

principle was introduced for a class of stochastic control problems involving SDEs of mean-
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field type in [12]. Under the conditions that the control domains are convex, a various

local maximum principle have been studied in [5, 54]. Necessary and sufficient conditions

for controlled jump diffusion with recent application in bicriteria mean-variance portfolio

selection problem have been proved in Shen and Siu [80]. Recently, maximum principle

for mean-field jump-diffusions stochastic delay differential equations and its applicationt

to finance have been investigated in Yang, Meng and Shi [79]. Under partial information,

mean-field type stochastic maximum principle for optimal control has been investigated

in Wang, Zhang and Zhang [91]. A novel approach to feedback control of fuzzy stochastic

systems has been developed in Su, Wu, Shi, and Song [86]. A study on feedback control

of markovian jump has been proved in Wu, Su and Shi [92].

Our purpose in this paper is to establish necessary as well as sufficient conditions for

optimal stochastic control of systems governed by MF-FBSDEs, driven by Teugels mar-

tingale associated with Lévy processes having moments of all orders, where the coefficient

of the system and the performance functional depend not only on the state process but

also its marginal law of the state process through its expected value. As an application, we

study a partial information mean-variance portfolio selection problem driven by Teugels

martingales associated with Gamma process as Lévy process of bounded variation.

The rest of this paper is organized as follows. In section 2, we formulate the control

problem and describe the assumptions of the model. In section 3 and 4, we establish the

necessary and sufficient conditions of optimality. To illustrate our theoretical result, an

application to finance is given in the section 5. Finally, Section 6 concludes the paper.

3.2 Problem Formulation and Preliminaries

In this paper, we study stochastic optimal control problems of MF-FBSDEs associated with

Lévy processes. Let (Ω,F , (Ft)t∈[0,T ] , P ) be a fixed filtered probability space equipped with

a P−completed right continuous filtration on which a d−dimensional Brownian motion
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W (·) := (W (t))t is defined. Let L(·) := {(L(t)) : t ∈ [0, T ]} be a R-valued Lévy process,

independent of the Brownian motion W (·), of the form L(t) = bt + λ(t), where λ(t) is

a pure jump process. Assume that the Lévy measure µ(dθ) corresponding to the Lévy

process λ(t) satisfies :

1. There exist γ > 0 such that for every δ > 0 :
∫

(−δ,δ) exp (γ |θ|)µ(dθ) <∞.

2.
∫
R(1 ∧ θ2)µ(dθ) <∞.

It is known that the law of L(t) is infinitely divisible with characteristic function of the

form E(exp(izL(t))) = (ϕ(z))t where ϕ(z) is the characteristic function of L(t).We assume

that Ft is P−augmentation of the natural filtration (F (W,L)
t )t∈[0,T ] defined as follows

F (W,L)
t := FWt ∨ σ {L(s) : 0 ≤ s ≤ t} ∨ F0,

where FWt := σ {W (s) : 0 ≤ s ≤ t} , F0 denotes the totality of P−null sets, and F1 ∨ F2

denotes the σ-field generated by F1 ∪ F2. Let Gt be a subfiltration of Ft : t ∈ [0, T ]

Definition 1.1. Let T > 0 be a fixed strictly positive real number and U be a nonempty

compact convex subset of Rk. An admissible control is defined as a function v(·) : [0, T ]×

Ω → U which is Ft-predictable, E
∫ T

0
|v(t)|2 dt < ∞ such that the equation (2.1) has a

unique solution. We denote UG ([0, T ]) .

An admissible control v∗(·) is called optimal if it satisfies

J (v∗(·)) := inf
v(·)∈UG([0,T ])

J (v(·)) . (3.3)

The jumps of xv(t) caused by the Lévy martingales is the power jump processes defined

by 
L(k)(t) :=

∑
0<τ≤t (∆L(τ))k : k > 1

L(1)(t) := L(t),

where ∆L(t) = L(t) − L(t−), and L(t−) = lims→t,s<t L(s), t > 0. Moreover, we define the
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continuous part of L(k)(t) by

L
(c)
(k)(t) := L(k)(t)−

∑
0<τ≤t

(∆L(τ))k : k > 1,

i.e., the process obtained by removing the jumps of L(t). If we define

N(k)(t) := L(k)(t)− E
{
L(k)(t)

}
: k ≥ 1.

Now, the jumps of xv(t), and yv(t) caused by the Lévy martingales ∆Lx
v(t) is defined by

∆Lx
v(t) := g(t, xv(t−), E[xv(t−)], v(t))∆L(t).

∆Ly
v(t) :=

∞∑
j=1

qv,j(t−)∆Lj(t).

The family of Teugels martingales (Hj(·))j≥1 is defined by

Hj(t) :=
∑

1<k≤j

αjkNk(t),

where the coefficients αjk associated with the orthonormalization of the polynomials

{1, x, x2, ...} with respect to the measurem(dx) = x2µ(dx)+σ2δ0(dx). The Teugels martin-

gales (Hj(·))j≥1 are pathwise strongly orthogonal and their predictable quadratic variation

processes are given by 〈H i(t), Hj(t)〉 = δijt.We refer the readers to Nualart and Schoutens

[71] for some other relevant results and practical examples of Lévy processes and Teugles

martingales.

For convenience, we will use the following notation in this paper.

— l2 : denotes the Hilbert space of real-valued sequences x = (xn)n≥0 such that

‖x‖ :=

[
∞∑
n=1

xn

]2

<∞,
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and l2 (Rn) : the space of Rn-valued (fn)n≥1 such that

‖f‖l2(Rn) :=

[
∞∑
n=1

‖fn‖2
Rn

] 1
2

<∞.

— L2
F ([0, T ] ;Rn) denotes the Banach space of Ft−predictable processes f = {fn(t, w) : (t, w) ∈ [0, T ]× Ω, n = 1, ...,∞}

such that

‖f‖L2
F ([0,T ];Rn) := E

(∫ T

0

∞∑
n=1

‖fn‖2
Rn dt

) 1
2

<∞.

— M2
F ([0, T ] ;Rn) denotes the space of all Rn−valued and Ft−adapted processes f =

{f(t, w) : (t, w) ∈ [0, T ]× Ω} such that

‖f‖M2
F ([0,T ];Rn) := E

(∫ T

0

‖f(t)‖2
Rn dt

) 1
2

<∞.

— S2
F ([0, T ] ;Rn) denotes the Banach space of Ft−adapted and cadlag processes f =

{f(t, w) : (t, w) ∈ [0, T ]× Ω} such that

‖f‖S2F ([0,T ];Rn) := E( sup
0≤t≤T

‖f‖Rn)
1
2 <∞.

— L2 (Ω,F , P,Rn) the Banach space of Rn-valued, square integrable random variables

on (Ω,F , P ).

— Mn×m(R) denotes the space of n×m real matrices.

— For a differentiable function f, we denote by fx(t) its gradient with respect to the

variable x.

— 1A(·) denotes the indicator function on the set A.
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In this paper, we assume : for σ ≡ (σj)
d
j=1 and g ≡ (gj)

∞
j=1

b : [0, T ]× Rn × Rn × U −→ Rn,

σ : [0, T ]× Rn × Rn × U −→Mn×d(R),

g : [0, T ]× Rn × Rn × U −→ l2 (Rn) ,

f : [0, T ]× Rn × Rn × Rn × Rn × Rn×d

× Rn×d × l2 (Rn)× U −→ Rn,

` : [0, T ]× Rn × Rn × Rn × Rn × Rn×d

× Rn×d × l2 (Rn)× U −→ R,

h : Rn × Rn −→ R.

φ : Rn × Rn −→ R.

ϕ : Rn × Rn −→ R.

Assumptions (H1) The functions b, σ, g, f, `, h, φ, ϕ are continuously differentiable in

their variables including (x, x̃, y, ỹ, z, z̃, q, q̃, v). The terminal value yT ∈ l2F ([0, T ] ;Rn) and

|`| ≤ C(1 + |x|2 + |x̃|2 + |y|2 + |ỹ|2

+ |z|2 + |z̃|2 + |q|2 + |q̃|2 + |v|2).

|φ| ≤ C(1 + |x|2 + |x̃|2),

|ϕ| ≤ C(1 + |y|2 + |ỹ|2),

Assumptions (H2) (1) The derivatives of b, σ, g and f with respect to their variables

including (x, x̃, y, ỹ, z, z̃, q, q̃, v) are continuous and bounded.

(2) The derivatives ϕy, ϕỹ are bounded by C (1 + |y|+ |ỹ|), the derivatives φx, φx̃, hx, and
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hx̃are bounded by C (1 + |x|+ |x̃|) and

|`x|+ |`x̃|+ |`y|+ |`ỹ|+ |`z|+ |`z̃|+ |`q|+ |`q̃|

≤ C(1 + |x|+ |x̃|+ |y|+ |ỹ|+ |z|+ |z̃|+ |q|+ |q̃|+ |v|).

(3) For all t ∈ [0, T ] , b(·, 0, 0, 0) ∈ L2
F ([0, T ] ;Rn) , f(·, 0, 0, 0, 0, 0, 0, 0, 0) ∈ L2

F ([0, T ] ;Rn) ,

g(·, 0, 0, 0) ∈ L2
F ([0, T ] ;Rn) , σ(·, 0, 0, 0) ∈M2

F
(
[0, T ] ;Rn×d) .

Under assumptions (H1)∼(H2), with Lemma 2.1 in Meng and Tang [62] and Lemma 2.3 in

Tang and Zhang [89], Eq-(2.1) admits a unique strong solution (xv (·) , yv (·) , zv (·) , qv(·)) ∈

Rn × Rn ×Mn×d(R)× l2 (Rn) such that

xv(t) = x0 +

∫ t

0

b(s, xv(s), E(xv(s)), v(s))ds

+
d∑
j=1

∫ t

0

σj(s, xv(s), E(xv(s)))dW j(s)

+
∞∑
j=1

∫ t

0

gj(t, xv(s−), E(xv(s−)), v(t))dHj(s),

and for t ∈ [0, T ]

yv(t) = yT −
∫ T

t

f(s, xv(s), E(xv(s)), yv(s),

E(yv(s)), zv(s), E(zv(s)), qv (t) , v(s))ds

+
d∑
j=1

∫ T

t

zv,j(s)dW j(s) +
∞∑
j=1

∫ T

t

qv,j(s)dHj(s),

First-order adjoint process. Let us introduce the adjoint equations involved in the sto-

chastic maximum principle for the control problem (2.1)-(3.2). For simplicity of nota-

tions, we will still use fx(t) := fx(t, x
v(·), E(xv(·)), v(·)), etc. So for any admissible control

v(·) ∈ UG ([0, T ]) and the corresponding state trajectory (xv (·) , yv (·) , zv (·) , qv(·)) :=
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(x (·) , y (·) , z (·) , q(·)), we consider the following adjoint equations of mean-field type :



−dΦv(t) = {bx(t)Φv(t) + E[bx̃(t)Φ
v(t)]

+
∑d

j=1 σ
j
x(t)Q

v,j(t) + E[
∑d

j=1 σ
j
x̃(t)Q

v,j(t)]

+
∑∞

j=1 g
j
x(t)G

v,j(t) + E[
∑∞

j=1 g
j
x̃(t)G

v,j(t)]

−fx(t)Kv(t)− E[fx̃(t)K
v(t)]

+`x(t) + E[`x̃(t)]}dt

−
∑d

j=1 Q
v,j(t)dW j(t)−

∑∞
j=1G

v,j(t)dHj(t),

dKv(t) = [fy(t)K
v(t) + E[fỹ(t)K

v(t)]

−`y(t)− E[`ỹ(t)]]dt

+
∑d

j=1[fzj(t)K
v(t) + E[fz̃j(t)K

v(t)]

−`zj(t)− E[`z̃j(t)]]dW
j(t)

+
∑∞

j=1[fqj(t)K
v(t) + E[fq̃j(t)K

v(t)]

−`qj(t)− E[`q̃j(t)]]dH
j(t)

Φv(T ) = − [hx(T )Kv(T ) + E(hx̃(T )Kv(T ))]

+φx(x(T )) + E [φx̃(x(T ))] ,

Kv(0) = −{ϕy(y(0), E[(y(0)))

+E [ϕỹ(y(0), E(y(0)))]}.

(3.4)

We define the Hamiltonian function H : [0, T ] × Rn × Rn × Rn ×Rn × Rn×m × Rn×m

×l2(Rn) ×l2(Rn) × U × Rn × Rn × Rn×d × l2(Rn) → R, associated with the stochastic
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control problem (2.1)-(3.2) as follows

H (t, x, x̃, y, ỹ, z, z̃, q, q̃, v,Φ(·), Q(·), G(·), K(·))

:= Φ(t)b (t, x, x̃, v) +
∑d

j=1Q
j(t)σj (t, x, x̃, v)

+
∑∞

j=1 G
j(t)gj (t, x, x̃, v)−K(t)f(t, x, x̃, y, ỹ, q, q̃, z, z̃, v)

+`(t, x, x̃, y, ỹ, q, q̃, z, z̃, v).

(3.5)

If we denote by H(t) := H (t, x, x̃, y, ỹ, z, z̃, q, q̃, v,Φ(·), Q(·), G(·), K(·)) , then the adjoint

equation (3.4) can be rewritten as the following stochastic Hamiltonian system :



−dΦv(t) = [Hx(t) + E[Hx̃(t)]] dt−
∑d

j=1 Q
v,j(t)dW j(t)

−
∑∞

j=1G
v,j(t)dHj(t),

dKv(t) = −(Hy(t) + E[Hỹ(t)])dt

−
∑d

j=1(Hj
zj

(t) + E[Hj
z̃j

(t)])dW j(t)

−
∑∞

j=1(Hj
qj

(t) + E[Hj
q̃j

(t)])dHj(t),

Φv(T ) = − [hx(T )Kv(T ) + E(hx̃(T )K(T ))]

+ φx(T ) + E [φx̃(T )] ,

Kv(0) = −ϕy(y(0), E[y(0)]) + E [ϕỹ(y(0), E(y(0)))] ,

(3.6)

where

Hj(t) := H
(
t, x, x̃, y, ỹ, zj, z̃j, qj, q̃j, v,Φ(·), Q(·), G(·), K(·)

)
. (3.7)

It is well known fact that under assumptions (H1) and (H2), the adjoint equations (3.4)

or (3.6) admits a unique solution such that (Φ(t), Q(t), G(t), K(t)) ∈ S2
F([0, T ] ;Rn) ×

L2
F([0, T ] ;Rn×d) ×l2F([0, T ] ;Rn)× S2

F([0, T ] ; Rn). The solution (Φ(t), Q(t), G(t), K(t)) to

the above MF-FBSDEs (3.6) and (3.4) is called the first-order adjoint process.
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3.3 Necessary conditions for optimal control of MF-

FBSDEs with Teugels martingale

In this section, we establish a maximum principle of optimal control, where the control

system is governed by MF-FBSDEs driven by orthogonal Teugels martingales associated

with some Lévy processes having moments of all orders. In addition to the assumptions

in Section 2, we need to make the following assumptions :

Assumptions (H3)

(1) For all t, r such that 0 ≤ t ≤ t+ r ≤ T, all i = 1, ..., k and all bounded Gt−measurable

α = α(w), the control β(t) = (0, ..., 0, βi(t), 0, ..., 0) ∈ U, with

βi(s) = αiI[t,t+r](s), s ∈ [0, T ] ,

belong to UG ([0, T ]) .

(2) For all v(·), β (·) ∈ UG ([0, T ]) with β (·) bounded, there exist δ > 0 such that v(·) +

εβ(·) ∈ UG ([0, T ]) for all ε ∈ (−δ, δ) .

Now, for a given v(·), β(·) ∈ UG ([0, T ]) with β bounded, we define

X1(t) = Xv∗,β
1 (t) :=

d

dε
xv
∗+εβ(t) |ε=0,

Y1(t) = Y v∗,β
1 (t) :=

d

dε
yv
∗+εβ(t) |ε=0,

Z1(t) = Zv∗,β
1 (t) :=

d

dε
zv
∗+εβ(t) |ε=0, (3.8)

Q1(t) = Qv∗,β
1 (t) :=

d

dε
qv
∗+εβ(t) |ε=0,

Note that the process (X1(·), Y1(·), Z1(·), Q1(·)) satisfies the following MF-FBSDEs, na-
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mely variational equations, driven by both Brownian motion and Teugels martingales



dX1(t) = [bx(t)X1(t) + bx̃(t)E(X1(t)) + bv(t)β(t)] dt

+
∑d

j=1[σjx(t)X1(t) + σjx̃(t)E(X1(t)) + σjv(t)β(t)]dW j(t)

+
∑∞

j=1[gjx(t)X1(t) + gjx̃(t)E(X1(t)) + gjv(t)β(t)]dHj(t),

dY1(t) = [fx(t)Y1(t) + fx̃(t)E(Y1(t)) + fv(t)β(t)]dt

+
∑d

j=1 Z
,j
1 (t)dW (t) +

∑∞
j=1 Q

,j
1 (t)dH(t),

X1(0) = 0, Y1(T ) = [hx(x(T ), E(x(T )))

+E(hx̃(x(T ), E(x(T )))]X1(T ).

(3.9)

The main result of this section is stated in the following theorem.

Theorem 1. Let v∗(·) be a local minimum for the cost functional J over UG([0, T ]), in the

sense that for all bounded β(·) ∈ UG([0, T ]), there exist δ > 0 such that (v∗(·) + εβ(·)) ∈

UG([0, T ]) for all ε ∈ (−δ, δ) and

Ψ(ε) := J(v∗(·) + εβ(·)), for all ε ∈ (−δ, δ), (3.10)

is minimal at ε = 0.

Let (x∗(·), y∗(t), z∗(t), q∗(t)) be the solution of the MF-FBSDEs-(2.1) corresponding to

v∗(·). Let assumptions (H1)-(H3) hold. Then there exists a unique adapted process (Φ∗(·), Q∗(·), G∗(·), K∗(·))

solution of adjoint equation (3.4) corresponding to v∗(·), such that v∗(·) is a stationary

point for E [H | Gt] in the sense that for almost all t ∈ [0, T ] , we have

E [Hv(t, ψ
∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t), G∗(t), K∗(t)) | Gt] = 0, a.e., t ∈ [0, T ] ,

(3.11)

where (ψ∗(t), E(ψ∗(t))) := (x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), q∗(t), E(q∗(t))).

To prove Theorem 1, we need the following Lemma, which deals with the duality
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relations between Φ∗(t), X1(t), and K∗(t), Y1(t).

Lemma 1. By applying Itô’s formula to Φ∗(t)X1(t), K∗(t)Y1(t) and take expectation, we

get

E (Φ∗(T )X1(T )) + E (K∗(T )Y1(T ))

= −E {[ϕy (0) + E (ϕỹ (0))]Y1(0)} − E
∫ T

0

{X1(t)[`x(t) + E(`x̃(t)]

+ Y1(t)[`y(t) + E(`ỹ(t)] + Z1(t)[`z(t) + E(`z̃(t)] +Q1(t)[`q(t) + E(`q̃(t)]

+`v(t)β(t)} dt+ E

∫ T

0

Hv(t)β(t)dt

Proof. By applying Itô’s formula to Φ∗(t)X1(t) and take expectation, we get

E(Φ∗(T )X1(T ))

= E
∫ T

0
Φ∗(t)dX1(t) + E

∫ T
0
X1(t)dΦ∗(t)

+E
∫ T

0

∑d
j=1Q

j∗(t)[σjx(t)X1(t) + σjx̃(t)E (X1(t))

+σjv(t)β(t)]dt+ E
∫ T

0

∑∞
j=1 G

j∗(t)[gjx(t)X1(t) + gjx̃(t)E (X1(t))

+gjv(t)β(t)]dt

= I1 + I2 + I3 + I4,

(3.12)

where
I1 = E

∫ T
0

Φ∗(t)dX1(t)

= E
∫ T

0
Φ∗(t)[bx (t)X1(t) + bx̃ (t)E(X1(t))

+ bv(t)β(t)]dt

= E
∫ T

0
Φ∗(t)bx (t)X1(t) + E

∫ T
0

Φ∗(t)bx̃ (t)E(X1(t))

+E
∫ T

0
Φ∗(t)bv(t)β(t))dt.

(3.13)

61



Chapitre 3

By simple computations, we get

I2 = E
∫ T

0
X1(t)dΦ∗(t)

= −E
∫ T

0
X1(t) {bx (t) Φ∗(t) + E (bx̃ (t) Φ∗(t))

+
∑d

j=1(σjx (t)Qj∗(t) + E(σjx̃ (t)Qj∗(t)))

+
∑∞

j=1(gjx (t)Gj∗(t) + E[gjx̃ (t)Gj∗(t)])

− fx(t)Kv(t)− E(fx̃(t)K
v(t)) +`x(t) + E[`x̃(t)]} dt

(3.14)

I3 = E
∫ T

0

∑d
j=1 Q

j∗(t)[σjx(t)X1(t) + σjx̃(t)E (X1(t)) + σjv(t)β(t)]dt

= E
∫ T

0

∑d
j=1 Q

j∗(t)σjx(t)X1(t)dt

+ E
∫ T

0

∑d
j=1Q

j∗(t)σjx̃(t)E (X1(t)) dt+ E
∫ T

0

∑d
j=1 Q

j∗(t)σjv(t)β(t)dt,

(3.15)

and

I4 = E
∫ T

0

∑d
j=1G

j∗(t)[gjx(t)X1(t) + gjx̃(t)E (X1(t)) + gjv(t)β(t)]dt

= E
∫ T

0

∑d
j=1G

j∗(t)gjx(t)X1(t)dt+ E
∫ T

0

∑d
j=1 G

j∗(t)gjx̃(t)E (X1(t)) dt

+E
∫ T

0

∑d
j=1G

j∗(t)gjv(t)β(t)dt.

(3.16)

Combining (3.12)∼(3.16), we get



E(Φ∗(T )X1(T ))

= E
∫ T

0
Φ∗(t)bv(t)β(t))dt+ E

∫ T
0

∑d
j=1Q

j∗(t)σjv(t)β(t)dt

+E
∫ T

0

∑∞
j=1G

j∗(t)gjv(t)β(t)dt− E
∫ T

0
X1(t)(`x (t) + E (`x̃ (t)))dt

−E
∫ T

0
X1(t)[fx (t)K(t))dt− E(fx (t)K(t))]dt

(3.17)
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Similarly, by applying Itô’s formula to K∗(t)Y1(t) and take expectation, we get

E (K∗(T )Y1(T ))

= −E {[ϕy (y(0), E(y(0))) + E (ϕỹ (y(0), E(y(0))))]Y1(0)}

+E
∫ T

0
{K∗(t)fx(t)X1(t) +K∗(t)fx̃(t)E (X1(t))

+K∗(t)fv(t)β(t))− Y1(t)[`y(t) + E(`ỹ(t))]

−Z1(t)[`z(t) + E(`z̃(t))]− Q1(t)[`q(t) + E(`q̃(t)]} dt

(3.18)

combining (3.17) and (3.18), the desired result (??) follows. This completes the proof of

Lemma 1. �

Proof of Theorem 1. From (3.10), we have

0 = d
dε

Ψ(ε) |ε=0= d
dε
J(v∗(t) + εβ(t)) |ε=0

= E
[∫ T

0
`x(t)X1(t) + `x̃(t)E(X1(t)) + `y(t)Y1(t) + `ỹ(t)E(Y1(t))

+ `z(t)Z1(t) + `z̃(t)E(Z1(t)) + `q(t)Q1(t) + `q̃(t)E(Q1(t))

+
∫ T

0
`v(t)β(t)

]
dt+ E[φx(x

∗(T ), E(x∗(T )))X1(T )

+ φx̃(x
∗(T ), E(x∗(T )))E(X1(T ))]

+ E[ϕy(y
∗(0), E(y∗(0)))Y1(0) + ϕỹ(y

∗(0), E(y∗(0)))E(Y1(0))].

(3.19)

Now, from (3.19) and Lemma 1, we obtain

E

∫ T

0

[Φ∗(t)bv(t) +
d∑
j=1

Qj∗(t)σjv (t) +
d∑
j=1

Gj∗(t)gjv(t) +K(t)fv(t) + `v(t)]β(t)dt = 0,

From (3.5), we obtain

E

∫ T

0

Hv(t, ψ
∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t), G∗(t), K∗(t))β(t)dt = 0. (3.20)
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Now, fix t ∈ [0, T ] and apply the above to β(s) = (0, ..., βi(s), ..., 0), where βi(s) =

αi1[t,t+r](s), s ∈ [0, T ], t + r ≤ T and αi = αi(w) is bounded, Gt−measurable. Then

from (3.20), we get

E

∫ t+r

t

Hvi(s, ψ
∗(s), E(ψ∗(s)), v∗(s),Φ∗(s), Q∗(s), G∗(s), K∗(s))αi(w)ds = 0,

by differentiating (3.21) with respect to r at r = 0 we have

E[Hvi(s, ψ
∗(s), E(ψ∗(s)), v∗(s),Φ∗(s), Q∗(s), G∗(s), K∗(s))αi] = 0. (3.21)

Since (3.21) holds for all bounded Gt−measurable αi, we have

E[Hv(t, ψ
∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t), G∗(t), K∗(t)) | Gt] = 0. a.e., t ∈ [0, T ] .

This completes the proof of Theorem 1 �

3.4 Sufficient conditions for optimal control of MF-FBSDEs

with Teugels martingale

Our purpose of this section is to derive partial information sufficient conditions for op-

timal control, where the system is governed by the MF-FBSDEs-(2.1) driven by Teugels

martingales associated with some Lévy processes and an independent Brownian motion.

We prove that under some additional assumptions, the necessary condition (3.11) is a

sufficient condition for optimality.

Assumptions (H4). We assume :

(1) The functional H(t, ·, ·, ·, ·, ·, ·, ·, ·, ·,Φ∗(t), Q∗(t), G∗(t), K∗(·)) is convex with respect

to (x, x̃, y, ỹ, z, z̃, q, q̃, v) for a.e.t ∈ [0, T ] , P − a.s.

(2) The functions φ (·, ·) , ϕ (·, ·) are convex with respect to (x, x̃) and h(·, ·) is concave
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with respect to (x, x̃) .

Now we are able to state and prove the sufficient conditions for optimality for our control

problem (2.1)−(3.2), which is the second main result of this paper.

Let v∗(·) ∈ UG ([0, T ]) be a given admissible control. Let (x∗(·), y∗(·), z∗(·), q∗(·)) and

(Φ∗ (·) , Q∗ (·) , G∗ (·) , K∗(·)) be the solution to (2.1) and (3.4) respectively, associated with

v∗(·).

Theorem 2. Let conditions (H1)-(H4) hold. If for any admissible control v∗(·) ∈ UG ([0, T ])

the following relation holds

{E[Hv(t, ψ
∗(t), E(ψ∗(t)), v∗,Φ∗ (·) , Q∗ (·) , G∗ (·) , K∗(·))) | Gt] = 0, a.e., t ∈ [0, T ] ,

(3.22)

then we have

J (v∗(·)) = inf
v(·)∈UG([0,T ])

J (v(·)) . (3.23)

i.e., the admissible control v∗(·) ∈ UG ([0, T ]) is an optimal control for the problem (2.1)-

(3.2).

To prove Theorem 2, we need the following auxiliary result, which deals with the duality

relations between Φ∗(t), [x(t)− x∗(t)] , and between K∗(t), [y(t)− y∗(t)] . This Lemma is

important for establishing our sufficient optimality conditions.

Lemma 2. Let (x(·), y(·), z(·), q(·)) be the solution of MF-FBSDEs-(2.1) corresponding

to any admissible control v(·). We have

E [Φ∗(T ) (x(T )− x∗(T ))]

= E
∫ T

0
Φ∗(t) [b(t, x(t), E(x(t)), v(t)) − b(t, x∗(t), E(x∗(t)), v∗(t))] dt

+E
∫ T

0
H∗x(t) (x(t)− x∗(t)) dt+ E

∫ T
0
E[H∗x̃(t)] (E(x(t))− E(x∗(t)))dt

+E
∫ T

0

∑d
j=1 Q

j∗(t) [σj(t, x(t), E(x(t)), v(t)) − σj(t, x∗(t), E(x∗(t)), v∗(t))] dt

+E
∫ T

0

∑∞
j=1G

j∗(t) [gj(t, x(t), E(x(t)), v(t)) − gj(t, x∗(t), E(x∗(t)), v∗(t))] dt

(3.24)
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Similarly

E [K∗(T ) (y(T )− y∗(T ))]

= −E (ϕy (y(0), E (y(0))) (y∗(0)− y(0)))− E (ϕỹ (y(0), E (y(0)))) (E (y∗(0))− E (y(0)))

+E
∫ T

0
K∗(t){f(t, ψ(t), E(ψ(t)), v(t))− f(t, ψ∗(t), E(ψ∗(t)), v∗(t))}dt

+E
∫ T

0
H∗y(t) (y(t)− y∗(t)) dt+ E

∫ T
0
E(H∗ỹ(t)) (E(y(t))− E(y∗(t))))dt

+E
∫ T

0

∑d
j=1H

j∗
zj

(t) (zj(t)− zj∗(t)) dt+ E
∫ T

0

∑d
j=1 E(Hj∗

z̃j
(t)) (E(zj(t))− E(zj∗(t))) dt

+E
∫ T

0

∑∞
j=1H

j∗
qj

(t) (qj(t)− qj∗(t)) dt+ E
∫ T

0

∑∞
j=1 E(Hj∗

q̃j
(t)) (E(qj(t))− E(qj∗(t))) dt,

(3.25)

and

E [Φ∗(T ) (x(T )− x∗(T ))] + E [K∗(T ) (y(T )− y∗(T ))]

+E (ϕy (y(0), E (y(0))) (y∗(0)− y(0))) + E[ϕỹ (y(0), E (y(0)))] (E (y∗(0))− E (y(0)))

= E
∫ T

0
Φ∗(t)(b(t, x(t), E(x(t)), v(t))− b(t, x∗(t), E(x∗(t)), v∗(t)))dt

+E
∫ T

0

∑d
j=1Q

∗,j(t)[σj(t, x(t), E(x(t)), v(t))− σj(t, x∗(t), E(x∗(t)), v∗(t))]dt

+E
∫ T

0

∑∞
j=1 G

∗,j(t) [gj(t, x(t), E(x(t)), v(t)) − gj(t, x∗(t), E(x∗(t)), v∗(t))] dt

+E
∫ T

0
K∗(t)[f(t, ψ(t), E(ψ(t)), v(t)))− f(t, ψ∗(t), E(ψ∗(t)), v∗(t))]dt

+E
∫ T

0
H∗x(t) (x(t)− x∗(t)) dt+ E

∫ T
0
E [H∗x̃(t)] (E(x(t))− E(x∗(t)))dt

+E
∫ T

0
H∗y(t) (y(t)− y∗(t)) dt+ E

∫ T
0
E(H∗ỹ(t)) (E(y(t))− E(y∗(t))))dt

+E
∫ T

0

∑d
j=1H

j∗
zj

(t) (zj(t)− zj∗(t)) dt+ E
∫ T

0

∑d
j=1 E(Hj∗

z̃j
(t)) (E(zj(t))− E(zj,∗(t))) dt

+E
∫ T

0

∑∞
j=1H

j∗
qj

(t) (qj(t)− qj∗(t)) dt+ E
∫ T

0

∑∞
j=1 E(Hj∗

q̃j
(t)) (E(qj(t))− E(qj∗(t))) dt.

(3.26)

66



Chapitre 3

Proof. First, by simple computations, we get

d (x(t)− x∗(t)) = [b(t, x(t), E(x(t)), v(t))− b(t, x∗(t), E(x∗(t)), v∗(t))]dt

+[
∑d

j=1 σ
j(t, x(t), E(x(t)), v(t))− σj(t, x∗(t), E(x∗(t)), v∗(t)]dW j(t)

+[
∑∞

j=1 g
j(t, x(t), E(x(t)), v(t))− gj(t, x∗(t), E(x∗(t)), v∗(t)]dHj(t).

(3.27)

d (y(t)− y∗(t)) = [f(t, ψ(t), E(ψ(t)), v(t))− f(t, ψ∗(t), E(ψ∗(t)), v∗(t))]dt

+
∑d

j=1 (zj(t)− zj∗(t)) dW j(t) +
∑∞

j=1 (qj(t)− qj∗(t)) dHj(t).

(3.28)

By applying integration by parts formula to Φ∗(t) (x(t)− x∗(t)) and the fact that x(0)−

x∗(0) = 0, we get

E {Φ∗(T ) (x(T )− x∗(T ))} = E
∫ T

0
Φ∗(t)d (x(t)− x∗(t))

+E
∫ T

0
(x(t)− x∗(t)) dΦ∗(t) + E

∫ T
0

∑d
j=1 Q

j∗(t)[σj(t, x(t), E(x(t)), v(t))

−σj(t, x∗(t), E(x∗(t)), v∗(t))]dt+ E
∫ T

0

∑∞
j=1G

j∗(t)[gj(t, x(t), E(x(t)), v(t))

−gj(t, x∗(t), E(x∗(t)), v∗(t))]dt

= A1 + A2 + A3 + A4.

(3.29)

From (3.27), we obtain

A1 = E
∫ T

0
Φ∗(t)d (x(t)− x∗(t))

= E
∫ T

0
Φ∗(t)[b(t, x(t), E(x(t)), v(t))− b(t, x∗(t), E(x∗(t)), v∗(t))]dt,

(3.30)

similarly, by applying (3.6), we get

A2 = E
∫ T

0
(x(t)− x∗(t)) dΦ∗(t)

= E
∫ T

0
(x(t)− x∗(t)) [H∗x(t) + E(H∗x̃(t))]dt

= E
∫ T

0
H∗x(t) (x(t)− x∗(t)) dt+

∫ T
0
E(H∗x̃(t)) (E(x(t))− E(x∗(t)))dt.

(3.31)
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By standard arguments, we obtain

A3 = E

∫ T

0

d∑
j=1

Qj∗(t)[σj(t, x(t), E(x(t)), v(t))− σj(t, x∗(t), E(x∗(t)), v∗(t))]dt, (3.32)

and

A4 = E

∫ T

0

∞∑
j=1

Gj∗(t)[gj(t, x(t), E(x(t)), v(t))− gj(t, x∗(t), E(x∗(t)), v∗(t))]dt, (3.33)

the duality relation (3.24) follows from combining (3.30)∼(3.33) together with (3.29).

Let us turn to second duality relation (3.25). By applying integration by parts formula to

K∗(t) [y∗(t)− y(t)] , we get

E (K∗(T ) (y∗(T )− y(T ))) = E {K∗(0) (y∗(0)− y(0))}

+E
∫ T

0
K∗(t)d (y(t)− y∗(t)) + E

∫ T
0

(y(t)− y∗(t)) dK∗(t)

+E
∫ T

0

∑d
j=1 (zj(t)− zj∗(t)) [Hj∗

zj
(t) + E(Hj∗

z̃j
(t))]dt

+E
∫ T

0

∑∞
j=1 (qj(t)− qj∗(t)) [Hj∗

qj
(t) + E(Hj∗

q̃j
(t))]dt

= B1 +B2 +B3 +B4 +B5.

(3.34)

Let us turn to the second term B2. From (3.28), we get

B2 = E
∫ T

0
K∗(t)d (y(t)− y∗(t))

= E
∫ T

0
K∗(t)[f(t, ψ(t), E(ψ(t)), v(t))− f(t, ψ∗(t), E(ψ∗(t)), v∗(t))]dt,

(3.35)

from (3.6), we obtain

B3 = E

∫ T

0

(y(t)− y∗(t)) dK∗(t) (3.36)

= E

∫ T

0

(y(t)− y∗(t)) (H∗y(t) + E(H∗ỹ(t)))dt,
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B4 = E

∫ T

0

d∑
j=1

(
zj(t)− zj,∗(t)

)
[Hj∗

zj
(t) + E(Hj∗

z̃j
(t))]dt (3.37)

and

B5 = E

∫ T

0

∞∑
j=1

(
qj(t)− qj,∗(t)

)
[Hj∗

qj
(t) + E(Hj∗

q̃j
(t))]dt. (3.38)

From (3.4) and the fact that

B1 = E {K∗(0) (y∗(0)− y(0))}

= −E
{

[ϕy (y(0), E (y(0))) + E(ϕỹ(y(0), E (y(0)))]

×(y∗(0)− y(0))
}
,

(3.39)

the duality relation (3.25) follows immediately by combining (3.35)∼(3.39) together with

(3.34). Finally, inequality (3.26) follows from combining (3.24) and (3.25). �

Proof of Theorem 2. Let (x(·), y(·), z(·), q (·)) be the solution of the state equation (2.1)

and (Φ (·) , Q (·) , G (·) , K (·)) be the solution of the adjoint equation (3.4), corresponding

to v(·) ∈ UG ([0, T ]) .

J (v∗(·))− J (v(·))

= E
{∫ T

0
[`(t, ψ∗(t), E(ψ∗(t)), v∗(t))

−`(t, ψ(t), E(ψ(t)), v(t))]dt

+ [φ (x∗(T ), E(x∗(T )))− φ (x(T ), E(x(T )))]

+ [ϕ (y∗(0), E (y∗(0)))− ϕ (y(0), E (y(0)))]
}
,
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By the convexity condition on φ(·, ·) and ϕ(·, ·), we get

J (v∗(·))− J (v(·))

≤ E[(φx (x∗(T ), E(x∗(T ))) + E(φx̃(x
∗(T ), E(x∗(T ))))

× (x∗(T )− x(T ))]

+E[(ϕy (y∗(0), E (y∗(0))) + ϕỹ (y(0), E (y(0))))

× (y∗(0)− y(0))]

+E
{∫ T

0
[`(t, ψ∗(t), E(ψ∗(t)), v∗(t))

−`(t, ψ(t), E(ψ(t)), v(t))]dt
}
,

By applying Lemma 2, we get

J (v∗(·))− J (v(·))

≤ E
∫ T

0

{
(H(t, ψ∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t),

G∗(t), K∗(t))

−H(t, ψ(t), E(ψ(t)), v(t),Φ∗(t), Q∗(t), G∗(t),

K∗(t)))
}
dt

−E
∫ T

0
(H∗x(t) + E(H∗x̃(t)))(x(t)− x∗(t))dt

−E
∫ T

0
(H∗y(t) + E(H∗ỹ(t)))(y(t)− y∗(t))dt

−E
∫ T

0

∑d
j=1(Hj∗

zj
(t) + E(Hj∗

z̃j
(t)))(zj(t)− zj∗(t)))dt

−E
∫ T

0

∑d
j=1(Hj∗

qj
(t) + E(Hj∗

q̃j
(t)))(qj(t)− qj∗(t)))dt.

(3.40)

By the convexity of the functional H (t, ·, ·, ·, ·, ·, ·, ·, ·, ·,Φ∗(t), Q∗(t), G∗(t), K∗(·)) , in the
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sense of Clarke’s generalized gradient, the following holds

E
∫ T

0
[H(t, ψ(t), E(ψ(t)), v(t),Φ∗(t), Q∗(t), G∗(t), K∗(t))

−H(t, ψ∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t), G∗(t), K∗(t))]dt

≥ E
∫ T

0

{
H∗x(t)(x(t)− x∗(t))

+E(H∗x̃(t))(E(x(t)− x∗(t))) +H∗y(t)(y(t)− y∗(t))

+E(H∗ỹ(t))(E(y(t)− y∗(t)))

+
∑d

j=1H
∗,j
zj

(t)(zj(t)− zj∗(t)))

+
∑d

j=1 E(Hj∗
z̃j

(t))(E(zj(t)− z∗,j(t)))

+
∑∞

j=1H
j∗
qj

(t)(qj(t)− qj∗(t)))

+
∑∞

j=1 E(Hj∗
q̃j

(t))(E(qj(t)− qj∗(t)))

+H∗v(t)(v(t)− v∗(t))
}
dt.

(3.41)

Since the conditional expectation E[Hv(t, ψ
∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t), G∗(t), K∗(t)) |

Gt], v(·) and v∗(·) are Gt−measurable, we have

E[Hv(t, ψ
∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t), G∗(t),

K∗(t)) | Gt](v(t)− v∗(t))

= E[Hv(t, ψ
∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t), G∗(t), K∗(t))

×(v(t)− v∗(t)) | Gt]

(3.42)
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Using condition (3.41), (3.42) and (3.22), we obtain

E
∫ T

0
[H(t, ψ∗(t), E(ψ∗(t)), v∗(t),Φ∗(t), Q∗(t), G∗(t), K∗(t))

−H(t, ψ(t), E(ψ(t)), v(t),Φ∗(t), Q∗(t), G∗(t), K∗(t))]dt

−E
∫ T

0

{
[H∗x(t) + E(H∗x̃(t))](x∗(t)− x(t))

+[H∗y(t) + E(H∗ỹ(t))](y∗(t)− y(t))

+
∑d

j=1[Hj∗
zj

(t) + E(Hj∗
z̃j

(t)))(zj∗(t)− zj(t)))

+
∑∞

j=1[Hj∗
qj

(t) + E(Hj∗
q̃j

(t))](qj∗(t)− qj(t)))
}
dt ≤ 0,

(3.43)

from (3.40) and (3.43), we get

J (v∗(·)) ≤ J(v(·)), for any control v(·) ∈ UG([0, T ]).

Finally, we observe that since v(·) is an arbitrary admissible control of UG([0, T ]), the

desired result (3.23) follows. This completes the proof of Theorem 2. �

3.5 Application : Optimal portfolio strategy driven by

Teugels martingales associated with Gamma Pro-

cess

In this section, we will apply our necessary and sufficient maximum principle of optimality

to study mean-variance portfolio selection problem driven by Teugels martingales associa-

ted to Gamma processes. Let Gt be a given subfiltration of Ft, t ≥ 0,. For example, Gt

could be the γ−delayed information defined by

Gt = F(t−γ)+ : t ≥ 0, (3.44)
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where γ is a given constant delay. Suppose that we are given a mathematical market

consisting of two investment possibilities. The first asset is a risk-free security whose price

R0(t) evolves according to the ordinary differential equation

dR0 (t) = R0 (t) ρ(t)dt, R0 (0) > 0, (3.45)

where ρ (·) : [0, T ] → R+ is a locally bounded continuous deterministic function. The

second asset is a risky security (Stock) where the price R1 (t) at time t is given by

dR1 (t) = τ(t)R1 (t) dt+ π(t)R1 (t) dW (t)

+
∑∞

j=1G
j(t)Hj(t), R1 (0) > 0,

(3.46)

where Hj(t) the orthogonal Teugels martingales associated with Gamma processes as Lévy

process of bounded variation X = {X(t) : t ≥ 0} with Lévy measure given by

µ(dx) =
e−x

x
I{x>0}dx.

We denote by Xj(t) =
∑

0≤s≤t (4X(s))j : j ≥ 1 the power jump processes of X. By

applying exponential formula proved in Bertoin [9], we obtain

E
(
exp(iθXj(t)

)
)

= exp

(
t

∫
R+

(exp(jθz)− 1)
exp(−z

1
j )

jz
dz

)
,
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which means that the Lévy measure of Xj is exp(−z
1
j )

jz
dz. Since

E
(
Xj(t)

)
= E

[∑
0≤s≤t

(4X(s))j
]

(3.47)

= t

∫ +∞

0

xj
e−x

x
dx : j ≥ 1,

= tΓ(j) = (j − 1)!t : j ≥ 1,

and thus X̂j(t) = Xj(t) − (j − 1)!t : j ≥ 1 is the Teugels martingales of order j of the

Gamma processes. Now, we orthogonalize the set
{
X̂j(·) : j ≥ 1

}
of martingales, then we

have a set of orthogonal Teugels martingales of the form

H i(t) =
∑

1≤j≤i−1

aijX̂
j(t) : i ≥ 1. (3.48)

In order to ensure that R1 (t) > 0 for all t ∈ [0, T ] we assume :

(i) The functions τ(·) : [0, T ]→ R, π(·) : [0, T ]→ R are bounded continuous deterministic

maps such that τ(t), π(t) 6= 0 and τ(t)− ρ(t) > 0, ∀t ∈ [0, T ].

(ii) For any t ∈ [0, T ] : g(t) > 0.

By combining (3.45), (3.46) and (3.48), we introduce the wealth dynamics



dxv(t) = [ρ(t)xv(t) + (τ(t)− ρ(t))v(t)] dt

+ π(t)v(t)dW (t) +
∑∞

j=1 g
j(t)Hj(t),

−dyv(t) = [ρ(t)xv(t) + (τ(t)− ρ(t))v(t)− cyv(t)] dt

− zv(t)dW (t)−
∑∞

j=1 q
v,j(t)Hj(t),

xv(0) = a, yv(T ) = xv(T ),

H i(t) =
∑

1≤j≤i−1 aij(X
j(t)− (j − 1)!t) : i, j ≥ 1.

(3.49)
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More precisely, for any admissible control v(·) the utility functional is given by

J (v(·)) =
δ

2
V ar(xv(T ))− E(xv(T )) + yv(0). (3.50)

Let U be a compact convex subset of R. We denote UG([0, T ]), the set of admissible

Gt−predictable portfolio strategies v (·) valued in U.

The Hamiltonian functional (3.5) gets the form

H (t, x, x̃, y, ỹ, z, z̃, q, q̃, v,Φ(·), Q(·), G(·), K(·))

= [ρ(t)x(t) + (τ(t)− ρ(t))v(t)] (Φ(t) +K(t))

+π(t)v(t)Q(t)− cK(t)y(t) +
∑∞

j=1 G
j(t)gj (t)

According to the maximum condition ((3.11), Theorem 1), and since v∗(·) is optimal, we

immediately get

E [(τ(t)− ρ(t)) (Φ∗(t) +K∗(t)) + π(t)Q∗(t) | Gt] = 0. (3.51)

The adjoint equation (3.4) has the form :



dΦ∗(t) = −ρ(t) (K∗(t) + Φ∗(t)) dt

+Q∗(t)dW (t) +
∑∞

j=1G
∗,j(t)dHj(t),

Φ∗(T ) = δ (x∗(T ) + E(x∗(T )))− 1−K∗(T ),

dK∗(t) = −cK∗(t)dt, K∗(0) = −1, t ∈ [0, T ] .

(3.52)

In order to solve the above equation (3.52) and to find the expression of optimal portfolio

strategy v∗(·) we conjecture a process Φ∗(·) of the form

Φ∗(t) = V1(t)x∗(t) + V2(t)E (x∗(t)) + V3(t), (3.53)
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where V1(·), V2(·) and V3(·) are deterministic differentiable functions. From last equation

in (3.52), which is a simple ordinary differential equation, we get immediately

K∗(t) = − exp (−ct) , t ∈ [0, T ] . (3.54)

Noting that from (3.49), we get

d(E(x∗(t)) = {ρ(t)E(x∗(t)) + (τ(t)− ρ(t))E(v∗(t))} dt.

Applying Itô’s formula to (3.53) in virtue of SDE-(3.49), we get



dΦ∗(t) = {V1(t) [ρ(t)x∗(t) + (τ(t)− ρ(t)) v∗(t)]

+x∗(t)V̇1(t)

+V2(t) [ρ(t)E(x∗(t)) + (τ(t)− ρ(t))E(v∗(t))]

+ V̇2(t)E (x∗(t)) + V̇3(t)
}
dt

+V1(t)π(t)v∗(t)dW (t) +
∑∞

j=1 V1(t)gj(t)Hj(t),

Φ∗(T ) = V1(T )x∗(T ) + V2(T )E (x∗(T )) + V3(T ),

(3.55)

where V̇1(t), V̇2(t), and V̇3(t) denotes the derivatives with respect to t.

Next, comparing (3.55) with (3.52), we get

−ρ(t) (K∗(t) + Φ∗(t))

= V1(t) [ρ(t)x∗(t) + (τ(t)− ρ(t))v∗(t)] + x∗(t)V̇1(t)

+V2(t) [ρ(t)E(x∗(t)) + (τ(t)− ρ(t))E(v∗(t))]

+V̇2(t)E (x∗(t)) + V̇3(t),

(3.56)

Q∗(t) = V1(t)π(t)v∗(t). (3.57)

76



Chapitre 3

G∗(t) = V1(t)g(t). (3.58)

By looking at the terminal condition of Φ∗(t), in (3.55), it is reasonable to get

V1(T ) = δ, V2(T ) = −δ, V3(T ) = −1−K∗(T ). (3.59)

Combining (3.56) and (3.53) we deduce that V1(·), V2(·) and V3(·) satisfying the following

ordinary differential equation



V̇1(t) = −2ρ(t)V1(t), V1(T ) = δ,

V̇2(t) = −2ρ(t)V2(t), V2(T ) = −δ,

V̇3(t) + ρ(t)V3(t) = ρ(t) exp {−ct} ,

V3(T ) = exp {−cT} − 1.

(3.60)

By solving the first two ordinary differential equations in (3.60), we obtain

V1(t) = −V2(t) = δ exp

{
2

∫ T

t

ρ(s)ds

}
. (3.61)

3.6 Conclusions and future works

In this paper, necessary and sufficient conditions for optimal control for MF-FBSDEs

driven by Teugels martingale associated to Lévy processes have been discussed. An inter-

esting observation is that by adding the tool of the derivatives with respect to measures,

we can treat more general mean-field cases. As an illustration, mean-variance portfolio

selection problem driven by Teugels martingales associated with Gamma process as Lévy

process with bounded variation has been studied. An open question is to derive optimality

conditions for this control problem for general (non-convex) control domain. Apparently,

there are many problems left unsolved and one possible problem is to study the the ge-
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neral maximum principle for fully coupled MF-FBSDEs driven by Teugels martingales,

and to study some applications in finance models governed by orthogonal Teugels mar-

tingales associated with Meixner process as a Lévy process with bounded variation, using

the orthogonality of the Meixner-Pollaczek polynomials.

Appendix

The following result gives a case of the Itô formula for jump diffusions of mean-field

type.

Lemma A1. Suppose that the processes x1(t) and x2(t) are given by : for j = 1, 2,

t ∈ [s, T ] :

dxj(t) = f (t, xj(t), E(xj(t)), u(t)) dt+ σ (t, E(xj(t)), u(t)) dW (t)

+

∫
Θ

g
(
t, xj(t

−), E(xj(t)), u(t), θ
)
N (dθ, dt) ,

xj(s) = 0,

then we get

E (x1(T )x2(T )) = E

[∫ T

s

x1(t)dx2(t) +

∫ T

s

x2(t)dx1(t)

]
+ E

∫ T

s

σ∗ (t, x1(t), E(x1(t)), u(t))σ (t, x2(t), E(x2(t)), u(t)) dt

+ E

∫ T

s

∫
Θ

g∗ (t, x1(t), E(x1(t)), u(t), θ) g (t, x2(t), E(x2(t)), u(t), θ)µ(dθ)dt.

Applying a similar method as in [23, Lemma 2.1], for the proof of the above Lemma.

Proposition A2. [11, Appendix] Let G be the predictable σ−field on Ω × [0, T ], and f

be a G × B (Θ)−measurable function such that

E

{∫ T

0

∫
Θ

|f (w, s, θ)|2 µ (dθ) ds

}
< +∞.
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Then for all p ≥ 2 there exists a positive constant C = C (p, T, µ (Θ)) such that

E

{
sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
Θ

f (w, s, θ)N (ds, dθ)

∣∣∣∣p
}
≤ CE

{∫ T

0

∫
Θ

|f (w, s, θ)|p µ (dθ) ds

}
.

79



References

80



Bibliographie

[1] Ahmed, N.U. : Nonlinear diffusion governed by McKean-Vlasov equation on Hilbert

space and optimal control. SIAM J. Control Optim. 46, (2007) 356–378.

[2] Alvarez, L. : Singular stochastic control linear diffusion and optimal stopping : A

class of solvable problems, SIAM J. Control Optim., 39 (2001) 1697-1710.

[3] Alvarez, L. and Rakkolainen, T.A. : On singular stochastic control and optimal

stopping of spectrally negative jump diffusions, Stochastics An International Journal

of Probability and Stochastics Processes 81(1) (2009) 55-78.

[4] An, T.T K. : Combined optimal stopping and singular stochastic control, Stochastic

Analysis and Applications, 28 (2010) 401-414.

[5] Andersson, D and Djehiche, B. : A maximum principle for SDEs of mean-field type,

Appl Math Optim, 63, 341-356 (2011)

[6] Bahlali, K., Khelfallah, N. and Mezerdi, B. :Necessary and sufficient conditions

for near-optimality in stochastic control of FBSDEs, Systems & Control Letters

58 (2009) 857 864

[7] Bellman, R. : Dynamic programming, Princeton Univ. Press., (1957)

[8] Bensoussan, A. : Lectures on stochastic control. In Lect. Notes in Math. 972,

Springer-Verlag, 1-62 (1983).

[9] Bertoin, J. : Lévy Processes, Cambridge University Press, Cambridge (1996).

81



References

[10] Borkar, V. : Controlled diffusion processes, Probability Surveys, 2 (2005) 213-244.

[11] Bouchard, B. and Elie, R. : (2008) Discrete time approximation of decoupled forward-

backward SDE with jumps, Stoch. Proc. Appl. Vol 118 No 1 pp. 53-75.

[12] Buckdahn, R. , Djehiche, B. and Li, J. : (2011) A general stochastic maximum

principle for SDEs of mean-field type. Appl. Math. Optim. Vol 64, pp. 197-216.

[13] Buckdahn, R., Li, J. and Ma, J. : A stochastic maximum principle for general

mean-field system, Appl Math Optim.(74) (2016) 507-534.

[14] Buckdahn, R. Li, J. and Peng, S. : (2009) Mean-field backward stochastic differential

equations and related partial differential equations. Stochastic Processes and their

Applications, Vol 119, pp. 3133-3154.

[15] Cadenillas, A. and Haussmann, U. : The stochastic maximum principle for singular

control problem, Stochastics, Stochastics rep., 49, N 3-4, (1994) 211-237.

[16] Cardaliaguet, P. : Notes on mean field games (from P.-L. Lions’ lectures at Collège

de France). https ://www.ceremade.dauphine.fr/cardalia/ (2013)

[17] Carmona, R. and Delarue, F. : Forward-backward stochastic differential equations

and controlled McKean-Vlasov dynamics. The annals of Probability, 43(5), (2015),

2647-2700.

[18] Carrnona, R., Delarue, F.,and Lachapelle, A. : Control of McKean–Vlasov dynamics

versus mean field games. Math. Financ. Econ. 7(2), (2013) 131–166.

[19] Chighoub, F. and Mezerdi,B. : Near optimality conditions in stochastic control of

jump diffusion processes (2011), Systems & Control Letters 60 (2011) 907-916.

[20] Dufour, F. and Miller, B. : Maximum principle for singular stochastic control pro-

blem. SIAM J. Control Optim., 45(2), (2006) 668-698.

[21] Ekeland, I. : On the variational principle, J. Math. Anal. Appl. , (47) 424-353,

(1974).

82



References

[22] Elliott, R.J., Li, X. and Ni, Y.H. : (2013) Discrete time mean-field stochastic linear-

quadratic optimal control problems. Automatica, Vol 49, No 11, pp. 3222-3233.

[23] Framstad, N.C. : ∅ksendal B., and Sulem A : (2004) Sufficient stochastic maximum

principle for the optimal control of jump diffusions and applications to finance, J.

Optim. Theory Appl., Vol 121 pp.77-98.

[24] Hafayed, M. : (2013). A mean-field maximum principle for optimal control of forward-

backward stochastic differential equations with Poisson jump processes, Int. J. Dy-

nam. Control, Vol 1 No 4, pp. 300-315.

[25] Hafayed, M. : (2013) A mean-field necessary and sufficient conditions for optimal

singular stochastic control, Commun. Math. Stat. Vol 1, No 4, pp. 417–435.

[26] Hafayed, M. : (2014) Singular mean-field optimal control for forward-backward sto-

chastic systems and applications to finance, Int. J. Dynam. Control, Vol 2 No 4, pp.

542–554

[27] Hafayed, M., Abba, A. and Abbas, S. : On partial-information optimal singular

control problem for mean-field stochastic differential equations driven byTeugels

martingales measures, ID : 1079648 DOI :10.1080/00207179.2015.1079648 Internat.

J. Control 89 (2016), no. 2, 397–410.

[28] Hafayed, M., Abba, A. and Abbas, S. : On mean-field stochastic maximum principle

for near-optimal controls for Poisson jump diffusion with applications, Int. J. Dynam.

Control, 2, 262–284 (2014).

[29] Hafayed, M., Abba, A. and Abbas, S : On partial-information optimal sin-

gular control problem for mean-field stochastic differential equations driven by

Teugels martingales measures. International Journal of Control, ID : 1079648,

DOI :10.1080/00207179.2015.1079648 (2015)

[30] Hafayed, M., Abba, A. and Boukaf S : On Zhou’s maximum principle for near-

optimal control of mean-field forward-backward stochastic systems with jumps and

83



References

its applications,”International Journal of Modelling, Identification and Control”.25

(1), 1-16, (2016).

[31] Hafayed, M. and Abbas, S. : On near-optimal mean-field stochastic singular controls :

necessary and sufficient conditions for near-optimality, J. Optim Theory Appl,

160(3), 778-808 (2014).

[32] Hafayed, M. and Abbas, S. : Stochastic near-optimal singular controls for jump

diffusions : necessary and sufficient conditions, Journal of Dynamical and Control

Systems, 19(4), 503-517 (2013).

[33] Hafayed, M. and Abbas,S. : Stochastic near-optimal singular controls for jump dif-

fusions : Necessary and sufficient conditions, Journal of Dynamical and Control

Systems, 19(4) (2013) 503-517.

[34] Hafayed, M. and Abbas, S. : (2013) A general maximum principle for stochastic dif-

ferential equations of mean-field type with jump processes. Technical report, arXiv :

1301.7327v4.

[35] Hafayed,M. , Abbas, S. and Abba, A. : On mean-field partial information maximum

principle of optimal control for stochastic systems with Lévy processes, J. Optim

Theory Appl, 10.1007/s10957-015-0762-4, (2015).

[36] Hafayed, M., Abbas, S. and Abba, A. : On mean-field partial information maximum

principle of optimal control for stochastic systems with Lévy processes, J. Optim

Theory Appl, 167, (2015) 1051-1069.

[37] Hafayed, M., Abbas, S., and Veverka, P. : On necessary and sufficient conditions for

near-optimal singular stochastic controls. Optim. Lett., (7)5, 949-966, (2013).

[38] Hafayed, M., Boukaf, S., Shi, Y. and Meherrem, S. : A McKean-Vlasov optimal mixed

regular-singular control problem, for nonlinear stochastic systems with Poisson jump

processes (2016) Neurocomputing. Doi 10.1016/j.neucom.2015.11.082, Volume 182,

19, pages 133-144 (2016).

84



References

[39] Hafayed, M., Boukaf, S., Shi, Y. and Meherrem, S. : A McKean-Vlasov optimal mixed

regular-singular control problem, for nonlinear stochastic systems with Poisson jump

processes, Neurocomputing. 182(19) (2016) 133-144.

[40] Hafayed, M., Ghebouli, M. , Boukaf, S. and Shi, Y. : Partial information optimal

control of mean-field forward-backward stochastic system driven by Teugels martin-

gales with applications (2016) DOI 10.1016/j.neucom. 2016.03.002. Neurocomputing

Vol 200 pages 11–21 (2016).

[41] Hafayed, M., Meherrem, S., Eren, S. and Guoclu, D.H. : On optimal singular control

problem for general McKean-Vlasov differential equations : Necessary and sufficient

optimality conditions, Optim Control Appl Meth ; (39)1202–1219.(2018)

[42] Hafayed, M., Tabet, M. and Boukaf, S. : Mean-field maximum principle for optimal

control of forward-backward stochastic systems with jumps and its application to

mean-variance portfolio problem, Commun. Math. Stat (3) (2015) 163–186.

[43] Hafayed, M., Veverka, P., and Abbas, S. : On maximum principle of near-optimality

for diffusions with jumps, with application to Consumption-investment problem,

Differ. Equ. Dyn. Syst. , 20(2), 111-125 (2012).

[44] Hafayed, M. , Veverka, P. and Abbas, A. : (2014) On Near-optimal Necessary and

Sufficient Conditions for Forward-backward Stochastic Systems with Jumps, with

Applications to Finance. Applications of Mathematics, Vol 59 No.4, pp. 407-440.

[45] Haussman, U.G. and Suo,W. : Singular optimal control I, II, SIAM J. Control Op-

tim., 33(3), (1995) 916-936, 937-959.

[46] Huang, J., Li, X. and Wang, G. : (2010) Near-optimal control problems for linear

forward-backward stochastic systems, Automatica. , Vol. 46 pp. 397-404.

[47] Huang, J., Wang, G. and Xiong, J. : A maximum principle for partial information

backward stochastic control problems with applications. SIAM J. Control Optim

48(4), 2106-2117 (2009)

85



References

[48] Hui, E. Huang, J., Li, X. and Wang, G. : Near-optimal control for stochastic recursive

problems, Syst. Cont. Letters, (60), 161-168 (2011).

[49] Kac, M. : Foundations of kinetic theory, Proc. 3-rd Berkeley Sympos. Math. Statist.

Prob. 3 : 171-197 (1956)

[50] Kushner, H.J. : Optimal stochastic control, IRE Trans. Auto. Control, AC-7 (1962),

120-122.

[51] Kushner, H.J. :. On the stochastic maximum principle : Fixed time of control, J.

Math. Anal. Appl., 11 (1965), 78-92.

[52] Lasry, J.M. and Lions, P.L. : Mean field games. Japan Jour. Math. 2, 229-260 (2007).

[53] Li, D. and Zhou, X.Y. : Continuous-time mean-variance portfolio selection : a sto-

chastic LQ framework, Applied Mathematics and Optimization, 42, (2000) 19-33.

[54] Li, J. : Stochastic maximum principle in the mean-field controls. Automatica, 48,

366-373 (2012)

[55] Li, N. and Wu, Z. Maximum principle for anticipated recursive stochastic optimal

control problem with delay and Lévy processes, Appl. Math. J. Chinese Univ., 29(1),

67-85 (2014)

[56] Li, T. and Zhang, J.F. : (2013) Adaptive mean field games for large population

coupled ARX Systems with unknown coupling strength, Dyn Games Appl, Vol 3 :

pp. 489–507.

[57] Littlejohn, L. : An application of a new theorem on orthogonal polynomials and

differential equations, Quaestiones Math. 10, 49-61 (1986).

[58] Ma, J. and Yong, J. : Forward-backward stochastic differential equations and their

applications., Lecture Notes in Mathematics, Springer, Berlin (1990).

[59] Markowitz, H. : (1952) Portfolio selection. J. Finance Vol. 7, pp. 77-91.

86



References

[60] McKean, H.P. : A class of Markov processes associated with nonlinear parabolic

equations. Proc. Natl. Acad. Sci. 56, 1907-1911 (1966)

[61] Menaldi, J. and M, Robin. : On singular stochastic control problems for diffusions

with jumps, IEEE Transactions on Automatic Control 29(11), (1984) 991-1004.

[62] Meng, Q.X. and Tang, M.N. : Necessary and sufficient conditions for optimal control

of stochastic systems associated with Lévy processes Sci. China Ser F-Inf Sci. 52(11),

1982-1992 (2009).

[63] Meng, Q.X. : A maximum principle for optimal control problem of fully coupled

forward-backward stochastic systems with partial information. Sci China Ser A,

52(7) : 1579–1588 (2009)

[64] Meng, Q.X., Zhang, F. and Tang, M.N. : Maximum principle for backward stochastic

systems associated with Lévy processes under partial information, Proceedings of the

31 st Chinese control conference, July 25-27, Hefei, China (2012)

[65] McKean. H.P. : A class of markov processes associated with nonlinear parabolic

equations, Proc. Natl. Acad. Sci. USA, 56, 1907-1911 (1966)

[66] Meyer-Brandis, T. , ∅ksendal, B. and Zhou, X.Y. : A mean-field stochastic maximum

principle via malliavin calculus. Stochastics. 84, 643-666 (2012)

[67] Meng, Q. and Shen, Y. : Optimal control of mean-field jump-diffusion systems with

delay : A stochastic maximum principle approach. Journal of Computational and

Applied Mathematics 279 (2015) 13–30.

[68] Mitsui, K. and Tabata, M. : A stochastic linear quadratic problem with Lévy, process

and its application to finance, Stoch. Proc. Appl. 118, 120-152 (2008)

[69] Ni, Y.H, Zhang, J.F. and Li, X. (2014) Indefinite mean-field stochastic linear-

quadratic optimal control, IEEE Transactions on automatic control, Doi :

10.1109/TAC.2014.2385253

87



References

[70] Nualart, D. and Schoutens, W. : BSDE’s and Feynman-Kac formula for Lévy process

with application in finance, Bernoulli 7, 761–776 (2001)

[71] Nualart, D. and Schoutens, W. : Chaotic and predictable representations for Lévy

processes, Stochastic Processes and their Applications, 90,109-122 (2000)

[72] ∅ksendal, B. and Sulem,A. : Maximum principles for optimal control of forward-

backward stochastic differential equations with jumps, SIAM J. Control Optim. 48

(2009), 2845-2976.

[73] ∅ksendal, B. and Sulem,A. : Applied stochastic control of jump diffusions, 2nd ed.,

Springer-Verlag, Berlin (2007).

[74] ∅ksendal, B. and Sulem,A. : Singular stochastic control and optimal stopping with

partial information of Ito-Levy processes, SIAM J Control Optim, 50(4) (2012) 2254-

2287.

[75] Pardoux, E. and Peng, S. : Adapted solutions of backward stochastic differential

equations, Systems Control Lett. 14 (1990) 55-61.

[76] Peng, S. : A general stochastic maximum principle for optimal control problems.

SIAM J. Control Optim. 28(4), 966–979 (1990)

[77] Pham, H. On some recent aspects of stochastic control and their applications, Pro-

bability Surveys Vol. 2 (2005) 506-549.

[78] Pham, H. : Linear quadratic optimal control of conditional McKean-Vlasov equation

with random coefficients and applications, Probability, Uncertainty and Quantitative

Risk 1(7), 1-26 (2016)

[79] Shen, Y., Meng, Q. and Shi, P. : Maximum principle for mean-field jump-diffusions

to stochastic delay differential equations and its applicationt to finance, Automatica

50, 1565-1579 (2014)

88



References

[80] Shen, Y. and Siu T K. :The maximum principle for a jump-diffusion mean-field

model and its application to the mean-variance problem, Nonlinear Analysis, 86,

58-73 (2013)

[81] Shi, J. : Necessary conditions for optimal control of forward-backward stochastic

systems with random jumps. Int. J. Stoch. Anal. Article ID 258674, 50 pages (2012)

[82] Shi, J. : Sufficient conditions of optimality for mean-field stochastic control pro-

blems. 12−th International Conference on Control, Automation, Robotics & Vision

Guangzhou, China, 5-7th December, ICARCV 2012, 747-752 (2012)

[83] Shi, J. and Wu, Z. : Maximum principle for Forward-backward stochastic control

system with random jumps and application to finance, J. Syst. Sci. Complex, 23 :

219-231 (2010)

[84] Shi, P. and F, Li. : A survey on Markovian jump systems : modeling and design, Int.

J. of Control, Automation and Systems, 13(1) (2015) 1-16.

[85] Shi, P. ,Zhang,Y. and Agarwal,R. : Stochastic finite-time state estimation for discrete

time-delay neural networks with Markovian jumps, Neurocomputing, 151, (2015)

168-174.

[86] Su, X., Wu L., Shi, P., and Song, Y.D. : A novel approach to output feedback control

of fuzzy stochastic systems, Automatica, 50(12), 3268-3275, (2014)

[87] Tang, H. and Wu, Z. : Stochastic differential equations and stochastic linear quadra-

tic optiaml control problem with Lévy processes. J. Syst. Sci. Complex, 22, 122-136

(2009)

[88] Tang, M. : (2014) Stochastic maximum principle of near-optimal control of fully

coupled forward-backward stochastic differential equation, Abstract and Applied

Analysis Volume 2014, Article ID 361259, 12 pages

89



References

[89] Tang, M.N. and Zhang, Q. : Optimal variational principle for backward stochastic

control systems associated with Lévy processes, Sci China Math, 55(4) 745-761

(2012)

[90] Wang, B.C. and Zhang, J.F. : (2012).Mean-field games for larg-population mul-

tiagent systems with Markov jump parameters, SIAM J. Control. Vol 50 No. 4, pp.

2308–2334.

[91] Wang, G. Zhang C, and Zhang, W. : (2014). Stochastic maximum principle for

mean-field type optimal control under partial information, IEEE Transactions on

automatic control, Vol 59 No 2, pp. 522-528.

[92] Wu, L., Su, X. and Shi, P., Output feedback control of markovian jump repeated

scalar nonlinear systems, IEEE Transactions on Automatic Control, 59(1), 199-204,

(2014)

[93] Wu, Z. : A general maximum principle for optimal control of forward-backward

stochastic systems. Automatica 49, 1473–1480 (2013)

[94] Wu, Z. and Zhang,F. : Stochastic maximum principle for optimal control problems

of forward-backward systems involving impulse controls, IEEE Transactions on Au-

tomatic Control, 56(6) (2011) 1401-1406.

[95] Xu, R. and Wu, T. : (2014) Mean-field backward stochastic evolution equations in

Hilbert spaces and optimal control for BSPDEs, Abstract and Applied Analysis Vol

2014, Article ID 839467, 15 pages.

[96] Yong, J. : A linear-quadratic optimal control problem for mean-field stochastic dif-

ferential equations. SIAM J. Control Optim., 54(4), 2809-2838 (2013)

[97] Yong, J. : Optimality variational principle for controlled forward-backward stochastic

differential equations with mixed intial-terminal conditions. SIAM J. Control Optim.

48(6), 4119-4156 (2010)

90



References

[98] Yong, J., and Zhou, X.Y. : (1999) Stochastic Controls. Hamiltonian Systems and

HJB Equations. Springer-Verlag. New York.

[99] Zhang L, Huang, J. and Li, X. : Necessary condition for near optimal control of

linear forward-backward stochastic differential equations. International Journal of

Control, 1-29, (2015).

[100] Zhou, X.Y. : Stochastic near-optimal controls : Necessary and sufficient conditions

for near-optimality, SIAM. Control. Optim. (36)-3, 929-947 (1998).

[101] Zhou, X.Y., and Li, D. : Continuous time mean-variance portfolio selection : a sto-

chastic LQ framework. Appl. Math. Optim. 42, 19-33 (2000)

91



Bibliographie

92


	Introduction
	Introduction
	Stochastic processes
	Filtration
	Stochastic process
	Brownian Motion
	Levy processes

	Formulations of stochastic optimal control problems
	Strong formulation
	Weak formulation

	Methods to solving optimal control problem
	The Dynamic Programming Principle.
	The Pontryagin's maximum principle

	Some classes of stochastic controls

	A study on optimal control problem with -error bound for stochastic systems with applications to linear quadratic problem
	Introduction
	Assumptions and Preliminaries
	Stochastic maximum principle with -error bound
	Sufficient conditions for -optimality
	Application: linear quadratic control problem
	Concluding remarks and future research

	Partial information optimal control of mean-field forward-backward stochastic system driven by Teugels martingales with applications
	Introduction
	Problem Formulation and Preliminaries
	Necessary conditions for optimal control of MF-FBSDEs with Teugels martingale
	Sufficient conditions for optimal control of MF-FBSDEs with Teugels martingale
	Application: Optimal portfolio strategy driven by Teugels martingales associated with Gamma Process
	Conclusions and future works


