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General Introduction

Commonly, the term "dynamical systems" refers to the active area of mathematics
that is at the intersection of topology, analysis, geometry, theory of measurement, and
probability and that aims to understand the dynamics of a system. This study’s nature
varies
depending on the dynamic system under investigation, and it also depends
on the techniques employed (analytical, geometric, or probabilistic).

In the past, when mechanics was taught alongside mathematics, the earliest inquiries
about dynamical systems involved mechanics. The stability of the solar system is one of
the main subjects that has driven mathematical research. The K AM theorem mirrors
Lagrange’s work on the subject, which consisted of interpreting the influence of bodies
other than the Sun on a planet as a series of little shocks (Kolmogorov-Arnold-Moser).
The Russian mathematician Alexander Lyapunov investigated the stability of motion
during the 19" century as well. It presents the concept of comparing two trajectories with
similar initial conditions and quantifying the difference between them; when the difference
grows exponentially, this concept is known as sensitivity to the initial conditions.

The work of Lyapunov, though forgotten at first, will turn out to be crucial
for understanding several parts of chaos theory. In order to anticipate meteorological
occurrences, meteorologist Edward Lorenz experimented with a technique in 1963 [34].
He discovered that a small alteration to the baseline data could significantly alter the

findings entirely by accident. The phenomena of sensitivity to beginning conditions has



General Introduction

recently been identified by Lorenz [34]. Some dynamic process models contain one or
more parameters but changing the parameters could lead to qualitative and quantitative
properties. This phenomenon is often called bifurcation. The additional bifurcations are
simply changes in the dynamics of the invariant attractive closed curve [46]. However,
with powerful resonances, multiple fixed or periodic points, including some saddle points,
appear before Hopf bifurcation. The invariant closed curve from the Hopf bifurcation
then interacts with the stable and unstable manifolds of the other fixed or periodic points.
As a result, the stable and unstable manifolds cross one another transversally, suggesting
chaotic behavior.

Systems with this property will be available starting in 1975 under the names: chaotic
systems. The recent rapid growth of nonlinear science includes chaos theory as
a key subfield. Chaos, a nonlinear deterministic system with complicated and unexpected
behavior, was initially identified by Lorenz in 1963 [34]. Since its inception, chaos theory
has been studied and developed in great detail, and one of the current research directions
is the study and creation of novel chaotic systems. Three-dimensional self-excited chaotic
systems composed of ordinary differential equations, such as the Lorenz, Rossler, and
Chen systems [37]-[45], and several other common three-dimensional chaotic systems, are
the systems that have received the most attention. Additionally, the control coefficient
of the constant component can be adjusted to alter the kind of chaotic attractor. There
are many different types of 3D systems without equilibrium points that are enumerated
[37-[69] ( and new 4D self-oscillation [5]), some of these systems were the subject of an
analysis of the dynamical properties. The linear coupling resistor of the three-dimensional
self-excited oscillation system is replaced by a voltage-controlled memristor. Finding and
researching uncommon simple chaotic systems with either no equilibria or with all
equilibria that are stable has recently attracted interest [48]-[54]. The term "chaotic system
with hidden attractors" means a system without an equilibrium point or a system with just

one stable equilibrium point. This new class of attractor has only recently been identified
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by Leonov et al.[31]. Any unstable equilibrium point is not next to its basin of attraction
[5]. The traditional attractor is defined as a self-excited attractor in order to distinguish
between the two types of attractors, whereas the hidden attractor is formed by a system
without equilibria. The attraction basin of a hidden attractor does not intersect with any
small neighborhood of any equilibrium point, whereas the attraction basin of a self-excited
attractor will intersect with some unstable equilibrium points. This is the key distinction
between hidden attractors and self-excited attractors [32]. As a result, the dynamic
properties of the concealed attractor and the self-excited attractor are entirely different.
A system’s parameters or initial circumstances can be altered to produce hidden attractors
with various topological structures. These are known as coexistence hidden attractors, and
they demonstrate the system’s rich and complex dynamic properties [32]-[31]-[5].

This thesis aims to study attractors and bifurcations of chaotic systems. It contains
five chapters.

In the first chapter, we give basic notions of the theory of dynamic systems (critical

points, attractors, notions of stability).

The second chapter, we took about bifurcation theory, as well as the characteristics

of chaotic systems and the different ways of transition to chaos.

The third chapter is devoted to the investigation of hidden attractors, in which
we introduce the concept of a self-excited attractor whose basin of attraction intersects
any open neighborhood of an unstable fixed point. We give a history of the self-excited
attractor, definitions, and some examples. Then we move to hidden oscillations (hidden
attractor). We also provide historical context and definitions for hidden attractor. Finally,
we present a method for detecting a hidden attractor and give a suitable example.
In the fourth chapter, the hidden modalities of spirals of chaotic attractor via

saturated function series and numerical results are discussed. First, the hidden bifurcation
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in the chaotic attractor, generated by function series, is shown by applying the method
presented in the second chapter. Then we give the effect of the integration duration
procedure on exposing hidden modalities of an odd number of spirals. Finally, we present
the numerical results.

Finally, the fifth chapter is devoted to symmetries in hidden bifurcation routes
to multiscroll chaotic attractors generated by saturated function series. This includes
examples and properties of bifurcation routes; contains a numerical computation of two
hidden bifurcation routes; and maximal attractor range extension and coding order of
spirals’ appearance. Finally, we present the symmetries of the hidden bifurcation routes.

At the end, one finds the bibliography used for this thesis.



Chapter 1

Dynamical Systems and Chaos

1.1 Introduction

Dynamical systems theory is a classical branch of mathematics introduced by Newton

around 1665. It provides mathematical models for systems evolving over time and following
rules generally expressed in analytical form as a system of ordinary differential equations.
These models are called "dynamic systems continuous". In the 1880, Poincare found it
convenient to replace certain dynamical systems with discrete dynamical systems.
That is, systems in which time evolves by breaks in regular sequences. Thus, for more
than a hundred years, dynamical systems have been defined into two classes: continuous
and discrete systems. Historically, dynamical systems developed and specialized during
the 19"" century.

Indeed, during the astronomical study of the three-body problem near the end of the
twentieth century, the French mathematician, physicist, and philosopher Henri Poincaré
had already highlighted the phenomenon of stability at the initial conditions. One or more
parameters may be present in some dynamic process models, but modifying the parameters
may result in qualitative and quantitative features. This occurrence is frequently known

as a bifurcation [46]-[22]. Lyapunov’s works, which were initially forgotten, will later be
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very useful for studying certain aspects of chaos theory. In 1963, meteorologist Edward

Lorenz experimented with a method that allowed him to predict weather phenomena [34].

1.2 Important Definitions and Notations

A dynamical system described by a mathematical function presents two types of vari-
ables: dynamic and static. Dynamic variables are fundamental quantities that change

over time; static variables, also called parameters of the system, are fixed.

Definition 1.2.1 The vector field F', given in a region M of the space R™, is the corres-
pondence which compares every point x € M with the vector F' of the space R™ applied to
this point.

The system of differential equations, corresponding to a vector field F, is

d

d—f:F(:c,/L),xEMCRm,ueRr,met'r’eN. (1.1)

* where the point above the letter means differentiation on ¢. Region M is called the
phase space of the system, and the direct product I x M the expanded phase space
where [ is an interval of the real axis of time ¢. The system (|1.1]) is also called an

autonomous system of ordinary differential equations.

* We can always transform a non-autonomous system into an autonomous system.

Example 1.2.1 We consider a system of differential equations

=y
, (z,y) e R?

3

y=x—2°—ay+bcosTs

where the parametres a, b, T, are real physical.
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Definition 1.2.2 In the case where time is discrete, the dynamical system is presented

by an application (iterative function)

Lr+1 :F(xkalu)7 Tk EMCRm? MGRT k= 172737'” (12)

Example 1.2.2 We consider the discrete dynamical system

Tpi1 = 12,(1 —x,), © €10,1].

1.2.1 Phase Space

We will always try to introduce the properties of dynamical system in geometrical
images since this smooths their understanding. The orbits in the state space of
a dynamical system F(x,u) and the phase portrait of these orbits are the basic

geometrical objects associated with it.

Definition 1.2.3 A graph of a solution of a system of differential equations is called its
integral curve, and a projection of an integral curve on phase space along the axis t is

called a phase curve (trajectory, orbit).

Definition 1.2.4 A limit cycle is called orbitally asymptotically stable (or simply stable)
if for any reason in its small neighbourhood U, all trajectories beginning in a small neigh-

bourhood of the cycle do not leave in time and tend to the cycle when t — 400

Definition 1.2.5 The phase curve (trajectory) of the periodic solution of the system
is closed and called a cycle. Back, any cycle (the closed phase curve) of the systems

defines the periodic solution of the system with some period.
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1.2.2 Conservative Systems and Dissipative Systems

For physicists, a conservative system is a system that conserves total energy. On the
other hand, a dissipative system is a system that dissipates energy. So the conservative
system has a first (or constant) integral of the motion, and the second has at least one
rate-dependent term. But let’s not forget that the systems considered are deterministic
systems. So to specify this definition, we arrive at saying that a deterministic system
is conservative if and only if the dynamics of the system is associated with each initial
condition xy one and only one final state x(¢). It is necessary that there exists a one-to-one

map ¢ of the phase space

v: X xR — X, (1.3)

(xvt) - (pt<1’) - (P(I7t)'

1.2.3 The Poincare Map

Probably the most basic tool for studying the stability and bifurcations of periodic
orbits is the Poincare map or first return map, defined by Henri Poincare in 1881. The idea
of the Poincare map is quite simple : If r is a periodic orbit of the system through
the point 2 and ) is a hyperplane perpendicular to r at zg, then for any point z € )

sufficiently near g, the solution of (1.1]) through x at t = 0, ¢;(x), will cross > again at

a point P(z) near zg see figure (|1.1).

Definition 1.2.6 The mapping x — P(x) is called the Poincare map.

1.2.4 Ciritical Points

Definition 1.2.7 Let zq is called a equilibrium point of a differentiable vector field F(z)
so F(xy) = 0.
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Figure 1.1: The Poincare map.

Definition 1.2.8 The singular point of a vector field is a point in phase space in which

the vector of a field vanishes.

Definition 1.2.9 The periodic solution x; of an autonomous system of differential equa-
tions exists if there exists a constant T' > 0, such that v, 7 = x; for allt. The period
of the solution x; is named after the minimal such value T and the solution x; is called

T'-periodic solution.

Definition 1.2.10 The stationary solution of an autonomous system of differential equa-
tions (the solution which is identically equal to a singular point) is called Lyapunov stable
if all solutions of this system with initial conditions from a sufficiently small neighbour-
hood of the singular point are defined on all positive semi-axis of time and uniformly on
time converge to the investigated stationary solution when the initial conditions tend to

the indicated singular point.

Definition 1.2.11 The isolated closed trajectory is called a limit cycle of an autonomous

system of ordinary differential equations.
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1.2.5 Attractors of Dissipative Systems

As it was already mentioned above, the basic distinctive property of a dissipative
system of ordinary differential equations is the compression of its phase volume in time.
As a result, when t — 00, all solutions of such a system or a part of solutions tend to some
compact (closed and limited) subset B of phase space M, named an attractor. Thus, the
attractor contains "the set of established regimes" of the system. Now there is no generally
accepted strict definition of "attractor". It is connected first of all with the reason that,
till now, it is not clear what an irregular (chaotic or any other)555555 attractor is and

how it is arranged.

Definition 1.2.12 In relation to a flow @' set B C M, compact invariant If there is an
attractive set in its neighbourhood U (the open set containing B) such, that B C w(U) and

for almost all

x € U, ¢"(x) — B when t — oo(i.e.dist(¢'(z), B) = ing |¢"(z) = y|| — 0 when t — oo.
ye

The greatest set, U, satisfying this definition, is called a attraction of field for B.

Definition 1.2.13 A set is called indecomposable if for any disjiont subsets A, B C E
such that AU B we have Per(E) = Per(A) + Per(B) then either |A] =0 or |B| = 0.

Definition 1.2.14 The indecomposable attractive set is called an attractor.

Not all attractive sets are attractors, but only those of them which possess the property

of indecomposability into two separate compact invariant subsets.

Different Types of Attractors

There are two types of attractors: regular attractors and strange attractors, or chaotic

attractors.

10
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1. Regular Attractors

Regular attractors characterize the evolution of non-chaotic systems and can be of

three kinds.

e The Fixed Point

This is the most popular case and the simplest attractor, in which the system
evolves towards a point. Note that only the basins can be attractors. The other
types of fixed points indeed always have at least one "output trajectory" to each
eigenvalue of the Jacobian of the positive real part is associated an eigenvector
that points in a direction where the phase trajectory is moving away from the

fixed point.

e The Periodic Limit Cycle
It may happen that the phase trajectory closes in on herself. The temporal
evolution is then periodic, the system presenting permanent oscillations. In a
dissipative physical system, this requires the presence of a term of forcing in the

equations which comes to compensate on average for the losses by dissipation.

e The pseudo-Periodic Limit Cycle(Invariant Tori)
It is almost a special case of previous case. The system offers at least two
simultaneous periods whose rate is irrational. The phase trajectory does not

close in on itself but wraps around a 2-dimensional manifold.

2. Strange Attractors

The surface containing the divergent trajectories is called an unstable manifold,
while the one containing convergent trajectories will be called a stable manifold. Note
that this cannot be conceived in a phase space of at least three dimensions. Strange
attractors are characteristics of the evolution of chaotic systems: after a certain
time, all the points in the phase space (and belonging to the basin of attraction of

the attractor) give trajectories that tend to form the strange attractor.

11
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Fixed point

limit cycle

A limit cycle in natural space

Lorenz Attractor

Lorenz Strange Attractor

Rosler Strange Attractor

12
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1.3 Qualitative Study of Dynamic Systems

The qualitative study makes it possible to see the behavior of the solutions without
having to solve the differential equation. In particular, it allows the local study of solutions
around equilibrium points. To have a complete study of a dynamic system, we are waiting
for, in general, from the environment, a stationary behavior. The latter will be presented
by the disappearance of transitional phenomena by canceling the function of transition or

vector field. In this case, the system will have one of the two states.

* The case of equilibrium (fixed points, periodic points).

* The case of chaotic

To make this study easier, the properties of linear algebra are used on equations
that describe our dynamic systems, but the majority of dynamic systems associated with

natural phenomena are not linear. For this purpose, we are obliged to linearize.

1.3.1 Linearization of Dynamic Systems

Consider the nonlinear dynamic system defines by:
X:F<X)> X:(xlax%"'axn)a FZ(fl?f?a"'?fn)a (14)

where X a fixed point (equilibrium) of this system.

Suppose a small upset £(t) is applied in the neighborhood of the fixed point. The function

f can be developed in a series of Taylor in the neighborhood of point X as follows:

e(t) + Xo = Fe(t) + Xo) = F(Xo) + Jr(X).2(t), (1.5)

13
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with Jp(Xp) is the Jacobian matrix of the function F' defined by

9 OA .. Oh
0x1 0z Oxn
JF (XO) =
Ofn  Ofn .. Ofn
oz Oz Oxn X=X,

As F(X,) = Xy, then equation (1.5 becomes again:

€(t) = JF(Xo)é“(t)

The writing (1.7)) means that the system (1.4]) is linearized.

1.3.2 Concept of Stability

Stability in The Sense of Lyapunov

Consider the following dynamic system:

dx
dt

= f (.I’ ) t)a
with f a nonlinear function

Definition 1.3.1 The equilibrium point xo of the system (@ 18:

1. Stable if

Ve>0,36>0: ||z(to) — x| <= ||z(t,z(ty)) — xo]| <&,V t > to.

2. Asymptotically stable if:
30>0: ||z(ty) —z]| <0 = tlirn |l x(t, z(to)) — zo|| = 0.

14

(1.7)

(1.8)

(1.9)

(1.10)
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S(c) S(e)

S(8) S(8)

(a) Stability (b) Asymptotic stability (c) Instability

Figure 1.2: The different types of stability in the sense of Lyapunov

3. Exponentially stable if:
Ve>0,36>0: ||z(to) — x| <= ||z(t,z(ty)) — wo|| < aexp(—bt), ¥Vt > to.
(1.11)

4. Unstable if

de>0,VI>0: ||z(ty) — x| <0 and ||z(t,x(to)) — xo|| > e,V t >ty, (1.12)

wich mean that equation (@ s not satisfied.

Lyapunov’s First Method (Indirect Method)

Lyapunov’s first method is based on examining the linearization around the equi-
librium point xg of the system . More precisely, we examine the eigenvalues \; of
the Jacobian matrix evaluated at the equilibrium point. According to this method, the

properties of stability of x are expressed as follows:

1- If all the eigenvalues of the Jacobian matrix have a strictly negative real part, then x,

is exponentially stable.

15
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2- If the Jacobian matrix has at least one eigenvalue with a strictly positive real part,

is unstable.

Remark 1.3.1 This method does not allow us to say if the equilibrium is stable or unstable
when the matriz Jacobian has at least one zero eigenvalue and no eigenvalue with an exactly
positive real part. In this case, the trajectories of the system converge to a subspace (a
manifold) whose dimension is the number of zero eigenvalues of the Jacobian matriz and

the stability of the equilibrium can be studied in this subspace by the second method.

Lyapunov’s Second Method (Direct Method)

As we have seen, Lyapunov’s first method is simple to apply, but it allows us to analyze
the stability of equilibria only very partially. Besides, she gives no indication of the size
of the basins of attraction. The second method is more difficult to implement, but, on the
other hand, it is far-reaching and more general. It is founded on the definition of a specific
function, denoted V(x) and known as the Lyapunov function, which decreases along the
trajectories of the system within the attraction basin. This theorem will summarize this

method.

Theorem 1.3.1 The system’s equilibrium point xg @ is stable if a function V(x) :

D — R continuously differentiable having the following properties :

1. D is an open of R™ and xq € D,
2. V(z) > V(xg) Y & # 9 in D,

3. ‘./(x)§0‘v’x7éxo in D.

There is no method to find a Lyapunov function. But in mechanics and for electrical

systems, one can often use the total energy as a Lyapunov function.
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1.3.3 Hartmann-Grobman Theorem

Consider the dynamical system (|1.4)).
Let X, be an equilibrium point of the system (1.4) and let Jr(X) be the Jacobian matrix
at point Xj.

The following theorem follows:

Theorem 1.3.2 If Jr(Xy) admits pure non-zero or imaginary eigenvalues, then there
exists a homeomorphism which transforms the orbits of the nonlinear flow into those of
the flow linear in some neighborhood U of Xo. This theorem will allow us to link the

dynamics of the nonlinear system to the dynamics of the linearized system .

1.3.4 Central Manifold Theorem

Let’s
T :f($>c)7 (113)

a nonlinear dynamic system, xg is a point of equilibrium which can be brought back to
the origin by the change of a variable :

Q=T — Xo,

and let J be the Jacobian matrix of order n associated with the system (1.13) after
its linearization in the neighborhood of the fixed point (after having considered a small

perturbation g in the neighborhood of the fixed point)

do
— = Jo.
at ¢
Where :
- N?* the vectorial subspace of dimension s is generated by {A1, As. .., A}

17
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- N the vectorial subspace of dimension i is generated by {uy,us, ..., u; }.
- N°¢ the vectorial subspace of dimension c is generated by {s, ss, ..., S.}.
With

N" = N°*® N' @ N¢.

And where :
* X, A2..., A the eigenvalues of the Jacobian matrix .J, whose part real is negative.
* w1, us,...,u; the eigenvalues of the Jacobian matrix .J, whose real part is positive.
* 81,89,...,8. the eigenvalues whose real part is zero, with s +i + ¢ = n.

We have the following theorem :

Theorem 1.3.3 There are manifolds of class C™ : T stable, T® unstable and T° central

tangents respectively to N°, N* and N°¢ in xq. These manifolds are invariant with respect

to the flow system (1.13).

Figure 1.3: Characterization of the Global Center Manifold
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Central Manifold Depending on a Parameter
We apply a small perturbation x to the system (1.13)), so the result will be a dynamical
system depending on a parameter y, and suppose that by a certain transformation we can

reduce the system (1.13)) to a system of the form :

;

T = A1I+f($ay7Z7X)7

:A + x? 7'Z7 )
y= Ay +g(z,y,2 %) (1.14)

z = A3Z + h(xay727X)7

x = 0.
The central manifold in the neighborhood of (0,0, 0,0) is then given by :
y:kl(x7X)7 z:kQ(an)

After a simple calculation and after having applied the Taylor expansion on k; and ks,

we can write the system (|1.14)) under the form :

T = All’ + f(x, k1<l’,X), kg(l’,X),X)

x=0

(1.15)

The following theorem makes it possible to link the dynamics of the system (|1.15]) to that

of the system (|1.14]):

Theorem 1.3.4 If the origin xqg = 0, of the system s asymptotically stable

(unstable), then the origin of the system is also asymptotically stable (unstable).

Poincare Classification of Fixed Points

It is about distingushing these fixed points by the nature of the eigenvalues of the
matrix Jacobian (1.6)) of the linearized system ([L.7]) associated with the initial differential

system ((1.4)) at this point.
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For this reason, we will assume that the eigenvalues of the matrix Jacobian (1.6 are
defined by:

)\izwi—i—jai, 221,2,n

During w; # 0 for ¢ = 1,2, ..., n the fixed point is said to be hyperbolic.

The solution £(t) of the linearized system is written on the basis of autonomous functions:

Where V; represents the eigenvector associated with )\; and C; € R depends on the
initial conditions.
So the eigenvalues \; define the state of stability.
And we will cite the nature of these fixed points by studying the nature of the ;.
1/ Ifw; <0 fori=1,2,...,n, the fixed point is asymptotically stable : limy(¢) = 0.
The point is said to be a focus if o; # 0 for i = 1,2,...,n, a nod:Jirfooai = 0 for

1=1,2,...,n.

2/ If w; > 0 for i = 1,2,...,n, the fixed point is unstable. We say that the point is a

source if o; 20 for i =1,2,...n, and a node if o; =0 for i =1,2,... n.

3/ lf w;>0forj=1,2,...,p with p < n and w; < 0 for 7 # j, the solution is unstable,

and the point is a saddle.

If there is no zero eigenvalue, we have a saddle point.
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(ny.n_) Eigenvalues Phase portrait Stability
- %% node
(0,2) stable
41;7 6 focus
(1, D 4—’—k _< > saddle unstable
BN — %% node
(2,0 unstable
o I @ focus

Figure 1.4: Topological classification of hyperbolic equilibria on the plane
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Chapter 2

Bifurcation Theory

2.1 Introduction

The case in which we are interested in this part is as follows: we consider a differential
system depending on auxiliary parameters and we want to understand what modifications
of form undergo the portrait of phases when the parameters vary. This is the question that
the theory of disasters answers when we restrict ourselves to the framework of dissipative
systems depending on potential and when we only take into account as significant
characteristics of the portrait of phases the positions of equilibria and their bifurcations.
For the values of the parameters at which such qualitative changes appear, so called
bifurcation values (see [22]), the construction of the phase portrait requires appropriate
tools. We are interested here in local bifurcations, relative to a point of equilibrium of
a continuous system, and the bifurcation diagram will help us geometrically with both

methods, which brings us back to the use of good coordinates:

* The method of the central sub-manifold makes it possible to isolate the non-hyperbolic

part, called the central, of the system.

* Only true nonlinearities, those that cannot be made to disappear by regular coordinate

changes, remain in Poincaré’s method of normal forms.
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Chapitre 2. Bifurcation Theory

Definition 2.1.1 Defining a nonlinear dynamic system

dx

— =g(z,1,7). 2.1
dt g( Y 77—) ( )

Let z¢ be the solution to the problem of dimension n and control parameter T.

A bifurcation is a qualitative change of the solution xq of the system (2.1) when we modify

T, and more precisely, the disappearance or the change of stability and the appearance of

new solutions.

Definition 2.1.2 The minimum number of parameters needed for a universal unfolding is
called the codimension of the singularity. The codimension of the bifurcation indicates how
many parameters the system of differential equations should have on which the bifurcation
was exemplary. If codimension s greater than one, a bifurcation occurs that is more

irreqular for the system.

Definition 2.1.3 A bifurcation diagram is a portion of the parameter space on which all

the bifurcation points are represented.

2.2 Bifurcations in Codimension 1

We are talking here only about the bifurcation of codimension 1, and there are four

types of bifurcation of codimension 1, which all correspond to generic behaviors.
a- Saddle-Node Type Bifurcation

A linear function does not change the number of roots. The simplest polynomial which
changes the number of roots depending on the parameter 7 is the quadratic polynomial.

Consider the following one-dimensional dynamical system depending on one parameter:

g(x,7) =7 —2°. (2.2)
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We call the function ([2.2)) the normal form of the saddle-node bifurcation.

We will investigate the behavior of this equation in relation to the control parameter 7:

g, 7)=0+=71—2% =0,

T—2° =0+ 71 =10"

1. If 7 < 0, the equation g(x,7) = 0, as no solution. So there is no point of equilibrium.

2. If 7 > 0, we have :
Ilz\/F,
56'2:—\/;.

=7 =

Therefore, equation (2.2]) has two solutions, so there are two equilibrium points.

Their stability is determined by :

WeT) — 97 s0 WD | = —2./7 < 0and 22D | =2,/ > 0.

7 is stable
As a direct result, the signs % |gc1 ,» We see that : ’

9 is 1S unstable.
Remark 2.2.1 Same study done when g(z,7) = —7 — 2%, g(x,7) = 7 + 22, g(x,7) =
—7 + 22
But in all cases, there is a transition at 7 = 0 between the existence of no fized point and

the existence of two fixed points, one of which is stable and the other unstable.
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4 . &
. g=t-v

L<0 t=0 t>0

Figure 2.1: Bifurcation diagram saddle-node

b- Transcritical Type Bifurcation

If g is constrained to have no constant term, the bounded expansion leads to the
normal form of a transcritical bifurcati-on, which is the last stationary bifurcation in one
dimension:

g(x,7) =710 — 2% (2.3)

The usual analysis gives :
gx,7)=0<= 10 -2 =0 <= 2(1 —2) =0.

$1:07

To = T.

The equation g(x,7) = 0 admits two equilibrium points

dg(x,T)

d
— 2 so ——= |,,= 7 and dg(w,7)
dx

dgler,m)

dx 2= =

So: the equilibrium point x; = 0 stable for 7 < 0, unstable for 7 > 0 and 2o = 7

and stable for 7 > 0, unstable for 7 < 0.
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Chapitre 2. Bifurcation Theory

Figure 2.2: Bifurcation diagram transcritical

c- Pitchfork Type Bifurcation

At the pitchfork bifurcation point, the stability of an equilibrium point changes in
favor of the birth of a pair of equilibrium points. There are two kinds of this bifurcation :

supercritical, having a normal form:
glx,7) =120 — 2% (2.4)
And subcritical, having a normal form :

g(x,7) = 12 + 23

We calculate the equilibrium points. In the case of a supercritical pitchfork bifurcation,

we have

g(z,7) =0,

v —2° =0 z(r —2%) =0.
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<~ ou s ou
T—22=0 T =T.
So, if 7 < 0, we have a single point of equilibrium at x = 0.

If 7 > 0, we have three equilibrium points

IE1:0,

To3 = :l:\/F
We study the stability of these equilibrium points:

dg(z,T)

M :7'—3I2 SO dx |m1:7—7
dx ngZT) ‘12’3: —9r

As a result :

e If 7 < 0 we have the only equilibrium point where = = 0 is stable.

e If 7 > 0 we have the equilibrium point:

x = 0 is unstable,

x = +4/7 is stable.

e if 7 =0 we have a single point of equilibrium where z = 0 is semi-stable.

In the case of a subcritical pitchfork bifurcation, the same calculation yields

g(xz,7) =0,

rr+2° =0 z(r+2%) =0.
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s ou <~ ou
T4+a2?2=0 2? = —T.
So, if 7 > 0, we have a single point of equilibrium = = 0.

If 7 < 0, we have three equilibrium points

551:0,

1'273 = :l:\/—_T
We study the stability of these equilibrium points :

dg(z,7)

M =T+ 31,2 SO dz |$1: T,
d dg(x,
x —géw ) 223 = —27.

As a result :

e If 7 > 0 we have the only equilibrium point where = = 0 is unstable.

e If 7 < 0 we have the equilibrium point:

x = 0 is stable,

x = +4/7 is unstable.
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Figure 2.3: Pitchfork type bifurcations : (a) supercritical and (b) subcritical

d- Hopf Type Bifurcation

While all the bifurcations we have described are stationary, the Hopf bifurcation gives
rise to oscillating solutions; the phase space now has two components and the shape is
written in the complex plane.

Consider the normal form of Hopf type bifurcation:

dz

“Z sz \ZPZz 2.5
priaid | Z] (2.5)

By asking 7 = 7 + 47 and Z = X exp(if)), we get:

aX _ v
7 =7X—-X,

dx 1"
dt

We therefore obtain a pitchfork bifurcation for the amplitude while the phase rotates at
speed 7. The solution is therefore periodic, and the trajectories describe a spiral drawn
towards an asymptotic curve called the limit cycle. Naturally, the bifurcation of Hopf can
also be subcritical if the coefficient of the term |Z ]2 Z has a positive sign, then a negative

. . 4 . . .
term is needed in |Z|" Z to obtain a non-linear saturation.
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X X, X,

m
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t<0 t=0 t>U

Figure 2.4: Hopf diagram bifurcation

We will now focus on the step that follows the temporal regularity. According to
Landau the bifurcation of a point from a stationary behavior (equilibrium point) towards
a periodic behavior (limit cycle) and then biperiodic (a torus) constitutes the first stages
of the green transition turbulence. The latter presents a very interesting phenomenon
that we call chaos, which has long been synonymous with disorder and confusion and is
opposed to order and method. Many researchers in science have been interested in so-called
chaotic movements. They confirmed that, contrary to what deterministic thought has
hammered home for ages, there could be equilibrium in the disequilibrium, organization

in the disorganization.

2.3 Chaos theory

Nonlinear, or simply piecewise linear, dynamic systems can exhibit completely un-
predictable behaviors, which may even seem random (although these are perfectly
deterministic systems). This unpredictability is called chaos. The branch of dynam-
ical systems that endeavors to define and study chaos is called chaos theory. This
branch of mathematics qualitatively describes the long-term behaviors of dynamical

systems.
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2.3.1 Chaos Properties

1. Sensitivity to Initial Conditions
For a chaotic system, a very small error in the knowledge of the initial state xq in
phase space will (almost always) be rapidly amplified. From a mathematical point of
view, we say that the function f shows a sensitive dependence on initial conditions
when:

|z —yll <e,
36 >0, Ve € M, Ve >0, J(y,q) € M : (2.6)

Lf4(x) = )l > 5.

2. The Strange Attractor

A dissipative chaotic system has at least one attractor of a particular type called
a strange attractor, see [37]. Geometrically, such an attractor can be described as
the result of the stretching and folding operation of a phase space cycle, repeated
an infinite number of times. The "length" of the attractor is infinite, although it is

contained in a finite space. So we can give this definition:

Definition 2.3.1 A bounded subset H of the phase space is a strange or chaotic
attractor for a transformation P of the space if there exists a neighborhood G of H
that is, for every point of H there exists a ball containing this point and contained

m G satisfying the following properties.

a- Attraction: G is a capture zone, which means that any orbit by P whose initial
point is in G, is entirely contained in GG. Moreover, any such orbit becomes

and remains as close to H as one wants.

b- It is contained in a finite space. Its volume is zero. Its dimension is fractal (not

whole).
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c- Almost any trajectory on the attractor has the property of never passing twice

over the same point: each trajectory is almost surely aperiodic.

d- Two trajectories close at a time to see their distance locally increase at an expo-

nential rate (sensitivity to initial conditions).

3. The existence of broad spectra is an essential characteristic of the chaotic motions
of a system. The temporal evolution of a dynamic system is often represented by

the value of one of its variables at regular intervals. This is called the time series.

xl::;.pnu- G061, 0,01, 6.01]
15 ) powr C1[0.012, 0,01, 0.01]

1 '.|~|,,||| N {
o ,,\_.-.I.'..:":II i it I|'| |Il I1|| I|[ [ || |\ ||‘

iy J"'J|| i

150
tempa(a)

Example of a sequence with

chaotic behavior:

Chaotic behavior of the Lorenz system

2.3.2 Lyapunov’s Exponents

There are several methods that can be used to determine whether nonlinear systems
are chaotic or not. They are generally not very numerous nor spread over a sufficiently
long time on the scale of the system studied. We chose to implement two of the most
commonly used methods, which, moreover, are complementary: the fractal dimension and
the Lyapunov exponents. On October 12, 1892, Lyapunov defended a doctoral thesis
at the University of Moscow entitled: The General Problem of the Stability of Motion.

He introduces the idea of measuring the possible divergence between two orbits resulting
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from similar initial conditions. When this divergence increases exponentially with time for
almost all initial conditions close to a given point, we have the phenomenon of sensitivity
to the initial conditions, an idea to which the Lyapunov exponents are attached, which
gives a quantitative measure of this local exponential divergence and actually measures

the degree of sensitivity of a dynamic system.

2.3.3 Paths to Chaos

A dynamic system generally has one or more so-called "control" parameters, which act
on the characteristics of the transition function. Depending on the value of the control
parameter, the same initial conditions lead to trajectories corresponding to qualitatively
different dynamic regimes. The continuous modification of the control parameters leads
in many cases to a progressive complexification of the regime dynamic developed by the
system. There are several scenarios that describe the transition from a fixed point to chaos.
We note in all cases that the evolution from the fixed point to chaos is not progressive but
marked by discontinuous changes that we have already called bifurcations.

A bifurcation marks the sudden passage from one dynamic regime to another, qualit-

atively different one. Three scenarios of transition to chaos can be cited:

1. Intermittency Towards Chaos: a stable periodic movement is interrupted by
bursts of turbulence. As the control parameter is increased, the bursts of turbulence

become more and more frequent, and finally, the turbulence dominates.

2. The Period-Doubling is characterized by a succession of bifurcations of forks.
As the stress increases, the period of a forced system is multiplied by two, then by
four, then by eight,..., these doublings of period are getting closer and closer; when

the period is infinite, the system becomes chaotic.

3. Quasi-periodicity occurs when a second system disturbs an initially periodic system.

If the ratio of the periods of the two systems in the present is not rational, then the
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system is said to be quasiperiodic. In particular, Jean Christophe Yoccoz’s work on

dynamical systems earned him the Fields Medal in 1994.
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Chapter 3

Hidden Attractors

3.1 Introduction

The analysis and synthesis of oscillating systems, for which the problem of the exist-
ence of oscillations can be solved relatively easily, received a lot of attention during the
initial period of development of the theory of nonlinear oscillations in the first half of the
20" century. For example, [Andronov et al., 1966] [4], (at the end of the 19" century,
this research was started in Rayleigh’s (1877) [44]. The applied research on periodic os-
cillations in mechanics, electronics, chemistry, biology, and other fields prompted these
investigations.

Numerous applied systems under consideration had structures that made the presence
of oscillations "almost obvious". The oscillations were sparked by an unstable equilib-
rium (called selfexcited oscillation). After that, in the middle of the 20" century, it
was discovered that numerically chaotic oscillations, aside from self-excited periodic os-
cillations, are also excited from an unstable equilibrium and can be calculated using the
standard computational method | Lorenz, 1963] [34]. The computation and analysis of
self-excited chaotic oscillations have recently attracted thousands of publications. The

term "attractor" refers to an oscillation that attracts attention as well as a group of os-
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cillations that do the same. Here, self-excited attractors and computational mathematics
both naturally incorporate the ideology of transient processes from control theory. Mid-
way through the 20" century, good examples of periodic and chaotic oscillations of a
different sort, later referred to as "hidden oscillations" and "hidden attractors" [Leonov
et al., 2011] [27], were discovered. In these oscillations, the basin of attraction does not
coincide with small neighborhoods of equilibria. Since there is no way to employ equilibria
information to group related transient processes in the conventional computational tech-
nique, numerical localization, computing, and analytical examination of hidden attractors
are substantially more difficult challenges. As a result, this common method cannot be
used to compute the hidden attractors. Additionally, since a basin of attraction might be
very small and the dimension of the hidden attractor itself can be considerably less than
the dimension, it is doubtful that the

integration of trajectories with random initial data can provide the localization of the
hidden attractor in this instance.

The issue of analyzing hidden oscillations originally appeared in Hilbert’s 16th problem
for two-dimensional polynomial systems in 1900, specifically in its second section [Hil-
bert, 1901 — 1902] [I7]. The first challenging findings were found in Bautin’s writings
(1939, 1952)[7]-[8]-[9], which dealt with building nested limit cycles in quadratic systems
and demonstrated the importance of understanding hidden oscillations in order to solve
this issue. Later, difficulties with automatic control caused by engineering led to the issue
of analyzing concealed oscillations. Kapranov investigated [Kapranov,1956] [19] the qual-
itative behavior of PLL systems, which are often employed in modern telecommunications
and computing designs, and estimated stability domains. The issues raised spurred a wide
range of study in the latter half of the 20 century. The theory of normal forms and
bifurcation theory were both developed in response to Hilbert’s sixteenth issue, whereas
the idea of absolute stability was developed in response to the Aizerman problem [I].

The authors’ Kuznetsov et al., 2010; Leonov et al., 2010 [28] (first-time) discovery of
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a chaotic hidden attractor in a generalized Chua’s circuit and subsequent discovery of a
chaotic hidden attractor in a classical Chua’s circuit [Leonov et al., 2011] [27], this greatly
encouraged further research into hidden oscillations. It needs to be noted that Chua’s
circuit and its numerous variations have received thousands of papers over the past thirty
years, in which a few hundred attractors were explored. These Chua’s attractors were
self-excited up until this point, though. The study of oscillations using some effective
analytical and numerical approaches is the focus of the current survey. The current trends

in the synthesis of analytical and numerical methods are attempting to be reflected in this.

3.2 Self-Excited Attractors

During the early stages of the foundation of the theory of nonlinear oscillations, which
took place in the first half of the twentieth century, the analysis and synthesis of oscillating
systems, in which the issue of the existence of oscillations could be resolved with relative
ease, received a lot of attention. This approach was backed by the study of periodic

oscillations in practical fields, including mechanics, electronics, chemistry, and biology.

Definition 3.2.1 An attractor is called a self-excited attractor if its basin of attraction

intersects with any open neighborhood of an unstable fixed point.

Moreover, in the middle of the twentieth century, except for self-excited periodic
oscillations in applied systems, chaotic oscillations were found numerically to be excited
from an unstable equilibrium and could be computed by the standard computational

procedure. Take a look at some traditional illustrations of self-excited oscillations.

Example 3.2.1 Rayleigh [1877] was the first to demonstrate that in a two-dimensional
nonlinear dynamical system undamped vibrations might emerge without external periodic

action while researching string oscillations (limit cycles). [32]
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Consider the limit cycle localization in the Rayleigh system
. 2.
r— (a—pzr)r+x=0, (3.1)

fora =1, 3 =0.1. In figure , a two trajectories (each starting in red and ending in

green) localize a limit cycle by drawing attention to it.

G = AN W &k th @

Figure 3.1: Localization of limit cycle in Rayleigh system

Example 3.2.2 Take into account electrical circuit oscillations, such as those produced

by the van der Pol oscillator [van der Pol, 1926].[32]

r+a(@®—-1Dr+2=0, (3.2)

where the result was found for a = 2.( see figure )

3.3 Hidden Oscillations

David Hilbert was the first to evade the challenge of examining concealed oscillations

[17]. In relation to the degree of the polynomials under consideration, he introduced the
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-3 -2 -1 ] 1 2 3

Figure 3.2: Numerical localization of limit cycle in van der Pol oscillator

problem of the investigation of the number and potential arrangements of limit cycles in
two-dimensional polynomial systems in 1900.

According to the study, self-excited periodic and chaotic oscillations did not provide all
of the information regarding the potential types of oscillations. The models of periodic
and chaotic oscillations of different types were discovered in the middle of the 20" century.
Because the basin of attraction was not cut away with small neighborhoods of equilibria,
these models were dubbed "hidden oscillations" and "hidden attractors" in 2011 [30].
Therefore, the following definition should be supplied in order to allow for this class of

attractor.

Definition 3.3.1 If an attractor’s basin of attraction is not cut off by small regions of

equilibria (stable equilibria point), it is referred to as a "hidden attractor.”

The difficulty of numerical localization and analytical examination of hidden attractors
has increased significantly in recent years. This occurs because using equilibrium inform-
ation to organize identical passing processes according to the conventional computational
approach is not possible in this situation. As a result, this common method cannot be
used to compute the hidden attractors. Furthermore, since a basin of attraction can be so

small and the hidden attractor’s own dimension can be much smaller than the dimension
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of the considered system, it is not possible in this situation for the integration of trajector-
ies into random initial data to expand hidden attractor localization. Consider some good

examples of hidden attractors.

Example 3.3.1 In 1963, the Lorenz system was the first well-known example of a visu-
alization of a chaotic attractor in a dynamical system, corresponding to the excitation of
a chaotic attractor from unstable equilibria..[32]
Consider Lorenz system

z =aly— =),

y =x(c—2)—vy, (3.3)

2z =y — bz.

1t’s simulation with standard parameters is a = 10, b = g, c = 28.(see figure )

LORENZ functions x(t) vs. y(t} vs_ z(t)

y(t) =0

x(t)

Figure 3.3: Numerical localization of chaotic attractor in Lorenz system

Example 3.3.2 Consider the behavior of the classical Chua circuit [Chua, 1992]. In the
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dimensionless coordinates, a dynamic model of this circuit is as follows: [32]

v =aly — ) —af(z),
Yy =x—y+ 2, (3.4)

z = —(by +cz).

Here the function

(@) = s+ S0 — )l + 1] = fo — 1) (3:5)

For simulation of this system, we use the following parameters: a = 9.35, b = 14.79,

¢ =0.016, ap = —1.1384, oy = 0.7225. (see figure (3.4))

Figure 3.4: The numerical localization of chaotic attractor in Chua’s circuit.

Remark 3.3.1 The hidden vs. self-excited classification of attractors was introduced in

connection with the discovery of the first hidden Chua attractor. [20)]
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3.4 Analytical-Numerical Method for Hidden Attractor
Localization

Recently, new concepts such as self-excited and concealed attractors have been introduced
[28], [29] and [31]. If an attractor’s basin of attraction crosses over with the area around
an equilibrium point, it is referred to as a self-excited attractor; otherwise, it is referred
to as a hidden attractor. For systems with no equilibria, only one stable equilibrium, or
infinitely many stable equilibriums, for instance, hidden attractors are attractors. It is
particularly challenging to locate a hidden attractor since its basin of attraction does not
overlap with any local communities of equilibrium points. This computational complexity
is where the name "hidden" originates. Leonov et al., [27], [30], and [31] discovered a way
to quantitatively prove their existence. They use this technique in particular for Chua
attractors.

The approach
dX

- = HX+ p¥(k'X), X eR? (3.6)

were H is a constant (n X n)-matrix, pu,x are constant n-dimensional vectors, T' is a
transposition operation, ¥(o) is a continuous piecewise-differentiable scalar function, and

¥(0) = 0. Define coefficient k" of harmonic linearization in such way that the matrix
Hy = H + k uk”, (3.7)

has a pair of purely imaginary eigenvalues +iwy (wo > 0) and the rest of its eigenvalues

have negative real parts. We assume that such &’ exists. Rewrite system 1} as

dX
- = HoX + pp(k" X), (3.8)

were (o) = ¥(0)—Fk o, and introduce a finite sequence of functions ©°(c), ¢! (), - -+ , "™ (o)
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such that the graphs of neighboring function ¢/ (o) and 't (o), (j =0,--- ,m — 1), differ
slightly from one another, were the function ¢°(c) is small, and ¢™ (o) = ¢(o). Using
a smallness of function, we can apply the method of harmonic linearization (describing

function method) for the system

dX
— = HoX + ¢ (r" X)), (3.9)

and determine a stable nontrivial periodic solution X°(t).

For the localization of attractor of original system(3.8]), we will follow numerically the
transformation of this periodic solution. All the points of this stable periodic solution are
located in the domain of attraction of the stable periodic solution X*(¢) of the system

dX

= HoX + o (KT X), (3.10)

With j = 1, or when passing from to system with j = 1, one can observe the
instability bifurcation destroying the periodic solution. In the first case, it is possible to
find X'(¢) numerically, taking as initial condition of system (3.10) with j = 1, any point
of the stable periodic solution X°(¢). Starting from this initial condition, after a transient
phase, the trajectory reaches the periodic solution X!(¢). Then, after the computation
of X1(t), it is possible to obtain a periodic trajectory X?(t) of system (3.10) with j = 2
starting from any point of the stable periodic solution X'(t), and so on, to obtain a

periodic solution of system (3.8]) if such solution exists.

Remark 3.4.1 In some cases, it is not possible to get such a solution because one observes

at a certain step an instability bifurcation destroying the periodic solution.

Remark 3.4.2 In the case of the Chua attractor, the periodic solution close to the har-
monic one is transformed into a chaotic attractor. This is also the case for multispiral

chaotic attractors from saturated function series, studied in this thesis.
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A linear nonsingular transformation S (X = SY') can transform system (3.9) to the
form:
To determine the initial condition X°(0) of the periodic solution, a linear nonsingular

transformation S (X = SY) can transform system (3.9) to the form:

Y1 = —woya + v1¢°(y1 + u3Ys),
Y2 = woyr + va’ (y1 + ul'Ys), (3.11)
Vs = AsYs + Vi (y1 + ul Y3).

Here 1, yo are scalar values; Y3 is an (n — 2) —dimensional vector, V3 et uz (n — 2) —dimensional
vector, v; and vy are real numbers; Az is an (n — 2) x (n — 2) matrix, where all of its ei-
genvalues have negative real parts. Without loss of generality, it can be assumed that for

the matrix A3 there exists a positive number dy > 0 such that
Vi(As + AL)Ys < —2d, |Y5)*, VY3 € R™2 (3.12)

In the scalar case, let us introduce the describing function @ of a real variable 7 :

2w Jwo

® (n) = / ©(cos(wot)n) cos(wot)dt. (3.13)

0

Theorem 3.4.1 [57/If a positive 1y such that

ad
(I)(T]o) =0, U1# |77:770< 0, (314)

then for the initial condition of the periodic solution X°(0) = S(y1(0), y2(0), Y3(0))T at

the first step of algorithm we have

y1(0) =m0+ O(e), y2(0) =0, Y3(0) = O,,_2(¢), (3.15)
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were O,,_s(€) is an (n — 2) —dimensional vector such that all its components are O(g).

For the stability of X°(¢) (where stability is defined in the sense that for all solutions with
the initial data sufficiently close to X°(0) the modulus of their difference with X°(¢) is
uniformly bounded for all ¢ > 0) it is sufficient to require the following condition is true
bl%@ |n=no < 0.

In practice, to determine k" and wy one uses the transfer functionW () of system 1} :

W) =r"(H - X)) 'p, (3.16)

where )\ is a complex variable. The number wy is determined from the equation Im W (iwg) =

0 and k' is calculated then by the formula k' = — Re W (iw,) .

3.4.1 Example (Hidden Attractor for Chua’s System)

In Chua’s circuit, a hidden chaotic attractor was found for the first time in 2010
[Kuznetsov et al., 2011] [27]-[28], three-dimensional dynamical system’s description. The
application of the aforementioned approach to the localization of a hidden chaotic attractor
in Chua’s system will be shown below. The authors used the method above to discover a

hidden attractor. For this purpose, write Chua’s system ({3.4H3.5)) in the form (3.6])

dX
- = HX+ p¥(k'X), X eR3 (3.17)
Here,
—alon+1) a O —a 1
H = 1 -1 1 |, p=f 0 |, =10
0 —-b —c 0 0

and U(o) = ¢(0).
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Introduce the coefficent & and small parameter ¢, and represent system || as

dX

= HoX + pep(k’ X)), (3.18)
where
—alay +14+E) a 0
Ho=H+k pur" = 1 11 | MBS =Fiw, A=,

0 -b —c

By nonsingular linear transformation X = ZY system (3.18)) is compressed into the form

d
d—i = Py +vep(u'Y), (3.19)
where
0 —wy O U1 Y1 1
P = wo 0 0 , U= Vg , Y = Yo and u= 0
0 0 —d 1 Y; —h

The transfer functionWp(A) of system (3.19) can be represented as

—1}1)\ + vowy h

A) = .
Wl =—i Tatd

Further, using the equality of transfer functions of systems (3.18) and (3.19)), we obtain

Wp(A) = T (Hy — M) e
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This implies the relations indicated below:

k/ _ —alaatoarcte)+wi—c—b
o a(l+c) ’
d — a+wi—b+14c+c?
- 14+c ’
b — a(c+b—(1+c)d+d?)
- w8+d2 )
by — a(ctb—w?—(14c)d)
1 — w8+d2 )
by — a((c+b)d+(1+c—d)wd)
2 wo(wngdQ) ’

(3.20)

Since system (3.18)) can be reduced to the form (3.19) by the nonsingular linear

transformation X = ZY, for the matrix S the following relations

P=Z'HZ b=27"y, F =

kTS, (3.21)

are true. The entries of this matrix are obtained by solving these matrix equations:

h(a(ag +1+Kk) —d

)
a

+ &)+ ab+ —w?

Zin L2 Zig
Z = Zor Ly Lo
Z31 ZLzp a3
Here
le == 17 ZIQ == 07 Zl3 = _h7
Ty =ar+1+k, Zzzz_TwO, o3 = —
kY — w? b
s — a(oy +a ) cuo7 Zy — a(b+ c)(ay
Nd—1 1+a-—
Zy — ha(a1+k)(d )+d(l+a d).

a

awo

We determine initial data for the first step of a multistage localization procedure for small
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enough ¢, as

7o MoZ11
X(0)=2Y(0)=S5 0 = NoZa1 ) (3.22)
0 NoZ31

The starting condition for the system (3.453.5) is provided by this.

a(l + on) — wp

X(0) = (2°(0) = no, ¥°(0) = o1+ + k), 2°(0) = - ). (3.23)
Consider system ((3.18]) with the parameters
a = 8.4562,b = 12.07.32,c = 0.0052, g = —0.1768, vy = —1.1468. (3.24)

There are three equilibria in the system for the parameter values under consideration:
a locally stable zero equilibrium and two saddle equilibria. Let’s now employ the hidden
attractor localization process described above to Chua’s system (3.17) with parameters

(3.24). Calculate a beginning frequency and a harmonic linearization coefficient for this.

wo = 2.0392, k = 0.2098. (3.25)

Then, we compute solutions of system (3.18) with the nonlinearity (¥ (x) — k'z)
sequentially increasing e from the value e; = 0.1 to £19 = 1 with step 0.1. By (3.20) and
(3.23), the initial data can be obtained

2(0) = 9.4287, y(0) = 0.5945, 2(0) = —13.4705,

for the initial phase of a multi-stage process. For ¢ = 0.1, the computation approaches the
beginning oscillation X1 (t) following a transitory process. Additionally, the set a hidden

is calculated for the original Chua’s system (3.17) using numerical methods and the
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sequential transformation X7 (¢) with increasing parameter ;. In Fig.(3.5)) , this collection

is displayed.

Figure 3.5: Hidden attractor localization
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Chapter 4

Hidden Modalities of Spirals of
Chaotic Attractor via Saturated
Function Series and Numerical

Results

4.1 Introduction

In 2016, Menacer et al. [39] discovered a number of hidden bifurcations in the
multispiral Chua system using a different application of the Kuznetsov and Leonov tech-
nique.presenting a sine function (T.Menacer 2016) [39]. Within the system shown
in [36], the two parameters p and ¢ determine the number of spirals. according to the equa-
tion N = p+q+ 2 . It is because p and ¢ are integers. It is impossible to continuously
change it, making observation impossible. the attractors’ bifurcation into m and m + 2
spirals when the parameters P and ¢ shift. Additionally, non-integer real numbers cannot
be used for p and gq.

When we fix p and ¢ and introduce the new control parameter ¢ the nonlinear part,
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in order to discover the hidden bifurcations, governed by a homotopy parameter £ while
keeping p and ¢ constant. This element when fluctuates between 0 and 1, when ¢ takes a
value of 0 for the non-linear component of system is unpaired, and a cycle-shaped
attractor is produced. However, if € equal to 1, we discover the original system’s attractor
(4.1H4.2), with spirals, where m = p + g + 2. The number of spirals increases in direct
proportion to the difference between these two values of . For each value discovered
the new parameter, a technique is used during the integration operation to have odd or
prior to locating the asymptotical attractor, for even numbers of spirals, the number of
spirals grows incrementally until it reaches the maximum number that matches. The value

guaranteed by e the unveiling of the modalities of an odd number spirals

4.2 1-D n-Scroll Chaotic Attractors From Saturated
Function Series

Among the various techniques for producing n—spiral (n > 3) chaotic attractors [49]-
[57], for the one in [36], which is based on saturated function series (Fig. (4.1])) a controller

is added to a linear system

2= —ax — By — vz +rif(x;k hyp;q),

where )
Y1,k if x>qh+1,
Yori of |v—ih| <1,—p<i<yg,
S ks hipsq) = (4.2)
Yski f i<z <ly;and —p<i<qg-—1,
| Yar i @ < —qph—1,
with
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Figure 4.1: Saturated function series with k =9, h =18, p=2,q =2

Figure 4.2: The 6-spiral attractor generated by Eqs. Jand (4.2) with k=9, h=18,
p=q=2 and a=b=c=d1=0,7

Lhi=ih+landly; = (i+1)xh—1,y10.=2¢+ 1)k, yori =k(x —ih), ysp: = (20 + 1)k
and ysp = —(2p + 1)k.

Parameters p, ¢, h and k are integers, and «, (3, 7y, r; are real numbers.

Throughout this study, set the parameter values as « = f = v = r; = 0.7. The number
m of spirals.

m=p+q+2 (4.3)

For £k =9, h = 18, p = ¢ = 2, a 6-spirals attractor is generated as the asymptotic attractor

of system (4.1H4.2)), see Fig. (4.2]).

* Attraction Basin of the 6 Spirals Attractors

For our system (4.114.2)) we have a 2(p + ¢) + 3 equilibrium point are situated along
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the r—axis, and fall into two different categories.

n_Jl_ (2p+ V)rk (—2p+ 1)rk (2¢ + 1)rk
xr = a ) a VAR a
pkri(h —2) —(p+ Dkri(h —2) gkri(h —2)
SLE =\ ) [
kri — « kri — « kri — «

For all equilibria in tow sets R, and S, are unstable points (saddle points) (for more
information see [36]).

When we took p = ¢ = 2 so we have a 11 equilibrium points

(—45;0;0), (=27;0;0), (—9;0;0), (0;0; 0), (27; 0; 0),
(45;0;0), (74 : 667;0;0), (149; 334; 0;0), (224; 0001; 0; 0)
(three double points), are saddle points.

If the attraction in the chaotic attractors’ basin does not cross paths with the unbounded
neighborhood of equilibrium points, the chaotic attractors are known as hidden attractors.
Since all of the points in our system are unstable, we haven’t hidden attractors, thus the
attraction basin is what we’re interested in. We took six points because we saw that
the same outcomes appeared in all the figures. The yellow region represents the chaotic
attractors’ attraction basin, while the cyan region shows the motion that starts in these

initial state regions and will diverge from equilibrium points. This is seen in figures below:
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4.3 Recovering Hidden Bifurcation in a Multispiral

Chaotic Attractor

To prove this obstacle, Menacer et al. [39] presented a novel procedure for uncover-

ing hidden bifurcations based on the idea of Leonov and Kuznetsov [27] for investigating

hidden attractors (i.e. homotopy and numerical continuation, see chapter 2. This pro-

cedure is novelly applied to multi-scroll chaotic attractors from saturated function series.

We recall this procedure in this section in which the values of parameters are fixed at

a=b=c=d; =0.7,k=9,h=18.
Rewrite system (4.114.2)) to the form

dX
- = HX+ p¥(k'X), X eR:
Here
0 1 0 0 1
H=1 0o o 1 |, #=101], =10 |,
—a —f —v 71 0

and U(o) = ¢(0).

Introduce the coefficent & and small parameter ¢, and represent system 1’ as

dX

T HOX + ﬂg(p(liTX),
dt
where
0 1 0
Hy=H +k pr" = 0 0 1 |, AS=diw, M°=-d

95

(4.4)

(4.5)



Chapitre 4. Hidden Modalities of Spirals of Chaotic Attractor

By nonsingular linear transformation X = ZY system (4.5 is compressed into the form

d
d_g; = Py +vep(cY),
where
0 —wy O U1 n
A=1 w 0 0 , v=1| vy, |, Y= y, |and c=
0 0 —d 1 Y3

The transfer functionWp(\) of system (4.6) can be represented as

—Ul)\ + Vawy h
A+ wd A+d

Wp(A) =

(4.6)

Further, using the equality of transfer functions of systems (4.5) and (4.6)), we obtain

Wp(\) = kT (Hy — ) *pu.

This indicates the relationships listed below :

d=r,

h= .

,Ulzwg_—j:pv
2

ngﬁ.

(4.7)

Since system (4.5)) can be reduced to the form (4.6) by the nonsingular linear

transformation X = ZY, for the matrix Z the following relations

P=Z'HZ v=7"u " =x"2Z,
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are true. The entries of this matrix are obtained by solving these matrix equations:

Ziu Zia Zig
Z = Lo Ly Lo
Z31 ZLzp a3

Here
le - 17 ZlQ - 07 Zl3 — h7

Zon =0, Zy = —wy, Zog=dh,

Zgl = —wg’, Z32 = 0, Z33 = d2h

For small enough ¢ we determine initial data for the first step of multistage localization

procedure, as

7o Mo411
X0)=2Y(0)=S| o = | noZs |- (4.9)
0 Mo Z31

The starting condition for the system (4.4]) is provided by this.

X°(0) = (2°(0) = no, ¥°(0) =0, 2°(0) = —nowp). (4.10)

4.3.1 Numerical Results of Hidden Bifurcations

One acquisition is required for the value of the parameters defined in this study :

k'=03,d=0.7h =—0.5882, v; = —0.5882, vy = —0.4901, so this is the matrix Z

1 0 0.5882
Z = 0 —0.84 —0.41174
—0.5927 0 —0.2882
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Via theorem (33.4.1)), for small enough ¢ we computed initial data for the first step of the

multistage localization procedure.

o Mo 411
X(O) = ZY(()) =7 0 = N0 Zo1 . (4.11)
0 M0 431

This provides the system’s (3.6) starting data.

X°(0) = 2°(0) = no, ¥°(0) =0, 2°(0) = —nowg. (4.12)

We now put the above-described localization process to use on the system (4.114.2)) with
multiple spiral attractors. In order to do this, we compute the initial frequency shown

below wy and a coefficient of harmonic linearization:

wo =084, k =0.3. (4.13)

Then, starting with step 0.4, we calculate the solutions of system with the non-
linearity ep(z) = e(¢p(x)— ki) by increasing ¢ sequentially from ¢ = 04 to ¢ = 1. If
the stable periodic solution X'(¢) corresponding to the small value e = 0.4 is also close
the harmonic one then, the solution X?(¢) can be calculated numerically by seeking one
trajectory of system with € = 0.4 picking as initial point X (,,4.) Where t,,,, is the
recent value of the integration time. We survive by increasing the parameter ¢ and using
the same numerical procedure to calculate X?3(t), X*(¢), X°(¢),- -+, X*(¢)--- ,, which are
system solutions for specific initial data. We obtain detailed data for the solutions
for increasing values of € as shown in the tow tables (4.1}4.2).

So, from the tow tables (4.1}4.2)), we obtain the solutions X'(0) with one spiral to
X*4(0) (see figures . In each figure, there is a variant even number of spirals in the
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Table 4.1: : Initial data according to the values of epsilon for 6 spirals

Values of ¢ | X*(0) Zo Yo 20

0.4 X1(0) = X%(tmax) | —0.8 0 0.4742
0.6 X2(0) = X (tmax) | —1.6412 | —0.8137 | —2.4791
0.95 X3(0) = X?(tmax) | —11.8094 | 2.6215 | 4.3874
0.98 X40) = X3(tmax) | 14.1195 | 2.3715 | —4.0961
0.99 X5(0) = X*(tmax) | 20.597 —2.8517 | 4.9190

1 X6(0) = X°(tmax) | —0.5411 | —0.2490 | —6.2018

Values of ¢ | X*(0) Zo Yo 20

0.4 X10) = XO(tmax) | —1.78 0 1.253

0.6 X2(0) = X (fan) | —0.6004 | 0.5262 | —2.6066
0.95 X3(0) = X2(lmae) | 4.8838 | —3.3862 | 0.6216
0.8 XT(0) = X3(fmae) | 185373 | —0.3588 | —1.7539
1 X5(0) = X% (fma) | —11.2090 | —4.0556 | 1.1964

attractor. The number of spirals increases by two at each step, as shown on table (4.3))

from 1 to 6 spirals (respectively 4 spirals see the table (4.4) and figure (4.3 ). The

values of € these two tables contain all of the bifurcation values.

Table 4.3: : Values of the parameter epsilon at the bifurcation points for p = q = 2
| Values of ¢ [04]06]0.95]098[]099]1]
H Number of spirals H 1 H 2 H 4 H 6 H 6 H 6 H
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Table 4.4: : Values of the parameter epsilon at the bifurcation points for p = q = 2
| Values of [04]06]095]098]1]
H Number of spirals H 1 H 2 H 4 H 4 H 4 H

Fig. 6 1 spiral for £=0.4 Fig. 7 2 spirals for e=0.6

Fig. 8 4 spirals for e=0.95
ig spirals for e Fig. 9 6 spirals for £=0.98

Figure 4.3: The bifurcation points for p =¢q =2

4.3.2 The Influence of the Integration Duration Procedure for

Unveiling Hidden Modalities of Odd Number of Spirals

We previously recalled in section 4 that the hidden bifurcation track’s attractors
process an even number of spirals. The hidden modalities of an odd number of spirals are
revealed using a novel technique that we describe in this section. The system (4.14.2))
integration time serves as the foundation for this methodology. Through the use of this
new method we have fixed ¢ and replicated the integration time t,,,,. Before reaching the
even number of spirals asymptotical attractor, which is accessible during the integration
process. As soon as the number of spirals has multiplied to the highest number that
satisfies the value set by €, we stop.

To study the effect of this integration duration on the base of this procedure, we repeat
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L

- ‘a}

Fig. 10 1 spiral for =04
Fig. 11 2 spirals for £=0.6

Fig. 12 4 spirals for £=0.95
Fig. 13 4 spirals for £=0.98

Figure 4.4: The bifurcation points for p=¢ =1

the same procedure for all values of table (4.1)), we are notice the change of spiral number

and we summarize our results in table (4.3.2)) and figures (numerical example 6 and 4

spirals) (4.5:4.61j4. 7114.84.944. 10)
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¢ 500000
£=04 S— 0
b of spirals 1
[ A——— 380 20000
e=0.6 s
Nb of spirals 1 2
=095 [ F— 200 1000 10000 50000
) Nb of spirals 1 2 3 4
1 otepmax 200 1000 2000 10000 40000
1 2
2108 Nb of spirals 1 2 3 4 5
Torepmax 100000
Wb of spirals 6
Lorepmax 120 500 1000 3000 10000
: S -
£ 09D Nb of spirals 1 2 3 1 5
Iorepmax 200000
Nb of spirals 6
| F— 130 1000 1145 1500 10000
Nb of spirals 1 2 3 4 5
_— [— 90000
) Nb of spirals 6

Table 3. Values of fsrepmaxfor E=041t0 € =1 and m= 6.

Figure 4.5: 1 spiral for ¢ = 0.4
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Fig. 16 1 spiral for tstepmar = 330 Fig. 17 2 spirals for futepmaz = 20000

Figure 4.6: The increasing number of spirals for ¢ = 0.6 and various values of ¢ cpmax

Fig. 21 3 spirals for tatepmaz = 10000 Fig. 22 4 spirals for tstepmaz = 50000

Figure 4.7: The increasing number of spirals for e = 0.95 and various values of tgepmaz
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Fig. 28 5 spirals for t = 40000
: = S Fig. 29 6 spirals for hupfmn: = 100000

Figure 4.8: The increasing number of spirals for ¢ = 0.98 and various values of tscpmaz
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Fig. 35 5 spirals for tstepmar = 10000

¥t} =
° P CR ) >\ ) % e X(t)
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Fig. 32 2 spirals for lLicpmaz = 500
¥(t)
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Fig- 34 4 spirals for t;[gpﬂ.nx = 3004

¥lt) |

Fig. 36 6 spirals for ticpmar = 200000

Figure 4.9: The increasing number of spirals for ¢ = 0.99 and various values of tscpmaz
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v |

Fig. 38 1 spira.l for t-nt('p!nn,; = 130

Fig. 42 5 spirals for tstepmaz = 10000

Fig. 41 4 spirals for {5.pmaz = 1500

it

Fig. 43 6 spirals for lstepmar = 90000

Figure 4.10: The increasing number of spirals for ¢ = 1 and various values of tscpmaz
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Chapter 5

Symmetries in Hidden Bifurcation
Routes to Multiscroll Chaotic
Attractors (Generated by Saturated

Function Series

5.1 Introduction

Due to its potential uses in numerous real-world technologies, the production

of multi-spiral chaotic attractors has received a great deal of attention over the last three
decades. For a survey, see [35]. Several techniques have been proposed for creating

multidirectional and multi-spiral chaotic attractors, including piecewise linear functions,
nonlinear modulating functions, and electronic circuits (step, hysteresis, and saturation
circuits). Even though the bulk of these multi-spiral generations have been known for a
long time, bifurcation theory ([35]-[39]) has only lately been used to study them. The
number of spirals (or scrolls) for any known multiscroll is a fixed integer that depends on

one or more discrete characteristics. No bifurcation has been studied thus far. Menacer et
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al. [39] introduced hidden bifurcations, yielding multispirals in a family of systems
with a continuous bifurcation parameter, changing the paradigm of discrete parameters.
The study of multisprals can thus be conducted using all the established theories of

dynamical
systems and associated potent analytical techniques. The hidden attractor
theory developed by Leonov et al. ([27]-[28]) serves as the foundation for this hidden
bifurcation theory.
The investigation of hidden bifurcation paths in 1 — D multi scroll chaotic attractors
produced by saturated function series is the main topic of this chapter. This chapter
investigates multi-spiral chaotic attractors produced by saturated function series via con-
cealed bifurcation paths. The approach used by Menacer et al. (2016) [39] for Chua
multi-spiral attractors to locate such hidden bifurcation routes (HBR) depends on two
parameters.

These H BR are distinguished by coding the sequence in which the spirals emerge under
the supervision of the two parameters and the maximum range extension of their attract-

ors. These HBR also exhibit intriguing symmetries with relation to the two parameters.

5.2 Models and Properties of Bifurcation Routes

5.2.1 Numerical Calculation of Two hidden Bifurcations Routes

This chapter aims to investigate the hidden bifurcation paths and symmetries of the
1 — D multispiral attractors proposed in chapter 3. First, two instances of these covert

bifurcation pathways are demonstrated, and the appearance of the spirals is made clear.

Consider the system (4.1H4.2]) with parameter values

a=0=y=r=0,7.
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Now, the localization procedure described above is applied to system (4.1)) with multiple
spiral attractors. For this purpose, the following starting frequency wg and a coefficient of

harmonic linearization k& are computed, as explained in the chapter 3 :

wo = 0.8366, k =0.3.

Then, the solutions of system (4.5, with the nonlinearity ep(z) = e(¥(x) — k')
are computed by increasing sequentially from the value ¢ = 0.1 to € = 1, with step 0.1.

For p =0, g =4, h =20 and k = 10, using (4.10)), one obtains the initial conditions
20(0) = 203.2, yo(0) =0, 2z0(0) = —119.01,

whereas in the case of p = 2 and ¢ = 3, with the same values of A and k the following

initial conditions are obtained :

20(0) = 249, yo(0) =0, 2(0) = —145.83.

The method outlined in section 3 produces the values of the parameter at the points
of bifurcation, where the attractor increases the number of spirals from 1 to 6 spirals
(7 spirals, respectively), as shown in tables and . Be aware that instance 7 dif-
fers from case 6 in that the bifurcations appear in the following order 1,2,4,6,and 7,
respectively depending on the values of ¢, as indicated in the images [5.2 5.0|

Table 5.1: : Values of the parameter epsilon at the bifurcation points for p = 0 and q =
4 (6 scrolls)

Values of 0.41 0.6
Number of spirals | 1 spiral | 2 spirals
Values of 0.95 0.985
Number of spirals | 3 spirals | 4 spirals
Values of 0.988 0.99
Number of spirals | 5 spirals | 6 spirals
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Table 5.2: : Values of the parameter epsilion at the bifurcation points for p = 2 and q =
3 (7 scrolls)

Values of 0.42 0.6
Number of spirals | 1 spiral | 2 spirals
Values of 0.95 0.98
Number of spirals | 4 spirals | 6 spirals
Values of 0.99

Number of spirals | 7 spirals

5.2.2 Maximal Attractor Range Extension and Coding Order of

Spirals Appearance

Both tables and summarize the appearance of spirals versus the values of ¢.
figs. to display some interesting information: the order of spiral appearance and
the maximal attractor range extension. In both routes, the parameter values of function
are k = 10 and h = 20. These parameters play a significant role in the sizes of the
attractors. The maximal attractor range extension (M ARE, ) is the size of the
x-projection of the considered attractor defined by parameter values p and ¢, when € = 1
and as t — +o00. For example, for the first route defined in , one can see from fig
that the minimum value of the range of the variable x of the attractor is —20, and
the maximum value is 100.Therefore, in this case, MAREy4 = [—20, 100], and its length
is equal to 120 for 6 scrolls. For the second route in , the attractor spans between
—60 and 80 having M ARE, 3 = [—60, 80] with a length equal to 140 for 7 scrolls. In
both cases, the length of M ARFE is equal to the number of scrolls x20(i.e.(q+p+2) % 20,
following (3)).

Moreover, when ¢ increases (figs and , the size of each spiral is expanding.

It is approximatively equal to (17 x €) + 3. By defining the interval [v x 20, w x 20]1} as

[v % 20,w x 20]*} = [ x (17 x € +3),w x (17 x € + 3)] (5.1)
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The initial spiral accomplishes the interval. [0,20]{}. The second scroll accomplishes
the interval and is symmetrical to the first. [—20,20]{}. Now, introduce the coding
[0,20]%} = L (L stands for the preceding interval’s left side.) to indicate the evolution of
such spiral look. The third spiral appears after the second one and is part of the interval
20, 40]¢}, the fourth to the interval [40, 60]1}, the fifth to the interval [60,80]{}, and the
last to the interval [80, 100]{}.

The coding of this hidden bifurcation route (HBR), which ends with the interval
[—20,100){} is HBRy4 = [0,20*} /LR, R,/ R,/ R (R stands for the right of the pre-
vious interval).

As the value of ¢ is not important for the search of symmetries of the hidden
bifurcation routes, it is omitted and denote simply H BRy 4 = [0,20]**} /L /R,/R,/R/R
by HBRy4 = [0,201' /L/R/R,/R/R.

The beginning of the second route (figs. and [5.5) is the same ([0, 20]} /L).

But the third and fourth spirals simultaneously appear, extending the interval. [—20, 20]{}
to [—40, 40]%}. Denote this expansion by [0, 20]#} = L = 2Sym. The fifth and sixth spirals
reappear next to the preceding attraction in a symmetrical pattern. The final spiral is a
part of the interval. [60, 80]{<}.

The coding of this second route, which ends with the interval [—60, 80}{5}, is HBRy3 =

[0,20){¢} /L 2Sym ~2Sym,/ R or simply HBR, 3 = [0,20],/L,/2Sym2,/ R.

5.3 Symmetries of the Hidden Bifurcation Routes

For the values of n in eq (4.3)), take into account all possible values for p and ¢, ranging

from 3 to7, and some values of p and ¢ for n between 8 and 12.
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5.3.1 Basic Cell

The numerical tests demonstrate that either the coding or the first two spirals come
first.
(10,2019 7 L)or([-20,0)* /R),

as displayed in figs. and for the same values of h and k. Therefore, it is called the
basic cell and denoted as B, either
(0,201 /L)or([-20, 019 /R).

The generalized notations used for the coding are B and the following ones:

2sym® = 2Sym,2Sym --- /2Sym, s times,
L'=L/L... /L, ttimes,

R'=R/R... /R, utimes.

5.3.2 Symmetries

For all values of, the hidden bifurcation pathways have all been mathematically calcu-
lated. p and ¢, giving the values of n in eq. (4.3)) ranging from 3 to 7. The results (M ARE

and coded bifurcation routes) are displayed in black color in table . It was found that

MARE, , = [~20 — 20 x p,20 + 20 X . (5.2)

Additionally, each hidden bifurcation route’s coding is provided by
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B/2sym?® if p=gq,
HBR, ;=< B/2sym?®/LP=* if p > q, (5.3)
B/2sym?®/R1~* if p < q,
which formula controls how many spirals there are and how they appear in the order that
they do, where s = min(p, ¢).In table HBR,, and MARE, ,, which are highlighted
in red and match both of the previous formulations . It is evident from these
numerical findings that the first diagonal exhibits considerable symmetry. This symmetry
is defined for HBR, , by the change of R to L when p is changed in ¢, and vice versa.
Moreover, if MARE,, = [a',b] then MARE,, = [b',d].

P 0 1 2 3 4 5
q
0 [-40,20)/ [-80,20)/ [-120,20)/
B/L B/L/L/L B/L/L/L/L/L
1 [-20,40)/ [-40,40)/ [-60,40]/
B/R B/2Sym B/2Sym/L (-120,40)/
_ B/2Sym/L*
2 [-40,60)/ [-60,60]/
/B/2Sym*/L* | B/2sym*/L3
3 [-20,80]/
B/R/R/R [-80,80]/ [-100,80)/ [-120,80]/
B/2Sym? B/2Sym*/L' | B/2Sym3/L?
4
[-60,100]/ [-80,100] [-100,100]
B/2Sym®/R? B/2Sym?/R! B/2Sym*
5 [-20,120]
B/R/R/R/R/R [-40,120] [-60,120] [-80,120] [-120,120]
B/2S ym‘/R” B/2S ymz/ R? B/ZSym2/R2 B/2Sym®

Figure 5.1: Symmetries of the hidden bifurcation routes : H BR,, andM ARE, ;, numer-
ically computed black) and inferred from Eqgs. (5.2)) and (5.3)(red) }
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" 0 710 a T 0 ] )
(c)

Figure 5.2: The increasing number of spirals of system (4.5) according to increasing e
values, when p =0 and ¢ =4, k = 10 and h = 20. (a) : The first scroll for ¢ = 0.41, (b) :
The second scroll on the left for ¢ = 0.6, (c) : the third scroll on the right for e = 0.95.The
horizontal axis is the x-axis, the vertical axis is y-axis.
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(c)

Figure 5.3: The increasing number of spirals of system (4.5) according to increasing &
values, when p = 0 and ¢ = 4, k = 10 and h = 20. (a) : The fourth scroll on the right
for e = 0.985, (b) : The fifth scroll on the right for ¢ = 0.988, (c) : the sixth scroll on the
right for € = 0.99.The horizontal axis is the x-axis, the vertical axis is y-axis
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(c)

Figure 5.4: he increasing number of spirals of system (4.5) according to increasing &
values, when p =2 and ¢ = 3, k = 10 and h = 20. (a) : The first scroll on the right for
e =0.42, (b) : The second scroll on the left for e = 0.6, (c) : the third and fourth scrolls :
two left-right symmetrical for € = 0.95.The horizontal axis is the x-axis, the vertical axis
is y-axis.
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"0 @ 40 0 0 2 0 &

(b)

Figure 5.5: The increasing number of spirals of system (4.5) according to increasing &
values, when p = 2 and ¢ = 3, kK = 10 and h = 20. (a) : The fifth and sixth scrolls : two
symmetrical left-right for e = 0.98, (b) : The seventh scroll on the right for ¢ = 0.99. The
horizontal axis is the x-axis, the vertical axis is y-axis.
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Figure 5.6: he first scroll between —16 and 0 for the values of the parameters p = 0 and
q = 4 with the parameters values £ =9 and h = 18

=20 -15 -10 -5 0 5 10 15 20

Figure 5.7: The second scroll is in symmetry with the first one, generated between 0 and
20 (—20,0) for the values of the parameters p = 0 and ¢ = 4 with the parameters values
k=9 and h =18
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General Conclusion

We have seen in this thesis that attractors and bifurcations of chaotic systems, we
divided it into two parts, the first part consists of a preliminary and second chapter on
the basic notions of dynamical systems, bifurcation and chaos, a third chapter on hidden
attractor their historical, definitions, properties. After that, we presented Leonov method
for investigated hidden attractor where the method discovred in 2010. It ends with first
application in hidden attractor by Leonov, et al. in chua system. While the second
part was devoted to the study, a hidden bifurcation via saturated function serie, first ,
we presented in fourth chapter a new idea about hidden modalities of spirals of chaotic
attractor
where, the gap between these two values ¢ of grows directly proportionate to the number of
spirals. Before finding the asymptotical attractor, for even numbers of spirals, a strategy is
employed during the integration operation to have odd or gradually increase the number of
spirals until it reaches the maximum number that matches. The value € promised by the
disclosure of an odd number spirals’ modalities. The second, we discussed a symmetries
in hidden bifurcation routes (HBR), the sequence in which the spirals arise under the
control of the two parameters and the maximum range extension of their attractors serve
as markers for these H BR. Interesting symmetries between the two parameters may be
seen in these H BR as well.

It can be concluded that ;hidden bifurcation a new and good idea for all study where

has several applications in various fields such as biology, chemistry, telecommunications
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Conclusion

(information security) and physical sciences this has been widely studied in the last seven
years. We encoutered difficulties in proving our results especially numerical in code Matlap
but in last we found the results, it was a perfuct results.

Our next project and will be the study of the hidden bifurcation other systems and

particular the different systems with other methods.
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Annexe A: Program in MATLAB for
Hidden Bifurcation Saturated

Function Series.

function dy = Essabi(™,y)
a=0.7;
b=0.7;
c=0.7;
d1=0.;
k=10;
p=2;

q=2;
h=20;
Ys=14.0;
%a2=0.8;
%b2=0.72;
%¢2=0.6;
k1=-0.33;
eps =1;

if y(1)<-p*h-1
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Annexe A : Program in MATLAB for Hidden bifurcation Saturated Function Series.

H= -(2*p+1)*k;

end

for i=-p: g-1

if (y(1)>i*h+1)& & (y(1)<(i+1)*h-1)

H= (2*i+1)*k;

end

end

for i=-p: q

if abs(y(1)-i*h)<=1

H= k*(y(1)-i*h)+2%i*k;

end

end

if y(1) > q*h-+1

H=(2%q+1)*k;

end

dy = double(zeros(3,1)); % a column vector

dy(1) =y(2

dy(2) =y(3

dy(3)
(

);
);

(3) = -a*y(1)-b*y(2)-c*y(3)+k1*d1*y(1)+eps*d1*H-eps*k1*d1*y(1);
%Ndy(3) =-a*y(1)-b*y(2)-c*y(3)+d1*H;
end
%1/s*y
% (-x+r¥y-r¥y*z~2) /(14w 2)
%-y-b*z+z*y

Yo-y-c*w+wry
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Annexe A : Program in MATLAB for Hidden bifurcation Saturated Function Series.

clear all

close all

cle

options = odeset(’AbsTol’,1e-11,’RelTol’,1e-6);
%C=10a?=x7=39.97;y7=39.97x0.031084 = 1.2424, 2?7 = 39.97 x (—1.2946) = —51.745
%C=8a7=x7=31.99;y7=31.99x0.031084 = 0.99438, 2?7 = 31.99 x (—1.2946) = —41.414
%C=2a7=x7=8.13,y7=8.13x0.031084 = 0.25271z7 = 8.13 x (—1.2946) = —10.525
%C=4a?=x7=16.05;y7=16.05x0.031084 = 0.49890, 2? = 16.05 x (—1.2946) = —20.778
%c=1 (2-scroll),x(0)=4.22,y(0)=0.13117,z(0)=-5.4632

%C=3x(0)=12.09 ,y(0)=0.37581,7(0)=-15.652.

%c=6 (T-scroll) ? x(0)=24, y(0)=0.74602,2(0)=-31.07
%C=5a7=x7=20.02;y7=20.02x0.031084 = 0.6223, 27 = 20.02 x (—1.2946) = —25.918.
%C=T7,0=x(0)=28 ,y(0)=0.87035,7(0)=-36.249.

%C=9,C=x(0)=36 ,y(0)=1.119,z(0)=-46.606.

9% C=11a7=x?=43.95:y?=1.3661=,27=-56.898
%C=12a7=x7=47.95;y7=47.95x0.031084 = 1.4905, 2?7 = 47.95 x (—1.2946) = —62.076
%[T1,Y] = ode45(@Chuanew3,[0 30000],[47.95 1.4905 -62.076],0options);%c=12
%[T1,Y] = oded45(@Chuanew3,[0 100000],[39.97 1.2424 -51.745],options);%c=10
%|T1,Y] = oded5(@Chuanew3,[0 100000],[31.99 0.99438 -41.414] options);%c=8
%[T1,Y] = ode45(@Chuanew3,[0 100000},[24 0.74602 -31.07],0options);%c=6
%[T1,Y] = ode45(@QChen3,[0 5000],[12.09 0.37581 -15.652],0ptions);%c=3
%[T1,Y] = oded5(@Chuanew3,[0 50000],[16.05 0.49890 -20.778],options); %c=4
%[T1,Y] = oded5(@QChen3,[0 10000],[8.13 0.25271 -10.525],0ptions);%c=2
%[T1,Y] = oded5(@Chuanew3,[0 350000],[43.95 1.3661 -56.898],options);%c=11
[T1,Y] = ode45(@Essabi,[0 1500000],[10.8914 3.6739 -2.1975],0options); %c==1
%[T1,Y] = oded5(@Chuanew3,[0 10000],[12.09 0.37581 -15.652],options);%c=6

%[T1,Y] = ode45(@Chuanew3,[0 10000],[20.02 0.6223 -25.918],options);%c=5
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Annexe A : Program in MATLAB for Hidden bifurcation Saturated Function Series.

%[T1,Y] = ode45(@Chuanew3,[0 100000],[28 0.87035 -36.249],options);%c=7
%[T1,Y] = ode45(@Chuanew3,[0 10000],[36 1.119 -46.606],0ptions);%c=9
%plot(T2,YY(:,1), -, T.YY(:,2),-.", T,.YY(:,3),".")
N=size(Y);

nn=round(9*N(1)/10);

for i=1:N(1)-nn

y1(i)=Y(i4+nn,1);y2(i)=Y (i+nn,2);y3(1)=Y (i+nn,3);
end

yy=Y(N(1),:)

%figure(1)D

Yoplot3(yl,y2,y3,’b’);erid

Yofigure(2)

%ofor i=0:2

% xel=4*1.3%i;

% yel=0;

% zel=-xel;

%hold on

%oplot(xel,yel, *r’)

% xe2=-4*1.3*i;

Yoye2=0;

Yoze2=-xe2;

%hold on

%oplot(xe2,ye2,*r’)

%end

%hold on

%plot(yl,y2,0")% pfigure(3)

Yoplot(yl,y2,1")
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Annexe A : Program in MATLAB for Hidden bifurcation Saturated Function Series.

figure(4)

plot (y1,y2,’b)

figure(5)

plot(y2,y3,’b’)

figure(6)

plot3(y1,y2,y3,’b’")

figure(8)

plot(y1,y3,’b’)

%figure(3)
Yoplot(Y(:,1),Y(:,3),b’);grid
%figure(4)
Yoplot(Y(:,2),Y(:,3),’b);erid
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Abstract

The hidden bifurcation idea was discovered by the core idea of the
Leonov and Kuznetsov method for searching hidden attractors (i.e.,
homotopy and numerical continuation) differently in order to uncover
hidden bifurcations governed by a homotopy parameter € while
keeping the numbers of spirals. This idea was first discovered by
Menacer et al. In 2016, in the multispiral Chua system,

The first part of this thesis is devoted to providing a basic
understanding of dynamic systems and chaos, followed by an
introduction to the hidden attractors, history, and definitions. An
effective procedure for the numerical localization of hidden attractors
in multidimensional dynamical systems has been presented by Leonov
et Kuznetsov. In this part, we end with the study of hidden attractors
in the Chua system.

The second part of the analysis consists of first, hidden modalities of
spirals of chaotic attractor via saturated function series and numerical
results. Before reaching the asymptotic attractor which possesses an
even number of spirals, these latter are generated one after one until
they reach their maximum number, matching the value fixed by e.
Then, we end up by symmetries in hidden bifurcation routes to multi-
scroll chaotic attractors generated by saturated function series. The
method to find such hidden bifurcation routes (HBR) depends upon
two parameters.

Key-words

Dynamical Systems, Chaos, Hidden attractors, Hidden bifurcation,
modality of an odd number of spirals, Saturated function series, multi-spirals
chaotic attractor, Symmetry.
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Résumé

L'idée de bifurcation cachée a été découverte par I'idée centrale de la méthode de
Leonov et Kuznetsov pour rechercher différemment les attracteurs cachés (c'est-a-
dire I'nomotopie et la continuation numérique), afin de découvrir les bifurcations
cachees, régies par un parameétre d'homotopie € tout en gardant le nombre de
spirales, cette idée a été découverte par Menacer et al. En 2016 dans le systeme
Chua multispirale.

La premiere partie de cette these est consacrée a fournir une compréhension de
base des systémes dynamiques et du chaos, suivie d'une introduction aux
attracteurs cachés, a I'histoire et aux définitions. Une procédure efficace pour la
localisation numérique des attracteurs cachés dans les systemes dynamiques
multidimensionnels a été présentée par Leonov et Kuznetsov. Dans cette partie,
nous terminons par I'étude des attracteurs cachés dans le systeme Chua.

La deuxiéme partie analyse, d'abord, les modalités cachées des spirales d'attracteur
chaotique via des séries de fonctions saturées et des resultats numeriques c'est
I'opération d'intégration, avant d'atteindre I'attracteur asymptotique qui possede un
nombre pair de spirales, ces dernieres sont génerées une a une jusqu'a ce qu'elles
atteignent leur nombre maximum correspondant a la valeur fixée par . et nous
nous retrouvons par des symetries dans les routes de bifurcation cachées vers des
attracteurs chaotiques multi-scroll générés par des séries de fonctions saturées, la
méthode pour trouver de telles routes de bifurcation cachées (HBR) dépendant de
deux parameétres.

Mot clés :

Systemes dynamiques, Chaos, Attracteurs cachés, Bifurcation cachée, Modalité
d'un nombre impair de spirales, Séries de fonctions saturées, Attracteur chaotique
multi-spirales, Symétrie.
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