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Abstract 

Silicon carbide is a promising semiconductor material for harsh environment sensing 

applications thanks to its superior material properties compared with silicon and other 

semiconductor materials. The wide bandgap, high thermal conductivity, and high breakdown 

field allow SiC based devices to work under extreme conditions.  

In this work we are interested in Ti/Al, Mo, W/ 4H-SiC as temperature sensors, so the 

study of its electrical properties is very important in order to have different effects on the 

current-voltage characteristics. 

The current-voltage (I-V) characteristics of Schottky barrier diodes (SBDs)  measured at 

room temperature do not provide detailed information about the nature of the barrier and the 

charge transport processes at the metal-semiconductor (MS) interface. On the contrary, the 

temperature dependent (I-V) behaviors  are useful for giving a better understanding of the 

conduction mechanisms through the MS interface. 

SILVACO-ATLAS simulator allowed us to simulate the current-voltage characteristic      

(I-V), to see the influence of temperature on the evolution of curves and assess the main 

parameters that characterize the Schottky diode as the ideality factor, the height of the barrier 

and the series resistance. 

Indeed, the application of the standard method used by most researchers that is based on 

the extraction of homogeneous parameters (ΦB, n, Rs) has some defects such that the decrease in 

the barrier height (ΦB) and increase of ideality factor (n) with decreasing temperature, the use of 

inhomogeneous model proposed by Werner on the one hand can interpret  abnormalities on 

electrical parameters extracted and on the other hand approach  the value of the Richardson 

constant which is consistent with that given by the theory (146 A/K
2
cm

2
). The obtained results 

reveal that the devices in question are well suited for temperature sensing applications. 

 

Keywords :: Schottky diode, Silicon Carbide, Inhomogenity, Silvaco 
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 ملخــــــــــــــــــــــص
 

 ٗاػذح ىزطجٞقبد الاسزشؼبس فٜ اىجٞئخ اىقبسٞخ ٗرىل ثفضو خ٘اطٖب شجٔ ٍ٘طيخ مشثٞذ اىسٞيٞنُ٘ ٍبدح

رسَر فد٘ح اىسزٍخ اى٘اسؼخ ٗاىَ٘طيٞخ اىسشاسٝخ . اىفبئقخ ٍقبسّخ ثبىسٞيٞنُ٘ ٍٗ٘اد أشجبٓ اىَ٘طلاد الأخشٙ

.  اىؼبىٜ ىلأخٖزح اىزٜ رؼزَذ ػيٚ ٍبدح مشثٞذ اىسينُ٘ ثبىؼَو فٜ اىظشٗف اىقبسٞخالإّٖٞبساىؼبىٞخ ٗزقو 

دسخخ  هأخٖزح اسزشؼبسك  Ti/Al, Mo, W/ 4H-SiC  ثثْبئٞبد زبخز ش٘رنٜ فٜ ٕزا اىَششٗع ّسِ ٍٖزَُ٘

خٖذ - ىسشاسح، ٗثبىزبىٜ فإُ دساسخ خظبئظٖب اىنٖشثبئٞخ خذ ٍَٖخ ثٖذف فٌٖ ٍخزيف خ٘اّت اىخ٘اص رٞبسا

. ائٜمٖشة

 اىَثيٚزشاسح اهاىَقبسخ ػْذ دسخخ   ىثْبئٞبد زبخز ش٘رنٜ  (I-V) ائٜخٖذ مٖشة- لا ر٘فش خظبئض رٞبس

فٜ زِٞ أُ  شجٔ اىَ٘طو، - ٍؼيٍ٘بد ٍفظيخ ػِ طجٞؼخ اىسبخز ٗػَيٞبد ّقو اىشسْخ فٜ ٗاخٖخ اىَؼذُ

 اىزٜ رؼزَذ ػيٚ دسخخ اىسشاسح ٍفٞذح فٜ إػطبء فٌٖ أفضو ٟىٞبد ائٜخٖذ مٖشة- خظبئض رٞبس سي٘مٞبد

. .شجٔ اىَ٘طو- اىَؼذُ اىز٘طٞو ػجش ٗاخٖخ

 ىَؼشفخ رأثٞش دسخخ اىسشاسح ائٜخٖذ مٖشة-  سَسذ ثَؼبْٝخ خظبئض رٞبسأطيس-سٞيفبم٘أداح اىَسبمبح 

 اىزٜ رَثو  ثْبئٜ ش٘رنٜ ٍثو ٍؼبٍو اىَثبىٞخ،زبخز اىدٖذ الأسبسٞخػيٚ ٍْسْٞبد اىزط٘س،ٗرقٌٞٞ اىَؼبٝٞش 

 .ٗاىَقبٍٗخ اىَز٘اىٞخ

فٜ اى٘اقغ، اسزؼَبه اىطشٝقخ اىقٞبسٞخ اىَزجؼخ ٍِ طشف اىؼذٝذ ٍِ اىجبزثِٞ ٗاىزٜ رؼزَذ ػيٚ اسزخشاج 

 رجِٞ ٗخ٘د ػذح ّقبئض مبّخفبع زبخز اىدٖذ ٗاسرفبع ٍؼبٍو اىَثبىٞخ (ΦB, n, Rs)اىَؼيَبد  اىَزدبّسخ 

ثبّخفبع  اىسشاسح، إسزؼَبه  اىَْ٘رج غٞش اىَثبىٜ اىَقزشذ ٍِ طشف ٗسّش ٝسَر ٍِ خٖخ  ثزفسٞش اىْقبئض 

اىَلازظخ ػيٚ اىَؼيَبد اىنٖشثبئٞخ اىَسزخيظخ ٗ رقشٝت قَٞخ ثبثذ سٝشبسدسُ٘ اىزٛ ٝ٘افق اىقَٞخ اىْظشٝخ 

(146 cm
2
 K

2
/ A). ب ىزطجٞقبد ٍسو اىذساسخ رنشف اىْزبئح اىزٜ رٌ اىسظ٘ه ػيٖٞب أُ الأخٖزح ًٍ  ٍْبسجخ رَب

 .اسزشؼبس دسخخ اىسشاسح

 

 .سٞيفبم٘ ، اىزدبّس ػذً ، اىسٞيٞنُ٘ مشثٞذ ، دٝ٘د ش٘رنٜ :مفتاحية كلمات
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Résumé  

Le carbure de silicium est un matériau semi-conducteur prometteur pour les applications de 

détection d’environnements difficiles grâce à ses propriétés de matériau supérieures à celles du 

silicium et d’autres matériaux semi-conducteurs. La large bande interdite, la conductivité 

thermique élevée et le champ de claquage élevé permettent aux dispositifs à base de SiC de 

fonctionner dans des conditions extrêmes. Dans ce projet on s’intéresse à Ti/Al, Mo, W/ 4H-SiC 

comme capteurs de température, donc l’étude de leur propriétés électriques est très important 

dans le but d’avoir  les différents effets sur les caractéristiques courant-tension . 

L’analyse des caractéristiques courant-tension (I-V) des diodes Schottky à température 

ambiante ne donnent  pas des informations détaillées sur leur processus de conduction ou de la 

nature de la formation de la barrière à l’interface M/S. La dépendance en température des 

caractéristiques (I-V) nous permet de comprendre les différents aspects des mécanismes de 

conduction. 

Le logiciel SILVACO-ATLAS nous a permis de simuler les caractéristiques courante 

tension (I-V), de voir l’influence de la température sur l’évolution des courbes, et d'évaluer les 

principaux paramètres qui caractérisent la diode Schottky tel que le facteur d'idéalité, la hauteur 

de la barrière, la résistance série...etc.  

En effet, l'application de la méthode  standard suivie par la plupart des chercheurs qui est 

basée sur l’extraction des paramètres homogènes (ΦB, n, Rs) présente certaines anomalies telle 

que la diminution de la hauteur de barrière (ΦB) et l' augmentation du facteur d’idéalité (n) avec 

la diminution de la température, L’utilisation  du modèle inhomogène proposé par Werner  

permet d’interpréter d’un coté les anomalies observées sur les paramètres électriques extraits et 

de s’approcher d’un autre coté la valeur de la constante de Richardson qui est en accord avec 

celle donnée par la théorie (146 A/K
2
cm

2
). Les résultats obtenus révèlent que les dispositifs en 

question  sont bien adaptés aux applications de détection de température. 

 

Mots clés : Schottky diode, Silicon Carbide, Inhomogenity, Silvaco 
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Introduction  

The considerable industrial interest in Silicon Carbide (SiC) following its promising 

applications in, hostile-environment electronics and sensors has led to substantial international 

research effort over the last teen years [1-3].  

SiC is a promising semiconductor for sensing applications due to its excellent electrical 

and physical properties. The wide bandgap energy and low intrinsic carrier concentration allow 

SiC based semiconductor devices to be functional at much higher temperatures. Moreover, high 

breakdown field, high-saturated electron velocity, and high thermal conductivity enable SiC 

devices to work under extreme conditions. The capability of SiC-based devices to operate at 

high-temperature ensures significant lifetime and reliability benefits in many engineering fields 

such as aircraft, spacecraft, automotive, and energy production industries [4-6]. 

In this context, SiC-based Schottky barrier diodes (SBDs) have gained an increasing 

interest in order to be used as temperature sensors in harsh environments thanks to their high-

resolution and chemical inertness [7-11]. The main advantages of diode-based sensors are, in 

principle, the low manufacturing costs and the full compatibility with the integrated circuits 

technology [12]. 

Because of their refractory properties, Titanium (Ti), Molybdenum (Mo) and Tungsten 

(W) are the materials of choice used for Schottky contacts. However, these devices often show 

undesirable I–V characteristics that reveal abnormal variations of both the barrier height (BH) 

and ideality factor with temperature [5,13,14]. The increase of the ideality factor with decreasing 

temperature is known as the “T0 effect” and was first described by Padovani and Sumner [15]. 

Another abnormality was observed in the experimental value of the Richardson constant. The 

experimental 𝐴∗ was found to be far less than its theoretical value, and in several cases, it is less 

than the theoretical value by orders of magnitude. Many researchers have tried to find out the 

cause behind this deviation (abnormal behaviour) and have proposed many different 

explanations. Some researchers have suggested that the variance of Schottky barrier height 

(SBH) with temperature should follow the variance of the band gap with temperature [16], but it 

has generally been found experimentally that this SBH variance is not in agreement with the 

band-gap variance with temperature [17]. Image Force effects are another possible explanation 

for the temperature dependence of the barrier height and ideality factor. However, a considerable 

contribution from other current mechanisms such as quantum mechanical tunnelling and trap 

assisted tunnelling, to the diode total current, could be a potential reason for all the observed 

anomalies [18]. Other researchers have proposed that the anomalous behaviour in Φ𝐵, n, and the 

Richardson plot can be explained by using Werner and Guttler’s model. The model adopted an 
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analytical potential fluctuation assuming the formation of spatial barrier height inhomogeneities 

at the MS interface. This proposal has been able to explain most of the abnormal behaviour 

based on TE theory using a Gaussian distribution function for the barrier heights [19-20]. The 

single-Gaussian distribution is commonly used because of its simplicity and clear physical 

meaning. However, the failures of this approach have been recently confirmed by some 

investigators [21–22], due to the fact that it may not be suitable to characterize more 

experimental data contains than one Gaussian distribution for most cases and is only used for 

fitting to a part of distribution rather than all. As a result, the deficiencies in the single-Gaussian 

approach were removed by a multi-Gaussian consideration with the values of weight, the mean 

barrier height and the standard deviation for each Gaussian region of the spatial barrier height 

distribution, introduced by Yu-Long et al [21]. Accordingly, the greatness of the 

inhomogeneities existing in the barrier is determined by arbitrary distribution functions 

separately with their own different contribution rations for each distribution region [23]. 

In order to attain a complete understanding of the Schottky diode characteristics it is, 

therefore, necessary to model the I-V-T curves by using detailed physical models starting from 

specific assumptions [24, 25]. 

In the present thesis, starting from the experimental results on Ti/Al 4H–SiC, Mo/4H–SiC 

and W/4H–SiC SBDs reported in recent literatures [26-28], a careful simulation study using the 

ATLAS module of the commercial software (SILVACO-TCAD) is performed over a wide 

temperatures range in order to explain the abnormal behaviour observed in the experimental I–V 

characteristics and evaluate the suitability of these devices as temperature sensors.  

The temperature dependencies of the current transport parameters are explained based on 

the assumption of the existence of Gaussian distribution of the Schottky barrier around the 

Metal/ 4H–SiC interface. Finally, the performance of temperature sensors based on Ti/Al/4H–

SiC, Mo/4H–SiC and W/4H–SiC Schottky diodes is investigated. In particular, sensitivity, 

linearity and root mean square error (RMSE) are accurately analyzed in a wide temperatures 

range. 

This thesis is organised as follows: Chapter one gives a background to silicon carbide and 

why its material properties give outstanding device performance for power devices and high-

temperature applications compared to other semiconductor materials. Chapter two presents an 

overview of the SBDs devices. Chapter three explains the software used in this and parameters 

used for simulation for the total forward drop of the devices. Electrical characterization and 

discussion are found in Chapter four. Finally, this thesis is concluded. 



 

Chapter 1 

 Material properties  

and applications 
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1.1. Introduction 

Silicon carbide (SiC) is a semiconductor material with highly suitable properties for high-

power, high-frequency, and high-temperature applications. This almost worn-out opening 

statement may be found in many papers dealing with SiC. Yet, it cannot be left out because it 

really brings forward the essence of the material‟s potential. Silicon carbide is a wide bandgap 

semiconductor material with high breakdown electric field strength, high saturated drift velocity 

of electrons, and a high thermal conductivity. In combination with these properties, a native 

substrate of reasonable size exists, and one may readily grow the material and dope it both n and 

p-types. 

The physical properties of SiC are very important subjects of academic study as well as 

critical parameters for accurate simulation of devices. This chapter briefly reviews the physical 

properties of SiC after a brief mention of the history of SiC from its discovery to its use in the 

electronics industry. 

1.2. History 

SiC itself is rare in nature, and synthesis of a compound material containing silicon–carbon 

bonds was first reported by Berzelius in 1824. Later it was Acheson who produced SiC by 

heating coke and silica together, in a furnace, a method still known as Acheson process. He 

called the new compound “carborundum” which was to be used for abrasion and cutting due to 

its hardness.  

In the Acheson process, ingots which contain small single crystalline SiC platelets (mainly 

6H-SiC) can be obtained as a by-product (Figure (1.1a)). Although these SiC platelets are not 

pure, they were used for some basic studies on the physical and chemical properties of SiC.  

First use of SiC in electronics was the invention of SiC LEDs in 1907. But the use   of SiC 

in electronics was not to last longer because of difficulties   in producing high quality SiC 

crystals due to unavailability of any controlled crystal growth technique [29-30]. 

 In 1955 an important crystal growth technique was invented by J. A. Lely which made 

controlled crystal growth possible. This resulted in huge research activity on SiC for a short time 

and first academic event on SiC was held in 1958, a conference at Boston. After this event no 

considerable technological activity can be seen mainly because no high quality SiC substrates 

were available at that time [30]. 
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(a)                                                                      (b) 

Figure 1.1. (a) SiC platelets (mainly 6H-SiC) obtained as a by-product in the Acheson process. 

(b) 4H-SiC wafers with 100 and 150mm in diameter [29]. 
 

It was in 1970s when two Russian scientists Tairov and Tsvetkov discovered a new method 

for SiC crystal growth known as seeded sublimation growth which made possible, for the first 

time, the production of SiC wafers (Figure (1.1b)). This was followed by the discovery of yet  

another technique called „step controlled epitaxy‟ in 1987 which made possible epitaxial growth 

of SiC and resulted in the commercialization of first power electronic devices based on SiC such 

as the Schottky diodes and MESFETs produced by Cree Inc. and Infineon [29].   

1.3. SiC Properties 

1.3.1. SiC crystal structure 

1.3.1.1. Basic Structure  

The basic building block of a silicon carbide crystal is the tetrahedron of four carbon atoms 

with a silicon atom in the center (Figure (1.2)).  

 

(a)                                                       (b) 

Figure 1.2. (a) The basic structural unit in SiC is a tetrahedron of four carbon atoms with a silicon 

atom in the middle. (b) A second type rotated 180
0
 around the stacking direction, with respect to the first 

type of tetrahedra, can also occur in ther SiC crystals [32]. 
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There also exists a second type rotated 180° with respect to the first. The distance between 

the carbon and silicon atom is 1.89Å and the distance between the carbon atoms is 3.08Å. SiC 

crystals are constructed with these units joining at the corners [29-32]. 

1.3.1.2. Polytypism 

Silicon carbide exhibits a two-dimensional polymorphism called polytypism. All polytypes 

have a hexagonal frame of SiC bilayers. The hexagonal frame should be viewed as sheets of 

spheres of the same radius and the radii touching, as illustrated in figure (1.3). The sheets are the 

same for all lattice planes. However, the relative position of the plane directly above or below 

are shifted somewhat to fit in the “valleys” of the adjacent sheet in a close-packed arrangement. 

Hence, there are two inequivalent positions for the adjacent sheets. By referencing the possible 

positions as A, B, and C, we can begin constructing polytypes by arranging the sheets in a 

specific repetitive order. Thus, the only cubic polytype in SiC is 3C-SiC, which has the stacking 

sequence ABCABC… The simplest hexagonal structure we can build is 2H, which has a 

stacking sequence ABAB… The two important polytypes, 6H-SiC and 4H-SiC, have stacking 

sequences ABCACBABCACB… and ABCBABCB…, respectively.  The number in the notation 

of the resulting crystal structure determines the number of layers before the sequence repeats 

itself, and the letter determines the resulting structure of the crystal: C for cubic, H for 

hexagonal, and R for rhomohedral. 

 

Figure 1.3. Illustration of three close-packed planes of spheres. The first layer is a layer of “A” 

atoms, followed by a layer of atoms on a “B” position, with a layer of atoms on “C” positions on top of 

that.The resulting structure in this example is 3C-SiC [29]. 
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All polytypes are SiC of equal proportions of silicon and carbon atoms, but due to the fact 

that the stacking sequence between the planes differs, the electronic and optical properties differ. 

The bandgap is, for instance, 2.39 eV for 3C-SiC, 3.023 eV for 6H-SiC, and 3.265 eV for 4H-

SiC [30-32]. 

The unit cell for the different polytypes will naturally vary, as will the number of atoms per 

unit cell. This will affect the number of electronic bands and the phonon branches for a given 

polytype. 

1.3.1.3. Impurities in Different Polytypes 

A very striking and beautiful feature of polytypism is the behavior of impurity atoms. In 

figure (1.6), it may be seen that the sites are not equivalent in the hexagonal polytypes 6H-SiC 

and 4H-SiC. The difference is in the second-nearest neighbors. 

 

Figure 1.4. The three most common polytypes in SiC viewed in the [1120] plane. From 

left to right, 4H-SiC, 6H-SiC, and 3C-SiC; k and h denote crystal symmetry points that are cubic 

and hexagonal, respectively [32]. 

A nitrogen atom substituting a carbon atom in the lattice can either occupy a “k” site or an 

“h” site in 4H-SiC. The k site is a lattice site that displays cubic symmetry, whereas the h site has 

hexagonal symmetry. The immediate vicinity of a nitrogen atom on either site is the same, but 

the second-nearest neighbors to the sitesare different, which creates a slightly different core 

binding energy. Thus, 4H-SiC has two binding energies for the nitrogen donor, which has 

consequences when designing devices. 6H-SiC has three energy levels for nitrogen and 3C-SiC 

has only one. More complex polytypes such as rhombohedral (15R-SiC) has no less than five 

binding energies, although only four have been identified [30]. 
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1.3.2. Electrical and Optical Properties 

1.3.2.1. Band Structure 

Figure (1.5) shows the first Brillouin zones of (a) 3C-SiC and (b) a hexagonal SiC polytype 

[33, 24]. Note that the height of the Brillouin zone shown in figure (1.5b) is different for 

different hexagonal polytypes because of their different values of the lattice parameter. 

Note that the absolute values of the bandgap are underestimated in this figure, due to a 

limitation of the theoretical calculation (density functional theory). All the SiC polytypes have an 

indirect band structure, as is also the case for Si.  The top of the valence band is located at the Γ 

point in the Brillouin zone,whereas the conduction band minima appear at the Brillouin zone 

boundary. The conduction band minima are located at the X point for 3C-SiC, M point for 4H-

SiC, and U point (along the M–L line) for 6H-SiC. Thus, the number of conduction band minima 

in the first Brillouin zone (Mc) is 3 for 3C-SiC, 3 for 4H-SiC, and 6 for 6H-SiC. Because Si-C 

covalent bonds are common to all SiC polytypes, the valence band structure is similar amongst 

the different polytypes, except for the splitting.  

 

Figure 1.5. Brillouin zones of (a) 3C-SiC and (b) a hexagonal SiC polytype [29,32]. 

 

Figure (1.6) depicts the electronic band structures of (a) 3C-SiC, (b) 4H-SiC, and (c) 6H-

SiC. The top of the valence band is doubly degenerate in 3C-SiC, as a result of its cubic 

symmetry, and the next valence band is shifted 10meV from the top by the spin–orbit interaction 

[35-37]. The crystal field, which exists in all hexagonal polytypes, splits the valence band 

degeneracy. The magnitudes of the spin–orbit splitting and crystal-field splitting for 4H-SiC are 

6.8 and 60meV, respectively [38]. 
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Figure 1.6. Electronic band structures of (a) 3C-SiC, (b) 4H-SiC, and (c) 6H-SiC [29]. 

 

Table 1.1 Effective masses of electrons and holes in 3C-, 4H-, and 6H-SiC [39]. 

Polytype Effective mass Experiment (m0) Theory (m0) 

Electron effective mass 

3C-SiC m ∕∕ 0.667 0.68 

m┴ 0.247 0.23 

4H-SiC mML(= m∕∕) 0.33 0.31 

mMΓ 0.58 0.57 

mMK 0.31 0.28 

m┴ (= (mMΓmMK)
1∕2

) 0.42 0.40 

6H-SiC mML(= m∕∕) 2.0 1.83 

mMΓ - 0.75 

mMK - 0.24 

m┴ (= (mMΓmMK)
1∕2

) 0.48 0.42 

Hole effective mass 

3C-SiC mMT(= m[100]) - 0.59 

mMK(= m[110]) - 1.32 

 mTL(= m[111]) - 1.64 

4H-SiC m ∕∕ 1.75 1.62 

m┴ 0.66 0.61 

6H-SiC m ∕∕ 1.85 1.65 

m┴ 0.66 0.60 
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Table 1.1 summarizes the effective masses of electrons and holes in 3C-, 4H-, and 6H-SiC 

[39]. The electron effective mass and its anisotropy depend strongly on the polytype, while the 

hole effective mass exhibits a weak polytype dependence. The former leads to large variation of 

electron mobility in different polytypes, and also to anisotropic electron transport. 

The exciton gaps of various SiC polytypes at 2K are plotted as a function of 

“hexagonality” in figure (1.7) [34]. Here, hexagonality means the ratio of the number of 

hexagonal sites to the total number of Si-C bilayers (hexagonal and cubic sites) in a unit cell (the 

hexagonality is 1 for 2H-SiC, 0 for 3C-SiC, 1/2 for 4H-SiC, and 1/3 for 6H-SiC).  

It is interesting that the bandgap of SiC polytypes increases monotonically with increasing 

hexagonality. The bandgap at room temperature is 2.36 eV for 3C-SiC, 3.26 eV for 4H-SiC, and 

3.02 eV for 6H-SiC. 

 

Figure 1.7. Exciton gaps of various SiC polytypes at 2K versus hexagonality [35, 36]. 

 

Figure (1.8) shows the temperature dependence of the bandgap for several SiC polytypes 

[41]. The bandgap (Eg) decreases with increasing temperature because of thermal expansion, and 

its temperature dependence can be semi-empirically expressed as [42]: 

𝐸𝑔 𝑇 = 𝐸𝑔0 −
𝛼 × 𝑇2

𝛽 + 𝑇
 (1.1) 

where Eg0 is the bandgap at 0 K, T the absolute temperature, and α and β are fitting 

parameters (α= 8.2 × 10−4
 eV K−1

, β = 1.8 × 10
3
 K).  
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Note that the bandgap also depends on the doping density; very high impurity doping, 

above 10
19

 cm−3
, causes the bandgap to shrink because of the formation of pronounced tail states 

near the band edges [43]. 

 

 
Figure 1.8. Temperature dependence of bandgap for several SiC polytypes [41]. 

 

1.3.2.2. Optical Absorption Coefficient and Refractive Index 

Figure (1.9) shows the optical absorption coefficients versus photon energy for the major 

SiC polytypes [44]. Because of the indirect band structure of SiC, the absorption coefficient 

(αopt) slowly increases, even when the photon energy exceeds the bandgap.  

Taking account of phonon absorption and emission, the absorption coefficient can be 

approximated as [45]: 

𝛼𝑜𝑝𝑡 =
𝐴𝑎𝑏

ℎ𝑣
 
 ℎ𝑣 − 𝐸𝑔 + ℏ𝜔 

2

𝑒𝑥𝑝 ℎ𝑣/𝑘𝑇 − 1
+

 ℎ𝑣 − 𝐸𝑔 + ℏ𝜔 
2

1 − 𝑒𝑥𝑝 −ℎ𝑣/𝑘𝑇 
  

(1.2) 

Here h𝜈 is the photon energy, ℏ𝜔 the energy of a phonon involved, k the Boltzmann 

constant, and Aab the parameter. When several different phonons are involved, the sum of those 

contributions must be calculated. 
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 The absorption coefficient of 4H-SiC at room temperature is 69 cm
−1

 at 365 nm (3.397 

eV, Hg lamp), 210 cm
−1

 at 355 nm (3.493 eV, 3HG Nd-YAG laser), 1350 cm
−1

 at 325 nm (3.815 

eV, He-Cd laser), and 14 200 cm
−1

 at 244 nm (5.082 eV, 2HG Ar ion laser). These values should 

be kept in mind when SiC materials are characterized by any optical technique, or when SiC-

based photodetectors are fabricated.  

For example, the penetration depth, as defined by 1∕𝛼opt, is 145 μm at 365 nm, 7.4 μm at 

325 nm, and 0.7 μm at 244 nm for 4H-SiC at room temperature. 

 

Figure 1.9. Refractive index of 4H-SiC versus wavelength across a wide range from ultraviolet 

to infrared at various temperatures[44 ,46]. 

 

Figure (1.9) shows the refractive index of 4H-SiC versus wavelength across a wide range, 

from ultraviolet to infrared, at various temperatures [46]. This dispersion of the refractive index 

n(𝜆) is described by a simple Sellmeier equation given by [47]: 

𝑛 𝜆 = 𝐴 +
𝐵 × 𝜆2

𝜆2 − 𝐶2
 (1.3) 

where A, B, and C are parameters. The refractive index at a wavelength of 600 nm is 2.64 

for 4H-SiC. The thermo-optic coefficient, defined by dn∕dT, is (4.4–5.0) × 10
−4

 K
−1

 in the 

visible–infrared region and increases to (7–8) × 10
−4

 K
−1

 near the ultraviolet region, due to the 

shrinkage of the bandgap at elevated temperature [46]. The relative dielectric constant has also 

been reported for several SiC polytypes [42, 48]. The relative dielectric constants in the high-

frequency (100 kHz to 1 MHz) region for 4H-SiC (6H-SiC) at room temperature are 9.76 (9.66) 

perpendicular to the c-axis and 10.32 (10.03) parallel to the c-axis [48]. The dielectric constant 

of 3C-SiC is isotropic, 9.72. 
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1.3.2.3. Impurity Doping and Carrier Density 

SiC is an exceptional wide bandgap semiconductor, in the sense that control of both n- and 

p-type doping over a wide range is relatively easy. Nitrogen or phosphorus are employed for n-

type doping and aluminum for p-type doping. Although boron was also previously employed as 

an acceptor, it is currently not preferred because of its large ionization energy (∼350 meV) [49], 

generation of a boron-related deep level (D center) [49, 50], and its abnormal diffusion [50, 51]. 

Gallium and arsenic work as acceptor and donor, respectively, in SiC. Their ionization energies 

are, however, relatively large, and their solubility limits are low. Nitrogen substitutes at the C 

sub-lattice site, while phosphorus, aluminum, and boron substitute at the Si sub-lattice site. 

Table 1.2 Nonpolar covalent radii of Si, C, and major dopants for SiC [52]. 

 

Atom Si C N P B Al 

Radius (Å) 1.17 0.77 0.74 1.10 0.82 1.26 

 

Table 1.3 Ionization energies and the solubility limits of nitrogen, 

phosphorus, aluminum, and boron in major SiC polytypes. 
 

 Nitrogen Phosphorus Aluminum Boron (shallow) 

Ionization energy (meV)     

3C-SiC 55 – 250 350 

4H-SiC (hexagonal/cubic) 61/126 60/120 198/201 280 

6H-SiC (hexagonal/cubic) 85/140 80/130 240 350 

Solubility limit (cm−3) 2 × 1020 (∼1 × 1021) 1 × 1021 2 × 1019 

 

Table 1.2 shows the non polar covalent radii of Si, C, and major dopants for SiC [52]. 

The ionization energies and the solubility limits of nitrogen, phosphorus, and aluminum in 

major SiC polytypes are summarized in Table 1.3 [53]. In SiC, the ionization energies of 

dopants depend on the lattice site, in particular, whether the site is hexagonal or cubic (site 

effect). In the case of nitrogen or phosphorus doping, the ionization energy of the donors is 

relatively small, and the ionization ratio of donors at room temperature is reasonably high, 

ranging from 50 to nearly 100%, depending on polytype and doping density.  

Conversely, the ionization energy of aluminum is large (200 – 250 meV), and incom- 

plete ionization (5 – 30%) of acceptors is observed at room temperature. Note that the 

ionization energy decreases when the doping density is increased, as a result of bandgap 
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shrinkage and formation of an impurity band. The dependence of dopant ionization energy, 

𝛥Edopant, on the dopant density is described by Efros et al. [54]: 

 
𝛥𝐸

𝑑𝑜𝑝𝑎𝑛 𝑡,0 𝛥𝐸
𝑑𝑜𝑝𝑎𝑛 𝑡   = – 𝛼𝑑

(𝑁
𝑑𝑜𝑝𝑎𝑛 𝑡

)1/3

  (1.4) 

Here 𝛥𝐸𝑑𝑜𝑝𝑎𝑛𝑡 ,0   is the ionization energy in lightly-doped materials, Ndopant   the dopant 

density, and a  𝛼𝑑  parameter (𝛼𝑑   = (2–4) × 10−8 eV cm). When the dopant density exceeds 

1019 cm−3, the ionization energy decreases sharply.  

As a result, near-perfect ionization is observed in heavily aluminum-doped SiC (>5 × 

1020 cm−3), in spite of the relatively large ionization energy of aluminum [55]. Because the 

band structure (bandgap, effective mass) is known, one can calculate the effective densities of 

states in the conduction band Nc and valence band Nv as well as the intrinsic carrier density ni 

as follows [56]: 

𝑁𝑐 𝑇 = 2𝑀𝐶 ×  
2𝜋𝑘𝑇𝑚𝑑𝑒

∗

ℎ2
 

3
2

 (1.5) 

𝑁𝑣 𝑇 = 2 ×  
2𝜋𝑘𝑇𝑚𝑑ℎ

∗

ℎ2
 

3
2

 

(1.6) 

𝑛𝑖 𝑇 =  𝑁𝑐𝑁𝑣 × 𝑒(−
𝐸𝑔 𝑇 

2𝑘𝑇
)
 (1.7) 

 

Here, MC is the number of conduction band minima, mde∗ (mdh∗) the density-of-state 

effective mass of electrons (holes), and h the Planck constant.  

By using the density-of-state effective mass of electrons (holes) and the number of 

conduction band minima, the NC and NV values for 4H-SiC at room temperature are calculated 

as 1.8 × 10
19

 and 2.1 × 10
19

 cm
−3

, respectively. These values are important as they allow us to 

estimate whether the material will be degenerate when heavy impurity doping is performed. 

 Figure (1.10) plots the temperature dependence of (a) the effective densities of states in 

the bands and (b) the intrinsic carrier density for major SiC polytypes, together with that of Si. 

Here, the temperature dependence of band gaps is taken into account.  

The intrinsic carrier density at room temperature is extremely low in SiC, because of the 

wide band gap, about 0.13 cm
−3

 for 3C-SiC, 5 × 10
−9

 cm
−3

 for 4H-SiC, and 1 × 10
−6

 cm
−3

 for 
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6H-SiC. This is the main reason why SiC electronic devices can operate at high temperatures 

with low leakage current.  

 

Figure 1.10. Temperature dependence of (a) the effective densities of states in the bands and 

(b) the intrinsic carrier density for major SiC polytypes, together with that of Si [29]. 

 

Based on the Boltzmann approximation for a nondegenerate semiconductor, the neutrality 

equations in a semiconductor containing one type of donor or acceptor are given by [57]: 

𝑛 + 𝑁𝑐𝑜𝑚𝑝 ,𝐴 =
𝑁𝐷

1 +  
𝑔𝐷𝑛
𝑁𝐶

 𝑒𝑥𝑝  
∆𝐸𝐷

𝑘𝑇
 
 

(1.8) 

𝑝 + 𝑁𝑐𝑜𝑚𝑝 ,𝐷 =
𝑁𝐴

1 +  
𝑔𝐴𝑝
𝑁𝑉

 𝑒𝑥𝑝  
∆𝐸𝐴
𝑘𝑇

 
 (1.9) 

Here n(p) is the free electron (hole) density, Ncomp,A (Ncomp,D) the density of compensating 

acceptor (donor)  levels,  ND  (NA)  the  donor  (acceptor)  density,  𝛥ED  (𝛥EA)  the  ionization  

energy  of  the  donor (acceptor), and gD (gA) are the degeneracy factors for donors (acceptors), 

respectively.  

When multiple donor (or acceptor) levels exist, the sum for corresponding dopants must be 

considered in the right-hand term of the equation. This is the case for hexagonal SiC polytypes, 

because the donor (and acceptor) impurities at inequivalent lattice sites (e.g., i = k, h for 4H-SiC) 

exhibit different energy levels.  
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Figure 1.11. Arrhenius plots of the free carrier density in (a) nitrogen-doped and (b) 

aluminum-doped 4H-SiC. Here, the temperature dependence of the bandgap and the doping-

density dependence of the ionization energies are taken into account. A compensating-level 

density of 5 × 1013 cm
−3

 is assumed[29]. 

 

The Arrhenius plots of the free carrier density in (a) nitrogen-doped and (b) aluminum-

doped 4H-SiC are shown in figure (1.11). Here, the temperature dependence of the bandgap and 

the doping-density dependence of the ionization energies are taken into account. A 

compensating-level density of 5 × 10
13

 cm−3 is assumed. As shown in figure (1.11), incomplete 

ionization is significant for p-type SiC.  

The position of the Fermi level EF in nondegenerate semiconductors is calculated by [56]: 

𝐸𝐹 = 𝐸𝐶 − 𝑘𝑇𝑙𝑛
𝑁𝐶

𝑛
 (1.10) 

𝐸𝐹 = 𝐸𝑉 + 𝑘𝑇𝑙𝑛
𝑁𝑉

𝑝
 (1.11) 

 Here EC (EV) is the energy of the conduction (valence) band edge. Figure (1.12) shows the 

Fermi level for nitrogen- or aluminum-doped 4H-SiC as a function of temperature and impurity 

concentration, taking into account the temperature dependence of the bandgap and the 

incomplete ionization of dopants at low temperature. Because of the wide bandgap, the Fermi 

level does not approach the midgap (intrinsic level) even at a fairly high temperature of 700 – 

800 K. 
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Figure 1.12. Fermi level for nitrogen- or aluminum-doped 4H-SiC as a function of temperature 

and impurity concentration, taking into account the temperature dependence of the bandgap and 

the incomplete ionization of dopants at low temperature [29]. 

 

1.3.2.4. Mobility 

Figure (1.13) shows (a) the low-field electron mobility versus donor density and (b) the 

hole mobility versus acceptor density for 4H-SiC and 6H-SiC at room temperature. The electron 

mobility of 4H-SiC is almost double that of 6H-SiC at a given dopant density, and 4H-SiC 

exhibits a slightly higher hole mobility than 6H-SiC. The low-field electron and hole mobilities 

can be expressed by Caughey – Thomas equations as follows [55, 58]: 

𝜇ℎ 4𝐻 − 𝑆𝑖𝐶 =
118

1 +  
𝑁𝐷 + 𝑁𝐴

2.2 × 1018 
0.7  (𝑐𝑚2𝑉−1𝑠−1) (1.12) 

𝜇ℎ 6𝐻 − 𝑆𝑖𝐶 =
98

1 +  
𝑁𝐷 + 𝑁𝐴

2.4 × 1018 
0.7  (𝑐𝑚2𝑉−1𝑠−1) (1.13) 

Here ND and NA are given in units of cm
−3

. The slight differences in the doping-dependence 

param- eters between 4H- and 6H-SiC originate from the differences in ionization energies of the 

dopants. It should be noted that hexagonal (and rhombohedral) SiC polytypes exhibit strong 

anisotropy in electron mobility [58, 59].  
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Figure 1.13. (a) Low-field electron mobility versus donor density and (b) hole mobility versus 

acceptor density for 4H-SiC and 6H-SiC at room temperature. 

 

 The data shown in figure (1.13) are mobilities perpendicular to the c-axis. The anisotropy 

is particularly notable in 6H-SiC, where the electron mobility along the c-axis direction is only 

20 – 25% of that perpendicular to the c-axis (the maximum electron mobility along the c-axis is 

about 100 cm
2
V

−1
s

−1
 in 6H-SiC at room temperature) [58].  

The mobility anisotropy is relatively small in 4H-SiC, where the electron mobility along 

the c-axis direction is approximately 1200 cm
2
V

−1
s

−1
 at room temperature, which is 20% higher 

than that perpendicular to the c-axis. This is one of the major reasons why 4H-SiC is the most 

attractive polytype for vertical power devices fabricated on SiC{0001} wafers. The bulk mobility 

in 3C-SiC is isotropic. The electron mobility in lightly doped 3C-SiC is 750 cm
2
V

−1
s

−1
 in 

experiments [60] and is predicted to be 1000 cm
2
V

−1
s

−1
 in high-quality material [41]. 

 In nondegen- erate semiconductors, the diffusion coefficients of carriers (D) can be 

obtained by using the Einstein relation [56]: 

𝐷 =
𝑘𝑇

𝑞
𝜇 (1.14) 

Here q is the elementary charge. If the carrier lifetime 𝜏 is given, the diffusion length is 

given by L = (D𝜏)
1∕2

. 

Figure 1.14 (a) Low-field electron mobility versus donor density and (b) hole mobility 

versus acceptor density for 4H-SiC at different temperatures. 
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Figure 1.14. (a) Low-field electron mobility versus donor density and (b) hole mobility versus 

acceptor density for 4H-SiC at different temperatures [29]. 

Figure (1.14) shows (a) the low-field electron mobility versus donor density and (b) the 

hole mobility versus acceptor density for 4H-SiC at different temperature. 

 At high temperature, the doping dependence of mobility becomes small, because the 

influence of impurity scattering decreases. In general, the temperature dependence of mobility is 

discussed by using a relationship of 𝜇 ∼ T
−n

 , where 𝜇 is the mobility and T the absolute 

temperature. 

 As seen from figure (1.14), the value n depends strongly on the doping density, since the 

dominant scattering mechanism varies for SiC with different doping density. For example, the n 

value is 2.6 for lightly-doped and 1.5 for highly-doped n-type 4H-SiC.  

Figure (1.15) shows the resistivity versus doping density at 300 K for nitrogen-                     

or aluminum-doped 4H-SiC [55]. In very heavily doped materials, the resistivity decreases to 

0.003 Ω cm for n-type and 0.018 Ω cm for p-type. 

 Note that the data shown in figure (1.15) are obtained in high-quality epitaxial layers. In 

ion-implanted SiC, where a high density of point and extended defects is created, the resistivity 

is significantly higher than that shown in the figure for any given doping density. Substrates 

grown by sublimation (or other techniques) also show higher resistivities than those shown in 

figure (1.15) because of a higher density of unwanted impurities and point defects. 
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Figure 1.15. Resistivity versus doping density at 293 K for nitrogen- or aluminum-doped 

4H-SiC [29]. 

The temperature dependence of electron mobility in nitrogen-doped 4H-SiC is shown in 

figure (1.16), for donor densities of (a) 3.5 × 10
15

 cm
−3

 and (b) 7.5 × 10
17

 cm
−3

[29]. Carrier 

scattering processes include acoustic-phonon scattering (ac), polar-optical-phonon scattering 

(pop), nonpolar-optical-phonon scattering (npo), intervalley scattering by phonons (iph), ionized-

impurity scattering (ii), and neutral-impurity scattering (ni). In the figures, electron mobility 

determined by each scattering process is indicated, and the total mobility (𝜇) is approximately 

expressed according to Matthiessen‟s rule [62]: 

1

𝜇
≅  

1

𝜇𝑖
𝑖

 (1.15) 

 

Figure 1.16. Temperature dependence of electron mobility in nitrogen-doped 4H-SiC for 

donor densi- ties of (a) 3.5 × 10
15

 cm
−3

 and (b) 7.5 × 10
17

 cm
−3

[29].  
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In lightly-doped n-type SiC, the electron mobility is mainly determined by acoustic phonon 

scattering at low temperature (70 – 200 K) and by intervalley scattering at temperatures higher 

than 300 K, which is similar to the case of Si. In heavily-doped n-type SiC, the major scattering 

process is neutral impurity scattering at low temperature and intervalley scattering at high 

temperature. 

Figure (1.17) shows the temperature dependence of hole mobility in aluminum-doped 4H-

SiC with acceptor densities of (a) 1.8 × 10
17

 cm
−3

 and (b) 2.7 × 10
19

 cm
−3

 [29]. Mobilities 

determined by several scattering processes are also plotted. In moderately-doped p-type SiC, the 

hole mobility is mainly determined by acoustic phonon scattering at or below room temperature, 

and by nonpolar optical phonon scattering at high temperature (>400 K). In heavily-doped p-type 

SiC, the major scattering process is neutral impurity scattering over a wide temperature range, 

since most Al acceptors remain neutral because of their large ionization energy. 

 

Figure 1.17. Temperature dependence of hole mobility in aluminum-doped 4H-SiC with 

acceptor densities of (a) 1.8 × 10
17

 cm
−3

 and (b) 2.7 × 10
19

 cm
−3

[29]. 

 

1.3.2.5.  Drift Velocity 

At low electric fields, the drift velocity of carriers (𝜐d) is proportional to the electric field 

strength (E), 𝜐d = 𝜇E. When the electric field is high, the accelerated carriers transfer more 

energy to the lattice by emitting more phonons, leading to nonlinear field dependence of drift 

velocity. The electric field dependence of the drift velocity is expressed by [62]: 

𝑣𝑑 =
𝜇𝐸

 1 +  
𝜇𝐸
𝑣𝑠

 
𝛾

 
1/𝛾

 (1.16) 
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where 𝜐s is the sound velocity in a semiconductor and 𝛾 the parameter. At sufficiently high 

electric fields, carriers start to interact with optical phonons, and finally the drift velocity 

becomes saturated. The saturated drift velocity (𝜐sat ) is approximately given by [56, 62]: 

𝑣𝑠𝑎𝑡 =  
8ℏ𝜔

3𝜋𝑚∗
 

(1.17) 

where ℏ𝜔 is the energy of the optical phonon (LO (longitudinal optical) phonon) emitted. 

Figure (1.18) shows the measured drift velocity of electrons versus applied electric field for n-

type (a) 4H-SiC and (b)  6H-SiC [63]. The measurements were conducted in a structure carefully 

designed to minimize inaccuracy in potential distribution. For 4H-SiC, a low-field mobility of 

450 cm
2
V

−1
s

−1
 was determined from the slope at low electric fields (<104 V cm

−1
) at room 

temperature; this agrees with the data shown in figure (1.13) for the donor density (2 × 10
17

 

cm
−3

) of this particular sample. The saturated drift velocity is determined as 2.2 × 10
7
 cm s

−1
 at 

room temperature. This value is also in good agreement with that estimated from Equation 1.17. 

As indicated in figure (1.18), the saturated drift velocity decreases with increasing temperature. 

Note that a so-called transferred-electron effect (Gunn effect) is not observed in SiC because of 

its indirect band structure. The saturated drift velocity of electrons in 6H-SiC is experimentally 

estimated as 1.9 × 10
7
 cm s

−1
 [63]. Although the saturated drift velocity of holes in SiC has not 

been experimentally studied, it can be estimated at 1.3 × 10
7
 cm s

−1
 for 4H-SiC from Equation 

1.17. 

 

Figure 1.18. Drift velocity of electrons versus applied electric field for n-type (a) 4H-SiC and 

(b) 6H-SiC [63]. 
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1.3.2.6. Breakdown Electric Field Strength 

When a very high electric field is applied to a pn junction or Schottky barrier in the 

reverse-bias direction, the leakage current increases as a result of generation of electron – hole 

pairs, and the junction eventu- ally breaks down. The breakdown mechanisms can be classified 

into (I) avalanche breakdown and (II) Zener (tunneling) breakdown [56, 65]. For junctions with 

a lightly-doped region, avalanche breakdown is dominant; this is the case for most power 

devices. In avalanche breakdown, the carriers can gain enough energy under very high electric 

fields to excite electron – hole pairs by impact ionization. The generation of electron – hole 

pairs is multiplied inside the space-charge region of a junction, eventually leading to 

breakdown. 

Avalanche breakdown is well described by using the impact ionization coefficients of 

electrons and holes. Breakdown can be defined as when the multiplication factor of the current 

approaches infinity, which has been shown to be equivalent to the following relationship [56, 

65]: 

 𝛼ℎ𝑒𝑥𝑝  −  𝛼ℎ − 𝛼𝑒 𝑑𝑥
′

𝑥

0

 
𝑤

0

𝑑𝑥 (1.18) 

Here, 𝛼e and 𝛼h are the impact ionization coefficients for electrons and holes, respectively. 

Integration is performed in the space charge region extending from x = 0 to x = W. The integral 

term of the equation is called the ionization integral. Because the impact ionization coefficients 

depend strongly on the electric field strength, and the field strength is not uniform inside the 

space-charge region, numerical calculation is required to obtain the ionization integral given by 

Equation 1.18. Conversely, the impact ionization coefficients can be determined by measuring 

the multiplication factor as a function of electric field in properly designed pn junction diodes. In 

the measurements, light illumination is employed to increase the current at low reverse-bias 

voltages, and thereby to minimize the influence of nonideal leakage current. This is important for 

accurate determination of the multiplication factors. In general, the impact ionization coefficients 

are approximately expressed by the Chynoweth equation [66]: 

𝛼𝑖 = 𝑎𝑖𝑒𝑥𝑝  −
𝑏𝑖
𝐸
 , (𝑖: 𝑒 𝑜𝑟 ℎ) (1.19) 

where 𝑎𝑖  and  𝑏𝑖  are the parameters and E the electric field strength. 

Figure (1.19) shows the impact ionization coefficients for electrons and holes in 4H-SiC 

versus the inverse of electric field strength [67]. 
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Figure 1.19. Impact ionization coefficients for electrons and holes in 4H-SiC versus the 

inverse of elec- tric field strength [67 , 68]. 

 

Different groups have reported similar but slightly different impact ionization coefficients. 

The ionization coefficients for 4H-SiC are considerably lower than those for Si owing to the 

wide bandgap of SiC. Another striking feature of figure (1.19) is that the ionization coefficient 

for holes is much larger than that for electrons (𝛼h > 𝛼e) in SiC, which is completely opposite to 

the case of Si (𝛼e > 𝛼h). In 4H-SiC, the energy range of the conduction band is rather small 

because of the folding effect in the E – k relationship, and the highest energy of hot electrons is 

limited by the upper edge of the conduction band [68, 69]. This may be the reason why the 

ionization coefficient for electrons is unusually low in 4H-SiC (and in 6H-SiC). Note that the 

data shown in figure (1.19) are extrapolated from several experimental data sets. In particular, 

the ionization coefficients at relatively low electric fields need more careful investigation. The 

temperature dependence of the coefficients has been recently reported. It should also be noted 

that all data in figure (1.19) are valid along the <0001> direction because they were obtained 

from 4H-SiC pn diodes on off-axis {0001} substrates. Since the carrier acceleration and 

scattering are strongly influenced by the energy band structure, the impact ionization coefficients 

depend on the crystallographic orientation. In particular, hexagonal SiC polytypes exhibit strong 

anisotropy in impact ionization and breakdown characteristics [68, 69]. 

A semiconductor junction breaks down when the maximum electric field strength reaches a 

critical value which is inherent to the material. This critical value is called the critical electric 

field strength or breakdown electric field strength. The critical electric field strength EB can be 

determined by calculation of the ionization integral using the impact ionization coefficients 

described above. Alternatively, it can be obtained experimentally from the breakdown 

characteristics of devices in which electric field crowding is perfectly suppressed. In n-type 
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Schottky barrier diodes or a one-sided p+n junction, the breakdown voltage VB is given by [56, 

57]: 

𝑉𝐵 =
𝜀𝑠𝐸𝐵

2

2𝑞𝑁𝐷
 (1. 20) 

Here a non-punch through structure is considered. 𝜀s is the dielectric constant of a 

semiconductor. 

Figure (1.20) shows the critical electric field strength versus doping density for 4H-SiC 

<0001>, 6H-SiC <0001>, and 3C-SiC <111> [66, 67, 70, 71]. The data for Si are also shown for 

comparison. 4H- and 6H-SiC exhibit approximately eight times higher critical electric field 

strengths than Si at a given doping density, while the field strength of 3C-SiC is only three or 

four times higher because this polytype has a relatively small bandgap (similar to GaP).  

The high critical field strength of hexagonal SiC polytypes is the main reason why SiC is 

very attractive for power device applications [71]. One must be aware of the fact that the critical 

field strength is strongly dependent on the doping density, as shown in figure (1.20). When the 

doping density is increased, the width of the space-charge region becomes small and the distance 

for carriers to be accelerated becomes short. Furthermore, the mobility is reduced in highly-

doped materials because of enhanced impurity scattering. These are the reasons why the critical 

electric field strength apparently increases with increasing doping. As shown in figure (1.20), the 

critical electric field of 6H-SiC <0001> is slightly higher than that of 4H-SiC <0001>, in spite of 

its smaller bandgap (Eg = 3.02 eV for 6H-SiC and 3.26 eV for 4H-SiC). As described in Section 

1.3.2.4, 6H-SiC exhibits strong anisotropy in carrier transport, and the electron mobility along 

the <0001> direction is unusually low, about 100 cm
2
V

−1
s

−1
 even in a high-purity material.  

The narrow width of the conduction band in 6H-SiC also helps to increase the critical 

electric field strength of 6H-SiC <0001>. Conversely, it is known that the critical field strength 

of 6H-SiC <1120> is only half that of 6H-SiC <0001> [68]. The anisotropy in critical field 

strength of 4H-SiC is smaller, and the field strength of 4H-SiC <1120> is only 20 – 25% lower 

than that of 4H-SiC <0001> [69]. 

The critical field strength is a convenient physical property when the ideal breakdown 

voltage is estimated. However, it should be noted that the critical field strength is valid only for 

junctions with non-punchthrough structures. When punchthrough structures are considered, the 

critical field strength shown in figure (1.20) does not give the correct breakdown voltage. In this 

case, simulation of leakage current or calculation of the ionization integral using a device 

simulator is required to determine the ideal breakdown voltage. 
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Figure 1.20. Critical electric field strength versus doping density for 4H-SiC <0001>, 6H-

SiC <0001>, and 3C-SiC <111> [66, 67, 70, 71]. 
 

1.3.3. Thermal and Mechanical Properties 

1.3.3.1. Thermal Conductivity 

 

Figure 1.21. Temperature dependence of thermal conductivity for SiC and Si [72]. 

 

Figure (1.21) shows the temperature dependence of thermal conductivity for SiC and Si 

[72]. SiC, with its significant contribution from phonons, has a much higher thermal conductivity 

(4.9W cm
−1

  K
−1

  for high-purity SiC at room temperature) than Si. It has been reported that the 

thermal conductivity is not sensitive to the SiC polytype, but depends on the doping density and 
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the crystal direction. In heavily-nitrogen-doped 4H-SiC substrates, which are usually employed 

as n+-substrates for vertical power devices, the thermal conductivity along <0001> is 3.3W cm
−1 

K
−1

 at room temperature [73]. 

 

1.3.3.2. Phonons 

Figure (1.22) shows the phonon dispersion relationships for (a) 3C-SiC and (b) 4H-SiC 

[74, 75]. The basic branches consist of TA (transverse acoustic), LA (longitudinal acoustic), TO 

(transverse optical), and LO phonons, as in other semiconductors. Due to the large energy of Si-

C bonds, the phonon frequencies in SiC are high. The unit cell length of the nH polytype (n = 2, 

4, 6 …) along the c-axis is n times larger than the unit length (Si-C bilayer). Thus, the Brillouin 

zone in the direction of Γ– L is reduced to 1∕n of the basic Brillouin zone. The dispersion curves 

of the phonons propagating along the <0001> direction in such polytypes can be approximated 

by folding the basic dispersion curve.This zone folding provides new phonon modes at the Γ 

point, which are called “folded modes.” The number of atoms in the unit cell is 2 for 3C-SiC, 8 

for 4H-SiC, and 12 for 6H-SiC. Therefore, the number of phonon branches is 6 for 3C-SiC, 24 

for 4H-SiC, and 36 for 6H-SiC, neglecting the degeneracy. 

 

Figure 1.22. Phonon dispersion relationships for (a) 3C-SiC and (b) 4H-SiC [29]. 
 

 The major phonon energies (or wave number) can be directly observed by Raman 

scattering spectroscopy. Different phonon frequencies in different SiC polytypes enable 

identification of individual polytypes by Raman scattering measurements [77].  

It is known that the observed frequency of LO phonons increases with increasing carrier 

density because of a carrier – LO phonon coupling effect. Phonon energies are also important in 
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luminescence measurements. In particular, photoluminescence (PL) at low temperature is a 

powerful tool to characterize the purity and quality of SiC crystals [40, 76]. Because SiC has an 

indirect band structure, phonons are intensively involved in carrier recombination processes.  

As a result, strong multiple phonon replicas of a zero-phonon emission line are often 

observed in PL spectra of SiC. For example, the energies of major phonons which create phonon 

replicas in PL from 4H-SiC{0001} are 36 (TA), 46, 51, 77 (LA), 95, 96 (TO), 104, and 107 meV 

(LO). 

1.3.3.3.  Hardness and Mechanical Properties 

The mechanical properties of SiC are also unique; SiC is one of the hardest known 

materials. Table 1.4 shows the major mechanical properties of SiC and Si [24, 42], where the 

polytype dependence is small. The hardness and Young‟s modulus (380 – 700 GPa [77]) of SiC 

are much higher than those of Si, while the Poisson‟s ratio (0.21) of SiC is very similar to that of 

other semiconductors. SiC retains its high hardness and elasticity, even at very high 

temperatures. The yield (fracture) strength of SiC is as high as 21 GPa at room temperature and 

is estimated to be 0.3 GPa at 1000 ∘C, while the yield strength of Si falls to 0.05 GPa at 500 ∘C 

[78]. 

 

Table 1.4 Major mechanical and thermal properties of SiC and Si at room temperature [24, 

42]. 
 

Properties 4H- or 6H-SiC Si 

Density (g cm−3) 3.21 2.33 

Young‟s modulus (GPa) 390 – 690 160 

Fracture strength (GPa) 21 7 

Poisson‟s ratio 0.21 0.22 

Elastic constant (GPa)   

c11 501 166 

c12 111 64 

c13 52 – 

c33 553 – 

c44 163 80 

Specific heat (J g
−1

   K
−1

) 0.69 0.7 

Thermal conductivity (W cm
−1

   K
−1

) 3.3 – 4.9 1.4 – 1.5 
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1.4.  SiC Device Applications 

SiC is a very hard material. This has resulted in a wide variety of applications already at 

the polycrystalline era. To make it a physicist's dream, SiC is also chemically inert and extremely 

radiation hard. It may thus be used in the most hostile environments, for example, near nuclear 

reactors and in outer space. Some of the properties of silicon carbide compared to some other 

semiconductors are listed in Table 1.5. It may be noticed that silicon is inferior to SiC in many 

respects. Diamond would be the ultimate semiconductor for power electronics, but problems 

related to its use appear to be even larger than in the case of SiC. There are also some other 

potential wide-bandgap semiconductors that compete with SiC, for example, gallium and 

aluminum nitride. 

 

Table 1.5 Properties of silicon carbide compared to other some semiconductor materials. 

Properties Si GaAs Diamond GaN 4H-SiC 

Band gap, Eg 

(eV) 
1.12 1.43 5.45 3.45 3.26 

Dielectric 

Constant 
11.9 13.1 5.5 9 9.76 

Breakdown 

Electric Field 

(MV cm
−1

) 

0.3 0.4 10 2.0 3 

Electron 

Mobility (cm
2 

V
–1

 s
−1

) 

1350 8500 2200 1250 1020 

Hole Mobility 

(cm
2 

V
–1

 s
−1

) 
480 400 850 850 120 

Saturation 

Velocity 

(cm s
−1

) 

1 1 2.7 2.2 2.7 

Electron 

Affinity (eV) 4.05 4.07 
depending 

on surfaces 
4.1 3.3 

Thermal 

conductivity 

(W cm
−1

  K
−1

) 

1.5 0.46 22 1.3 4.9 

 

Electronic devices based on SiC are suitable for high power and high frequency operations 

and due to better performance in power conversion and high switching speeds find applications 

in military, avionics, modern hybrid automobile power systems, uninterruptible power supplies, 

microwave and so on. Some of the major applications are discussed below. 
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1.4.1. Power Conversion 

Major applications of SiC based electronic devices can be found in power conversion from 

DC-DC or from DC-AC. For switched mode DC-DC conversion, Schottky diodes are combined 

with inductors or capacitors in a circuit to either step up the input power or to step it down. 

Inductor transfers its stored energy through Schottky diodes during power conversion. DC-DC 

conversion finds widespread applications in industrial and consumer electronics. DC-AC conver- 

sion, on the other hand, uses multiple diodes coupled with inductors which transfer their stored 

energy through these diodes. DC-AC power conversion finds applications mostly in 

uninterruptible power supplies and motor speed control [30]. 

1.4.2.  SiC Devices As Gas Sensors 

Schottky barrier diodes (SBD) and FETs based on SiC can detect some important gases 

such as oxygen, hydrogen, carbon monoxide and hydrocarbons. When thin metal film of SiC 

Schottky contact is exposed to gases e.g. hydrogen the current-voltage characteristics of the SBD 

are affected within a few milliseconds of the exposure. This occurs due to the fact that the 

Schottky barrier height of the SBD changes when the device comes in contact with some of the 

gases to which the SiC SBDs are sensitive. SiC gas sensors find applications in automobiles and 

aircrafts for detecting the fuel leakage and for detecting fires [30]. 

1.4.3.  UV Detection 

Silicon carbide Schottky barrier diodes (SBD) are able to detect ultra-violet radiation (UV) 

in a better way than Si based UV detectors because of SiCs wide bandgap. Because of wide 

bandgap SiC based SBDs are insensitive to radiation with frequencies below UV and can detect 

exclusively ultraviolet light even in the presence of visible and infrared light. Silicon based gas 

sensors however, are sensitive to visible and infrared light too and show poor performance in 

their presence unless additional radiation filtering is provided [79]. 

1.4.4.  Microwave Applications 

Superior material properties of silicon carbide are also exploited for microwave 

applications. Due to better RF and dc performance SiC based electronic devices are preferred 

over devices based on conventional semiconductors such as silicon or gallium-arsenide. Devices 

based on SiC exhibit much better microwave power at room temperature than their Si and GaAs 

counterparts [80]. Use of 4H-SiC in microwave technology can result in low cost, high power 

and smaller sized devices with greater bandwidth control. For these reasons SiC MESFETs are 
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being designed for continuous wave applications through X band and SiC static induction 

transistors (SIT), for high power pulsed transmitter technology, through L band operation [81]. 
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2.1. Introduction 

The physics and technology of metal/semiconductor interfaces are key-points in the 

development of silicon carbide (SiC) based devices. Although in the last decade, the metal to 

4H-SiC contacts, either Ohmic or Schottky type, have been extensively investigated with 

important achievements, these remain even now an intriguing topic since metal contacts are 

fundamental bricks of all electronic devices. Hence, their comprehension is at the base of the 

improvement of the performances of simple devices and complex systems. In this context, this 

chapter aims to highlight some relevant aspects related to metal/semiconductor contacts to SiC, 

with an emphasis on the role of the barrier and on the carrier transport mechanisms at the 

interfaces. Selected examples of 4H-SiC schottky diode applications are also briefly discussed. 

2.2.  Homogeneous Schottky barrier formation models 

2.2.1. Mott-Schottky model 

The model proposes that the SBH between a metal and a semiconductor depend only on 

the work function of the metal q𝜙M and the electron affinity of the semiconductor q𝜒 [56,82]. as 

shown in figure (2.1). 

 

Figure 2.1. Energy band diagram of a metal adjacent to n-type semiconductor under 

thermal non equilibrium condition [82]. 

The work function of a material is defined as the minimal energy required to extract an 

electron from it. In term of energy levels, it is the difference between the Fermi level and 

vacuum level, and it is noted 𝑞𝜙M for metals and 𝑞𝜙𝑠 for semiconductors. The work function of 

selected metals as measured in vacuum can be found in figure (2.2) [83]. 
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𝑞∅𝑀 =  𝐸𝑣𝑎𝑐𝑢𝑢𝑚  −  𝐸𝐹𝑀  (2.1) 

Because the Fermi level is in the forbidden gap in insulators and semiconductors; and 

which depends mainly on the semiconductor doping density, it is not worth to talk about the 

work function of a semiconductor. In this case, we must use another definition instead of the 

work function, which is the electronic affinity. It is the difference between the vacuum level and 

the minimum of the conduction band, and it is noted 𝑞𝜒 where: 

𝑞χ =  𝐸𝑣𝑎𝑐𝑢𝑢𝑚  – 𝐸𝐶  (2.2) 

 

Figure 2.2. Energy band diagram of the selected metals and 4H-SiC [83]. 

2.2.1.1. Schottky barrier formation 

A Metal-Semiconductor contact is formed when a metal and a semiconductor are brought 

into intimate contact with each other [82-84].  

Figure (2.1) shows the energy band-diagram for an n-type semiconductor and metal, which 

are electrically neutral and isolated to each other, with the assumption that the work function of 

semiconductor (q𝜙𝑠) is less than that of the metal work function (𝑞𝜙M).  
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Figure 2.3.  Energy band diagram of a metal semiconductor contact in thermal equilibrium [82] 

 

When a metal is making intimate contact with 4H-SiC material, the Fermi levels in the two 

materials must be coincident at thermal equilibrium and the vacuum level must be continuous 

across the interface. In addition, the metal work function is different from that of the 

semiconductor. These two requirements determine a unique energy band diagram for an ideal 

metal-semiconductor contact where surface states are absent, as shown in figure (2.3) [82]. For 

this ideal case, the potential barrier, known as Schottky Barrier Height (SBH), at the metal-

semiconductor interface is simply the difference between the metal work function 𝑞𝜙M and the 

electron affinity of the semiconductor: 

𝑞∅𝐵 =  𝑞∅𝑀 −  𝑞χ (2.3) 

This equation is known as the Schottky-Mott Limit [56], and gives the limiting value for 

the barrier height in ideal metal-semiconductor contacts and is based on following assumptions: 

 

a) The surface dipole contributions to 𝜙M and χ do not change when the metal and 

semiconductor are brought in contact with each other. 

b) There are no localized states present on the surface of the semiconductor. 

c) There is perfect contact between the metal and the semiconductor; i.e., there is no 

interfacial layer present between metal and semiconductor. 

 

 

   Metal                                        SC(n) 
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2.2.1.2. Space charge region 

To determine the deserted area in n-type Schottky junction, first we consider that the 

charge density “𝜌” in this area is equal to doping concentration “(𝑁𝐴
− − 𝑁𝐷

+)” and equal to zero 

outside it [56,84]. Now we can determine the potential by using the one dimensional Poisson‘s 

equation: 

𝑑2𝜌(𝑥)

𝑑𝑥2
= −

𝜌

𝜀𝑠
 (2.4) 

Where 𝜀𝑠is the static dielectric constant of the Semiconductor. 

By taking into account as a boundary conditions that the charge density “𝜌” in the space- 

charge region is given by the doping density: 

𝜌 𝑥 = 𝑞 𝑁𝐷 − 𝑁𝐴       0 ≤ 𝑥 ≤ 𝑤 (2.5) 

The electric field is then obtained by integrating the equation (2.4): 

𝐸 𝑥 = −
𝑑𝑉(𝑥)

𝑑𝑥
=  

𝑞𝑁𝐷
𝜀0𝜀𝑠

 𝑥 + 𝐶1 (2.6) 

The constants C1 can be determined using the following boundary conditions: 

𝐸 𝑥 = 0      𝑥 ≥ 𝑤 (2.7) 

By substituting C1 into equation (2.6), one obtains the spatial distributions of the electric 

field inside the depletion region, which is given by: 

𝐸 𝑥 =  
𝑞𝑁𝐷
𝜀0𝜀𝑠

 (𝑥 − 𝑤) (2.8) 

The potential distribution can be obtained by integrating equation (2.8) taking the interface 

as the potentials origin, which yields: 

𝑉 𝑥 = − 
𝑞𝑁𝐷
𝜀0𝜀𝑠

 (
𝑥2

2
− 𝑤𝑥) (2.9) 

The depletion layer width 𝑤 can be expressed in terms of ND, Vbi (built-in voltage), and Va 

(applied voltage) across the barrier. From equation (2.9) one obtains the potential at 𝑥 = 𝑤 as: 

𝑉 𝑥 = 𝑤 = 𝑉𝑏𝑖 − 𝑉𝑎 =
𝑞𝑁𝐷𝑤

2

𝜀0𝜀𝑠
 (2.10) 

From equation (2.10), the depletion layer width 𝑤 is given by: 
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𝑊 =  
2𝜀0𝜀𝑠 𝑉𝑏𝑖 − 𝑉𝑎 

𝑞𝑁𝐷
 (2.11) 

 

It is seen from equation (2.11) that the depletion layer width is directly proportional to the 

square root of the applied voltage (Va), and is inversely proportional to the square root of the 

dopant density of the semiconductor. Furthermore, equation (2.11) shows that the depletion layer 

width decreases with the square root of the forward-bias voltage (i.e., for Va ≥ 0), and increases 

with the square root of the reverse-bias voltage (i.e., for Va < 0) [56, 84]. 

The previous approximation is valid for 𝑉𝑏𝑖𝑘𝑇/𝑞≫1. Therefore, equation (2.11) is 

corrected to: 

 

𝑊 =
 

2𝜀0𝜀𝑠  𝑉𝑏𝑖 − 𝑉𝑎 −
𝑘𝑇
𝑞  

𝑞𝑁𝐷
 

(2.12) 

2.2.1.3. Capacitance 

To calculate the capacitance the charge density stored in the space charge region which is 

mainly due to ionized dopant atoms must be defined first. So, the charge density per unit surface 

at the thermodynamic equilibrium is given by: 

𝑄 = 𝑞𝑁𝐷𝑊 =  2𝑞𝑁𝐷𝜀0𝜀𝑠  𝑉𝑏𝑖 − 𝑉𝑎 −
𝑘𝑇

𝑞
  (2.13) 

To take into account the charges resulting from the traps in the depletion region, ND must 

be replaced by NSCR (ionized impurity in the space charge region). NSCR = ND
+ ± (n, p)T

−,+, where 𝑛𝑇
−

 

are deep-level or shallow-level acceptors occupied by electrons, and 𝑃T
+

  are deep-level or 

shallow-level donors occupied by holes [56]. 

The depletion layer capacitance (junction capacitance) per unit area can be obtained by 

differentiating equation (2.13) with respect to the applied voltage (𝐶=|𝑑Q/𝑑𝑉|), which yields 

𝐶𝑑 =
𝑑𝑄

𝑑𝑉𝑎
=  

𝑞NSCR 𝜀0𝜀𝑠

2  𝑉𝑏𝑖 − 𝑉𝑎 −
𝑘𝑇
𝑞  

 (2.14) 

 Equation (2.14) can also be written as: 
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1

𝐶𝑑
2 =

2 𝑉𝑏𝑖 − 𝑉𝑎 −
𝑘𝑇
𝑞
 

𝑞NSCR 𝜀0𝜀𝑠
 (2.15) 

By plotting 1/𝐶𝑑
2
as a function of applied voltage we can find the doping concentration 

and built-in voltage 𝑉𝑏𝑖. If the doping concentration is homogeneous the plot should be linear. 

𝑉𝑏𝑖= 𝑉′+(𝑘𝑇/𝑞), where 𝑉′ is the extrapolation to the voltage axis such that 1/𝐶𝑑=0. The doping 

concentration can be determined from the slop via [56]. 

𝑁𝑆𝐶𝑅 =
2

𝑞𝜀0𝜀𝑠

 
 
 
 
 

1

𝑑𝐶𝑑
2

𝑑𝑉
 

 
 
 
 
 

 (2.16) 

2.2.2. Bardeen model 

The Schottky-Mott theory suggests that the barrier height is a function of the metal work 

function and the electron affinity of the semiconductor. However, it is practically found that the 

barrier height is a less sensitive function of the metal work function and in some situation is 

almost independent of 𝜙M [82, 84]. A possible cause of this discrepancy was given by Bardeen in 

1947, who suggested that the discrepancy may be due to the effect of surface states [85]. Figure 

(2.4) illustrates a Schottky contact with the presence of a thin interfacial and there is a 

continuous distribution of surface states present at the surface of semiconductor and 

characterized by a neutral level 𝜙0. 

The occupancy of the surface states is determined by the Fermi level which is constant 

throughout the barrier region in the absence of applied bias. If the neutral level 𝜙0 is above the 

Fermi level EF, the surface states contain a net positive charge. On the other hand, if 𝜙0 is below 

EF, then the surface states have a net negative charge. The surface states behave like a negative 

feedback loop, the error signal of which is the deviation of 𝜙0 from EF. If the density of surface 

states becomes very large, the error signal will be very small and 𝜙0 ≈ EF. As a result, the barrier 

height is determined by the property of the semiconductor surface and not the metal work 

function. When this state is reached, the barrier height is said to be ―pinned‖ by the high density 

of the surface states. 

This is called the Bardeen Limit and when it is reached, the surface states screen the 

semiconductor from the electric field in the insulating layer so that the amount of charge in the 
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depletion region and the barrier height is independent of the metal work function 𝜙M. The 

Bardeen Limit is given by: 

∅𝐵 =
𝐸𝑔

𝑞
− ∅0 (2.17) 

The Schottky-Mott Limit and the Bardeen Limit are the two limiting cases for the barrier 

height ∅𝐵, for M/S contacts. Usually, the actual Schottky Barrier Height falls somewhere 

between the Schottky-Mott Limit and the Bardeen Limit [82, 84].. 

 

Figure 2.4. Band diagram of a metal and n-type semiconductor with surface states (a) 

before the contact and (b) after the contact with an interfacial layer of width δ. The interface 

states are assumed to have a charge neutrality level Φ0 [84]. 

2.2.3. Cowley et Sze model 

A.M.Cowley et S.M.Sze [86], developed a more realistic model, which take into account 

the effect of both surface states, the metal work function on the SBH and the interface dipole. 

Cowley and Sze was derived based on the following assumptions: (1) the contact between 

the metal and the semiconductor has an interfacial layer of the order of atomic dimensions; it is 

further assumed that this layer is transparent to electrons with energy greater than the potential 

barrier but can with stand potential across it. (2) The surface state density (per unit area per 

electron volt) at the interface is a property only of the semiconductor surface and is independent 

of the metal. The schematic shown in figure (2.5) is the energy band diagram illustrating model 

[82,84]. 

        Metal                                  SC(n)                      Metal                       SC(n) 
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Where ØM is the work function of metal, ØB is the barrier height without image force 

lowering, Ø0 is the neutral level of interface states, Δ is the potential across interfacial layer, χ is 

the electron affinity of semiconductor, Vbi is the built-in potential, 𝛿 is the interfacial layer 

thickness, Q𝑠𝑐 space charge density in semiconductor, Q𝑠𝑠 interface trap charge, Q𝑀 surface 

charge density on metal, Dit interface trap density and εi is the interface layer permittivity. 

 

 

 

 

 

 

 

 

 

Figure 2.5. Energy band diagram of Metal-n-type semiconductor based on Cowley and 

Sze model [82,84]. 

With the above assumptions, the barrier height for n-type semiconductor-metal contacts is 

found to be a linear combination of the metal work function M and a quantity 0, which is 

defined as the energy below which the surface states must be filled for charge neutrality at the 

semiconductor surface. For constant surface state density the theoretical expression obtained is 

[84]: 

∅𝐵 = 𝛾 ∅𝑀 − 𝑥𝑠𝑐 +  1 − 𝛾  
𝐸𝑔

𝑞
− ∅0  (2.18) 

Where 𝛾 is equivalent to the interface behavior parameter 𝑆 =
𝜕∅𝐵

𝜕∅𝑀
 

𝛾 =
𝜕∅𝐵𝑛
𝜕∅𝑀

=
𝜀𝑖

𝜀𝑖 + 𝑞𝛿𝐷𝑖𝑡
 (2.19) 

For a high density of states (𝛾 ≪1 , the second term on the right hand side of equation 

(2.18) dominates and the Fermi-level will pinned by interface states close to the level 0. In the 

        Metal                                       SC(n) 
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case where interface states are neglected, (𝛾 ≃1) and SBH equation is identical to Mott-Schottky 

equation (ideal diode). 

2.2.4. Metal induced gap states model  

Metal induced gap states (MIGS) is the first interactive model developed by V. Heine in 

1965 [87], he started from assumption that vacuum cleaved surface cannot contain a high density 

interface states which can pin the Fermi level. The interaction between the metal and 

semiconductor was expressed by the overlap of wave function at a MS interface, this overlap of 

wave function alter the electronic structure and the charge distribution in the ISR and induce 

electronic states in the band gap of the semiconductor. This theory does not take into account the 

atomic structure and bonding at the interface [84]. 

 

 

 

 

 

     

 

 

 

 

 

Figure 2.6. Schematic representation of the wave function at metal-semiconductor interface 

illustrating MIGS concept [88]. 

2.2.5. Unified defect model  (UDM) 

Spicer and co-workers [89] proposed that defects are generated near the semiconductor 

surface when the contact metal is deposited on that surface. These defects in turn lead to pinning 

of the Fermi-level. This is called the unified defect model (UDM). 

Hughes [90] suggested that the pinning is caused by extrinsic defects in the semiconductor 

resulting from the incorporation of impurities or the deposited metal atoms into the 

semiconductor lattice. "Dangling bonds" at incoherent or semi-coherent metal-semiconductor 

interfaces were also suggested to be responsible for the Fermi-level pinning [91]. 

              Metal                                       SC(n) 
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2.2.6. Image force barrier lowering of the Schottky barrier 

The presence of a free porter (electron) in the semiconductor near the metal contacts leads 

to the creation of an attractive force by electrostatic effect and thus an electric field. This field 

induces a potential difference and therefore a change in the energy diagram. Because the created 

force is attractive, the potential difference created is negative, thus corresponds to a lowering of 

the existing barrier. This lowering is known as the image-force lowering or the Schottky effect 

[84]. 

Consider a metal-vacuum system first. The minimum energy necessary for an electron to 

escape into vacuum from an initial energy at the Fermi level is the work function Фm as shown in 

figure (2.7). When an electron is at a distance x from the metal, a positive charge will be induced 

on the surface of metal. The force of attraction between the electron and induced positive charge 

is equivalent to the force that would exist between electron and an equal positive charge located 

at position –x, which is referred to as image charge. The force of attraction between electron and 

its image charge can be expressed as [56, 82, 84]: 

𝐹 𝑥 =
𝑞2

4𝜋𝜀0(2𝑥)2
 (2. 20) 

where 𝜀0 is the permittivity of free space. The work done to an electron in the course of its 

transfer from infinity to the point x is given by 

𝐸 𝑥 = −
𝑞2

16𝜋𝜀𝑑𝑥
 (2.21) 

This energy corresponds to the potential energy of an electron placed at a distance x from 

the metal surface, shown in figure (2.7), and is measured downwards from the x-axis. When an 

external field 𝜉 is applied (in this example in the -x direction), the total potential energy PE as a 

function of distance is given by the sum 

𝑃𝐸 𝑥 = −
𝑞2

16𝜋𝜀0𝑥
− 𝑞 𝜉 𝑥 (2.22) 

This equation has a maximum value. The image-force lowering ∆Ф and the location of the 

lowering x, (as shown in figure (2.7)), are given by the condition d(PE) /dx = 0, or 

  𝑥𝑚 =  
𝑞

16𝜋𝜀0 𝜉 
 

(2.23) 
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  ∆∅ =  
𝑞 𝜉 

4𝜋𝜀0
= 2 𝜉  (2.24) 

These results can be applied to metal-semiconductor systems. However, the field should be 

replaced by the appropriate field at the interface, and the free-space permittivity 𝜀0 should be 

replaced by an appropriate permittivity 𝜀𝑠  characterizing the semiconductor medium [84], that 

is, so,  

  ∆∅ =  
𝑞𝜉𝑚

4𝜋𝜀𝑠
=  

𝑞3𝑁𝐷

8𝜋2𝜀𝑠
3 (∅𝐵 − 𝑉 − 𝜁 −

𝑘𝑇

𝑞
 

1/4

 
(2.25) 

 

 

 

 

 

 

 

Figure 2.7. Image force barrier lowering in Schottky barrier diodes [82,84]. 

The effect of the image force is that the barrier which an electron has to surmount in 

passing from the metal into the semiconductor is lowered by an amount ∆∅ The image-force 

lowering differs from the other contributions to ∅𝐵 in that it arises from the field produced by the 

particular electron under consideration and is absent if there is no electron in the conduction 

band near the top of the barrier. On the other hand, contributions to ∅𝐵from the work-function 

difference, surface state charge, and so on, are present whether or not there is an electron near 

the top of the barrier. We shall use ∅𝐵  to denote the barrier height arising from the latter causes, 

and will denote the image-force lowering explicitly by the quantity ∆∅.  

Measurements of the barrier height which depend on the movement of conduction 

electrons from metal to semiconductor or vice versa yield the quantity ∅𝐵 − ∆∅, whereas 

measurements which depend on the space charge in the depletion region (e.g. capacitance 

measurements) give without the effect of the image force [84]. 

 

Metal Sc (n) 
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2.2.7. Current conduction mechanism 

The transport through a Schottky junction is dominated by the majority charge carriers, I.e. 

electrons (holes) in the case of n-type (p-type) semiconductors, respectively. Figure (2.8) shows 

the basic transport mechanisms that can contribute to the total current [56, 82, 84]:  

(a) Emission of electrons over the barrier,  

(b) Tunneling through the barrier  

(c) Recombination in the depletion region  

(d) Hole injection from metal. 

 

 

Figure 2.8. Current transport mechanisms in a forward-biased Schottky Barrier [84]. 

2.2.7.1. Emission of electrons over the barrier 

The transport of electrons above the barrier is the dominant process for ideal Schottky with 

moderately doped semiconductors operated at moderate or high temperatures. This process was 

described by three theory, diffusion of Schottky, thermionic emission (TE) of Bethe and 

thermionic emission diffusion (TED) of Sze and Crowell. The current density expressions of the 

diffusion and thermionic-emission theories are basically very similar, while TED theory is a 

combination of the two theories. Here we will discuss thermionic emission theory since it is the 

most widely used in the interpretation of the experimental I-V characteristics Schottky barrier 

diodes [56, 82, 84]. 

                  Metal                                                            SC(n) 
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a) Thermionic emission theory 

The thermionic emission theory is derived by using the assumptions that the barrier height 

is much larger than kT, so that the Maxwell-Boltzmann approximation applies and that thermal 

equilibrium is not affected by this process. The current density from the semiconductor to the 

metal 𝐽𝑠→𝑚 is then given by the concentration of electrons with energies sufficient to overcome 

the potential barrier [56]. 

𝐽𝑠→𝑚 =  𝑞𝑣𝑥𝑑𝑛
∞

𝐸𝐹+𝑞∅𝐵

 (2.26) 

Where 𝐸𝐹+𝑞∅𝑏, is the minimum energy required for thermionic emission into the metal, 

and 𝑣𝑥 is the carrier velocity in the direction of transport. The electron density in an incremental 

energy range is given by 

𝑑𝑛 = 𝑁 𝐸 𝐹 𝐸 𝑑𝐸 (2.27) 

Where N(E) and F(E) are the density of states and the distribution function, respectively. 

𝑑𝑛 ≈
4𝜋(2𝑚∗)3/2

𝑕3  𝐸 − 𝐸𝐶 exp  −
𝐸 − 𝐸𝐶 + 𝑞∅𝐵

𝑘𝑇
 𝑑𝐸 (2.28) 

For a given energy E, the carrier velocity v is determined by: 

𝐸 = 𝐸𝑐 +
1

2
𝑚∗𝑣2 (2.29) 

Thus, we obtain 

 𝐸 − 𝐸𝑐 = 𝑣 
𝑚∗

2
 (2.30) 

And 

𝑑𝐸 = 𝑚∗𝑣𝑑𝑣 (2.31) 

Therefore, we write equation (2.31) 

𝑑𝑛 ≈ 2  
𝑚∗

𝑕
 

3

𝑒𝑥𝑝⁡ −
𝑞∅𝐵
𝑘𝑇

 𝑒𝑥𝑝  −
𝑚∗𝑣2

2𝑘𝑇
 (4𝜋𝑣2𝑑𝑣) (2.32) 

Then the one-dimensional integral over 4𝜋𝑣2𝑑𝑣 is converted into a three-fold integral over. 

Integration over all velocities in y and z directions yields a factor 2𝜋 𝑘𝑇 /𝑚∗. The integration 

over 𝑣𝑥 runs from the minimum velocity 𝑣0𝑥 necessary to pass the barrier 
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 𝑒𝑥𝑝  −
𝑚∗𝑣𝑥

2

2𝑘𝑇
 𝑣𝑥𝑑𝑣𝑥 =

𝑘𝑇

𝑚∗
𝑒𝑥𝑝  −

𝑚∗𝑣0𝑥
2

2𝑘𝑇
 

∞

𝑣0𝑥

 (2.33) 

With the minimum velocity determined by 

1

2
𝑚∗𝑣𝑜𝑥

2 = 𝑞(𝑉𝑏𝑖 − 𝑉) (2.34) 

Substituting (2.34) into (2.33) yields 

𝐽𝑠→𝑚 =  
4𝜋𝑚∗𝑘2

𝑕3
 𝑇2𝑒𝑥𝑝  −

𝑞∅𝐵
𝑘𝑇

 𝑒𝑥𝑝  
𝑞𝑉

𝐾𝑇
  (2.35) 

Where 4𝜋𝑞𝑚∗𝑘2/𝑕3 called Richardson constant (𝐴∗) . 

Since the barrier height for electrons moving from the metal into the semiconductor 

remains the same under bias, the current flowing into the semiconductor I thus unaffected by the 

applied voltage. It must therefore be equal to the current flowing from the semiconductor into the 

metal when thermal equilibrium prevails (i.e., when V = 0). This corresponding current density 

is obtained from Equation (2.35) by setting V = 0, 

𝐽𝑚→𝑠 = −𝐴∗𝑇2𝑒𝑥𝑝  −
𝑞∅𝐵
𝑘𝑇

  (2.36) 

The total current density is given by the sum of Eqs. 2.35 and 2.36. 

𝐽𝑇𝐸 =  𝐴∗𝑇2𝑒𝑥𝑝  −
𝑞∅𝐵
𝑘𝑇

   𝑒𝑥𝑝  
𝑞𝑉

𝐾𝑇
 − 1  (2.37) 

b) Diffusion theory 

According to the diffusion theory, the electron concentration at semiconductor side of MS 

interface is given by [56]: 

𝑛 = 𝑁𝑐𝑒𝑥𝑝 −𝑞(𝐸𝑐 − 𝐸𝐹)/𝑘𝑇  (2.38) 

Where Nc is the effective density of states in the conduction band, Ec is the energy of the 

bottom of conduction band. And 𝐸𝐹  is the quasi-Fermi level for electrons. The current density is 

given by: 

𝐽𝐷 = 𝑞𝑛𝜇𝜉 + 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥
 (2.39) 

Where  ξ is the electric field in the barrier, Dn the  diffusion coefficient, and µ the electron 

mobility. 

Making use of Einstein‘s relationship, µ/Dn=q/kT equation (3.39) can be rewritten as  
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𝐽𝐷 = 𝑞𝑛𝜇
𝑑𝐸𝐹
𝑑𝑥

 (2.40) 

The final current density-voltage relationship is given by 

𝐽𝐷 = 𝐽0(𝑒
𝑞𝑉
𝑘𝑇 − 1) (2.41) 

Where 

𝐽0 = 𝑞𝑁𝐶𝜇 𝜉𝑚𝑎𝑥 𝑒
−
𝑞∅𝑏
𝑘𝑇  (2.42) 

The maximum field strength is given by ξmax= q Nd w/ℇs , where w is the depletion width 

and ℇs the permittivity of the semiconductor. 

c) Thermionic emission - Diffusion theory 

The combined thermionic emission-diffusion theory was first introduced by crowll and Sze 

[92]. In this theory, one defines an effective recombination velocity vr the potential maximum. 

The current density due to electrons emitted over the barrier is given by: 

𝐽𝑇𝐸𝐷 = 𝑞(𝑛𝑚 − 𝑛0)𝑣𝑟  (2.43) 

Where nm is the electron density at xm when the current is flowing and is given by 

𝑛𝑚 = 𝑁𝑐𝑒𝑥𝑝 −𝑞(∅𝐵 − 𝐸𝐹 𝑥𝑚 )/𝑘𝑇  (2.44) 

Where 𝐸𝐹 𝑥𝑚  is the quasi-Fermi level at xm under bias V, and n0 is the electron density 

level at xm  under quasi-equilibrium condition and is given by 

𝑛0 = 𝑁𝑐𝑒𝑥𝑝 −𝑞∅𝐵/𝑘𝑇  (2.45) 

Letting the diffusion current be equal to the emission current. Crowell and Sze obtained the 

final expression for electron current density 

𝐽𝑇𝐸𝐷 =
𝑞𝑁𝑐𝑣𝑟

1 +
𝑣𝑟
𝑣𝑑

𝑒−
𝑞∅𝐵
𝑘𝑇 (𝑒−

𝑞𝑉
𝑘𝑇 − 1) (2.46) 

Where  

𝑣𝑑 =   
𝑞

𝜇𝑘𝑇
𝑒−𝑞(∅𝑏−𝐸𝑐)/𝑘𝑇𝑑𝑥

𝑤

𝑥𝑚

 

−1

 (2.47) 

For a maxwellian distribution of electrons and an ideal thermal emitter, the effective 

recombination velocity is given by 
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𝑣𝑟 =
𝐴∗𝑇2

𝑞𝑁𝑐
 (2.48) 

If vd>> vr, the pre-exponential term in equation (2.46) is dominated by vr and the 

thermionic theory most nearly applies. If, however, vd<< vr, the diffusion process is dominant. 

2.2.7.2. Tunneling 

Tunneling of electrons thought the barrier potential is an important phenomenon which can 

dominate the transport process in certain conditions. In contrary of classical physics, the particles 

in quantum physics can escape the barrier potential even if its energy is below the maximum of 

this potential. There are two physical models describing the tunneling phenomenon (Figure 

(2.9)), thermionic field emission (TFE) and field emission (FE) [56,82,84]. 

 

 

Figure 2.9. Field and thermionic-field emission under forward bias [84]. 

Field emissions is a pure tunneling process and occur in the case of a degenerate 

semiconductor at low temperature, where the donor density is so high, and the potential barrier 

so thin, the current arises from electrons with energies close to the Fermi energy. While 

thermionic field-emission is tunneling of thermally excited carrier and occur at higher 

temperature, electrons are excited to higher energies, and the tunneling probability increases very 

rapidly because the electrons ‗see‘ a thinner and lower barrier. On the other hand, the number of 

electrons having a particular energy decreases very rapidly with increasing energy, and there will 

be a maximum contribution to the current from electrons which have energy above the bottom of 

             Metal                                          SC(n) 
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the conduction band [93]. According to Padovani and Stratton [94] FE and TEF current density 

can be expressed as 

𝐽 = 𝐽0𝑒𝑥𝑝  
𝐸

𝐸00
  (2.49) 

Where 𝐽0 is the saturation current density given by: 

𝐽0 𝐹𝐸 =
2𝜋𝐴∗𝐸00exp⁡(−

∅𝐵
𝐸00

)

𝑘𝑇  𝑙𝑜𝑔  2  
∅𝐵 − 𝐸
∅𝑛

   𝑠𝑖𝑛  
𝜋𝑘𝑇
2𝐸00

𝑙𝑜𝑔  2  
∅𝐵 − 𝐸
∅𝑛

   
 (2.50) 

𝐽0(𝑇𝐹𝐸) =
𝐴∗ 𝜋𝐸00(∅𝐵 − 𝐸 + ∅𝑛 

1/2

𝐾𝑇𝑐𝑜𝑠𝑕(𝐸00/𝑘𝑇)
 𝑒𝑥𝑝  

∅𝑛
𝑘𝑇

−
∅𝐵 − ∅𝑛

𝐸0
  (2.51) 

Where Ф𝐵 is the potential energy of the top of the barrier with respect to the Fermi level of 

the metal, E is the potential energy associated with an applied bias V, Фn is the energy of the 

Fermi level of the semiconductor measured with respect to the bottom of the conduction band, 𝐴∗ 

is the effective Richardson constant of the semiconductor and the metal in the case of forward 

bias and reverse bias respectively, 𝐸0 and 𝐸00 are the energy given by: 

𝐸0 = 𝐸00cosh⁡(
𝐸00

𝑘𝑇
) (2.52) 

𝐸00 =
𝑞𝑕

4𝜋
  

𝑁𝐷
𝑚∗𝜀𝑠

  (2.53) 

where m
*
 is the electron effective mass and h is Planck's constant. 

By comparing the thermal energy 𝑘𝑇 to 𝐸00 (characteristic tunneling energy that is related 

to the tunnel effect transmission probability) one can predict the dominant transport process [94]. 

When 𝑘𝑇≫𝐸00 TE dominates, when 𝑘𝑇≪𝐸00 FE dominates and when 𝑘𝑇≈𝐸00 TFE is the main 

mechanism which is a combination of TE and TFE. 

2.2.7.3. Electron-hole recombination in the space-charge region 

The recombination in the depletion region usually takes place due to the presence localized 

states in the semiconductor. The localized states are often referred to as ―traps‖ since they act as 

trapping centre for the minority carriers. The localized states are formed due to defects, surface 

states, dangling bonds and impurities. These traps have an energy level which is usually located 

in the forbidden energy gap.  
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The most effective trap centers are those with energies lying near the center of the 

forbidden gap [84]. The theory of current due to such recombination centers is similar to that for 

p-n junctions, and is predicted by the S-H-R (Shockley, Hall and Read) model.  

The Recombination current is a common cause of departure from ideal behavior in 

Schottky diodes. A recombination center in a semiconductor is most effective when its energy 

level is near the center of the band gap. For recombination through these mid-gap deep traps, the 

current density Jr caused by the carrier recombination in the depletion region is given by [56]: 

𝐽𝑟 = 𝐽𝑟𝑜𝑒𝑥𝑝  
𝑞𝑉

2𝑘𝑇
  1 − 𝑒𝑥𝑝  −

𝑞𝑉

𝑘𝑇
   (2.54) 

where  𝐽𝑟𝑜 = 𝑞𝑛𝑖𝑤/2𝜏𝑟   Here 𝑛𝑖  is the intrinsic electron concentration, w is the thickness 

of the depletion region, and is 𝜏𝑟   the lifetime within the depletion region. This current density 

(Jr) is added to the thermionic emission current density and in some cases may be responsible for 

a value of n > 1. 

2.2.7.4. Hole Injection in the neutral region of semiconductor 

When the height of the Schottky barrier on n-type material is higher than half of the energy 

band gap, the semiconductor region at and near the surface becomes p-type and contains a high-

density of holes. These holes diffuse into the neutral region of the semiconductor under the 

influence of forward bias and thus giving rise to the injection of the holes. 

 If hole concentration exceeds that of the electrons, the surface is inverted and forms a p-n 

junction with the bulk. This effect is only noticeable in large barrier heights with weakly doped 

semiconductors [56]. Since SiC has a large bandgap and has a very low intrinsic carrier 

concentration so, the hole injection is negligible in SiC devices [95]. 

2.2.8. Forward characteristics 

The current/voltage relationship predicted by the thermionic-emission theory [Equation 

(3.37)] is of the form of the ideal rectifier characteristic J=J0{exp(qv/kt)-1}, with J0=A
* 

T
2
exp(-

qФB/kT), provided the barrier height is independent of bias. However, there are several reasons 

why the barrier height may depend on the electric field in the depletion region and hence on the 

applied bias [82, 84]. 

Let us now consider the case of a Schottky barrier junction made on an n-type 

semiconductor. For the sake of simplicity we assume that the bias dependence of the barrier 

height ФB can be expressed by the relation 
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∅𝐵 = ∅𝑒 + 𝛽𝑞𝑉 (2.55) 

Obviously 𝛽 is positive since ∅𝐵 increases with increasing forward bias. ∅𝑒  is called the 

apparent barrier height or the zero-bias barrier height [84]. The current density now becomes 

𝐽 = 𝐴∗𝑇2𝑒𝑥𝑝  −
𝑞(∅𝑒 + 𝛽𝑞𝑉)

𝑘𝑇
  𝑒𝑥𝑝  

𝑞𝑉

𝐾𝑇
 − 1 = 𝐽0𝑒𝑥𝑝  −

𝛽𝑞𝑉)

𝑘𝑇
  𝑒𝑥𝑝  

𝑞𝑉

𝐾𝑇
 − 1  (2.56) 

where 

𝐽0 = 𝐴∗𝑇2𝑒𝑥𝑝  −
𝑞∅𝑒
𝑘𝑇

  (2.57) 

We can write equation (2.56) in the form 

𝐽 = 𝐽0𝑒𝑥𝑝  
𝑞𝑉

𝑛𝑘𝑇
  1 − 𝑒𝑥𝑝  −

𝑞𝑉

𝐾𝑇
   

(2.58) 

 

where 

1

𝑛
= 1 − 𝛽 = 1 −  

𝜕∅𝐵
𝜕𝑉

  (2.59) 

n is often called the 'ideality factor'. If ∂∅B/ ∂V is constant, n is also constant.  

For values of V greater than 3kT/q, Equation (2.58) can be written in the simpler form 

𝐽 = 𝐽0𝑒𝑥𝑝  
𝑞𝑉

𝑛𝑘𝑇
  (2.60) 

More usually ∂∅B/ ∂V is not constant and the plot of ln[J0{1 - exp(- qV/kT)] against V is 

not linear. The ideality factor can be obtained from the experimental J-V characteristic through 

the relationship 

1

𝑛
=
𝑘𝑇

𝑞

𝑑

𝑑𝑉
𝑙𝑛  𝐽/  1 − 𝑒𝑥𝑝  −

𝑞𝑉

𝐾𝑇
    (2.61) 

or, for V> 3kT/q, 

1

𝑛
=
𝑘𝑇

𝑞

𝑑(𝑙𝑛𝐽)

𝑑𝑉
 (2.62) 

The apparent barrier height ( Фe )values are determined from equation (2.57)  

∅𝑒 = −
𝑘𝑇

𝑞
𝑙𝑛  

𝐽0
𝐴∗𝑇2

  (2.63) 
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Furthermore, the apparent barrier height Фe may be determined in another way such as the 

Richardson plot (lnJo/T
2
 versus 1/T). The slope of this plot yields the value of a mean apparent 

barrier heightФ𝑒    , independent of temperature [31, 84]. Thus, Equation (2.57) can be rewritten as 

𝑙𝑛  
𝐽0
𝑇2
 = 𝑙𝑛𝐴∗ −

𝑞∅ 𝑒
𝑘𝑇

 (2.64) 

When the interface states are in equilibrium with semiconductor, the n ideality factor is 

expressed by Rhoderick and Card [96] as, 

𝑛 𝑉 = 1 +
𝛿

𝜀𝑖
 
𝜀𝑠
𝑤

+ 𝑞𝑁𝑠𝑠  (2.65) 

where w is the width of depletion layer of semiconductor, Nss is the density of the interface 

states which is in equilibrium with the semiconductor, ℇi and ℇs are the dielectric constants of the 

interface oxide layer and semiconductor, respectively. ℇs for 4H-SiC is given as 9.7 [97,98]. As a 

result, Nss may be written from equation (2.65) as, 

𝑁𝑠𝑠 𝑉 =
1

𝑞
 
𝜀𝑖
𝛿
 𝑛 𝑉 − 1 −

𝜀𝑠
𝑤
  (2.66) 

 

Also, for an n-type 4H-SiC semiconductor, Esc - Ess which is the energy of the interface 

states with respect to the bottom of the conduction band at surface of the semiconductor is 

expressed by, 

𝐸𝑠𝑐 − 𝐸𝑠𝑠 = 𝑞∅𝑒 − 𝑞𝑉 (2.67) 

The image force lowering effect is one of the factors which cause the I–V and C–V barrier 

height differences and Schottky barrier inhomogeneities. The ∆Фb barrier reduction in the 

junction due to the image-force lowering effect is calculated from Equation (2.25). And the 

diode ideality factor can be calculated by using the following expression [84]: 

1

𝑛
= 1 −

1

4
 
𝑞3𝑁

8𝜋2𝜀𝑠
3 

1
4

 ∅𝐵 − 𝑉 − 𝜁 −
𝑘𝑇

𝑞
 
−

3
4

. (2.68) 

On the other hand, Padovani and Stratton [94] reported that the tunneling through barrier is 

responsible for current transportation mechanism of forward bias J–V curves, except for very 

low values of forward bias and as a result, E00 characteristic tunneling energy is calculated from 

equation (2.53), Furthermore, the n ideality factor is related to E00 characteristic tunneling 

parameter in Equation (2.53) through the equation given below: 
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𝑛 =
𝑞𝐸00

𝑘𝑇
𝑐𝑜𝑡𝑕  

𝑞𝐸00

𝑘𝑇
  (2.69) 

As different from equation (2.69), Horvath [99] demonstrates that the n ideality factor is 

presented by an equation expressed as, 

𝑛 =
𝑞𝐸00

(1 − 𝛽)𝑘𝑇
𝑐𝑜𝑡𝑕  

𝑞𝐸00

𝑘𝑇
  (2.70) 

where β is the bias dependence of barrier height for I–V curves which dominate of the 

thermionic-field emission.  

If the departure of n from unity arises from image-force lowering or from interface effects, 

n, should be independent of temperature, but if it is due to thermionic-field emission or to the 

effect of recombination in the depletion region, n will be temperature dependent. The majority of 

Schottky diodes exhibit n values which depend on temperature and in some cases this 

temperature dependence can be expressed by the relation [31, 82, 84,]: 

𝑛𝑇 = 𝑛0𝑇 + 𝑇0 (2.71) 

The temperature dependence of the BH and ideality factor in Schottky diodes is called the 

“T0 effect” Such a phenomenon has been observed from all types of SBDs. If a diode displays 

the T0 effect, its current expression may be given by 

𝐽 = 𝐽0𝑒𝑥𝑝  
𝑞𝑉

𝑛𝑘𝑇
 = 𝐽0𝑒𝑥𝑝  

𝑞𝑉

(𝑛0 +
𝑇0

𝑇 )𝑘𝑇
  (2.72) 

 

If J  is measured as a function of V at a number of temperatures and  nT  is plotted as a 

function of T, different current transport mechanisms can be identified as shown in Fig. 2.10 

[82,100]. 

Fig 2.10 showing the five basic categories of the temperature dependence of the ideality 

factor.   

Curve I is an ideal SB that follows the prediction of thermionic emission theory. 

Curve II shows a temperature independent, greater-than-unity ideality factor, usually between 1 

and 1,1. Sze et al [92] showed that such a value of n can approximately be accounted for when 

the image forces are taken into account.  

Curve III displays the T0 effect where T0, is a constant >0 and it is independent of temperature.  

Curve IV represent the behaviors when conduction is dominated by TFE, in this case T0 is not 
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constant with respect to temperature. It increases at lower temperatures. Curve V represents the 

behaviors when conduction is dominated by FE. 

 
 

 

Figure 2.10. Plots of nkT/q as a function of kT / q for identifying t 

he different current transport mechanisms (after Saxena [100]). 

 

2.3. Barrier inhomogeneities 

 

Schottky barrier height inhomogeneities can be defined as the lateral variation of the 

barrier height, this lateral variation was attributed to interface propriety and the fabrication 

process [101]. Evidence for the presence of inhomogeneity in the SBH‘s was recognized and 

reported only sporadically before the 1990 [102], the inhomogeneities was described by two 

parallel diodes with different barrier height and the junction current is a sum of the contribution 

from the two diodes. These models is in signification error when the SBH varies spatially on a 

scale less than, or comparable to the width of the space-charge region. 

 The development of the ballistic electron emission microscopy (BEEM) technique [103-

105], provided the spatial resolution needed to examine the distribution of local SBH underneath 

ultrathin metal layers.  
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There are several reasons for such potential Inhomogeneities at the interface of metal-

semiconductor contacts [106]. 

1. The dopant atoms are randomly distributed within the semiconductor.  

2. Atomic steps and lattice defects at the interface modulated the barrier height even at 

single crystal epitaxial contacts.  

3. The dependence of the Schottky barrier on the relative orientation of semiconductor and 

metal atoms results in barrier height fluctuations over the area of polycrystalline Schottky 

contacts.  

4. At polycrystalline contacts, grain boundaries in the metal may modify the Schottky 

barrier.  

5. Interface roughness results in spatially varying effective Schottky barriers by local barrier 

lowering due to field emission even for nominally homogeneous contacts.  

6. In the particular case of reactive contacts, e.g., silicide/Si, different phase of metal yield 

different barrier heights.  

7. The metal atoms can diffuse into the semiconductor and there will be a redistribution of 

dopant atoms in the vicinity of the interface.  

8. Contact edges are often sites of charges which locally modify the Schottky barrier height. 

The contact appears therefore also inhomogeneous.  

 

After 1990 more sophisticated models were developed. Werner and Guttler model [19] and 

Tung model [20]. 

 

2.3.1. Werner and Guttler model 

 

The model considered a large area device which contains potential fluctuation or barrier 

inhomogeneities at the MS interface [101]. Figure (2.11) on length a scale, and this potential 

fluctuation is smaller than the width of the space-charge region, i.e.,  1 μm. 

More in detail, the spatial barrier inhomogeneities in SBDs are described by 

assuming a Gaussian distribution ρ(∅𝐵) of the SBH with a standard deviation (ζ0) around a mean 

value (∅ 𝐵0): 

𝜌 ∅𝐵 =
1

ζ 2𝜋
𝑒
−
 ∅𝐵−∅ 𝐵0 

2

2ζ2  (2.73) 
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Figure 2.11. a)Two-dimensional band diagram of an inhomogeneous Schottky contact b) 

Gaussian distribution of barrier height fluctuations according to the Werner model. 

The pre-exponential term is a normalization constant. The total forward current across the 

Schottky barrier diode is given by: 

𝐼 =  𝑖 𝑉, ∅𝐵 𝜌 ∅𝐵 𝑑∅𝐵 (2.74) 

where 𝑖 V, ∅B  is the current based on the TE model equation (2.58). It is assumed that ∅ B  

and ζ are linearly bias-dependent on Gaussian parameters as follows: 

∅B
    = ∅ 𝐵0 + ρ

2
V,      (2.75) 

ζ2 = ζ0
2  + ρ

3
V          (2.76) 

where ∅ 𝐵0 and 𝜍0are the zero-bias reference parameters, and ρ2 and ρ3 are 

temperature-independent voltage coefficients which model the voltage deformation of the barrier 

distribution. 

By introducing 𝑖 V, ∅B  and ρ(∅𝐵) from Eqs.(2.58) and (2.73) into (2.74), and 

performing the integration we can write: 

𝐼 = 𝐴𝐴∗𝑇2  −
𝑞

𝑘𝑇
 ∅ 𝐵0 −

𝑞𝜍0
2

2𝑘𝑇
  𝑒𝑥𝑝  

𝑞𝑉

𝑛𝑎𝑝 𝑘𝑇
  1 − 𝑒𝑥𝑝  −

𝑞𝑉

𝑘𝑇
  ,  (2.77) 

𝐼0 = 𝐴𝐴∗𝑇2𝑒𝑥𝑝  −
𝑞∅𝐵𝑎𝑝

𝑘𝑇
  (2.78) 

where∅𝐵ap and nap are the apparent SBH and ideality factor, respectively,in the form of 



CHAPTER 2 Metal-Semiconductor Contacts To SiC: Physics And Applications 
 

55 
 

∅𝐵𝑎𝑝=∅ 𝐵0 −
𝑞𝜍0

2

2𝑘𝑇
 , (2.79) 

1

𝑛𝑎𝑝
− 1 = −𝜌2 +

𝑞𝜌3

2𝑘𝑇
 .  (2.80) 

2.3.2. Tung model 

A cording to Tung [20], the barrier inhomogeneities is a result of the presence of small 

regions with a low SBH (∅𝐵
0 −Δ) embedded in an interface with an otherwise uniform high 

SBH (∅𝐵
0 ). Two geometries were considered for the low-SBH region, a small circular 

patches and narrow semi-infinite strips [20]. 

 

 

 

 

 

 

 

 

 

Figure 2.12. Geometries and coordinates of examples of the inhomogeneities in 

Tung model. (a) Circular patch, (b) narrow strip [20]. 

As seen in figure (2.12), the small regions with low SBH are characterized by two 

important parameters, the value of the barrier which is lower than the uniform barrier by a 

value Δ (eV), and the second parameter is the radius 𝑅0 or the length 𝐿0 (for the circular 

patches and semi-infinite strips respectively) which represent the surface of the small 

regions with low SBH. 

 

The potential around the circular patch and the narrow strip are given by next equations: 

𝑉 𝜌, 𝑧 = 𝑉𝐵𝐵  1 −
𝑧

𝑊
 

2

+ 𝑉𝑛 + 𝑉𝑎 −
𝑉𝑏𝑏𝛤

3𝑧𝑊2

 𝑧2 + 𝜌2 3/2
 (2.81) 
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𝑉 𝑥, 𝑦, 𝑧 = 𝑉𝐵𝐵  1 −
𝑧

𝑊
 

2

+ 𝑉𝑛 + 𝑉𝑎 −
2𝑉𝑏𝑏𝛺

2𝑊𝑍

𝑥2 + 𝑧2
 (2.82) 

Where 𝑉𝑏𝑏 is the band bending corresponding to a MS junction with a uniform 

(𝑉𝑏𝑏=𝑉𝑏𝑖−𝑉𝑎), W is the depletion width, 𝑉𝑛 is the difference between the Fermi-level (FL) and 

the conduction band maximum (CBM), 𝜌 is the radial coordinate, Γ and Ω are a dimensionless 

quantity that measures the strength of the patch and the strip respectively. 

 

𝛤3 =
∆𝑅0

2

2𝑉𝑏𝑏𝑊
2 =

∆𝑅0
2

4𝜂𝑉𝑏𝑏
2 (2.83) 

𝛺2 =
∆𝐿0

2𝜋𝑉𝑏𝑏𝑊
 (2.84) 

Where 𝝶 =ℇs/qND. 

 In contrary of the previous model, Tung model take in to account the length scale of the 

inhomogeneities by introducing the radius 𝑅0 and the length 𝐿0 of the patch and the strip in the 

potential equation. In addition, it takes in to account the interaction between the small low 

barriers regions by phenomenon called pinch-off. 

A small low barrier region is said to be pinched-off if the carrier need to go over a potential 

of a neighbor region that has a higher potential. For a large Δ, or small 𝑅0, the potential in front 

of the patch is obviously pinched-off.  

Figure (2.13) illustrates the pinch-off effect by plotting the potential close to a low-SBH 

patch as a function of the radius 𝑅0, the patch has a Δ=0.2 (𝑒𝑉) and the uniform barrier of the 

diode ∅𝐵
0 =0.8 (𝑒𝑉), which mean that the barrier of the patch equal to 0.6 (𝑒𝑉) (∅𝐵

0−Δ). 

 When the patch‘s radius has a large value (0.07 um) the potential in close to the patch is 

equal to the barrier of the patch (0.6 eV), when the patch‘s radius be smaller the potential in 

close to the patch reaches a value close to the uniform barrier value (0.8 eV) [20,101]. 
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Figure 2.13. CBM potentials along the z axis in close to a low-SBH patch, illustrating 

the influence of the radius of a low-SBH patch on potential pinch-off [20]. 

 

The condition for pinch-off is obtained from equation (2.81) and equation (2.82) for the 

patch and the strip respectively 

∆

𝑉𝑏𝑏
>

2𝑅0

𝑊
 (2.85) 

∆

𝑉𝑏𝑏
>
𝜋𝐿0

2𝑊
 (2.86) 

Effectively the total current of inhomogeneous diode is given by two formulas depending 

on the density distribution type of the patches as a function of the parameter 𝛾. Where 𝛾 is a 

constant related to the patch characteristics (a true parameter of the MS interface inhomogeneity) 

and is given by: 

𝛾 = 3 
∆𝑅0

2

4
 

1
3

(𝑐𝑚
2
3𝑉

1
3) (2.87) 

The most used expression in the interpretation of experimental results [20] is based on one-

half of a Gaussian distribution. The density of patches with their parameter 𝛾 lying between 𝛾 

and 𝛾+𝑑𝛾 is N(𝛾) 𝑑𝛾: 
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𝑁 𝛾 =  
 2𝐶1

 𝜋𝜍1

𝑒𝑥𝑝  −
𝛾2

2𝜍1
2 ,      𝛾 > 0

0,                                         𝛾 > 0

  (2.88) 

Where 𝜍1 (𝑐𝑚2/3 𝑉2/3) is the standard deviation and 𝐶1 (𝑐𝑚−2) is the total density of 

patches. The strip also has a parameter 𝜔 and N(𝜔) similar to the parameter 𝛾 and N(𝛾) of the 

patch respectively. The total current at any given bias is approximately given by 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐴∗𝐴𝑇2exp⁡ −𝛽∅𝐵0  𝑒𝑥𝑝 𝛽𝑉𝑎 − 1  1 + 𝑓 𝑉𝑏𝑏  𝑒𝑥𝑝  𝛽
2𝑘 𝑉𝑏𝑏

𝜉
   (2.89) 

Where β =
𝑞

𝑘𝑇
 , the constants ξ and k and the slowly varying function f are defined in Table 2.1. 

 

Table 2.1 Parameters for electron transport at an inhomogeneous SB with one-half of a 

Gaussian distribution [20]. 
 

Parameter Patch Si 

ξ 2/3 1/2 

k 
σ1

2

2η2/3
 

σ2
2

2η1/2
 

f β, Vbb   
8c1σ1

2πη1/3

9Vbb
1/3

 
c2πσ2

3/2
 βη1/8Lstrip

1.46Vbb
1/8

 

 
 

The current in equation (2.89) is made up of two components: one being the 

current over the entire diode, which has a uniform SBH of ∅𝐵
0  and represented by 1 in the last 

term of equation (2.89), this current dominates at high temperatures and displays near unity 

ideality factor. The other term represents an additional current due to the presence of the low-

SBH patches or strips, at low temperatures this term becomes much larger than 1, and the low-

SBH patches dominate at small bias and the ideality factor is larger than 1. In addition, the effect 

of patches on the I-V characteristic of the diode can be seen clearly, in the reverse bias the 

current never saturates, while in the forward bias at small values the I-V characteristic shows a 

curvature or double diode behaviour. One can remark that the parameter 𝛾 does not appear in the 

total current equation, but is present indirectly by 𝜍1 which have the same unit. 

The combined effect of all the low-SBH regions is as if there were a big low-SBH region 

in the diode with an effective area (𝐴𝑒𝑓𝑓) and an effective SBH  ∅𝑒𝑓𝑓). Even though the effective 

SBH of each individual patch is roughly temperature independent, but together they may be 

represented by a temperature dependent effective SBH. That is, at each temperature the current 
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flow through some patches with identical 𝛾. 𝐴𝑒𝑓𝑓 𝑎𝑛𝑑 ∅𝑒𝑓𝑓 of the patches are given by the 

following relations [20]. 

∅𝑒𝑓𝑓 = ∅𝐵
0 −

𝜍1
2

2𝑘𝑇
 
𝑉𝑏𝑏
𝜂
 

2/3

 (2.90) 

𝐴𝑒𝑓𝑓 = 𝐴𝐶1𝐴𝑃  (2.91) 

Where AP is the effective area of one patch and is given by: 

𝐴𝑝 =
8𝜋𝜍1

2

9
 
𝜂

𝑉𝑏𝑏
 

1/3

 (2.92) 

From equation (2.90) and equation (2.92) AP can be rewritten as: 

𝐴𝑝 =
8𝜋 2𝑘𝑇 

9
 
𝜂

𝑉𝑏𝑏
  ∅𝐵0 − ∅𝑒𝑓𝑓   (2.93) 

2.4. Examples of SiC schottky diodes applications 

2.4.1. Applications in power electronics 

Power conversion systems are present in everyone‗s day by day life. Hence, the reduction 

of the global energy consumption is strictly related to the development of new energy efficient 

power devices. In this context. SiC is today the most promising material to satisfy such 

challenging request [5]. 

The diode is widely used as a companion of the transistor in almost all the conversion 

systems and the addressed market is huge. As can be seen in the power versus voltage chart 

depicted in figure (2.14), the most common applications in the present market (e.g., in consumer 

electronics, renewable energies, industrial and automotive sectors, etc.) require devices able to 

sustain off-state voltages in the range 650 V — l.7 kV [5,107]. For all of these applications, the 

possible solution based on Silicon rectifiers is the bipolar diode which is characterized by very 

high switching losses. In figure (2.15) a typical reverse recovery waveform of a 4H-SiC SBD is 

compared with different commercial Si bipolar diodes, each with a recovery time determined by 

a different carrier lifetime enhancement technique. Independent of the bipolar Si technology, the 

unipolar 4H-SiC SBD has the minimum recovery loss due to its absence of minority carriers. It is 

the fundamental characteristics of SiC, its high critical electric field. That permits a SiC unipolar 

diode to be rated at the same voltage as the Si bipolar device, without suffering great conduction 

losses [5]. 
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   Figure 2.14. Power versus blocking voltage chart of the most common applications of 

power devices in the range 650-1700 V [5]. 

 

 

Figure 2.15. Reverse recovery waveforms of a 4H-SiC Schottky diode (600 V/8 A) at 

125
0
 Compared with different ultra -fast commercial Si bipolar diodes [5]. 



CHAPTER 2 Metal-Semiconductor Contacts To SiC: Physics And Applications 
 

61 
 

2.4.2. Temperature sensors 

4H-SiC Schottky barrier diodes can be used also as a high-temperature sensor, suitable in 

harsh environments - high shock or intense vibration, high radiation, erosive and corrosive 

conditions. In particular, temperature probes based on 4H-SiC SBD, capable of operating under 

those extreme conditions, can have significant applications in several fields, e.g., automotive and 

aircraft engines, geothermal systems, industrial furnaces, oil and gas detection, etc. [5,107].  

For temperature monitoring sensor applications, the SiC SBDs are forward biased as a 

constant current. The IF-VF; characteristics of the devices exhibit an excellent linearity of the 

ln(IF) versus VF plot over many orders of magnitude, up to high temperatures. Therefore, for low 

current density where RS can be neglected, the voltage dependence on temperature can be 

obtained from Eq.2.60 yielding [8,11]. 

𝑉𝐹 = 𝑅𝑠𝐼𝐹 + 𝑛∅𝐵 +
𝑘𝑇𝑛

𝑞
𝑙𝑛  

𝐼𝐹
𝐴𝐴∗𝑇2

  (2.61) 

The detection sensitivity of the sensor, S, is defined by: 

𝑆 =
𝑑𝑉𝐹
𝑑𝑇

 (2.62) 

Clearly, both ФBo and n should ideally be temperature-independent, in order to ensure a 

stable and reproducible detection sensitivity. Moreover, high SBH metals are preferred to 

operate at high temperatures. 

The advantage of SBD temperature sensors, if compared with other sensors that can be on-

chip integrated, e.g., thermistors, are the compatibility with IC technology, the low 

manufacturing costs, the quasi-linear output characteristic, preserving at the same time a high 

sensitivity. To date, the diodes are realized for applications at temperatures of about 300 °C, i.e., 

oil and gas exploration, nuclear environments and similar [5]. 

2.4.3. UV-detectors 

An important application field of SiC Schottky diodes is the Ultra-Violet (UV) radiation 

detection. The operating principle of this device is the detection of the photocurrent generated in 

the depletion region of a reverse biased SBD under UV-light exposure. 

Traditionally, Silicon photomultipliers have been used for the detection of UV light. 

However, the main problem of using Si for UV-radiation detection lies in its narrow band gap 

(1.12 eV), leading to the need for supplementary filters to eliminate the visible and infrared 

components of the light, which do not need to be detected. In addition, their low quantum 
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efficiency in the UV range, large size, high cost, and high operation voltage limit their practical 

use in several cases. 

4H-SiC due to its large band gap (3.2 eV) means that this material will only respond to the 

radiation with wavelength below approximately 400 nm. The longer wavelengths from the 

visible and infra-red spectrum cannot be absorbed and, hence, the detectors based on SiC are 

insensitive to this portion of the spectrum. This characteristic is extremely advantageous since it 

allows SiC detectors to be used even in the presence of visible and infrared background, as 

occurs in many applications. In addition, owing to the low intrinsic carrier concentration of the 

material, 4H-SiC Schottky diodes have an extremely low leakage current, thus increasing the 

sensitivity of the devices [5]. 

 



 

Chapter 3 

Models and parameters of      

4H-SiC for device simulation 
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3.1. Introduction 

Numerical device modeling and simulation are essential for analyzing and developing 

semiconductor devices. They help a design engineer, not only gain an increased understanding of 

the device operation, but also provide the ability to predict electrical characteristics, behavior, 

and parameter-effects influence of the device. With this knowledge and abilities the designer can 

design a better structure, estimate device performance, perform worst case analysis, and optimize 

device parameters to yield an optimize device performance. 

It is the aim of this chapter to analyze the applicability of 4H-SiC material parameters from 

the literature and to implement them into the two-dimensional ATLAS SILVACO as a way to 

calibrate the simulation process with the real device characteristics. 

3.2. Application of  Device Simulation 

The goal of the device simulation procedure is to use the output of the simulation process 

for predictive analysis of the properties and behavior of the simulated device structure with a 

unique insight into the internal process and structure operation, along with the possibility of 

further optimization and development. Two- and three-dimensional modeling and the simulation 

process contribute to a better understanding of the properties and behavior of the new devices by 

identifying the inevitable parasitic devices attributing to standard malfunction behaviors and 

degraded performances. Based on the interpretation of experimentally obtained data along with 

the result of device simulation, new structures and devices with modified layouts and 

concentration profiles can be designed and verified [108]. 

3.3. SILVACO’S ATLAS DEVICE SIMULATOR 

ATLAS is Silvaco International’s primary TCAD device simulator and has the ability to 

model devices of many different materials and physical characteristics [109]. 

The primary method of interfacing with the ATLAS simulator is using Silvaco’s 

Deckbuild operating environment. Devices can either be completely constructed in Deckbuild 

to be run by ATLAS or they can be built using Silvaco’s ATHENA device  frame work 

simulator. Figure (3.1) shows a flow chart that describes how the different  programs of 

Silvaco’s TCAD suite interact with the ATLAS device simulator. 

ATLAS simulations use two input files. The first input file is a text file that contains 

commands for ATLAS to execute. The second input file is a structure file that defines the 

structure to be simulated. ATLAS produces three types of output files. The first type of output file 
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is the run-time output, which gives the progress and error with warning messages as the 

simulation proceeds. The second type of output file is the log file, which stores all terminal 

voltages and currents from the device analysis. The third type of output file is the solution file, 

which stores 2D and 3D data relating to the values of solution variables within the device at a 

given bias point. The log files and the solution files are visualized using TONYPLOT [109]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. ATLAS inputs and outputs [109]. 

3.3.1. Deckbuild 

Deckbuild is a powerful interactive run-time environment tool that allows user to 

transparently go from process simulation to device simulation to spice model extraction. It is easy 

to use run time environment for core simulators such as ATLAS. Deckbuild helps in creating the 

input files to ATLAS. Multiple windows provide menu-based or text-based input decks for the 

information entered. The deck can be modified any time. Multiple decks are also created if there is 

any information that is being repeated. Multiple simulators can be called from the input deck, and 

transfer of information is transparent to the user. It offers complete control of run, kill, pause, and 

stop-at, restart, and single-step and history initialization operation to back-track a previous point in 

the deck and run it from that instance. Other simulator tools, such as TONYPLOT, DEVEDIT and 

MASKVIEW can also be invoked from Deckbuild. 
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3.3.2. ATHENA 

ATHENA is a physically based process simulator module which predicts the structures that 

result from specified process sequences. This is done by solving systems of equations that 

describe the physics and chemistry of semiconductor processes. It provides a platform for 

simulating diffusion, deposition, etching, ion implantation, oxidation, lithography of 

semiconductor materials. Costly wafer experiments can be replaced with simulations using 

ATHENA. 

3.3.3. Devedit 

Devedit is an interactive tool for defining and altering structures. It uses SILVACO’s 

Master structure file format to communicate with process and device simulators. Analytic 

functions in Devedit are helpful in defining and altering the doping profiles. It is used for 

defining structures and later invoked by Deckbuild to perform ATLAS simulation of the device 

structure. This tool is valuable as a pre- processor for 2D device simulators. A new mode of 

DEVEDIT supports the definition and meshing of 3D structures. 

3.3.4. Tonyplot 

This is the common visualization tool in Silvaco TCAD products. It provides 

comprehensive potential for viewing and analyzing simulator output. The data can be plotted as 

desired by the user either in 1D x-y data, 2D contour data, Smith charts or polar charts. Measured 

data can also be imported and plotted. 

 The overlays feature helps in comparing the multiple simulation runs. It annotates plots to 

create meaningful figures for reports and presentations. It can plot to files, postscript printers, and 

other printer formats in sharp colors. It allows I-V (current-voltage) data or 1D plots to be over-

laid to examine how process conditions affect electrical results. It supports plotting of user 

defined equations with the variables being either electrical data or physical parameters. 

3.4. ATLAS approach in designing the SiC Schottky Diodes 

Silicon Carbide is a compound semiconductor and can be simulated using ATLAS 

simulator. To provide input to ATLAS, there are five groups in each input file which contain the 

information as shown in table 3.1. 

 The order of statements in which  they occur are  important otherwise it would lead to 

incorrect operation of the program [108]. 
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Table. 3.1 ATLAS Command Groups with man statements in each group [108]. 

Group Statement 

Structure Specification 1. MESH 

2. ELECTRODE 

3. REGION 

4. DOPING 

Material Model Specification 1.MATERIAL 

2. MODELS 

3. CONTACT 

4. INTERFACE 

Numerical Method 1. METHOD 

Solution Specification 1. LOG 

2. SOLVE 

3.4.1. Structure Specifications  

Structure specification includes generation of mesh, defining regions and electrodes, and 

doping for the device [109]. 

3.4.1.1.  Mesh Generation 

The first statement in structure declaration is the mesh statement. Mesh statement allows 

the user to specify many structure types, rectangular, circular and cylindrical each of these 

structure types can be defined in 2 or 3 dimension. Here will see how to define a 2D cylindrical 

structure [109]. 

MESH CYLINDRICAL 

This is followed by a series of X.MESH and Y.MESH statements. 

X.MESH LOCATION=<VALUE> SPACING=<VALUE> 

Y.MESH LOCATION=<VALUE> SPACING=<VALUE> 

The X.MESH and Y.MESH statements are used to specify the locations in microns of 

vertical and horizontal lines, respectively, together with the vertical or horizontal spacing 

associated with that line. The X.MESH and Y.MESH statements must be listed in the order of 

increasing x and y. Both negative and positive values of x and y are allowed.  

Atlas sets some limits on the maximum number of grid nodes that can be used. In the 

default version, 2D Atlas simulations have a maximum node limit of 100,000 [109]. In 

cylindrical coordination Atlas operates with x=0 as the axis of symmetry around which the 

cylindrical geometry is placed. The calculated current is in Amps rather than the usual Amps per 

micron. The CYLINDRICAL parameter setting isn’t stored in mesh files. Therefore, this 



CHAPTER 3 Models And Parameters Of 4H-Sic For Device Simulation 

 

67 
 

parameter must be specified each time a mesh file, which contains cylindrical symmetry, is 

loaded 

MESH INF=NAME.STR CYLINDRICAL 

Specifying a good grid is a crucial issue in device simulation but there is a trade-off 

between the requirements of accuracy and numerical efficiency. Accuracy requires a fine grid 

that resolves the structure in solutions. Numerical efficiency is greater when fewer grid points 

are used. The critical areas to resolve are difficult to generalize because they depend on the 

technology and the transport phenomena. For Schottky barrier diode the critical area is in the 

interface between metal and semiconductor. The CPU time required to obtain a solution is 

typically proportional to N
α
, where N is the number of nodes and α varies from 2 to 3 

depending on the complexity of the problem. Thus, the most efficient way is to allocate a fine 

grid only in critical areas and a coarser grid elsewhere. 

The three most important factors to look for in any grid are [109]: 

 Ensure adequate mesh density in high field areas. 

 Avoid abrupt discontinuities in mesh density. 

 Avoid abrupt discontinuities in mesh density. 

 

Figure 3.2. Typical mesh in Atlas 
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3.4.1.2. Region 

After defining the mesh, it is necessary to define the regions. In defining a region, all 

locations of the mesh are divided into numbered areas, where each is associated with a specific 

material from the ATLASTM library. Regions are created with the following statements: 

REGION NUMBER=<INTEGER> MATERIAL= <CHARACTER> <POSITION 

PARAMETERS> 

The position parameters are specified in microns using the X.MIN, X.MAX, Y.MIN, and 

Y.MAX parameters. 

 

 

Figure 3.3. ATLAS region boundaries and region statements 

3.4.1.3. Electrode 

The next structure specification corresponds to electrodes. Typically, in this simulation 

the only electrodes defined are the anode and the cathode. However, Silvaco Atlas has a limit 

of 50 electrodes that can be defined. The format to define electrodes is as follows:  

ELECTRODE NAME=<ELECTRODE NAME> <POSITION_PARAMETERS> 
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BOTTOM and TOP statements specify that the electrode is positioned along the bottom 

or the top of the device, respectively. Otherwise, minimum and maximum position boundaries 

must be specified, using X.MIN, X.MAX, Y.MIN, and Y.MAX statements. From figure (3.4), 

the electrode statements are defined for the anode and the cathode. 

 

Figure 3.4: Electrodes deposition 

3.4.1.4. Doping 

The doping profiles can be specifies either analytically or from an input file. The doping 

statement must contain the distribution type of doping, the doping concentration, the dopant 

type and the position parameters. 

 The position parameters can be defined by x.min, x.max, y.min and y.max or by material 

type or by region number. For example can be specify as flows 

DOPING N.TYPE CONC=1.2E16 UNIFORM MATERIAL=4H-SIC 

 

From figure (3.5), the doping types and the doping levels are defined. Doping can be n-

type or p-type. The distribution type can be uniform or Gaussian. 
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Figure 3.5. ATLAS doping 

3.4.2. Material and model specification 

After the definition of the structure the material parameters, physical model, the contact 

and interface specification must be given in this sequence to Atlas used during the device 

simulation.  

3.4.2.1. Specifying material properties 

All materials are split into three classes: semiconductors, insulators and conductors. Each 

class requires a different set of parameters to be specified. For semiconductors, these properties 

include a lot of parameters such as electron affinity, band gap, density of states, etc. There are 

default parameters for material properties used in device simulation for many materials but is 

better to define the parameters manually. If a material does not exist then it must defined with 

the name of existing material using its own parameters values instead the values of the existing 

material. The syntax of material statement is written as 

MATERIAL <LOCALIZATION> <MATERIAL_DEFINITION> 
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The localization can be defined by region if for example the same material constitutes 

several but with different parameters such as semiconductor with different alloy composition, 

or it can be done with material statement, for example 

MATERIAL MATERIAL=4H-SiC AFFINITY=3.3 

Various other parameters can be defined as the material statement. Examples of these 

parameters are the band gap at room temperature (EG300), electron mobility (MUN), electron 

(TAUN0) and hole (TAUP0) recombination lifetimes, conduction band density at room 

temperature (NC300), among others. 

3.4.2.2. Specifying Physical Models 

Physical models are specified using the MODELS statement except impact ionization 

models which are specified using IMPACT statements. The parameters for these models 

appear on many statements including: MODELS, IMPACT, MOBILITY, and MATERIAL. 

The physical models can be grouped into five classes: mobility, recombination, carrier 

statistics, impact ionization, and tunneling. Some physical model Atlas activate them by default 

such as low filed mobility model and density of states temperature dependence with default 

material parameters, when the material parameters are defined in the MATERIAL statement 

Atlas use these parameters to calculates this physical models. Other physical models are 

activated when their material parameters are defined in the MAERIAL, CONTACT, or 

INTERFACE statements such as image force lowering and thermionic emission current. The 

MODEL statement used in this work is given as: 

MODEL TEMPERATURE=303 SRH AUGER INCOMPLETE BGN ANALYTIC PRINT  

TEMPERATURE: defined the lattice temperature where the parameters and the electrical 

characteristics will be calculated. 

SRH : activates Schokcley-Read-Hall recombination. 

 AUGER: activates Auger recombination. 

INCOMPLET: activates incomplete ionization of impurity. 

BGN: Specifies bandgap narrowing model. 

 ANALYTIC: Specifies an analytic concentration dependent mobility model for silicon which 

includes temperature dependence. 
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PRINT: lists to the run time output the models and parameters, which will be used during the 

simulation. This allows the verification of models and material parameters. 

3.4.2.3. Specifying Contact Characteristics 

An electrode in contact with semiconductor material is assumed by default to be ohmic. 

If a work function is defined in the CONTACT statement, the electrode is treated as a Schottky 

contact. The NAME parameter is used to identify which electrode will have its properties 

modified. The NUMBER parameter is used to define the electrode number in case there is 

several electrodes have the same name. Here will see the CONTACT statement parameters 

used in this work. The WORKFUNCTION parameter sets the workfunction of the electrode. 

For example, the statement: 

CONTACT NAME= anode WORKFUNCTION=4.53 BARRIER 

• WORKFUNCTION: used to define the metal work function that used as Schottky 

contact. 

• BARRIER: Turns on the barrier lowering for Schottky contact. 

3.4.2.4. Specifying Interface Properties 

The INTERFACE statement is used to define the interface charge density, surface 

recombination velocity at interfaces between semiconductors and insulators. The interface 

statement can be written as 

INTERFACE <LOCALIZATION> <PARAMETER> 

3.4.3. Numerical method selection 

ATLAS allows several different methods for calculating the solution for semiconductor 

device problems [108,109]. For each model type there are three types of solution techniques:    

(a) decoupled (GUMMEL), (b) fully coupled (NEWTON) and (c) BLOCK. The GUMMEL 

method will solve for each unknown in turn keeping the other variables constant, repeating the 

process until a stable solution is achieved. The NEWTON method solves the total system of 

unknowns together. The BLOCK methods will solve some equations fully coupled while 

others are decoupled. 

Generally, the GUMMEL method is useful where the system of equations is weakly 

coupled but has only linear convergence. The NEWTON method is useful when the system of 

equations is strongly coupled and has quadratic convergence. The NEWTON method may, 
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however, spend extra time solving for quantities, which are essentially constant or weakly 

coupled. NEWTON also requires a more accurate initial guess to the problem to obtain 

convergence. Thus, a BLOCK method can provide for faster simulations times in these cases 

over NEWTON. GUMMEL can often provide better initial guesses to problems. It can be 

useful to start a solution with a few GUMMEL iterations to generate a better guess. Then, 

switch to NEWTON to complete the solution. Specification of the solution method is carried 

out as follows: 

METHOD NEWTON MAXTRAP=10 

MAXTRAP parameters Specifies the number of times the trap procedure will be repeated 

in case of divergence. The value of MAXTRAPS may range from 1 to 10. 

3.4.4. Solution specification 

Atlas can calculate DC, AC small signal, and transient solutions. Obtaining solutions is 

similar to setting up parametric test equipment for device tests. The user defines the voltages 

on each of the electrodes in the device. Atlas then calculates the current through each electrode. 

Atlas also calculates internal quantities, such as carrier concentrations and electric fields 

throughout the device. This is information that is difficult or impossible to measure. 

 The solution is obtained by specifying the statement SOLVE INIT which gives an initial 

guess for potential and carrier concentrations from the doping profile which help to obtain 

convergence for the equation used. 

The terminal characteristics calculated by Atlas is stored in log file by the next statement: 

LOG OUTFILE=NAME.LOG 

The bias sweep to calculate the DC and AC small signal can be done by the next 

statements respectively 

SOLVE VANODE= 0.0 VSTEP= 0.1 VFINAL= 1.0 NAME= ANODE 

The model used in ATLAS consists of a set of fundamental equations, which link 

together the electrostatic potential and the carrier densities, within some simulation domain. 

These equations, which are solved inside any general purpose device simulator, have been 

derived from Maxwell’s laws and consist of Poisson’s equation, the carrier continuity 

equations and the transport equations.The current density equations, or charge transport 

models, are usually obtained by applying approximations and simplifications to the Boltzmann 

Transport Equation. These assumptions can result in a number of different transport models. 
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The simplest model of charge transport that is useful is the drift–diffusion model. This model is 

adequate for nearly all devices that were technologically feasible [109]. This model is based on 

the two first equations cited above. 

The Poisson's equation which is expressed by:   

                                                          𝜀
𝑑2𝜓

𝑑𝑥2 = −𝜌 𝑥 ,       (3.1) 

Where 𝜓 is the electrostatic potential, 𝜀 is the local permittivity, and 𝜌 is the local space 

charge density. 

The continuity equations are given by: 

                                                          0 =
1

𝑞

𝑑𝐽𝑛

𝑑𝑥
+ 𝐺𝑛 − 𝑅𝑛 , (3.2) 

                                                          0 = −
1

𝑞

𝑑𝐽𝑝

𝑑𝑥
+ 𝐺𝑝 − 𝑅𝑝 , (3.3) 

where 𝑛 and 𝑝 are the electron and hole concentration, 𝐽𝑛      and 𝐽𝑝     are the electron and hole 

current densities, 𝐺𝑛  and 𝐺𝑝  are the generation rates for electrons and holes, 𝑅𝑛  and 𝑅𝑝  are the 

recombination rates for electrons and holes, and 𝑞 is the electron charge. 

The classic drift-diffusion equations for electrons and holes are expressed as: 

                                                         𝐽 𝑛 = −𝑞𝜇𝑛𝑛
d𝜙𝑛

dx
, (3.4) 

                                                         𝐽 𝑝 = −𝑞𝜇𝑝𝑝
d𝜙𝑝

dx
, (3.5) 

Where 𝜇𝑛  and 𝜇𝑝  are the electron and hole mobilities, respectively. The quasi-Fermi levels 

are linked to the carrier concentrations and the potential through the two Boltzmann 

approximations: 

                                                      𝑛 = 𝑛𝑖𝑒𝑥𝑝  
𝜓−𝜙𝑛

𝑘𝐵𝑇
 , (3.6) 

                                                      𝑝 = 𝑛𝑖𝑒𝑥𝑝  −
𝜓−𝜙𝑝

𝑘𝐵𝑇
 ,       (3.7) 

Where  𝑇 is the lattice temperature and  𝑛𝑖   is the effective intrinsic concentration.  

    The set of equations (3.l)-(3.7) can be solved for the primary variables 𝜙𝑛 , 𝜙𝑝  and 𝜓 

satisfied the boundary conditions of the derivative variables Jn, and Jp at the metal-semiconductor 

contact. 
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    The user can enable the thermionic emission model by specifying any of the following 

parameters of the CONTACT statement: SURF.REC or BARRIERL. In this case, the quasi-

Fermi levels, 𝜙𝑛  and 𝜙𝑝 , are no longer equal to Vapplied. Instead, these parameters are defined by 

current boundary conditions at the surface [92]:  

                                                           𝐽𝑛 = 𝑞 𝑛𝑚 − 𝑛0 𝑣𝑅𝑛 , (3.8) 

                                                           𝐽𝑝 = 𝑞 𝑝𝑚 − 𝑛0 𝑣𝑅𝑝 , (3.9) 

Where nm, is the surface electron concentration and pm is the surface hole concentrations. 

The terms, n0 and p0, are the equilibrium electron and hole concentrations assuming infinite 

surface recombination velocity. 𝑣𝑅𝑛  and  𝑣𝑅𝑝  and are the recombination velocities of electrons 

and holes in the semiconductor their values will be calculated using: 

𝑣𝑅𝑛 =
𝐴𝑛
∗ 𝑇2

𝑞𝑁𝑐
, 

𝑣𝑅𝑝 =
𝐴𝑝
∗ 𝑇2

𝑞𝑁𝑣
, 

Here, 𝐴𝑛
∗  and 𝐴𝑝

∗  are the effective Richardson constants for electrons and holes, taking 

account of quantum mechanical reflections and tunneling, NC and NV are the conduction and 

valence band density of states.  

The Schottky thermionic emission model also accounts for field-dependent barrier 

lowering mechanisms. These mechanisms are caused by image forces and possible static dipole 

layers at the metal-semiconductor interface [56].With barrier lowering; the amount of energy by 

which barrier heights are lowered is defined by: 

                                      ∆∅ =   
𝑞𝐸𝑚

4𝜋𝜀𝑠
 ,                                   

Here, Em is the magnitude of the electric field at the interface and 𝜀𝑠 the semiconductor 

permittivity. 

3.4.5. Results Analysis 

3.4.5.1. Tony plot 

TonyPlot is a graphical post processing tool for use with all Silvaco simulators and is an 

integral part of the VWF Interactive Tools. Tony Plot can operate stand-alone or along with 

other VWF Interactive Tools, such as DECKBUILD, VWF, or SPDB. 

To plot a log file or several log file with tony plot the statement are respectively  
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TONYPLOT file1.LOG 

TONYPLOT - OVERLAY file1.LOG file2.LOG 

3.4.5.2. Extract 

The EXTRACT command provides within the DeckBuild environment allows extracting 

device parameters. EXTRACT operates on the previous solved curve or structure file. By 

default, EXTRACT uses the currently open log file. To override this default, supply the name 

of a file to be used by EXTRACT before the extraction routine. For example: 

EXTRACT INIT INFILE="NAME.LOG" 

3.5. Calibration of device simulator 

To calibrate a device simulator (ATLAS), the experimental I-V characteristics of the 

device obtained are set to best match the output of the DECKBUILD ATLAS program based 

on the same device dimension and structure. In order to obtain a match between the electrical 

characteristics of a real fabricated device and that with a simulated one, different advanced 

mobility models taking care of different scattering along with different doping profiles and 

different carrier transport models are analyzed iteratively, as shown in figure (3.6) [108]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Method for calibration [108]. 
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3.6. 4H-SiC  physical models and parameters 

The choice of appropriate physical models is fundamental for any comparative study that 

involves numerical simulation. In order to fit the experimental curves, we carefully taken into 

account fundamental 4H-SiC physical models such as the Shockley–Read–Hall (SRH) and 

Auger recombination processes, the band-gap temperature dependence and apparent band-gap 

narrowing (BGN), the concentration and temperature dependent carrier mobility, the incomplete 

ionization of dopants, and the Schottky thermionic emission model involving the field-dependent 

barrier lowering effect. 

The temperature dependence of the 4H-SiC band-gap is assumed in the form of [110]: 

𝐸𝑔 𝑇 = 𝐸𝑔0 − 𝛼(𝑇 − 300)                                     (3.13) 

where α= 3.3 x 10
-4

 eV/K is a specific material parameters, and Eg0= 3.26 eVis the band-

gap energy at  300K. 

An apparent band-gap narrowing effect as a function of the activated doping in the n-type 

and p-type regions, i.e. ∆Egn and ∆Egp, respectively, is accounted for according to the Lindefelt’s 

model of the band edge displacements [111]: 

∆𝐸𝑔𝑛 ,𝑝 = 𝐴𝑛,𝑝(
𝑁𝐷,𝐴

+ −

1018
)

1
2 + 𝐵𝑛,𝑝(

𝑁𝐷,𝐴
+ −

1018
)

1
3 + 𝐶𝑛,𝑝(

𝑁𝐷,𝐴
+ −

1018
)

1
4                     (3.14) 

where An,p, Bn,p and Cn,p, are appropriate 4H-SiC constants listed in Table 3.3 [112]. 

Table 3.2 Apparent band-gap narrowing parameters 

 n p 

A 1.17×10
-2

 1.54×10
-3

 

B 1.50×10
-2

 1.30×10
-2

 

C 1.90×10
-2 

1.57×10
-2 

For the doping and temperature dependent low-field carrier mobility, the Caughey and 

Thomas mobility model is used [113]. 

𝜇𝑛,𝑝 = 𝜇0𝑛.𝑝
𝑚𝑖𝑛 (

𝑇

300
)𝛼𝑛𝑝 +

𝜇0𝑛 .𝑝
𝑚𝑎𝑥 (

𝑇

300
)𝛽𝑛 .𝑝−𝜇0𝑛  𝑝

𝑚𝑖𝑛 (
𝑇

300
)𝛼𝑛 .𝑝

1+ 
𝑇

300
 
𝛾𝑛 .𝑝

(
𝑁

𝑁𝑛 .𝑝
𝑐𝑟𝑖𝑡 )𝛿𝑛 .𝑝

                     (3.15) 
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Where N is the local concentration of the ionized impurities. The model parameters𝜇0
𝑚𝑖𝑛 , 

𝜇0
𝑚𝑎𝑥 , 𝑁𝑐𝑟𝑖𝑡 , 𝛼, 𝛽, 𝛾 and 𝛿, are taken from [110,113] and summarized in Table 3.4. 

Table 3.3 4H-SiC carrier mobility parameters 

 n p 

𝝁𝟎
𝒎𝒊𝒏(cm²/Vs) 40 15.9 

𝝁𝟎
𝒎𝒂𝒙(cm²/Vs) 950 125 

𝑵𝒄𝒓𝒊𝒕 (𝐜𝐦−𝟑) 2×10
17 

1.76×10
19 

𝜶 0.50 0.50 

𝜷 2.40 2.15 

𝜸 0.76 0.34 

𝜹 0.76 0.34 

 

Assuming the Fermi-Dirac statistics, the incomplete ionization of impurities can be 

expressed by means of [112, 114] 

𝑁𝐴,𝐷
−+ = 𝑁𝐴,𝐷

 

 
 
−1+ 1+4𝑔𝑉,𝐶

𝑁𝐴,𝐷

𝑁
𝑉,𝐶
(𝑇) 𝑒

∆𝐸𝐴,𝐷
𝑘𝑇

2𝑔𝑉,𝐶
𝑁𝐴,𝐷

𝑁
𝑉,𝐶
(𝑇) 𝑒

∆𝐸𝐴,𝐷
𝑘𝑇

 

 
 

                                        (3.16) 

where, ND and NA are the n-type and p-type doping concentrations, ∆ED and ∆EA are the 

donor and acceptor energy levels,  and gC = 2 and gV = 4 are the appropriate degeneracy factors 

of the conduction and valence band, respectively. NC and NV  are the electron and hole density of 

states varying with temperature as given by [37]: 

𝑁𝐶,𝑉 𝑇 = 𝑁𝐶,𝑉 300  
𝑇

300
 

3
2 
                                   (3.17) 

Here ,NC300= 1.66×10
19

 cm
-3

 and NV 300= 3.29×10
19

 cm
-3

are the electron and hole density of 

states at  room temperature. 

The Auger and SRH recombination rates are modeled using the standard expressions 

[115]: 

𝑅𝐴𝑢𝑔𝑒𝑟 =  𝐶𝑛𝑛 + 𝐶𝑝𝑝  𝑛𝑝 − 𝑛𝑖
2                                       (3.18) 
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𝑅𝑆𝑅𝐻 =
𝑛𝑝−𝑛𝑖

2

𝜏𝑛 𝑝+𝑛𝑖𝑒𝑥𝑝  −
𝐸𝑡𝑟𝑎𝑝

𝑘𝑇
  +𝜏𝑝 𝑛+𝑛𝑖𝑒𝑥𝑝  

𝐸𝑡𝑟𝑎𝑝

𝑘𝑇
  

                             (3.19) 

where Cn=5×10
-31

 cm
6
s

-1
 and Cp=2×10

-31
 cm

6
s

-1
 are the Auger coefficients [116], Etrap is 

the difference between the trap energy level and the intrinsic Fermi level, and τn and τp are the 

carrier lifetimes modeled through the semi-empirical formula proposed in [117] considering a 

temperature dependence described by a power law [118]: 

𝜏𝑛,𝑝 =
𝜏0𝑛 ,𝑝 

𝑇

300
 
𝜃𝑛 ,𝑝

1+ 
𝑁

𝑁𝑛,𝑝
𝑆𝑅𝐻  

                                                     (3.20) 

Here, N is the local doping concentration,τ0n = 500 ns and τ0p = 100 ns are process-

dependent parameters, and Nn,p
SRH 

= 5 × 10
16

 cm
-3

 is a reference constant [119]. 

Finally,the barrier height (∅𝐵)is modelled with the standard expression [109] 

∅𝐵 = (θ
𝑀
− χ

𝑠
)                               (3.21) 

where the metal work functionθ𝑀was fixed to 4.33 eV, 4.53 eV and 4..55eV for Al/Ti, Mo 

and W respectively [26-28],and the electron affinityχ
𝑠

was used as fitting parameter as in 

[120,121]. 

 It must be noted that the assumed simulation setup has also been used in other recent 

manuscripts addressed to the study of SiC-based devices [122-125] and it is supported by 

experimental results on both Schottky and p-i-n diodes [1,10,126]. 



 

Chapter 4:  

Results and discussion 
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4.1. Introduction 

Starting from the experimental results on Ti/Al 4H–SiC, Mo/4H–SiC and W/4H–SiC 

Schottky barrier diodes (SBDs) reported in recent literatures [26-28]. In this chapter, the forward 

I-V characteristics of these devices are investigated by means of a combined numerical and 

analytical simulation study in wide temperatures range in order to explain the abnormal behavior 

observed in the experimental I–V characteristics and evaluate the suitability of these devices as 

temperature sensors. The temperature dependencies of the current transport parameters are 

explained based on the assumption of the existence of Gaussian distribution (GD) of the 

Schottky barrier around the Metal/ 4H–SiC interface. Finally, the performance of temperature 

sensors based on Ti/Al 4H–SiC, Mo/4H–SiC and W/4H–SiC Schottky diodes are investigated. In 

particular, sensitivity, linearity and root mean square error (RMSE) are accurately analyzed in a 

wide temperatures range. 

4.2. Simulation and analysis of the current–voltage–temperature (I-V-T) 

characteristics of Ti/Al 4H-SiC Schottky diode for high performance 

temperature sensor 

In this section, simulation and measurements of the current–voltage–temperature 

characteristics of Ti/Al 4H–SiC diode are compared. Since the analysis of the diode is focused 

on the performance as temperature sensor, only the forward curves are modeled through ATLAS 

Silvaco numerical simulator. 

In order to fit the experimental curves, we carefully taken into account fundamental 

physical models such as the Shockley–Read–Hall (SRH) and Auger recombination processes, the 

band-gap temperature dependence and apparent band-gap narrowing (BGN), the concentration 

and temperature dependent carrier mobility, the incomplete ionization of dopants, and the 

Schottky thermionic emission model involving the field-dependent barrier lowering effect. The 

4H-SiC physical parameters are set as in chapter 3.  

The forward I–V-T characteristics for Schottky diodes are usually used in order to identify 

the different conduction mechanisms in current transport. At first, we consider a pure thermionic 

emission (TE) theory in our simulation that we will later modify to account for the T0 effect. 

4.2.1. Device structure 

A schematic cross sectional view of the 4H-SiC Schottky diodes considered in this work is 

shown in figure (4.1) (plot not in scale).  
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Figure. 4.1. Ti/Al 4H-SiC Schottky barrier diode schematic cross section. 

The experimental devices were fabricated and provided by the CNR-Institute for 

Microelectronics and Microsystems (IMM), unit of Bologna (Italy). They are based on a 

commercial available <0001> 7°62‟ off-axis n/n
+
4H-SiC epitaxial wafer with a resistivity of 

0.021 Ω·cm. The epi-layer is 16.5 μm-thick and has a net doping density of 3×10
15

 cm
-3

.  

The fabrication processes involve standard technological steps ensuring good 

reproducibility of the samples. Photolithography and wet chemical etching were used to define 

the Ti/Al Schottky contact with an area of about 2.25×10
4
 µm

2
. Finally, a 200 nm-thick nickel 

(Ni) film was deposited on the n
+
 back surface of the wafer to form the cathode contact, and an 

annealing treatment was performed in vacuum at 1000 °C for 2 min.  

A Micromanipulator probe station and a HP4156B parameter analyzer were used to obtain 

the I-V characteristics of the diodes. Further details about the diode fabrication process are 

provided in [26] and references therein. 

4.2.2. Study of the I-V characteristics of Ti/Al 4H-SiC Schottky diode 

using numerical simulation analysis  

The measured and simulated forward I-V-T curves of the considered Ti/Al 4H-SiC SBDs 

obtained by using Atals-Silvaco for ten different temperatures from 85 K to 445 K are shown in 

figure (4.2). 
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Figure.4.2.Experimental (dashed lines) and simulated (solid lines) current–voltage 

characteristics of the Al/Ti/4H–SiC Schottky diode at different temperatures. 

As shown in figure (4.2), the simulated characteristics obtained by considering a pure 

thermionic emission (TE) theory with homogeneous Schootky barrier height do not fit the 

experimental ones. The simulated current is found to be greater than the experimental current by 

several orders of magnitude in temperature range of 85-445 K. Thus, for the same forward 

current, the Schottky diode will have about 0.4V less voltage drop than the experimental results.  

As evident from figure (4.2), the interesting observation is that the experimental ln(I)–V  

curves  intersect, unlike the curves generated by using Atlas Silvaco. The intersecting behaviour 

of current–voltage characteristics of Schottky diodes have been investigated by Subhash Chand 

[127]. The results showed that the crossing of ln(I)–V curves is an inherent property even of 

homogeneous Schottky diodes of constant BH and is normally hidden due to saturation in 

current caused by series resistance. While the intersection of the ln (I) -V curves is observable in 

the normal range due to the apparent temperature-dependent BH in inhomogeneous Schottky 

diodes.  

A correspondence between the results obtained by Subhash [127] and those shown in 

figure (4.3) can be observed when we increase the current bias value above 10 uA. 
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Figure.4.3.Experimental (dashed lines) and simulated (solid lines) current–voltage 

characteristics of the Al/Ti/4H–SiC Schottky diode at different temperatures. 
 

By assuming the TE theory in the current range for each temperature, the current-voltage 

conduction model can be considered in the form of  [84, 128] 

𝐼 = 𝐼0  𝑒𝑥𝑝  
𝑞𝑉 − 𝑅𝑠𝐼

𝑛𝑘𝑇
 − 1  (4.1) 

where, 𝑛 is the ideality factor, 𝑉 is the diode bias voltage, Rs is the series resistance,  q is the 

electronic charge , 𝑘 is the Boltzmann constant, and 𝐼0  is saturation current given by: 

𝐼0 = 𝐴𝐴∗𝑇2𝑒𝑥𝑝  −
𝑞∅𝐵

𝑘𝑇
  (4.2) 

 

where ∅𝐵  is the zero-bias barrier height, A is the area of the diode, and 𝐴∗ is the Richardson 

constant that takes into account the quantum mechanical reflections and tunneling phenomena. 

Its value is theoretically in the order of A* =146 Acm
−2

K
−2

for n-type 4H-SiC [129].  

Hence, when forward-biased, the diode voltage drop can be written as follows: 

𝑉 = 𝑅𝑠𝐼 + 𝑛∅𝐵 +
𝑘𝑇𝑛

𝑞
𝑙𝑛  

𝐼

𝐴𝐴∗𝑇2
  (4.3) 

From the experimental and simulated I–V-T curves in figure (4.2) we extracted the 

fundamental diode parameters 𝐼0 ,∅𝐵, 𝑛 and Rs similarly to[130].  
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 In particular, at each temperature, the saturation current 𝐼0  was determined from the 

intercept of the plot 𝑙𝑛(𝐼) vs 𝑉 for 𝑉 = 0 . Afterwards, the barrier height ∅𝐵 was calculated from 

equation (4.2) resulting ∅𝐵 =  𝑘𝑇 𝑞  𝑙𝑛 𝐴𝐴∗𝑇2 𝐼0  . 

The obtained values of the SBH, the ideality factor, the saturation current and the series 

resistance as a function of temperature are shown in Table (4.1).  

Table 4.1: The simulated and experimental parameters obtained from I–V characteristics. 

T (K) 

Simulated parameters Experimental parameters 

∅𝐵  (𝑒𝑉) n I0(A) Rs(Ω) ∅𝐵  (𝑒𝑉) n I0(A) Rs(Ω) 

445 1,024 1,0791 1,45x10
-08

 36,23 1,312 1,445 7,56 x10
-12

 57,12 

400 1,0176 1,0741 9,15 x10
-10

 30,43 1,273 1,463 5,62 x10
-13

 46,94 

360 1,0121 1,0695 3,45 x10
-11

 25,24 1,230 1,473 3,13 x10
-14

 39,09 

315 1,009 1,061 3,64 x10
-13

 20,11 1,189 1,484 5,08 x10
-16

 30,08 

270 1,0085 1,0502 5,45 x10
-16

 15,22 1,080 1,639 2,53 x10
-17

 20,72 

225 1,0151 1,0319 4,02 x10
-20

 10,93 0,983 1,782 2,04 x10
-19

 15,06 

180 1,0208 1,018 1,45 x10
-26

 7,184 0,822 2,142 5,90 x10
-21

 11,25 

135 1,0221 1,0144 3,86 x10
-36

 6,631 0,655 2,699 1,95 x10
-22

 10,98 

105 1,0237 1,0124 1,15 x10
-47

 6,056 0,525 3,371 1,44 x10
-23

 10,86 

85 1,0283 1,0048 3,81 x10
-59

 5,035 0,407 4,394 2,28 x10
-22

 10,37 

As we can see, 𝑛 and ∅B extracted from simulated I-V characteristics do not show 

temperature dependence behavior, the saturation current values are found to be less than the 

experimental current by several orders of magnitude in temperature range of 85–180 K.  

The increase of experimental saturation current values Compared to simulated ones could 

be related either to a decrease of the Schottky barrier or to the presence of deep levels in the band 

gap. However, it has been already reported that no deep level has been evidenced by deep-level 

transient spectroscopy (DLTS) measurements in the diode annealed at high-temperature [129, 

131]. Thus, the significant changes occurring in the forward characteristics after high-

temperature annealing (1000 °C in our case) can be associated to a modification of the Schottky 

barrier. In this case, other phenomena should be considered to fit the experimental curves. 
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4.2.3. Study of the I-V characteristics of Ti/Al 4H-SiC Schottky diode by 

means of a combined numerical and analytical simulation 

In order to precisely fit the experimental I-V characteristics of Schottky diodes, where a 

variation of n with temperature is observed, Padovani and Sumner [15] have suggested replacing 

T by (T0+n0T) in the thermionic-emission model. Therefore, equation (4.1) becomes: 

𝐼 = 𝐼0  𝑒𝑥𝑝  
𝑞𝑉 − 𝑅𝑠𝐼

𝑘 𝑛0𝑇 + 𝑇0 
 − 1  (4.4) 

Where n0 and T0 are constants, T0 is independent of temperature and voltage over a wide 

range of temperatures. This is equivalent to writing n=n0+(T0/T). 

When thermionic-field emission (TFE) and field emission (FE) are assumed to be the 

dominant mechanisms in the I-V behavior of the Schottky barrier diode, then in this case T0 is 

not constant with respect to temperature. It increases at lower temperatures [100]. All the 

mechanisms which have been invoked to explain the form of the I-V characteristic (i.e.  n values 

greater than unity) also affect the zero-bias barrier height [84]. 

when forward-biased, equation (4.3) can be written as follows: 

𝑉 = 𝑅𝑠𝐼 + 𝑛0∅𝐵 +
𝑘𝑇𝑛0

𝑞
𝑙𝑛  

𝐼

𝐴𝐴∗𝑇2
 + ∅𝐵

𝑇0

𝑇
+
𝑘𝑇0

𝑞
𝑙𝑛  

𝐼

𝐴𝐴∗𝑇2
 = 𝑉1 + 𝑉2 (4.5) 

With          

𝑉1 = 𝑅𝑠𝐼 + 𝑛0∅𝐵 +
𝑘𝑇𝑛0

𝑞
𝑙𝑛  

𝐼

𝐴𝐴∗𝑇2
  (4.6) 

𝑉2 = ∅𝐵

𝑇0

𝑇
+
𝑘𝑇0

𝑞
𝑙𝑛  

𝐼

𝐴𝐴∗𝑇2
  

(4.7) 

To simulate experimental results, we use Atlas-Silvaco to get the term V1 of equation (4.5), 

after calibrating the barrier height as such mentioned in [120] and [121]. Then, we vary the value 

of T0 until good agreement was reached between the two sets of data as shown in figure (4.4).  

A shunt resistance of Rsh =1.3x10
5
Ω was also added to account for the side-wall leakage 

and other leakage paths and to reproduce the low voltage. 
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Figure.4.4.Experimental (dotted lines) and simulated (solid lines) current–voltage      

  characteristics of the Al/Ti/4H–SiC Schottky diode at 445K. 

The measured and simulated forward I-V-T curves of the considered Ti/Al 4H-SiC SBDs 

for ten different temperatures from 85 K to 445 K are shown in figure (4.5). The diodes were 

current biased in the range 10 µA ≤ I ≤ 10 mA with a current resolution of 10 nA. It is worth 

noting that the results obtained by means of a combined numerical and analytical simulation are 

in good agreement with the experimental data.  
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Figure.4.5.Experimental (dashed lines) and simulated (solid lines) current–voltage      

           characteristics of the Al/Ti/4H–SiC Schottky diode at different temperatures. 
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The values of the zero-bias barrier height ∅B and the ideality factor 𝑛 of the diode at de 

different temperatures are calculated from the I–V characteristics of figure (4.5) and given in 

figure (4.6) and table (4.2). 
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Figure. 4.6. Ideality factor and barrier height behaviors  

as a function of temperature for the device in Figure.4. 2. 

 

Table 4.2: Summary of the temperature dependent values of the Schottky barrier height (∅𝐵), 

ideality factor (n), series resistance (Rs) and reverse current (I0) obtained from the Simulated  I-V 

characteristics. 

T (K) 
Simulated parameters 

∅𝐵  (𝑒𝑉) n I0(A) Rs(Ω) 

445 1,3054 1,4827 9,13 x10
-12

 55,39 

400 1,2552 1,5038 9,58 x10
-13

 46,14 

360 1,2106 1,5184 5,94 x10
-14

 37,81 

315 1,1684 1,5301 1,10 x10
-15

 28,91 

270 1,0624 1,6821 5,48 x10
-17

 20,6 

225 0,9662 1,8236 4,95 x10
-19

 15,55 

180 0,8091 2,1871 1,40 x10
-20

 11,47 

135 0,6518 2,7187 2,65 x10
-22

 9,748 

105 0,5334 3,3063 5,81 x10
-24

 11,07 

85 0,421 4,2449 3,48 x10
-23

 12,83 
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As can be seen in figure (4.6), both parameters exhibit strong temperature dependence; that 

is, the ideality factor decreases while the barrier height increases with increasing temperature. 

As shown in figure (4.5), the forward bias I-V characteristics are linear on a semi-

logarithmic at low forward bias voltages, but deviate from linearity due to the effect of series 

resistance Rs. Figure (4.7) shows the plot of series resistance values obtained against 

temperature. The series resistance increase with increasing temperature as could be expected for 

semiconductors in the temperature region where there is no carrier freezing out, which is non-

negligible only below ~100 K [56]. Similar temperature dependence was obtained theoretically 

by Osvald and Horvath [132] and experimentally for the epitaxial-layer of a Ti/4H-SiC, Mo/4H-

SiC and W/4H-SiC diodes [26-28]. 
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Figure.4.7. The temperature dependence of the series resistance. 

By considering equation (4.2) in the form of 𝑙𝑛 𝐼0 𝑇2  = 𝑙𝑛 𝐴𝐴∗ − (𝑞 𝑘𝑇 )∅𝐵 , the 

Arrhenius plot of term ln(I0/T
2
)against 1000/T is shown in figure (4.8). 

The Arrhenius plot shows a significant deviation of the term ln(I0/T
2
) from linearity at low 

temperatures and the data fit asymptotically to a straight line only at higher temperatures (T> 270 

K). From the slope of this straight line, an activation energy of 0.82 eV was obtained. At the 

same time, from the line intercept with the ordinate axis, the Richardson constant A* is 4.64×10
-4

 

Acm
-2

K
-2

, namely a much lower value than the theoretical one expected for n-type 4H-SiC. 
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Figure.4. 8.Arrhenius plot of 𝑙𝑛 𝐼0 𝑇2  vs.1000/𝑇. 

The strong temperature-dependence of the barrier height and ideality factor can be 

attributed to several reasons. The most common explanation is the deviation from the pure TE 

theory due to the contribution of other current mechanisms, mainly thermionic field emission 

(TFE), and field emission (tunnelling, FE) through the barrier, and also recombination current in 

the depletion region [18, 133]. Barrier lowering due to image force effects can also contribute to 

the abnormal reduction in barrier height with temperature. Another possible explanation of the 

temperature-dependent barrier height and ideality factor is attributed to the theory of barrier 

inhomogeneity, which assumes a formation of a laterally nonuniform Schottky contact with 

different barrier heights of Gaussian distribution (GD) [19, 20,134].  

In the next sections, the temperature dependency effect of ∅B  and n of the Ti/Al 4H-SiC 

based Schottky diodes will be discussed taking into consideration different possible 

explanations. 

4.2.4. The image force effect 

In order to understand the factors influencing the barrier height (BH) lowering and the 

ideality factor increase with decreasing temperature, the image-force effect was considered at 

first. In particular, the BH lowering due to the image-force mechanism was modeled in the form 

of [84]. 
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∆∅ =   
𝑞3𝑁𝐷

8𝜋2𝜀𝑠
3  ∅𝐵 − 𝑉 − 𝜁 −

𝑘𝑇

𝑞
  

1/4

 (4.8) 

where V is the applied bias voltage, ℰs=9.66ℰ0 is the material permittivity, ND is the ionized 

impurity concentration, and ζ= (kT/q)ln(Nc/ND). The value of ND varies from 4.85x10
15

 cm
-3

 at 

85K to 3x10
15

 cm
-3

 at 445K, respectively. 

The calculated ∆∅ varies from 7.332 meV to 17.059 meV in the 85 – 445 K temperature 

range for the barrier height ∅B  ranging from 0.421 eV to 1.305 eV as in figure (4.6). These 

results point out that the influence of the barrier lowering due to the image-force on ∅B is nearly 

constant and the image-force effect alone cannot determine the observed device characteristics. 

At the same time, the diode ideality factor can be calculated by using the following 

expression [84]: 

1

𝑛
= 1 −

1

4
 
𝑞3𝑁𝐷

8𝜋2𝜀𝑠
3 

1
4

 ∅𝐵 − 𝑉 − 𝜁 −
𝑘𝑇

𝑞
 
−

3
4
 (4.9) 

It varies from 1.006 to 1.012 showing a negligible effect of the image-force lowering on 

the device forward current behavior. In addition, the n value is very close to 1 predicting an 

almost unrealistic homogeneous barrier at the diode interface. 

4.2.5. Flat-band barrier height and modified Richardson plots 

The barrier height, which decreases with decreasing temperature, obtained from equation 

(4.2) is called apparent or zero –bias barrier height. The barrier height obtained under flat-band 

condition is called flat-band barrier height and considered to be real fundamental quantity. 

Unlike the case of zero-bias barrier height, the electric field in the semiconductor is zero under 

the flat-band condition [135-138].  

∅𝐵   is the zero-bias barrier height 

Nc is the effective density of states in the conduction band  

 ND  the ionized donor density of the 4H-SiC.  

 

 

 

 



CHAPTER 4 Results and discussion 

 

91 
 

 

To find the value of  ∅𝐵𝑓 , the following expression is used [139] 

∅𝐵𝑓 = 𝑛∅𝐵 −  𝑛 − 1  
𝑘𝑇

𝑞
 𝑙𝑛  

𝑁𝑐

𝑁𝐷
  (4.10) 

Where Nc is the effective density of states in the conduction band and ND (=4.85x10
15

 cm
-3

 

and 3x10
15

 cm
-3

 for T = 85 K and 445 K, respectively) the ionized donor density of the 4H-SiC.  

Figure (4.9) shows the variation of ∅𝐵𝑓  as a function of temperature. It can be seen that the 

flat-band BH is larger than the zero-bias BH at low temperature. The flat-band BH of the Ti/Al 

4H-SiC Schottky contacts is calculated from the zero-bias BHs and the corresponding ideality 

factor at various temperatures. The temperature dependence of the flat-band BH can be described 

by 

∅𝐵𝑓 𝑇 = ∅𝐵𝑓 𝑇 = 0 + 𝛼𝑇 
(4.11) 

where ∅𝐵𝑓 𝑇 = 0  is the flat band barrier height extrapolated to T = 0 K and α is its 

temperature coefficient.   

The value of Nc as function of temperature can calculate by 2(2πm
*
kT/

2
)
3/2

 with m
* 

being 

the majority carrier effective mass, m
*
=0.02 me for 4H-SiC [129]. 

The effective density of states Nc will change with temperature according to the relation  

𝑁𝐶 𝑇 = 𝑁𝐶 300  
𝑇

300
 

3
2 

 (4.12) 

Here, NC 300= 1.66×10
19

 cm
-3

 is the electron density of states at room temperature. 

The value of Nc varies from 2.52x10
18

 cm
-3

 at 85K to 2.98x10
19

 cm
-3

 at 445K, 

respectively. 
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Figure.4. 9. Temperature dependence of the zero-bias BH ∅𝐵 and flat-band BH ∅𝐵𝑓  

for the Al/Ti/4H–SiC Schottky barrier diode in the temperature range of 85–445 K. 

 

In figure (4.9), the fitting of ∅𝐵𝑓 𝑇  data in equation (4.11) provides ∅𝐵𝑓 T = 0 = 1.54 eV 

and α=4.54 x 10 
– 4

 eV K 
– 1

, which is probably due to extremely high values of the ideality 

factor, due to its increase with decreasing temperature. In contrast, in the case of zero-bias BHs, 

the electric field in the semiconductor is zero under the flat-band condition and thus the energy 

bands are flat, which eliminates the effect of tunneling and image force lowering that would 

affect the I-V characteristics and removes the influence of lateral inhomogeneity [135-138]. 

Flat-band saturation current density I0f can be written similar to the equation (4.2) as [136] 

𝐼0f = 𝐴𝐴∗𝑇2𝑒𝑥𝑝  −
𝑞∅𝐵𝑓

𝑛𝑘𝑇
  (4.13) 

So, the relation between I0f  and zero-bias saturation current density I0 is given by 

𝐼0𝑓 = 𝐼0𝑒𝑥𝑝   
𝑛−1

𝑛
 𝑙𝑛  

𝑁𝑐

𝑁𝐷
    (4.14) 

When considering the ideality factor varies with temperature, the plot of ln(J0f/T
2
) versus 

1000/nT according to equation (4.13) should be a straight line with the slope and the intercept at 

the ordinate, directly yielding ∅𝐵𝑓  and A*, respectively. The ln(J0f/T
2
) versus 1000/ nT plot is 

also shown in the figure (4.10). The linear portion of this plot gives 0.142 eV and 0.343 A cm
-

2
K

-2 
for ∅𝐵𝑓 =  𝑇 = 0 . These results show that the value of the Richardson constant is different 
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from the known theoretical value of 146 AK
-2

cm
-2

 for electrons in the n-type 4H-SiC [129]. The 

presented results seem to predict current transport mechanisms not following the pure TE theory 

and the existence of barrier inhomogeneities need to be evaluated. 
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Figure.4. 10. Richardson plots of ln(I0f /T
2
) vs. 1000/nT  

and their linear fits for the Al/Ti/4H–SiC Schottky diode. 

4.2.6. Inhomogeneous barrier analysis 

The ideality factor is simply a manifestation of the barrier uniformity [136]. A significant 

increase in the ideality factor and decrease in the SBH at low temperature are possibly originated 

by structural defects in the semiconductor, inhomogeneous doping, interface roughness, 

interfacial reactions, diffusion/interdiffusion of the contaminations of applied materials on 

semiconductor surface, inhomogeneities of thickness and composition of the layer, and non-

uniformity of interfacial charges or the presence of a thin insulating layer between the metal and 

the semiconductor [19,134,136]. Since current transport across the MS interface is a 

temperature-activated process, the current will be controlled by the current through the patches 

having low BH at the low temperatures. 

In this section, the ∅B  and n anomalous behaviors reported above are explained by 

assuming spatially inhomogeneous barrier heights and potential fluctuations at the Schottky 

interface that consist of low and high barrier areas as suggested by Werner and Guttler in [19]. 

More in detail, the spatial barrier inhomogeneities in SBDs are described by assuming a 

Gaussian distribution A(∅𝐵) of the SBH with a standard deviation (σ) around a mean value (∅𝐵
    ): 
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𝐴 ∅𝐵 =
1

σ 2𝜋
𝑒
−
 ∅𝐵−∅𝐵     

2

2σ2  (4.15) 

The pre-exponential term is a normalization constant. The total forward current across the 

Schottky barrier diode is given by: 

𝐼 =  𝑖 𝑉, ∅𝐵 𝐴 ∅𝐵 𝑑∅𝐵  (4.16) 

where 𝑖 V, ∅B  is the current based on the TE model (Equation4.1). It is assumed that ∅ B  

and σ are linearly bias-dependent on Gaussian parameters as follows: 

∅B
    = ∅B0

     + ρ
2

V (4.17) 

σ2 = σ0
2  + ρ

3
V (4.18) 

where ∅ 𝐵0 and 𝜍0are the zero-bias reference parameters, and ρ2 and ρ3 are temperature-

independent voltage coefficients which model the voltage deformation of the barrier distribution. 

By introducing 𝑖 V, ∅B  and A(∅𝐵) from (4.1) and (4.15) into (4.16), and performing the 

integration we can write: 

𝐼 = 𝐼0  𝑒𝑥𝑝  
𝑞𝑉 − 𝑅𝑠𝐼

𝑛𝑎𝑝𝑘𝑇
 − 1  (4.19) 

𝐼0 = 𝐴𝐴∗𝑇2𝑒𝑥𝑝  −
𝑞∅𝐵𝑎𝑝

𝑘𝑇
  

(4.20) 

where ∅𝐵ap and nap are the apparent SBH and ideality factor, respectively, in the form of 

∅𝐵𝑎𝑝 =∅ 𝐵0 −
𝑞𝜍0

2

2𝑘𝑇
  (4.21) 

1

𝑛𝑎𝑝
− 1 = −𝜌2 +

𝑞𝜌3

2𝑘𝑇
  

(4.22) 

However, unlike single-Gaussian distribution model, it is supposed that the barrier 

anomalies consist of infinite number of Gaussian distributions with different mean barrier 

heights and standard deviations and as a result, using an arbitrary distribution function rather 

than any pre-assumed distribution is to be more attractive to depict inhomogeneities [23, 140]. 

Thus, according to multi-Gaussian approach, the arbitrary distribution function, 𝐴 ∅𝐵 , may be 

written as,  
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𝐴 ∅𝐵 =  
𝐴𝑖

𝜍𝑖 2𝜋
 𝑒𝑥𝑝  −

 ∅𝐵 − ∅ 𝐵𝑖 
2

2𝜍𝑖
2  

𝑛

𝑖=1

 (4.23) 

In equation (4.23),  𝐴𝑖 , 𝜍𝑖  and ∅ 𝐵𝑖  are the weight, the standard deviation and the mean 

barrier height of each Gaussian distribution, respectively. In addition, total of the 𝐴𝑖  arbitrary 

distribution values from the normalization condition may be written as [23], 

𝐴1 + 𝐴2 + 𝐴3 + ⋯+ 𝐴𝑛 = 1 (4.24) 

And the total arbitrary distribution function is expressed as, 

𝐴 ∅𝐵 = 𝐴1 ∅𝐵 + 𝐴2 ∅𝐵 + 𝐴3 ∅𝐵 + ⋯+ 𝐴𝑛 ∅𝐵  (4.25) 

According to the multi-Gaussian distribution approach, the temperature dependence of the 

barrier height can be commented by the terms of inhomogeneous Schottky contact. Thus, the 

relationship with the temperature of the barrier height is given by [23] 

∅𝐵𝑎𝑝 =−
𝑘𝑇

𝑞
𝑙𝑛  𝐴𝑖 𝑒𝑥𝑝  −

𝑞∅ 𝐵0𝑖

𝑘𝑇
+

𝑞2𝜍0𝑖
2

2𝑘2𝑇2 
𝑛
𝑖=1   (4.26) 

 

For example, in case of n = 1, equation (4.26) can be simplified to well-known formula as 

∅𝐵𝑎𝑝 =∅ 𝐵01 −
𝑞𝜍01

2

2𝑘𝑇
 (4.27) 

Equation (4.27) is an equation used frequently in case of a single-Gaussian distribution of 

the spatial barrier height values and it yields the values of standard deviation 𝜍0𝑖  and mean 

barrier height ∅ 𝐵0𝑖  of each distribution region for a multi-Gaussian distribution condition. 

The plot of the barrier height and ideality factor as a function of 𝑞/2𝑘𝑇aids to characterize 

the behavior of the inhomogeneous potential barrier as shown in figure (4.11) and figure (4.13), 

respectively. 

From figure (4.11), ∅ 𝐵0𝑖  is the intercept and 𝜍0𝑖  is the slope of the straight line of the best 

linear fit calculated considering three different temperature ranges, namely 85 ≤ΔT1≤ 135 K,  

180 ≤ΔT2≤ 270 K, and 315 ≤ΔT3≤ 445 K. In particular, the ∅ 𝐵0 and σ0values are 1.05 eV and 

0.096 in the range ΔT1, 1.543 eV and 0.15 in the range ΔT2, and 1.643 eV and 0.169 in the range 

ΔT3, respectively. 
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Figure.4. 11.∅𝐵ap  vs.𝑞/2𝑘𝑇  according to a Gaussian distribution of the SBH. 

Figure (4.12) demonstrates  𝐴1 ∅𝐵 , 𝐴2 ∅𝐵 ,  𝐴3 ∅𝐵  and total 𝐴 ∅𝐵 , distribution 

functions calculated using Eqs. (4.23) and (4.25). As shown in figure (4.12), the 𝐴3 ∅𝐵  

distribution function represents the barrier distribution at high temperatures, while the 𝐴1 ∅𝐵  

and 𝐴2 ∅𝐵    depicts the distribution at low temperatures.  

In addition, from figure (4.12), it may be noted that the contribution of the  𝐴1 ∅𝐵  and 

𝐴2 ∅𝐵  distribution are far lower than that of the 𝐴3 ∅𝐵  distribution. Compared to that of these 

distribution functions, it describes that dominant patches along Schottky diode area have a      

1.05 eV mean barrier height with 40% density at high temperatures. The same diode area has 

1.643 eV and 1.543 eV with mean barrier height of 30% for low temperatures. 

 This result expresses clearly that the contribution of the mean barrier observed at low 

temperatures is far lower than the contribution of the other mean barrier height. 
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Figure.4. 12.Triple-Gaussian distribution function for Al/Ti/4H–SiC junction. 

Similarly, from the plot of the term (𝑛ap
−1 − 1) vs. 𝑞/2𝑘𝑇in Figure (4.13), we calculated the 

coefficients 𝜌2 as the intercept and 𝜌3 as the slope of the straight line which fits the diode data 

for each temperature range.  

It results 𝜌2= 0.403 V and 𝜌3= -0.005 V in the range ΔT1, 𝜌2= 0.141 V and 𝜌3= -0.012 V in 

the range ΔT2, and, 𝜌2= 0.276 V and 𝜌3= -0.004 V in the range ΔT3, respectively. 

This analysis, predicting three different Gaussian distributions of the barrier height at the 

Ti/Al 4H–SiC interface. 

 



CHAPTER 4 Results and discussion 

 

98 
 

10 20 30 40 50 60 70

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3
ΔT3 

ΔT2 

ΔT1 

 n
-1

ap
-1

 Linear fit of region 1

 Linear fit of region 2

 Linear fit of region 3
n

-1 a
p
-1

q/2kT (V
-1
)

y1= -0,00531 x1-0,40315

y2= -0,0123 x2-0,14095

y3= -0,00397 x3-0,27586

 
Figure. 4.13. (𝑛ap

−1 − 1)vs.𝑞/2𝑘𝑇  according to a Gaussian distribution of the SBH. 

 

Schmitsdorf et al [141] used Tung‟s theoretical approach that there is a linear relation 

between the apparent zero bias barrier height and ideality factors. The variation of the apparent 

barrier height versus the ideality factor is shown in figure (4.14). 
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Figure. 4.14. Schmistsdorf‟s plot showing zero-bias barrier height versus ideality factor. 
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According to Tung‟s theory [20]; there should be a linear correlation between the ∅B and n 

for various temperatures. As shown in the figure (4.14), there are three different linear regions. 

The extrapolation of the apparent barrier height versus the ideality factor plot to n = 1 has given 

a homogeneous Schootky barrier height of approximately, 0.894eV, 1.383eV and 2.694eV in the 

range ΔT1, ΔT2 and ΔT3, respectively. These results indicate that the current transport is 

controlled by different mechanisms in different temperature ranges. 

The large values of ideality factor indicate deviation from TE theory for current transport 

mechanism. The ideality factor is found to vary with temperature as shown in figure (4.6). In 

addition, an information required about the current transportation mechanism of a Schottky diode 

is may be obtained through a plot of n versus T.  

The phenomenon which explains this behavior is generally known as T0 effect. The ideality 

factor of the diode varies with temperature as  [23], 

𝑛 𝑇 = 𝑛0 +
𝑇0

𝑇
 (4.27) 

As shown in figure (4.15), plots of n0 versus 1000/T also present three straight lines, and 

the values of n0 and T0 are obtained as 0.023 and 355K in the range ΔT1, 0.689 and 264K in the 

range ΔT2, and 1.369 and 52K in the range ΔT3, respectively. Explanations of the possible origin 

of such cases have been proposed taking into account the generation recombination current in the 

depletion region or the TFE [138]. 
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Figure. 4.15. Plots of the n vs. 1000/T for Al/Ti/4H–SiC SBD. 
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Figure (4.16) shows a plot of nkT/q vs. kT/q reporting the temperature dependence of the n, 

in which the straight line reported as a reference represents the ideal behavior of Schottky 

contact (i.e. with n = 1). In this behavior, the straight line fitted to the obtained data for the T0 

effect should be parallel to that of the ideal Schottky contact behavior [143].  

As can be seen from figure (4.16) the straight line fitted to the obtained data is not parallel 

to that of the ideal Schottky contact behavior. This is explainable in terms of SBH 

inhomogeneity. 
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Figure. 4.16. Plot of nkT versus kT showing the T0 effect. 
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Figure.4.17.𝑙𝑛 𝐼0 𝑇2  −  𝑞2𝜍0
2 2𝑘2𝑇2  vs.𝑞/𝑘𝑇 according to a Gaussian distribution of the   

                   SBH. 
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Finally, by combining (4.20) and (4.26), we obtain 

𝑙𝑛  
𝐼0

𝑇2
 −  

𝑞2𝜍0𝑖
2

2𝑘2𝑇2
 = 𝑙𝑛 𝐴𝐴∗ −  

𝑞∅𝐵0𝑖
      

𝑘𝑇
   (4.28) 

The slope and intercept of the linear fitting of the plot 𝑙𝑛 𝐼0 𝑇2  −  𝑞2𝜍0i
2 2𝑘2𝑇2  vs.𝑞/

𝑘𝑇(see figure. 4.17) allow to determine ∅ 𝐵0and A* as follows: 1.05 eV and 149.26 A cm
-2

 K
-2

 

for the first region, 1.543 eV and 138.19 A cm
-2

 K
-2

 for the second region, and 1.649 eV and 

173.21 A cm
-2

 K
-2

for the third region, respectively. 

It is worth noting that  ∅ 𝐵0 is in good agreement with the results in figure (4.11). At the 

same time, the modified Richardson constants are close around the expected theoretical value 

(146 AK
-2

cm
-2

 for electrons in the n-type 4H-SiC [129]). 

4.2.7. Thermionic field emission transport 

If the current transport is controlled by the thermionic field emission theory, the 

relationship between the diode current and voltage can be expressed by using [84] 

𝐼 = 𝐼0 𝑒𝑥𝑝
 
𝑞𝑉
𝐸0

 
 (4.29) 

where the term E0 is related to the tunnel phenomena that increase for increasing 

temperatures and it is defined by means of the characteristic tunneling energy E00as follows: 

𝐸0 = 𝐸00coth  
𝐸00

𝑘𝑇
  (4.30) 

𝐸00 =
ℎ

4π
 
𝑁𝐷

𝑚∗𝜀𝑠
 

1/2

 (4.31) 

Here, h is the Planck constant and m*= 0.2 me is the effective electron mass [129]. 

Depending on the diode temperature, if E0 tends to kT, namely kT>>E00, the current 

transport corresponds to the ideal thermionic emission. On the other hand, for temperatures such 

that kT~E00the thermionic field emission should be considered and the ideality factor of the I-V 

curve is calculated from (4.29) and (4.30) as  

𝑛 =
𝐸00

𝑘𝑇
coth  

𝐸00

𝑘𝑇
  (4.32) 

By considering the current mechanisms through the junction dominated by the TFE effect, 

the ideality factor behavior as a function of the temperature for different values of E00is shown in 

figure (4.18). Here, the n values extracted from the I-V curves in figure (4.5) are also reported for 

comparison. It is observed that the dependence of n from temperature is in good agreement with 

the theoretical curve for E00 = 31.5 meV up to T is in the limit of about 230 K. 
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Figure. 4.18.(Solid lines) Ideality factor as a function of the temperature for different values      

                    of  E00. (Dots) n values extracted from the I-V curves in figure. 4.5. 

In accordance with the analysis developed in [144], we can assume that the energy E00 

determines the real BH profile. From equation (4.31) its value is mainly related to the carrier 

concentration and dielectric constant as well as the density of states at the semiconductor surface 

through the effective electron mass. In other words, depending on the diode operation conditions 

(i.e.  bias voltage and temperature) a local enhancement of the electric field can determine a local 

reduction of the barrier height and therefore an enhanced tunneling probability.   

4.2.8. State of Ti/Al 4H-SiC interface 

Although the analysis of the I–V–T data provide an indirect evidence of barrier 

inhomogeneities at the Ti/Al SiC interface, the method does not directly give information on the 

many issues that might contribute to the degradation of the quality of the interface. The interface 

quality could be degraded due to the existence of a thin oxide layer, non-optimized surface 

preparation and cleaning  prior to Ti/Al deposition, process-induced contamination as well as 

vacuum conditions during evaporation [28]. These are usually the critical factors for achieving a 

good epitaxy and common reasons for deviations from the ideal behaviour of Schottky contacts 

in SiC. The reaction kinetics and the phase equilibria according to thermodynamic consideration 

lead to different possibilities of interface reactions. So what happens at the Ti/Al SiC interface 

determines the electrical properties of the device [145]. 
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The distribution of Ti, C, and Si is determined from the energy dispersive x-ray analysis 

(EDX) on the interface between SiC and the Ti Schottky metal. Previous research has shown that 

thermal treatment allows the SiC and Ti to react to form TiC and Si. Then, TiSix is generated 

from the subsequent reaction of TiC and Si at the TiC interface [146, 147]. 

S. Kyoung et al [145] conducted an experiment to apply various annealing conditions so as 

to improve the low Schottky barrier height (LSBH) and inhomogeneity of  Ti /Al 4H-SiC SBDs. 

The experimental results showed that the condition of 873 K/30 min annealing produced a stable 

SBH and a low Rs value, which improved inhomogeneity. EDX and Transmission Electron 

Microscopy (TEM) analysis showed that the cause of the improved SBH at this condition is 

attributable to the generation of TiSix, which has a higher SBH than that of Ti. On the other 

hand, the improved Rs value at this condition is attributable to a change in the γ-phase Ti3Al 

(which has a lower resistance), caused by diffused Al resulting from proper annealing. However, 

when more heat is applied, Rs increased and SBH decreased. EDX and TEM analyses showed 

that the LSBH was caused by Al spiking, which created an Al Schottky junction with a lower 

SBH than that of a Ti Schottky junction. The higher Rs value resulted from the change to α-TiAl 

phase at the Al–Ti interface layer because of excessive diffusion of Ti and Al, which is due to 

the greater amount of applied heat. 

To sum up, these studies show that the final phases formed in Ti/Al SiC interface depend 

on the method of metal deposition as well as the temperature of annealing.  

On the basis of the results presented in our study, we believe that the reaction mechanism 

in Al/Ti 4H-SiC Schottky contact which  formed by depositing Al/Ti on the SiC substrate and 

annealed at 1000 
0
C as described in Section (4.2.1) lead to a formation of Al spiking.  

The inhomogeneity observed in this work can be explained by formation of Al spiking, 

which create an Al Schottky junction with a lower SBH than that of a Ti Schottky junction and 

yield a high T0 value. The higher Rs value results from the change to α-TiAl phase at the Al–Ti 

interface layer because of excessive diffusion of Ti and Al, which is due to the greater amount of 

heat used in the annealing treatment. 

4.2.9. Ti/Al 4H-SiC SBD Sensor Performances 

  As a temperature sensor, the SBD is forward biased at a constant current. In this case, the 

relationship between the forward voltage and the current of the SBD considering the series 

resistance can be expressed as [84]: 



CHAPTER 4 Results and discussion 

 

104 
 

𝑉 = 𝑅𝑠𝐼 + 𝑛∅𝐵 +
𝑘𝑇𝑛

𝑞
𝑙𝑛  

𝐼

𝐴𝐴∗𝑇2
     (4.33) 

The forward voltage (V) as a function of temperature for applied current values in the 

range from 10µA to 1.2 mA for the whole temperature range of 85 K up to 445 K are shown in 

figure (4.19). 

The sensor sensitivity (S) is defined as the temperature derivative of equation (4.33) and, 

therefore, it can be obtained from the slope of the V–T characteristics. The calculated sensitivity 

varies from 1.87 mV/K to 1.22 mV/K in the 85-445 K temperature range. 
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Figure.4. 19. Forward voltages versus temperature at four 

currents  I (10µA, 76.7µA, 0.5 mA, and 1.2 mA). V-T data are fitted 

with the best-calculated linear model. 

Moreover, in order to evaluate the agreement between the V-T data and the corresponding 

linear best-fit the coefficient of determination (R
2
) and the temperature error (eT ) had been 

calculated. 

In figure (4.20 (a)) is shown the calculated value of S and R
2
 for different bias currents. 

The V-T characteristics show a good degree of linearity. As reported, when I is 1.2 mA the 

sensitivity is 1.22mV/K and monotonically increases up to 1.87 mV/K for I =10µA.  
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Figure. 4.20. (a) Coefficient of determination and sensitivity calculated for 

                         802 values of the bias currents between I= 10 µA and 1.2 mA. 

                              (b) Corresponding RMSE in the temperature range T = 85–445 K. 
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The maximum of R
2
=0.9999 has been calculated for I =76.7 µA corresponding to a 

sensitivity S=1.7 mV/K. The decrease of R
2
 for bias currents higher than 7.23 mA can be due to 

the influence of the series resistance, and for low currents ( ‹ 86.9 nA) due to non-exponential 

behaviour of diodes at low voltages (side-wall leakage and other leakage paths). 

The temperature error (eT) between the V-T data and the corresponding linear best-fit, 

evaluated as [26]: 

𝑒𝑇 = 𝑆−1𝑒𝑅𝑀𝑆,𝑉 = 𝑆−1 𝑛−1  (𝑉𝑖 − 𝑓𝐿,𝑖)2

𝑛

𝑖=1

 (4.34) 

 where eRMS,V is the root-mean-square error of the diode voltage drop and S is the sensor 

sensitivity obtained from the slope of linear best-fit (fL,i ) and n is the number of temperature set 

points. 

The calculated plot, eT  versus I, for the considered temperature range is reported in figure 

4.20(b). eT is always lower than 14 K for applied current values in the range from 10 µA to 1.2 

mA while the minimum eT = 1.14 K is obtained for I= 76.7 µA.  

The increase of eT for bias currents higher than 7.23 mA and for low currents ( ‹ 86.9 nA) 

is believed to be due to factors responsible for decrease of  R
2
. 

     These results show that Ti/Al 4H-SiC Schottky diodes are good candidates for high 

temperature sensing applications in a wide range of biasing currents. 

4.3. Simulation and analysis of the current–voltage–temperature (I-V-T) 

characteristics of Mo/4H-SiC Schottky diode for high performance 

temperature sensor 

In this section, a 4H-SiC schottky diode fabricated and reported by L. Boussouar et al. [27] 

was simulated in the cylindrical coordinate system by using the thermionic emission model in a 

commercial device simulator Atals-Silvaco [109]. All the physical models described in chapter 

three were used. Resultant  I-V-T curves were compared with measured data. 

4.3.1. Device structure 

A schematic cross sectional view of the 4H-SiC Schottky diodes considered in this work is 

shown in figure (4.21) (plot not in scale). 
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The substrate material used for the experimental devices was n-type 4H–SiC <0001> from 

Cree Inc. The epi-layer is 10 μm thick and has a net doping density of about 1.3×10
16

 cm
-3

. The 

Schottky diodes had a circular geometry with a diameter of 150 µm. 

 The Schottky contacts were formed by depositing, through e-beam evaporation, 

molybdenum on the SiC substrate at a pressure of approximately 1×l0
-5

 Pa followed by 

annealing in an open furnace at 500 °C under a N2 flow of about 1000 sccm. More details about 

the diode fabrication process are provided in [27]. 

 

 

 

  

 

 

     

                           

        

 

 

 

 

Figure. 4.21. Mo/4H-SiC Schottky barrier diode schematic cross section. 

4.3.2. I-V -T characteristics 

The measured (as reported in [27]) and simulated forward I-V-T curves of the considered 

Mo/4H-SiC SBDs for nine different temperatures from 303 K to 498 K are shown in figure 

(4.22).  

It is worth noting that the numerical simulation results are in good agreement with the 

experimental data.  
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Figure4.22. Measured (symbols ) and simulated (solid lines) current–voltage  

        characteristics of the Mo/4H-SiC Schottky diode at different temperatures. 
 

From the simulation I-V-T curves in figure (4.22) we extracted the fundamental diode 

parameters 𝐼0 ,∅𝐵, and 𝑛 similarly to [130]. The values of the ideality factor and barrier height of 

the diode at different temperature are plotted as function of temperature in figure (4.23). 
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Figure. 4.23. Ideality factor and barrier height behaviors  

as a function of temperature for the device in figure (4.22). 
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The barrier height and ideality factor are found to be strong dependence, the plot shows 

that the ideality factor decrease while the barrier height increase with increasing temperature. 

The variation of series resistance values of Mo/4H-SiC versus temperature extracted from 

our curves is shown in figure. (4.24).  
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Figure.4.24. Temperature dependence of the series resistance. 

As seen in figure (4.24), the values of Rs increase with increasing temperature. The 

variation with temperature of the series resistance can be explained as follows: when temperature 

increases, more impurities are ionized and the mobility limited by the phonon scattering becomes 

dominant mechanism, which causes the conductivity of 4H-SiC to decrease and consequently 

leads the series resistance to increase [148].  

By considering equation (4.2) in the form of  𝑙𝑛 𝐼0 𝑇2  = 𝑙𝑛 𝐴𝐴∗ − (𝑞 𝑘𝑇 )∅𝐵 , the 

Arrhenius plot of term ln(I0/T
2
) against 1000/T is shown in figure (4.25). 

The value of A* obtained from the intercept of the linear portion of the ordinate is  

3.67 A ∙ cm−2 ∙ K2 that is much lower than the theoretically calculated value, which is ≈

146 A ∙ cm−2 ∙ K2 for n-type 4H-SiC [129].  A barrier height value of 1.013 𝑒𝑉 is obtained from 

the slope of the straight line. 

The presented results seem to predict current transport mechanisms not following the pure 

TE theory and the barrier height and ideality factor are found to be strong dependence.  
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Figure. 4.25.Arrhenius plot of 𝑙𝑛 𝐼0 𝑇2  vs.1000/𝑇. 

 

 

4.3.3. Effect of image-force lowering 

Barrier height lowering and the increase in ideality factor with decreasing temperature can 

be considered to be due to the image-force lowering. The values of ∆∅ found by using equation 

(4.8) varies from 23.41 meV to 24.30meV in the 303 – 498 K temperature range for the barrier 

height ∅B  ranging from 1.108 eV to 1.17 eV as in figure (4.23), the value of ND varies from 

1.27x10
16

 cm
-3

 at 303K to 1.3x10
16

 cm
-3

 at 498K, respectively and a typical forward bias voltage 

of 0.2 V in the present work. The variation in barrier lowering with temperatures is too low and 

it is almost constant for each doping level compared to the reduction in the values of the barrier 

height for the same temperature range. Therefore, the image-force lowering alone cannot account 

for the lowering of the barrier height.  

The ideality factors found by using equation (4.9) are 1.009 and 1.010 at 303 and 498 K, 

respectively. These values also show that the observed variation in the ideality factor cannot be 

explained by the image-force lowering. In this case, the other current transport mechanisms such 

as Thermionic Field Emission (TFE) or recombination generation should be accounted as the 

reason of the increase in the ideality factor with decreasing measurement temperature [136]. 

4.3.4. Flat-band barrier height and modified Richardson plots 

The barrier height obtained under flat-band condition is called flat-band barrier height ∅𝐵𝑓  

and is considered to be real essential quantity. Unlike the case of zero-bias barrier height, the 
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electrical field in the semiconductor is zero under the flat-band condition and semiconductor 

bands are flat, which eliminates the effect of tunneling and image force lowering that would 

affect the I–V characteristics and removes the influence of lateral inhomogeneity [129-138]. 

The flat-band barrier height ∅𝐵𝑓  can be calculated from equation (4.10). Figure (4.26) 

shows the variation ∅𝐵𝑓  as a function of temperature. It can be seen that ∅𝐵𝑓  is always larger 

than zero-bias barrier height ∅𝐵 . The flat-band barrier height ∅𝐵𝑓  increases with decreasing 

temperature. Furthermore, the temperature dependence of the flat-band barrier height is 

described as ∅𝑏𝑓  𝑇 = ∅𝑏𝑓  𝑇 = 0 + 𝛼𝑇, where ∅𝐵𝑓 (T = 0K) is the zero-temperature flat-band 

barrier height and is the temperature coefficient of  ∅𝐵𝑓 . The linear fitting of the ∅𝐵𝑓 (T) data in 

equation (4.11) shown in figure (4.26) yields ∅𝐵𝑓 (T = 0K) = 1.114 eV and α=1.91×10−4
 eV/K. 
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Figure.4. 26. Temperature dependence of the zero-bias BH ∅𝐵 and flat-band BH ∅𝐵𝑓  

          for the Mo/4H–SiC Schottky barrier diode in the temperature range of 303–498 K. 

 

Considering the temperature dependence of the ideality factor n, the plot of ln(I0f/T
2
) 

versus 1/nT according to equation (4.14) should be a straight line with the slope directly yielding 

∅𝐵𝑓 (T = 0K) and the intercept at the ordinate determining A* for a given diode area A [136]. 

Figure (4.27) shows the ln(I0f/T
2
) versus 1/nT plots. The modified ln(I0f/T

2
) versus 1/nT plot gives 

∅𝐵𝑓 (T = 0K) and A* as 1.10 eV and 8.4 A cm
-2

 K
-2

, respectively. These results show that the 

value of the Richardson constant is different from the known theoretical value of 146 AK
-2

cm
-2

 

for electrons in the n-type 4H-SiC [129].   
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The presented results seem to predict current transport mechanisms not following the pure 

TE theory. 
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Figure.4. 27. Richardson plots of ln(I0f /T

2
) vs. 1000/nT 

      and their linear fits for the Mo/4H– SiC Schottky diode. 

4.3.5. Effect of thermionic field emission 

The decrease in barrier height and the increase in ideality factor with a decrease in the 

temperature are indicative of a deviation from the pure TE theory, and one thus must consider 

the TFE mechanism. The E00 parameter determines the conduction mechanism, whether it is by 

TE, TFE, or FE [149]. 

The values of E00 have been evaluated as 1.50 and 1.52 meV for T = 303 K and 498 K, 

respectively. To see the effect of free carriers and to define the dominant current mechanism of 

the Schottky contact, E00 values have been normalized to kT in the investigated temperature 

region. As seen in figure (4.28), normalized E00/kT values decreases with temperature and 

E00<<kT condition is satisfied for the investigated temperature range. According to the theory, 

field emission (FE) becomes important when E00>>kT whereas, TFE dominates when E00 ~ kT 

and TE is crucial if E00<<kT [136,149, 150]. Therefore, we can postulate that all over the 

temperature range TE is the dominant current mechanism. According to the equation (4.32) the 

contribution of TFE results only in an increase of 1.0011 for n at 303 K. This value is low to 

explain our data value (n = 1.071) at 303 K. As a result, the possibility of the FE and TFE can be 

ruled out. Thus, the higher n values may be related to TE over a Gaussian barrier height 

distribution and it will be discussed below. 
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Figure.4. 28. Normalized E00/kT values as a function of temperature. 

4.3.6. Inhomogeneous barrier analysis 
 

Werner and Güttler [19] have proposed an analytical potential fluctuation model for the 

interpretation of I–V measurements on spatially inhomogeneous PtSi/Si Schottky contacts, while 

Henisch [151] speculated that the fluctuations in BHs are unavoidable as they exist even in the 

most carefully processed devices. Furthermore, a linear correlation between the zero-bias BH 

(∅𝐵) and the ideality factor (n) has been obtained utilizing Tung‟s pinch-off model [20] by 

Schmitsdorf et al [141]. Figure (4.29) shows an example of this plot for Mo/4H-SiC SBD. 
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Figure. 4.29. Schmistsdorf‟s plot showing zero bias barrier height versus ideality factor. 



CHAPTER 4 Results and discussion 

 

114 
 

A linear relationship between the  ∅𝐵 and n values in figure (4.29) is an indication of the 

barrier irregularity and can be explained by lateral inhomogeneities of the BHs [141]. A 

homogeneous BH of approximately 1.298 eV obtained from the extrapolation of the least-square 

linear fitting to data to n = 1 (figure 4.29). 

In order to describe the abnormal behaviours mentioned above, an analytical potential 

fluctuation model using different types of barrier distribution function at the interface on the 

spatially inhomogeneous SBDs has been proposed by different workers [23,27,122 127, 152–

154]. A spatial distribution of the barrier height at the metal-semiconductor interface of Schottky 

contacts by a Gaussian distribution A(∅𝐵) with a standard deviation (σ0) around a mean SBH 

(∅𝐵
    ) value has been suggested by Werner and Güttler [19]: 

The plot of the barrier height and ideality factor as a function of 𝑞/2𝑘𝑇 aids to characterize 

the behavior of the inhomogeneous potential barrier as shown in figure (4.30) and figure (4.32), 

respectively. 
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Figure. 4.30. ∅𝐵ap  vs.𝑞/2𝑘𝑇  according to a Gaussian distribution of the SBH. 

As can be seen in figure (4.30), The graphical representation of ∅𝐵𝑎𝑝  versus 𝑞/2𝑘𝑇   is a 

straight line of the best linear fit with the intercept on the ordinate determines the zero mean 

barrier height  ∅ 𝐵0 and the slope gives the zero bias standard deviation 𝜍0. The values obtained 

are 1.262 eV and 0.0905 eV for ∅ 𝐵0 and 𝜍0 respectively. Compensate of these values in equation 

(4.15) allows us to get the Gaussian distribution function  of SBH as shown in figure (4.31). The 

standard deviation is a measure of the barrier homogeneity where the lower value of 
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𝜍0 corresponds to a more homogeneous barrier height. However, the value of 𝜍0 = 90.5 meV is 

not small compared to the mean value of  ∅ 𝐵0 =1.262 eV (7%) which indicates the presence of 

the interface inhomogeneities. 

   

 

 

 

 

 

 

 

 

 

 

 

Figure.4. 31. Gaussian distribution function for Mo/4H–SiC junction 

Similarly, from the plot of the term (𝑛ap
−1 − 1) vs. 𝑞/2𝑘𝑇in figure (4.32), we calculated the 

coefficients 𝜌2 as the intercept and 𝜌3 as the slope of the straight line which fits the diode data 

for each temperature range.  
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Figure. 4.32. (𝑛ap

−1 − 1)vs.𝑞/2𝑘𝑇  according to a Gaussian distribution of the SBH. 

      The analysis of this plot gives the values of the following voltage coefficients: ρ2 = 0.015 V 

and ρ3 = −0.0026 V.  
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   According to Werner and Guttler [19] the ideality factor can be written as 

𝑛𝑎𝑝 ≅ 1 + 𝜌2 −
𝜌3

2𝑘𝑇/𝑞
≅ 1 +

𝑇0

𝑇
    (4.35) 

         which yields to (in most cases the terms 𝜌2 is neglected) 

𝑇0 ≅ −
𝜌3

2𝑘𝑇/𝑞
    (4.36) 

If we use the calculated value of 𝜌3 we obtain a T0 value of 15.07 K . 

According to Saxena [100], such behaviour is typical to a SBD displaying the so-called 

„„T0 effect” which means that the ideality factor can be expressed in the form n(T)=1+T0/T. This 

implies that a plot of nT vs. T is a straight line with a slope of unity and the intercept T0 at the 

ordinate. 

Figure (4.33) shows such a plot with the slope equal to 1.013, which is close to unity as 

predicted by the empirical relation and the intercept T0 =17.16K. Tung [20] and Sullivan et al 

[134] have shown that the „„T0 effect” is typical to SBD with a distribution of barrier 

inhomogeneities. 
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Figure. 4.33. Plot of nT versus T showing the T0 effect. 

Finally, by combining (4.20) and (4.27), we obtain  𝑙𝑛  
𝐼0

𝑇2
 −  

𝑞2𝜍0
2

2𝑘2𝑇2
 = 𝑙𝑛 𝐴𝐴∗ −

 
𝑞∅𝐵0
      

𝑘𝑇
 .The slope and intercept of the linear fitting of the plot 𝑙𝑛 𝐼0 𝑇2  −  𝑞2𝜍0

2 2𝑘2𝑇2   vs 
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𝑞/𝑘𝑇(see figure (4.34)) allow to determine ∅ 𝐵0 and A* as follows: 1.265 eV and 155.78 A cm
-2

 

K
-2 

respectively.  
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Figure.4.34. 𝑙𝑛 𝐼0 𝑇2  −  𝑞2𝜍0

2 2𝑘2𝑇2   vs.𝑞/𝑘𝑇  

      according to a Gaussian distribution of the SBH. 

It is worthwhile noting that  ∅ 𝐵0 is in good agreement with the results in figure (4.30). At 

the same time, the modified Richardson constants are close around the expected theoretical value 

(146 AK
-2

cm
-2

 for n-type 4H-SiC [129]). These results show that the temperature dependence of 

current transport characteristics can be successfully interpreted by using TE theory with 

Gaussian distribution of the barrier heights due to the inhomogeneous barrier heights at the 

Mo/4H–SiC interface. 

4.3.7. State of Mo/4H-SiC interface 

In spite of the fact that the analysis of the I–V–T data gives an indirect proof of barrier 

inhomogeneities at the Mo/SiC interface, the method does not directly give information on the 

many issues that might contribute to the degradation of the quality of the interface. 

The chemical reactions, during the process of fabrication of the Mo/4H–SiC interface, play 

an important role in the Schottky barrier formation. It is known that molybdenum can readily 

react with the SiC. It forms a silicide when reacting with elemental Si and carbide when reacting 

with elemental C. It shows also a little added reaction when performing an annealing up to 800 

0
C [27, 155]. Due to the mixture of these different phases (Mo2C, MoSi2, Mo3Si) at the 

metal/semiconductor interface, an increase in the barrier height leads to significant 
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inhomogeneity. Leroy et al [156] have reported that the Mo carbide system suggests that 

molybdenum carbide Mo2C is a promising alternative, since the phase shows a lower resistivity, 

the carbide forms below 900 
0
C, and its formation is less sensitive to oxidation as compared to 

other system. The sample which we have been studied by simulation is annealed at 500 
0
C, This 

makes us believe that there will be a reaction between the molybdenum and Si-forming silicides 

and between the molybdenum and C-making carbides; however, those carbides are stables as 

demonstrated by Leroy et al [156] and Toumi et al [157]. We believe also, that The Low T0 value 

obtained in this work is attributable to technique used to deposit the Mo, which means that the 

Mo shows a good compatibility, so less inhomogeneity is expected with SiC as evidenced by the 

results discussed above. 

4.3.8. Mo/4H-SiC SBD Sensor Performances 
 

  As a temperature sensor[26], the SBD is forward biased at a constant current. In this case, 

the relationship between the forward voltage drop and the current of the SBD considering the 

series resistance can be expressed as 𝑉 = 𝑅𝑠𝐼 + 𝑛∅𝐵 +
𝑘𝑇𝑛

𝑞
𝑙𝑛  

𝐼

𝐴𝐴∗𝑇2 . The forward voltage (V) 

as a function of temperature for applied current values in the range from 10 nA to 10 mA for the 

whole temperature range of 303 K up to 498 K are shown in figure (4.35).  
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Figure. 4.35. Forward voltages versus temperature at seven 

   currents  I (10 nA, 100 nA,1µA, 10µA, 100µA, 1 mA and 10 mA).  
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Thanks to an almost constant value of the ideality factor, V-T characteristics exhibit a very 

high degree of linearity in the whole considered temperature range.  

The sensor sensitivity (S) is defined as the temperature derivative of forward voltage (V) 

equation and, therefore, it can be obtained from the slope of the V–T characteristics. The 

calculated sensitivity varies from 2.24 mV/K to 0.99 mV/K in the 303-498 K temperature range. 

Moreover, in order to evaluate the agreement between the V-T data and the corresponding 

linear best-fit the coefficient of determination (R
2
) and the temperature error (eT ) had been 

calculated. In figure 4.36 (a) is shown the calculated value of S and R
2
 for different bias currents. 

The V-T characteristics show a good degree of linearity. As reported, when I is 10 mA the 

sensitivity is 0.99 mV/K and monotonically increases up to 2.24 mV/K for I =10 nA. 

 The maximum of R
2
=0.99974 has been calculated for I=4.16 mA corresponding to a 

sensitivity S=1.14 mV/K. It is worth noting that the coefficient of determination varies by only 

0.018% from an average of 𝑅𝑎
2 ~ 0.9996 over the considered temperature range for applied 

current values in the range from 86.9 nA to 7.23 mA where the sensor shows its best 

performances, leading to a temperature sensor with a highly linear behavior in a wide range of 

biasing currents. While the values of R
2
 decrease for bias currents higher than 7.23 mA due to 

the influence of the series resistance, and for low currents ( ‹ 86.9 nA) due to non-exponential 

behaviour of diodes at low voltages (side-wall leakage and other leakage paths). 

The temperature error (eT) between the V-T data and the corresponding linear best-fit, 

evaluated as [26]: 

 𝑒𝑇 = 𝑆−1𝑒𝑅𝑀𝑆,𝑉 = 𝑆−1 𝑛−1  (𝑉𝐷,𝑖 − 𝑓𝐿,𝑖)2𝑛
𝑖=1  .  

 

The calculated plot, eT  versus I, for the considered temperature range is reported in figure 

(4.36(b)). eT is always lower than 1.6 K for applied current values in the range from 86.9 nA to 

7.23 mA while the minimum eT = 1.15 K is obtained for  I = 4.16 mA. 

     These results show that Mo/4H-SiC Schottky diodes are good candidates for high 

temperature sensing applications in a wide range of biasing currents. 
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Figure. 4.36. (a) Coefficient of determination and sensitivity calculated  

               for1251 values of the bias currents between I= 10 nA and 10 mA. 

              (b) Corresponding RMSE in the temperature range T = 303–498 K. 



CHAPTER 4 Results and discussion 

 

121 
 

4.4. Simulation and analysis of the current–voltage–temperature (I-V-T) 

characteristics of W/4H-SiC Schottky diode for high performance 

temperature sensor 

     A 4H-SiC Schottky diode fabricated and reported by S. Toumi et al [28] was simulated 

in the cylindrical coordinate system by using the thermionic emission model in a commercial 

device simulator Atals-Silvaco [109]. All the physical models described in chapter three were 

used. Resultant I-V-T curves were compared with measured data. 

4.4.1. Device structure 

A schematic cross sectional view of the 4H-SiC Schottky diodes considered in this work is 

shown in figure (4.37) (plot not in scale). 

 

      

 

 

 

 

       

       

 

 

 

 

 

Figure. 4.37. W/4H-SiC Schottky barrier diode schematic cross section. 

The substrate material used for the experimental devices was n-type 4H–SiC <0001> from 

Cree Inc. The epi-layer is 10 μm thick and has a net doping density of about 1.3×10
16

 cm
-3

. The 

Schottky diodes had a circular geometry with a diameter of 200 µm.  

The Schottky contacts were formed by depositing, through e-beam evaporation, Tungsten 

on the SiC substrate at a pressure of approximately 1×l0
-5

 Pa followed by annealing in an open 

furnace at 500 °C under a N2 flow of about 1000 sccm. More details about the diode fabrication 

process are provided in [28]. 
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4.4.2. I-V -T characteristics 

The measured (as reported in [28]) and simulated forward I-V-T curves of the considered 

W/4H-SiC SBDs for seven different temperatures from 303 K to 448 K are shown in figure 

(4.38).  

0,0 0,2 0,4 0,6 0,8 1,0
10

-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Voltage (V)

C
u

rr
e

n
t(

A
)  Simulation

Experiment

 303K

 323k

 348k

 373k

 398k

 423k

 448k

 

 

Figure.4.38. Measured (symbols ) and simulated (solid lines) current–voltage characteristics of 

the W/4H-SiC Schottky diode at different temperatures. 

It is worth noting that the numerical simulation results are in good agreement with the 

experimental data.  

From the simulation I-V-T curves in figure (4.38) we extracted the fundamental diode 

parameters 𝐼0 ,∅𝐵 , and 𝑛 similarly to [130]. In particular, at each temperature, the saturation 

current 𝐼0  was determined from the intercept of the plot 𝑙𝑛(𝐼) vs 𝑉 for 𝑉 = 0 . 

 Afterwards, the barrier height ∅𝐵  was calculated from equation (4.2) resulting           

 ∅𝐵 =  𝑘𝑇 𝑞  𝑙𝑛 𝐴𝐴∗𝑇2 𝐼0  . Finally, the ideality factor 𝑛 was extracted determining the slope 

of the linear region of the curves 𝑙𝑛(𝐼) vs  𝑉. 

The values of the ideality factor and barrier height of the diode at different temperature are 

plotted as function of temperature in figure (4.39). The barrier height and ideality factor are 

found to be strong dependence, the plot shows that the ideality factor decrease while the barrier 

height increase with increasing temperature. 

 



CHAPTER 4 Results and discussion 

 

123 
 

300 350 400 450
1,045

1,050

1,055

1,060

1,065

1,070

1,075

 



 
B

Temperature (K)

Id
e
a
lit

y
 F

a
c
to

r

1,10

1,11

1,12

1,13

1,14

1,15

1,16

1,17

1,18

 B
a
rr

ie
r 

H
e
ig

h
t 
(e

v
)

 

Figure. 4.39. Ideality factor and barrier height behaviors as a function of temper-ature for the 

device in figure (4.38). 

As shown in figure (4.38), the forward bias I-V characteristics are linear on a semi-

logarithmic at low forward bias voltages, but deviate from linearity due to the effect of series 

resistance Rs. The variation of series resistance values of W/4H-SiC versus temperature 

extracted from our curves is shown in figure (4.40). As seen in this figure, the values of Rs are 

near constant and equal to 12.6 Ω. 
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Figure. 4.40. The temperature dependence of the series resistance. 
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By considering (4.2) in the form of 𝑙𝑛 𝐼0 𝑇2  = 𝑙𝑛 𝐴𝐴∗ − (𝑞 𝑘𝑇 )∅𝐵, the Arrhenius plot 

of term ln(I0/T
2
) against 1000/T is shown in figure (4.41). 
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Figure. 4.41.Arrhenius plot of 𝑙𝑛 𝐼0 𝑇2  vs.1000/𝑇. 

The value of A* obtained from the intercept of the linear portion of the ordinate is  

1.23 A ∙ cm−2 ∙ K2  
that is much lower than the theoretically calculated value, which is ≈

146 A ∙ cm−2 ∙ K2 for n-type 4H-SiC [129]. A barrier height value of 0.983 𝑒𝑉 is obtained from 

the slope of the straight line. 

The presented results seem to predict current transport mechanisms not following the pure 

TE theory and the barrier height and ideality factor are found to be strong dependence.  

4.4.3. Effect of image-force lowering 

The barrier lowering due to image charge is a possible explanation for the temperature 

dependence of the barrier height and ideality factor. 

The ∆∅ reduction at V = 0.2V due to the image-force lowering effect was calculated as 

23.77 meV at 448 K and as 24.26 meV at 303K using equation (4.8). Thus, it may be noted that 

these values of the  ∆∅ are almost constant for 303–448 K temperature range and the image-

force lowering effect alone cannot account for the decreasing of the barrier height with 

decreasing temperature in W/4H-SiC Schottky diode. The ideality factors found by using 

equation (4.9) are 1.009 and 1.010 at 303 and 448 K, respectively. These values also show that 

the observed variation in the ideality factor cannot be explained by the image-force lowering. 
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4.4.4. Flat-band barrier height and modified Richardson plots 

The variation of flat-band barrier height (∅𝐵𝑓  ) of the 4H-SiC Schottky barrier diodes 

calculated from the current–voltage barrier heights and the corresponding ideality factor at each 

temperature is shown in the figure (4.42). The barrier height obtained under flat-band condition 

is considered to be real quantity. Unlike the case of zero-bias barrier height (∅𝐵), the electric 

field is zero under flat-band condition. This eliminates the effect of the image force lowering that 

would affect the current–voltage characteristics and removes the influence of lateral 

inhomogeneity [135-138]. 

 

As seen in figure (4.42), ∅𝐵𝑓  is always larger than zero-bias barrier height. The 

temperature dependence of flat-band barrier height can be expressed as                                     

∅𝑏𝑓  𝑇 = ∅𝑏𝑓  𝑇 = 0 + 𝛼𝑇, where ∅𝐵𝑓 (T = 0K) is the zero-temperature flat-band barrier height 

and is the temperature coefficient of ∅𝐵𝑓 . where ∅𝐵𝑓 (T = 0K) is the flat-band barrier height 

extrapolated to 0 K and α is the temperature coefficient. From the slope and intercept of the 

least square fit of the ∅𝐵𝑓 (T) data in the temperature range of 303–448 K give the value of the 

zero-temperature flat-band barrier height and the temperature coefficient. The values obtained 

are ∅𝐵𝑓 (T = 0K) is 1.098 eV and α is 2.43 x10
-4

 eV/K. 
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Figure.4. 42. Temperature dependence of the zero-bias BH ∅𝐵 and flat-band BH ∅𝐵𝑓  

         for the W/4H–SiC Schottky barrier diode in the temperature range of 303–448 K. 
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Considering the temperature dependence of the ideality factor n, the plot of ln(I0f/T
2
) 

versus 1/nT according to equation (4.14) should be a straight line with the slope directly yielding 

∅𝐵𝑓 (T = 0K) and the intercept at the ordinate determining A* for a given diode area A [136].  

Figure (4.43) shows the ln(I0f/T
2
) versus 1/nT plots. The modified ln(I0f/T

2
) versus 1/nT 

plot gives ∅𝐵𝑓 (T = 0K) and A* as 1.074 eV and 3.43 A cm
-2

 K
-2

, respectively.  
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Figure.4. 43. Richardson plots of ln(I0f /T
2
) vs. 1000/nT  

      and their linear fits for the W/4H– SiC Schottky diode. 

 

4.4.5. Effect of thermionic field emission 

The contribution of tunnelling (FE or TFE) to the current of a Schottky diode is the most 

common explanation for the temperature dependence of the barrier height and ideality factor.The 

E00 parameter determines the conduction mechanism, whether it is by TE, TFE, or FE. In 

general, the current transportation mechanism which dominates the barrier may be determined 

using E00 tunneling parameter expressed in equation (4.31). In Schottky junctions, the dominat 

mechanism is the thermionic emission mechanism when E00 << kT, the thermoionic-field 

emission if E00 = kT, the field emission when E00 >> kT [136,149, 150].  

The E00 values for W/4H-SiC were calculated to be 1.50 meV and 1.51meV at 303 K and 

at 448 K, respectively. In addition, according to this consideration, it may be reported that the 

thermionic emission is the dominant current mechanism because E00 values are significantly 

lower than kT for the whole temperature range. Due to the relation to E00 characteristic tunneling 

parameter of ideality factor in equation (4.32), the ideality factors for tunneling according to 



CHAPTER 4 Results and discussion 

 

127 
 

equation (4.32) are obtained as 1.001 and 1.0005 that are too low to explain the temperature 

dependence of the ideality factor showed in figure (4.39) ( n =1.071 and 1.048 at 303 K and 448 

K for the device, respectively). Thus, the tunneling current or TFE cannot possibly account for 

the observed high ideality factor values 

4.4.6. Inhomogeneous barrier analysis 

According to the earlier studies, the ideality factor of an inhomogeneous Schottky barrier 

diode with a distribution of low Schottky barrier heights increase with decrease in temperature 

[23,28,122 127, 152–154]. The Schottky barrier consists of lateral inhomogeneous patches of 

different barrier heights. Schmitsdorf et al [141] used Tung‟s theoretical approach and found 

linear correlation between zero-bias Schottky barrier height and ideality factor. 

Figure (4.44) shows the plot of zero-bias barrier height(∅𝐵)  versus the ideality factor (n). 

The straight line in figure (4.44) is the least squares fit to the data and indicates a linear 

relationship between the effective barrier heights and the ideality factors of the Schottky contact. 

The extrapolation of the zero-bias barrier heights versus ideality factor plot to n = 1 gives a 

homogeneous barrier height of approximately 1.287 eV. Thus, it can be said that the significant 

decrease of the zero-bias barrier height and increase of the ideality factor especially at low 

temperature are possibly caused by the barrier inhomogeneities. 

1,045 1,050 1,055 1,060 1,065 1,070 1,075

1,10

1,11

1,12

1,13

1,14

1,15

1,16

1,17

y= -2,5689 x +3,8568

 Barrier Height

 Linear fit

B
a

rr
ie

r 
H

e
ig

h
t 

(e
v
)

Ideality Factor

 

 

 

Figure. 4.44. Schmistsdorf‟s plot showing zero bias barrier height versus ideality factor. 
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Following Sullivan et al [134], in order to evidence the presence of barrier inhomogeneity, 

the temperature dependence of the ideality factor can be reported in the form of a plot of nT vs T. 

This plot for W/4H-SiC SBD is reported in figure (4.45), where the dashed line represents the 

ideal behavior n=1. The n(T) data of W/4H-SiC SBD show a linear trend, nearly parallel to the 

straight line of the ideal Schottky contact behavior. This latter means that the ideality factor can 

be expressed in the form n=1+T0 /T where T0 is a constant. This behavior, which is commonly 

referred to as the “T0 anomaly” [15], is typical of a real Schottky contact, i.e., a contact with a 

distribution of barrier inhomogeneities [158]. The fit of the  data give a value of T0=21.47 K 
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Figure. 4.45. Plot of nT versus T showing the T0 effect. 

Werner and Güttler [19] have proposed an analytical potential fluctuation model for the 

interpretation of I–V measurements on spatially inhomogeneous PtSi/Si Schottky contacts, the 

∅B  and n anomalous behaviors reported above are explained by assuming spatially 

inhomogeneous barrier heights and potential fluctuations at the Schottky interface that consist of 

low and high barrier areas. It is assumed that ∅ B  and σ are linearly bias-dependent on Gaussian 

parameters (∅B
    = ∅ 𝐵0 + ρ

2
V and σ2 = σ0

2  + ρ
3

V). 

The plot of the barrier height and ideality factor as a function of 𝑞/2𝑘𝑇 aids to characterize 

the behavior of the inhomogeneous potential barrier as shown in figure (4.46) and in figure 

(4.48), respectively. 
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Figure.4.46. ∅𝐵ap  vs.𝑞/2𝑘𝑇  according to a Gaussian distribution of the SBH. 
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Figure.4. 47. Gaussian distribution function for W/4H–SiC junction 

     As can be seen in figure (4.46), the graphical representation of ∅𝐵𝑎𝑝  versus 𝑞/2𝑘𝑇   is a 

straight line of the best linear fit with the intercept on the ordinate determines the zero mean 

barrier height  ∅ 𝐵0 and the slope gives the zero bias standard deviation 𝜍0.  
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The values obtained are 1.286 eV and 0.0974 eV for ∅ 𝐵0 and 𝜍0 respectively. Compensate 

of these values in equation (4.15) allows us to get the Gaussian distribution function  of SBH as 

shown in figure (4.47). The standard deviation is a measure of the barrier homogeneity where the 

lower value of 𝜍0 corresponds to a more homogeneous barrier height. However, the value of 𝜍0 = 

97.4 meV is not small compared to the mean value of  ∅ 𝐵0 =1.286 eV (7.58%) which indicates 

the presence of the interface inhomogeneities. 

Similarly, from the plot of the term (𝑛ap
−1 − 1) vs. 𝑞/2𝑘𝑇 in figure (4.48), we calculated the 

coefficients 𝜌2 as the intercept and 𝜌3 as the slope of the straight line which fits the diode data 

for each temperature range.  

     The analysis of this plot gives the values of the following voltage coefficients: 𝜌2 =

0.00365 𝑉 and  𝜌3 = −0.00329 𝑉.  

     The linear behaviour of the (𝑛ap
−1 − 1) vs q/2kT plot confirms that the ideality factor 

does indeed denote the voltage deformation of the Gaussian distribution of the barrier height. 
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Figure. 4.48. (𝑛ap
−1 − 1)vs.𝑞/2𝑘𝑇  according to a Gaussian distribution of the SBH. 

Finally, by combining (4.20) and (4.27), we obtain 𝑙𝑛  
𝐼0

𝑇2 −  
𝑞2𝜍0

2

2𝑘2𝑇2 = 𝑙𝑛 𝐴𝐴∗ −

 
𝑞∅𝐵0
      

𝑘𝑇
  . 
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The slope and intercept of the linear fitting of the plot 𝑙𝑛 𝐼0 𝑇2  −  𝑞2𝜍0
2 2𝑘2𝑇2  vs.𝑞/

𝑘𝑇(see figure(4.49)) allow to determine ∅ 𝐵0 and A* as follows: 1.287 eV and 148.8 A cm
-2

 K
-2 

respectively. 

It is worthwhile noting that  ∅ 𝐵0 is in good agreement with the results in figure (4.46). At 

the same time, the modified Richardson constants are close around the expected theoretical 

value. 

These results show that the temperature dependence of current transport characteristics can 

be successfully interpreted by using TE theory with GD of the barrier heights due to the 

inhomogeneous barrier heights at the W/4H–SiC interface. 
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Figure.4.49. 𝑙𝑛 𝐼0 𝑇2  −  𝑞2𝜍0
2 2𝑘2𝑇2  vs.𝑞/𝑘𝑇 according to a Gaussian distribution of the 

SBH. 

4.4.7. State of W/4H-SiC interface 

The solid-state reaction between metal and Si only occurs in those regions of a patterned 

substrate where the metal is in direct contact with the Si to form (WSi2, W5Si3) when reacted 

with elemental Si and form a carbide (WC, W2C) when reacted with elemental C [28, 159]. In 

particular, W reacts with SiC below 970 K by forming WSi2 and WC which are stable with SiC. 

At temperatures between 970 K and 2140 K. W form the metal rich silicide W5Si3 and WC At 
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higher temperatures (above 2140 K) the stable carbide changes to (W2C) [28,160]. Geib et al 

[159] deposited W on b-SiC via electron beam deposition and identified WSi2 and WC as the 

resulting phases formed after annealing at 1123 K. 

High temperature thermal stability of Au/Ti/WSix Schottky contacts on 4H-SiC have been 

observed by Kim et al. [161]. The contacts show a maximum Schottky barrier height of 1.15 eV 

at an annealing temperature of 500 
0
C. The barrier height decreased for anneals above 600 

0
C. 

Sputter-deposited WSix Schottky contacts on n-type 4H-SiC were also characterized as a 

function of annealing and measuremental temperature by Kim et al [162]. The diodes have 

produced a maximum barrier height of 1.15 eV after a 500 
0
C annealing which appears to be the 

optimum condition to maximizing the barrier Height. The contacts were unstable after annealing 

above 700 
0
C. 

According to these studies which show that the final phases formed in the interface depend 

on the method of metal deposition as well as the temperature of annealing, and on the basis of 

the results presented in our study, we believe that the reaction mechanism W/4H-SiC Schottky 

contacts   annealed at 500 
0
C as described in Section (4.4.1) lead to a formation of a silicide 

WSi2 and WC which are stable with SiC, so less inhomogeneity is expected with SiC as 

evidenced by the T0 value and results discussed above. 

4.4.8. W/4H-SiC SBD Sensor Performances 

  As a temperature sensor, the SBD is forward biased at a constant current. In this case, the 

relationship between the forward voltage drop and the current of the SBD considering the series 

resistance can be expressed as 𝑉 = 𝑅𝑠𝐼 + 𝑛∅𝐵 +
𝑘𝑇𝑛

𝑞
𝑙𝑛  

𝐼

𝐴𝐴∗𝑇2 .                                                  

The forward voltage (V) as a function of temperature for applied current values in the 

range from 1nA to 10 mA for the whole temperature range of 303 K up to 448 K are shown in 

figure (4.50). 

Thanks to an almost constant value of the ideality factor, V-T characteristics exhibit a very 

high degree of linearity in the whole considered temperature range. The sensor sensitivity (S) is 

defined as the temperature derivative of forward voltage (V) equation; therefore, it can be 

obtained from the slope of the V–T characteristics. The calculated sensitivity varies from 2.41 

mV/K to 1.07 mV/K in the 303-448 K temperature range. 
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Figure. 4.50. Forward voltages versus temperature at eight 

currents  I (1 nA, 10 nA ,100 nA, 1µA, 10µA, 100µA, 1 mA, and 10 mA). V-T data are fitted 

with the best-calculated linear model. 

 

Moreover, in order to evaluate the agreement between the V-T data and the corresponding 

linear best-fit the coefficient of determination (R
2
) and the temperature error (eT ) had been 

calculated. In figure (4.51 (a)) is shown the calculated value of S and R
2
 for different bias 

currents. The V-T characteristics show a good degree of linearity. As reported, when I is 10 mA 

the sensitivity is 1.07mV/K and monotonically increases up to 2.41 mV/K for I =1 nA. The 

maximum of R
2
=0.99961 has been calculated for I=5.97 nA corresponding to a sensitivity 

S=2.33 mV/K.  

The temperature error eT between the V-T data and the corresponding linear best-fit, 

evaluated as: 𝑒𝑇 = 𝑆−1𝑒𝑅𝑀𝑆,𝑉 = 𝑆−1 𝑛−1  (𝑉𝐷,𝑖 − 𝑓𝐿,𝑖)2𝑛
𝑖=1 . The calculated plot, eT versus I, for 

the considered temperature range is reported in figure (4.51(b)). eT is always lower than 3.4 K for 

applied current values in the range from 1 nA to 10 mA while the minimum eT = 1.14 K is 

obtained for I = 5.97 nA. 

     These results show that W/4h-SiC Schottky diodes are good candidates for high 

temperature sensing applications in a wide range of biasing currents. 
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Figure. 4.51. (a) Coefficient of determination and sensitivity calculated for 

1165 values of the bias currents between I = 1 nA and 10 mA. 

(b) Corresponding RMSE in the temperature range T = 303–948 K. 
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4.5.  Analysis of main results 

I–V–T characteristics are usually used in order to identify the different conduction 

mechanisms in current transport. The electronic transport in metal/SiC contacts is of great 

importance, and the exact description of the forward characteristics is still in issue. 

The forward I-V characteristics of Ti/Al 4H–SiC, Mo/4H–SiC and W/4H–SiC Schottky 

barrier diodes devices was investigated by means of a combined numerical and analytical 

simulation study in wide temperatures range. The simulated characteristics of Ti/Al 4H–SiC 

obtained by considering a pure thermionic emission (TE) theory with homogeneous Schootky 

barrier height did not fit the experimental ones due to the strong temperature dependence of 

barrier height and ideality factor. The model proposed by Padovani and Sumner were adopted in 

order to precisely fitted the experimental I-V characteristics of Ti/Al 4H–SiC SBD, because it 

has been already stated that no deep level has been proved in the diode annealed at high 

temperatures by using the DLTS (deep-level transient spectroscopy measurements). While the 

forward I-V characteristics Mo/4H–SiC and W/4H–SiC was simulated in the cylindrical 

coordinate system only by using the thermionic emission model in a commercial device 

simulator Atals-Silvaco after calibrating the barrier height as such mentioned in [120] and [121]  

due to the small values of the ideality factor of these devices and results showed a good 

agreement with the experimental data.  

The simulated characteristics of Ti/Al 4H–SiC showed an intersection in curves I-V, unlike 

the simulated curves I-V of Mo/4H–SiC and W/4H–SiC SBDs, this can be attributed to great 

degree of inhomogeneity of BH in Ti/Al 4H–SiC compared to Mo/4H–SiC and W/4H–SiC SBDs 

ones. Subhash Chand [127] have reported that the crossing of I–V curves is an inherent property 

even of homogeneous Schottky diodes of constant BH and is normally hidden due to saturation 

in current caused by series resistance. While the intersection of I-V curves is observable in the 

normal range due to the apparent temperature-dependent BH in inhomogeneous Schottky diodes. 

Analysis of the current–voltage characteristics of Ti/Al 4H–SiC, Mo/4H–SiC and W/4H–

SiC Schottky structure based on thermionic emission mechanism showed some anomalies such 

that the increase in the barrier height ΦB and decrease of ideality factor n with increasing 

temperature. In addition to the extracted value of the effective Richardson constant has been 

found to be several orders of magnitude lower than the theoretically predicted value (146 Acm
-

2
K

-2
). The most common effects to explain these anomalies were investigated. A flat-band barrier 

height, image force lowering, and tunnelling effects have all been used to help explain the 

temperature-dependent barrier heights observed.  Furthermore, it was demonstrated that the 
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abnormal characteristics observed in the barrier height, ideality factor and Richardson plot only 

cannot be caused by the factors such as image-force lowering barrier, flat-band barrier height and 

tunneling. 

The temperature dependence of ideality factor in Schottky diodes is called the “T0 effect”. 

The determination of T0 value allows knowing the degree of SBH inhomogeneity. The values of 

T0 obtained varied from 52K to 264K in the 85 – 445 K temperature range for the Ti/Al 4H–SiC, 

While its value were found to be 15.07K and 21.47K for Mo/4H–SiC and W/4H–SiC Schottky 

diodes, respectively. The high values of T0 for the Ti/Al 4H–SiC compared to Mo/4H–SiC and 

W/4H–SiC SBDs ones indicate a strong deviation from the pure TE model as well as to the high 

degree of SBH inhomogeneity. According to Saxena [100], the variation of T0   as a function of 

temperature Indicates the presence of TFE mechanism. 

The abnormal behaviour in the temperature dependent ideality factor and the barrier height 

in the Mo/4H–SiC and W/4H–SiC SBDs have been successfully cleared up accounting the (TE) 

theory with a single-Gaussian distribution of the BH having spatial variations due to the less 

degree of SBH inhomogeneity in these devices. While the observed behaviors in Ti/Al 4H–SiC 

SBD have been successfully interpreted by using the thermionic emission (TE) theory with a 

triple-Gaussian distribution of the barrier height (BH) in three different temperature ranges and 

this is attributable to the high degree of SBH inhomogeneity in Ti/Al 4H–SiC SBD, in addition 

to the possibility of TFE-dominated current transport. This possibility was further supported by 

the observed high characteristic energy E00 in the current transport below 230K. The possible 

origin of such high characteristic energies implies that the conduction mechanism is dominated 

by TFE at low temperatures instead of TE. The origin of high characteristic energies was not 

predicted by the simple theory, but has been related to several effects. The parameter, E00 is 

related to the transmission probability of the carrier through the barrier. It is affected by the 

electric field at the semiconductor surface and the density of states at the semiconductor. 

 Based on information gained from SiC defect investigation and various accomplishments 

published by other researchers, the more credible causes of these inhomgeneities can be 

attributed to the different conditions of preparation of the devices, i.e. the quality of the 

semiconductor, surface preparation, the morphology of the surface, the edge of termination used 

and also the temperature of annealing. 

Proceeding from the results presented in our study, we believe that the reaction mechanism 

in Al/Ti 4H-SiC Schottky contact which  formed by depositing Al/Ti on the SiC substrate and 

annealed at 1000 
0
C lead to a formation of Al spiking. The reactions and the creation of new 
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phases, which is due to the greater amount of heat used in the annealing treatment, can increase 

the barrier height and lead to significant inhomogeneity due to a mixture of different phases at 

the M-S interface and yield a high T0 value. As we believe that the reaction mechanism Mo/4H–

SiC and W/4H–SiC Schottky contacts annealed at 500 
0
C lead to a formation of a silicide and 

carbide which are stable with SiC, so less inhomogeneity is expected with SiC and yield a low 

value of T0. 

In our study, the Ti/Al 4H–SiC, Mo/4H–SiC and W/4H–SiC Schottky barrier diodes based 

temperature sensors for high power and high temperature sensing applications, were 

characterized. Results showed a good degree of linearity (R
2
(Ti/Al 4H–SiC )=0.9999, 

R
2
(Mo/4H–SiC)=0.9997, R

2
(W/4H–SiC)=0.9996 ) and a high sensitivity (S(Ti/Al 4H–SiC )=1.7 

mV/K, S(Mo/4H–SiC)=1.14 mV/K, S(W/4H–SiC )=2.41 mV/K) in a wide temperature range. It 

was seen that the good physical characteristics of Mo/4H–SiC (i.e. the barrier height is more 

stable and ideality factor n~1 remaining almost constant during the thermal variations) allow to 

obtain a highly linear sensor in a wide range of biasing currents with respect to those based on 

Ti/Al 4H–SiC and W/4H–SiC Schottky contacts. While the values of R
2
 showing a significant 

decline for higher bias currents in Ti/Al 4H-SiC, because the variation of series resistance versus 

temperature in Ti/4H-SiC structure is more important compared to the Mo/4H-SiC and W/4H–

SiC ones. These higher Rs values could be result from the change to α-TiAl phase at the Al–Ti 

interface layer because of excessive diffusion of Ti and Al, which is due to the greater amount of 

heat used in the annealing treatment. 
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Conclusion  

In this thesis, we have investigated the I-V-T characteristics of Ti/Al/4H–SiC, Mo/4H–

SiC and W/4H–SiC SBDs in order to fix the temperature effect on the main device electrical 

parameters. In particular, the experimental curves have been fitted over a wide temperatures 

range by means of a careful simulation analysis achieving an excellent agreement in the whole 

explored current range.  

The current-voltage (I-V) characteristics of Ti/Al 4H-SiC Schottky barrier diodes (SBDs) 

have been investigated in the 85 - 445 K temperature range. Simulation results showed a good 

agreement with measurements in the whole explored current range from 10 µA to 10 mA. The 

main device electrical parameters, such as the barrier height and ideality factor, were found 

strongly temperature-dependent. In particular, the ideality factor decreases while the barrier 

height increases with increasing temperature. The observed behaviors have been successfully 

interpreted by using the thermionic emission (TE) theory with a triple-Gaussian distribution of 

the barrier height (BH) in three different temperature ranges, namely85 ≤ΔT1≤ 135 K, 

180≤ΔT2≤ 270 K, and 315≤ΔT3≤ 445 K. The corresponding Richardson constants are             

A1* =138.59 Acm
-2

K
-2

, A2* =275.62 Acm
-2

K
-2

, and A3* =141.89 Acm
-2

K
-2

, respectively. These 

values are close to the theoretical result of 146 Acm
−2

K
−2

 for n-type 4H-SiC. It has been 

highlighted that the current flowing through the Schottky junction is also determined by the 

thermionic field emission (TFE) mechanism. The obtained results reveal that the device is well 

suited for temperature sensing applications, showing a good coefficient of determination,           

R
2
 = 0.9999 for I =76.7 µA corresponding to a sensitivity S=1.7 mV/K. The temperature error 

between the voltage measurements and their linear best-fit is lower than 1.14 K. 

The experimental forward current-voltage-temperature (I-V-T) characteristics of Mo/4H-

SiC Schottky barrier diodes (SBDs) are investigated by means of a careful simulation study. The 

simulations are in excellent agreement with measurements in the whole explored current range 

extending over ten orders of magnitude for temperatures from 303 K to 498 K. The diode 

ideality factor tends to decrease while the Schottky barrier height increases with increasing 

temperature. These variations are explained on the basis of the thermionic emission (TE) theory 

with a single- Gaussian distribution of the barrier height (BH) around the Mo/4H-SiC interface. 

The calculated Richardson constant is A* = 155.78 Acm
-2

K
-2

, which is very close to the 

theoretical value of 146 Acm
-2

K
-2

 expected for n-type 4H-SiC. The device performance as 

temperature sensor has been evaluated. For a forward bias current that spans from 100 nA to 1 

mA, the simulation results showed a good coefficient of determination R
2
 = 0.99974 (100 nA ≤ I 
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≤ 1 mA) and a high sensitivity value S = 1.92 mV/K (I= 1 μA). The temperature error calculated 

between the voltage measurements and their linear best-fit is in the limit of 1.5 K. 

 The current-voltage (I-V) characteristics of W/4H-SiC Schottky barrier diodes (SBDs) 

have been investigated in the 303 - 448 K temperature range. Simulation results showed a good 

agreement with measurements in the whole explored current range from 100 nA to 10 mA. The 

main device electrical parameters, such as the barrier height and ideality factor, were found 

strongly temperature-dependent. In particular, the ideality factor decreases while the barrier 

height increases with increasing temperature. The observed behaviors have been successfully 

interpreted by using the thermionic emission (TE) theory with a single-Gaussian distribution of 

the barrier height (BH). The corresponding Richardson constants are A*=148.8 Acm
-2

K
-2

. This 

value is close to the theoretical result of 146 Acm
−2

K
−2

 for n-type 4H-SiC. The performance of 

temperature sensor based on W/4H-SiC Schottky diodes is investigated in the range from 1 nA to 

10 mA for the whole temperature range of 303 K up to 448 K. The simulation results reveal that 

at a bias current of 5.97 nA, the diode forward voltage shows a good linear dependence on the 

temperature R
2
=0.99961, with a sensitivity of 2.33 mV/K and a temperature error of 1.14 K. 

On the basis of various achievements published by other researchers and according to the 

results presented in our study, It can be said that the reaction between the metal and SiC may 

occur at the interface during the annealing treatments, and the interface material, particularly the 

new phases formed in the interface, plays a key role in the electrical properties of the contact. 

The performance of SiC Schottky diodes as temperature sensors largely depends on the quality 

of the metal/SiC contact. 

Optimization of 4H-SiC Schottky diodes for temperature Sensing and precise 

characterization are one of the perspectives for future work. Numerical simulation study of the 

influence of physical and geometrical parameters of Schottky diodes, such as epilayer, doping 

concentration and thickness on the sensors performance is an important step towards the 

optimization of these sensors. Future work should include also investigation of the behavior of 

Mo/4H-SiC and W/ 4H-SiC Schottky diodes as sensors at temperatures lower than 303 K, to 

enable their use in harsh environments, such as aerospace as well as terrestrial applications. 
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