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Abstract

In this work two major hydrodynamic parameters: the holdup of the dispersed phase

and the Sauter diameter are considered. In the first part, this is done for describing

the hydrodynamics of interacting liquid–liquid dispersions with using different drop

breakup, coalescence and growth models in a droplet population balance model. Based

on the variational iteration method, different process cases have been performed and, it

is possible to find the exact solution or a closed approximate solution of a problem. For

the simultaneous growth and the coalescence terms a comparison between the present

method and projection method which include discontinuous Galerkin and collocation

techniques are made respectively. The results are encouraging and the new method has

proven to be suitable to predict holdup and Sauter diameter profiles.

In the second part, we extended the dual quadrature method of generalized moments

(DuQMoGeM) to solve the population balance model for the hydrodynamics of liquid-

liquid extraction columns using a multi-compartment model. The DuQMoGeM results

were compared to analytical solutions for batch and continuous well-mixed vessels and

extraction columns, showing that it is accurate for predicting the evolution of the low

order moments and the drop number distribution along with the column height. We

also modeled a Kühni column for which the simulation accurately predicted the steady-

state experimental holdup, encouraging the DuQMoGeM usage to solve the population

balance equation for heterogeneous systems and different columns.

Keywords: Population balance, Variational iteration method, DuQMoGeM, liquid-liquid

dispersion, numerical modeling.



Resumé

Dans ce travail, deux paramètres hydrodynamiques majeurs : la rétention de la phase

dispersée et le diamètre de Sauter sont considérés. Dans la première partie, ceci est fait

pour décrire l’hydrodynamique des dispersions liquide-liquide en interaction en util-

isant différents modèles de rupture, de coalescence et de croissance des gouttes dans un

modèle de bilan de population de gouttes. Basé sur la méthode d’itération variation-

nelle, différents cas de processus ont été réalisés et il est possible de trouver la solution

exacte ou une solution approximative fermée d’un problème. Pour les termes de crois-

sance et de coalescence simultanées, une comparaison entre la méthode actuelle et la

méthode de projection qui inclut des techniques de Galerkin discontinu et de colloca-

tion est faite respectivement. Les résultats sont encourageants et la nouvelle méthode

s’est avérée adaptée à la prédiction des profils de Holdup et de diamètre de Sauter.

Dans la deuxième partie, nous avons étendu la méthode de double quadrature des mo-

ments généralisés (DuQMoGeM) pour résoudre le modèle de bilan de population pour

l’hydrodynamique des colonnes d’extraction liquide-liquide en utilisant un modèle multi-

compartiments. Les résultats de DuQMoGeM ont été comparés à des solutions an-

alytiques pour des vessels et des colonnes d’extraction en batch et en continu bien

mélangés, montrant qu’elle est précise pour prédire l’évolution des moments d’ordre

faible et la distribution du nombre de gouttes en fonction de la hauteur de la colonne.

Nous avons également modélisé une colonne Kühni pour laquelle la simulation a prédit

avec précision la rétention expérimentale en régime permanent, ce qui encourage l’utilisation

de DuQMoGeM pour résoudre l’équation de bilan de population pour des systèmes

hétérogènes et des colonnes différentes.

Mots clés : Bilan de population, Méthode d’itération variationnelle, DuQMoGeM, dis-

persion liquide-liquide, modélisation numérique.
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وقطر(Holdup)المشتتالطوراحتجاز:رئيسيينهيدروديناميكيينمعاملينالاعتباربعينالأخذتمالعملهذافي
Sauter.نماذجاستخدامبالمتفاعلسائل-سائلللتشتتالهيدروديناميكيةلوصفذلكإجراءيتمالأول،الجزءفي

التحليليةالشبهحلالطريقةعلىبناء  .للقطيراتالكثافةتوازن نموذجفيوالنمووالاندماجالقطراتلتفككمختلفة
حلعلىورالعثالممكنومن،مختلفةعمليةحالاتإجراءتم،المتغيرالتكرارطريقةالمسماة،لكثافةالتوازن 

الحاليةالطريقةنبيمقارنةإجراءيتم،الاندماجمعالمتزامنللنموبالنسبة.مالمشكلةمغلقتقريبيحلأوتحليلي
Discontinuous)المتقطعةجالركينتقنياتتتضمنالتيالإسقاطوطريقة Galerkin)التجميعوتقنيات

(Collocation)احتجازبمنحنىؤللتنبمناسبةأنهاالجديدةالطريقةأثبتتوقد،مشجعةالنتائجكانت.التواليعلى
.Sauterقطركذلكوالمشتتةالمرحلة

لحل(DuQMoGeM)المعممةللحظاتالمزدوجةالرباعيةالطريقةاستعمالنطاقبتوسيعقمنا،الثانيالجزءوفي
وقورنت.وراتالمقصمتعددنموذجباستخدامسائل-سائلاستخلاصلأعمدةللهيدروديناميكيةكثافةالتوازن نموذج

يبينمما،الاستخلاصوأعمدةمخلوطةالجدوالمستمرةالمغلوقةللمفاعلاتالتحليليةبالحلولDQMoGeMنتائج
قمناكما.العموداعارتفطولعلىالقطيراتكثافةوتوزيعالمنخفضةالرتبذاتاللحظاتبتطورللتنبؤدقيقةأنها

استخدامشجعمماالمستقرة،الحالةفيالتجريبيHoldupـللبدقةالمحاكاةتنبأتحيثKühniعمودبنمذجة
DQMoGeMالمختلفةوالأعمدةمتجانسةغيرالللأنظمةالكثافةتوازن معادلةلحل.

.عدديةنمذجة,سائل-سائلتشتت،DuQMoGeMالتغييري،التكرارطريقةالكثافة،توازن :مفتاحيةكلمات
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General introduction

Liquid–liquid extraction is an important separation technique in chemical engi-

neering, it finds many applications in hydrometallurgy, pharmaceuticals, petrochemical

industry, environmental protection, and nuclear industry. Recently, it has gained more

attention due to many reasons: increasing demand for heat-sensitive products in phar-

maceutical industries, availability of selective low cost solvents and chelating agents

has improved, the growing interest in products those must be separated from dilute

aqueous solutions Laitinen et al., 2019.

In general, a liquid-liquid extraction system consists of two almost immiscible

phases, with one dispersed in the form of fine droplets in the other continuous liq-

uid phase. Several relevant properties of the dispersed phase come from the number

density distribution that may change due to several mechanisms such as coalescence,

breakage, and growth. However, the number density distribution evolution comes from

solving a population balance equation. Consequently, population balance modeling is

a powerful tool for predicting the dispersed phase behavior in liquid-liquid extraction

equipment, such as columns and reactors Ramkrishna, 2000. In this sense, many scien-

tific papers accomplished modeling and simulation of liquid-liquid extraction columns

by the population balance equation. It became essential for modeling multiphase flow,

mainly when a strong coupling exists between the number density distribution and the

phase velocity fields Bart et al., 2020.

The determination of the total number dispersed phase hold-up and the particle

size distributions in biphasic contactors is a key of chemical engineering processes in

chemical industries, such as drops or bubbles columns, dispersed phase polymerization

and reactions in organic chemistry. Such systems have been modelled using population
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General introduction

balance modelling, a method that describes the variations in size distribution of the

dispersed phase as an averaged function of the behavior of individual particles, drops

or bubbles. This approach requires description of the interactions of the dispersed phase

such as breakage, aggregation and growth.

Mathematically, the population balance equation (PBE) is an integro-differential

equation that is usually difficult enough to solve analytically. Therefore, it has solutions

just for a few simple cases. Several researchers have developed numerical methods to

find approximated solutions. A possible classification groups these methods into the

following categories: methods of moments, stochastic methods, and discretization (or

class) methods.

The most common discretization methods are the finite difference, finite element,

and finite volume methods. They all discretize the domain of the internal coordinate (for

instance, droplet diameter) Bart et al., 2020; Su et al., 2009. Although straightforward

and accurate for calculating the particle size distribution, they have high computational

costs to guarantee mass conservation Bart et al., 2020. These methods can approximate

the distribution function in each discretization interval by a unique value (zero-order

methods) or use high-order polynomials (higher-order methods) Bart et al., 2020.

Gelbard and Seinfeld, 1978 applied the orthogonal collocation on finite elements

to the population balance equation. Nicmanis and Hounslow, 1996 solved a continuous

crystallizer’s steady-state population balance model using the Galerkin method and

the orthogonal collocation methods on finite elements. Mantzaris et al., 2001a, 2001b

used the finite difference and finite element methods to solve multivariate cell popu-

lation balance models. S. Kumar and Ramkrishna, 1997; S. Kumar and Ramkrishna,

1996a, 1996b proposed three new approaches: the fixed pivot, the moving pivot, and

the Lagrangian-moving pivot discretization methods. Campos and Lage, 2003 simu-

lated a bubble extraction column using the Lagrangian-moving pivot technique. M. M.

Attarakih et al., 2004 developed the extended fixed pivot technique (EFPT) to solve the

PBE describing the hydrodynamics of interacting liquid-liquid phases.

Hulburt and Katz, 1964 introduced the method of moments. It has various ad-

vantages, such as efficiency, accuracy, and low computational cost, making it widely
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used to solve the PBE. On the other hand, it does not give an approximation for the

particle number distribution Bart et al., 2020. However, some mathematical techniques

for reconstructing the size distribution function from its moments exist in the litera-

ture John et al., 2007. One of the most famous moments methods is the quadrature

method of moments. It was first introduced and applied by McGraw, 1997 to describe

the growth of aerosols and then extended to models with aggregation and breakage

by Marchisio et al., 2003b. The main idea behind this method is the approximation of

the integrals by the Gaussian quadrature constructed from the number density distri-

bution moments. Marchisio and Fox, 2005 introduced the direct quadrature method of

moments, whose central idea is the solution of transport equations for the quadrature

weights and abscissas, avoiding their computation along the solution. M. M. Attarakih,

Bart, and Faqir, 2006a introduced the sectional quadrature method of moments (SQ-

MOM), which is a hybrid method involving the methods of classes and moments. The

SQMOM discretizes the particle size domain in sections. The so-called primary particle

represents the particle size in each one, being calculated from the secondary particles

that are the abscissas of a local low-order quadrature. These local quadratures compute

the breakage and coalescence terms.

The method of moments lacks a representation of the particle number distribu-

tion. P. L. Lage, 2011 introduced the dual quadrature method of generalized moments

that gives a series approximation for the number density distribution using an orthogo-

nal polynomial family whose coefficients are related to the generalized moments of the

distribution for this polynomial family. The usage of high-order fixed-point Gaussian

quadratures based on the same polynomial family controls the accuracy of the inte-

gral terms. Santos et al., 2013 introduced the direct version of DuQMoGeM that solves

transport equations for the weights and abscissas of the Gauss-Christoffel quadrature.

Another method that provides an approximation for the distribution is the extended

quadrature method of moments (EQMOM), introduced by Yuan et al., 2012. It rep-

resents the number density distribution by a series of kernel density functions (KDF)

whose locations are the abscissas of the Gauss-Christoffel quadrature. The EQMOM

employs secondary Gaussian quadratures based on the KDFs to control the solution

accuracy.
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Recently much attention has been given to develop some semi analytical meth-

ods namely Adomian decomposition method and variational iteration method for solv-

ing PBE in stirred tank Hasseine, Barhoum, et al., 2015; Hasseine et al., 2011; Hasseine,

Senouci, et al., 2015 and successive generation method Liou et al., 1997 for the one-

dimensional gas-phase model in a bubble column reactor with simplifed hydrodynam-

ics Campos and Lage, 2003.

The variational iteration method was first proposed by He J. He, 1997 and it is

well known that VIM provide the most versatile tools available in nonlinear analysis

problems J.-H. He, 2000b, 2004b, 2006, 2007; Mohyud-Din et al., 2017 . This method

has been shown to be effective, easy and can accurately solve a large class of nonlinear

problems. Generally, one or two iterations lead to high accurate solutions. This method

is, in fact, a modification of the general Lagrange multiplier method into an iteration

method, which is called correction functional.

This work developed a semi analytical methodology to solve the dynamic multi-

dimensional PBE including advection in the internal and external coordinates, breakage,

aggregation and growth that is based on the variational iteration method and solved

also the PBE for the growth process by the discontinuous Galerkin method, which first

was applied by Sandu and Borden, 2003 for the aerosol dynamics. The discontinuous

Galerkin method was designed as an effective numerical method for solving hyperbolic

conservation laws, which may have discontinuous solutions Cockburn, 2003; Cockburn

and Shu, 1989.

This work also represented a numerical study that is the application of the DuQMo-

GeM to solve the population balance equation for liquid-liquid columns using a multi-

compartment model that represents a well-mixed vessel as a particular case.

Apart from this introduction which gives the aim objectives of this study ,this thesis is

structured as follows:

The first chapter is a bibliographical study of the population balance equation. It

touches upon the basic model for breakage, coalescence, growth and transport mecha-

nisms. It also discusses the resolution methods of the population balance equation.

The second chapter represents the equations of the model and details the model-
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ing of the liquid-liquid extraction columns. In particular, the model equation for both

dispersed and continuous phases, drop breakage, drop coalescence, drop transport and

axial dispersion.

The third chapter represents the results of solving the one-dimensional popula-

tion balance equation involving breakage, coalescence, growth and simultaneous phe-

nomenon by using the variational iteration method (VIM). For the simultaneous growth

and the coalescence, a comparison between (VIM) and projection method which in-

cludes discontinuous Galerkin and collocation techniques are carried out graphically

Hasseine et al., 2018.

The fourth chapter clearly explains how the DuQMoGeM is used to simulate the

Liquid-Liquid extraction columns. We first applied it to solve such population balance

models for test cases with analytical solutions. These include models for well-mixed

reactors in both continuous and closed systems and a liquid-liquid extraction column

without diffusion and with constant phase velocities. Finally, a realistic case of a Kühni

column was modeled and solved, and the results were compared to available experi-

mental data Athmani et al., 2022. The obtained results were carried out in collaboration

with the laboratory Programa de Engenharia Quimica, Instituto Alberto Luis Coimbra

de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro

(UFRJ).

Finally, a broad conclusion highlights all of the major findings from both analyt-

ical and numerical parts of this study.

5



Chapter I

A bibliographic review

I.1 Introduction

In general, multi-phase process consists of two phases with one dispersed in the

form of fine particles (droplet, bubble, crystal..) in the other continuous liquid phase.

The dispersed phase properties may be changed due to several mechanisms such as

coalescence, breakage and mass transfer. A particle is distinguished by two kinds of

coordinates (internal and external). The particle’s internal coordinates give a quanti-

tative characterization of its distinguishing characteristics, while the particle’s external

coordinates simply indicate where the particles are in physical space. However, the

evolution of particles in gas-liquid, gas-solid and liquid-liquid systems is modelled suc-

cessfully by the population balance equation. Consequently, it is regarded as a powerful

tool to predict the dispersed phase behavior in process equipment columns and reactors

Ramkrishna, 2000.

The first application of the PBE is according to the earlier work of Hulburt and

Katz, 1964 where they studied nucleation and growth of crystals, and then it had ex-

tensions to liquid-liquid interaction in continuous and batch flow systems Valentas and

Amundson, 1966, aerosol aggregation Gelbard and Seinfeld, 1978, cell biology Liou et

al., 1997. Ramkrishna and Singh, 2014 reviewed the application area of population bal-

ance with other statistical information like the number of published articles on popula-

tion balances per year. Mathematically, the population balance equation is defined as
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an integro-partial differential equation, usually, it is difficult enough to solve analyti-

cally. Therefore, it has solutions just for some few simple cases, and several numerical

methods were proposed to find approximated solutions.

The first parts of this chapter are concerned with the population balance equation

and its solution methods, while in the last part, some exact solutions that come from

previous research are presented.

I.2 Population balance equation

The PBE in one-dimensional can be expressed in terms of the number density

function n (t, z, v) using droplet volume v as the internal coordinate Ramkrishna, 2000:

∂n (t, z, v)
∂t

+∇vdn (t, z, v) = ∇ (Dd∇n (t, z, v)) + H (t, z, v) (I.1)

The second term on the left-hand side represents the droplet transport by convection

with a dispersed phase velocity vd, the first term on the right-hand side is the droplet

transport by diffusion, where Dd is the dispersion coefficient of the dispersed phase.

Breakage, coalescence and growth terms are collected in H (t, z, v):

H (t, z, v) = Hb (t, z, v) + Ha (t, z, v) + Hg (t, z, v) (I.2)

The population balance equation describing the hydrodynamic behavior of the dis-

persed phase in a continuous well-mixed system could be written as Ramkrishna, 2000:

∂n (t, v)
∂t

=
1
th

(nin (t, v)− n (t, v)) + H (t, v) (I.3)

Where nin (t, v) and n (t, v) is the number density function and the inflow distribution,

respectively. th is the mean residence time of the dispersed phase. For a batch reactor,

the equation (I.3) takes this form:

∂n (t, v)
∂t

= H (t, v) (I.4)
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In order to understand this equation, we must explain its source terms in details, these

will be discussed under the relevant subsections:

I.2.1 Breakage

Breakage is the result of viscous shear forces and turbulent pressure fluctuations

in the vicinity of a droplet. Drop breakage occurs when a single droplet (mother drop)

divides into several daughter droplets, which reduces droplet volume and increases

the number of droplets. The breakage frequency g (z, v) and the distribution of droplet

sizes resulting from the breakage of a mother drop β (v/v′) are adequate to describe the

breakage process, its term is given by Valentas et al., 1966:

Hb =
∫ ∞

v
β
(
v/v′

)
g
(
z, v′

)
n
(
t, z, v′

)
dv′ − g (z, v) n (t, z, v) (I.5)

The integral term represents droplet formation due to breakage, while the other term

represents droplet loss due to breakage. The function β (v/v′) must satisfy: β(v/v′) =

0, v > v′.

I.2.2 Coalescence:

This breakage process is balanced by coalescence. It is a complicated mechanism

where two or more drops merge into a larger drop. However, it has been discussed

in detail in the paper of Valentas and Amundson, 1966. In Muralidhar and Ramkr-

ishna, 1986 the drop coalescence mechanism in a turbulent flow field was considered as

a problem of film drainage under the action of turbulent forces. In general, the coales-

cence phenomena are characterized by coalescence frequency ω (z, v, v′), and consist of

two terms birth (+) and death (-), which are rewritten as Valentas and Amundson, 1966:

Ha(t, z, v) =
1
2

∫ v

0
ω
(
z, v − v′, v′

)
n(t, z, v)n

(
t, z, v − v′

)
dv′

−
∫ ∞

0
ω
(
z, v, v′

)
n(t, z, v)n

(
t, z, v′

)
dv′

(I.6)
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The first introducing of this function is related to the study of Marian Smoluchowski

Smoluchowski, 1916.

Figure I.1: Graphical representation of the breakage and coalescence terms, balance of
a drop with diameter dj Kopriwa et al., 2012

In Marchisio et al., 2003b the most common employed aggregation kernels (constant,

Brownian, sum. . . ) and breakage kernels (constant, power law, exponential) were listed,

the PBE was also formulated in terms of the number density function using particle

length as the internal coordinate.

The breakage and coalescence terms (birth and death) are presented graphically in the

Figure I.1, which shows how each term affects the number of drops.

I.2.3 Growth

Due to mass transfer between phases, droplet volume may be changed. Growth

is the process by which non-particulate matter becomes incorporated within a particle,

it is defined as movement along the particle volume, this phenomenon is described by a
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rate, this is often called growth rate G (v), the growth term is reckoned as M. Hounslow,

1998:

Hg (t, z, v) =
∂ (G (v) n (t, z, v))

∂v
(I.7)

where:

G (v) =
∂v
∂t

(I.8)

In the crystallization process, anotheranother phenomenon, so-called nucleation is taken

into account. It is a generation of the particles of size l0 from a supersaturated solution

with a rate of nucleation Bnuc (it is the rate of appearance of particles of zero size) M.

Hounslow et al., 1988; Marchal et al., 1988.

I.3 Methods for solving the population balance equation

This section will be concerned with solution methods for population balance

equations. Since the population balance equation solution is important, several solu-

tion methods have been proposed to solve it. However, its difficulty, especially in the

analytical way, M. M. Attarakih et al., 2004; Kopriwa et al., 2012; Su et al., 2009 reviewed

several methods for solving PBE. The numerical techniques can be grouped into the fol-

lowing categories: Method of moments, stochastic methods, high-order and zero-order

methods. Both numerical and analytical methods are discussed below. In order to facil-

itate their classification, they are represented schematically in Figure.I.2.

I.3.1 Direct discretization methods

The most common discretization methods (also called class method) are: the fi-

nite difference method, finite element method and finite volume method. They dis-

cretize directly the internal coordinate (droplet diameter, concentration, . . . ) in the so-

lution domain. Bart et al., 2020; Su et al., 2009. They are straightforward methods with

accurate calculation of particle size distribution. Their mean drawbacks are the long

computational time while guaranteeing the conservation of mass Bart et al., 2020. The

direct discretization methods are classified into two categories: zero-order methods and
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Figure I.2: Numerical and analytical methods to solve the population balance equation

Higher-order methods.

In zero-order methods, the droplet size is divided into a finite number of classes. In

each class, the distribution is represented by a constant value (zero-order polynomial).

Higher-order methods approximate the drop-size distribution by higher-order polyno-

mials, usually, the cubic polynomials are used.

In the earliest work of Gayler et al., 1953, they applied the orthogonal collocation on fi-

nite elements to the solution of the population balance equation for particulate systems.

Nicmanis and Hounslow, 1998 solved steady-state population balance equation for con-

tinuous crystallizer using the Galerkin and the orthogonal collocation methods on finite

elements. Mantzaris et al., 2001a, 2001b used the finite difference method and finite

element method for multi-variable cell population balance models. Two promise ap-
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proaches were proposed by S. Kumar and Ramkrishna, 1996a, 1996b: the fixed pivot dis-

cretization method and the moving pivot discretization method. These methods have

been used in the commercial CFD software ANSYS CFX§and ANSYS Fluent§Bart et al.,

2020. In Campos and Lage, 2003 they used the fixed-pivot technique to simulate a bub-

ble column. In M. M. Attarakih et al., 2004 they have extended the fixed-pivot technique

(EFPT) to solve the PBE describing the hydrodynamics of interacting liquid-liquid.

I.3.2 Monte Carlo method (MC)

Monte Carlo method is a stochastic method. It is easy to program and can be

applied to multivariate PBE with respect to internal coordinate M. M. Attarakih et al.,

2004. It is difficult to couple this method with CFD code due to its discrete features and

high computational expense. based on the driven pattern of the discrete physical events

this method is classified into time-driven algorithms and event-driven algorithms Su et

al., 2009. Altunok et al., 2006 Developed a simulator named ReDrop for LLEC. In the

ReDrop algorithm, individual drops and their ways are followed along an extraction

column. The ReDrop approach is a Monte-Carlo method to solve the drop-population

balances.

I.3.3 Method of moments MOM

The method of moments was initially introduced in 1963 by Hulburt and Katz,

1964. It has various advantages such as efficiency, accuracy, and low computational

time. Because of them, it is widely utilized to solve the PBE, but on the other hand,

it loses the size distribution function Bart et al., 2020. However, some mathematical

techniques for reconstructing the size distribution function from its moments have been

proposed in the literature John et al., 2007.

The population balance equation can be reduced to be a set of moment equations using

the following expression Hulburt and Katz, 1964:

µk (t, z) =
∫ ∞

0
vkn (t, z, v) dv (I.9)
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Where µ0, µ1 are the total number of particles and the total volume of particles, respec-

tively.

In order to assume the particle length is the internal variable, Marchisio et al., 2003b

transformed the PBE from volume form to length-based form using these considera-

tions:

The particle volume has a cubic form v ∝ l3 and dv = 3l2dl, where l is the particle

length.

For a constant droplet velocity, they obtained this general form:

∂n (t, z, l)
∂t

+ vd
∂n (t, z, l)

∂z
=

∂

∂z

(
Dax

∂n (t, z, l)
∂z

)
+ Ha (t, z, l) + Hb (t, z, l) + Hg (t, z, l)

(I.10)

Where, n (t, z, l) is the length-based number density function.

The aggregation term is:

Ha,k(t, z) =
1
2

∫ ∞

0
n
(
t, z, l′

) ∫ ∞

0
ω
(
z, u, l′

) (
u3 + l′3

)k/3
n(t, z, u)dudl′

−
∫ ∞

0
lkn(t, z, l)

∫ ∞

0
ω
(
z, l/l′

)
n
(
t, z, l′

)
dl′dl

(I.11)

Breakage term:

Hb,k(t, z) =
∫ ∞

0
lk
∫ ∞

l
β
(
l/l′
)

g
(
z, l′
)

n
(
t, z, l′

)
dl′dl

−
∫ ∞

0
g(z, l)lkn(t, z, l)dl

(I.12)

The growth term is:

Hg (t, z, l) = −∂ (G (l) n (t, z, l))
∂l

(I.13)

The kth moment of n (t, z, l) is defined as M. Hounslow et al., 1988:

µk (t, z) =
∫ ∞

0
lkn (t, z, l) dl (I.14)

The first four moments have the following physical meanings:

µ0: is the total number of particles.
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µ1: is the total length of particles.

µ2: is the total area of particles.

µ3: is the total volume of particles.

Applying the moment transformation given by equation (I.14) , we obtain Marchisio

et al., 2003a:

∂µk (t, z)
∂t

+ vd
∂µk (t, z)

∂z
=

∂

∂z

(
Dd

∂µk (t, z)
∂z

)
+ Ha,k (t, z) + Hb,k (t, z) + Hg,k (t, z)

(I.15)

This model has found wide uses in the description of the dispersed phase, especially in

the crystallization process. Source terms of the moments of n (t, z, l′) are written as:

Using the variable u: u3 = l3 − l
′3 and dl = u2/l2du, the aggregation term becomes:

Ha,k (t, z) =
1
2

∫ ∞

0
n
(
t, z, l′

) ∫ ∞

0
ω
(
z, u, l′

) (
u3 + l

′3
)k/3

n (t, z, u) dudl′

−
∫ ∞

0
lkn (t, z, l)

∫ ∞

0
ω
(
z, l/l′

)
n
(
t, z, l′

)
dl′dl

(I.16)

Breakage term:

Hb,k (t, z) =
∫ ∞

0
lk
∫ ∞

l
β
(
l/l′
)

G
(
l′
)

n
(
t, z, l′

)
dl′dl

−
∫ ∞

0
g (l) lk n (t, z, l) dl

(I.17)

The growth term is simplified as (disappearance of the derivative):

Hg,k (t, z) = −
∫ ∞

0
k lk−1G (l) n (t, z, l) dl (I.18)

There are several methods are derived from the method of moments, such as QMOM,

DQMOM and SQMOM; these will be discussed as follows:
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QMOM

One of the most moments methods is the quadrature method of moments. It

was first introduced and applied by McGraw, 1997 to describe the growth of aerosols.

The main idea behind this method is the approximation of the integrals by Gaussian

quadrature. Furthermore, the weights wi and the abscissas li are completely specified

in terms of the lower-order moments of the distribution function n (t, z, l).

For n quadrature point, the first 2n moments are calculated by McGraw, 1997:

µk (z, t) =
∫ ∞

0
lkn (t, z, l) dl =

n

∑
i=1

lk
i wi (I.19)

After applying the above quadrature rule, we obtain Marchisio et al., 2003a:

∂µk (t, z)
∂t

+ vd
∂µk (t, z)

∂z
=

∂

∂z

(
Dd

∂µk (t, z)
∂z

)
+ Ha,k (t, z) + Hb,k (t, z) + Hg,k (t, z)

(I.20)

The moments of the birth and death rates become:

Ha,k (t, z) =
1
2

n

∑
i=1

wi

n

∑
j=1

wj

(
l3
i + l3

j

)k/3
ωij −

n

∑
i=1

lk
i wi

n

∑
j=1

wjωij (I.21)

Hb,k (t, z) =
n

∑
i=1

gi β̄
k
i −

n

∑
i=1

giwi (I.22)

Where:

β
k
i =

∫ ∞

0
lkβ(l/li) dl (I.23)

The growth term is given by:

Hg,k (t, z) = k
n

∑
i=1

wi lk−1Gi (I.24)

Gordon, 1968 proposed an algorithm so-called product-difference algorithm to deter-

mine the weights and the abscissas that are needed for the quadrature.
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DQMOM

The principal idea of the direct quadrature method of moments is the direct so-

lution of the transport equations for weights and abscissas Fox, 2003. In DQMOM the

distribution function n (v, z, t) and its moments µk(z, t) are approximated by the follow-

ing summations Marchisio and Fox, 2005:

n (t, z, v) =
n

∑
i=1

vk
i wi (z, t) d [v − vi (t, z)] (I.25)

µk (t, z) =
∫ ∞

0
vkn (t, z, v) dv =

n

∑
i=1

vk
i wi (I.26)

Using these approximations, the general formula of DQMOM is these two transport

equations for the weights wi and weighted abscissas ςi Marchisio and Fox, 2005 :

∂wi

∂t
+

∂(
〈
vd,j
〉

iwi)

∂zj
− ∂

∂zj

(
Dd

∂wi

∂zj

)
= ai (I.27)

∂ςi

∂t
+

∂(
〈
vd,j
〉

iςi)

∂zj
− ∂

∂zj

(
Dd

∂ςi

∂zj

)
= bi (I.28)

Where ai and bi are the source terms and ςi = wi vi.

DuQMoGeM

The dual-quadrature method of generalized moments is a new numerical method

for solving the PBE, it was proposed first by P. L. Lage, 2011, and it was shown good

accuracy than the QMOM for breakage and aggregation problems. The key advantage

of the DuQMoGeM is its ability to reconstruct the distribution function.

In order to understand the principal idea of DuQMoGeM, we must define the general-

ized moment of the PBE firstly, those are given by:

µ
(ϕ)
k =

∫ vmax

0
n (t, v) ϕk (v) dv (I.29)

Where:
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ϕk (v), is an orthogonal polynomial of k order.

If ϕk (v) = vk, ϕk (v)become the regular moments µk.

After applying the moments transformation (I.29) to the PBE, with some manipulation

we get P. L. Lage, 2011:

∂µ
(ϕ)
k

∂t
+
∫ vmax

0
G(t, v)n(t, v)ϕk(v)dv + [G(t, v)n(t, v)ϕk(v)]

vmax
0︸ ︷︷ ︸

growth term

+
∫ vmax

0

∫ vmax

0

[
ϕk(v)−

1
2

ϕk
(
v + v′

)]
ω
(
t, v, v′

)
n(t, v)n

(
t, v′
)

dvdv′︸ ︷︷ ︸
aggregation term

+
∫ vmax

0
g(t, v)

[
ϕk(v)− ϑ(t, v)Πϕ

k (t, v)
]

n(t, v)dv︸ ︷︷ ︸
breakage term

=
∫ vmax

0
ϕk(v)S(t, v)dv︸ ︷︷ ︸

nucleation term

(I.30)

Where:

Πϕ
k (t, v) =

∫ vmax

0
ϕk
(
v′
)

B(t,
v′

v
)dv′ =

∫ v

0
ϕk
(
v′
)

B(t,
v′

v
)dv′ (I.31)

ϑ (t, v) : is the number of daughters upon breakage. g (t, v) : is breakage frequency.

B
(

t, v′
v

)
: is the daughter probability density function for particle breakage. It must

satisfy the normalization condition Ramkrishna, 2000:

∫ vmax

0
B(

v′

v
, t)dv = 1 (I.32)

Conservation of mass requires that:

B
(

v′

v
, t
)
= 0, if v ≥ v′ (I.33)

The dual-quadrature method of generalized moments consists of two quadrature rules,

one is a discretization of the particulate system, and the other is an accurate calculation

of the integrals in the equations for the generalized moments P. L. Lage, 2011. The

17



Chapter I A bibliographic review

number density function is approximated by:

n (t, v) = w (v)
2n−1

∑
i=0

ci (t) ϕi (v) (I.34)

The coefficient ci is calculated by:

ci =
1

∥ϕi∥2
dλ̄

∫ vmax

0
ϕin (v) dv (I.35)

We can write:

ci =
µ
(ϕ)
i

∥ϕi∥2
dλ̄

(I.36)

By applying n-point Gaussian quadrature to the (I.35), the coefficient ci can be written

as:

ci =
1

∥ϕi∥2
dλ̄

n

∑
j=1

wj φi
(
ξ j
)

(I.37)

The choice of the polynomial ϕi is according to the v interval:

1. For a finite interval,v ∈ [0, vmax] , w (v) = 1, the Legendre polynomials shifted to

the given interval must be taken.

2. For a semi-infinite interval, v ∈ [0, ∞] , w (v) = vae−v, the generalized Laguerre

polynomials must be used.

3. For an infinite interval, v ∈ [−∞, +∞] , w (v) = e−a2v2
, which results in the Her-

mite polynomials.

Here, a short discerption of the weighted residual method based on the generalized

moments:

Substituting n (v, t) by its approximation, the equation (I.30) becomes P. L. Lage, 2011:

∂

∂t

2n−1

∑
i=0

Pki ci +
2n−1

∑
i=0

Gki ci +
2n−1

∑
i=0

Lki ci +
2n−1

∑
i=0

2n−1

∑
j=0

Akij cjci = sk (I.38)

Where:

µ
(ϕ)
i =

2n−1

∑
i=0

Pki ci (I.39)
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More details about these terms Gki, Lki, Akij and sk in both integral and quadrature

forms, are provided and discussed in P. L. Lage, 2011. In Santos et al., 2013, they coupled

the Dual Quadrature Method of Generalized Moments (DuQMoGeM) with the Direct

Quadrature Method of Moments to be D2uQMoGeM.

SQMOM

The Sectional Quadrature Method of Moments is a combined method between

the classes method and the method of moments, where the particle size is discretized to

be Npp sections, the population in each section is called primary particle that is formed

from the secondary particles, the latter are responsible for droplet breakage and droplet

coalescence. The population in the ith section [di−1/2, di+1/2] is represented in term

of weights wj
⟨i⟩ and abscissas dj

⟨i⟩ as M. M. Attarakih, Bart, and Faqir, 2006a; M. M.

Attarakih et al., 2009:

n⟨i⟩ (t, d) =
Nsp

∑
j=1

wj
⟨i⟩ (t) d

(
d − dj

⟨i⟩ (t)
)

, i = 1, 2, 3, . . . ., Npp (I.40)

In SQMOM the distribution can be reconstructed from the primary particles, this is one

of its advantages M. M. Attarakih et al., 2009.

n (t, d) =
Npp

∑
i=1

w̃j (t) d
(
d − d̃j (t)

)
, i = 1, 2, 3, . . . ., Npp (I.41)

Where, d̃j and w̃j are the mean abscissas and weights, respectively. Thus, the sectional

moments of order k are calculated by M. M. Attarakih et al., 2009:

µk
⟨i⟩ =

Nsp

∑
j=1

wj
⟨i⟩
(

dj
⟨i⟩
)k

, k = 0, 1, 2 . . . ., 2Nsp − 1 (I.42)

OPOSPM

The One Primary and One Secondary Particle Model (OPOSPM) was developed

by M. M. Attarakih, Bart, and Faqir, 2006b. It is a special case of the sectional quadrature

method of moments where only one primary particle and one secondary particle are
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considered. This model is a system of two differential equations, usually by selection.

They are the total number NT and the total volume concentrations rd. Its advantages

are: retains the simplicity in structure, ease of explanation and efficient in coding M. M.

Attarakih, Bart, and Faqir, 2006b, the OPOSPM can be described by M. Attarakih et al.,

2013 :

∂

∂t

(
NT

rd

)
+

∂

∂z

(
vdNT − Dd

∂NT
∂z

vdrd − Dd
∂rd
∂z

)
=

(
vd,in/vin

vd,in

)
δ (z − zd) +

(
H

v̇
(

d
)

NT

)
(I.43)

S term on the right-hand side of the above equation represents a spatial point source

term. While v̇ (d) NT is the source term for volume concentration, which represents

particle growth or contraction due mass transfer M. M. Attarakih, Bart, and Faqir, 2006b.

H = (ϑ (d30)− 1) g (d30) NT − 1
2

ω ((d30) , (d30)) N2
T (I.44)

The mean diameter d30 is given as:

d30 = 3

√
π

6
rd
NT

(I.45)

I.3.4 Semi-analytical methods

In this part, we present the most common approaches that were used to solve

the population balance equation analytically. The semi-analytical methods like Ado-

mian method, variational iteration method and Homotopy perturbation method had

attention in recent years because of their simplicity in implementation and accuracy in

solving. Following the work of Pr Hasseine, they were used to solve the PBE in the batch

system and were extended for the continuous one (dynamic and steady-state) Hasseine,

Barhoum, et al., 2015; Hasseine et al., 2011; Hasseine et al., 2017; Hasseine et al., 2020;

Hasseine, Senouci, et al., 2015, where their exact solutions were found.
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Adomian decomposition method (ADM)

In 1980, George Adomian introduced an efficient analytical method, so-called

Adomian decomposition method to solve easily and accurately algebraic, differential,

integral and integro-differential equations. It is based on giving the solution as an infi-

nite power series, which usually converges to exact solution Adomian and Rach, 1986;

Adomian, 2013. Recently, ADM was used by many researchers to solve a wide range

of mathematical problems in engineering, chemistry, biology and physics Babolian and

Biazar, 2002; Momani and Odibat, 2006; Reddy et al., 2017.

The general form of a differential equation can be written as follows:

Fu = g (I.46)

F = L + R + N (I.47)

By substituting Eq. (I.46) into (I.47) one gets:

Lu + Ru + Nu = g (I.48)

where L is easily invertible operator, R is the remainder of the linear operator and N

corresponds to the non-linear terms.

We can write Eq. (I.48) as

Lu = g − Ru − Nu (I.49)

By multiplying Eq. (I.49) by L−1 we obtain:

L−1 (Lu) = L−1 (g)− L−1 (Ru)− L−1 (Nu) (I.50)

Where L−1 =
∫

. . .
∫
(.)(dt)n is the inverse of operator L.

Therefore,

u = u0 − L−1 (Ru)− L−1 (Nu) (I.51)

Where:

L−1 (Lu) = u − u (0)− tu′ (0) (I.52)
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and

u0 = u (0) + tu
′(0) + L−1g (I.53)

the decomposition method consists of decomposing u (x) into a sum of components

given by the infinite series:

u (x) =
∞

∑
n=0

un (I.54)

and the nonlinear function N(u) is decomposed by the infinite series as:

Nu =
∞

∑
n

An (I.55)

Where An is the Adomian’s polynomials are given by:

An =
1
n!

dn

dλn

[
N

(
∞

∑
i=0

λiui

)]∣∣∣∣∣
λ=0

, n = 0, 1, 2, . . . (I.56)

The convergence of the Adomian decomposition method, it has been intensively stud-

ied by Adomian, 1990; Adomian, 1988.

Homotopy perturbation method (HPM)

Homotopic perturbation method is a coupling of the perturbation method and

the homotropy method with conserving the full advantages of the traditional pertur-

bation techniques. It is proposed for nonlinear equations and does not depend upon a

small parameter in the equation J.-H. He, 1999a, 2000a, 2004a, 2005b. The Homotopic

perturbation method has been successfully applied to solve : heat conduction and con-

vection equation Rajabi et al., 2007, gas dynamics equation Jafari et al., 2008, biological

population model Roul, 2010 and nonlinear wave equation J.-H. He, 2005a.

To illustrate the basic concept of this method, the following nonlinear differential

equation is considered J.-H. He, 1999a, 2000a:

L(u) + N(u) = f (r), r ∈ Ω (I.57)
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with boundary conditions

B(u, ∂u/∂n) = 0, r ∈ Γ (I.58)

where L is a linear operator while N is a nonlinear operator, B is a boundary operator,

Γ is the boundary of the domain Ω and f (r) is a known analytic function.

He’s homotopy perturbation technique [12-22] El-Shahed, 2005; J.-H. He, 1999a,

2000a, 2003, 2004a, 2005b; Odibat and Momani, 2008 defines homotopy as:

v(r, p) : Ω × [0; 1] → ℜ, which satisfies:

H(v; p) = (1 − p) [l(v)− l (u0)] + p[l(v) + N(v)− f (r)] = 0 (I.59)

or it can be written in an equivalent form:

H(v, p) = l(v)− l (u0) + pL (u0) + p[N(v)− f (r)] = 0 (I.60)

In the above equations, r ∈ Ω and p ∈ [0, 1] are embedding parameters and u0 is an

initial approximation which satisfies the boundary conditions. From Eqs. (I.59) and

(I.60), it follows:

H(v, 0) = L(v)− L (u0) = 0 (I.61)

H(v, 1) = L(v) + N(v)− f (r) = 0 (I.62)

The changing process of p from zero to unity is just that of v(r, p) from u0 to u(r). In

topology, this is called deformation; L(v) − L (u0) and L(v) + N(v) − f (r) are homo-

topic. The basic assumption is that the solution of Eqs. (I.59) and (I.60) can be expressed

as a power series in p :

v = v0 + pv1 + p2v2 + · · · (I.63)

Therefore, the approximate solution of Eq. (I.57) can be readily obtained as:

u = lim
p→1

v = v0 + v1 + v2 + · · · (I.64)

The convergence of the series (I.64) was proven in Abbasbandy, 2006; J.-H. He, 1999a.
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Variational iteration method (VIM)

The variational iteration method is an analytical technique that was developed

first by J.-H. He, 1998; J. He, 1997, which is a modified general Lagrange multiplier

method. It was proposed as an efficient and accurate method to solve a large class of

nonlinear differential equations with approximations converging rapidly to exact solu-

tions J.-H. He, 1998. It found many applications to solve various kinds of differential

equations like: KdV, the K(2,2), the Burgers, and the cubic Boussinesq equations cou-

pled Wazwaz, 2007, Schrodinger-KdV, generalized KdV and shallow water equations

Abdou and Soliman, 2005, Helmholtz equation Momani and Abuasad, 2006.

We can write the general form of the differential equation see equation (I.46) as follows

J.-H. He, 1999b:

F = L + N (I.65)

Substituting equation (I.46) into equation (I.65) we obtain:

Lu + Nu + g (I.66)

Where La linear operator, N a non-linear operator, gan inhomogeneous term.

According to the variational iteration method, we can build a functional correction as

follows J.-H. He, 1998:

Un+1 = Un(t) +
∫ t

0
λ
(
Un(ξ) + NŨ(ξ)− g(ξ)

)
dξ (I.67)

Where, λ is a general lagrange multiplier that can be optimally identified by the varia-

tional theory, and ũn is a restricted variation which means δũn = 0.

Other analytical methods

Laplace transform and successive generations methods are regarded as suitable

methods for obtaining analytical solutions for certain forms of population balance equa-

tions. These are discussed in Ramkrishna, 2000, where some obvious examples are pro-

vided. In order to solve PBE in simple forms, apart from numerical ways, some suc-
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cessful attempts have been made in the past to solve PBE analytically. Using the multi-

dimensional Laplace transform Multicomponent aggregation population balance equa-

tion was solved analytically for constant aggregation kernel, Gelbard and Seinfeld, 1978

and for additive kernel Fernandez-Diaz and Gomez-Garcia, 2007. While using Laplace

transforms exact solutions were obtained for size-independent aggregation M. J. Houn-

slow, 1990 and for simultaneous aggregation with breakage P. Lage, 2002; McCoy and

Madras, 2003; Patil and Andrews, 1998. Liou et al., 1997 applied successive generations

method to solve mass structured and age-mass structured cell population balances.

I.4 Available analytical solutions of the spatially distributed

PBE:

In M. M. Attarakih et al., 2004 the spatially distributed PBE with some consid-

erations was solved analytically using a methodology that uses relative time and chain

rule for only breakage and only coalescence and using Laplace transform for no break-

age and no coalescence. The obtained exact solutions are presented below. To get these

solutions, they assumed a stagnant continuous phase with no diffusion and zero initial

condition.

Case 1: LLEC without breakage and coalescence

In this case, the droplet velocity was taken as a function of the droplet diameter.

Using Laplace transform with respect to time followed by solving the resulting linear

ODE with respect to spatial, they found this exact solution:

p (t, z, d) =
Qd

Avt (d)
Pinu [t − τ(d, z)] (I.68)

Where: u [.] Is the unit step function is defined by:

u [t − τ(z, d)] =

 1, t − τ(d, z) ≥ 0,

0, otherwise
(I.69)
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τ(z, d)=


z−zd

vd
, z − zd ≥ 0,

0, otherwise,
(I.70)

Case 2: LLEC with droplet breakage

Here, they used the following assumptions:

The feed flow distribution is taken as:

nin =
N f

0 e−
v(d)
v0

v0
(I.71)

Breakage functions are:

Γ = k′bvdv(d), βn(d/d′) = 6d2/d′3. (I.72)

The analytical solution is given as:

p(t, z, d) =
(

d
d0

)3(πd2

2

) [
α + k′b (z − zd)

α

]2

× exp

[
−
(
α + k′b (z − zd)

) ( d
d0

)3
]

× u[t − τ(d, z)]

(I.73)

Case 3: LLEC with droplet coalescence

For only coalescence, they used the same assumptions were considered in the

above case except that the breakage functions are equal to zero, the coalescence fre-

quency is ω = kc vd with vd = constant, an exact solution was provided as:

p (t, z, d) = N f
0

(
d
d0

)3
(

πd2

2

)(
2

2 + N f
0 kc (z − zd)

)2

× exp

 −2
(

d
d0

)3

2 + N f
0 kc (z − zd)

 u [t − τ (d, z)]

(I.74)

Additionally, in Campos and Lage, 2003, analytical and semi-analytical solutions of the

spatially distributed PBE were provided using the successive generation method for

pure advection, advection with absorption and advection with breakage and with ab-

26



Chapter I A bibliographic review

sorption. They also assumed a uniform dispersed phase velocity.

I.5 Conclusion

As discussed above, the population balance equation finds many applications

in different engendering fields, and a large number of scientific papers concerning this

equation have been published. These prove clearly that the population balance models

are more convenient for describing a wide range of chemical, physical and biological

processes.

The spatially distributed population balance equation is a partial integro- differ-

ential equation and is not easy to solve analytically. However, few ideas were proposed

to overcome its difficulty and find exact solutions. Unfortunately, the exact solutions

of spatially distributed population balance equation are still very rare. Alternatively,

numerical methods were proposed and applied to get approximated solutions. Other

approaches are called semi-analytical methods were shown recently as adequate math-

ematical techniques to solve the PBE in batch and continuous system flow, but in this

work, we will extend one of them (VIM) to solve the population balance equation in one

dimension (see chapter III).
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Chapter II

Modeling of Liquid-Liquid extraction

columns

II.1 Introduction

The solvent extraction is an interesting alternative to distillation, especially when

the latter is inadequate or uneconomic, like in these cases: the components of the solu-

tion have close boiling points, separation of heat-sensitive materials (antibiotic and vi-

tamins), recovery of non-volatile solutes from aqueous solution in hydro-metallurgy, re-

covery a solute from a very dilute solution in bioseparation and removal of phenol from

aqueous wastes Dutta, 2007. Nowadays, liquid-liquid extraction columns are widely

used in a wide range of the separations industries such as: chemical, biochemical, phar-

maceutical, and nuclear industries because of their advantages of high efficiency and

low cost in respect of the number of stages, solvent inventory, site area, settler area,

maintenance Hasseine et al., 2005.

The population balance equation was found as a powerful tool for predicting ex-

traction column behavior. Consequently, in many scientific studies, different types of

extraction columns were modeled and simulated using population balance equations

like pulsed packed, pulsed sieve tray, RDC and Kühni extraction column Bart et al.,

2020; Garthe, 2006. The extraction column design and control have not yet been com-
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pleted and still needs to be improved. It is based on laboratory scale pilot plants and

is dependent on scale up method that is time consuming and expensive Jaradat, 2012.

Usually, the population balance model is used to find specific proprieties of the dis-

persed phase along the column at an instant t, these can be changed due to different

complex drop mechanisms: breakage, coalescence and mass transfer. To achieve the

modeling, their rates must be described. Therefore, several attempts have been made

in the literature to model conveniently these phenomena Garthe, 2006; Kopriwa et al.,

2012.

This chapter provides background information on the modeling of liquid-liquid

extraction columns, in particular Kühni column and Rotating Disc Contactor (RDC). We

discuss obviously the model for both dispersed and continuous phases, drop breakage,

drop coalescence as well as drop transport (liquid velocities and axial dispersion).

II.2 Modeling of liquid-liquid extraction column

In order to understand how the model was established, we must first describe the

liquid-liquid extraction column. For two phases system, in a countercurrent column, the

light phase must be the dispersed phase; it enters the column at z = zd and leaves at

the top of the column. While the other phase is continuous, it enters the column at

z = zc and leaves at the bottom of the column; it moves downwards from the top. In

general, the column can be divided into three parts: the active zone, where the phases

are brought into contact, and the two settling zones, at the bottom and the top of the

column, where the phases are separated Casamatta, 1981 (Figure II.1). Based on the

type of agitation the extraction columns are classified into three categories Dutta, 2007:

1. Unagitated columns: Spray column, Packed column and Perforated plate or Sieve

tray.

2. Pulsed columns: Pulsed, Packed column and Sieve tray.

3. Mechanically agitated columns:
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(a) Rotary agitated contactors: Scheibel column, Oldshue-Rushton column, Ro-

tating Disk Contactor (RDC) and Kühni column.

(b) Reciprocating plate columns: Perforated plate or Sieve plate.

The centrifugal extractor is a different column extractor. It is based on the usage of the

centrifugal force to create a countercurrent radial flow of the two phases.

Figure II.1: Schematic of a countercurrent liquid-liquid extraction column Garthe, 2006

II.2.1 Model development

A knowledge of dispersed-phase hold-up is necessary in the design of extraction

columns. The hold-up is needed to compute the interfacial area per unit volume A.

Kumar and Hartland, 1995. The local holdup of the dispersed phase at time t at column

heigh z is calculated by integrating p(t, z, d) as follows:

rd (t, z) =
∫ dmax

0
p(t, z, d)dd (II.1)
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dmax represents the maximum droplet diameter.

Drop size and distribution have a considerable impact on extractor throughput and

mass transfer. The hydrodynamics can be presented by a diameter d43 and the mass

transfer by a diameter d32. The most widely used drop size is the mean Sauter diameter

d32, it is volume-surface diameter Casamatta, 1981; Dutta, 2007; Garthe, 2006:

d32 =

∫ dmax
0 d3n(t, z, d)dd∫ dmax
0 d2n(t, z, d)dd

(II.2)

It is needed to calculate the interfacial area:

ā =
6rd
d32

(II.3)

II.2.2 Balance on the dispersed phase

In Casamatta, 1981 proposed a general model for liquid-liquid extraction col-

umn, for the dispersed phase, the balance consists of four different terms: inlet, outlet,

production and accumulation, as shown in the figure. II.2 :

𝐴 𝑝 𝛿𝑑 𝑣𝑑 𝑧− 𝛥𝑧/2
𝐴 𝐷𝑑

𝜕

𝜕𝑧
𝑝 𝛿𝑑

𝑧− 𝛥𝑧/2

𝐴 𝑝 𝛿𝑑 𝑣𝑑 𝑧+𝛥𝑧/2 𝐴 𝐷𝑑
𝜕

𝜕𝑧
𝑝 𝛿𝑑

𝑧+𝛥𝑧/2

𝐴. 𝛥𝑧
𝜕

𝜕𝑡
𝑝 𝛿𝑑

𝐴. 𝛥𝑧 𝑝𝑣 𝛿𝑑

Output at (𝑧 + 𝛥𝑧/2)

Input at (𝑧 − 𝛥𝑧/2)

Figure II.2: Balance on a reference volume A.∆z for the dispersed phase

It is assumed in the following a dispersed ascending phase (light phase). Thus,
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for particles of size d ± δd/2, for a volume defined between z + ∆z/2 and z − ∆z/2

the various terms involved in the balance are:

Inlet (E):

[A p δd vd]z− ∆z/2 −
[

A Dd
∂

∂z
[p δd]

]
z− ∆z/2

(II.4)

Outlet (S):

[A p δd vd]z+ ∆z/2 −
[

A Dd
∂

∂z
[p δd]

]
z+ ∆z/2

(II.5)

Production (G):

A ∆z pvδd (II.6)

Accumulation (A):

A ∆z
[

∂

∂t
pδd
]

(II.7)

By writing that, E-S+G=A. And by passing the limit ∆z → 0, ∆t → 0 the volume

balance on the dispersed phase for particles of size thus leads to the following equation:

∂p(t, z, d)
∂t

=
∂

∂z

(
Dd

∂

∂z
p(t, z, d)

)
− ∂

∂z
(vd(t, z, d, rd)p(t, z, d))

+
Qd
A

pin(d)δ (z − zd) + pv(t, z, d)
(II.8)

The breakage and coalescence process of drops are taken into account in the term pv,

which is given by:

pv(t, z, d) =
v(d)

2

∫ d/ 3√2

0
ω (t, z, d1, d2)

p (t, z, d1)

v (d1)

p (t, z, d2)

v (d2)

(
d
d2

)2

dd1

− p(t, z, v)
∫ 3
√

d3
max−d8

0
ω (t, z, d1, d2)

p (t, z, d1)

v (d1)
dd1

+
∫ dmax

0
β (d0, d) g (t, z, d0) p (t, z, d0) dd0

− g(t, z, d)p(t, z, d)

(II.9)

II.2.3 Balance on the continuous phase

Here the balance consists of three different terms: inlet, outlet and accumulation,

as shown in the figure. II.3. For a volume defined between z + ∆z/2 and z − δz/2 the

various terms involved in the balance are:

32



Chapter II Modeling of Liquid-Liquid extraction columns

𝐴 1 − 𝑟𝑑 𝑧− 𝛥𝑧/2
𝐴 𝐷𝑐

−𝜕

𝜕𝑧
(1 − 𝑟𝑑)

𝑧− 𝛥𝑧/2

𝐴 1 − 𝑟𝑑 𝑣𝑐 𝑧+𝛥𝑧/2 𝐴 𝐷𝑐
−𝜕

𝜕𝑧
1 − 𝑟𝑑

𝑧+𝛥𝑧/2

𝐴. 𝛥𝑧
𝜕

𝜕𝑡
1 − 𝑟𝑑

Output at (𝑧 + 𝛥𝑧/2)

Input at (𝑧 − 𝛥𝑧/2)

Figure II.3: Balance on a reference volume A.∆z for continuous phase.

Inlet (E):

[A (1 − rd) ]z+ ∆z/2 −
[

A Dc
−∂

∂z
(1 − rd)

]
z− ∆z/2

(II.10)

Outlet (S):

[A (1 − rd) vc]z+ ∆z/2 −
[

A Dc
−∂

∂z
(1 − rd)

]
z+ ∆z/2

(II.11)

Accumulation (A):

A. ∆z
[

∂

∂t
(1 − rd)

]
(II.12)

By writing that, E-S=A. And by passing the limit ∆z → 0, ∆t → 0 the volume balance

on the continuous phase leads to the following equation:

∂

∂t
[1 − rd(t, z)] +

∂

∂z
(vc(t, z)[1 − rd(t, z)]) =

∂

∂z

(
Dc

∂

∂z
[1 − rd(t, z)]

)
+

Qc

A
δ (z − zc)

(II.13)
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II.2.4 Initial and boundary conditions

The Danckwerts boundary condition can be used at the column ends:

At the bottom of the column, at z = 0 with t > 0:

vd p − Dd
∂p
∂z

= 0 (II.14)

Drops can be assumed to leave the column at z = h with their own velocity, that is:

at z = h for t > 0

Dd
∂p
∂z

= 0 (II.15)

Initially (at t = 0), if the column is empty of dispersed phase:

p(0, z, d) = 0 forz ∈ [0, h] (II.16)

II.2.5 Hydrodynamics

The holdup and the droplet sizes of the dispersed phase are changed temporally

along the column height due to the following hydrodynamics processes:

Droplet Velocity

The velocity of drops in a swarm significantly depends on the drop diameter

and the volume fraction of the dispersed phase. For countercurrent system, the rising

velocity vd of a droplet of diameter d, is expressed as Gayler et al., 1953:

vd (t, z, d, rd) = vr (t, z, d, rd)− vc (t, z, d, rd) (II.17)

Where vd and vc are dispersed phase velocity and continuous phase velocity, respec-

tively. vr describes the relative velocity of droplets with diameter d, which is often

called the relative swarm velocity or slip velocity. it is calculated from the single drop
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terminal velocity vt as the following:

vr = kv (d) vt (1 − rd)
m (II.18)

Where: m is the swarm exponent which indicates the extent of the hold-up influence.

kv (d) is the slowing factor its values must be in rang (0, 1). For the RDC column, the

slowing factor of droplets of diameter d is calculated by J. Godfrey, 1991 :

kv (d) = 1 − 1.037
(

N3
R D5

R

)0.12
− 0.62

(
d

DS − DR

)0.44

(II.19)

For the Kuhni column, the slowing factor correlation Fang et al., 1995 :

kv (d) = 1 − (1 − θ)

(
7.18 10−5 ReR

θ

1 + 7.18 10−5 ReR
θ

)
(II.20)

Where:

NR : is the rotor speed [s−1].

DR : is the rotor diameter [m].

DS : is the stator diameter [m].

θ : is the relative free cross-sectional stator area [−].

In addition to the terminal velocity, it depends on the physical properties of both phases

and droplet diameter Klee and Treybal, 1956. In the Figure II.4, the terminal velocity is

presented graphically for four different types of droplet forms rigid, circulating, oscillat-

ing and deformed ones. The terminal velocity is associated with drop size, drop stability

and drop form Garthe, 2006. Many terminal velocity correlations were proposed in the

literature:

For rigid sphere with for Mo−1 > 1011 , J. Godfrey et al., 1994 provided this correlation:

vt =
d

4.2

(
g∆ρ

ρc

)2/3 (
ρc

ηc

)1/3

(II.21)

where:

η : is the dynamic viscosity.

Eö is Eötvös number Eö = g∆ρd2

σ .

Mo is the Morton number Mo = g ∆ρη4
c

ρ2
c σ3 .
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For circulating droplets with Mo−1 > 107 , a correlation is reported in Vignes and Glob-

ule, 1965:

vt =
d

4.2

(
g∆ρ

ρc

)2/3 (
ρc

ηc

)1/3 (
1 − Eö

6

)
(II.22)

For Mo−1 > 105, the critical diameter dcrit determines which correlation must be used

Klee and Treybal, 1956:

vt = 17.6ρ−0.55
x ∆ρ0.28η0.1

x σ0.18 d ≥ dcrit large drop (II.23)

vt = 38.3ρ−0.45
x ∆ρ0.58η−0.11

x d0.7 d < dcrit small drop (II.24)

where

dcrit = 0.3ρ−0.14
x ∆ρ−0.43η0.3

x σ0.24 (II.25)

The application of Grace model according to the value of the parameter Jt Grace, TH,

et al., 1976.

vt =
ηc1/Mo0.149

ρcd
(Jt − 0.857) (II.26)

In order to calculate the terminal velocity for all forms of drops, according to the value

of Mo−1 Hasseine, 2007 they made an algorithm gives the values of vt using rigid sphere

Law, Klee and Treybal, Grac and Vignes low (see page 89).

The steady-state solution of the mass balance equation for the continuous phase for a

column operated in counter-current operation provided as Kronberger et al., 1995:

vc(t, z) =
1

1 − rd(t, z)

{
(1 −H(z − zc))

Qc

A
+Dc(z)

∂rd(t, z)
∂z

}
(II.27)

Drop breakage

The breakage of a drop in a turbulent flow is influenced by drop size, density, in-

terfacial surface tension, viscosity of both phases, holdup fraction, local flow and local

energy dissipation Coulaloglou and Tavlarides, 1977. Based on the difference between

energies, Coulaloglou and Tavlarides, 1977 consider the drop breakage to occur when an

oscillating deformed drop has a surface energy less than turbulent kinetic energy trans-

mitted by the turbulent eddies. In the liquid-liquid extraction columns, it also depends
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Figure II.4: terminal velocities of single drops and spheres Garthe, 2006

on the internals type. It occurs if the drop passes through the turbine outlet stream or

the impellor blade in the Kühni column, while it occurs only if the drop touches the ro-

tator disc in the RDC column Bart et al., 2020. The breakage frequency is a ratio between

the number of breaking drops and the initial number of drops and time, the breakage

frequency depends on the residence time of the droplets Coulaloglou and Tavlarides,

1977:

g (z, d) =
(

1
breakage time

)(
f raction o f

drops breaking

)
(II.28)

In the agitator column the breakage frequency depends on the drop breakage probabil-

ity P(d) Cabassud et al., 1990:

g (z, d) =
P (d) vd(z, d)

hj
(II.29)

The ratio vd(z,d)
hj

can be defined as the inverse of the average residence time of a drop of

diameter d diameter in a compartment of the column. The drop breakage probability

P(d) can be calculated by the correlation that was reported in Bahmanyar and Slater,
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1991; Cauwenberg et al., 1997; Simon et al., 2003:

P (d)
1 − P (d)

= c1 Wec2
m (II.30)

where:

Wem =
ρ0.8

c µ0.2
c D1.6

R (2π)1.8(N1.8 − N1.8
crit)

σ
(II.31)

This model was frequently used to describe the breakage probability in the liquid-liquid

extraction columns M. M. Attarakih et al., 2004; Hasseine et al., 2005; Schmidt et al.,

2003; Simon et al., 2002. In contrast Garthe, 2006 used other correlation which based on

Ohnesorge and modified Weber numbers:

P(d)
1 − P(d)

= c1 ·
(

We mod

1 + c2 · ηd · [We mod / (σ · d · ρd)]
0.5

)c3

(II.32)

The critical rotational speed NR,crit can be calculated by:

NR,crit =
c4

2
D−2/3

R ηdd−4/3

(ρcρd)
1/2 +

( c4

2
D−2/3

R ηdd−4/3

(ρcρd)
1/2

)2

+ c5
σ

ρcD4/3
R d5/3

0.5

(II.33)

The constant factors are determined by analysing a series of experiments.

For an RDC column:

c1 = 1.29.10−6, c2 = 0.33, c3 = 2.78, c4 = 0.02, c5 = 0.13

For a Kühni column:

c1 = 1.63.10−3, c2 = 0.48, c3 = 3.05, c4 = 0.13, c5 = 1.21.10−2

The size distribution of the daughter droplets is given by a beta distribution function,

based on the mother droplet diameter d0 Bahmanyar and Slater, 1991:

β (d0, d) = 3ν (ν − 1)

(
1 − d3

d3
0

)(ν−2)
d3

d2
0

(II.34)

With ν the average number of daughter drops given by Hančil and Rod, 1988 :

ν = 2 + p
((

d0

dcrit

)
− 1
)q

(II.35)
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The parameters p and q of the above equation are dependent on the column type Garthe,

2006:

For an RDC column: p = 1.42.10−3, q = 2.93

For a Kühni column: p = 0.03, q = 2.45

dcrit is the critical diameter, at which the drops start to break.

Droplet coalescence

The coalescence complicity produces real difficulties in its modeling. However,

a number of expressions for drop coalescence have been proposed in the past Chesters,

1991; Coulaloglou and Tavlarides, 1977; Henschke, 2004; Tsouris and Tavlarides, 1994.

The theoretical model of Coulaloglou and Tavlarides, 1977 describes the binary coales-

cence as: it occurs if two droplets collide and then remain in contact for enough time

and the fluid film between that droplets is drained and ruptured where the droplets are

compressed by external forces. During these processes a turbulent eddy probably re-

strains the coalescence by separating the drops. Figure II.5 represents a binary collision

of two uniform droplet in a continuous phase. The coalescence rate between two drops

is considered to be given by the following product:

ω(d1, d2, rd) = f (d1, d2) λ (d1, d2) (II.36)

Coulaloglou and Tavlarides, 1977 considered the collision rate between two droplets as

the collision frequency between two gas molecules, they introduced the collision rate

as:

f (d1, d2, rd) =
C1

3
√

ϵ (d1 + d2)
2
√

d2/3
1 + d2/3

2

1 + rd
(II.37)

The film drainage model is described by:

λ (d1, d2, rd) = exp
[
τ/t
]

(II.38)

Where: t : average coalescence time.

τ : average contact time.

The coalescence time is considered to be the time necessary for film drainage between
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the drops. The coalescence succeeds if the contact time surpasses the coalescence time,

the external force must act for a sufficient time. The coalescence efficiency is related to

the physical phenomena, which is given by Coulaloglou and Tavlarides, 1977:

λ (d1, d2, rd) = exp

−
C2ηcρcϵ

(
d1d2

d1 + d2

)4

(1 + rd)3σ2

 (II.39)

Figure II.5: Binary coalescence Dudek et al., 2020

Energy dissipation

In the agitator columns, the effect of agitation is taken into account in terms of

power dissipation per unit mass ϵ, the latter is an essential parameter for comparison

between columns efficiency A. Kumar and Hartland, 1995.
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The mechanical power dissipation per unit mass ϵ is defined as:

ϵ =
P
m

=
P

ρcVc
= 4

P
(πHcD2

c ρc)
(II.40)

where P is the power input, it is obtained from:

P = N3NpD5
Rρc (II.41)

Where, the power number Np expression has the following form A. Kumar and Hart-

land, 1995:

For Kühni column:

Np = 1.08 +
10.94
ReR

0.5 +
257.37
ReR

1.5 (II.42)

For RDC column:

Np =
109.36

ReR
+ 0.74

[
1000 + 1.2 ReR

0.72

1000 + 3.2 ReR
0.72

]3.3

(II.43)

where, ReR is rotor Reynolds number ReR =
ND2

Rρc

ηc
.

Axial dispersions

Due to the turbulence imparted by the rising drops and the channeling flow due

to the particular column geometry and other influences , a part of each liquid phase

flow is mixed back. This phenomenon is named backmixing or axial mixing. In addi-

tion, axial mixing often reduces the mass transfer between phases. Garthe, 2006; Li and

Ziegler, 1967. The axial dispersion model is given by Strand et al., 1962:

∂c
∂t

= Dax
∂2c
∂z2 − u

∂c
∂z

(II.44)
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For an agitated RDC-column, continuous dispersion coefficient can be predicted by A.

Kumar and Hartland, 1992:

Dc

vchj
= 0.42 + 0.29

(
vd
vc

)
+

c1

(
N DR

vc

)
+

13.38

3.18 +
(

N DR
vc

)


×
(

vc ρc DR

ηc

)−0.08(Dk
DR

)0.16 (
Dk
Hc

)0.1

Ar

(II.45)

Correlations for the dispersed axial dispersion coefficient for the RDC columns are listed

and discussed in A. Kumar and Hartland, 1992.

For an agitated Kühni column, the dispersion coefficient correlations are given by Steiner

et al., 1988. For the continuous phase, the correlation is applied to each compartment:

Dc = v̄chj

[
0.188 + 0.0267θ0.5 DRNR

v̄c

]
(II.46)

where hj is the compartment height j in the Kühni column.

For the disperse phase, Steiner et al., 1988 also provided the following correlation:

Dd = −3.78 × 10−4 + 0.068
[

Qc

ANR

]0.5

(II.47)

II.2.6 Numerical solvers for LLEC

Certain numerical methods are developed to be sowftwar Bart et al., 2020:

LLECMOD (Liquid-Liquid Extraction Column MODule)

It is a Fortran window-based program, simulation based on the population bal-

ance approach to model the hydrodynamics of liquid-liquid extraction columns M. M.

Attarakih, Bart, Lagar, et al., 2006.

PPBLAB (Particulate Population Balance Laboratory):

It is a windows-based MATLAB program, for modelling and numerical simu-

lation of liquid-liquid extraction columns using a bivariate population balance model

with respect to the particle internal properties: concentration and size M. Attarakih et

al., 2012.
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II.3 Conclusion

The solvent extraction is a mass transfer technique. The liquid-Liquid extraction

column breaks up droplets to increase the interfacial area and improve the mass transfer

and extraction efficiency. Mass transfer is strongly influenced by fluiddynamics and

vice versa. Liquid-Liquid extraction column are modeled by drop population balance

for predicting their performance Bart et al., 2020; Garthe, 2006.

The final population balance model was obtained by the collection of a num-

ber of different works of many scientists for dozens of years, where some theories and

considerations were proposed. The knowledge of droplet interactions (breakage and co-

alescence), axial dispersions, slip velocity of the phases in particular column geometry

and energy dissipation is very important for modeling liquid-liquid extraction columns.

The population balance model was shown here as an efficient tool for describing the hy-

drodynamics behavior of the dispersed phase in liquid-liquid extraction column. The

PBM is a highly complex equation. So, efficient and accurate methods are required to

find its solutions (Hold-up, Sauter diameter, . . . ), those are discussed obviously in the

previous chapter.
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VIM application

III.1 Introduction

The population balance framework is regarded as an adequate tool for dealing

with a dispersed phase system. Usually, the number of particles is used to describe

the population but sometimes (with better reason) by other variables such as the mass

or volume of particles. The population balance equations, despite their importance,

rarely have an analytical solution. However, few cases with a simple form of breakage,

aggregation and growth exist, where most of these solutions are for the stirred vessel

Ramkrishna, 2000.

In this chapter, 1D population balance equation is solved analytically using vari-

ational iteration method for different particle breakage, coalescence and growth models

in a particle population balance model, where a mathematic technique is used to sim-

plify the model. In fact, variational iteration method generates a truncated part of the

solution, but we could find exact solutions for eight problems. For the simultaneous

growth and coalescence terms comparisons between VIM and projection method which

includes discontinuous Galerkin and collocation techniques, are applied, respectively.
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III.2 Model Equations

In the present model the basic variable is a drop size distribution function p(t, z, v)

that represents the volume fraction of drops with volume v in an unit volume of the col-

umn at level z and time t M. M. Attarakih et al., 2004. The local hold-up of the dispersed

phase can be calculated from p(t, z, v)as follows:

rd (t, z) =
∫ ∞

0
p (t, z, v) dv (III.1)

The volume balance equation of unit volume of the column can be expressed as:

∂p (t, z, v)
∂t

+
∂vd p (t, z, v)

∂z
=

∂

∂z

(
Dd

∂p (t, z, v)
∂z

)
+

Qd
A

pind (z − zd) + pv (t, z, v)
(III.2)

with a transient and a convective term, where vd is the dispersed phase velocity, bal-

anced against a back mixing term expressed with the dispersion coefficient Dd . Qd and

A are the dispersed phase flow and the column cross-sectional area, respectively. The

solvent feed entering at the level zd of the column is handled as a point source by Dirac’s

δ − f unction Kronberger et al., 1995. The break-up, coalescence and growth process of

drops are taken into account in the

pv (t, z, v) = v
∫ +∞

v
β
( v

u

)
g (u)

p (t, z, u)
u

∂u − g (v) p (t, z, v)

+
v
2

∫ v

0
ω (v − u, u)

p (t, z, v − u)
v − u

p (t, z, u)
u

∂u

− v
∂
(

G(v)p(ω,x,v)
v

)
∂v

(III.3)

The first integral accounts for gain and loss due to break-up of the mother particle u

according to the daughter particle distribution β. The second integral holds for simi-

larly for aggregation according to the aggregation frequency ω. In order to apply the

proposed method we reformulate Eq. (III.2) as follows:

∂p (t, x, v)
∂t

+
∂vd p (t, x, v)

∂x
=

∂

∂x

(
Dd

∂p (t, x, v)
∂x

)
+ pv (t, x, v) (III.4)
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where x = z − zd and the boundary condition is given by

p (t, 0, v) =
Qd
A

Pin (III.5)

Moreover, and by assuming the equation of motion with uniform particle velocity; neg-

ligible diffusion flux, and making the necessary variable transformation using the chain

rule, Eq. (III.4) could be reduced to M. M. Attarakih et al., 2004:

∂vd p (θ, x, v)
∂x

= pv (θ, x, v) (III.6)

with θ define the relative time as:

θ (t, x) = t − x
vd

(III.7)

The following is the list of relevant combinations of processes for which the continuous

PBE has been solved analytically.

Case study I. Pure breakage:

∂vd p (θ, x, v)
∂x

= v
∫ +∞

v
β (v/u) g(u)

p (θ, x, u)
u

∂u − g (v) p (θ, x, v) (III.8)

Case study II. Pure aggregation:

∂vd p(θ, x, v)
∂x

=
v
2

∫ v

0
ω(v − u, u)

p(θ, x, v − u)
v − u

p(θ, x, u)
u

∂u

− p(θ, x, v)
∫ +∞

v
ω(v, u)

p(θ, x, u)
u

∂u
(III.9)

Case study III. Pure growth:

∂vd p (θ, x, v)
∂x

+ v
∂(G (v) p (θ, x, v) /v)

∂v
= 0 (III.10)
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Case study VI. Aggregation and growth:

∂vd p(θ, x, v)
∂x

=
v
2

∫ v

0
ω(v − u, u)

p(θ, x, v − u)
v − u

p(θ, x, u)
u

∂u

− p(θ, x, v)
∫ +∞

v
ω(v, u)

p(θ, x, u)
u

∂u

− v
∂
(

G(v)p(θ,x,v)
v

)
∂v

(III.11)

Case study V. Breakage and growth:

∂vd p(θ, x, v)
∂x

=v
∫ +∞

v
β
( v

u

)
g(u)

p(θ, x, u)
u

∂u − g(v)p(θ, x, v)

− v
∂(G(v)p(θ, x, v)/v)

∂v

(III.12)

Case study VI. Simultaneous breakage and aggregation and growth:

∂vd p(θ, x, v)
∂x

= v
∫ +∞

v
β
( v

u

)
g(u)

p(θ, x, u)
u

∂u − g(v)p(θ, x, v)

+
v
2

∫ v

0
ω(v − u, u)

p(θ, x, v − u)
v − u

p(θ, x, u)
u

∂u

− p(θ, x, v)
∫ +∞

v
ω(v, u)

p(θ, x, u)
u

∂u

− v
∂
(

G(v)p(θ,x,v)
v

)
∂v

(III.13)

III.3 Variational iteration method

As a first step to obtain the solutions for the above set of population balance

equation using the variational iteration method, we consider the following functional

equation:

Lp + Np = g (θ, x, v) (III.14)

Where L is a linear operator, N a nonlinear operator and g (θ, x, v) a source term. Ac-

cording to the variational iteration method, a functional correction can be constructed

47



Chapter III VIM application

as follows:

pn+1(θ, x, v) = pn(θ, x, v)

+
∫ x

0
λ(ξ) (Lpn(θ, ξ, v) + Np̃n(θ, ξ, v)− g(ξ)) dξ

(III.15)

where λ(ξ) is a general Lagrangian multiplier which can be identified optimally via

variational theory and p̃n is a restrictive variation meaning ∂̃pn J. He, 1997. Therefore,

the solution is given by:

p (θ, x, v) = lim
n→∞

pn(θ, x, v) (III.16)

III.4 Projection method

The objective in this section is to develop the finite element expansion coefficients

scheme based on discontinuous Galerkin and collocation methods for the solution of the

simultaneous growth and coalescence process respectively.

III.4.1 Discontinuous Galerkin method for the growth equation

To introduce the basic idea of the discontinuous Galerkin method, consider the

following initial value problem:

∂p (θ, x, v)
∂x

+ v
∂(H (v) p (θ, x, v))

∂v
= 0 (III.17)

with the initial condition Eq. (III.5). which has the form of conservation law with flux

function f and source terms

∂p (θ, x, v)
∂x

+
∂ f (v, p (θ, x, v))

∂v
= H (v) p (θ, x, v) (III.18)

with f (v, p (θ, x, v)) = v H (v) p (θ, x, v) .

It is assumed that the spatial domain Ω is periodic and partitioned into nonoverlapping

intervals I j, j=1,..., N j. The center of bin I j is denoted by vj.
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A weak formulation of the problem is obtained by multiplying (III.18) by an arbitrary

smooth test function φ (v) and integrating over an interval Ij

∫
Ij

[
∂p (θ, x, v)

∂x
+

∂ f (v, p (θ, x, v))
∂v

− H (v) p (θ, x, v)
]

φ (v) dv = 0, (III.19)

Integrating the second term of (III.18) by parts yields

∫
Ij

∂p(θ, x, v)
∂x

φ(v)dv −
∫

Ij

f (v, p(θ, x, v))
∂φ(v)

∂v
dv

+ f
(
vj+1, p

(
θ, x, vj+1

))
φ
(

v−j+1

)
− f

(
vj, p

(
θ, x, vj

))
φ
(

v+j
)

=
∫

Ij

H(v)p(θ, x, v)φ(v)dv

(III.20)

where φ
(

v−
j+1

)
and φ

(
v+

j

)
are the values of the function φ (v) at the end points vj+1

and vj of the element Ij respectively.

At an interface between elements (e.g., the points vj+1 and vj), the flux function f

is not uniquely defined, and a suitable numerical flux must be determined accord-

ing to the classical finite-volume method. For example, the nonlinear flux function

f
(
vj+1, p

(
θ, x, vj+1

))
is replaced by a numerical flux f̂

(
vj+1, p

(
θ, x, vj+1

))
that depends

on two values, the left and right limits of the discontinuous function p evaluated at the

interface vj+1 such that

f̂ ( f )j+1(x) = f̂
(

f
(

v−j+1, p
(

θ, x, v−j+1

))
, f
(

v+j+1, p
(

θ, x, v+j+1

)))
However, the Godunov numerical flux was chosen for the present study.

For the approximate solution ph (θ, x, v), the DG space discretization based on the weak

formulation (III.19) is written as follows Cockburn and Shu, 1989:

∫
Ij

∂ph(θ, x, v)
∂x

φh(v)dv −
∫

Ij

f (v, ph(θ, x, v))
∂φh(v)

∂v
dv

+ f̂
(
vj+1, ph

(
θ, x, vj+1

))
φh

(
v−j+1

)
+ f̂

(
vj+1, ph

(
θ, x, vj+1

))
φh

(
v−j+1

)
− f̂
(
vj, ph

(
θ, x, vj

))
φh

(
v+j
)
=
∫

Ij

H(v)ph(θ, x, v)φh(v)dv

(III.21)
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We consider the approximations solutions ph for each interval Ij, ph(x)|j is a polynomial

of degree k. We take as the local basis function the suitably scaled Legendre polynomi-

als, that is, for x ∈ Ij , we write ph (θ, x, v) = ∑k
l ul

j(x) f l
j(v), where f l

j (v) = Pl(
2(v−vj)
vj+1−vj

)

and Pl is the lth Legendre polynomial. Since these polynomials are orthogonal, that

is, since
∫ +1
−1 Pl(ζ)Pl′(ζ)dζ = 2

2l+1 δll′ , the mass matrix is diagonal. Indeed, the weak

formulation (III.21) takes the following simple form:

For each interval Ij and each l = 0,...,k, we have

∂ul
j(x)

∂x
=

2l + 1
vj+1 − vj

∫
Ij

f (v, ph(θ, x, v))
∂φl

j(v)

∂v
dv

− 2l + 1
vj+1 − vj

[
h
(

ph

(
θ, x, v−j+1

)
, ph

(
θ, x, v+j+1

))
−

(−1)lh
(

ph

(
θ, x, v−j−1

)
, ph

(
θ, x, v+j−1

))
+
∫

Ij

H(v)ph(θ, x, v)φh(v)dv

] (III.22)

A high-order Gaussian quadrature rule is applied to evaluate the integral on the right-

hand side of Eq. (III.22).

In order to obtain the approximation of the (III.6) which is solved in finite volume in-

terval Ij by the collocation method for the breakup and coalescence, the approximate

solution is then obtained by inserting the function ph (θ, x, v) into the weak formula-

tion of (III.6) and multiplying both sides of the aggregation and breakup equation by

choosing the test function as Dirac functions θj (v) = ∂
(

v − vc
j

)
with vc

j the collocation

points.

In this section we briefly display the application of this discretizations. For more details

the reader should consult Hasseine and Bart, 2015; Sandu, 2004; Sandu and Borden,

2003.

III.5 Application and results

Let us consider the spatially distributed in one-dimensional population balance

equation Eq. (III.6) subject to the boundary condition p(θ, 0, v) = ve−v. The studied
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Table III.1: Summary of the test cases.

Case Feed dis-
tribution
pin

Droplet
velocity
vd

Breakage
functions

Coalescence
function
ω(v, u)

Growth
function
G(v)

Pure
breakage (2
cases)

ve−v Cte g(v) = v

β(
v
u
) =

2
v

v g(v) = v2

β(
v
u
) =

2
v

Pure
coalescence
(3 cases)

ve−v Cte Cte
v + u

v vu
Pure growth ve−v Cte v
Growth with
breakage

ve−v Cte g(v) = v2

β(
v
u
) =

2
v

v

Growth with
coalescence

ve−v Cte v

Growth with
breakage
with coales-
cence

ve−v Cte g(v) = v2

β(
v
u
) =

2
v

Cte v

Cte: constant.

cases are summarized in the Table III.1:

III.5.1 Case 1. Breakage with g(v) = v, β(v/u) = 2/v and vd = constant

In the following, we solve this problem by the variational iteration method. Inte-

grating Eq.(III.8) with respect to x we have

pi+1 = pi −
∫ x

0

(
∂pi

∂x
− 2v

∫ ∞

v

pi

u
du + vpi

)
dx (III.23)

e−vv (III.24)

− e−vv2x + v
(
e−v + 2e−vx

)
(III.25)

1
2

e−vv3x2 + v2
(
−e−vx − 2e−vx2

)
+ v

(
e−v + 2e−vx + e−vx2

)
(III.26)
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Hence, we calculate the general term as:

pn (θ, x, v) = −
e−v (2 − 3n + n2 + 2v − 2nv + v2) (−vx)n

v2xΓ [n]
(III.27)

Then:

p (θ, x, v) =
∞

∑
n=0

−
e−v (2 − 3n + n2 + 2v − 2nv + v2) (−vx)n

v2xΓ [n]
(III.28)

= e−v(1+x)v(1 + x)2u [θ] (III.29)

which converges to the exact solution.

Now rewriting this equation in terms of the original variables we get

p (t, z, v) = e−v(1+z−zd)v(1 + z − zd)
2u
[

t − z − zd
vd

]
(III.30)

The unit step u [.] function is defined as:

u
[

t − z − zd
vd

]
=

 1,
(

t − z−zd
vd

)
≥ 0,

0, otherwise,
(III.31)

Figure III.1 shows the prediction of the number density by the variational iteration

method at zd=0.3 (inlet) and z=2.5 (outlet). It must be noted from these profiles that

the outlet number density with linear breakage rate gives much production of particles

compared to the inlet density as expected.

Figure III.2 concerns the total number of particles, Figure III.2(a) and Sauter diameter

and Figure III.2(b) as a function of column height for the case of pure breakage process.

This leads to smaller drops which have a lower slip-velocity and greater residence time.

Therefore, the total number of particles in the column increases and the Sauter diameter

decreases, as shown in Figures III.2(a) and III.2(b), respectively. As can be seen from the

figure, the semi-analytical and numerical results of VIM and collocation, respectively,

are very distinguishable. The solid line in Figure III.3 shows the holdup versusbcolumn

height obtained by the VIM method and the markers by the collocation approach.
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Particle diameter

Inlet density at z=0.3

Outlet density at z=2

Figure III.1: Number density for the pure breakage by the variational iteration method
at z=0.3 (inlet) and z=2.5 (outlet).

III.5.2 Case 2. Aggregation with ω(v, u) = Cte and vd = Cte

pi+1 = pi −
∫ x

0

(
∂pi

∂x
− v

2

∫ v

0

pi (v − u)
v − u

pi (u)
u

du − pi

∫ ∞

0

pi (u)
u

du
)

dx (III.32)

p0 = e−vv, (III.33)

p1 =
1
2

e−vv2x + v
(
e−v − e−vx

)
, (III.34)

p2 =
1
2

e−vv2x + v
(
e−v − e−vx

)
+

3
4

e−vvx2 − 3
4

e−vv2x2 +
1
8

e−vv3x2 + . . . , (III.35)

then we calculate the general term as:

pn =
4e−vvn+1xn

Γ (1 + n) (2 + x)n+2 (III.36)

The closed-form solution can be written as:

p (θ, x, v) =
∞

∑
n=0

4e−vvn+1xn

Γ (1 + n) (2 + x)n+2 (III.37)

=
4v e−

2v
2+x

(2 + x)2 u [θ] (III.38)

53



Chapter III VIM application

0.5 1.0 1.5 2.0
Column height m

0.5

1.0

1.5

2.0

2.5

Total number of particles N 1 m3

Vim

Collocation

Column height (m)

Collocation

VIM

To
ta

l n
u

m
b

er
 o

f 
p

ar
ti

cl
es

 (
1
/𝑚

3
)

(a)

0.5 1.0 1.5 2.0
Column height m

0.2

0.4

0.6

0.8

1.0

1.2

Sauter diameter m

Vim

Collocation

Sa
u

te
r 

d
ia

m
et

er
 (

m
)

Column height (m)

Collocation

VIM

(b)

Figure III.2: Total number of particles (a), and Sauter diameter (b), as function of
column height for the case of pure breakage process.
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Figure III.3: Holdup versus column height for the pure breakage.

The solution in terms of the original variables is given by:

p (t, z, v) =
4v e−

2v
2+z−zd

(2 + z − zd)
2 u
[

t − z − zd
vd

]
(III.39)

Figure. III.4 shows the prediction of the number density by the VIM at zd=0.3 (inlet)

and z = 2.5 (outlet). It must be noted from these profiles that the outlet number density

with constant aggregation rate gives low production of drops compared with the inlet

density, as expected. Figure. III.5 concerns the total number of particles;Figure III.5(a)

Sauter diameter Figure III.5(b) versus column height for the case of pure aggregation

process. For the inverse case with aggregation, larger particles are seen to be present.

This leads to a. lower total number of particles and a higher Sauter diameter, as shown

in Figures III.5(a) and III.5(b), respectively. Again, it can be seen from the figure that

the semi-analytical and numerical results of VIM and collocation, respectively, are in

good agreement. The solid line in Figure III.6 shows the holdup versus column height

obtained by the VIM method and the markers by the collocation approach.
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Figure III.4: Number density for the pure aggregation by the variational iteration
method at z=0.3 (inlet) and z=2.5 (outlet).

III.5.3 Case 3. Growth with G(v) = v and vd = constant

pi+1 = pi −
∫ x

0

(
∂pi

∂x
+ v

∂pi

∂v

)
dx (III.40)

p0 = e−vv (III.41)

p1 = e−vv2x + v
(
e−v − e−vx

)
, (III.42)

p2 =
1
2

e−vv3x2 + v2(e−vx − 3
2

e−vx2) + v(e−v − e−vx +
1
2

e−vx2). . . (III.43)

then the general can be obtained as:

pn =
vn+1e−(n+1)x−v(−1 + ex)n

n!
(III.44)

The solution can be written as

p (θ, x, v) =
∞

∑
n=0

vn+1e−(n+1)x−v(−1 + ex)n

n!
(III.45)

= v e−x−e−xvu [θ] (III.46)
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Figure III.5: Total number of particles (a), and Sauter diameter (b), as function of
column height for the case of pure aggregation process.
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Figure III.6: Holdup versus column height for the pure aggregation.

which can be written as:

p (t, z, v) = v e−(z−zd)−e−(z−zd)vu
[

t − z − zd
vd

]
(III.47)

Figure III.7 presents a comparison between discontinuous Galerkin method and varia-

tional iteration method results for particle growth Eq.(III.10).

Figure III.7: Comparison between the discontinuous Galerkin and Vim for the case of
pure growth process.
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III.5.4 Case 4. Coalescence and growth with ω(v, u) = constant, G(v) =

v and vd = constant

pi+1 = pi −
∫ x

0

(
∂pi

∂x
+ v

∂pi

∂v
− v

2

∫ v

0

pi(v − u)
v − u

pi(u)
u

du + pi

∫ ∞

0

pi(u)
u

du
)

dx, (III.48)

p0 = e−vv, (III.49)

p1 = v
(
e−v − 2e−vx

)
+

3
2

e−vv2x, (III.50)

p2 = v
(

e−v − 2e−vx +
9
4

e−vx2
)
+ v2

(
3e−vx

2
− 17

4
e−vx2

)
+

9
8

e−vv3x2 + . . . (III.51)

p3 = v
(

e−v − 2e−vx +
9
4

e−vx2 − 23
12

e−vx3
)

+ v2
(

3e−vx
2

− 17
4

e−vx2 +
20
3

e−vx3
)

+ v3
(

9
8

e−vx2v
3 − 33

8
e−vx3

)
+ . . .

(III.52)

. .,

we therefore suggest that e−v be expressed in Taylor series of finite components for p3,

and then we obtain by substitution the following expression

p3 = v
(

1 − 2x +
9x2

4
− 23x3

12
. . .
)

+ v2
(
−1 +

7x
2

− 13x2

2
+

103x3

12
. . .
)

+ v3
(

1
2
− 5x

2
+

13x2

2
− 47x3

4
. . .
)
+ . . .

(III.53)

This gives:

p3 = v

(
∞

∑
n=0

∞

∑
m=0

(−1)n+m (1 + n)
2nm!

xn+m

)

+ v2

(
∞

∑
n=0

∞

∑
m=0

(−1)n2−1−n(1 + n)(2 + n)
(−2)m

m!
xn+m

)

+ v3

(
∞

∑
n=0

∞

∑
m=0

(−3)m

m!
1
3
(−1)n2−2−n (1 + n) (2 + n) (3 + n) xn+m

)
+ . . .

(III.54)
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and the closed form by

p3 = v
4e−xv

(2 + x)2−v2 8e−2xv2

(2 + x)3 + v3 8e−3x

(2 + x)4 + . . . (III.55)

Therefore, we have:

p (θ, x, v) = lim
n→∞

pn (θ, x, v) (III.56)

=
∞

∑
n=1

(− 2
2 + x

)
n+1 e−nxvn

Γ[n]
, (III.57)

=
4e−x− 2e−xv

2+x v

(2 + x)2 u [θ] (III.58)

This is an exact solution, and in terms of the original variables we get

p (t, z, v) =
4e

−(z−zd)− 2e−(z−zd)v
2+(z−zd) v

(2 + z − zd)
2 u

[
t − z − zd

vd

]
(III.59)

Figure. III.8 presents a comparison between discontinuous Galerkin method and varia-

tional iteration method results for particle growth and aggregation Eq.(III.11).

Figure III.8: Comparison between the discontinuous Galerkin and Vim for the case of
pure growth process.
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III.5.5 Case 5. Simultaneous breakage and growth with G(v) = v and

vd = constant

pi+1 = pi −
∫ x

0

(
∂pi

∂x
+ v

∂pi

∂v
− 2

∫ ∞

v
pi (u) du + vpi

)
dx (III.60)

p0 = e−vv (III.61)

p1 = v
(
e−v + e−vx

)
(III.62)

p2 = v
(

e−v + e−vx +
1
2

e−vx2
)

. . . (III.63)

then the general term is obtained as:

pn =
e−vvx−1+n

Pochhammer [1,−1 + n]
. (III.64)

With the closed solution written as:

p (θ, x, v) =
∞

∑
n=0

e−vvx−1+n

Pochhammer [1,−1 + n]
(III.65)

= e−v+xv u [θ] (III.66)

With the closed solution written as:

p (t, z, v) = ve−v+z−zdu
[

t − z − zd
vd

]
(III.67)

Figure III.9 shows a comparison between the discontinuous Galerkin method and vari-

ational iteration method results for particle growth and breakage Eq.(III.12).

III.5.6 Case 6. Simultaneous breakup and coalescence and growth

with G(v) = v , ω(v, u) = constant and vd = constant

pi+1 = pi −
∫ x

0

 ∂pi
∂x + v ∂pi

∂v − 2
∫ ∞

v pi (u) du + vpi

−1
2

∫ v
0 pi (v − u) pi (u)du + pi

∫ ∞
0 pi (u) du

 dx (III.68)
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Figure III.9: Comparison between the discontinuous Galerkin and Vim for the case of
simultaneous growth and breakage process

p0 = e−vv (III.69)

p1 = e−vv +
1
2

e−vv2x (III.70)

p2 = v
(

e−v +
1
4

e−vx2
)
+ v2

(
e−vx

2
− 1

4
e−vx2

)
+

1
8

e−vv3x2 . . . (III.71)

Figure.III.10 shows different cases for the total number of particles such as pure break-

age, pure aggregation,pure growth, aggregation and growth, and simultaneous break-

age and aggregation and growth are considered.The results can be regarded as a sensi-

tivity analysis of the base concept of a population balance. It is clear from the compar-

ison between all these processes that the pure breakage gives a greater total number of

particles. It is evident that in growth-dominated systems, the total number of particles is

relatively insensitive to the particular aggregation mechanism. For the semi-analytical

solution a very good approximation can be achieved by adding new terms to the decom-

position series. A comparison of numerical (collocation approach) and semi-analytical

(VIM) results is also made, and they are hardly distinguishable.
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Figure III.10: Total number of particles as function of column height for the case of
breakage only, aggregation only, growth only, growth + aggregation, and simultaneous

all process. Solid lines vim and markers collocation approach

III.5.7 Case 7. Coalescence with ω(v, u) = v + u and vd = constant

pi+1 = pi −
∫ x

0

 ∂pi
∂x − ( v2

2

∫ v
0 pi (v − u) pi (u)/((v − u) u)du

− pi
∫ ∞

0 (v + u) pi (u)/udu)

 dx (III.72)

p0 = e−vv (III.73)

p1 = v
(
e−v − e−vx

)
− e−vv2x +

1
2

e−vv3x (III.74)

p2 =v
(

e−v − e−vx +
1
2

e−vx2
)

+v2
(
−e−vx +

3
2

e−vx2 − 1
3

e−vx3
)

+v3
(

e−vx
2

− 1
4

e−vx2 − 1
6

e−vx3
)

. . .

(III.75)

Then and with the same suggestion for the case 4 we calculate the exact solution as:

p (θ, x, v) =
∞

∑
m=0

∞

∑
n

e−x(−2 + e−x)
m
(1 − e−x)

kv2k+m+1

m!k!Γ [k + 2]
(III.76)
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=
e−e−x(−1+2ex)v− x

2 BesselI
[
1, 2e−x/2

√
−1 + exv

]
√
−1 + ex

u [θ] (III.77)

with original variable we get:

p (t, z, v) =
e−e−(z−zd)

(
−1+2?(z−zd)

)
v− (z−zd)

2 BesselI
[
1, 2e−(z−zd)/2

√
−1 + ez−zd v

]
√
−1 + ez−zd

(III.78)

×u
[

t − z − zd
vd

]
Figure III.11 shows the comparison between the total number of drops versus column

height for the case of the pure aggregation process with constant aggregation rate and

linear aggregation rate. It is clear that the total number of particles decreases more

rapidly with linear aggregation rate than with constant aggregation rate because ag-

gregation becomes more efficient as particles grow when ω (v, u) is volume dependent.

The linear aggregation mechanism is clearly more efficient in removing particles than is

the constant aggregation mechanism Gelbard and Seinfeld, 1978.
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Figure III.11: Comparison between the total number of particles versus column height
for the case of pure aggregation process with constant aggregation rate and linear

aggregation rate.
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III.5.8 Case 8. Breakage g(v) = v2, β(v/u) = 2/v and vd = v

pi+1 = pi −
∫ x

0

(
∂pi

∂x
− 2

∫ ∞

v
pi (u) du + vpi

)
dx (III.79)

p0 = e−vv (III.80)

p1 = 2e−vx − e−vv2x + v
(
e−v + 2e−vx

)
(III.81)

p2 = 2e−vx + 2e−vx2 +
1
2

e−vv3x2 + v2
(
−e−vx − 2e−vx2

)
+v
(

e−v + 2e−vx − e−vx2
)
+ . . . (III.82)

we calculate the general term as:

pn =
(−1)nxn−1

n!
e−vvn (1 + x)

(
−n − nx + 2x2

)
(III.83)

Then the closed form solution can be written as

p (θ, x, v) =
∞

∑
n=0

(−1)nxn−1

n!
e−vvn (1 + x)

(
−n − nx + 2x2

)
(III.84)

= e−v(1+x) (1 + x) (2x + v + xv)u [θ] (III.85)

So we can write

p (t, z, v) = e−v(1+z−zd) (1 + z − zd) (2 (z − zd) + v + (z − zd) v)

u
[

t − z − zd
v

]
(III.86)

III.5.9 Case 9. Coalescence with ω(v, u) = vu and vd = v

pi+1 = pi −
∫ x

0

(
∂pi

∂x
− 1

2

∫ v

0
pi (v − u) pi (u)du + pi

∫ ∞

0
pi (u) du

)
dx (III.87)

p0 = e−vv (III.88)
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p1 =
1

12
e−vv3x + v

(
e−v − e−vx

)
, (III.89)

p2 =
e−vv7x3

120960
+ v

(
e−v − e−vx +

3
4

e−vx2 − 1
6

e−vx3
)

+ v5
(

1
480

e−vx2 − 1
720

e−vx3
)

+ v3
(

e−vx
12

− 1
8

e−vx2 +
1

24
e−vx3

) (III.90)

Using the above terms, the general term is deduced as:

pn =
4 xn−1(2 + x)−n−1v2n−1

Gamma(2n)
e−v (III.91)

The above series can be generalized as follows:

p (θ, x, v) =
4
√

x

(2 + x)
3
2

e−vSinh
(√

x
2 + x

v
)

u [θ] (III.92)

Therefore the solution is:

p (t, z, v) =
4
√

z − zd

(2 + z − zd)
3
2

e−vSinh
(√

z − zd
2 + z − zd

v
)

u
[

t − z − zd
v

]
(III.93)

Figures. III.12 and III.13 show the prediction of the volume density by the VIM at zd =

0.3 (inlet) and z = 2.2 (outlet) for the breakage and aggregation respectively with linear

velocity. These profiles show that the outlet number densities with linear velocity give

low production of drops for the aggregation and greater production of drops for the

breakage compared with the inlet densities, as expected..
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Figure III.12: Volume density for the pure breakage with linear velocity by the
variational iteration method at z=0.3 (inlet) and z=2.5 (outlet).
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Figure III.13: Volume density for the pure coalescence with linear velocity by the
variational iteration method at z=0.3 (inlet) and z=2.5 (outlet).

III.6 Conclusion

In this application, after converting the 1D population balance equation to an

integro-ordinary-differential equation, the variational iteration method was examined

to solve this equation for breakage, coalescence and growth source terms. From the se-

ries that is generated by VIM, the exact solutions are perfectly found for all cases except

for the sixth case. Alternatively, with a large number of terms, its series gives a good
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exactness. The obtained results support that VIM is an efficient method to solve the

integro-differential equations with ease and simplicity in coding. Projection method is a

powerful numerical technique for predicting population balance equation distribution.

VIM solutions will be also compared with DuQMoGeM solutions for certain cases in

the next chapter (chapter IV).
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DuQMoGeM application

IV.1 Introduction

In this chapter we applied the DuQMoGeM to solve the population balance equa-

tion for liquid-liquid columns using a multi-compartment model that represents a well-

mixed vessel as a particular case. The multi-compartment model can either represent a

discretization of a continuous contact column or a multiple-staged column. The model

must use appropriate correlations for calculating the inter-compartment drop fluxes

for a specific kind of extraction column. The calculation of spatial moment fluxes us-

ing DuQMoGeM has never been carried out before. Although several other methods

can solve this problem, we did not intend to compare them to the DuQMoGeM in the

present work. It must be pointed out that the DuQMoGeM was developed and tested

previously only using the particle volume as the internal variable P. L. Lage, 2011. As

it has never been applied to solve problems using the particle diameter as the internal

variable, we first applied it to solve such population balance models for test cases with

analytical solutions. These include models for well-mixed reactors in both continuous

and closed systems and a liquid-liquid extraction column without diffusion and with

constant phase velocities. Finally, a realistic case of a Kühni column was modeled and

solved, and the results were compared to available experimental data.

This work has been partially carried out during the PNE scholarship (2019/2020),

at the Thermofluid Dynamic Laboratory of the Programa de Engenharia Quı́mica at
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COPPE/UFRJ, Brazil, during the academic year 2019/2020.

IV.2 Population balance models

IV.2.1 Model for a liquid-liquid extraction column

The population balance equation for the areal-averaged drop number distribu-

tion, n(t, z, d), in a liquid-liquid extraction column can be written as Kronberger et al.,

1995; Ramkrishna, 2000:

∂n(t, z, d)
∂t

+
∂F(t, z, d)

∂z
= S(t, z, d) + H(t, z, d) (IV.1)

where z ∈ [0, h] is the vertical coordinate, being h the column height, and d ∈ [dmin, dmax] ⊂

[0, ∞] is the drop equivalent diameter, where dmin and dmax are physically imposed lim-

its for the drop size distribution, that is, n(t, z, d) = 0, ∀d /∈ [dmin, dmax]. We proceed in

this section as if the extraction column is continuous, that is, without internals, but the

resulting equations for the multi-compartment model are the same for a multiple-stage

column.

The drops move along the z coordinate with velocity vd, and their axial dispersion is

modeled with an effective isotropic dispersion coefficient Dd,e f . The advective-diffusive

flux F of drops of diameter d at any height in the column is given by:

F(t, z, d) = vd(t, z, d, rd)n(t, z, d)−Dd,e f (t, z, rd)
∂n
∂z

(IV.2)

where

rd(t, z) = cv

∫ dmax

dmin

d3n(t, z, d)d(d) (IV.3)

is the dispersed phase fraction (holdup), being cv a form factor that relates the drop

diameter to its volume, υ(d) = cvd3. For spherical drops, cv = π/6.

The two-phase flow and mechanical agitation originate from the turbulent fluctu-

ations in the continuous phase, which generate random drops movements. A dispersive
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flux is one way of modeling these drop movements. For staged extraction columns, me-

chanical agitation is the primary source of dispersion. In Eq. (IV.2), we assumed the

hypothesis that Dd,e f is independent from d.

In Equation (IV.1), the H term can be written as:

H = Ha + Hb (IV.4)

where Ha and Hb are the net rate of drop production by coalescence and breakage, re-

spectively, that are assumed to be functions of the dispersed phase fraction see Ramkr-

ishna, 2000, for their general form. The breakage source terms are given by:

Hb =
∫ dmax

d
ν(u)B(d|u)g(u, rd)n(t, z, u)du − g(d, rd)n(t, z, d) (IV.5)

where g, ν and B are, respectively, the breakage frequency, the mean number of daughter

drops and the daughter conditional probability distribution. We assumed that the latter

depends only on the diameter ratio of daughter and mother drops. The coalescence

source terms are given by:

Ha =
1
2

∫ d

dmin

ω(u, s, rd)n(t, z, u)n(t, z, s)J du

− n(t, z, d)
∫ umax

dmin

ω(u, d, rd)n(t, z, u)du (IV.6)

where umax = (d3
max − d3)1/3 and ω is the coalescence frequency that is assumed to be

a function of the disperse phase fraction, and J is the Jacobian of the transformation of

the internal variable differential, J d(d) = ds:

J =
d2

[d3 − u3]
(2/3)

(IV.7)

The number rate of drops entering the column can be modeled as a source at a given zd

position that is given by:

S(t, z, d) =
Qd,in(t)

A
nin(t, d)
ῡin(t)

δ(z − zd) (IV.8)

where Qd,in(t) is the volumetric flow rate of the liquid that forms the drops fed to the

column at point zd and time t, A is the cross-section area of the column, and nin(t, d) is
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the normalized drop size distribution formed at the injection point, which satisfies:

∫ dmax

dmin

nin(t, d)d(d) = 1. (IV.9)

Thus, the mean drop volume at z = zd is given by:

ῡin(t) =
∫ dmax

dmin

υ(d)nin(t, d)d(d) (IV.10)

Boundary conditions

The Danckwerts boundary condition imposes the value of the advective-dispersive

flux at the domain’s boundaries. For the present model, the disperse phase is fed to the

column at zd, and the large ascending drops can leave the column at z = h, while the

continuous phase carries the small descending drops that can leave the column at its

bottom. We assumed that the dispersion flux is negligible at the top and bottom of the

column, which is an adequate approximation for multi-stage columns with bottom and

top sections with no mixing, which is the primary source of drop dispersion. Therefore,

the imposed boundary conditions are:

z = 0, F(t, 0, d) = vd(t, 0, d, rd)n(t, 0, d)−Dd,e f (t, 0, rd)
∂n
∂z

= min[vd(t, 0, d, rd), 0]n(t, 0, d) (IV.11)

z = h, F(t, h, d) = vd(t, h, d, rd)n(t, h, d)−Dd,e f (t, h, rd)
∂n
∂z

= max[vd(t, h, d, rd), 0]n(t, h, d) (IV.12)

Considering the large (vd > 0) and small (vd < 0) drops, it is easy to prove that Eqs.

(IV.11) and (IV.12) are equivalent to:

z = 0, max[vd(t, 0, d, rd), 0]n(t, 0, d)−Dd,e f (t, 0, rd)
∂n
∂z

= 0, (IV.13)

z = h, min[vd(t, h, d, rd), 0]n(t, h, d)−Dd,e f (t, h, rd)
∂n
∂z

= 0, (IV.14)

which are the expressions given by M. M. Attarakih et al., 2004.
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IV.2.2 Drop velocities

The velocity of drops in a swarm significantly depends on the drop diameter

and the volume fraction of the dispersed phase. The rising velocity vd of a droplet of

diameter d, is expressed as Gayler et al., 1953:

vd(d, rd) = vr(d, rd) + vc(rd) (IV.15)

where vc is the continuous phase velocity. The relative velocity of droplets with di-

ameter d is often called the slip velocity. It is calculated from the single drop terminal

velocity, vt, considering the slowing factor and the swarm effect by the following ex-

pression:

vr(d, rd) = kvvt(1 − rd)
κ (IV.16)

where kv ∈ (0, 1] is the slowing factor and (1 − rd)
κ accounts for the swarm effect. The

drop terminal velocity depends on the physical properties of both phases and droplet

diameter Garthe, 2006. The steady-state solution of the mass balance equation for the

continuous phase for a column operated in counter-current operation provides:

vc(t, z) =
1

1 − rd(t, z)

{
(1 −H(z − zc))

Qc

A
+Dc,e f (z)

∂rd(t, z)
∂z

}
(IV.17)

where Dc,e f is the dispersion coefficient of the continuous phase that can be used to

model backmixing.

IV.2.3 Multi-compartment model for the extraction column

The one-dimensional model of an extraction column can have the external z coor-

dinate domain partitioned to define compartments. These can be actual column stages

in a multi-stage column or simply discretization subdomains in a continuous contact

column. We consider a multi-compartment column with J sections operated in counter-

current mode, where each section has a height hj, as it is schematically represented in

Figure. IV.1.

Its governing equation is given by Eq. (IV.1), which can be integrated using the operator
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Figure IV.1: Multi-compartment extraction column.

1
hj

∫ zj
zj−1

(·)dz to give:

∂

∂t

[
1
hj

∫ zj

zj−1

ndz

]
+

1
hj
(Fj − Fj−1) =

1
hj

∫ zj

zj−1

Sdz

+
1
hj

∫ zj

zj−1

Hdz, j = 1, . . . , J (IV.18)

where

Fj(t, d) = F(t, zj, d) = vd(t, zj, d, rd(t, zj))n(t, zj, d)

−Dd,e f (t, zj, rd(t, zj))

[
∂n(t, z, d)

∂z

]
z=zj

(IV.19)

By defining the average of the generic ψ variable in the j compartment by:

ψj(t, d) =
1
hj

∫ zj

zj−1

ψ(t, z, d)dz, (IV.20)
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we can write Eq. (IV.18) as:

∂nj(t, d)
∂t

+
1
hj
(Fj − Fj−1) = Sj + Hj, J = 1, . . . , J (IV.21)

Equation (IV.21) also represents the population balance model for each stage of a J-

staged extraction column. In this case, we have to reinterpret the disperse-phase fluxes

given by Eq. (IV.19) as inter-stage fluxes. Then, we must use appropriate correlations

Hasseine et al., 2005 or CFD simulation data Weber et al., 2020 for the specific type of

staged column to calculate the absolute drop velocity and the drop dispersion coeffi-

cient. The j control volume (compartment) is defined to be the column section in the

[zj−1, zj] interval. Therefore, all variables derived from the number size distribution are

represented by its volumetric mean at this compartment, nj(t, d). For instance, the mean

dispersed phase fraction in the j compartment is given by:

rd,j(t) = cv

∫ dmax

dmin

d3nj(t, d)d(d) (IV.22)

If any variable has a linear behavior within a compartment, then the value at its center

is equal to the average, that is, ψ(t, zj−1 + hj/2, d) = ψj(t, d). In Eq. (IV.21), the source

term Sj exists only for j = jd, defined by zjd−1 < zd < zjd , where the drops are formed,

which is given by:

Sj = Sjd δj,jd , Sjd =
1

hjd

∫ zjd

zjd−1

Sdz =
1

th,jd

nin(t, d)
ῡin

(IV.23)

where

th,jd =
hjd A
Qd,in

=
Vdjd

Qd,in
, Vdjd

= hjd A (IV.24)

It should be noted that Fj must be computed at the boundary zj between the j and

j + 1 compartments. Therefore, some approximations have to be made as the distribu-

tion nj is a mean value for the j compartment. As small drops can descend along the

column dragged by the continuous phase, we must consider drop effluxes at z0 and

zJ . Moreover, every compartment boundary may have upward and downward drop

fluxes. Therefore, we split the advective fluxes accordingly, and Eq. (IV.19) becomes:

F(t, zj, d) = Fj(t, d) = F+
j (t, d) + F−

j (t, d)−Dd,e f (t, zj, rd(t, zj))

[
∂n(t, z, d)

∂z

]
z=zj

(IV.25)
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We use a fully upwind approximation for the advective fluxes, that is,

F−
j (t, d) = min(vd,j, 0)nj+1(t, d), j = 0, . . . , J − 1, F−

J (t, d) = 0

F+
j (t, d) = max(vd,j, 0)nj(t, d), j = 1, . . . , J, F+

0 (t, d) = 0 (IV.26)

where n(t, zj, d) = nj(t, d), vd,j(t, d) = vd(t, zj, d, rd(t, zj)) with rd(t, zj) = rj(t). Equation

(IV.26) implies that there is no drop inlet at the column boundaries at z0 and zJ . Sub-

stituting Eqs. (IV.26) into Eq. (IV.25) and applying the boundary conditions given by

Eqs. (IV.11) and (IV.12) under the assumption of no dispersive flux at the boundaries,

we have:

F0(t, d) = F−
0 (t, d) = min(vd,0, 0)n1(t, d) (IV.27)

FJ(t, d) = F+
J (t, d) = max(vd,J , 0)nJ(t, d) (IV.28)

Equations (IV.27) and (IV.28) are equivalent to the assumption of escape frequencies

equal to −vd,0/h0 and vd,J/hJ for, respectively, the descending drops at the lowest com-

partment and the ascending drops at the highest compartment. For the inter-compartment

fluxes inside the column, we approximate the dispersive term by central differences:

[
∂n(t, z, d)

∂z

]
z=zj

=
nj+1(t, d)− nj(t, d)

hj+1 + hj

2

, (IV.29)

The weighted harmonic mean is used to obtain the dispersion coefficient at the com-

partment boundaries:

Dd,e f ,j+1/2(t) = Dd,e f (t, zj) =

[
1

hj + hj+1

(
hj

Dd,e f ,j(t)
+

hj+1

Dd,e f ,j+1(t)

)]−1

, (IV.30)

where Dd,e f ,j(t) is the volumetric mean dispersion coefficient in compartment j. The

harmonic mean used in Eq. (IV.30) reduces to the correct limiting dispersive fluxes

when Dd,e f ,i → 0 or Dd,e f ,i → ∞ for i = j, j + 1 for transport processes in series. Using

these approximations, we have

Fj(t, d) = F+
j (t, d) + F−

j (t, d)−Dd,e f ,j+1/2(t)
2

hj+1 + hj

[
nj+1(t, d)− nj(t, d)

]
. (IV.31)
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Thus, the multi-compartment model consists of the following ODE system for nj:

∂nj

∂t
+

1
hj
(Fj − Fj−1) = Hj + Sj, j = 1, . . . , J (IV.32)

The breakage and coalescence source terms in compartment j can be written as:

Hj = Ha,j + Hb,j (IV.33)

Some definitions and approximations must be made to write these terms as functions

of nj. Lets assume that n(t, z, d) = nj(t, d) for z ∈
[
zj−1, zj

]
. Then, these distributions

can be taken out of the z integral, and mean breakage and aggregation functions can be

defined for each compartment. Assuming that ν(u) and B(d|u) do not depend on z, the

breakage source term is given by:

Hb,j =
∫ dmax

d
ν(u)B(d|u)gj(u, rd,j)nj(t, u)dudz − gj(d, rd,j)nj(t, d) (IV.34)

The coalescence source term is given by:

Ha,j =
1
2

∫ d

dmin

ωj(u, s, rd,j)nj(t, u)nj(t, s)Jdu

− nj(t, d)
∫ umax

dmin

ωj(u, d, rd,j)nj(t, u)du (IV.35)

where

gj(d, rd,j(t)) =
1
hj

∫ zj

zj−1

g(d, rd(t, z))dz (IV.36)

ωj(u, d, rd,j(t)) =
1
hj

∫ zj

zj−1

ω(u, d, rd(t, z))dz (IV.37)

IV.2.4 Model for the well-mixed vessel

The behavior of the dispersed phase in a continuous well-mixed vessel is a par-

ticular case of Eq. (IV.32), where J = jd = 1, h1 = h, th,1 = th and, using Eq. (IV.28), we

have:
F1

h1
=

vd,1

h1
n1(t, d) =

Qd,in

hA
n1(t, d) =

1
th

n1(t, d) (IV.38)
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where in the last two expressions the drop escape frequency was assumed to be inde-

pendent from its diameter and equal to the inverse of the mean residence time of the

dispersed phase, th. Therefore, for the well-mixed vessel, the population balance equa-

tion can be written as Ramkrishna, 2000:

∂n(t, d)
∂t

=
1
th

[
nin(t, d)

ῡin
− n(t, d)

]
+ Ha(t, d) + Hb(t, d) (IV.39)

where the subscript 1 was dropped. For a batch well-mixed vessel Eq. (IV.39) takes the

simple form:
∂n(t, d)

∂t
= Ha(t, d) + Hb(t, d) (IV.40)

IV.3 Generalized moment equations

Consider the generalized moment operator:

⟨ϕk, (·)⟩ =
∫ dmax

dmin

(·)ϕk(d)d(d), (IV.41)

where ϕk(d) is the Legendre polynomial of k degree defined into the shifted interval

[dmin, dmax], which have the following orthogonality property:

⟨ϕk, ϕj⟩ =
∫ dmax

dmin

ϕk(d)ϕj(d)d(d) = δkj⟨ϕk, ϕk⟩ = δkj∥ϕk∥2 (IV.42)

IV.3.1 Moment equations for the multi-compartment model

The Legendre generalized moments of nj(t, d) can be computed from its defini-

tion, Eq. (IV.20), and from Eq. (IV.41) and they can be written as:

µ
(ϕ)
j,k = ⟨ϕk, nj⟩ =

1
hj

∫ zj

zj−1

⟨ϕk, n⟩dz (IV.43)

Applying the moment operator, Eq. (IV.41), to Eq. (IV.32), we get:

∂µ
(ϕ)
j,k

∂t
+

1
hj
(⟨ϕk, Fj⟩ − ⟨ϕk, Fj−1⟩) = H(ϕ)

j,k +
1

th,jd

µ
(ϕ)
ink

ῡin
δj,jd , j = 1, . . . , J (IV.44)
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where ⟨ϕk, Fj⟩ are calculated using Fj from Eqs. (IV.27), (IV.28) and (IV.31):

⟨ϕk, F0⟩ = ⟨ϕk, min(vd,0, 0)n1⟩

⟨ϕk, Fj⟩ = ⟨ϕk, max(vd,j, 0)nj⟩+ ⟨ϕk, min(vd,j, 0)nj+1⟩

−
2Dd,e f ,j+1/2

hj+1 + hj

[
µ
(ϕ)
j+1,k − µ

(ϕ)
j,k

]
, j = 1, . . . , J − 1 (IV.45)

⟨ϕk, FJ⟩ = ⟨ϕk, max(vd,J , 0)nJ⟩

and

µ
(ϕ)
in,k(t) =

∫ dmax

dmin

nin(t, d)ϕk(d)d(d) (IV.46)

The moments of the breakage and coalescence terms in the j compartment are written

as:

H(ϕ)
j,k = ⟨ϕk, Hj⟩ = ⟨ϕk, Ha,j⟩+ ⟨ϕk, Hb,j⟩ (IV.47)

Using the hypotheses described in section IV.2.3, we can write the moments of the coa-

lescence and breakage terms as:

⟨ϕk, Ha,j⟩ =
1
2

∫ dmax

dmin

∫ dmax

dmin

[
ϕk

(
[s3 + u3]1/3

)
− ϕk(s)− ϕk(u)

]
ωj(u, s)nj(t, u)nj(t, s)dsdu (IV.48)

⟨ϕk, Hb,j⟩ =
∫ dmax

dmin

gj(u)nj(t, u)
[
ν(u)Π(ϕ)

k (u)− ϕk(u)
]

du (IV.49)

where

Π(ϕ)
k (u) =

∫ u

dmin

ϕk(d)B (d|u) d(d) (IV.50)

IV.3.2 Moment equations for the well-mixed vessel

This is a particular case of the model presented in the previous section. Thus,

considering the same hypotheses described in section IV.2.4, we can write the moments

of the corresponding PBE by:

∂µ
(ϕ)
k

∂t
=

1
th

µ
(ϕ)
in,k

ῡin
− µ

(ϕ)
k

+ ⟨ϕk, Ha⟩+ ⟨ϕk, Hb⟩ (IV.51)

79



Chapter IV DuQMoGeM application

where

µ
(ϕ)
k (t) =

∫ dmax

dmin

n(t, d)ϕk(d)d(d) (IV.52)

and ⟨ϕk, Ha⟩ and ⟨ϕk, Hb⟩ are those obtained from Eqs. (IV.48) to (IV.49) by dropping the

j subscript.

IV.4 The usage of a dimensionless internal variable

The internal variable d can be used to defined the dimensionless diameter x in

the [0, 1] interval:.

x(d) =
d − dmin

dmax − dmin
⇒ dx =

d(d)
dmax − dmin

(IV.53)

d(x) = dmin + x (dmax − dmin) (IV.54)

Considering the nj(t, d) distribution in the multi-compartment model, the transformed

distribution ñj(t, x) is given by :

nj(t, d)d(d) = ñj(t, x)dx ⇒ ñj(t, x) = nj(t, d) (dmax − dmin) (IV.55)

Defining φk(x) = ϕk(d(x)), the following relation between the moment operators can

be established:

⟨φk, (·)⟩ =
∫ 1

0
(·)φk(x)dx =

1
dmax − dmin

∫ dmax

dmin

(·)ϕk(d)d(d)

=
1

dmax − dmin
⟨ϕk, (·)⟩ (IV.56)

where ⟨(·), (·)⟩ indicates the inner product between two functions relatively to their

internal variable, d or x. It should be pointed out that φk(x) is just an expression for

ϕk(d(x)) and, therefore, both have the same dimensions, even though x is dimension-

less. Therefore, Eqs. (IV.55) and (IV.56) shows that:

⟨φk, ñj⟩ = ⟨ϕk, nj⟩ (IV.57)
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Similarly

ñin(t, x) = (dmax − dmin)nin(t, d) ⇒ ⟨φk, ñin⟩ = ⟨ϕk, nin⟩ (IV.58)

If we define:

F̃j(t, x) = (dmax − dmin) Fj(t, d), (IV.59)

H̃a,j(t, x) = (dmax − dmin) Ha,j(t, d) (IV.60)

H̃b,j(t, x) = (dmax − dmin) Hb,j(t, d) (IV.61)

then

⟨φk, F̃j⟩ = ⟨ϕk, Fj⟩ (IV.62)

⟨φk, H̃a,j⟩ = ⟨ϕk, Ha,j⟩ (IV.63)

⟨φk, H̃b,j⟩ = ⟨ϕk, Hb,j⟩ (IV.64)

IV.4.1 Moment equations of the multi-compartment model

Considering Eqs. (IV.57), (IV.58), (IV.62), (IV.63) and (IV.64), the moment equa-

tions of the multi-compartment model, given by Eq. (IV.44), can be written as:

∂µ
(φ)
j,k

∂t
+

1
hj
(⟨φk, F̃j⟩ − ⟨φk, F̃j−1⟩) = ⟨φk, H̃j⟩+

1
th,jd

µ
(φ)
in,k

ῡin
δj,jd , j = 1, . . . , J (IV.65)

where

⟨φk, F̃0⟩ = ⟨φk, min(vd,0, 0)ñ1⟩,

⟨φk, F̃j⟩ = ⟨φk, max(vd,j, 0)ñj⟩+ ⟨φk, min(vd,j, 0)ñj+1⟩

−
2Dd,e f ,j+1/2

hj+1 + hj

[
µ
(φ)
j+1,k − µ

(φ)
j,k

]
, j = 1, . . . , J − 1 , (IV.66)

⟨φk, F̃J⟩ = ⟨φk, max(vd,J , 0)ñJ⟩,

and

⟨φk, H̃a,j⟩ =
1
2

∫ 1

0

∫ 1

0
[φk (q(x, y))− φk(y)− φk(x)]

ω̃j(x, y)ñj(t, x)ñj(t, y)dydx (IV.67)
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where q(x, y) is the value of the dimensionless diameter of the daughter drop formed by

the coalescence of drops with dimensionless diameters x(d) and y(u) and ω̃j(x(d), y(u)) =

ωj(d, u). The breakage term becomes:

⟨φk, H̃b,j⟩ =
∫ 1

0
g̃j(x)ñj(t, x)

[
ν̃(x)Π̃(φ)

k (x)− φk(x)
]

dx (IV.68)

where g̃j(x(d)) = gj(d) and

Π(ϕ)
k (u(x)) =

∫ u(x)

dmin

ϕk(d(y))B (d(y)|u(x)) d(d)

=
∫ x

0
φk(y)B̃ (y|x) dy = Π̃(φ)

k (x). (IV.69)

IV.4.2 Moment equations for the continuous well-mixed vessel

As before, this is a special case of the multicompartment model with just one

compartment. Therefore, the moment equations in the dimensionless internal variable

come from Eq. (IV.65) with J = 1. Using the same approximations described in section

IV.2.4, we have:

∂µ
(φ)
k

∂t
=

1
th

µ
(φ)
k,in

ῡin
− µ

(φ)
k

+ ⟨φk, H̃a⟩+ ⟨φk, H̃b⟩ (IV.70)

and ⟨ψk, H̃a⟩ and ⟨ψk, H̃b⟩ are those obtained from Eqs. (IV.67) to (IV.69) by dropping

the j subscript.

IV.5 Application of the DuQMoGeM to the models

The DuQMoGeM employs two quadrature rules P. L. Lage, 2011. The first one

is the Nq-point Gauss–Christoffel quadrature based on the 2Nq moments of the parti-

cle number distribution function. It is used to discretize the distribution. The second

quadrature rule is a M-point Gaussian quadrature based on an orthogonal polynomial

family that is used to calculate the integrals related to the internal variable with con-

trolled accuracy. It is strongly recommended that M > 2Nq to guarantee the correct
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integration of the expansion coefficients of Eq. (IV.74) when it is substituted into Eq.

(IV.75).

For continuous distributions, the 2Nq generalized moments of the distribution

are directly related to a (2Nq − 1)-order series expansion using the orthogonal polyno-

mial family employed to generate the second quadrature. Here, all models were solved

using the dimensionless internal variable x, and, therefore, we employed the Legendre

polynomials shifted to the [0, 1] interval, φk(x).

IV.5.1 The Gauss-Legendre quadrature

The Gauss-Legendre quadrature in the [0, 1] interval approximates the following

integral of a generic function G:

∫ 1

0
G(x)dx ≈

M

∑
i=1

wiG(ξi) (IV.71)

where wi are the weights and ξi are the abscissas of the quadrature rule. As it gives the

correct value of the integral when G is a polynomial whose order is equal to or less than

2M − 1, the result for G(x) = 1 gives that:

M

∑
i=1

wi = 1 (IV.72)

If an integral in the incomplete interval [0, x] is necessary, one just has to define Y = y/x:

∫ x

0
G(y)dy = x

∫ 1

0
G(xY)dY = x

M

∑
i=1

wiG(ξix) =
M

∑
i=1

wx,iG(ξx,i) (IV.73)

where wx,i = xwi and ξx,i = xξi.
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IV.5.2 DuQMoGeM solution for the multi-compartment extraction col-

umn

For this case, the mean distribution function at each compartment, ñj(t, x), is

approximated by the polynomial series of 2Nq − 1 order:

ñj(t, x) =
2Nq−1

∑
i=0

cj,i(t)φi(x) (IV.74)

where

cj,i(t) =
⟨ñj, φi⟩
⟨φi, φi⟩

=
1

∥φi∥2

∫ 1

0
ñj(t, x)φi(x)dx =

µ
(φ)
j,i (t)

∥φi∥2 , i = 0, 1, . . . , 2Nq − 1 (IV.75)

Although Eq. (IV.74) provides an approximate representation of the drop number dis-

tribution, it must be emphasized that the DuQMoGeM is a moment method, and its

solution consists of the generalized moments, µ
(φ)
j,i . Substitution (IV.74) and (IV.75) in

(IV.65) gives:

∥ φk ∥2 ∂cj,k(t)
∂t

=
1
hj
(⟨φk, F̃j−1⟩ − ⟨φk, F̃j⟩) +

1
th,jd

µ
(φ)
in,k

ῡin
δj,jd (IV.76)

+
2Nq−1

∑
i=0

2Nq−1

∑
l=0

Ajklicj,lcj,i +
2Nq−1

∑
i=0

Ljkicji, j = 1, . . . , J

where, from Eq. (IV.66):

⟨φk, F̃0⟩ = ⟨φk, min(vd,0, 0)ñ1⟩

⟨φk, F̃j⟩ = ⟨φk, max(vd,j, 0)ñj⟩+ ⟨φk, min(vd,j, 0)ñj+1⟩

−
2Dd,e f ,j+1/2

hj+1 + hj
∥ φk ∥2 [cj+1,k − cj,k

]
, j = 1, . . . , J − 1 (IV.77)

⟨φk, F̃J⟩ = ⟨φk, min(vd,J)ñJ⟩
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The advective terms in Eq. (IV.77) can be approximated by:

⟨φk, max(vd,j, 0)ñj⟩ =
2Nq−1

∑
i=0

cj,iV+
jki , (IV.78)

⟨φk, min(vd,j, 0)ñj+1⟩ =
2Nq−1

∑
i=0

cj+1,iV−
jki (IV.79)

where

V+
jki = ⟨φk, max(vd,j, 0)φi⟩ =

∫ 1

0
φk(x)φi(x)max[vd,j(t, d(x)), 0]dx, (IV.80)

V−
jki = ⟨φk, min(vd,j, 0)φi⟩ =

∫ 1

0
φk(x)φi(x)min[vd,j(t, d(x)), 0]dx. (IV.81)

Using Eqs. (IV.67) and (IV.68), the breakage and coalescence terms can be written as:

Ljki =
〈

g̃j

[
ν̃Π̃(φ)

k − φk

]
, φi

〉
=
∫ 1

0
g̃j(x)φi(x)

[
ν̃(x)Π̃(φ)

k (x)− φk(x)
]

dx , (IV.82)

Ajkli =
〈〈
[φk (q(x, y))− φk(y)− φk(x)] ω̃j(x, y), φl(y)

〉
, φi(x)

〉
=

1
2

∫ 1

0

∫ 1

0
[φk (q(x, y))− φk(y)− φk(x)] ω̃j(x, y)φi(x)φl(y)dydx (IV.83)

Applying the Gauss-Legendre quadrature given by Eq. (IV.71) to the above integrals,

we have:

V+
jki =

M

∑
r=1

vd,j(t,d(ξr))≥0

wr φk(ξr)φi(ξr)vd,j(t, d(ξr)), (IV.84)

V−
jki =

M

∑
r=1

vd,j(t,d(ξr))<0

wr φk(ξr)φi(ξr)vd,j(t, d(ξr)), (IV.85)

Ljki =
M

∑
r=1

wr g̃j(ξr)φi(ξr)
[
ν̃(ξr)Π̃

(φ)
k (ξr)− φk(ξr)

]
, (IV.86)

Ajkli =
1
2

M

∑
r=1

M

∑
p=1

wrwp
[
φk
[
q(ξp, ξr)

]
− φk(ξp)− φk(ξr)

]
ω̃j(ξr, ξp)φi(ξr)φl(ξp). (IV.87)
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For the moments of the daughter distribution function, defined in eq. (IV.69), the quadra-

ture rule in the incomplete interval given by Eq. (IV.73) gives:

Π̃(φ)
k (ξr) = ξr

M

∑
m=1

wm φk(ξrξm)B̃ (ξrξm|ξr) . (IV.88)

IV.5.3 DuQMoGeM solution for the well-mixed vessel

This solution can be obtained by applying the multi-compartment model with

J = jd = 1. Using Eq. (IV.77) and the same simplifications described in section IV.2.4,

we have:

∥ φk ∥2 ∂ck(t)
∂t

=
µ
(φ)
in,k

thῡin
− 1

th
∥ φk ∥2 ck(t) +

2Nq−1

∑
i=0

2Nq−1

∑
l=0

Akliclci +
2Nq−1

∑
i=0

Lkici (IV.89)

where

ñ(t, x) =
2Nq−1

∑
i=0

ci(t)φi(x), ci(t) =
µ
(φ)
i (t)
∥φi∥2 (IV.90)

where Lki and Akli are calculated as given by Eqs. (IV.86) and (IV.87) after dropping the

j subscript.

IV.6 Results

In order to present the results clearly, we divided this section into four subsec-

tions, each one devoted to presenting results for one of the following systems: batch ex-

traction vessel, continuous flow extraction vessel, extraction columns, all of them solved

for problems with known analytical solutions, and an extraction column with available

experimental data.

The batch extraction vessel section shows DuQMoGeM results for problems with

pure breakage, pure coalescence, and simultaneous breakage and coalescence. The con-

tinuous flow extraction vessel section presents DuQMoGeM results for pure breakage
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and pure coalescence problems. The convergence of the lowest order moments regard-

ing the number of points in the first quadrature, Nq, was studied for these well-mixed

vessel solutions. Analytical solutions exist for extraction column problems with no drop

dispersion and constant drop ascension velocity assumptions. The extraction column

section presents DuQMoGeM solutions for three such cases: pure breakage, pure coa-

lescence, and simultaneous breakage and coalescence. The convergence of results re-

garding the number of compartments was analyzed. In the final section, we compared

the DuQMoGeM prediction of the hold up of the dispersed phase with available exper-

imental data for a Kühni column operated with the toluene-water system. We modeled

the Kühni column, including drop advective and dispersive transport, breakage, and

coalescence.

In fact, the verification problems were solved analytically in the semi-finite range,

[0, ∞), while the DuQMoGeM solutions were solved for the range [dmin, dmax]. However,

we guaranteed that the supports of the number density distributions given by the ana-

lytical solutions were always within the [dmin, dmax] range for the analyzed time interval.

We also assumed spherical droplets.

IV.6.1 Batch extraction vessel

For the batch extraction vessel, we applied the DuQMoGeM solution to Eq. IV.40,

for which three cases with available analytical solutions were considered: a pure break-

age, a pure coalescence, and a simultaneous breakage and coalescence problems. In fact,

the last two cases were solved previously by P. L. Lage, 2011 using the DuQMoGeM, but

employing the particle volume in the semi-infinite domain as the internal variable. In

this section, all variables are considered dimensionless.
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Pure coalescence in finite domain, d ∈ [0, 6.0]

When the drops undergo coalescence with a constant kernel (ω = 1 for this case)

and with an exponential initial distribution given by

n(0, d) = υ′(d) exp [−υ(d)] , (IV.91)

the analytical solution was reported by Gelbard and Seinfeld, 1978 as:

n(t, d) =
4υ′(d)

(ωt + 2)2 exp
(
− 2υ(d)

ωt + 2

)
, (IV.92)

where υ(d) = cvd3 and υ′(d) = dυ/d(d) = 3cvd2. Under these conditions, we in-

vestigated the effect of the number of the Gauss–Christoffel quadrature points on the

absolute errors of the first four moments. Figure IV.2 shows that the absolute error de-

creases by increasing the number of the Gauss–Christoffel quadrature Nq, being the best

results generated for Nq = 6. This figure shows that the DuQMoGeM accuracy for the

zeroth-order moment is better than for the first and second-order moments. The third-

order moment has an error close to the machine’s accuracy because it is unchanged

throughout the evolution of the distribution as the breakage phenomenon conserves

the total volume (mass) of the particles. Figure IV.3 presents the analytical solution and

the numerical distribution function computed with Nq = 6 and M = 12 for this case

for three instants, showing perfect agreement between the analytical distributions and

their DuQMoGeM approximations.

Pure breakage in finite domain, d ∈ [0, 2]

In this case, a normal Gaussian distribution with mean m = 0.9 and standard

deviation α = 0.8 was used as the initial condition as given by:

n(0, d) =
υ′(d)√

2πα
exp

[
− (υ(d)− m)2

Λ

]
(IV.93)

where Λ = 2α2. For a daughter drop distribution given by B(d|u) = 6d2/u3 and a

breakage frequency linear in drop volume, g(d) = υ(d), Hasseine et al., 2020 provided
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Figure IV.2: Pure coalescence problem in a batch extraction vessel: absolute errors for
the first four regular moments for the DuQMoGeM solutions with Nq = 2, 4 and 6

using the same number of Gauss-Legendre quadrature points, M = 12.
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Figure IV.3: Pure coalescence problem in a batch extraction vessel: comparison of the
analytical and numerical distributions.

the exact solution that can be writen as:

n(t, d) = υ′(d)
2χ + Λt2χ +

√
Λ
√

πΦ
(
2t + mt2 − t2υ(d)

)
2
√

2πα
exp [−tυ(d)] (IV.94)

where

χ = exp
[
− (υ(d)− m)2

2α2

]
and Φ = 1 + erf

[
m − υ(d)√

Λ

]
(IV.95)

Figure IV.4(a) shows a comparison between the analytical moments of n(t, d) with those

obtained from DuQMoGeM solution for Nq = 4 and M = 8, which show excellent

agreement. The results show that the total volume of the droplets µ3 remains constant.

The moments of the order lower than three increase, whereas µ4 and µ5 decrease. Figure

IV.4(b) shows the good agreement between the exact and the numerical distributions

obtained from DuQMoGeM at different times using Nq = 6 and M = 12.

Simultaneous breakage and coalescence in finite domain, d ∈ [0, 2.8]

We considered here the combined coalescence and breakage problem with ω(v, u) =

1, g(d) = g0υ(d), g0 = 2, and B(d/u) = 6d2/u3. For the initial condition described by
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Figure IV.4: Pure breakage problem in a batch extraction vessel: comparison of the
analytical and numerical results.
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Figure IV.5: Simultaneous breakage and coalescence problem in batch extraction
vessel: comparison of the analytical and numerical distributions.

Eq. (IV.91), McCoy and Madras, 2003 gave the following analytical solution:

n(t, d) = υ′(d)[Φ(t)]2 exp [−Φ(t)υ(d)] (IV.96)

where

Φ(t) = Φ(∞)
1 + Φ(∞) tanh(Φ(∞)t/2)
Φ(∞) + tanh(Φ(∞)t/2)

, Φ(∞) =
√

2g0 (IV.97)

Figure IV.5 shows the series approximation of the number density distribution for the

numerical solution with Nq = 6 and M = 12 at different values of t, showing a good

agreement with the analytical solution.

IV.6.2 Continuous flow extraction vessel

The performance of the DuQMoGeM to solve the PBE in the continuous flow

well-mixed extraction vessel is tested for two different cases: one with droplet coa-

lescence and other with droplet breakage. In this section, all variables are considered

dimensionless.
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Pure breakage in finite domain, d ∈ [0, 1.9]

This case is similar to first case of pure breakage but in a continuous flow extrac-

tion vessel with th = 103. The inlet drop number distribution, nin(t, d), is the normal

Gaussian distribution with mean m = 0.9 and standard deviation α = 0.8 given by

equation (IV.93). Initially, there is no drop in the reactor, and, thus, n(0, d) = 0. This

problem comes from Hasseine et al., 2020 and its analytical solution is:

n(t, d) =
υ′(d)a

2
√

2παβ(t, d)[a + υ(d)]3

{
2 [−1 + β(t, d)] [υ(d)]2 χ

+ Λ
[
−2 + 2β(t, d)− 2tυ(d)− t2[υ(d)]2

]
χ

+
√

Λ
√

π
[
t2[υ(d)]3 + m(−2 + 2β(t, d)− 2tυ(d)− t2[υ(d)]2)

]
Φ

+ a2
[
(−2 + 2β(t, d)− Λt2)χ +

√
Λ
√

πt(−2 − mt + tυ(d))Φ
]

− 2a
[
− 2(−1 + β(t, d))υ(d)χ + Λt(1 + tυ(d))χ

−
√

Λ
√

π{−1 + β(t, d)− tυ(d) + t2(υ(d))2 − mt[1 + tυ(d)]}Φ
]}

(IV.98)

where a = t−1
h and β(t, d) = exp {t[a + υ(d)]}. Figure IV.6(a) shows the regular mo-

ments obtained from DuQMoGeM solution with Nq = 6 and M = 12 together with

those computed from the exact solution. The results demonstrate that all moments in-

crease with time. The numerical and analytical results for all moments are in good

agreement. Figure IV.6(b) shows the exact and the numerical distribution obtained from

DuQMoGeM at different values of t. The agreement between the numerical and analyt-

ical distributions is excellent.

Pure coalescence in finite domain, d ∈ [0, 4.6]

The population balance equation in a continuous flow well-mixed extraction ves-

sel was solved dynamically using the DuQMoGeM for a pure coalescence problem with

a constant aggregation kernel (ω = 1). The initial condition is zero, n(0, d) = 0, while

the drop number distribution at the inlet, nin(t, d), has the same distribution given by

equation (IV.91). M. J. Hounslow, 1990 solved this problem at the steady state and found
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Figure IV.6: Pure breakage problem in a continuous flow extraction vessel: comparison
of the analytical and numerical results.
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the following exact solution:

n(∞, d) =
υ′(d)√
1 + 2th

exp
[
− (1 + th)υ(d)

1 + 2th

] [
I0

(
−thυ(d)
1 + 2th

)
+ I1

(
−thυ(d)
1 + 2th

)]
(IV.99)

where I0 and I1 are the modified Bessel functions of the first kind and zeroth and first

orders, respectively.

The simulation was implemented with Nq = 3 and M = 6 and th = 10. In order

to verify the DuQMoGeM results, for different values of t, the distributions obtained by

the DuQMoGeM are presented with the exact solution described by the above equation

in Figure. IV.7(a). The numerical distributions for t ≥ 30 conform with its steady-state

analytical solution. The dynamically predicted and the analytical steady-state moments

are presented in Figure. IV.7(b). As expected for a first-order system, the process reaches

the steady state for t/th ≈ 4.

IV.6.3 Hydrodynamics simulation of extraction columns

The DuQMoGeM solution of the multi-compartment model was obtained for

three test cases: pure breakage, pure coalescence and breakage with coalescence. We as-

sumed pure drop advection with a constant velocity because the analytical solutions are

known for these three cases under this assumption, being provided by M. M. Attarakih

et al., 2004 and Hasseine et al., 2018. In this section, all variables are considered dimen-

sionless. All simulations assumed no drops initially present in the column, Qd/A = 1,

vd = 1, and inlet drop number distribution given by:

N0nin(t, d) = υ′(d)
N0

ῡin
exp

[
−υ(d)

ῡin

]
(IV.100)

where the drop number density, N0, and the mean volume, ῡin, were chosen to be 0.05

and 1, respectively. For each case, the employed breakage and coalescence functions are

reported in Table IV.1. Solutions are presented along the dimensionless vertical coordi-

nate, ζ = z/h and the injection point of the disperse phase is located at ζ = 0.1. For all

cases, the simulation results were obtained assuming an uniform compartment height.
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Figure IV.7: Pure coalescence problem in a continuous flow extraction vessel:
comparison of the analytical and numerical results.

Table IV.1: Breakage and coalescence functions.

Case B(d/u) g(d) = g0υ(d) ω(d, u) = ω0
1 6d2/u3 g0 = 10−2 ω0 = 0
2 0 g0 = 0 ω0 = 0.5
3 6d2/u3 g0 = 1.92 × 10−2, ω0 = 0.3
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Case 1: pure breakage, d ∈ [0, 2.5]

The analytical solution is described as follows:

n(t, z, d) = υ′(d)
N0

ῡin
exp

[
−(1 + g0∆z)

υ(d)
ῡin

]
(1 + g0∆z)2H

[
t − ∆z

vd

]
(IV.101)

where ∆z = z − zd and H is the Heaviside step function.

Case 2: pure coalescence, d ∈ [0, 3.8]

The exact solution for this case is written as:

n(t, z, d) = υ′(d)
N0

ῡin

4
(2 + N0ω∆z)2 exp

[
− 2
(2 + N0ω∆z)

υ(d)
ῡin

]
H
[

t − ∆z
vd

]
(IV.102)

Case 3: breakage and coalescence, d ∈ [0, 2.7]

Using the technique reported in the chapter III, we can derive the analytical so-

lution from that developed by McCoy and Madras, 2003 for the batch problem, leading

to:

n(t, z, d) = υ′(d)
N0

ῡin
[Φ(z)]2 exp

[
−Φ(z)

υ(d)
ῡin

]
H
[

t − ∆z
vd

]
(IV.103)

where

Φ(z) = Φ(∞)
1 + Φ(∞) tanh(Φ(∞)ω∆zN0/2)
Φ(∞) + tanh(Φ(∞)ω∆zN0/2)

, Φ(∞) =

[
2g0ῡin

ω0N0

]1/2

(IV.104)

For this solution, N0 and ῡin are constants for all t and z.

Convergence regarding the number of compartments

For Nq = 3 and M = 6, the effect of the number of compartments in the DuQMo-

GeM solution for Case 1 was studied for J = 50, 100 and 200 compartments. The results

for the first four regular moments are presented in Figure. IV.8, which shows that the

DuQMoGeM accuracy improves by increasing the number of compartments. However,
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Figure IV.8: DuQMoGeM convergence regarding the number of compartments for the
pure breakage problem.

J = 200 is still not enough to accurately capture the sharp moving front of the solution

due to the numerical diffusion of the upwind scheme used for the advective part of Fj.

Prediction of the steady-state solution

Using Nq = 4, M = 8 and J = 100, the DuQMoGeM steady-state results for the

moments of order k = 1, 2, 3 and 4 are compared with the analytical solution for the

pure breakage, pure coalesence, and simultaneous breakage and coalescence in Figure.

IV.9. The accuracy of the moments predicted by DuQMoGeM is very good. The third

moment, µ3, is constant after the injection point (ζ = 0.1) in all cases due to the absence

of mass transfer.
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Figure IV.9: Comparison of the analytical and numerical moments for steady-state
solutions in an extraction column.

The numerical and analytical distributions are shown in Figure. IV.10 at steady

state at several ζ points. The DuQMoGeM results were obtained with Nq = 6, M = 12

and J = 100. The agreement between the simulated and analytical distributions is quite

good, showing the ability of the DuQMoGeM to predict the drop number distributions

in an extraction column.

Table IV.2 shows the mean CPU times and their standard deviations computed

for 20 runs of case 3 simulation using each one of five sets of values for Nq, M, and J,

which were defined as variations of the base case (Nq = 3, M = 6 and J = 100). When

J doubled, the computational cost increased about 2.4 times. A 10-fold increase in M,

added 38% in the CPU time. The simulation with Nq = 3 is about 67% more costly than

that with Nq = 2. Therefore, the cost increase with M is mild, but it is superlinear with
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Table IV.2: CPU times for simulating Case 3.∗

Conditions CPU time (s) Standard deviation (s)
Nq = 3, M = 6, J = 50 0.85 0.02

Nq = 3, M = 6, J = 100 2.15 0.20
Nq = 3, M = 6, J = 200 5.06 0.11

Nq = 3, M = 60, J = 100 2.97 0.10
Nq = 2, M = 6, J = 100 1.28 0.03

∗CodeBlocks 20.03 (Windows 10) on a Intel(R) Core(TM) i3-2348@2.30 GHz.

J or Nq for this simple problem.

IV.6.4 Experimental validation of an extraction column

As a final test, we compared the DuQMoGeM results with the experimental data

of Hasseine et al., 2005 for the hydrodynamic behavior of a laboratory-scale Kühni col-

umn without mass transfer. It was operated in countercurrent mode with water as the

continuous phase and toluene forming the drops of the dispersed phase. Many re-

searchers widely used this chemical system that is recommended by the EFCE (Euro-

pean Federation of Chemical Engineering) as a test system for liquid extraction studies.

This column has 44 compartments. The dispersed-phase was fed at compartment five

(jd = 5 and zd/h = 0.091), and the continuous phase inlet is at the bottom of compart-

ment 43 (zc = 294 cm). The active height of the column, where there is mechanical agi-

tation, consists of compartments 5 to 41. Table IV.3 shows the operating conditions and

column dimensions, while Table IV.4 presents the physical properties of both phases.

We reported the details of the Kühni column modeling in the following.

IV.6.5 Drop velocity correlations

The drop terminal velocity, vt, was calculated according to the value of Morton

number using the correlations given by J. C. Godfrey and Slater, 1994, Klee and Treybal,

1956, Grace, TH, et al., 1976, and Vignes, 1965.
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Figure IV.10: Comparison of the analytical and numerical distributions in an extraction
column.
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The slowing factor values for the Kühni column are provided by Fang et al., 1995:

kv = 1 − (1 − θ)

(
7.1810−5ReR/θ

1 + 7.1810−5ReR/θ

)
(IV.105)

where θ is the relative free cross-sectional stator area and ReR is defined by:

ReR =
ρcD2

RNR

ηc
(IV.106)

The exponent in the swarm effect term was calculated from Bailes et al., 1986 correlation:

κ = 4.45Re−0.1
p − 1, Rep =

ρcdvtkv

ηc
(IV.107)

IV.6.6 Initial and feed conditions

There are no drops in the column at t = 0, and the inlet drop distribution nin

is the experimental piecewise constant distribution employed by Hasseine et al., 2005,

whose mean Sauter diameter is 0.294 cm.

IV.6.7 Dispersion coefficient correlations

We employed the dispersion coefficient correlations given by Steiner et al., 1988.

For the continuous phase, the correlation is applied to each compartment:

Dc,j(t) = v̄c,jhj

[
0.188 + 0.0267θ0.5 DRNR

v̄c,j

]
(IV.108)

where v̄c,j = Qc/[A(1− rd,j(t))] is the interstitial continuous-phase velocity and hj is the

actual height of the compartment j in the Kühni column. For the disperse phase, Steiner

et al., 1988 also provided a correlation, but they recommended its usage with caution:

Dd,cor = −3.78 × 10−4 + 0.068
[

Qc

ANR

]0.5

(IV.109)
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Since Dd → Dc from above as the mixing intensity increases Gourdon et al., 1994, and

following Seikova et al., 1992, we used:

Dd,j(t) = max(Dd,cor,Dc,j(t)) (IV.110)

It should be noted that Dc,j and Dd,j are assumed null for the non-active sections of the

Kühni column.

IV.6.8 Drop breakage

Different breakup mechanisms exist and strongly depend on the column geom-

etry. The drop breakage probability is supposed to be homogeneous in each compart-

ment Hasseine et al., 2005, the breakage frequency and the breakage probability were

modeled by Cauwenberg et al., 1997; Simon et al., 2002 and recommended by Modes,

2000:
P(d)

1 − P(d)
= 0.2148We0.7796

m (IV.111)

where

Wem =
ρ0.8

c η0.2
c dD1.6

R (ϖ1.8 − ϖ1.8
crit)

σ
(IV.112)

The breakage frequency depends on the residence time:

g(z, d) =
P(d)vd(z, d)

hj
(IV.113)

where

ϖcrit = 2π 0.65

(
ρcD3

R
σ

)−0.5(
d

DR

)−0.72

(IV.114)

where DR is the rotor diameter.

The daughter droplet size distribution is described by a β distribution, based on

the mother drop diameter d0 Bahmanyar and Slater, 1991:

B(d0, d) = 3(ν − 1)

(
1 − d3

d3
0

)ν−2
d2

d3
0

(IV.115)
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where the mean number of daughter drops is calculated by:

ν = 2 + 0.838
[(

d0

dcrit

)
− 1
]1.309

(IV.116)

The critical diameter at which drops start to break is given by:

dcrit = 0.65DRWe−0.72
R (IV.117)

where:

WeR =
ρcD3

RN2
R

σ
(IV.118)

IV.6.9 Drop coalescence

For this process, the system properties at interfaces, the intensity of the collision

and the contacting time between the colliding drops are key parameters. It is usual to

define the coalescence rate as:

ω (d1, d2, rd) = λ (d1, d2, rd) f (d1, d2, rd) (IV.119)

where λ is the collision efficiency, and f is the collision frequency. From the literature

Coulaloglou and Tavlarides, 1977, the expressions for λ and f can be modeled by:

λ (d1, d2, rd) = exp

−
C2ηcρcϵ

(
d1d2

d1 + d2

)4

(1 + rd)3σ2

 (IV.120)

and

f (d1, d2, rd) =
C1

3
√

ϵ (d1 + d2)
2
√

d2/3
1 + d2/3

2

1 + rd
(IV.121)

where ϵ is the specific energy input, C1 = 0.01 and C2 = 108 m−2 = 104 cm−2.
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Table IV.3: Kühni column parameters.

Turbine diameter DR = 0.085 m
Compartment height hj = 0.07 m, ∀j
Total height h = 3.08m
Active part 2.52 m
Throughput continuous phase Qc = 125 L/h
Throughput through the distributor Qd = 130 L/h
Column diameter D = 0.15 m
Energy dissipation ϵ = 0.0788 W/kg

Table IV.4: Chemical system properties.

ηc (mPa) ηd (mPa) ρc (kg/m3) ρd kg/m3 σ (mNm−1)
0.92 0.6 997.2 862.2 33.7

IV.6.10 Mechanical power dissipation per unit mass

The power dissipation per unit mass is a parameter that affects the drop behavior

in agitated systems A. Kumar and Hartland, 1995. The effect of the rotor can be

ϵ =
P

ρc Ahj
=

4P
πD2hjρc

(IV.122)

The power input per compartment can be calculated by:

P = NpN3
RD5

Rρ (IV.123)

where Np is the power number of the column:

Np = 1.08 +
10.94
Re0.5

R
+

257.37
Re1.5

R
(IV.124)

The numerical simulation of the Kühni column was carried out with J = 44, cor-

responding to the actual number of stages. We verified the convergence of the results

by comparing those obtained using Nq = 3 and 4 and M = 16 and 32. After some

preliminary simulations, we chose [0.01, 0.4] cm as the diameter range. Sensitivity of the

results to these choices of dmin and dmax was performed, and the results were essentially

the same. Minor differences in the drop Sauter mean diameter results occurred only

below the disperse-phase inlet, where the holdup is essentially zero. The simulation
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reaches the steady-state profiles for the hold up after about 1000 s, but the breakage and

coalescence dynamics were much faster. Thus, the results at t = 1200 can represent the

steady-state. Figure IV.11 shows the simulated holdup profile and drop Sauter mean di-

ameter together with the available experimental data Hasseine et al., 2005. Considering

that the Sauter mean diameter data are scattered, the agreement between experimental

and simulated data is fairly good. The simulation from t = 0 to 1200s whose results are

shown in Figure. IV.11 took about 930 seconds on an Intel(R) Core(TM) i7-2600K@3.40

GHz (GNU FORTRAN compiler, version 9.3.0).
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Figure IV.11: Simulated and experimental data for the Kühni column at steady-state:
(a) dispersed phase holdup and (b) Sauter mean diameter.
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IV.7 Conclusion

The DuQMoGeM results were compared to analytical solutions for batch and

continuous well-mixed vessels and extraction columns, showing that it is accurate for

predicting the evolution of the low order moments and the drop number distribution

along with the column height. We also modeled a Kühni column for which the simula-

tion accurately predicted the steady-state experimental holdup.

The numerical treatment is summarized as:

• The distribution is discretized by Nq − point Gauss–Christoffel quadrature based

on the 2Nq moments.

• The integrals related to the internal variable are calculated by M − point Gaussian

quadrature based on an orthogonal polynomial family.

• For the spatially discretization, we consider a multi-compartment column with J

sections.

• Differential Algebraic System Solver (DASSL) is used as a numerical integration

in time.

The results are encouraging the DuQMoGeM usage to solve the population balance

equation.
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General conclusion

This work explored the use of variational iteration method to applied to hydrody-

namics simulation based on droplets population balance model for bubbles or droplets

column. The considering equation is reduced by assuming uniform particle velocity

(constant, linear in volume), neglecting diffusion flux, and applying chain rule transfor-

mation.

The exact solutions are successfully found, comparisons between the present

method and the projection method which includes collocation (aggregation, breakage)

and discontinuous Galerkin (growth) techniques are made.

The results showed that the variational iteration method eliminated complex cal-

culations and provides highly accurate numerical solutions without spatial discretiza-

tions for the population balance equations. It is also worth noting that the advantage

of the VIM methodology displays a fast convergence of the solutions. The illustrations

show the rapid convergence of the solutions just as in a closed form solution. The nu-

merical solutions obtained by projection method are in excellent agreements with the

exact solutions.

Since its solutions are available just for some simple cases, the proposed solutions

are very important to test the accurate of numerical methods to solve one dimensional

population balance equation including growth, breakage and coalescence source terms.

Population balance models, including breakage and coalescence, were solved us-

ing DuQMoGeM for describing the dispersed phase behavior in liquid-liquid dispersed

systems. We analyzed DuQMoGeM solutions for batch and continuous flow well-mixed

vessels and liquid-liquid extraction columns. We considered problems including break-
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age and coalescence for which analytical solutions exist. The moments of the droplet

size distribution predicted by the DuQMoGeM were in excellent agreement with the

analytical solutions. Besides, the DuQMoGeM approximation for the drop number dis-

tribution was also shown to be in good agreement with the analytical solutions.

We modeled and simulated a Kuhni column for which some experimental data

exists. The DuQMoGeM results for the disperse phase holdup agreed well with the

experimental data at the steady-state, and the simulated drop Sauter mean diameter

compared favorably with the scattered experimental data.

Therefore, we showed that the DuQMoGeM is a very efficient technique for solv-

ing droplet population balance models, being quite promising for modeling and simu-

lating liquid-liquid extraction columns.
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Altunok, M., Grömping, T., & Pfennig, A. (2006). Redrop—an efficient simulation tool

for describing solvent and reactive extraction columns. Computer aided chemical

engineering (pp. 665–670). Elsevier.

Athmani, K., da Cunha Lage, P. L., & Hasseine, A. (2022). The duqmogem application

to the numerical modeling of liquid-liquid columns. Chemical Engineering Science,

117721.

Attarakih, M., Abu-Khader, M., & Bart, H.-J. (2013). Modeling and dynamic analysis

of a rotating disc contactor (rdc) extraction column using one primary and one

secondary particle method (opospm). Chemical Engineering Science, 91, 180–196.

111



References

Attarakih, M., Al-Zyod, S., Abu-Khader, M., & Bart, H.-J. (2012). Ppblab: A new mul-

tivariate population balance environment for particulate system modelling and

simulation. Procedia Engineering, 42, 1445–1462.

Attarakih, M. M., Bart, H.-J., & Faqir, N. M. (2004). Numerical solution of the spatially

distributed population balance equation describing the hydrodynamics of inter-

acting liquid–liquid dispersions. Chemical Engineering Science, 59(12), 2567–2592.

Attarakih, M. M., Bart, H.-J., & Faqir, N. M. (2006a). Solution of the population balance

equation using the sectional quadrature method of moments (sqmom). Computer

aided chemical engineering (pp. 209–214). Elsevier.

Attarakih, M. M., Bart, H.-J., & Faqir, N. M. (2006b). Solution of the population balance

equation using the sectional quadrature method of moments (sqmom). Computer

aided chemical engineering (pp. 209–214). Elsevier.

Attarakih, M. M., Bart, H.-J., Lagar, L., & Faqir, N. M. (2006). Llecmod: A windows-based

program for hydrodynamics simulation of liquid–liquid extraction columns. Chem-

ical Engineering and Processing: Process Intensification, 45(2), 113–123.

Attarakih, M. M., Drumm, C., & Bart, H.-J. (2009). Solution of the population balance

equation using the sectional quadrature method of moments (sqmom). Chemical

Engineering Science, 64(4), 742–752.

Babolian, E., & Biazar, J. (2002). Solving the problem of biological species living together

by adomian decomposition method. Applied Mathematics and computation, 129(2-

3), 339–343.

Bahmanyar, H., & Slater, M. J. (1991). Studies of drop break-up in liquid-liquid systems

in a rotating disc contactor. part i: Conditions of no mass transfer. Chemical En-

gineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-

Biotechnology, 14(2), 79–89.

Bailes, P. J., Gledhill, J., Godfrey, J. C., & Slater, M. J. (1986). Hydrodynamic behaviour

of packed, rotating disc and kühni liquid/liquid extraction columns. Chemical

engineering research & design, 64(1), 43–55.

Bart, H.-J., Jildeh, H., & Attarakih, M. (2020). Population balances for extraction column

simulations—an overview. Solvent Extraction and Ion Exchange, 38(1), 14–65.

Cabassud, M., Gourdon, C., & Casamatta, G. (1990). Single drop break-up in a kühni

column. The Chemical Engineering Journal, 44(1), 27–41.

112



References

Campos, F., & Lage, P. (2003). A numerical method for solving the transient multidimen-

sional population balance equation using an euler–lagrange formulation. Chemi-

cal Engineering Science, 58(12), 2725–2744.

Casamatta, G. (1981). Comportement de la population des gouttes dans une colonne d’extraction:

Transport, rupture, coalescence, transfert de matière. (Doctoral dissertation).
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Weber, B., Schneider, M., Görtz, J., & Jupke, A. (2020). Compartment model for liquid-

liquid extraction columns. Solvent Extraction and Ion Exchange, 38(1), 66–87.

Yuan, C., Laurent, F., & Fox, R. (2012). An extended quadrature method of moments for

population balance equations. Journal of Aerosol Science, 51, 1–23.

121



Appendix A

MATHEMATICAL FUNCTIONS

A.1 Dirac delta function

δ(x) returns 0 for all real numeric x except 0 .

A.2 Gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt, (ℜ(x) > 0)

A.3 Unit step function

u[x] =

1, x ≥ 0

0, x otherwise
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A.4 Modified Bessel functions Modified Bessel functions

of the first kind

Bessell [n, z] = In(z) =
∞

∑
k=0

1
Γ(k + 1)Γ(k + n + 1)

( z
2

)2k+1
, n ∈ ℜ and z ∈ C

A.5 Modified Bessel functions of the second kind

BesselK[n, z] = Kn(z) =
π

2
I−n(z)− In(z)

sin(nπ)
, n ∈ ℜ and z ∈ C

A.6 Pochhammer symbol

Pochhammer [n, z] = (z)n =
Γ(z + n)

Γ(z)
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