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﴿ :قال االله تعالى
190 




  ﴾. 

  191] ، : 190[آل عمران                                                        

[In the creation of the heavens and the earth and in the alternation of the night 
and the day there are indeed Signs for men of understanding (190) who remember 
God standing, and sitting, and lying on their sides; and meditate on the creation of 
heaven and earth, …]   [Aal ‘Imraan:190-191]  



 -  إهـــــداء -
    

نˌ̀اء والمرسلين ٔ ҡالحمد ߸ رب العالمين والصلاة والسلام ̊لى ˭اتم ا 
ٔ̊اننا ووفق̲ا ǫر لنا درب العلم والمعرفة وԷٔǫ هٔدیه انجاز هذا العمل إلى الحمد ߸ ا߳يǫ إلى ا߳ي:  

  
ǫٔمي  وǫٔ̊ان˖ني Դلصلوات وا߱عوات، إلى ǫٔ̎لى إ̮سان في هذا الوجودمن رب˖ني وԷٔǫرت دربي 

  ،الحب̿ˍة
ن̒ني إلى م̒اح وǫؤصل̒كفنى ال̒ني مع̒لي و̊لم̒د في س̑ب̀̒ل ˊك̒ن عمـم ٔ ǫ ٔبي̒ا ̊ل̀̒ا ǫ ٔدامـالك ه ǫ ه ̒ريم

  ، الله لي
  ، وملاكي الصغير اب̱تي الحب̿ˍة العز̽زة زوجتي رف̀ق̓ة دربي وعـوني في الحیاة

 إخوتي دربي،ویلهج بذ̠راهم فؤادي، س̑ندي في ا߱نیا ورفقاء  يجري في عروقيمن حبهم 
  ،وǫخٔواتي

  ،و̊ائلاتهم وعماتي ǫٔعماميو و˭الاتي  ǫخٔوالي كلˡدتي و 
ٔساتذتي كل ǫ ̊لي یب˯لوا ولم ا߱راسي مشواري طیߧ تدر̼سي ̊لى تعاقˍوا ا߳̽ن المحترمين 

  ،والبیان والعطاء Դلبذل
  ، وكافة الزملاءإلي ǫصٔدقائي اҡٔعزاء 

لى ǫٔصحاب العقول النيرة، والبصاˁر  ،إلى كل Դحث عن فكرة مضیئة تنير ࠀ زقاق الطریق وإ
  ،المبادرة روح زرع منكل و المس̑ت̱يرة 

ٔن ی̱˗فع به كل ا߱ارسين ǫ إن شاء الله، واسˆلٔ الله.  
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Optimal management and control of electrical energy 
on production sites 

 
Abstract   

 
In recent years, power demand has been increasing with the industrialization 

development. Various management and planning tools have been used, but additional 

research and development are needed to bring them to the optimal utilization and 

control. Unit commitment (UC) and economic dispatch (ED) problems are the 

fundamental problem that system operators solve in order to minimize the costs 

associated with reliably operating electricity grids. In order to minimize the fuel cost and 

keep the power outputs of generators and bus voltages in their secure limits, several 

methods metaheuristic have been used in this work namely Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), Pattern Search (PS), Big Bang–Big Crunch 

algorithm (BB-BC) and Artificial Bee Colony algorithm (ABC) with their hybrids. In 

addition, these methods have been applied to determine the commitment order of the 

thermal units in power generation in systems. Two new approaches have been 

developed and introduced in the context of our thesis called: root tree optimization 

algorithm (RTO) and GAGE. The results obtained by the application of the first 

developed method (RTO) for solving various types of ED problem, comparatively to 

recent methods that treat the same problem, showed a better solution quality and 

reducing CPU time to reach the best solution. The second GAGE based on genetic 

engineering operator in genetic algorithm, was developed for solving the UC problem. 

Thus, this method show remarkable improvements in total costs for a 10-unit test system 

and Algerian electrical network for a 24-hour period. 

 

Keywords: Optimal Power Flow, Power Systems, Economic Dispatch, Unit 

Commitment, Pollution Control, emission, Metaheuristic, Hybrid algorithms, PSO, GA, 

PS, BB-BC, ABC, RTO, GAGE. 
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Gestion et contrôle optimale de l'énergie électrique sur 
les sites de production 

 
Résumé 

 
Au cours des dernières années, la demande de l’énergie électrique a augmenté avec le 

développement de l'industrialisation. Divers outils de gestion et de planification ont été 

utilisées, mais la recherche et le développement supplémentaires sont nécessaires pour les 

amener à l'utilisation et le contrôle optimale. L'engagement des unités (UC) et le dispatching 

économique (ED) sont les deux fondamentaux problèmes que les opérateurs du système 

résoudre afin de minimiser les coûts d'exploitation des réseaux électriques de manière 

optimale. Afin de minimiser le coût du carburant et de garder les sorties de puissance de 

générateurs et des tensions de bus dans leurs limites sûres, plusieurs méthodes 

métaheuristiques ont été utilisés dans ce travail, notamment des optimisation par essaims 

particulaires (OEP), Algorithme Génétique (AG), Pattern Search (PS) algorithme Big Bang-Big 

Crunch (BB-BC) et l'algorithme Artificiel Bee Colony (ABC) avec leurs hybrides. En outre, 

ces méthodes ont été appliquées pour déterminer l'ordre d'engagement des unités 

thermiques de production d'électricité dans les systèmes. Deux nouvelles approches ont été 

développées et introduites dans le cadre de notre thèse à savoir : algorithme d'optimisation 

de l'arbre racine (RTO) et GAGE. Les résultats obtenus par l'application de la première 

méthode développée (RTO) pour résoudre divers problèmes du types ED, comparativement 

aux méthodes récentes qui traitent le même problème, ont montré une meilleure qualité de 

la solution et réduire d'une manière significative le temps CPU d'exécution. La seconde, 

GAGE est basé sur l’opérateur de l'exploitation de l'ingénierie génétique dans l'algorithme 

génétique, a été développée pour résoudre le problème UC. Ainsi, cette méthode montre des 

améliorations remarquables dans les coûts totaux pour un système de test de 10 unités et le 

réseau électrique algérien pour une période de 24 heures. 

 
Mots clés: Optimisation de l’écoulement de puissance, Réseau, Dispatching Economique,  
Engagement d'Unité de production, contrôle de pollution, émissions, Métaheuristiques, 
Algorithmes Hybrids, Optimisation par Essaims de Particules (PSO), Algorithmes 
Génétiques (AG), Recherche de motifs (PS), algorithme de Big Bang et de Big Crunch, 
Colonie d'Abeilles Artificielle (ABC), algorithme d'Optimisation des Racines des Arbres 
(RTO), Algorithmes Génétiques avec mécanisme de Génie Génétique (GAGE). 
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الطاقة الإنتاج مواقع في الكھربائیة للطاقة المثلى والإدارة التحكم  
 

 الملخص
 

، قد استخدمت الإدارة والتخطیط العدید من أدوات .التصنیع مع تطور یزداد الأخیرة، الطلب على الطاقة في السنوات

مشاكل جدولة وحدات  .المثلى السیطرةل الي الاستخدام ووللوص للبحث والتطویر ضافةالإھناك حاجة ولكن تبقي 

من  إیجاد حلول لھا نظامال التي یجب على مشغلي المشاكل الأساسیة ھي  (ED)الاقتصادي والتوزیع  (UC)التولید

تھدف جدولة وحدات التولید الي تحدید الوحدات حیث  .شبكات الكھربائیة بشكل مثاليال التكالیف استغلال أجل تقلیل

زمة للأحمال مع توافر لالتلبیة القدرة الكھربائیة الالتي یجب أن تعمل خلال فترة زمنیة معینة بأقل تكلفة ممكنة 

الاحتیاطي السریع المطلوب وتحقیق قیود التشغیل للوحدات. یتم صیاغة المشكلة ریاضیا بتقلیل دالة الھدف المكونة 

جموعة من تكلفة الوقود وتكلفة البدء للوحدات التي یتم إدخالھا للتشغیل، حیث تخضع ھذه الوحدات عند تشغیلھا الي م

لمواجھة أي حالة طلب طاقة طارئ، الحد الأدنى  وحدات، الاحتیاطي السریع المطلوبحدود التولید لل ھامن القیود، من

الفوقي لزمن تشغیل الوحدات ووقت الراحة الأدنى عند فصل الوحدات، وكذلك معدل تغیر القدرة المنتجة لھدة 

  الوحدات. 

 حدودھا الموصلات العمومیة فيالفولتیة المولدات الكھربائیة و قوة مخرجات والحفاظ على تكلفةال من أجل تقلیل

، الخوارزمیات  (PSO)استمثال عناصر السرب ھذا العمل وھي استخدمت فيمیتاھیروستیكیة  عدة طرق منة،الآ

خوارزمیة مستعمرة  ، (BB-BC)الانسحاق الشدید- ، خوارزمیة الانفجار الكبیر(PS)، نمط البحث (GA)الجینیة 

لتحدید  ھذه الأسالیب تم تطبیق، وبالإضافة إلى ذلك .طرق أخرى الھجینة بینھمو ، (ABC)النحل الاصطناعي

منا بتقدیم وتطویر طریقتین جدیدتین في ھذه الأطروحة ق .نظم تولید الطاقة فيالمثالیة لوحدات التولید الجدولة 

 الھندسة الجینیة میكانزیم مضاف لھ الجیني لخوارزميوا (RTO) الشجر المثالیة رخوارزمیة جذو تسمى:

)GAGE .(الطریقة الأولي من تطبیق التي تم الحصول علیھا النتائج(RTO)  مشكلة أنواع مختلفة من لأجل حل 

ED، قلیل تنفیذ الوقت أفضل و نوعیة الحل أظھرتة على نفس التجارب، وجدنا أنھا حدیثة مطبق مقارنة مع أسالیب

والتي استنبطت بإضافة میكانزیم جدید  GAGEوأما الطریقة المقترحة الثانیة  .أفضل الحلول للوصول إلى جدا

. وھكذا وجدنا بأن ھذه UCوھو الھندسة الجینیة، فقد طورت لأجل إیجاد حلول لمشكلة للخوارزمیات الجینیة 

ً ملحوظا في التكالیف الإجمالیة لنظام ا وحدات ونظام الشبكة الكھربائیة الجزائریة  10لاختبار الطریقة تظھر تحسنا

  .والطرق المقترحة حدیثا في المراجع GA مقارنة مع الطرق التقلیدیة لـساعة  24في فترة 

  

التدفق الأمثل للطاقة الكھربائیة، أنظمة الطاقة، والتوزیع الاقتصادي، جدولة وحدات التولید، وانبعاث  كلمات مفتاحیة:

، استمثال عناصر السرب، الخوارزمیات الجینیة، نمط ةأكاسید النیتروجین، میتاھیروستیك، خوارزمیات الھجین

  .RTO ،GAGEعمرة النحل الاصطناعي، الانسحاق الشدید، خوارزمیة مست- البحث، خوارزمیة الانفجار الكبیر
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General Introduction 

  
Optimization, the best way of doing things, is obviously of great interest in the practical 

world of engineering. In recent years, for power system management, many important 

decisions are made by describing the system under study as precisely and quantitatively 

as possible, selecting some measures of system effectiveness, and then seeking the state 

of the system which gives the most desirable solution to the criteria [1]. Modem electric 

power systems built with nonlinear characteristics are highly interconnected with wide 

geographical distribution. This demands the optimization of a complex objective function 

under few practical constraints. Hence power system network optimization involves 

maximization or minimization of objective function under certain constraints [1]. 

operational planning of the power system involves the best utilization of the 

available energy resources subjected to various constraints to transfer electrical energy 

from generating stations to the consumers with maximum safety of personal/equipment 

without interruption of supply at minimum cost [1-4]. In modern complex and highly 

interconnected power systems, the operational planning involves steps such as load 

forecasting, economic dispatch, unit commitment, maintenance of system frequency and 

declared voltage levels as well as interchanges among the interconnected systems in 

power pools etc [3-4].  

There are three stages in system control, namely generator scheduling or unit 

commitment, security analysis and economic dispatch [2].  

• Economic dispatch orders the minute-to-minute loading of the connected 

generating plant so that the cost of generation is a minimum with due respect to 

the satisfaction of the security and other engineering constraints 

• Generator scheduling involves the hour-by-hour ordering of generator units 

on/off in the system to match the anticipated load and to allow a safety margin.  

• With a given power system topology and number of generators on the bars, 

security analysis assesses the system response to a set of contingencies and 
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provides a set of constraints that should not be violated if the system is to 

remain in secure state.  

Mathematically well-defined objective and constraint functions and their derivatives 

must therefore be developed in order to land at a global optimum in a search procedure 

[4].  In order to alleviate the problems associated with traditional strategies, intelligence 

techniques are also explored. 

This thesis deals with the application of artificial intelligence methods to the inherent 

issues, which govern the satisfactory delivery of electric power. It includes economic 

load dispatch, combined economic emission load dispatch, economic load dispatch with 

prohibited operating zones and unit commitment problem. The proposed work includes 

the state-of-the-art methods and procedures necessary for designing and developing an 

intelligence system. This work takes into account the theoretical investigations and 

practical considerations especially for mutual dependencies between intelligence 

techniques such as genetic algorithm, swarm intelligence, pattern search method, big 

bang–big crunch optimization and artificial bee colony optimization. 

 

 Objectives of the thesis 

The main objectives of the dissertation are : 

(a) To provide a mathematical formulation of the various types of economic load 

dispatch problems in power systems such as economic load dispatch (ELD) 

problem, 

(b) To provide an overview of the concept of Unit Commitment (UC) problem with a 

bibliographical survey of relevant background, the present state and potential 

methodologies used for solving the concern problem,  

(c) To presents a comprehensive review of the methodologies, which covers a wide 

span of Evolutionary Computation and Meta-heuristic and hybrid approaches such 

as GA, PSO, PS, BB-BC, ABC and their hybrid approaches. In terms of 

contribution, it formulates the problem clearly and describes appropriate 

approaches to solve the problems, 

(d) To present our  proposed metaheuristic techniques and their applications on 

different economic dispatch problem, 
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(e) To implement a different types of genetic algorithms for solving unit commitment 

problem in a power system, implemented algorithms successfully solves both 

small and large scale problems and shows how much more efficient variable 

structure genetic algorithm, 

(f) To propose a new method for optimization that is called “root tree optimization” 

algorithm (RTO), the robustness and efficiency of the proposed new method is 

validated, the proposed approach RTO has been applied to various test 

systems  ED problem solution considering valve-point effect, 

(g) To propose a novel operator for Genetic Algorithms a “genetic modification” for 

solving the UCP, generating unit’s shows that we can find the optimal solution 

effectively and these results are compared with the conventional methods and 

various optimization approaches in the recent literature. 

 

 Organization of The Thesis  

After a general introduction to the undertaken work and the presented literature review, 

the main body of the thesis is structured as follows:  

 A general introduction to the problem of power system optimization is presented 

in chapter 1. The need for intelligence based approaches is discussed, and a 

review of the traditional optimization strategies is traced. It includes a survey of 

the literature and the main objectives of the dissertation.  

 Chapter 2 presents the mathematical formulation of the various types of economic 

load dispatch problems in power systems such as economic load dispatch (ELD), 

combined economic emission dispatch (CEED) and the economic load dispatch 

(ELD) with prohibited operating zones considering ramp rate limits. 

 Chapter 3 presents formulation the UC problem considering various operating 

constraints, such as power balance, spinning reserve, operating limit, and 

minimum up/down time. 

 Chapter 4  provides  a  general description of these metaheuristics techniques in 

power systems, and we briefly revise the main features of the metaheuristic 

approaches, focusing particularly on those used in this thesis such as Genetic 

Algorithm (GA), Particle Swarm Optimization algorithm (PSO), Pattern Search 
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method (PS), Big Bang–Big Crunch optimization algorithm (BB–BC), Artificial 

Bee Colony optimization algorithm (ABC), a hybrid GA–PS method, a hybrid 

PSO–PS method and Hybrid BB–BC optimization algorithm.  

 Chapter 5 applies the proposed methods to various types of  ED problem with 

smooth and non-smooth cost functions and it is also compared with other methods 

for validating their ability. 

 Chapter 6 presents the application of genetic algorithm (GA) in  UC problem with 

various operating constraints, Also, we applied a crossover operator ring 

crossover for genetic algorithm (RCGA) to solve the UC problem, the results 

obtained show that, with the application of the proposed RCGA method to the 

unit commitment problem, better convergences and solutions are obtained than 

with the application of conventional genetic algorithm. 

 Chapter 7 introduce a new method for optimization that is called root tree 

optimization algorithm (RTO), the robustness and efficiency of the proposed new 

method is validated on nonlinear functions and compared to recent methods 

addressing the same problem, simulation results confirm efficiency and reliability 

of the proposed RTO algorithm for solving complex optimization problem in term 

of solution quality and convergence characteristic. The proposed approach RTO 

has been applied to various test systems, from numerical results, it is found that 

the proposed RTO approach is able to provide better solution than other reported 

techniques in terms of fuel cost and time. Secondly,  A new algorithm GAGE has 

been proposed to solve optimisation problems, which is inspired by the Genetic 

Engineering operation on the GA, the modified GAGE is efficiently applied to 

solve the UCP, the total production costs of GAGE over the scheduled period are 

less expensive than the conventional genetic algorithm and the algorithms 

proposed the recent literature. 

The contributions of the dissertation along with the scope for future research in this 

area find a place in general conclusion. 
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CHAPTER I  
Survey of research findings 

 
I.1. Introduction : 

Modem electric power systems built with nonlinear characteristics are highly  

interconnected with wide geographical distribution. This demands the optimization of a 

complex objective function under few practical constraints. Hence power system  

network optimization involves maximization or minimization of objective function  under 

certain constraints [4]. 

The operation of a modem power system has to incorporate in its mission a  strategy 

that serves to derive the maximum benefits of an improved performance and enhanced 

reliability [4]. The power grid networks have been analyzed using conventional and 

enumerative techniques for delivering the bulk power. reliably and economically, from 

power plants to the consumers. Though well-developed, these conventional approaches 

dealt with the local optima. Besides their limitations to handle mixed variables, these 

enumerative techniques have relied on special convergence properties and evaluation of 

auxiliary functions [5, 6].  

The operations of energy management systems can be further optimized through 

optimization heuristic approach to the inherent issues, which govern the satisfactory 

delivery of electric power. It includes economic load dispatch, combined economic 

emission load dispatch and unit commitment problems.  

The proposed work includes the state-of-the-art methods and procedures necessary 

for designing and developing an intelligence system. This work takes into account the 

theoretical investigations and practical considerations especially for mutual dependencies 

between intelligence and metaheuristic techniques such as GA, PSO, PS, BB-BC, ABC 

and their hybrid approaches. 
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I.2.  Review Of Traditional Strategies :  
Several mathematical optimization techniques have been proposed to solve the power 

system problems. In such an optimization problem, the main objective will be to 

minimize undesirable factors, such as cost, energy loss and errors, in order to maximize 

desirable factors, such as profit, quality and efficiency, subject to available limitations or 

constraints [4]. There are a wide range of mathematical programming techniques such as 

linear programming (LP)/interior point (IP) method, quadratic Programming (QP), 

nonlinear programming (NLP), decomposition technique, integer programming, mixed 

integer pogromming and dynamic programming (DP). This section attempts to review the 

basic concepts of these techniques. 

  

I.2.1.  Linear and Quadratic Programming Methods :  

Linear programming (LP) methods have linear objective functions and constraints [7-9].  

These methods basically fall into two categories: simplex and integer programming (IP) 

[10-17]. The main advantage of simplex method is its high computational efficiency. But 

the disadvantage is that number of iterations grows exponentially with problem size. This 

disadvantage can be overcome by IP methods.  

IP methods do not step from one comer point to the next in the manner of simplex 

algorithm, but rather  stay  within the interior  of the constrained region and progressively 

move to the optimal point. Both the simplex and IP methods can be extended to have a 

linear and quadratic objective function when the constraints are linear. Such methods are 

called quadratic programming (QP) [18-19].  LP has been used in various power system 

applications such as optimal power flow [S], load flow [8], reactive power planning [20], 

and active and reactive power dispatch [21-22].  

 

I.2.2.  Nonlinear Programming Methods :  

In most of the NLP methods, the approach is to start from initial conditions and 

determine the 'descent direction'  in  which the value of objective function decreases for a 

minimization problem. A large number of NLP methods are available that are 

distinguishable by their definition and step length. Quasi-Newton method [23] that 
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attempts to build up an approximation to Hessian matrix exhibits powerful convergence. 

If the coefficients of Hessian matrix are available analytically, Newton method [24] can 

be applied. Some of the most successful methods in use today are based on applying QP 

to solve a local  optimization in  a nonlinear problem. IP methods originally developed 

for LP can be applied to QP and NLP problems. NLP has been applied to solve optimal 

power flow [25] and hydrothermal scheduling [26] problems. 

 

I.2.3.  Integer and Mixed-Integer Programming Methods :  

In cases where the independent variables can take only integer values, such problems are 

called integer programming. When some of the variables are continuous, the problem is 

called mixed integer programming. Mainly two approaches, namely 'branch  and bound' 

and 'cutting plane methods', have been used to solve integer problems using mathematical 

programming techniques [23]. The size and complexity of integer and mixed-integer 

programmes that can be solved in practice depends on the structure of the problem. 

Integer/mixed integer programming have been applied to various areas of power systems 

such as optimal reactive power planning [27], power system planning [28-29], unit 

commitment [30] and generation scheduling [31]. 

 

I.2.4. Dynamic Programming Methods :  

Dynamic programming (DP) based on the principle of optimality states that a sub-policy 

of an optimal policy must in itself be an optimal sub-policy. DP is a very powerful 

technique, but it suffers from the curse of dimensionality [32]. DP has been applied to 

various areas of power systems such as reactive power control [33], transmission 

planning [34] and unit commitment [35].  

The main advantage of the intelligence based methods is that it avoids the 

complexities in the formulation of mathematical model for the power system 

optimization. However, the shortcoming of these methods is generally associated with the 

required excessive computational resources. With the advent of fast processors with large 

memory, these methods appear to be promising in the future [4] [36-40].  
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I.3.  Literature Review :  
They are reviewed in a systematic way in the following sections.  
 

I.3.1.  Economic Load Dispatch Problems :  

I.3.1.1.  Economic Load Dispatch : 

The classical lambda iteration method has been used to solve the ELD problem. This 

method utilizes an equal incremental cost criterion for systems without transmission 

losses and the penalty factors using β, matrix for systems with transmission losses. Other 

methods such as gradient, Newton, linear programming and interior pint have also been 

applied to solve the ELD problems [41].  

Zwe-Lee Gaing [42] has proposed a particle swarm optimization (PSO) method for 

solving the economic dispatch (ED) problem in power systems. This method made use of 

PSO for its global search capability to allocate optimum loading of each generator. The 

test results of three different systems have been compared with that of GA-based 

approach.  

Jayabarathi et al. [43] have adopted a particle swarm optimization technique for 

solving the various types of economic dispatch problems. The test results of the sample 

systems have been compared with that  of other evolutionary computing techniques. 
 

I.3.1.2. Combined Economic Emission Dispatch :   

Talaq et al. [44] have formulated an optimal power flow problem with emission 

constraints where the main objective was to minimize the fuel cost and the total emission 

over a wide time period of different intervals and system demands. The test results of 

standard 5-bus and IEEE-30 bus systems display a trade-off relationship between fuel 

cost and emission.  

Wong et al. [45] have developed an efficient and reliable evolutionary- 

programming-based algorithm for solving the environmentally constrained economic 

dispatch (ECED) problem. This method made use of acceleration techniques in order to 

enhance the speed and robustness of the algorithm.  

Venkatesh et al. [46] have built an EP algorithm to solve the CEED problem with 

line flow constraints. The line flows in MVA have been computed directly from the  
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Newton-Raphson  method. A novel modified price penalty factor has been introduced to 

find the exact economic emission fuel cost with respect to the load demand. The test 

results of IEEE-14, -30 and -118 bus systems have been compared with that of other 

evolutionary computing techniques.  

Abido [47] has derived a Pareto-based multi-objective evolutionary algorithm 

(MOEA) for solving an environmental/economic electric power dispatch problem.  

This fuzzy-based hierarchical clustering technique has been implemented in order to 

obtain the best solution. The test results of an IEEE-30 bus system have been compared 

with that of other traditional multi-objective optimization techniques. 

 

I.3.1.3. Economic Load Dispatch with Prohibited Operating Zones :  

Walters et al. [48] have developed a genetic algorithm to solve the economic dispatch 

problem with valve-point effects. This algorithm has utilized payoff information of the 

candidate solutions to evaluate their optimality. The test results of three units system have 

been compared with that of dynamic programming method.  

Wong et al. [49] have built an incremental genetic algorithm based approach for the 

determination of global or near-global optimum solution. Another technique that 

incorporates both incremental genetic theory and simulated annealing has served to 

determine the economic loadings of 13 generators in a practical power system with the 

effects of valve-point loading and ramping characteristics. The test results have been 

found to yield better results when compared with that of simulated annealing based 

method. 

Chen et al. [50] have presented a GA-based method that uses the incremental cost of 

encoded parameter of the system for solving the ED problem taking into account the 

network losses, ramp rate limits, valve-point zone and prohibited operating zone. The 

numerical results of the method for a large scale 40-unit system have been compared with 

that of lambda-iteration method.  

Fung et al. [51] have formulated an integrated parallel genetic algorithm 

incorporating Tabu Search (TS) and simulated annealing for solving the ED problem.  

The parallel computing platform has been based on a network of interconnected 

personal computers (PCs) using TCPAP socket communication facilities. The test results 
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of a practical power system have been obtained to compute the optimal loading of 13 

generators. 

El-Gallad et al. [52] have adapted a PSO technique to solve the traditional economic 

dispatch problem. The objective function has been formulated as a combination of 

piecewise quadratic cost functions with non-differential regions, instead of adopting a 

single convex function for each generating unit. This innovation has served to incorporate 

practical operating conditions, such as valve-point effects and fuel types. The 

effectiveness of the algorithm has been tested on a three unit system and the results have 

been compared with that of a numerical method.  

El-Gallad et al. [53] have added new constraints to the problem by introducing 

system spinning reserve and generator prohibited operating zones. In this formulation, 

they have included the same constraints but considered a single convex cost function 

[52]. The test results of a 15-unit system in which four units with prohibited operating 

zones have been compared with for both conventional method and the Hopfield neural 

network.  

Lai et al. [54] have applied PSO to solve economic dispatch (ED) of units with non-

smooth input-output characteristic functions. The test results of an IEEE-30 bus system 

with six generating units have been compared with that of evolutionary programming 

(EP). 

Victoire et al. have extended Gaing's research by forming a hybrid optimizer to 

tackle the same problem [55]. They have used sequential quadratic programming to fine-

tune the PSO search in finding the optimal solution. The feasibility has been illustrated 

by conducting case studies on a 10-unit system with valve-point effects for three different 

load-demand patterns and the results have been compared with that obtained using the 

EP-SQP method. 

 

I.3.2.  Unit Commitment :  

Sheble et al. [56] have presented a genetic-based unit commitment (UC) scheduling 

algorithm. It has made use of GA with domain specific mutation operators for finding 

good unit commitment schedules. The test results of three different electric utilities have 

been compared with that of Lagrangian relaxation UC method.  
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Bakirtzis et al. [57] have developed a genetic algorithm that uses different quality 

function techniques to solve the unit commitment problem. The test results up to 100 

generator units have been compared with that of dynamic programming and Lagrangian 

relaxation methods.  

Swarup et al. [58] have employed a new solution methodology to the UC problem 

using genetic algorithm. The strategy has been found to be efficient and serve to handle 

larger size UC problems.  

Zwe-Lee Gaing [59] has built an integrated approach of discrete binary particle 

swarm optimization (BPSO) with the lambda-iteration method for solving the UC 

problem. It has been solved as two sub problems using  BPS0 method for minimization of 

the transition cost. The economic dispatch problem has been solved by lambda-iteration 

method for the minimization of the production cost. The feasibility of the method has 

been demonstrated on a 10- and a 26-unit systems, and the test results have been 

compared with that of GA method.  

Zhao et al. [60] have presented an improved particle swarm optimization (IPSO) 

algorithm for power system UC problem. It has adopted an orthogonal design in order to 

generate the initial population that are scattered uniformly over a feasible solution space. 

The IPSO algorithm has been tested on a modeled 10-unit system and the performance is 

compared with that of GA and EP methods.  

Ting et al. [61] have integrated a new approach of hybrid particle swarm 

optimization (HPSO) scheme, which is a blend of HPSO, BPSO and real-coded particle 

swarm optimization (RCPSO), to solve the UC problem. The UC problem has been 

handled by BPSO, whereas the economic load dispatch problem has been solved by 

RCPSO.  

Funabashi et al. [62] have formulated a twofold simulated annealing method for the 

optimization of fuzzy-based UC model. The method has served to offer a robust solution 

for UC problem.  

Victoire et al. [63] have applied a hybrid PSO and sequential quadratic programming 

(SQP) technique, prelude to tabu search (TS) method for solving the UC problem. The 

combinational part of the UC problem has been solved using the TS method. The 

nonlinear optimization part of economic dispatch problem (EDP) has been solved using a 
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hybrid PSO-SQP technique. The effectiveness of hybrid optimization technique has been 

tested on a NTPS zone-II 7-unit system. 

There have been various methods which are based on mathematical programming 

and metaheuristic-based for solving the thermal and hydrothermal UC problem in 

literature, these major methods are priority list, dynamic programming (DP), mixed-

integer programming, heuristic unit, simulated annealing, tabu search, evolutionary 

programming, constraint logic programming, genetic algorithms, LR, interior point 

method, memetic algorithm, and neural network [64-71]. 

 

I.4.  conclusion : 

A detailed review of the existing methodologies in the field of power system 

scheduling has been carried out in this chapter. Several classical and heuristic 

methodologies adopted for the solution of scheduling problems have been looked at. 

Even though numerous solution methodologies exist, thinking of more efficient and 

computationally faster stochastic strategy is still relevant in the fourth chapter. 
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CHAPTER II  
Mathematical formulation of the Economic 

Dispatch problem 
 

II.1. Introduction : 
The main aim of electric power utilities is to provide high-quality. reliable  power supply 

to the consumers at the lowest possible cost while operating to meet the limits and 

constraints imposed on the generating units. This formulates the economic load dispatch 

(ELD) problem for finding the optimal combination of the output power of all the online 

generating units that minimizes the total fuel cost, while satisfying an equality constraint 

and a set of inequality constraints. As the cost of power generation is exorbitant, an 

optimum dispatch results in economy [1, 4]. 

In recent years, with an increasing awareness of the environmental pollution caused 

by thermal power plants, limiting the emission of pollutants is becoming a crucial issue in 

economic power dispatch. The conventional economic power dispatch cannot meet the 

environmental protection requirements, since it only considers minimizing the total fuel 

cost. The multi-objective generation dispatch in electric power systems treats economic 

and emission impact as competing objectives, which requires some reasonable tradeoff 

among objectives to reach an optimal solution. This formulates the combined economic 

emission dispatch (CEED) problem with an objective to dispatch the electric power 

considering both economic and environmental concerns [4]. 

Practically, the real world input/utput characteristics of the generating units are 

highly nonlinear, non-smooth and discrete in nature owing to prohibited operating zones, 

ramp rate limits and multi-fuel effects. Thus the resultant ELD is a challenging non-

convex optimization problem, which is difficult to solve using traditional methods [1, 4]. 

In this chapter, we provide a mathematical formulation of the various types of 

economic load dispatch problems in power systems such as economic load dispatch 

(ELD), combined economic emission dispatch (CEED) and the economic load dispatch 

(ELD) with prohibited operating zones considering ramp rate limits.  
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II.2. Economic Load Dispatch Problem : 
II.2.1.  Problem Description : 

ED is one of the important optimization problems in power system operations, which is 

used to determine the optimal combination of power outputs of all generating units to 

minimize the total fuel cost while satisfying various constraints over the entire dispatch 

periods [72]. 

The traditional or static ED problem assumes constant power to be supplied by a given 

set of units for a given time interval and attempts to minimize the cost of supplying this 

energy subject to constraints on the static behavior of the generating units like system 

load demand. Shortly, static ED determines the loads of generators in a system that will 

meet a power demand during a single scheduling period for the least cost [72-77]. 

  

II.2.2.  Objective Function : 

Economic load dispatch problem is the sub problem of optimal power flow (OPF). The 

main objective of ELD is to minimize the fuel cost while satisfying the load demand with 

transmission constraints [47].   

The classical ELD with power balance and generation limit constraints has been 

formulated as follows. 





n

i
iit PFF

1

)( Minimize                       (II.1) 

2)( iiiiiii PcPbaPF                       (II.2) 

Where Ft is the total fuel cost of generation,  

Fi(Pi) is the fuel cost function of ith generator,  

ai, bi, ci are the cost coefficients of ith  generator,  

Pi is the real power generation of ith generator,  

n represents the number of generators connected in the network 

The minimum value of the above objective function has to be found by satisfying the  

constraints. 
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Therefore, it might fail to capture large variations of the load demand due to the 

ramp rate limits of the generators. Due to large variation of the customers load demand 

and the dynamic nature of the power systems, it became necessary to schedule the load 

beforehand so that the system can anticipate sudden changes in demand in the near future 

[77]. 
 

II.3. Dynamic Economic dispatch (ED) problem : 
Dynamic ED is an extension of static ED to determine the generation schedule of the 

committed units so that to meet the predicted load demand over the entire dispatch 

periods at minimum operating cost under ramp rate and other constraints [73]. The ramp 

rate constraint is a dynamic constraint which used to maintain the life of the generators, 

i.e. plant operators, to avoid shortening the life of the generator, try to keep thermal stress 

within the turbines safe limits [74]. Since the violations of the ramp rate constraints are 

assessed by examining the generators output over a given time interval, this problem 

cannot be solved for a single value of MW generation [74]. The objective function of 

dynamic ED is formulated as follows 


 


T

t

N

i

t
iit PFPF

1 1

)()( Minimize                                                         (II.3) 

Where N is the set of committed units; Pi is the generation of unit i; Fi(Pi) is the cost 

of producing Pi from unit i; T is the number of intervals in the study period. The fuel cost 

functions Fi(·) is derived from the fuel consumption function. 

The dynamic ED is not only the most accurate formulation of the economic dispatch 

problem but also the most difficult to solve because of its large dimensionality [75]. The 

DED problem is normally solved by discretization of the entire dispatch period into a 

number of small time intervals, over which the load demand is assumed to be constant 

and the system is considered to be in a temporal steady state. Over each time interval a 

static ED problem is solved under static constraints and the ramp rate constraints are 

enforced between the consecutive intervals [76]. In the DED problem the optimization is 

done with respect to the dispatchable powers of the units. 

Some researchers have considered the ramp rate constraints by solving SED problem 

interval by interval and enforcing the ramp rate constraints from one interval to the next. 
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However, this approach can lead to suboptimal solutions; moreover, it does not have the 

look-ahead capability [77]. 

Since dynamic ED was introduced, various methods have been used to solve this 

problem. However, all of those methods may not be able to provide an optimal solution 

and usually getting stuck at a local optimal. 

 

II.4. ED Constraints : 
The constrained ED problem is subjected to a variety of constraints depending upon 

assumptions and practical implications. Usually, formulation of ED problem includes 

such constraints as load generation balance, minimum and maximum capacity 

constraints. To maintain system reliability and security, spinning reserve constraints and 

security constraints can be added to the dynamic ED problem. The inclusion of the 

prohibited zones, ramp-rate limits and other practical constraints results in no-convex ED 

of generating units. All these constraints are discussed below [77]. 
 

II.4.1. Load-Generation Balance : 

The generated power from all the running units must satisfy the load demand and the 

system losses given by (II-4) 

 T ..., 2, 1,         t,
1


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N

i

t
i PPP                                                   (II.4) 

where t
DP  is the demand and t

LP  is the system transmission loss. Their sum 

represents the effective load to be satisfied at the tth interval. The transmission line losses 

can be expressed in terms of the unit outputs: 
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11 1
                                                  (II.5) 

where βij is the ijth element of the loss coefficient square matrix, βi0 is the ith element 

of the loss coefficient, and B00 is the constant loss coefficient. Sometimes the last two 

terms are omitted. 

In a competitive environment, the load-generation balance constraint is relaxed and 

each generating company schedules its production to maximize its profits given a forecast 
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of electricity prices for the scheduling period [77]. As a first approximation, each 

generating unit could be optimized separately in this problem because of the decoupling 

made possible by the availability of prices at each period. Dynamic constraints (such as 

ramp rates and minimum up and down time constraints) complicate the problem because 

a generating company that owns a portfolio of units must then decide whether to buy 

“flexibility” on the market or meet the dynamic constraints with its own resources [78]. 
 

II.4.2. Generation Capacity Constraint : 

For normal system operations, real power output of each generator is restricted by lower 

and upper bounds as follows: 

TtNiPSP i
t
i

t
i  ..., 2, 1,    , ..., 2, 1,   max                                     (II.6) 

TtNiPP t
ii  ..., 2, 1,    , ..., 2, 1,   min                                             (II.7)  

Where ௜ܲ
୫୧୬ and ௜ܲ

୫ୟ୶ are the minimum and maximum power produced by generator 

i, ܵ௜୲ is the reserve contribution of unit during time interval t. 
 

II.4.3. Generating Unit Ramp Rate Limits : 

One of unpractical assumption that prevailed for simplifying the problem in many of the 

earlier research is that the adjustments of the power output are instantaneous [79]. 

Therefore, the power output of a practical generator cannot be adjusted instantaneously 

without limits. The operating range of all online units is restricted by their ramp-rate 

limits during each dispatch period. So, the subsequent dispatch output of a generator 

should be limited between the constraints of up and down ramp-rates [80] as follows 

The power generated, t
iP , by the ith generator in certain interval may not exceed that of 

previous interval by 1t
iP  more than a certain amount URi, the up-ramp limit and neither 

may it be less than that of the previous interval by more than some amount DRi the down-

ramp limit of the generator. These give rise to the following constraints. 

Generating unit ramp-rate limits: 

Ni,DRPP
NiURPP

i
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..., 2, 1, 
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                                                            (II.8) 
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Where URi and DRi are ramp-up and ramp-down rate limits of ith unit, respectively and 

are expressed in MW/h. 
 

II.4.4. Reserve Contribution : 

The maximum reserve contribution has to satisfy following constraints: 

TtNiSS i
t
i  ..., 2, 1,    , ..., 2, 1,   0 max                                       (II.9) 

Where ܵ௜୫ୟ୶ is the maximum contribution of unit i to the reserve capacity. 

Maximum-ramp spinning reserve contribution is defined as in (II.10) 

TtNit .URS i
t
i  ..., 2, 1,    , ..., 2, 1,       0                                   (II.10) 

Where ܵ௜୲ is the spinning reserve of unit i . 
 

II.4.5. System Spinning Reserve Requirement : 

Sufficient spinning reserve is required from all running units to maximize and 

maintain system reliability [31]. There are many ways to determine the system spinning 

reserve requirement. It can be calculated as the size of the largest unit in operation or as a 

percentage of forecast load demand or even as a function of the probability of not having 

sufficient generation to meet the load [73]. The spinning reserve can be defined by (II.11) 

 TtSRS t
N

i

t
i  ..., 2, 1,        

1




                                                                      (II.11) 

Where SRt is the system spinning reserve requirement for time interval t.  
 

II.4.6. Tie-line Limits : 

The economic dispatch problem can be extended by importing additional constraint like 

transmission line capacity limit given by (II.12) 

  Tjk,jk  Tjk   Tjk, PSPP maxmin                                                                       (II.12) 

Where ்ܲೕೖ,೘೔೙  and ்ܲೕೖ,೘ೌೣ  specify the tie-line transmission capability, i.e. the 

transfer from area j to area k should not exceed the tie-line transfer capacities for security 

consideration. Each area has own special load and its spinning reserve [81-82]. 
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II.4.7. Prohibited Zone : 

The generating units may have certain ranges where operation is restricted on the grounds 

of physical limitations of machine components or instability, e.g. due to steam valve or 

vibration in shaft bearings. So, there is a quest to avoid operation in these zones in order 

to economize the production [79]. These ranges are prohibited from operation and a 

generator with prohibited regions (zones) has discontinuous fuel-cost characteristics 

(Fig.II.1) [83]. The acceptable operating zones of a generating unit can be formulated as 

follows 

I
i

t
ii PPP 1,

min           (II.13) 

I
ji

t
i

u
ji PPP ,1,   i,  j=2, 3, …, ni. t=1, 2, …, T     (II.14) 

max
, i

t
i

u
nji PPP           (II.15) 

Where ni is the number of the prohibited zones in unit i,  is the set of units that have 

prohibited zones, 	 ௜ܲ,௝
௟ , ௜ܲ ,௝

௨  are the lower and upper bounds of the jth prohibited zone. 

 

 

 

 

 

 

 

 

 

Figure II.1 : Example of cost function with two prohibited operating zones 
 

II.5. Different Objective Functions : 
The dynamic ED problem has been solved with many different forms of the cost 

function, such as the smooth quadratic cost function (II.16) or the non-smooth cost 

function due to the valve-point effects (II.17). Also, a linear cost function [74] and 
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PZ1                               PZ2 

Min                                                            Max 
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piecewise linear cost function [84, 85] have been employed. For smooth cost function it 

is usually assumed that its incremental cost function. In some power systems combined 

cycle units are used to supply the base load. For these units the cost function can be given 

as linear, piecewise or quadratic with decreasing incremental cost function [85]. 

For units with prohibited zones, the fuel cost function is discontinuous and non-

convex. An interesting departure from this standard formulation is the approach proposed 

by Wang and Shahidehpour [86] who include in the objective function a term 

representing the reduction in the life of the turbine caused by excessive ramping rates. 

This flexible technique makes possible a tradeoff between the system operating cost and 

the life cycle cost of the generating units [78]. 
 

II.5.1. Smooth Cost Function : 

The most simplified cost function of each generator can be represented as a quadratic 

function as given in (II.16) whose solution can be obtained by the conventional 

mathematical methods 

2).()( t
ii

t
iii

t
ii PcPbaPC                                                             (II.16) 

Where ai, bi, ci are cost coefficients of generator i. 
 

II.5.2. Non-smooth Cost Functions with Valve-point Effects : 

The generating units with multi-valve steam turbines exhibit a greater variation in the 

fuel cost functions because in order to meet the increased demand a generator with multi-

valve steam turbines increase its output and various steam valves are to be opened [72]. 

This valve-opening process produces ripple like effect in the heat-rate curve of the 

generator. The inclusion of valve-point loading effects makes the modeling of the 

incremental fuel cost function of the generators more practical [87]. 

Therefore, in reality, the objective function of ED problem has non-differentiable 

property. 

Consequently, the objective function should be composed of a set of non-smooth 

cost functions. Considering non-smooth cost functions of generation units with valve-

point effects, the objective function is generally described as the superposition of 

sinusoidal functions and quadratic functions [88]. 
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Figure II.2 : Cost function with valve-point effects 

))(sin(.)()( min2 t
iiii

t
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t
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t
ii PPhePcPbaPC                         (II.16) 

Where ei and hi are the coefficients of generator i reflecting valve point effects. As 

shown in Fig. II.2, this increases the non-linearity of curve as well as number of local 

optima in the solution space [87] compared with the smooth cost function due to the 

valve point effects. Also the solution procedure can easily trap in the local optima in the 

vicinity of optimal value. 
 

II.5.3. Non-smooth Cost Functions with Multiple Fuels : 

Since the dispatching units are practically supplied with multi-fuel sources, each unit 

should be represented with several piecewise quadratic functions reflecting the effects of 

fuel type changes, and the generator must identify the most economic fuel to burn. The 

resulting cost function is called a “hybrid cost function.” Each segment of the hybrid cost 

function implies some information about the fuel being burned or the units operation 

[77]. 

Thus, generally, the fuel cost function is a piecewise quadratic function described as 

follows 
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Where are aip, bip, cip the cost coefficients of generator for the pth power level. The 

incremental cost functions are illustrated in Fig. II.3. 

$/MWh 
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Figure II.3 : Cost function with multiple fuels 
 

II.5.4. Non-smooth Cost Functions with Valve-Point Effects and Multiple Fuels : 

To obtain an accurate and practical economic dispatch solution, the realistic operation of 

the ED problem should consider both valve-point effects and multiple fuels. The 

reference [89] proposed an incorporated cost model, which combines the valve-point 

loadings and the fuel changes into one frame. Therefore, the cost function should 

combine (2–17) with (2–18), and can be realistically represented as shown in (II.18) 
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II.5.5. Emission Function : 

Due to increasing concern over the environmental considerations, society demands 

adequate and secure electricity, i.e. not only at the cheapest possible price, but also at 

minimum level of pollution. In this case, two conflicting objectives, i.e., operational costs 

and pollutant emissions, should be minimized simultaneously [90-92]. The atmospheric 

pollutants such as sulphur oxides (SOx) and nitrogen oxides (NOx) caused by fossil-

fueled generating units can be modeled separately or as the total emission of them which 

is the sum of a quadratic [90] and an exponential function and can be expressed as 
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Where i, βi, γi, ηi and δi are emission coefficients of ith generating unit. 
 

II.6. Traditional approaches :  

II.6.1. The Lambda –Iteration Method :  

In Lambda iteration method lambda (λ) is the variable introduced in solving constraint 

optimization problem and is called Lagrange multiplier. It is important to note that 

lambda can be solved at hand by solving systems of equation. Since all the inequality 

constraints to be satisfied in each trial the equations are solved by the iterative method 

[91],  

i) Assume a suitable value of λ(0) this value should be more than the largest 

intercept  of the incremental cost characteristic of the various generators,  

ii) Compute the individual generations,  

iii) Check the equality, 





N

i
id PP

1
 is satisfied          (II.20) 

iv) If not, make the second guess λ repeat above steps. 

  

II.6.2. The Gradient Search Method :  

This method works on the principle that the minimum of a function, f(x), can be found by 

a series of steps that always take us in a downward direction. From any starting point, x0, 

we may find the direction of “steepest descent” by noting that the gradient f, [91] 
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Always points in the direction of maximum ascent. Therefore, if we want to move in 

the direction of maximum descent, we negate the gradient. Then we should go from x0 to 

x1 using: 

fxx  01         (II.21) 



Chapter II                                                      Mathematical formulation of the Economic Dispatch problem 

 

24 
 

Where  is a scalar to allow us to guarantee that the process of convergence. The 

best value of  must be determined by experiment. In case of power system economic 

load dispatch f becomes 
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)(         (II.22) 

The object is to drive the function to its minimum. However we have to be concerned 

with the constraints function 
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To solve the economic load dispatch problem which involves minimizing the 

objective function and keeping the equality constraints, we must apply the gradient 

technique directly to the Lagrange function is: 
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And the gradient of this function is 
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The problem with the formulation is the lack of a guarantee that the new points 

generated each step will lie on the surface .  

The economic dispatch algorithm requires a starting  value and starting values for 

P1, P2, and P3.The gradient for ℑ	is calculated as above and the new values of , P1,and 

P2 etc., are found from 

)(01  xx                               (II.25) 

Where x is a vector,                              
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II.6.3. Newton’s Method:  

Newton’s method goes a step beyond the simple gradient method and tries to solve the 

economic dispatch by observing that the aim is to always drive, [91] 

0 x  

Since this is a vector function, we can formulate the problem as one of finding the 

correction that exactly drives the gradient to zero (i.e. to a vector, all of whose elements 

are zero). Suppose we wish to drive the function g(x) to zero. The function g is a vector 

and the unknown, x are also vectors. Then to use Newton’s method, we observe 

  0)(')()(  xxgxgxxg                                (II.26) 

Where g’(x) is the familiar Jacobian matrix. The adjustment at each step is then, 

  )()(' 1 xgxgX                                             (II.27) 

Now, if we let the g function be the gradient vector x  we get 
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For the economic load dispatch problem this takes the form: 
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The  ∇ψx  is a Jacobean matrix which has now second order derivatives is called 

Hessian matrix. Generally, Newton’s method will solve for the correction that is much 

closer to the minimum generation cost in one cost in one step than would the gradient 

method [91]. 

 

II.6.4. Economic Dispatch with piecewise linear cost functions :  

In this method economic load dispatch problem of those generators are solved whose cost 

functions are represented as single or multiple segment linear cost functions. Here for all 

units running, we start with all of them at Pmin, then begin to raise the output of the unit 

with the lowest incremental cost segment. If this unit hits the right-hand end of a 
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segment, or if it hits Pmax, we then find the unit with the next lowest incremental cost 

segment and raise its output [91, 64].  

Eventually, we will reach a point where a units output is being raised and the total of 

all unit outputs equal the load, or load plus losses. At that point, we assign the last unit 

being adjusted to have a generation which is practically loaded for one segment. to make 

this procedure very fast, we can create a table giving each segment of each unit its MW 

contribution. Then we order this table by ascending order of incremental cost. By search 

in from the top down in this table we do not have to go and look for the next segment 

each time a new segment is to be chosen. This is an extremely fast form of economic 

dispatch [91]. 
 

II.6.5. Base Point and Participation Factor :  

This method assumes that the economic dispatch problem has to be solved repeatedly by 

moving the generators from one economically optimum schedule to another as the load 

changes by a reasonably small amount. It is started from a given schedule called the base 

point . next assumes a load change and investigates how much each generating unit needs 

to be moved in order that the new load served at the most economic operating point [91]. 

 

II.6.6. Linear Programming :  
Linear programming (LP) is a technique for optimization of a linear objective function 

subject to linear equality and linear in-equality constraints. Informally, linear 

programming determines the way to achieve the best outcome (such as maximum profit 

or lowest cost) in a given mathematical model and given some list of requirements 

represented as linear equations. For example if f is function defined as follows [91, 64]. 

dxcxcxcxxxf nnn  ....),....,,( 221121                           (II.30) 

A linear programming method will find a point in the optimization surface where this 

function has the smallest (or largest) value. Such points may not exist, but if they do, 

searching through the optimization surface vertices is guaranteed to find at least one of 

them. Linear programs are problems that can be expressed in canonical form, 

bAX
XCT

   Subject to
   Maximize
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X represents the vector of variables (to be determined), while C and b are vectors of 

(known) coefficients and A is a (known) matrix of coefficients. The expression to be 

maximized or minimized is called the objective function (CT in this case). The equations  

AX ≤ b are the constraints which specify a convex polyhedron over which the objective 

function is to be optimized. 

 

II.6.7. Dynamic Programming :  

When cost functions are no-convex equal incremental cost methodology cannot be 

applied [64]. 

Under such circumstances, there is a way to find an optimum dispatch which use 

dynamic programming method. In dynamic Programming is an optimization technique 

that transforms a maximization (or minimization) problem involving n decision variables 

into n problems having only one decision variable each. This is done by defining a 

sequence of Value functions V1, V2 , ... Vn, with an argument y representing the state of 

the system. The definition of Vi(y) is the maximum obtainable if decisions 1, 2 ...I are 

available and the state of the system is y. The function V1 is easy to find. For I=2,...n, Vi 

at any state y is calculated from Vi-1 by maximizing, over the Ith decision a simple 

function (usually the sum) of the gain of decision i and the function Vi-1 at the new state 

of the system if this decision is made. Since Vi-1 has already been calculated, for the 

needed states, the above operation yields Vi for all the needed states. Finally, Vn at the 

initial state of the system is the value of the optimal solution. The optimal values of the 

decision variables can be recovered, one by one, by tracking back the calculations already 

performed [91, 64]. 

 

II.7. Optimal Power Flow :  
It is very clear from previous section that transmission loss bias the economic dispatch 

problem and the coordination equations include the effects of incremental transmission 

loss and increased the complexity of problem. Behavior of network elements leads many 

effects on system operation. For instance, when network transmission lines are 

considered in formulation, it indicates some of the effects like increase in the total 

generation demand due to real power losses, adjustments in the generation schedule in 
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accordance to the limits on transmission line flows. Thus, it is very important to take into 

account the effects of network elements in finding the optimal solution to ensure system 

security [92-98]. 

Optimal power flow (OPF) is an extension to conventional ED problem; it 

determines minimal cost by optimal settings of different control variables in the system 

[98]. The OPF is a power flow problem in which certain controllable variables are 

adjusted to optimize system objectives. Some of the objective functions which are 

optimized using OPF formulation are the cost of active power generation, system losses, 

emission of generating units etc., while satisfying power flow equations, equipment 

operation limits and system security. The controls that an OPF can accommodate are 

active and reactive power injections, generator voltages, transformer tap ratios and phase 

shifter angles [91-94].  

OPF is very different from ordinary power flow. In  power flow calculation the 

objective is to find bus voltage magnitudes and phase angles at all the buses in the system 

[98]. 

Power flow is a steady state study and gives the snap shot of the whole system 

operating state. It is given with scheduled complex loads on all load buses and generated 

active powers, voltage magnitudes on all generator buses. The net flow of power from a 

bus into the system is termed as injection at that bus. Power flow finds the load bus 

voltage magnitudes and phase angles by minimizing the difference between scheduled 

injection and calculated injections using techniques like Gauss-Seidal or Newton-

Raphson. Scheduled injection at a bus is the difference between scheduled power 

generation if any and the complex load at that particular bus. The power injections at a 

bus are derived in the next section and calculated using equations (II.40) and (II.42). Post 

power flow  calculations are carried out by system operators using the bus voltage 

magnitudes and corresponding phase angles to find the current state of the system. These 

calculations involve line power flows, line losses and reactive power generation at 

generator buses. Power system operators have to plan the adjustments accordingly if 

these values exceed their corresponding limits to ensure system’s secure operation [98]. 

Optimal power flow is a very large and complex mathematical problem. In general 

OPF is posed as minimizing the function F(x,u) while satisfying nonlinear equality 
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constraints g(x,u) = 0 and nonlinear inequality constraints h(x,u) ≤ 0 on the vectors x and 

u.  

The vector x contains dependent variables including bus voltage magnitudes and 

phase angles and the reactive power outputs of generators on voltage controlled buses. 

The vector u consists of control variables which are independent and involves active and 

reactive power generations, transformer phase shifter angles, transformer tap ratio 

settings, load shedding, DC line flow, switched capacitor settings. 

OPF problem with the objective function of minimizing the generation cost in 

thermal electric power system is discussed here. In the ED  solution presented so far, 

limits on only minimum and maximum active power generations are observed. In OPF 

many more limits on power systems equipment’s can be included like bounds on reactive 

power generations, transmission line flows, bus voltage magnitudes. OPF problem finds 

an optimal profile of active and reactive power generations along with voltage 

magnitudes in such a manner as to minimize the total operating costs [98].  

The objective function is same as the one shown in equations (II.1) and (II.2), 

whereas the list of constraints subjected to  

1. Power Balance in the network.  

2. Unit generation limits.  

3. Limits on load bus voltage magnitudes.  

4. Limits on transmission line flows, transformer tap settings and phase shifter 

angles.   

Objective function: The sum of fuel cost of all committed generators is to be 

minimized, 

Subjected to: Active and reactive power balance in the network, 

NiPPdPg iii  ..., 2, 1,    ,0                                                    (II.31) 

NbiQQdQg iii  ..., 2, 1,    ,0                                        (II.32) 

Where Pgi, Qgi represents active and reactive power generations Pi, Qi represents 

active and reactive power injections at bus i and Pdi, Qdi represents active and reactive 

power demands at bus i, N is total number of buses and Nb is total number of load buses 

in the system. 
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Limits on active and reactive power generations on all generator buses: 

g ..., 2, 1,    ,max,min, niPgPgPg iii                                   (II.33) 

g ..., 2, 1,    ,max,min, niQgQgQg iii                                        (II.34) 

Limits on voltage magnitudes and phase angles on all load buses: 

NbiVVV iii  ..., 2, 1,    ,max,min,                                               (II.35) 

Nbiiii  ..., 2, 1,    ,max,min,                                                     (II.36) 

Limits on line flows can be expressed either in MW, Amperes or MVA, if it is 

expressed in MW then: 

NliPPP ijijij  ..., 2, 1,    ,max,min,                                   (II.37) 

Where Pij is the active power flow between buses i and j. Pij,min, Pij,max are 

corresponding minimum and maximum limits, Nl is the total number of transmission 

lines. 

The constraint optimization problem can be transformed into an unconstrained one 

by augmenting the equality constraints of active and reactive power balance equations 

into the objective function using Lagrange multipliers. The solution of this Lagrangian 

function involves first order and second order partial derivates terms called the Jacobian 

and Hessian matrices respectively. The complete solution of OPF using Hessian matrix 

by Newton’s method is presented in [94]. 

 

II.7.1. Calculation of Bus Injections :  

The calculation the power injection at a bus requires basic power equation and the 

admittance matrix Y. Apparent power at any node in the network is given by [98] 

iiiii jQPIVS  *  

Where Si is the apparent power, Vi is the complex voltage and Ii is the complex 

current at bus i And ‘*’ represents complex conjugate.  

For simplicity in calculations the above equation is rewritten as 
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iiiii jQPIVS  **         (II.38) 

Where Ii is the current flowing out at bus i, and is given as the sum of all the currents 

leaving the bus. Using πequivalent model of transmission lines, it can be obtained as 





N

j
iiji VYI

1

                      (II.39) 

Yij represents (i, j) element in the network admittance matrix, can be written in 

conductance (G) and suseptance (B) form as Yij = Gij +jBij. Thus, 









 



N

j
iijijiiii VjBGVjQP

1

)(  

On separating real and imaginary parts 

))sin()cos((
1

jiijji

N

j
ijjii BGVVP   



                  (II.40) 

))cos()sin((
1

jiijji

N

j
ijjii BGVVQ   



                  (II.41) 

Equation (I.40) and (II.41) represents real and reactive power injections respectively 

at bus i. 

 

II.7.2. Calculation of Line Flows  

Consider the π representation of a line connecting buses i and j shown in the Fig. 

II.4. The figure shows the bus i to be the transformer side bus, with the ratio 1: a . Hence, 

Vt=aVi. The representation has a series admittance, yij and shunt admittances, ySi and ySj at 

the ends of the line. The power from the bus i to bus j can thus be given as [98] 

iiijijij

iiijijij
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Figure II.4 : Transmission Line π Model. 

In polar form the equation becomes 

))())((( SiSiiiijijjjiiiiijij jbgaVjbgVaVaVjQP    

On separating real and imaginary parts we arrive at the active and reactive power 

flows in the Line 

))sin()sin(()(22
jiijjiijjiijiiij bgVVaggsVaP       (II.42) 

))sin()sin(()(22
jiijjiijjiijiiij bgVVabbsVaQ     (II.43) 

 
II.8. conclusion : 

The optimum load dispatch of power system is discussed in this chapter. When the 

problem is to be solved few constraints has to be kept in mind. Various objectives and 

different types of constraints are discussed in this chapter. Various traditional methods 

applied to solve the economic load dispatch problem is also discussed. 

The generalized formulation of the OPF problem is expressed and the OPF 

formulation is presented and various constraints are discussed. 

Vt 

ysj 
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CHAPTER III  
The Unit Commitment (UC) problem 

formulation 
 

III.1. Introduction : 
Economic operation of power system is very important to return profit on the capital 

invested and to subside a part of investment itself through proper planning. More 

significantly it is important from the perspective  of conserving the irreplaceable fossil 

fuels [98].  

Economic operation results in maximizing the operating efficiencies which in turn 

minimize the cost per kilowatt-hour. Total load on power system varies at every instant 

of time, generally being higher during the daytime and early evening when industrial 

loads are high, lights are on, and so forth, and lower during the late evening and early 

morning when most of the population is asleep. In addition, the use of  electric power has 

a weekly cycle, the load being lower over weekend days than weekdays. Therefore, the 

option of turning ON enough units and leave them online, so that the variable load 

demand is met at all times is not viable due to the costs involved. This causes some of the  

units to operate near their minimum capacity at times, resulting in lower system 

efficiency and increased economics. Thus, if the operation of the system is to be 

optimized, units must be shut down as the load goes down and must be brought online as 

it goes up again [95]. 

Electric utilities have to plan their generation to meet this varying load in advance, as 

to which among their available generators are to start-up and when to synchronize them 

into the network as well as the sequence in which the operating units must be shut down. 

The process of making this decision is well known as ‘Unit Commitment’. The word 

‘commit’ refers to ‘turn ON’ a unit. Thus, the problem of Unit Commitment is to 

schedule the ON and OFF times of the generating units with the overall minimum cost 

while ensuring the unit’s operational constraints like minimum up/downtimes, ramp rate 

limits, maximum and minimum power generation limits [91, 96].  
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Out of the cost incurred in generation, major component is the cost of fuel input per 

hour for all the generators, while maintenance cost contributes only to a small extent. 

This fuel cost evaluation is more important for thermal and nuclear power stations, which 

is not the case with hydro stations where the energy is obtained from storing water in 

dams built for irrigation purpose and is apparently free. Fuel cost savings can be obtained 

by proper allocation of load among the committed units. But the problem of UC 

minimizes the total cost which includes both production cost i.e., the fuel cost and costs 

associated with the start-up and shutdown of units. Start-up cost and shutdown cost are 

categorized by unit type. A fixed cost is incurred with the shut-down of a unit while the 

start-up cost is dependent on the length of time the unit has been down prior to starting. 

When performing the unit commitment scheduling a variety of operating constraints and 

spinning reserve requirements are observed [91, 96].  

The Unit Commitment (UC) is an important research challenge and vital 

optimization task in the daily operational planning of modern power systems due to its 

combinatorial nature. Because the total load of the power system varies throughout the 

day and reaches a different peak value from one day to another, the electric utility has to 

decide in advance which generators to start up and when to connect them to the network 

and the sequence in which the operating units should be shut down and for how long. The 

computational procedure for making such decisions is called unit commitment, and a unit 

when scheduled for connection to the system is said to be committed. In this work the 

commitment of fossil-fuel units has been considered which have different production 

costs because of their dissimilar efficiencies, designs, and fuel types. Unit commitment 

plans for the best set of units to be available to supply the predict forecast load of the 

system over a future time period [98]. 

In general, the UC problem may be formulated as a non-linear, large scale, mixed-

integer combinatorial optimization problem with both binary (unit status variable) and 

continuous (unit output power) variables. This chapter presents the characteristics of 

power generation unit, unit commitment problem formulation, modeling aspects of single 

approaches to solve UCP.   
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III.2. Generator characteristics :  
Fundamental constituent in economic operation of a unit is its performance 

characteristics, which depicts the relation between input and output. This characteristics 

specifies the input energy rate or cost of fuel used per hour as a function of generator 

power output. The input-output characteristic of a generating unit is obtained by 

combining directly the input-output characteristics of boiler and that of turbine-generator 

set [91]. A typical input-output characteristic also called fuel cost curve of a thermal 

generating unit is convex as shown in Fig. III.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.1: Input-Output Characteristics of a Thermal Generator 

 

It can be seen that the characteristics are bounded between minimum and maximum 

capacities. The minimum power output limitations are generally caused by boiler’s fuel 

combustion stability and design [91] whereas maximum limit is determined by the design 

capacity of boiler, turbine, generator. These non-linear characteristics are generally 

approximated to a quadratic function expressed in terms of unit’s power generation as 

shown in eq. (II.1 and II.2). 
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III.3. Start-up and shut down costs :  
As mentioned earlier there exists a cost incurred in starting and shutting down a unit, 

apart from fuel cost. Certain amount of energy must be expended to bring a unit online 

because the temperature and pressure of the thermal unit must build slowly. This energy 

does not result in any MW power output and is considered as start-up cost. There are two 

types of start-up costs called  hot start-up cost and  cold start-up cost. If the unit’s boiler 

is allowed to cool down and then heat back up to operating temperature while turning ON 

the unit it is called cooling and the corresponding cost is cold start cost. On the other 

hand if the boiler is supplied with sufficient energy to just maintain operating temperature 

until the unit is brought online again is called as  banking and the cost involved is called 

hot start cost. This hot start cost varies directly with the duration of unit being offline. 

The two costs are as shown, and are compared while determining the UC schedule and a 

best approach among them is chosen [95]. 

Start-up cost for Cold start:  

f
t

c CFCSTC   )1( /            (III.1) 

Start-up cost for Hot start:  

ft CtFCSTC              (III.2) 

Where STC is the Start-up cost,  Cc is the cold start cost in MBtu,  F is the fuel cost,  

Cf is the fixed cost that includes crew expenses and maintenance expenses, Ct is cost in 

Mbtu/hour for maintaining the unit at operating temperature, αis the thermal time 

constant of the unit and t the time in hours the unit was allowed to cool.  

The shut-down cost of a thermal unit is normally small compared with its start-up  

cost (Shutdown cost is generally taken as a constant value). A fixed shut-down cost, Dij, 

may be used to reflect the labour cost and residual  heat. lost involved in shutting down a 

unit [98]. 

 

III.4. Constraints :  
The list of constraints is by no means exhaustive and depends on the individual utility’s 

rules and reliability measures. Some of the constraints which reduce the freedom in the 
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choice of starting up and shutting down of units in the system are listed below. These 

constraints can be brought in either because of unit technical issues or system operational 

requirements [98].  

A thermal unit usually undergoes a gradual temperature changes, and this develops 

into a time period of some hours required to bring  the unit on-line. When a unit is online 

its generation cannot be increased or decreased instantaneously owing to mechanical 

limitations.  

And in general for turning on and turning off a unit in thermal systems requires a 

crew to operate. These all issues pose limitations in arriving at optimal UC schedule.  
 

III.4.1. Minimum up/down Time : 

In daily operation there is generally a requirement that a unit runs or stays shut-down for 

a certain minimum period of time before it changes status again. There may not be any 

technical reason why such restrictions should be imposed. However, frequent start-up and  

shut-down will cause the following problems to the station operation. They increase the 

thermal stress of the boiler and generator housing and hence reduce the expected 

operating life of a generating plant. They reduce the time period between scheduled 

maintenance outage  and  drain  the  limited resources on crew availability. Minimum 

on/off  period  is  therefore generally specified  by station  managers [98]. 
 

Minimum up time :  

Once a unit is committed and running, it should not be turned off immediately. It is an 

engineering consideration normally requires that a  unit be running for at least a certain 

amount of time before it is shutdown [98]..  

Minimum down time :  

Once the unit is decmmitted, there is a minimum time gap before it can be committed and  

brought online again.  

 

III.4.2. Crew constraints :  

It is due to the limitation of personnel availability in the plant. If a plant consists of two 

or more units, both cannot be scheduled at the same time since there is no enough crew to 

attend both units while starting up or shutting down [91]. 
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III.4.3. Must run units :  

These units include pre-scheduled units which must be on-line. Some units are given a 

must-run status during certain times of the year for the reasons of voltage support on the 

transmission network i.e. a reliability and/or economic considerations [91]. 

  

III.4.4. Must out units :  

Units which are on forced outages and maintenance are unavailable for commitment and 

are treated as must-out units [91].  

 

III.4.5. Units on fixed generation :  

These are the units which have been pre-scheduled and have their generation specified 

for certain time period. A unit on fixed generation is  automatically a must run unit for 

the designated time period.  

The system operator may pre-schedule certain units to must be “on”, must be “off” 

or fixed generation for certain intervals of the study period. Specification of such 

requirements are frequently issued by the system operators in the  light of new data on the 

generation system. Scheduled out or forced out units can therefore be treated as must  be 

“off” units. Units which are pre-specified on/off will  reduce the commitment problem to 

certain extend. However, the output level of the must be “on” units affects the generation 

levels of the other synchronized units, the must be “on" units are necessarily included in  

the unit commitment  decision  process [98]. 
 

III.4.6. Fuel constraints :  

These constraints applies in a system in which some units have limited fuel, or else have 

constraints that require them to burn a specified amount of fuel in a given time, presents a 

most challenging unit commitment problem.  
 

III.4.7. Maximum and Minimum output limits of a unit :  

These define the range in which the unit can actually be dispatched, these limits does not 

have any direct influence on the starting up and shutting down of the unit.  

These output limits define the allowable output power of the generating units for the 

studying period. These limits are normally static, specified by the manufacturer. But as 
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the generating unit ages, these limits may vary and must be verified by the power station  

manager from time to time. Outage of auxiliary equipment also temporarily affects the 

output power range of the plant. GT's outputs are sensitive to ambient temperature. The 

maximum output of GTs may need to be estimated in advance in associated with the 

forecast weather  conditions [98].. 

 

III.4.8. Ramp rate limits:  

These represent the range of change in output over  a unit time, used to prevent 

undesirable effects on generating units due to rapid changes in loading. When a unit is in 

the start-up stage, a pre-warming process must be introduced in order to prevent a brittle 

failure, especially when the unit start-up is a long process. Because of the unit physical 

limitations, the unit generating capability increases as a ramp  function. Similarly, when a 

unit is in the shut-down process, it will take a while for the turbine to cool down. Before 

the unit generating capability decreases to its lower limit, the residual energy is to be used 

to meet the load demand. Therefore, because of the unit physical limitations, the unit 

generating capability increases as a ramp function [99-100]. 

 

III.4.9. Spinning Reserve:  

Spinning reserve requirements are necessary in the  operation of a power system in order 

to achieve minimum load interruptions. Spinning reserve is the term used to describe the 

total amount of generation available from all units synchronized (i.e., spinning) on the 

system, minus the present load and losses being supplied. Spinning reserve must be 

carried so that the loss of one or more units does not cause too far a drop in system 

frequency. Quite simply, if one unit is lost, there must be ample reserve on the other units 

to make up for the loss in a specified time period [95].  

Spinning reserve requirements may be specified in terms of excess megawatt 

capacity or some form of reliability measures. Typical rules specify that reserve must be 

a given percentage of forecasted peak demand, or that reserve must be capable of making 

up the loss of the most heavily loaded unit in a given period of time. The amount of 

spinning reserve is an important factor in the assurance of uninterrupted supply to the 
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customers and so is the distribution of spinning reserve among various generating plants 

based upon their responding time and relative distance to the load centers [95]. 

 

III.5. Unit Commitment Formulation :  
Unit Commitment Problem is to decide which of the available units has to be turned on 

for the next period of time. The decision is subject to the minimization of fuel cost and to 

the various system and unit constraints. At the system level, the forecasted load demand 

should be satisfied by the units in service. In an interconnected system, the load demand 

should also include the interchange power required due to the contractual obligation 

between the different connected areas. Spinning reserve is the other system requirement 

to  be satisfied while selecting the generating units. In addition, individual units are likely 

to have status restrictions during any given time period The problem becomes more 

complicated when minimum up time and down time  requirements  are  considered,  since  

they  couple commitment  decisions of successive hours [100-101]. 

The main objective of this optimization task is to minimize the total operating cost 

over the scheduled time horizon, while satisfying the different operational constraints. 

The operating cost includes start-up cost, shut down cost, running cost, maintenance cost 

etc. The UCP can be formulated as:  

Minimize Operational cost  

Subject to  

 Generation constraints,  

 Reserve constraints,  

 Unit capacity limits,  

 Minimum Up time constraints,  

 Minimum Down time constraints,  

 Ramp rate constraints,  

 Unit status restrictions, 
 

Objective function: Mathematically the objective function of unit commitment 

problem is the sum of fuel costs as well as start-up and shut-down cost of all generating 

units over a time frame, which needs to be minimized and can be represented as follows: 



Chapter III                                                                         The Unit Commitment (UC) problem formulation 
 

41 
 

 

 

                      

                      Production Cost                                                         Transition Cost 

(III.3) 

where Ci(Pij) fuel cost of unit i for generating power Pi at time j; Sij start-up cost of 

unit i at time j; Dij shut-down cost of unit i at time j, usually a fixed cost, Uij 

))/OFF('0'ON('1' status of unit i at time j, 
 

The constraints  

The variety of constraints to UCP can be broadly classified as System constraints and 

Unit constraints  

System Constraints:  

 Load demand constraint: The generated power from all the committed or on line 

units must satisfy the load balance equation 
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N

i
Dkikik 



1        ;
1

           (III.4) 

where PD k is the load demand at hour k. 

 Spinning reserve requirement 
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max                                (III.5) 

Where  N number of units, T scheduling period in hours, PDj system load demand at 

time j, PRj system spinning reserve required at time j,  

 

Unit Constraints:  

 Generation capacity constraints: (Unit  Minimum  and  Maximum  Output  Limits) 

Each generating unit is having the minimum and maximum capacity limit due to 

the different operational restriction on the associated boiler and other accessories 
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 Minimum up time/ down time constraint: Minimum up time is the number of 

hours unit i must be ON before it can be turned OFF.  

Similarly, minimum down time restrict it to turn ON, when it is DOWN. 

i
ON

ij MUTT                                    (III.7) 

i
OFF

ij MDTT                      (III.8) 

 Ramp rate limits: The ramp rate limits restrict the amount of change of generation 

of a unit between two successive hours. 

iikki

ikiik

DRPP
URPP


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)1(

)1(                                   (III.9) 

Where URi and DRi are the ramp up and ramp down rates of unit i .  

 Unit status restrictions: Some of the units will be given the status of 'Must Run' or 

'Not available' due to the restrictions on the availability of fuel, maintenance 

schedule etc. 

Where  N number of units, T scheduling period in hours, PDj system load demand at 

time j, PRj system spinning reserve required at time j,  

The start-up cost of a unit depends on the length of time the unit has been shut-down 

prior to starting up. Without loss of generality, the following start-up cost function is 

adopted: 
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                      (III.10) 

The start-up cost for a unit depends on its downtime. If it is longer than the related 

MDTi plus its predefined Cold-Start hours ( icoldT ), Cold-Start cost (CSCi) is needed to 

operate it. Else if the ith unit downtime is shorter than the mentioned duration, Hot-Start 

cost (HSCi) is needed to operate it, where ON/OFF
ijT is the ON/OFF  period of unit i at time j, 

and ii /MDTMUT  is the minimum up/down time of unit i. 

According to equation (III.3), when solving the UC problem, it is first necessary to 

determine the start-up, shut-down, and generation levels of all units over a specified 

period, which we can use the binary-coded evolutionary algorithm to search for feasible 
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solutions. In addition, the scheduled units (combinations) must provide proper power for 

system demand, subject to power balance, spinning reserve requirement and individual 

unit constraints in the given interval. Thus, this is a non-linear problem that can be solved 

by advanced methods [101]. 

Figure III.2 depicts the various input data required by  the unit commitment strategy, 

namely, the commitment schedule and the estimated production cost for the forecast load, 

the commitment schedule feeds the economic dispatch program for finer tuning of the 

load sharing  between the committed  units. 

 

 
 

Figure III.2: Input and Output data of Unit Commitment strategy 

 

III.6. Conclusion : 

This chapter presented unit commitment as an operation scheduling function for 

management of generation resources for a short time horizon of one day or at most one 
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week. Different unit commitment operational constraints were fully addressed and 

discussed. Different major procedure in problem formulation, search for a feasible 

solution through the minimization of the duality gap, updating the multimplier, and 

formalation of single-unit relaxed problems were shown. 
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CHAPTER IV 
Solution methods: Evolutionary Computation 

and Metaheuristics algorithms 

 
IV.1. Introduction : 
Metaheuristic algorithms are often nature-inspired, and they are now among the most 

widely used algorithms for optimization [122-124]. They have many advantages over 

conventional algorithms, as we can see from many case studies presented in later chapters 

in this thesis. 

In this chapter we present some general information about the metaheuristics that 

have been used to solve the economic dispatch and unit commitment problems. The 

metaheuristics covered include: 

 Genetic Algorithm (GA), 

 Particle Swarm Optimization (PSO), 

 Pattern Search (PS), 

 Big Bang–Big Crunch algorithm (BB–BC), 

 Artificial Bee Colony algorithm (ABC), 

 A hybrid GA–PS method, 

 A hybrid PSO–PS method,  

 A Hybrid BB–BC method.  

In this chapter we provide general description of these metaheuristics, and we briefly 

revise the main features of the metaheuristic approaches, focusing particularly on those 

used in the following application chapters. 
 

IV.2. Genetic Algorithm : 
Genetic algorithm is a search method that employs processes found in natural biological 

evolution. These algorithms search or operate on a given population of potential solutions 

to find those that approach some specification or criteria. To do this, the genetic 
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algorithm applies the principle of survival of the fittest to find better and better 

approximations. At each generation, a new set of approximations is created by the 

process of selecting individual potential solutions (individuals) according to their level of 

fitness in the problem domain and breeding them together using operators borrowed from 

natural genetics. This process leads to the evolution of population of individuals that are 

better suited to their environment than the individuals that they were created from, just as 

in natural adaptation [102]. 
 

IV.2.1. Overview of Genetic Algorithm :  

Genetic algorithm (GAs) were invented by John Holland in the 1960s and were 

developed with his students and colleagues at the University of Michigan in the 70s. 

Holland’s original goal was to investigate the mechanisms of adaptation in nature to 

develop methods in which these  mechanisms could be imported into computer systems  

[103].  

GA is a method for deriving from one population of “chromosomes” (e.g., strings of 

ones and  zeroes, or bits) a new population. This is achieved by employing “natural 

selection” together with the genetics inspired operators of recombination (crossover), 

mutation, and inversion. Each chromosome consists of genes(e.g. bits), and each gene is 

an instance of a particular allele (e.g,0 or 1).The selection operator chooses those 

chromosomes in the population that will be allowed to reproduce, and on average those 

chromosomes that have a higher fitness factor(defined bellow),produce more offspring 

than the less fit ones. Crossover swaps subparts of two chromosomes, roughly imitating 

biological recombination between two single chromosome (“haploid”) organisms; 

mutation randomly changes the allele values of some locations (locus) in the 

chromosome; and inversion reverses the order of a contiguous section of chromosome 

[103]. 
 

IV.2.2. Operators of Genetic Algorithm :  

A basic genetic algorithm comprises three genetic operators.  

•  Selection,  

•  Crossover,  

•  Mutation,  
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Starting from an initial population of strings (representing possible solutions),the GA 

uses these operators to calculate successive generations. First, pairs of individuals of the 

current population are selected to mate with each other to form the offspring, which then 

form the next generation [104]. 

IV.2.2.1. Selection :  

This operator selects the chromosome in the population for reproduction. The more fit the 

chromosome, the higher its probability of being selected for reproduction. The various 

methods of selecting chromosomes for parents to crossover are [105],    

•  Roulette-wheel selection,  

•  Boltzmann selection,  

•  Tournament selection,  

•  Rank selection,  

•  Steady-state selection, 

A. Roulette‐wheel selection :  

The commonly used reproduction operator is the proportionate reproductive operator 

where a string is selected from the mating pool with a probability proportional to Pi 

where Fi is the fitness value for that string. Since the population size is usually kept fixed 

in a simple GA, The sum of the probabilities of each string being selected for the mating 

pool must be one. The probability of the ith selected string is [105] 


n

j=
j

i
i

F

F=P

1

                        (IV.1) 

Where n is the population size.  

B. Tournament selection :  

GA uses a strategy to select the individuals from population and insert them into a mating 

pool.  Individuals from the mating pool are used to generate new offspring, which are the 

basis for the  next generation. As the individuals in the mating pool are the ones whose 

genes will be inherited  by the next generation, it is desirable that the mating pool consists 

of good individuals .A selection strategy in GA is simply a process that the mating pool 

consists of good individuals .A selection strategy selection strategy in GA is simply a 
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process that favors the selection of better  individuals in the population for the mating 

pool [105].  
 

IV.2.2.2. Crossover :  

The cross over operator involves the swapping of genetic material (bit-values) between 

the two  parent strings. This operator randomly chooses a locus (a bit position along the 

two  chromosomes) and exchanges the sub-sequences before and after that locus between 

two chromosomes to create two offspring. For example, the strings 1110 0001 0011 and 

1000 0110 0111. The crossover operator roughly imitates biological recombination 

between two haploid (single chromosome) organisms. The crossover may be a single bit 

cross over or two bit cross over. In case of two bit crossover two points are chosen where 

the binary digits are swapped [105].  
 

IV.2.2.3. Mutation :  

The two individuals (children) resulting from each crossover operation will now be 

subjected to the mutation operator in the final step to forming the new generation. This 

operator randomly flips or alters one or more bit values at randomly selected locations in 

a chromosome. For example, the string 1000 0001 0011 might be mutated in its second 

position to yield 1100 0001 0011. Mutation can occur at each bit position in a string with 

some probability and in accordance with its biological equivalent; usually this is very 

small, for example, 0.001. If 100% mutation occurs, then all of the bits in the 

chromosome have been inverted. The mutation operator enhances the ability of the GA to 

find a near optimal solution to a given problem by maintaining a sufficient level of 

genetic variety in the population, which is needed to make sure that the entire solution 

space is used in the search for the best solution. In a sense, it serves as an insurance 

policy; it helps prevent the loss of genetic material [105].   
 

IV.2.2.4. Properties of GA : [103] 

•  Generally good at finding acceptable solutions to a problem reasonably quickly,  

•  Free of mathematical derivatives,  

•  No gradient information is required,  

•  Free of restrictions on the structure of the evaluation function,  

•  Fairly simple to develop,  
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•  Do not require complex mathematics to execute,  

•  Able to vary not only the values, but also the structure of the solution,  

•  Get a good set of answers, as opposed to a single optimal answer,  

•  Make no assumptions about the problem space,  

• Blind without the fitness function. The fitness function drives the population 

toward better,  

•  Solutions and is the most important part of the algorithm,  

•  Not guaranteed to find the global optimum solutions,  

•  Probability and randomness are essential parts of GA,  

•  Can by hybridized with conventional optimization methods, 

•  Potential for executing many potential solutions in parallel,  

•  Deals with large number of variables,  

•  Provides a list of optimum variables. 
 

 
Figure IV.1 :  Flow chart of GA Algorithm. 
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In this part various operators of genetic algorithm like selection, crossover and 

mutation are discussed. Advantages and disadvantages of the Genetic Algorithm over the 

other optimization technique are also discussed. The Flow chart of GA is also discussed. 

 

IV.3. Particle Swarm Optimization : 
Particle swarm optimization (PSO) is a population based stochastic optimization 

technique developed by Dr. Ebehart and Dr. Kennedy in 1995 [106], inspired by social 

behavior of bird flocking or fish schooling. PSO shares many similarities with 

evolutionary computation techniques such as Genetic Algorithms (GA). The system is 

initialized with a population of random solutions and searches for optima by updating 

generations. However, unlike GA, PSO has no evolution operators such as crossover and 

mutation. In PSO, the potential solutions, called particles, fly through the problem space 

by following the current optimum particles. The detailed information will be given in 

following sections. Compared to GA, the advantages of PSO are that PSO is easy to 

implement and there are few parameters to adjust. PSO has been successfully applied in 

many areas: function optimization, artificial neural network training, fuzzy system 

control, and other areas where GA can be applied [105]. 
 

IV.3.1. Back ground of Artificial Intelligence :  

The term "Artificial Intelligence" (AI) is used to describe research into human-made 

systems that possess some of the essential properties of life. AI includes two-folded 

research topic [64].  

• AI studies how computational techniques can help when studying biological 

phenomena,  

• AI studies how biological techniques can help out with computational problems,  

The focus of this report is on the second topic. Actually, there are already lots of 

computational techniques inspired by biological systems. For example, artificial neural 

network is a simplified model of human brain; genetic algorithm is inspired by the human 

evolution. Here we discuss some types of biological system-social system, more 

specifically, the collective behaviors of simple individuals interacting with their 

environment and each other. Someone called it as swarm intelligence. All of the 

simulations utilized local processes, such as those modeled by cellular automata, and 
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might underlie the unpredictable group dynamics of social behavior. Some popular 

examples are bees and birds. Both of the simulations were created to interpret the 

movement of organisms in a bird flock or fish school. These simulations are normally 

used in computer animation or computer aided design. There are two popular swarm 

inspired methods in computational intelligence areas: Ant colony optimization (ACO) 

and particle swarm optimization (PSO). ACO was inspired by the behaviors of ants and 

has many successful applications in discrete optimization problems. The particle swarm 

concept originated as a simulation of simplified social system. The original intent was to 

graphically simulate the choreography of bird of a bird block or fish school. However, it 

was found that particle swarm model could be used as an optimizer [64].  
 

IV.3.2. Particle Swarm Optimization :  

PSO simulates the behaviors of bird flocking. Suppose the following scenario: a group of 

birds are randomly searching food in an area. There is only one piece of food in the area 

being searched. All the birds do not know where the food is. But they know how far the 

food is in each iteration. So what's the best strategy to find the food? The effective one is 

to follow the bird, which is nearest to the food. PSO learned from the scenario and used it 

to solve the optimization problems. In PSO, each single solution is a "bird" in the search 

space. We call it "particle". All of particles have fitness values, which are evaluated by 

the fitness function to be optimized, and have velocities, which direct the flying of the 

particles. The particles fly through the problem space by following the current optimum 

particles. PSO is initialized with a group of random particles (solutions) and then 

searches for optima by updating generations. In every iteration, each particle is updated 

by following two "best" values [4].  

The first one is the best solution (fitness) it has achieved so far. (The fitness value is 

also stored). This value is called pbest. Another "best" value that is tracked by the particle 

swarm optimizer is the best value, obtained so far by any particle in the population. This 

best value is a global best and called g-best. When a particle takes part of the population as 

its topological neighbors, the best value is a local best and is called p-best. After finding 

the two best values, the particle updates its velocity and positions with following equation 

(IV.1) and (IV.2). 
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In the above equation [4],  

The term rand( )*(pbest i-Pi(u))  is called particle memory influence  

The term rand( )*( gbest i -Pi(u)) is called swarm influence.  

Vi (u) which is the velocity of ith particle at iteration ‘u’ must lie in the range 

max
)(

min VVV u
i                                        (IV.4) 

• The parameter Vmax determines the resolution, or fitness, with which regions are to be 

searched between the present position and the target position.  

• If Vmax is too high, particles may fly past good solutions. If Vmin is too small, particles  

may not explore sufficiently beyond local solutions.  

• In many experiences with PSO, Vmax was often set at 10-20% of the dynamic range on 

each dimension.  

• The constants C1 and C2 pull each particle towards pbest and gbest positions.  

• Low values allow particles to roam far from the target regions before being tugged 

back. On the other hand, high values result in abrupt movement towards, or past, target 

regions.  

• The acceleration constants C1 and C2 are often set to be 2.0 according to past 

experiences.  

• Suitable selection of inertia weight ‘ω’  provides a balance between global and local 

explorations, thus requiring less iteration on average to find a sufficiently optimal 

solution.  

•  In general, the inertia weight w is set according to the following equation, 

ITER
ITER

wwww 






 


max

minmax
max              (IV.5) 

Where w is the inertia weighting factor,  

wmax  - maximum value of weighting factor,  

wmin  - minimum value of weighting factor,  

Itermax - maximum number of iterations,  
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Iter - current number of iteration. 

 
Figure IV.2 :  Flow chart of PSO Algorithm. 

 

The detail of particle swarm optimization technique is discussed in this section. 

Various parameters of PSO and their effects are also discussed. Algorithm of PSO 

optimization technique and the flow chart is discussed briefly.  

 

IV.4. Pattern Search method (PS) : 
A particular family of global optimization methods, known as Direct Search methods, 

originally introduced and developed by researchers in 1960s, has recently received some 

attention. The Direct Search methods are simply structured to explore a set of points, in 

the vicinity of the current position, looking for a smaller objective function value than the 

current one. This family includes Pattern Search (PS) algorithms, Simplex Methods 

(SM), Powell Optimization (PO) and others. Direct Search methods, in contrast to more 

standard optimization methods, are often called derivative-free as they do not require any 

information about the gradient (or higher derivative) of the objective function when 

searching for an optimal solution. Therefore Direct Search methods are particularly 
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appropriate for solving non-continuous, non-differentiable and multimodal (i.e. multiple 

local optima) optimization problems [107]. 

The Pattern Search (PS) optimization routine is an evolutionary technique that is 

suitable to solve a variety of optimization problems that lie outside the scope of the 

standard optimization methods.  Generally, PS has the advantage of being very simple in 

concept, and easy to implement and computationally efficient algorithm. Unlike other 

heuristic algorithms, such as GA, PS possesses a flexible and well-balanced operator to 

enhance and adapt the global and fine tune local search. A historic discussion of direct 

search methods for unconstrained optimization is presented in reference [107]. 

The Pattern Search (PS), algorithm proceeds by computing a sequence of points that 

may or may not approaches to the optimal point. The algorithm starts by establishing a 

set of points called mesh, around the given point. This current point could be the initial 

starting point supplied by the user or it could be computed from the previous step of the 

algorithm.  

The mesh is formed by adding the current point to a scalar multiple of a set of 

vectors called a pattern. If a point in the mesh is found to improve the objective function 

at the current point, the new point becomes the current point at the next iteration. 

The Pattern search begins at the initial point X0 that is given as a starting point by the 

user. At the first iteration, with a scalar=1 called mesh size, the pattern vectors are 

constructed as [0 1], [1 0], [-1 0] and [0 -1], they may be called direction vectors. Then 

the Pattern search algorithm adds the direction vectors to the initial point X0 to compute 

the following mesh points:   

]10[]01[],01[],10[ 0000  XandXXX          (IV.6)   

Fig. IV.3 illustrates the formation of the mesh and pattern vectors. The algorithm 

computes the objective function at the mesh points in the order shown. The algorithm 

polls the mesh points by computing their objective function values until it finds one 

whose value is smaller than the objective function value of X0. If there is such point, then 

the poll is successful and the algorithm sets this point equal to X1 [108].  

After a successful poll, the algorithm steps to iteration 2 and multiplies the current 

mesh size by 2. The mesh at iteration 2 contains the following points:  
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]10[2]01[2],01[2],10[2 1111  XandXXX  
The algorithm polls the mesh points until it finds one whose value is smaller the 

objective function value of X1. The first such point it finds is called X2, and the poll is 

successful. Because the poll is successful, the algorithm multiplies the current mesh size 

by 2 to get a mesh size of 4 at the third iteration because the expansion factor =2. 

 
Figure IV.3 :  2N Pattern Vectors which forms the mesh points. 

 

Now if iteration 3, (mesh size = 4), ends up being unsuccessful poll, i.e. none of the 

mesh points has a smaller objective function value than the value at X2, so the poll is 

called an unsuccessful poll. In this case, the algorithm does not change the current point 

at the next iteration. That is, X3 = X2. At the next iteration, the algorithm multiplies the 

current mesh size by 0.5, a contraction factor, so that the mesh size at the next iteration is 

smaller. The algorithm then polls with a smaller mesh size [108].  

The PS method generates a sequence of iterates {x (1), x (2), … x(k), … } with non-

increasing objective function values. In each iteration k, there are two important steps of 

the PS method namely, the SEARCH step and the POLL step. Note that we use the value 

r = 2n in the description of the PS method [109]. 

In the SEARCH step, the objective function is evaluated at a finite number of points 

(say a maximum of V points) on a mesh (a discrete subset of n) so as to improve the 

current iterate. The mesh at the current iterate, x (k), is given by 
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                                         (IV.7) 

Where m is a mesh trial point, ∆k > 0 is a mesh size parameter (also known as the 

step size control parameter) which depends on the iteration k, and Z+ is the set of 

nonnegative integers. There are no specific rules on how to generate trial points of the 

SEARCH step in the current mesh. Users may generate these points by some heuristic 

rules. The aim of the SEARCH step is to find a feasible trial point (on a mesh Mk) that 

yields a lower objective function value than the function value at x(k). A SEARCH step is 

therefore successful if there exists a feasible trial point m  Mk (where m is one of the V 

points) such that f(m) < f(x(k)). In such a case, m is treated as the new iterate and the step 

size ∆k is increased so as to choose the next trial points on a magnified mesh than the 

previous mesh. If the SEARCH step is unsuccessful in improving the current iterate x (k), 

a second step, called the POLL step, is executed around x (k) with the aim of decreasing 

the objective function value. This step must be done before terminating the iteration 

[109]. 

The POLL step generates trial points at the poll set around the current iterate, x(k), as 

shown in fig. IV.3, for the case of a two dimensional problem, where ∆k = 1. The poll set 

is composed of trial points that are positioned a step ∆k away from the current iterate x(k), 

along the direction designated by the columns of D. This poll set is denoted by Pk and is 

defined by 
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ik                              (IV.8) 

Where pi is a trial point in the POLL step. The order in which the points in Pk are 

evaluated can also differ and has no effect on convergence. We now present the step by 

step description of the PS algorithm [110] using both the SEARCH and the POLL step. 

In most implementation of the PS method, the initial step size parameter ∆0 =1 is 

used and the updating of the step size parameter is carried out by 
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IV.5. Big Bang-Big Crunch method : 
The Big Bang–Big Crunch (BB-BC) optimization method it is relies on one of the 

theories of the evolution of the universe namely, the Big Bang and Big Crunch theory is 

introduced by Erol and Eksin which has a low computational time and high convergence 

speed. According to this theory, in the Big Bang phase energy dissipation produces 

disorder and randomness is the main feature of this phase; whereas, in the Big Crunch 

phase, randomly distributed particles are drawn into an order. The Big Bang-Big Crunch 

(BB-BC) Optimization method similarly generates random points in the Big Bang phase 

and shrinks these points to a single representative point via a center of mass in the Big 

Crunch phase. After a number of sequential Big Bangs and Big Crunches where the 

distribution of randomness within the search space during the Big Bang becomes smaller 

and smaller about the average point computed during the Big Crunch, the algorithm 

converges to a solution. The BB-BC method has been shown to outperform the enhanced 

classical Genetic Algorithm for many benchmark test functions [111]. 
 

IV.5.1. Big Bang–Big Crunch (BB–BC) Optimization Algorithm : 

The BB–BC method developed by Erol and Eksin consists of two phases: a Big Bang 

phase, and a Big Crunch phase. In the Big  Bang phase, candidate solutions are randomly 

distributed over the search space. Similar to other evolutionary algorithms, initial 

solutions are spread all over the search space in a uniform manner in the first Big Bang. 

Erol and Eksin [111] associated the random nature of the Big Bang to energy dissipation 

or the transformation from an ordered state (a convergent solution) to a disorder or chaos 

state (new set of solution candidates). 

Randomness can be seen as equivalent to the energy dissipation in nature while 

convergence to a local or global optimum point can be viewed as gravitational attraction. 

Since energy dissipation creates disorder from ordered particles, we will use randomness 

as a transformation from a converged solution (order) to the birth of totally new solution 

candidates (disorder or chaos) [111]. 

The proposed method is similar to the GA in respect to creating an initial population 

randomly. The creation of the initial population randomly is called the Big Bang phase. 

In  this phase, the candidate solutions are spread all over the search space in an uniform 

manner [111]. 
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The Big Bang phase is followed by the Big Crunch phase. The Big Crunch is a 

convergence operator that has many inputs but only one output, which is named as the 

‘‘center of mass”, since the only output has been derived by calculating the center of 

mass. Here, the term mass refers to the inverse of the merit function value [112]. The 

point representing the center of mass that is denoted by xc is calculated according to: 
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where xi is a point within an n-dimensional search space generated, fi is a fitness 

function value of this point, N is the population size in Big Bang phase. The convergence 

operator in the Big Crunch phase is different from ‘exaggerated’ selection since the 

output term may contain additional information (new candidate or member having 

different parameters than others) than the participating ones, hence differing from the 

population members. This one step convergence is superior compared to selecting two 

members and finding their center of gravity. This method takes the population members 

as a whole in the Big-Crunch phase that acts as a squeezing or contraction operator; and 

it, therefore, eliminates the necessity for two-by-two combination calculations [111]. 

After the second explosion, the center of mass is recalculated. These successive 

explosion and contraction steps are carried repeatedly until a stopping criterion has been 

met. The parameters to be supplied to normal random point generator are the center of 

mass of the previous step and the standard deviation. The deviation term can be fixed, but 

decreasing its value along with the elapsed iterations produces better results. 

After the Big Crunch phase, the algorithm creates the new solutions to be used as the 

Big Bang of the next iteration step, by using the previous knowledge (center of mass). 

This can be accomplished by spreading new off-springs around the center of mass using a 

normal distribution operation in every direction, where the standard deviation of this 

normal distribution function decreases as the number of iterations of the algorithm 

increases [112]: 

krlxx cnew /.                                                                             (IV.11) 
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where xc stands for center of mass, l is the upper limit of the parameter, r is a normal 

random number and k is the iteration step. Then new point xnew is upper and lower 

bounded. 

The BB–BC approach takes the following steps [111]: 

Step.1 Form an initial generation of  N candidates in a random manner. Respect the limits 

of the search space. 

Step.2  Calculate the fitness function values of all the candidate solutions. 

Step.3  Find the center of mass according to (IV.10). Best fitness individual can be chosen 

as the center of mass. 

Step.4 Calculate new candidates around the center of mass by adding or subtracting a 

normal random number whose value decreases as the iterations elapse of  using 

(IV.11). 

Step.5 Return to Step 2 until stopping criteria has been met. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 
 

Figure IV.4: BB–BC computational procedure. 
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IV.6. Artificial Bee Colony optimization : 
Artificial bee colony (ABC) optimization algorithms are formulated based on the natural 

foraging behavior of honey bees. ABC was first developed by Dr. Korba. [113114] 

Some artificial ideas are added to construct a robust ABC. Unlike classical search and 

optimization methods, ABC starts its search with a random set of solutions (colony size), 

instead of a single solution just like GA.  Each population member is then evaluated for 

the given objective function and is assigned fitness. The best fits are entertained for the 

next generation while the others are discarded and compensated by a new set of random 

solutions in each generation. The only stopping criterion is the completion of maximum 

no of cycles or generations. At the end of the cycles, the solution of the best fit is the 

desired solution. 
 

IV.6.1. ABC foraging behavior : 

To find the optimal decision variables, to optimize an objective function and to satisfy the 

constraints, the variables are bounded to the limits. Eq. (6) gives a function defined to 

take care of variable bounds [113]. 
 

VI.6.1.1. Random solution generation : 

Food sources which are in their proximity are selected by the employed bees when they 

move to a new location. Each employed bee associated with a food source is responsible 

for nectar extraction from it [113]. 

 min max min   rand (0, 1)  ( ),i i i iP P P P                                          (IV.12) 

∀ i ∈ {1,2,3, …, ng}, 

where Pimin and Pimax are the lower and upper bounds of variable Pi. In Eq. (IV.12) 

rand (0, 1) represents a random number between 0 and 1.  

The solution is represented in a matrix form as  

g1 2 3 4 5          .i nP P P P P P   X                                         (IV.13) 

Similarly the food sources  1 2 3 4,  ,  ,  , ,  nX X X X X  is the set of all the randomly 

chosen solutions which satisfies all the defined constraints. 
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IV.6.1.2. Evaluation of fitness of solutions : 

The food sources are ranked based on the quality and quantity of their nectar. Similarly, 

fitness is assigned to each solution, which represents the goodness of each solution [113].  

 g
1Fitness ( )      1 2 3, ... ,

1 i

i i n
F

      
 

              (IV.14) 

where iF  represents the total fuel cost of generation. 
 

IV.6.1.3. Employed bee phase : 

Each solution is handled by an employed bee who searches for the food source in 

their neighborhood and if a better food source is found it discards its previous food source 

and starts exploring the new one until it finds a better food source [113]. 

Similarly, a mutant solution is generated for each solution using its randomly 

selected neighbor and the parameter to be changed.  1 2 3 4,  ,  ,  , ,  nX X X X X is the 

solution set where each solution Xi is represented as 

g1 2 3 4 5          .i nP P P P P P   X  

A random variable of all ng variables is chosen and a neighbor of all n–1 neighbors is 

chosen randomly and a mutant solution is produced as  

 1mutant 1 1  ( )  (  ( )  ( ))  2 rand 1ji i i     X X X X ,  (IV.15) 

where i and j is the randomly chosen parameter and the neighbor, respectively. 

A greedy selection between the mutant and original solutions takes place resulting in 

the discard of the least fit solution. This process of selection is repeated for each solution. 

The solution whose mutant is less fit increases its trial and may lead to dissertation of the 

food source if the trial leads to a threshold limit [113]. 
 

IV.6.1.4.  Onlooker bee phase : 

The onlooker bees in the hive detect a food source by means of the information presented 

to them by the employed foragers. A food source is chosen with the probability which is 

proportional to its food quality. Different schemes can be used to calculate the probability 

values [114]. For example  
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Fitness ( )Probability ( ) ,
sum (Fitness)

Fitness( )Probability ( ) .
max(Fitness)

ii

a ii
b








               (IV.16) 

where 1.a b   

A random number chosen which represents the expectancy of the onlooker bee is 

compared with the probability of a solution (food). If the solution meets the expectancy 

of the onlooker, then it moves to exploit the food source and becomes an employed bee 

and corresponding employed bee of food source retires [114]. 

The new employed bee starts exploring the neighborhood and repeats the employed 

bee behavior. 

If the expectancy is not reached, the onlooker chooses other food source (solution) 

with different expectancy until it becomes employed. The above procedure repeats while 

all the onlooker bees get employed to food source. The food source with the highest 

probability will be chosen maximum and the one with least probability is discarded more 

times [113]. 
 

IV.6.1.5.  Scout bee phase : 

The scout bee is to explore the search area and it is often represented by a randomly 

generated solution. It will replace an employed bee if its trials of mutation exceed a 

threshold limit [113].  

The scout will encourage the exploration of unexplored area of the search space. The 

best solution and fitness values are memorized for every iteration. The above process is 

repeated for maximum number of iterations and the result at the end will ensure a global 

minimum or maximum [114]. 
 

IV.6.2. ABC algorithm : 

The proposed ABC algorithm is summarized as follows [113]: 

Step 1. Read the line input data; Initialize MaxIterC (maximum iteration count) and base case 
as the best solution;  

Step 2. Construct initial bee population (solution) Xij as each bee is formed by the open 
switches in the configuration and the number of employed bees are equal to onlooker 
bees; 

Step 3. Evaluate the fitness value for each employed bee by using Eq. (IV.14); 
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Step 4. Initialize cycle=1;  
Step 5. Generate a new population (solution) Vij in the neighborhood of Xij for employed bees 

using Eq. (IV.15) and evaluate them;  
Step 6. Apply the greedy selection process between Xi and Vi;  
Step 7. Calculate the probability values Pi for the solutions Xi by means of their fitness values 

using Eq (IV.16);  
Step 8. Produce the new populations Vi for the onlookers from the populations Xi, selected 

depending on Pi by applying roulette wheel selection process, and evaluate them;  
Step 9. Apply the greedy selection process for the onlookers between Xi and Vi;  
Step 10. Determine the abandoned solution, if exists, and replace it with a new randomly 

produced solution Xi for the scout bees using Eq. (IV.12); 
Step 11. Memorize the best solution achieved so far;  
Step 12. Cycle=cycle+1;  
Step 13. If cycle<MIC, go to Step 5, otherwise go to Step 14;  
Step 14. Stop.  

 

IV.7. A hybrid GA–PS method : 
This section presents a new approach based on a hybrid algorithm consisting of Genetic 

Algorithm (GA) and Pattern Search (PS). GA is the main optimizer of the algorithm, 

whereas PS are used to fine tune the results of GA to increase confidence in the solution.  
The main objective of this study is to introduce a hybrid method that combines the 

Genetic Algorithm (GA) and Pattern Search (PS)–referred to as the hybrid GA–PS 

method– in the context of power system problem.  

All the parameters involved in the Pattern search optimization algorithm can be pre-

defined subject to the nature of the problem being solved. 

The above steps and how PS evolves are depicted by the flow chart of fig. IV.5. It 

should be noted that all the parameters involved in the pattern search optimization 

algorithm can be pre-defined subject to the nature of the problem being solved. 

This part describes a novel hybrid approach based on a combination of Genetic 

Algorithm (GA) and Pattern Search (PS) to study power system problems. The GA–PS 

technique has overcome an important drawback of the PS methods that is the need to 

supply a suitable starting point. This shortcoming of the PS methods was highlighted in 

the previous work of the authors as it makes any optimization method relying on a good 

choice of the initial point possibly more susceptible to getting trapped in local minima, 

although the much improved speed of computation allows for additional searches to be 

made to increase the confidence in the solution. The hybrid GA–PS algorithm, on the 
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other hand, does not require the user to specify the starting point as it is generated 

automatically for the PS stage by the initial GA phase. Moreover, the performance of the 

proposed hybrid method improves with the increase of size and complexity of the system. 

Overall, the proposed algorithm has been shown to perform extremely well for solving 

economic dispatch problems. 
 

          
Figure IV.5 :  Flow chart of GA–PS Algorithm. 

 

IV.8. A hybrid PSO-PS method :   
In the proposed PSO-PS, pattern search is employed to conduct exploitation of the 

parameters solution space. The hybrid algorithm implemented is inspired in the strategy 

suggested in [115–116] of exploring the search space first globally and then locally, using 

two different evolutionary algorithms.   

In this work, due to the fact that in high dimension problems the PSO is easily 
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the proposal is to use the PSO algorithm to provide a good initial solution as a starting 

point for a pattern search algorithm PS. 

In this section, the hybridization of PS method and PSO are incorporated in the 

optimization process in order to look for the global optimal solution for the fitness 

function and decision variables as well as minimum computational CPU time.  

Fig. IV.6 depicts the schematic representation of the proposed HPSO-PS algorithm. 
 

                       
Figure IV.6:  Flow chart of HPSO-PS method. 
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phase. After a number of sequential Big Bangs and Big Crunches where the distribution 

of randomness within the search space during the Big Bang becomes smaller and smaller 

about the average point computed during the Big Crunch, the algorithm converges to a 

solution. The BB–BC method has been shown to outperform the enhanced classical 

Genetic Algorithm for many benchmark test functions [112]. 

The HBB–BC method consists of two phases: a Big Bang phase where candidate 

solutions are randomly distributed over the search space, and a Big Crunch phase 

working as a convergence operator where the center of mass is generated. Then new 

solutions are created by using the center of mass to be used as the next Big Bang [112]. 

These successive phases are carried repeatedly until a stopping criterion has been met. 

This algorithm not only considers the center of mass as the average point in the beginning 

of each Big Bang, but also similar to Particle Swarm Optimization-based approaches [6], 

utilizes the best position of each particle and the best visited position of all particles. As a 

result because of increasing the exploration of the algorithm, the performance of the BB–

BC approach is improved [112]. 
 

A hybrid BB–BC algorithm : 

The BB–BC method in the process of selection of a new generation depends on 

centre of mass only, where we find kind of randomized in this the choice.  

Although BB–BC performs well in the exploitation (the fine search around a local 

optimum), there are some problems in the exploration (global investigation of the search 

place) stage. If all of the candidates in the initial Big Bang are collected in a small part of 

search space, the BB–BC method may not find the optimum solution and with a high 

probability, it may be trapped in that sub domain [112]. 

One can consider a large number for candidates to avoid this defect, but it causes an 

increase in the function evaluations as well as the computational costs. This paper uses 

the Particle Swarm Optimization (PSO) [3] capacities to improve the exploration ability 

of the BB–BC algorithm [119]. 

In order to improve the computational efficiency of BB-BC algorithm, Kaveh and 

Talatahari [119] uses the social behavior of bird flocking and fish schooling model in 

particle swarm optimization. The swarm’s movement is directed by both their own 

experience and the population’s experience. For every iteration, a particle moves towards 



Chapter IV                              Solution methods: Evolutionary Computation and Metaheuristics algorithms 

67 
 

a direction computed from the local best solution and the global best solution. This 

concept is used in this research work where the BB-BC algorithm not only utilizes the 

center of mass but also employs the global best solution to generate the new solution. 

A modified version of eq.(II.10) is given as 

.l.r/kα)).Xα(1.X).(αα(1.XαX 3
gbest

2
lbest

21
c

1
new            (IV.17) 

where lbestX  is the best position of the particle up to the iteration k and gbestX  is the 

best position among all candidates up to the iteration k; 1α , 2α  and 3α  are adjustable 

parameters controlling the influence of the global best and local best on the new position 

of the candidates. 

The hybrid BB–BC approach similarly not only uses the center of mass but also 

utilizes the best position of each candidate (Pbest) and the best global position (Gbest) to 

generate a new solution. 
 

  

Figure IV.7: Flowchart of the proposed HBB–BC algorithm. 
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solve the ED problem. 

 

IV.10.  Conclusion: 
In this chapter we presented overview and exposes the common and basic concepts 

for various metaheuristics techniques based on GA, PSO, PS, BB-BC and ABC and we 

briefly discussed the mechanisms and characteristics of these techniques. Next chapter 

presents a detailed design of these approaches and their implementation with ED and UC 

problems will be provided.  
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CHAPTER V  
Application of Artificial Intelligence techniques 

to Economic Load Dispatch problems  
 
  

V.1. Introduction : 
This chapter presents the performance of various metaheuristic techniques based on 

GA, PSO, PS, BB-BC and ABC for solving various types of  ED problem for estimation 

of the finest combination of generated power in a given system at lowest operating cost 

while sustaining the operating condition of system efficiently. The fuel cost is minimized 

by satisfying the nonlinear operating conditions of thermal units mainly based on 

generation capacity constraints, generator ramp limit, power balance constraints, and 

valve point loading effect and by keeping in view the prohibited operating zones, 

respectively. About the optimization, a comparative study is made for the various 

metaheuristic approaches and their hybrid versions such as GA-PS, PSO-PS and HBB-

BC.  

Knowledge-based or Artificial Intelligence techniques are used increasingly as 

alternatives to more classical techniques to model environmental systems. Artificial 

Intelligence (AI) could be defined as the ability of computer software and hardware to do 

those things that we, as humans, recognize as intelligent behaviour [120-125].  

To demonstrate the efficiency and applicability of the proposed methods and for the 

purposes of comparison, various types of ED problems are examined. The results of this 

study show that the proposed approaches are able to find more economical loads than 

those determined by other methods. 

 
V.2. EDP using Particle Swarm Optimization (PSO) : 
In this section an efficient and particle swarm optimization (PSO) has been presented for 

solving the economic dispatch problem. The objective is to minimize the total generation 
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fuel and keep the power outputs of generators, bus voltages and transformer tap setting in 

their secure limits. The conventional load flow and incorporation of the proposed method 

using PSO has been examined and tested for standard IEEE 30 bus system. The PSO 

method is demonstrated and compared with conventional OPF method (NR, Quasi 

Newton), and the intelligence heuristic algorithms such as genetic algorithm, 

evolutionary programming. The results show that PSO is an effective method to solve 

OPF problem. 
 

V.2.1. Applied PSO to Optimal Power Flow : 

To minimize the cost function FT (II.2) is equivalent to getting a minimum fitness value 

in the searching process.  

The particle that has lower cost function should be assigned a fitness value. The 

objective of OPF has to be changed to the maximization of fitness to be used as follows: 



 


otherwise

FfiffF
fitness

;0
;/ maxmax

 
 

              
Figure V.1 :  PSO-OPF computational procedure. 
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The PSO-based approach for solving the OPF problem to minimize the cost takes the 

following steps:  

Step 1: randomly generated initial population. 

Step 2: for each particle, the construction operators are applied.  

Step 3: the Newton-Raphson routine is applied to each particle. 

Step 4: fitness function evaluation. 

Step 5: compare particles fitness function and determine Pbest and Gbest. 

Step 6: change of particles velocity and position according to (IV.2) and (IV.3) 

respectively.  

Step 7: if the iteration number reaches the maximum limit, go to Step 8. Otherwise, set 

iteration index k = k + 1, and go back to Step 2. 

Step 8: print out the optimal solution to the target problem.  
 

V.2.2. Load Flow Calculation : 

Once the reconstruction operators have been applied and the control variables values are 

determined for each particle a load flow run is performed. Such flows run allows 

evaluating the branches active power flow, the total losses and voltage magnitude this 

will provide updated voltages angles and total transmission losses. All these require a fast 

and robust load flow program with best convergence properties; the developed load flow 

process is upon the full Newton Raphson algorithm. 
 

V.2.3. Simulation Results And Discussion : 

The proposed PSO algorithm is tested on standard IEEE 30 bus system shown in fig. V.2. 

The test system consists of 6 thermal units, 24 load buses and 41 transmission lines of 

which four of the branches (6-9), (6-10), (4-12) and (28-27) are with the tap setting 

transformer. The total system demand is 283.4 MW. 

The optimal setting of the PSO control parameters are: c1=0.5, c2=0.5, numbers of 

particles is 50 and number of generations is 30; the Inertia weight was kept between 0.4 

and 0.9. 
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Figure V.2 : IEEE 30-BUS Electrical Network. 

 
 

V.2.3.1. Case 1: The OPF with quadratic fuel cost functions : 

In this case the units cost curves are represented by quadratic function. The generator cost 

coefficients are given in appendix.1 (A.1). The proposed PSO-OPF is applied to standard 

IEEE 30 bus system. The obtained results are given in tables V.1 and V.2. 

Fig. V.3 shows the cost convergence of PSO based OPF algorithm for various 

numbers of generations. It was clearly shown that there is no rapid change in the fuel cost 

function value after 30 generations, hence it is clears from the figure that the solution is 

converged to a high quality solution at the early iterations (13 iterations). 

 
Figure V.3 : Convergence characteristic of the IEEE 30 bus system. 
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power losses are compare with those acquired by others methods and present on tables 

V.1 and V.2. 
 

Table V.1 : PSO-OPF compared with N.R and QN-OPF Methods for the IEEE 30-BUS system, 

 N-R QN-OPF  PSO-OPF 
Pg1 [MW] 
Pg2 [MW] 
Pg5 [MW] 
Pg8 [MW] 
Pg11 [MW] 
Pg13 [MW] 
Power Loss [MW] 
Generation cost [$/hr] 

99.211 
80.00 
50.00 
20.00 
20.00 
20.00 
5.812 

901.918 

170.237 
44.947 
28.903 
17.474 
12.174 
18.468 
8.805 

807.782 

175.6915 
48.6390 
21.4494 
22.7200 
12.2302 
12.0000 
9.3301 

802.0136 

     
The results show that PSO algorithm gives much better results than the classical 

method. The difference in generation cost between these methods clearly shows the 

advantage of this method. In addition, it is important to point out that this simple PSO 

algorithm OPF converge in an acceptable time. For this system was converged to highly 

optimal solutions set after 13 generations. 
      

Table V.2 : Comparison of the PSO-OPF with different evolutionary methods, 

 IEP  
[127] 

EP-OPF   
[128] 

SADE_ALM 
[129] 

PSO-OPF 

Pg1 [MW] 
Pg2 [MW] 
Pg5 [MW] 
Pg8 [MW] 
Pg11 [MW] 
Pg13 [MW] 
Power Loss [MW] 
Generation cost [$/hr] 

176.2358 
49.0093 
21.5023 
21.8115 
12.3387 
12.0129 
9.5105 
802.465 

173.8262 
49.998 
21.386 
22.63 
12.928 
12.00 
9.3683 

802.5557 

176.1522 
48.8391 
21.5144 
22.1299 
12.2435 
12.0000 
9.4791 
802.404 

175.6915 
48.6390 
21.4494 
22.7200 
12.2302 
12.0000 
9.3301 

802.0136 
 

 
Figure V.4 : The Voltages after optimization for the IEEE 30 bus system. 
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The security constraints are also checked for voltage magnitudes and angles. 

Simulation results give the voltage magnitudes are from the minimum of 1.0040 p.u to 

maximum of 1.06 p.u. No load bus is under 1 pu (fig. V.4). The voltage angles are 

between a minimum value -14.065° and maximum value 0° (fig. V.5). 

 
Figure V.5 : The voltage angles after optimization for the IEEE 30 bus system. 

 
Figure V.6 :  Shows operating states of generating obtained by PSO based OPF algorithm. 
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Figure V.7 : Evolution of the fuel cost and the power generated during optimization. 

 

The evolution of the fuel cost function during the optimization process is shown in 

fig. V.7. It can be observed the production costs starts from the initial interval [800–950] 

$/h. The optimal operating point has been obtained after 10 iterations. The optimal 

solution is achieved in 13 iterations as shown in fig. V.3. 
 

V.2.3.2. Case 2: The OPF for units with valve-point effects : 
In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by 

quadratic functions with rectified sine components using (eq. II.16). Bus 1 is selected as 

the slack bus of the system to allow more accurate control over units with discontinuities 

in cost curves. The generator cost coefficients of those two generators are given in 

appendix.1 (A.2). The simulation results are shown in table V.3 and the outer loop 

convergence characteristic is shown in fig. V.8.                 
                    

 Table V.3 : Comparison of the PSO-OPF with different evolutionary methods  

 IEP [127] SADE-ALM 
[129] 

PSO-OPF 

Pg1 [MW] 
Pg2 [MW] 
Pg5 [MW] 
Pg8 [MW] 
Pg11 [MW] 
Pg13 [MW] 
Power Loss [MW] 
Generation cost [$/hr] 

149.7331 
52.0571 
23.2008 
33.4150 
16.5523 
16.0875 
7.6458 
953.573 

193.2903 
52.5735 
17.5458 
10.0000 
10.0000 
12.0000 
12.0096 
944.031 

199.6336 
20.0000 
22.2786 
29.5909 
10.0000 
12.0000 
10.1031 

920.9775 
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Figure V.8 : Convergence plot with valve point effect. 

 

The problem economic problem takes into account valve point effect and cost 

function was modified equation (II.16). The losses were calculated using Newton raphson 

method for each iteration. Table V.3 summaries the results of the optimal settings as 

obtained by different methods. These results show that the optimal dispatch solution 

determined by the PSO lead to lower cost, which confirms that the PSO is well capable of 

determine the global or near global optimum dispatch solution. 

It was found that the convergence of the method is fast and solution converges is less 

than 18 iterations.  

PSO-OPF problem has been presented and applied to standard IEEE 30 bus system. 

The proposed algorithm has shown better result in terms of convergence and lesser 

generation cost, the results show that the optimal dispatch solutions determined by PSO 

lead to lower active power loss than that found by other methods, which confirms that the 

PSO is well capable of determining the global or near global optimum dispatch solution. 

 
V.3. Pattern Search (PS) method to solve EDP : 
In this section, a pattern Search method (PS) have been applied to the economic power 

dispatch EPD. The feasibility of the proposed method is to demonstrated and compared to 

those reported in the literature. The results are promising and show the effectiveness of 

the proposed method.    

 

0 5 10 15 20 25 30 35 40 45 50
920

922

924

926

928

930

932

iterations

co
st

 [$
/h

r]

hp
Line



Chapter V                                                   Application of Artificial Intelligence technique to ELD problems  
 

77 
 

V.3.1. Simulation Results and Discussion : 

The program has been developed and executed under Matlab system. The proposed PS 

algorithm is tested on standard on the standard IEEE 30 bus system consists of 6 thermal 

units (appendix.1 A.1). 

Initially, several runs have been carried out with different values of the key 

parameters of PS such as the initial mesh size and the mesh expansion and contraction 

factors. In this study, the mesh size and the mesh expansion and contraction factor are 

selected as 1, 2 and 0.5, respectively. In addition, a vector of initial points, i.e. X0, was 

randomly generated to provide an initial guess for the PS to proceed. As for the stopping 

criteria, all tolerances were set to 10-6 maximum number of iterations and function 

evaluations were set to 50. 

The obtained results using PS based OPF are given in tables V.4 and fig. V.9. shows 

the cost convergence of PS based OPF algorithm for various numbers of generations. It 

was clearly shown that there is no rapid change in the fuel cost function value after 50 

generations. Hence it is clears that the solution is converged to a high quality solution at 

the early iterations (25 iterations). 

 

 

            
 

 The minimize cost and power loss obtained by the proposed algorithm is less than 

value reported in [126, 127, 128].  

 

0 5 10 15 20 25 30 35 40 45 50
800

810

820

830

840

850

860

870
Optimal Value: 802.0150

Iteration

O
bj

ec
tiv

e 
va

lu
e

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300
Current Mesh Size: 1.4375e-005

Iteration

M
es

h 
si

ze

Mesh Size at iteration 8 

Mesh Size at iteration 9 

Figure V.9 : Convergence of PS for 
the IEEE 30 bus system. 

 

Figure V.10 : Convergence of PS 
mesh size for the IEEE 30 bus system. 
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Figure V.11 : Objective function value for 50 different starting point. 

 

Table V.4 : Comparison of the PSO-OPF with different evolutionary methods of 
optimization viewpoint cost, losses and times of convergence, 

 IEP 
[127] 

EP-OPF 
[128] 

SADE-ALM  
[129] 

PS 

Pg1 [MW] 
Pg2 [MW] 
Pg5 [MW] 
Pg8 [MW] 
Pg11 [MW] 
Pg13 [MW] 
Power Loss [MW] 
Generation cost [$/hr] 

176.2358 
49.0093 
21.5023 
21.8115 
12.3387 
12.0129 
9.5105 
802.465 

173.8262 
49.998 
21.386 
22.63 
12.928 
12.00 
9.3683 

802.5557 

176.1522 
48.8391 
21.5144 
22.1299 
12.2435 
12.0000 
9.4791 
802.404 

175.7276 
48.6812 
21.4282 
22.8313 
12.0667 
12.0000 
9.3349 

802.0150 
 

The convergence of optimal solution using PS is shown in fig. V.9, where only about 

25 iterations were needed to find the optimal solution. However, PS may be allowed to 

continue the search in the neighborhood of the optimal point to increase the confidence in 

the result. PS stops after 50 more iteration and returns the optimal value. 

Fig. V.10 depicts the mesh size throughout the convergence process. It is apparent 

form the figure that the mesh size decreases until the algorithm terminates, in this case at 

mesh size 1.4375e-005 which is more that the giving as stopping criteria, thus indicating 

that this particular run did not terminate using the mesh size tolerance. Fig. V.10 shows 

that for the first 8 iteration the poll was successful since the mesh size keeps increasing as 

the algorithm had to expand the scope of the search. This is accomplished by multiplying 

the current mesh size by the expansion factor, in this study taken as 2. This scenario 

continued until iteration number 8 when the mesh size reached 256. At iteration number 9 

the mesh size decreased by half due to multiplying the current mesh size by the 
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contracting factor, indicating an unsuccessful poll in the previous iteration. This process 

continues until reaching one of the termination criteria. 

It is worth mentioning that the mean and the maximum costs are higher than those of 

the other methods, and this is a certain drawback of the performance of PS in this test. 

Moreover, it has been observed that the algorithm is quite sensitive to the initial (starting) 

point and how far it is from the global optimal solution. Fig. V.11 illustrates the 

sensitivity of PS where a hundred solutions were obtained by PS with different initial 

values. The optimal solution has been reached a number of times for initial points around 

run number 49.  

Pattern search (PS) have been studied and comparisons of the quality of the solution 

and performance have been conducted against evolutionary programming (IEP), (EP-

OPF), and hybrid self-adaptive differential evolution methods (SADE-ALM).  

 
V.4. Big Bang–Big Crunch algorithm to solve EDP : 
A Big Bang–Big Crunch (BB–BC) optimization algorithm is employed for solving 

different types of ED problems. The proposed BB–BC algorithm has been examined and 

tested, the results obtained from the BB–BC algorithm have been compared to those that 

reported in the literature recently. The simulation results show that the proposed BB–BC 

algorithm approaches is able to obtain higher quality solutions efficiently and with less 

computational time than the conventional approaches. 
 

V.4.1. Simulation Results and Discussion : 

The proposed BB–BC algorithm method, it has been applied to solve various types of the 

ED problem on three different power systems (3 units, IEEE 30 standard bus and 15 units 

test system), and a comparison with other heuristic algorithms reported in the literature.  

All methods are performed with 30 trials under the same evaluation function and 

individual definition in order to compare their solution quality, convergence characteristic 

and computation efficiency. In these examples. The software was implemented by the 

MATLAB language, on a Pentium 4, 2.4 GHz personal microcomputer with 1GB DDR 

RAM under Windows XP. 
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According to simulation, the following parameters in the BB-BC algorithms methods 

are used: The number of generation is 100 iterations and Size of population 50 

individuals (candidates); the individual having minimum cost value is chosen for Big-

Crunch phase; new population (Big Bang phase) is generated by using normal 

distribution principle with (eq. IV.11): 

itrandPPPestP GiMinGiMaxi
k

Gi /).(                                               (V.1) 

Where k number of candidates, i number  of parameters, Pestk value which falls with 

minimum cost, PGiMax and PGiMin are parameter upper and lower limits and it number of 

iterations. 

 

V.4.1.1. Case 1: The OPF with quadratic fuel cost functions : 
A. Example 1  

The proposed algorithm is tested on standard IEEE 30 bus system. 

In this case, each individual Pg contains six generator power outputs, which are generated 

randomly. For 283.4 MW load demand, the best solutions, which are shown in table V.5, 

satisfy the system constraints. The statistical results obtained with 30 trials, such as the 

generation cost, computational time and Standard deviation are shown in table V.6. 
 

Table V.5: Best solution of standard IEEE 30 Bus system 
 

 

 

 

 

 

 

 

 

Fig. V.12 shows the cost convergence of BB-BC based OPF algorithm for various 

numbers of generations. It was clearly shown that there is no rapid change in the fuel cost 

function value after 100 generations, clearly from the figure that the solution is converged 

to the best solution at the early iterations (45 iterations). 

Unit power  
output 

Methods 

 IEP 
[128] 

EP-OPF 
[128] 

SADE-ALM 
[129] 

BB–BC 

P1 (MW) 
P2 (MW) 
P5 (MW) 
P8 (MW) 
P11 (MW) 
P13 (MW) 
Total Pg (MW) 
Ploss (MW) 
Total cost ($/h) 

176.2358 
49.0093 
21.5023 
21.8115 
12.3387 
12.0129 
292.9105 
9.5105 
802.465 

173.8262 
49.998 
21.386 
22.63 
12.928 
12.00 

292.7683 
9.3683 

802.5557 

176.1522 
48.8391 
21.5144 
22.1299 
12.2435 
12.0000 
292.8791 
9.4791 
802.404 

175.8299 
48.6122 
21.1692 
22.6083 
12.5263 
12.0000 

292.7460 
9.346 

802.0207 
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Figure V.12 : Convergence characteristic of the IEEE 30 bus system. 

 

Table V.6 : Comparison of BB–BC performance with other methods. 

Methods Fuel Cost ($/hr.) Average 
computational 
time (minutes) 

Best cost Average cost Worst cost Standard deviation 

EP [128] 
TS [128] 
TS/SA [128] 
ITS [128] 
IEP [128] 
SADE_ALM [129] 
BB–BC 

802.907 
802.502 
802.788 
804.556 
802.465 
802.404  
802.020 

803.232 
802.632 
803.032 
805.812 
802.521 
802.407  
802.065 

803.474 
802.746 
803.291 
806.856 
802.581 
802.411 
802.132  

0.226 
0.080 
0.187 
0.754 
0.039 
0.003  
0.033 

66.693 
86.227 
62.275 
88.495 
99.013 
15.934  
04.418 

 

 
Figure V.13 : Distribution of generation cost for IEEE 30 bus system. 

  
Or the IEEE 30 bus system, the best solutions of the seven methods are given in table 

V.6 after performing 30 trials. The results of the BB–BC based OPF algorithm are 

compared with those obtained by the EP, TS, TS/SA, ITS, IEP, and SADE-ALM 
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algorithms in terms of Worst, Average, Best generation cost, the Standard deviation and 

Average computational time as shown in table V.6. Obviously, all methods have 

succeeded in finding the near optimum solution presented in [128], [129] with a high 

probability of satisfying the equality and inequality constraints.  

Fig. V.13 shows distribution the generation cost of the best solution for each run in 

the case of 283.4  MW load demand. 
 

B- Example 2 

The system contains 15 thermal units [131] whose characteristics and the loss coefficients 

β matrices are given in appendix. 2. The load demand is 2630 MW.  

In this case, each individual 15 generator power outputs, which are generated randomly. 

which are generated randomly. For 2630 MW load demand, the best solutions, which are 

shown in table V.7, satisfy the system constraints. The statistical results obtained with 30 

trials, such as the generation cost, standard deviation, computational time and percentage 

of approaching near optimal solution, are shown in table V.8. 

Fig. V.14. shows the cost convergence of BB–BC based OPF algorithm for various 

numbers of generations. It was clearly shown that there is no rapid change in the fuel cost 

function value after 100 generations. Hence it is clears from the Fig. V.14 that the 

solution is converged to a high quality solution at the early iterations (60  iterations). 

 

 

Figure V.14 : Convergence characteristic of the 15 units system. 
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Table V.7 : Best solution of 15 units system. 
Unit power output SA [130] GA [130] TS [130] PSO [130] MTS [130] BB–BC 

P1 (MW) 
P2 (MW) 
P3 (MW) 
P4 (MW) 
P5 (MW) 
P6 (MW) 
P7 (MW) 
P8 (MW) 
P9 (MW) 
P10 (MW) 
P11 (MW) 
P12 (MW) 
P13 (MW) 
P14 (MW) 
P15 (MW) 
Total output (MW) 
Ploss (MW) 
Total cost ($/h) 

453.6646 
377.6091 
120.3744 
126.2668 
165.3048 
459.2455 
422.8619 
126.4025 
54.4742 
149.0879 
77.9594 
73.9489 
25.0022 
16.0636 
15.0196 
2663.29 
33.2737 
32786.40 

445.5619 
380.0000 
129.0605 
129.5250 
169.9659 
458.7544 
417.9041 
97.8230 
54.2933 
144.2214 
77.3002 
77.0371 
31.1537 
15.0233 
33.6125 
2661.23 
31.2363 
32779.81 

453.5374 
371.9761 
129.7823 
129.3411 
169.5950 
457.9928 
426.8879 
95.1680 
76.8439 
133.5044 
68.3087 
79.6815 
28.3082 
17.7661 
22.8446 
2661.53 
31.4100 
32762.12 

454.7167 
376.2002 
129.5547 
129.7083 
169.4407 
458.8153 
427.5733 
67.2834 
75.2673 
155.5899 
79.9522 
79.8947 
25.2744 
16.7318 
15.1967 
2661.19 
31.1697 
32724.17 

453.9922 
379.7434 
130.0000 
129.9232 
168.0877 
460.0000 
429.2253 
104.3097 
35.0358 

155.8829 
79.8994 
79.9037 
25.0220 
15.2586 
15.0796 
2661.36 
31.3523 

32716.87 

454.9991  
455.0000 
130.0000 
130.0000 
227.1366    
460.0000    
465.0000 
60.0000 
25.0000 

160.0000 
20.0000 
20.0000 
25.0000 
15.0000 
15.0000 
2662.13 
32.1358 

32659.35 
 

Table V.8 : Comparison of BB–BC performance with other methods. 

Methods Fuel Cost ($/hr.) Average 
computational 

time (s) 
Best cost Average 

cost 
Worst 
cost 

Standard 
deviation 

SA [130] 
GA [130] 
TSA [130] 
PSO [130] 
MTS [130] 
BB–BC 

32786.40 
32779.81 
32762.12 
32724.17 
32716.87 
32659.35 

32869.51 
32841.21 
32822.84 
32807.45 
32767.21 
32668.51 

33028.95 
33041.64 
32942.71 
32841.38 
32796.15 
32673.02 

112.32 
81.22 
60.59 
21.24 
17.51 
2.69 

71.25 
48.17 
26.41 
13.25 
3.65 

12.65 
 

For the 15 units system in the case of 2630 MW load demand, after performing 30 

trials, the best solutions of the six methods are given in table V.7. The results of the BB-

BC algorithm method in comparison with those of the SA, GA, TS, PSO and MTS [130] 

algorithms in terms of worst, average, best generation cost, standard deviation and 

average computational time are provided in table V.8. 

From Figs. V.15–16 clearly, the BB–BC algorithm method has always better 

solutions than those of the other methods. This signifies the higher quality solution 

obtained by the proposed algorithm.  

The simulation results in the IEEE 30 bus system and 15 units system demonstrate 

the feasibility and effectiveness of the proposed method BB-BC in minimizing cost of the 

generator. It is useful for obtaining high quality  solution in a very less time compared to 

other methods EP, TS, TS/SA, ITS, IEP, SADE-ALM, SA, GA, TS, PSO and MTS. 
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The comparison of numerical results of optimal power flow (OPF) problems using 

the BB-BC method with the results obtained by other heuristic approaches are performed 

to demonstrate the robustness of the present algorithm. With respect to the BB–BC 

approach has better solutions and standard deviations. 

The results show that the optimal dispatch solutions determined by BB-BC lead to 

lower active power loss then that found by other heuristic methods, which confirms that 

the BB-BC is well capable of determining the global or near global optimum dispatch 

solution. 

The BB-BC optimization has several advantages over other evolutionary methods: 

Most significantly, a numerically simple algorithm and heuristic methods with relatively 

few control parameters; and the ability to solve problems that depend on large number of 

variables. 

 

V.4.1.2. Case 2: The OPF for units with valve-point effects 

In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by 

quadratic functions with rectified sine components using (II.16). Bus 1 is selected as the 

slack bus of the system to allow more accurate control over units with discontinuities in 

cost curves. The generator cost coefficients of those two generators are given in 

appendix. 1 (A.2). 
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Figure 15 : Comparison of BB–BC performance 
with other methods  for IEEE 30 bus system. 

 

Figure 16 : Comparison of BB–BC performance 
with other methods  for 15 units system. 
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The best solutions, which are shown in table V.9, satisfy the system constraints. The 

statistical results obtained with ten trials, such as the generation cost, computational time 

and Standard deviation are shown in table V.10. 
 

Table V.9 : Best solution of standard IEEE 30 bus system 

 
Unit power output 

Methods 
IEP 

[127] 
SADE_ALM 

[129] 
BB–BC 

P1 (MW) 
P2 (MW) 
P5 (MW) 
P8 (MW) 
P11 (MW) 
P13 (MW) 
Total Pg (MW) 
Ploss (MW) 
Total cost ($/h) 

149.7331 
52.0571 
23.2008 
33.4150 
16.5523 
16.0875 
291.0458 
7.6458 
953.573 

193.2903 
52.5735 
17.5458 
10.0000 
10.0000 
12.0000 
295.4096 
12.0096 
944.031 

199.6127 
20.0000   
21.7407   
26.2079   
13.9545    
12.0000  
293.5158 
10.1158 
920.5089 

 

 

Fig. V.17 shows the cost convergence of BB–BC based OPF algorithm for various 

numbers of generations. It was clearly shown that there is no rapid change in the fuel cost 

function value after 100 generations, clearly that the solution is converged to a high 

quality solution at the 55 iterations. 

 

 
 

For this case, the results from ten test runs of BB–BC do not violate any constraints. 

Table V.10 shows that worst, average, best generation cost, the standard deviation and 

average computational time of BB–BC are lower than those obtained by TS, TS/SA, ITS, 

EP, IEP and SADE-ALM.  
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Figure V.178 :  Convergence characteristic of 
the IEEE 30 bus system (Case 2). 

 

Figure V.18 : Distribution of generation cost for 
IEEE 30 bus system (Case 2). 
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Fig. V.18 shows distribution the generation cost of the best solution for each run in 

the case of 283.4  MW load demand. 

 
Figure V.19 : Comparison of computation performance. 

 
The comparisons of computational time of the seven methods in the two cases are 

shown in fig. V.19. Clearly, the computational time of the MTS algorithm method is 

lowest in comparison to those of the other methods. 
 

Table V.10 : Comparison of BB–BC performance with other methods 

Methods Fuel Cost ($/hr.) Average 
computational 
time (minutes) 

Best  
cost 

Average  
cost 

Worst  
cost 

Standard  
deviation 

EP [127] 
TS [127] 
TS/SA [127] 
ITS [127] 
IEP [127] 
SADE-ALM [129] 
BB–BC 

955.508 
956.498 
959.563 
969.109 
953.573 
944.031 
920.508  

957.709 
958.456 
962.889 
977.170 
956.460 
954.800 
920.661 

959.379 
960.261 
966.023 
985.533 
958.263 
964.794 
920.920 

1.084 
1.070 
2.146 
6.191 
1.720 
5.371 
0.121 

61.419 
88.210 
65.109 
85.138 
93.583 
16.160 
5.0472  

 
The simulation results in the IEEE 30 bus system demonstrate the feasibility and 

effectiveness of the proposed method BB-BC in minimizing cost of the generator. It is 

useful for obtaining high quality  solution in a very less time compared to other methods 

EP, TS, TS/SA, ITS, IEP and SADE -ALM. 

The comparison of numerical results of optimal power flow (OPF) problems with 

valve-point effects using the BB–BC method with the results obtained by other heuristic 

approaches are performed to demonstrate the robustness of the present algorithm.  
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V.4.1.3. Case 3: A multi-objective BB–BC for environmental/economic dispatch 

The Combined Economic and Emission Dispatch (CEED) problem where objective 

function is highly non-linear, non-differentiable and may have multiple local minima. 

Therefore, classical optimization methods may not converge or get trapped to any local 

minima. In this case presents a BB-BC method to solve the combined economic and 

emission dispatch (CEED), three generator test system was used for testing and validation 

purposes, the preference of the BB-BC is compared with other heuristic methods. The 

results show, clearly, that the proposed method gives better optimal solution  as compared 

to the other methods. 

During the simulation, the following parameters in the BB–BC algorithms methods 

are used : 

The number of generation is 100 iterations and size of population 50 individuals 

(candidates), 

The individual having minimum cost value is chosen for Big-Crunch phase, 

New population (Big Bang phase) is generated by using normal distribution 

principle. 
 

The proposed BB–BC algorithm is tested on three generator test system whose data 

are given below [132], The values of fuel cost and emission coefficients are taken from 

reference [133] and are given in appendix.3. The system demand is 850 [MW] in all 

simulations 

The  system  transmission  losses  is  calculated  using  a simplified loss expression:  

2 2 2
1 2 30.00003 0.00009 0.00012L G G GP P P P    MW                               

 

Table  V.11 : Solutions of minimum fuel cost. 

Evolutionary 
Algorithms 

BB_BC Tabu Search  
[133] 

NSGA-II 
[132] 

P1 [MW] 434.5152 435.69 436.366 
P2 [MW] 300.7308 298.828 298.187 
P3 [MW] 130.6044 131.28 131.228 

Losses [MW] 15.8505 15.798 15.781 
Fuel cost [$/h] 8344.5952 8344.598 8344.606 

SO2 Emission [Kg/h] 9.02261 9.02146 9.02083 
NOx Emission [Kg/h] 0.09871 0.09870 0.09866 
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In this study, a developed algorithm has been applied for bi-objective fuel cost , SO2 

emission dispatch and NOx emission dispatch. The results for best fuel cost, best SO2 

emission and NOx emission dispatch are summarized in tables V.11 to V.13. 

Correspondingly, the convergence for optimized objective functions are shown in figures 

V.20 to V.22, respectively.  

 
Table  V.12 : Solutions of minimum SO2 Emission. 

Evolutionary 
Algorithms 

BB_BC Tabu Search 
[133] 

NSGA-II 
[132] 

P1 [MW] 552.7414 549.247 541.308 
P2 [MW] 219. 0790 234.582 223.249 
P3 [MW] 92.6958 81.893 99.919 

Losses [MW] 14.5164 15.722 14.476 
Fuel cost [$/h] 8397.023 8403.485 8387.518 

SO2 Emission [Kg/h] 8.965936 8.874 8.96655 
NOx Emission [Kg/h] 0.09684 0.09740 0.09637 

 
Table  V.13 : Solutions of minimum NOx Emission 

Evolutionary 
Algorithms 

BB_BC Tabu Search 
[133] 

NSGA-II 
[132] 

P1 [MW] 508.291 502.914 505.810 
P2 [MW] 250.600 254.294 252.951 
P3 [MW] 105.854 108.592 106.023 

Losses [MW] 14.747 15.8 14.784 
Fuel cost [$/h] 8364.953 8371.143 8363.627 

SO2 Emission [Kg/h] 8.965936 8.874 8.96655 
NOx Emission [Kg/h] 0.09592 0.0958 0.09593 

 

          

         
 

0 10 20 30 40 50 60 70 80 90 100
8344.55

8344.6

8344.65

8344.7

8344.75

8344.8

8344.85

iteration

Fu
el

 c
os

t (
$/

h)

0 10 20 30 40 50 60 70 80 90 100
8.9659

8.966

8.9661

8.9662

8.9663

8.9664

8.9665

8.9666

iteration

S
O

2 E
m

is
si

on
 (K

g/
hr

)

Figure V.20 : Convergence characteristic 
of minimum fuel cost. 

 Figure V.21 :  Convergence characteristic 
of minimum SO2 Emission. 
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Figure V.22 : Convergence characteristic of minimum NOx Emission. 

 
The figures V.20 to V.22 show the minimum fuel cost, SO2 Emission and NOx 

Emission convergence of BB–BC algorithm for various numbers of generations. It was 

clearly shown that there is no great change in the fuel cost function value after 100 

generations. 

The best compromise solution selected using BB–BC algorithm is shown in table 

V.14. 

Table  V.14 : Best compromise solution. 

Evolutionary  
Algorithms 

BB-BC 

P1 [MW] 442.893 
P2 [MW] 305.503 
P3 [MW] 117.546 

Losses [MW] 15.94 
Fuel cost [$/h] 8345.813 

SO2 Emission [Kg/h] 9.01602 
NOx Emission [Kg/h] 0.09776 

Cost total ($/h) 25035.140 
 

The simulation results in the test system demonstrate the feasibility and effectiveness 

of the proposed method BB-BC in minimizing the operating cost of the generators. It is 

useful to compare the BB-BC technique to other methods such as tabu search [133] and 

NSGA-II [132] for obtaining and demonstrating high quality solution and validating our 

results. 
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V.5. ABC optimization for economic dispatch with valve point effect : 
In this section we presents the well-known power system ED problem solution 
considering valve-point effect by a new optimization algorithm called artificial bee 
colony (ABC). The proposed approach has been applied to various test systems with 
incremental fuel cost function, taking into account the valve-point effects. The results 
show that the proposed approach is efficient and robustness when compared with other 
optimization algorithms reported in literature. 

In order to verify the feasibility and efficiency of the proposed algorithm, three tests 

were conducted for solving ED problem with valve-point effects, which are 3, 13 and 40 

unit systems ignoring the transmission loss, including valve-point loading. 

The algorithm of this method was programmed in MATLAB 2011Ra environment 

and run on a PC with Intel core i3 1.90. GHZ PC and 4 GB of RAM. 

V.5.1. Test system 1: small system (3-unit system) :  

This test case study considering three thermal units of generation with effects of 

valve-point is given in appendix. 4 (A.7) [134]. In this case, the load demand expected to 

be determined was PD= 850 MW. 

Table V.15 : Results obtained by proposed method for test system 1. 
Units Proposed ABC 
1 power output/MW 
2 power output/MW 
3 power output/MW 
Total power output/MW  
Total cost/($·h–1) 

300.2656 
149.7344 
400.0000 
850.000  

8234.07245 
 

Table V.16 : Comparison of proposed method for test system 1. 
Method P1/MW P2/MW P3/MW PD/MW Cost/($·h–1) 
GA [134]  
EP [134]  
EP-SQP [134] 
PSO [134]  
PSO-SQP [134] 
GAB [135]  
GAF [135]  
CEP [135]  
FEP [135]  
MFEP [135] 
IFEP [135]  
PS [136]  
GSA [137] 
Proposed ABC 

398.700 
300.264 
300.267 
300.268 
300.267 

— 
— 
— 
— 
— 
— 

300.2663 
300.2102 
300.2656 

50.100 
149.736 
149.733 
149.732 
149.733 

— 
— 
— 
— 
— 
— 

149.7331 
149.7953 
149.7344 

399.600 
400.000 
400.000 
400.000 
400.000 

— 
— 
— 
— 
— 
— 

399.9996 
399.9958 
400.0000 

848.400 
850.000 
850.000 
850.000 
850.000 

— 
— 
— 
— 
— 
— 

849.9990 
850.0013 
850.000 

8222.07 
8234.07 
8234.07 
8234.07 
8234.07 
8234.08 
8234.07 
8234.07 
8234.07 
8234.08 
8234.07 
8234.05 
8234.1 

8234.07245 
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The simulation parameters for the proposed algorithm are: colony size (employed 

bees + onlooker bees) = 20, food sources = 10, limit=100, and max iterations=500. 

The results obtained for this case study are listed in table V.15, which shows that the 

ABC algorithm has approximately good solution for the power demand of 850 MW. The 

best fuel cost result obtained from the proposed ABC algorithm and other optimization 

algorithms are compared in table V.16. From table V.16 it is seen clearly that the GA and 

PS approaches did not meet the load demand. 

A convergence characteristic of the ABC algorithm for the three generator systems 

shown in Figs V.23 and V.24 shows the distribution of the generation cost of the best 

solution for each run in the test system of 3 units. 

 

 
 
 
 
V.5.2. Test system 2: 13-unit system : 

This test case study considering the thirteen thermal units of generation with effects 

of valve-point is given in appendix. 4 (A.8) [138, 135].  

The complexity and nonlinearity to solution procedure is increased. The required 

load demands to be met by all the thirteen generating units are 1800 and 2520 MW.  

The results obtained for this case study are given in tables V.17 and V.18, which 

show that the simulation results obtained by the ABC algorithm for the best solution for 

power demand of 1800 and 2520 MW respectively. 

Simulation parameters: colony size = 200, food sources = 100, limit=100, and max 

iterations=1000. 
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Figure V.24 : Distribution of objective 
function value for 30 trails. 

Figure V.23 : Convergence of fitness value with 
valve-point effects for load demand 850 MW. 
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The best fuel cost result obtained from the proposed ABC algorithm and other 

optimization algorithms are compared in tables V.19 and V.20 for the load demand of 

1800 and 2520 MW respectively. It appears that the proposed algorithm performs better 

as the problem becomes larger and more complex. Figs. V.25 and V.27 show the 

convergence characteristic curves of the best case with valve point effect for the load 

demand of 1800 and 2520 MW respectively. 
 

 Table V.17 :  Results obtained by proposed method for test system 2 (1800 MW).  
Units Proposed ABC Units Proposed ABC 
1 power output/MW 
2 power output/MW 
3 power output/MW 
4 power output/MW 
5 power output/MW 
6 power output/MW 
7 power output/MW 
8 power output/MW 

628.2772 
  148.8823 
  223.6160 
   60.0000 
  109.8531 
  109.8395 
  109.8605 
  109.8550 

9 power output/MW 
10 power output/MW 
11 power output/MW 
12 power output/MW 
13 power output/MW 
Total power output/MW 
Total cost/($·h–1) 

  109.8263 
   40.0000 
   40.0000 
   55.0000 
   55.0000 
 1800.0099 
17962.4279 

  
Table V.18 : Results obtained by proposed method for test case 2 (2520 MW). 
Units Proposed 

GSA 
Units Proposed GSA 

1 power output/MW 
2 power output/MW 
3 power output/MW 
4 power output/MW 
5 power output/MW 
6 power output/MW 
7 power output/MW 
8 power output/MW 

628.3119 
298.9825    
295.7710    
159.7329 
159.7318    
159.7293    
159.7324    
159.7277 

9 power output/MW 
10 power output/MW 
11 power output/MW 
12 power output/MW 
13 power output/MW 
Total power output/MW 
Total cost/($·h–1) 

159.7309 
77.2108    
77.0372    
92.2275 
92.0833 

 2520.0092 
 24166.2199 

 

Table V.19 : Comparison of proposed method for test system 2 (1800 MW). 
Method Total 

cost/($·h–1) 
Method Total 

cost/($·h–1) 
CEP [135]  
PSO [134]  
MFEP [135]  
FEP [135]  
IFEP [135]  
EP-SQP [134]  
HDE [115]  
CGA-MU [139]  
PSO-SQP [134]  
PS [136]  

18048.21 
18030.72 
18028.09 
18018.00 
17994.07 
17991.03 
17975.73 
17975.34 
17969.93 
17969.17 

UHGA [140]  
QPSO [141]  
IGA_MU [135]  
ST-HDE [115]  
HGA [142]  
HQPSO(5) [134]  
DE [143]  
GSA [137] 
Proposed ABC 

17964.81 
17964 

17963.98 
17963.89 
17963.83 

17963.9571 
17963.83 

17960.3684 
17962.4279 
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Table V.20 :  Comparison of proposed method for test case 2 (2520 MW). 
Method Total cost/($·h–1) Method Total cost/($·h–1) 
SA[134]  
GA [134]  
GA-SA[134]  
EP-SQP [134]  
PSO-SQP[134]  
UHGA [140]  
GA-MU [144] 

24970.91 
24398.23 
24275.71 
24266.44 
24261.05 
24172.25 

24170.755 

IGAMU [144]  
HGA [142]  
EDSA[135]  
DE [143]  
GSA [137] 
Proposed 

24169.979 
24169.92 
24169.92 

24169.9177 
24164.251357 
24166.2199 

 

Figures V.26 to V.28 shows the distribution of the generation cost of the best 

solution value for 30 trails for the load demand of 1800 and 2520 MW respectively. 
 

  
 
 
 
 

 
  

 
 
V.5.3. Test system 3: large system (40-unit system)  
This test system consists of 40 generators with valve-point loading effects and has a total 

load demand of 10500 MW. The input data are given in ref. [135]. The result obtained 
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Figure V.26 :  Distribution of objective 
function value for 30 trails. 

Figure V.25 : Convergence of fitness value with 
valve-point effects for load demand 1800 MW. 

Figure V.27 : Convergence of fitness value with 
valve-point effects for load demand 2520 MW. 

Figure V.28 : Distribution of objective function 
value for 30 trails. 

hp
Line



Chapter V                                                   Application of Artificial Intelligence technique to ELD problems  
 

94 
 

from the proposed ABC algorithm has been compared with NPSO-LRS [145], MDE 

[146], and other methods. The best solutions are tabulated in table V.21 and the 

performance parameters are compared in table V.22. A convergence characteristic of the 

40-generator systems in case of the ABC algorithm is demonstrated in figs. V.29 and 

V.30 shows the distribution of the generation cost of the best solution for each run in the 

test system of 40-units. 

Simulation parameters: colony size (employed bees + onlooker bees) = 200, food 

sources = 100, limit=100, and max iterations=1000. 
 

Table V.21 : Best power output for 40-generator system (Load=10500 MW) 
Generator power output ABC NPSO_LRS[145] NPSO[145] MDE[146] CBPSO-RVM[147] FAPSO-NM[148] 
Pg1/MW 
Pg2/MW 
Pg3/MW 
Pg4/MW 
Pg5/MW 
Pg6/MW 
Pg7/MW 
Pg8/MW 
Pg9/MW 
Pg10/MW 
Pg11/MW 
Pg12/MW 
Pg13/MW 
Pg14/MW 
Pg15/MW 
Pg16/MW 
Pg17/MW 
Pg18/MW 
Pg19/MW 
Pg20/MW 
Pg21/MW 
Pg22/MW 
Pg23/MW 
Pg24/MW 
Pg25/MW 
Pg26/MW 
Pg27/MW 
Pg28/MW 
Pg29/MW 
Pg30/MW 
Pg31/MW 
Pg32/MW 
Pg33/MW 
Pg34/MW 
Pg35/MW 
Pg36/MW 
Pg37/MW 
Pg38/MW 
Pg39/MW 
Pg40/MW 
Total cost/($·h–1) 

110.7944 
110.7913 
97.4473 
179.7417 
87.8268 
139.9897 
259.5761 
284.5962 
284.5294 
130.0033 
168.7903 
94.0010 
215.4183 
394.2843 
394.2274 
394.1741 
489.2802 
489.2863 
511.2606 
511.2471 
523.3126 
523.2619 
523.2069 
523.2790 
523.2828 
523.2828 
10.0035 
10.0601 
10.0063 
88.0050 
189.8676 
189.9970 
179.4734 
164.8527 
164.8280 
164.8093 
109.9733 
109.9999 
109.9544 
511.2777 

121479.6467 

113.9761 
113.9986 
97.4241 
179.7327 
89.6511 
105.4044 
259.7502 
288.4534 
284.646 
204.812 
168.8311 

94 
214.7663 
394.2852 
304.5187 
394.2811 
489.2807 
489.2832 
511.2845 
511.3049 
523.2916 
523.2853 
523.2797 
523.2994 
523.2865 
523.2936 

10 
10.0001 

10 
89.0139 

190 
190 
190 

199.9998 
165.1397 
172.0275 

110 
110 

93.0962 
511.2996 

121664.43 

113.9891 
113.6334 

97.55 
180.0059 

97 
140 
300 
300 

284.5797 
130.0517 
243.7131 
169.0104 

125 
393.9662 
304.7586 
304.512 
489.6024 
489.6087 
511.7903 
511.2624 
523.3274 
523.2196 
523.4707 
523.0661 
523.3978 
523.2897 
10.0208 
10.0927 
10.0621 
88.9456 
189.9951 

190 
190 

165.9825 
172.4153 
191.2978 
109.9893 
109.9521 
109.8733 
511.5671 
121704.73 

110.831 
110.815 
97.399 
179.734 
87.808 

140 
259.6 

284.604 
284.601 

130 
168.799 
168.799 
214.759 
394.28 
394.28 
304.519 
489.279 
489.28 
511.28 
511.279 
523.279 
523.28 
523.28 
523.28 
523.281 
523.279 

10 
10 
10 

92.645 
190 
190 

189.999 
164.831 
164.802 
164.805 
109.999 
109.999 
109.999 
511.278 

121414.79 

114 
114 

97.4859 
179.7331 

97 
140 
300 
300 

286.0079 
130 
94 
94 

214.7598 
304.5196 
394.2794 
394.2794 
489.2794 
489.2794 
511.2794 
511.2794 
523.2796 
523.2794 
523.2797 
523.2802 
523.2795 
523.2794 

10 
10 
10 
97 

190 
190 
190 
200 

166.8603 
200 
110 
110 
110 

511.2794 
121555.32 

111.38 
110.93 
97.41 
179.33 
89.22 
140 

259.62 
284.66 
284.66 

130 
168.82 
168.82 
214.75 
394.28 
304.54 
394.3 
489.29 
489.29 
511.28 
511.29 
523.33 
523.48 
523.33 
523.33 
523.33 
523.33 

10 
10 
10 

88.7 
190 
190 
190 
165 
166 
165 
110 
110 
110 

511.3 
121418.3 
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Table V.22 : Comparison of results case 2 load=10500 MW. 
Method Minimum 

cost/($·h–1) 
Mean 

cost/($·h–1) 
Maximum 
cost/($·h–1) 

Mean 
time/s 

CEP [135]  
FEP [135]  
MFEP [135] 
IFEP [135]  
NPSO-LRS [145]  
MDE [146] 
GA [146] 
CBPSO-RVM[147] 
PS [29]  
FAPSO-NM [148] 
EP-SQP[134] 
PSO [134]  
PSO-SQP [134]  
MPSO[149] 
ESO[150]  
DEC(2)-SQP(1) [138] 
TM [151]  
APSO [152] 
TS [153] 
ACO [153] 
ABC 

123488.29 
122679.71 
122647.57 
122624.35 
121664.43 
121414.79 
121996.40 
121555.32 
121415.14 
121418.3 

122323.97 
123930.45 
122094.67 
122252.27 
122122.16 
121741.98 
122477.78 
121663.52 
122288.38 
121811.37 

121479.6467 

124793.5 
124119.4 
123489.7 
123382.0 
122209.31 
121418.44 
123807.97 
122281.14 
122332.7 
121418.80 
122379.6 
124155 

122245.3 
— 

122524.1 
122295.1 
123078.2 
122153.67 
122590.89 
121930.58 
121984.24 

126902.9 
127245.6 
124356.5 
125740.6 
122981.59 
121466.04 
122919.77 
123094.98 
125486.3 
121419.8 

— 
— 
— 
— 

123143.1 
122839.3 
124693.8 
122912.39 
122424.81 
122048.06 
122137.42 

1956.9 
1039.1 
2196.1 
1167.3 
19.8 

- 
320.31 

— 
42.98 

40 
997.73 
933.39 
733.97 

— 
— 

14.26 
94.28 
5.05 

238.35 
92.54 
16.52 

 
 

 
 

 
  

The comparison confirms the effectiveness, stable convergence characteristic, good 

computation efficiency and superiority of the proposed ABC algorithm over the other 

techniques in terms of solution quality. 

However good choice of the number of iterations, population size, employed and 

unemployed bees results in fast computation. The ABC can be modified using operators 

of fast computational algorithms to get a hybrid fast computational ABC. The simulation 

results reveal the superiority of the proposed technique in solving the DED problem with 
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Figure V.30 : Distribution of objective function 
value for 30 trails. 

Figure V.29 : Convergence of fitness value with 
valve-point effects for load demand 2520 MW. 
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valve point effects. Therefore, this approach could also be extended to other optimization 

and control problems of power systems.  

 

V.6. A hybrid GA–PS method to Solve the EDP : 

In his study we presents a new approach based on a hybrid algorithm consisting of 

genetic algorithm (GA) and pattern search (PS) techniques for solving the economic load 

dispatch (ELD) problem. The objective is to minimize the nonlinear function, which is 

the total fuel cost of thermal generating units, subject to the usual constraints. GA is the 

main optimizer of the algorithm, whereas PS are used to fine tune the results of GA to 

increase confidence in the solution. For illustrative purposes, the algorithm has been 

applied to various test systems to assess its effectiveness. Furthermore, convergence 

characteristics and robustness of the proposed method have been explored through 

comparison with results reported in literature. The outcome is very encouraging and 

suggests that the hybrid GA–PS algorithm is very efficient in solving power system 

economic dispatch problem. 

The main objective is to introduce a hybrid method that combines the GA and PS -

referred to as the hybrid GA–PS method- in the context of power system economic 

dispatch problem. The proposed hybrid method has eliminated the need to provide a 

suitable starting point for PS, this feature led to the reduction of total execution time of 

the algorithm when compared to other reported methods, a the hybrid GA–PS method is 

presented and used to solve the ELD problem under some equality and inequality 

constraints, an application was performed on the IEEE 30 bus and 6 generators  test 

system. Simulation results confirm the advantage of computation rapidity and solution 

accuracy.  

The obtained results using hybrid GA–PS algorithm OPF are given in tables V.23. 

The parameters of GA : the number of generation is 100 iterations and population 

size is 30 invidious with probability of crossover Pc = 0.9 and mutation Pm = 0.03. 

Fig. V.31 shows the cost convergence of hybrid GA–PS algorithm for various 

numbers of generations. It was clearly shown that there is no rapid change in the fuel cost 

function value after 50 generations, clearly that the solution is converged to a high quality 

solution at the early iterations (25 iterations). 
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The minimize cost and power loss obtained by the proposed algorithm is less than 

value reported in [128-129].  

 
Figure V.33 : Objective function value for 50 different starting point. 

 
Table V.23 :  Comparison of the PSO-OPF with different evolutionary methods of optimization 

viewpoint cost, losses and times of convergence.  
 IEP 

[128] 
EP-OPF 

 [128] 
SADE-ALM  

[129] 
PS GA-PS 

Pg1 [MW] 176.2358 173.8262 176.1522 175.7276 75.6627 
Pg2 [MW] 49.0093 49.998 48.8391 48.6812 48.6413 
Pg5 [MW] 21.5023 21.386 21.5144 21.4282 21.4222 
Pg8 [MW] 21.8115 22.63 22.1299 22.8313 22.6219 
Pg11 [MW] 12.3387 12.928 12.2435 12.0667 12.3806 
Pg13 [MW] 12.0129 12.00 12.0000 12.0000 12.0000 

Power Loss [MW] 9.5105 9.3683 9.4791 9.3349 9.3286 
Generation cost [$/hr] 802.465 802.5557 802.404 802.0150 802.0138 
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Figure V.31 : Convergence of PS for 
the IEEE 30 bus system. 

 

Figure V.32 : Convergence of PS mesh 
size for the IEEE 30 bus system. 
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Fig. V.32 depicts the mesh size throughout the convergence process. It is apparent 

form the figure that the mesh size decreases until the algorithm terminates, in this case at 

mesh size 1.8512e-004 which is more that the giving as stopping criteria, thus indicating 

that this particular run did not terminate using the mesh size tolerance. Fig. V.33 

illustrates the sensitivity of PS where a hundred solutions were obtained by PS with 

different initial values. The optimal solution has been reached a number of times for 

initial points around run number 50.  

The GA-PS technique has overcome an important drawback of the PS methods that 

is the need to supply a suitable starting point, this shortcoming of the PS methods was 

highlighted in the previous work of the authors as it makes any optimization method 

relying on a good choice of the initial point possibly more susceptible to getting trapped 

in local minima, although the much improved speed of computation allows for additional 

searches to be made to increase the confidence in the solution. The hybrid GA-PS 

algorithm, on the other hand, does not require the user to specify the starting point as it is 

generated automatically for the PS stage by the initial GA phase. Moreover, the 

performance of the proposed hybrid method improves with the increase of size and 

complexity of the system. Overall, the proposed algorithm has been shown to perform 

extremely well for solving economic dispatch problems. 

 
V.7. A HBB–BC optimization algorithm for solving the Different EDP : 
In this section, we applied a Hybrid Big Bang–Big Crunch (HBB–BC) optimization 

algorithm technique for solving the different economic load dispatch (ELD) problems in 

power systems. Many nonlinear characteristics of the generator, such as ramp rate limits, 

prohibited operating zone, and non-smooth cost functions are considered using the 

proposed method in practical generator operation. The feasibility of the proposed method 

is demonstrated for three different systems, and it is compared with Big Bang–Big 

Crunch (BB–BC) method and other optimization methods. The experimental results show 

that the proposed HBB–BC method was indeed capable of obtaining higher quality 

solutions efficiently in ELD problems.  

A Hybrid Big Bang–Big Crunch (HBB–BC) Optimization method has been 

employed to solve economic dispatch problem. The HBB–BC method consists of two 
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phases: a Big Bang phase where candidate solutions are randomly distributed over the 

search space, and a Big Crunch phase working as a convergence operator where the 

center of mass is generated. Then new solutions are created by using the center of mass to 

be used as the next Big Bang [154] .These successive phases are carried repeatedly until a 

stopping criterion has been met. This algorithm not only considers the center of mass as 

the average point in the beginning of each Big Bang ,but also similar to Particle Swarm 

Optimization-based approaches [6], utilizes the best position of each particle and the best 

visited position of all particles. As a result because of increasing the exploration of the 

algorithm, the performance of the BB–BC approach is improved [154]. 

The proposed approach has been applied to various test systems, and the results show 

that performance of the proposed approach reveal the efficiently and robustness when 

with the classical BB–BC method and other optimization algorithms reported in literature 

in the solution quality and computation efficiency. 
 

V.7.1. Applying the HBB–BC to the ED problem : 

In this section the proposed algorithm is applied to solve the economic dispatch problem. 

To apply the HBB–BC, the following steps have to be taken [155]. 

Step.1. Define the input data 

In this step, the input data including the cost coefficients of the generators, output 

generator constraints, transmission loss matrix coefficients and loads, the number of 

iterations (Itermax), the size of the population (candidates) and the adjustable parameters 

1α , 2α  and 3α . 

Step.2. Generate the initial population. 

Initialize randomly the individuals of the population according to the limit of each unit 

including individual dimensions. These initial individuals must be feasible candidate 

solutions that satisfy the practical operation constraints. 

Step.3. To each individual PGi of the population, employ the -coefficient loss formula to 

calculate the transmission loss PL. 

Step.4. Calculate the evaluation value (fitness) of each individual PGi in the population using the 

evaluation function given by (II.2) or (II.16). 
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Step.5. Compare each individual’s evaluation value with it's lbestPg is the best fitness of the 

particle up and gbestPg is the best fitness among all candidates and find the center of mass

c
GdP according to (IV.10). 

Step.6. Calculate new candidates using eq.(IV.17) 

krandPPkPkPkPkP MinGdMaxGd
gbest

Gd
lbest

Gd
c

GddGi /)..())().1()(.).(1()(.)1( ,,32211,  
 (V.2) 

Where i=1, 2, …, n, d=1, 2, …, m 

Where n is the population size, m is the number of units, PGd,Max and PGd,Min are parameter 

upper and lower limits, k number of iterations and 1α , 2α  and 3α  is the adjustable 

parameters. 

Step.7. If the number of iterations reaches the maximum, then go to Step 8. Otherwise, go to Step 

3. 

Step.8. The individual that generates the latest gbestPg is the optimal generation power of each 

unit with the minimum total generation cost. 
 

V.7.2. Simulation Results and Discussion : 

The proposed HBB–BC algorithm has been applied to solve the ELD problem on three 

different test cases for verifying its feasibility. which are: a 6-generator system and a 15-

generator system with quadratic cost function and transmission loss, a 40-generator 

system generators with valve-point loading effects, and a comparison with Big Bang–Big 

Crunch (BB–BC) method and other optimization methods. 

In these examples, the software is implemented in MATLAB 2011Ra environment 

and run on a PC with Intel core i3 1.90. GHZ PC and 4 GB of RAM. 

According to simulation, the following parameters in the HBB–BC algorithms 

methods are used: 

-The number of generations is 100 and the population size is 100 individuals 

(candidates), 

- The individual having minimum cost value is chosen for Big-Crunch phase, 

- Take the adjustable parameters 1α =0.3, 2α  =0.5 and 3α  =1.3.  
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V.7.2.1. Test System 1: Economic Dispatch of the six-unit system considering losses : 

In this case, to demonstrate the effectiveness of the proposed method, the HBB-BC are 

applied to solve the 6-unit power system, which considers the prohibited operating zones, 

ramp rate limits, and transmission network losses. The input data have been adopted from 

[156]. The load demand is 1263 MW. The simulation results are compared with BB-BC 

algorithm and various methods reported in literatures, such as the PSO [156], GA [156], 

CPSO [157], AIS [79], MTS [130] and BA [158] Their best solutions are shown in table 

V.25 and the performance parameters comparisons are shown in table V.26. 

 

 
Figure V.34 : The convergence characteristic of the six-generator systems for different 

adjustable parameters to the HBB–BC algorithms.  
 

Table V.25 : Comparison of the best results for a 6-unit system for demand of 1263 MW. 
Generator  
Power Output 

HBB-BC BB-BC GA 
[155] 

PSO 
[156] 

CPSO 
[157] 

AIS [79] MTS 
[130] 

BA 
[158] 

Pg1 (MW) 
Pg2 (MW) 
Pg3 (MW) 
Pg4 (MW) 
Pg5 (MW) 
Pg6 (MW) 
Power loss (MW) 
Total Power(MW)  
Total Cost ($/hr) 

441.36 
175.68  
262.82 
134.57 
169.98 
91.16 
12.57 
1275.57 
15444.26 

455.48 
167.30 
271.76 
147.69 
163.49 
69.67 
12.41 
1275.41 
15448.34 

474.81  
178.64  
262.21 
134.28 
151.90 
74.18 
13.02 
1276.02 
15459.0 

447.50  
173.32  
263.47  
139.06 
165.48 
87.13 
12.96 
1275.96 
15450.0 

434.43  
173.32 
274.47  
128.06 
179.48  
85.93 
12.69 
1275.69 
15446.0 

458.29  
168.05 
262.52  
139.06 
178.39  
69.34 
12.65 
1275.65 
15448.0 

449.37  
182.25 
254.29 
143.45  
161.97 
86.02 
14.35 
1277.35 
15451.6 

438.65 
167.90 
262.82 
136.77 
171.76 
97.67 
12.57 
1275.57 
15445.9 

   
Fig. V.34 shows the convergence characteristic of the proposed method for six-

generating unit system for different adjustable parameters. α1, α2 and α3 are adjustable 
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parameters controlling the influence of the global best and local best on the new position 

of the candidates, respectively. 

Using α1= 1.0 allows an initial search of the full range of values for each design 

variable. Fig. V.34 shows the effect of various values for α1, α2 and α3 on the 

convergence characteristic of the proposed method for six-generating unit system. This 

figure shows that α1=0.3, α2=0.5 and α3=1.3, are suitable values for HBB–BC algorithm. 

These parameter values are used for all other examples presented.  

For this problem, can make the appropriate choice of the adjustable parameters 

codified somewhat, resulting from experimental and observational limits, where;  

For the parameters α1 its values are ranging between 0.5 and 0.1 for the role they 

play in a random distribution on the previous point. 

And for the parameters α2 it is better to be often 0.5 in order to guarantee the 

inclusion of best local and global fifty-fifty where both have an equal chance to influence, 

And for α3 are the largest in terms of field can be identified between 0.5 and 2, where 

there is no big difference with one of the values of the field, because it represent the size 

of the search space, and decreases with an increase the number of iterations. The best 

adjustable parameters are α1=0.3, α2=0.5 and α3=1.3, it reaches to the optimum point after 

around 92 iterations. 
 

Table V.26 : Performance parameters comparison case 1. 

Methods Cost ($/hr) Average 
CPU time 

(s) 

Standard 
deviation Min. Average. Max. 

GA [159] 
PSO [159] 
CPSO [157] 
AIS [79] 
MTS [130] 
TSA [158] 
BA [158] 
BB-BC 
HBB-BC 

15459.00 
15450.00 
15446.00 
15448.00 
15450.06 
15449.20 
15445.87 
15448.34 
15444.26 

15469.00 
15454.00 
15449.00 
15459.70 
15451.17 
15495.82 
15448.83 
15495.16 
15446.46 

15469.00 
15492.00 
15490.00 
15472.00 
15453.64 
15632.14 
15452.92 
15532.72 
15448.89 

41.58 
14.86 
8.13 
NA 
5.98 
18.97 
5.64 
6.12 
5.6554 

- 
- 
- 
- 
0.93 
35.10 
1.56 
1.81 
1.52 

 

 

The best results obtained from HBB-BC and other methods are compared in table 

V.25. The results show that the proposed approaches have high solution quality than 

others method as depicted. 
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Figure V.35 : Convergence characteristic of 6-generator system. 

 

Table V.26 shows the effectiveness in term of the solution quality among 100 trials 

of proposed methods. The solutions of the proposed methods higher quality than the rest 

methods in term of minimum cost, average cost, maximum cost, computational time and 

solution deviation. Fig. V.35 shows the convergence characteristic of the proposed 

combined methods.  
 

V.7.2.2. Test System 2: 15 units: Economic dispatch considering Transmission loss : 

The system contains 15 thermal units whose characteristics are taken from [131]. The 

load demand is 2630 MW. The loss coefficients β matrices are shown in Appendix. 

Transmission loss has been considered here. The result obtained from the proposed HBB-

BC been compared with different PSO techniques [130], and different GA [130] methods 

and their best solutions are shown in table V.27 and the performance parameters 

comparisons are shown in table V.28. The convergence characteristic of the 15-generator 

systems in case of HBB-BC algorithm is shown in fig. V.36. 
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of 15-generator system. 

 

Figure V.37 : Distribution of objective 
function value for 20 trails. 
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The fig. V.37 shows distribution the generation cost of the best solution for each run 

in the test System 15 units.  
 

Table V.28 : Comparison of HBB–BC performance with other methods. 

Methods Fuel Cost ($/hr.) Average 
time (s) Best cost Average 

cost 
Worst 
cost 

Standard 
deviation 

SA [130] 
GA [130] 
TSA [130] 
PSO [130] 
MTS [130] 
BB–BC 
HBB–BC 

32786.40 
32779.81 
32762.12 
32724.17 
32716.87 
32659.35 
32554.61 

32869.51 
32841.21 
32822.84 
32807.45 
32767.21 
32710.92 
32566.57 

33028.95 
33041.64 
32942.71 
32841.38 
32796.15 
32750.92 
32607.71 

112.32 
81.22 
60.59 
21.24 
17.51 
18.23 
12.29 

71.25 
48.17 
26.41 
13.25 
3.65 

13.14 
12.65 

 

Table V.27 : Best solution of 15 units system. 

Unit power output 
 

Methods 
SA [130] GA 

[130] 
TS [130] PSO 

[130] 
MTS 
[130] 

BB–BC HBB–BC 

P1 (MW) 
P2 (MW) 
P3 (MW) 
P4 (MW) 
P5 (MW) 
P6 (MW) 
P7 (MW) 
P8 (MW) 
P9 (MW) 
P10 (MW) 
P11 (MW) 
P12 (MW) 
P13 (MW) 
P14 (MW) 
P15 (MW) 
Total output (MW) 
Power loss (MW) 
Total cost ($/h) 

453.6646 
377.6091 
120.3744 
126.2668 
165.3048 
459.2455 
422.8619 
126.4025 
54.4742 
149.0879 
77.9594 
73.9489 
25.0022 
16.0636 
15.0196 
2663.29 
33.2737 
32786.40 

445.5619 
380.0000 
129.0605 
129.5250 
169.9659 
458.7544 
417.9041 
97.8230 
54.2933 
144.2214 
77.3002 
77.0371 
31.1537 
15.0233 
33.6125 
2661.23 
31.2363 
32779.81 

453.5374 
371.9761 
129.7823 
129.3411 
169.5950 
457.9928 
426.8879 
95.1680 
76.8439 
133.5044 
68.3087 
79.6815 
28.3082 
17.7661 
22.8446 
2661.53 
31.4100 
32762.12 

454.7167 
376.2002 
129.5547 
129.7083 
169.4407 
458.8153 
427.5733 
67.2834 
75.2673 
155.5899 
79.9522 
79.8947 
25.2744 
16.7318 
15.1967 
2661.19 
31.1697 
32724.17 

453.9922 
379.7434 
130.0000 
129.9232 
168.0877 
460.0000 
429.2253 
104.3097 
35.0358 
155.8829 
79.8994 
79.9037 
25.0220 
15.2586 
15.0796 
2661.36 
31.3523 
32716.87 

454.9991  
455.0000 
130.0000 
130.0000 
227.1366   
460.0000   
465.0000 
60.0000 
25.0000 
160.0000 
20.0000 
20.0000 
25.0000 
15.0000 
15.0000 
2662.13 
32.1358 
32659.35 

450.5573 
455.0000 
130.0000 
130.0000 
249.5857 
457.5472 
465.0000 
60.0000 
25.0000 
42.0473 
65.4235 
72.3239 
25.0000 
15.0000 
15.0000 
2657.62 
27.4849 
32554.61 

 
 

V.7.2.3. Test System 3: Large system: 40 units with valve-point loading effects : 

A system with 40 generators with valve point loading is used here. The input data are 

given in [135]. The load demand is 10500 MW.  
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 Transmission loss has not been considered here. The result obtained from 

proposed HBB-BC method has been compared with NPSO-LRS [145], MDE [146], and 

other methods. Their best solutions are shown in table V.28 the performance parameters 

comparisons are shown in table V.29. The convergence characteristic of the 40-generator 

systems in case of HBB-BC algorithm is shown in fig. V.38.  

 
Table V.28 : Best power output for 40-generator system (Load=10500 MW) 

Generator Power 
Output 

HBB-BC BB-BC NPSO_LRS 
[145] 

NPSO 
[145] 

MDE 
[146] 

CBPSO-RVM 
[147] 

FAPSO-NM 
[148] 

Pg1 (MW) 
Pg2 (MW) 
Pg3 (MW) 
Pg4 (MW) 
Pg5 (MW) 
Pg6 (MW) 
Pg7 (MW) 
Pg8 (MW) 
Pg9 (MW) 
Pg10 (MW) 
Pg11 (MW) 
Pg12 (MW) 
Pg13 (MW) 
Pg14 (MW) 
Pg15 (MW) 
Pg16 (MW) 
Pg17 (MW) 
Pg18 (MW) 
Pg19 (MW) 
Pg20 (MW) 
Pg21 (MW) 
Pg22 (MW) 
Pg23 (MW) 
Pg24 (MW) 
Pg25 (MW) 
Pg26 (MW) 
Pg27 (MW) 
Pg28 (MW) 
Pg29 (MW) 
Pg30 (MW) 
Pg31 (MW) 
Pg32 (MW) 
Pg33 (MW) 
Pg34 (MW) 
Pg35 (MW) 
Pg36 (MW) 
Pg37 (MW) 
Pg38 (MW) 
Pg39 (MW) 
Pg40 (MW) 
Total Cost ($/hr) 

114.00 
114.00 
97.4243 
179.7324 
88.6784 
140.00 
300.00 
284.5997 
284.5737 
130.00 
94.00 
94.00 
214.7623 
304.5196 
394.2794 
394.2794 
489.2795 
489.2795 
511.2845 
511.2845 
523.2196 
523.2196 
523.2196 
523.2196 
523.2196 
523.2196 
10.00 
10.00 
10.00 
89.3218 
190.00 
190.00 
190.00 
200.00 
200.00 
200.00 
110.00 
110.00 
110.00 
511.2845 
121471.72 

113.9987 
112.2160 
97.4545 
179.2473 
96.9995 
140.0000 
298.2952 
285.1021 
284.5527 
130.0000 
94.000 
94.000 
214.7662 
304.3154 
394.2604 
394.2604 
489.2795 
489.2805 
511.3045 
511.3045 
523.2416 
523.2446 
523.2416 
523.2416 
523.2416 
523.2416 
10.00 
10.00 
10.00 
86.1458 
190.00 
190.00 
190.00 
198.6117 
199.2348 
199.9969 
110.00 
110.00 
110.00 
511.2634 
121523.57 

113.9761 
113.9986 
97.4241 
179.7327 
89.6511 
105.4044 
259.7502 
288.4534 
284.646 
204.812 
168.8311 
94 
214.7663 
394.2852 
304.5187 
394.2811 
489.2807 
489.2832 
511.2845 
511.3049 
523.2916 
523.2853 
523.2797 
523.2994 
523.2865 
523.2936 
10 
10.0001 
10 
89.0139 
190 
190 
190 
199.9998 
165.1397 
172.0275 
110 
110 
93.0962 
511.2996 
121664.43 

113.9891 
113.6334 
97.55 
180.0059 
97 
140 
300 
300 
284.5797 
130.0517 
243.7131 
169.0104 
125 
393.9662 
304.7586 
304.512 
489.6024 
489.6087 
511.7903 
511.2624 
523.3274 
523.2196 
523.4707 
523.0661 
523.3978 
523.2897 
10.0208 
10.0927 
10.0621 
88.9456 
189.9951 
190 
190 
165.9825 
172.4153 
191.2978 
109.9893 
109.9521 
109.8733 
511.5671 
121704.73 

110.831 
110.815 
97.399 
179.734 
87.808 
140 
259.6 
284.604 
284.601 
130 
168.799 
168.799 
214.759 
394.28 
394.28 
304.519 
489.279 
489.28 
511.28 
511.279 
523.279 
523.28 
523.28 
523.28 
523.281 
523.279 
10 
10 
10 
92.645 
190 
190 
189.999 
164.831 
164.802 
164.805 
109.999 
109.999 
109.999 
511.278 
121414.79 

114 
114 
97.4859 
179.7331 
97 
140 
300 
300 
286.0079 
130 
94 
94 
214.7598 
304.5196 
394.2794 
394.2794 
489.2794 
489.2794 
511.2794 
511.2794 
523.2796 
523.2794 
523.2797 
523.2802 
523.2795 
523.2794 
10 
10 
10 
97 
190 
190 
190 
200 
166.8603 
200 
110 
110 
110 
511.2794 
121555.32 

111.38 
110.93 
97.41 
179.33 
89.22 
140 
259.62 
284.66 
284.66 
130 
168.82 
168.82 
214.75 
394.28 
304.54 
394.3 
489.29 
489.29 
511.28 
511.29 
523.33 
523.48 
523.33 
523.33 
523.33 
523.33 
10 
10 
10 
88.7 
190 
190 
190 
165 
166 
165 
110 
110 
110 
511.3 
121418.3 

 

 
The proposed HBB-BC is efficiently and effectively implemented to solve the 

different economic load dispatch (ELD) problems, the HBB-BC optimization has several 

hp
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advantages over other evolutionary methods: Most significantly, a numerically simple 

algorithm and heuristic methods with relatively few control parameters; and the ability to 

solve problems that depend on large number of variables. 
 

 
Figure V.38 : Convergence characteristic of 40-generator system. 

  
Table V.29 : Comparison of results case 2 load=10500 MW. 
Method Minimum 

cost ($/h) 
Mean cost 

($/h) 
Maximum 
cost ($/h) 

Mean 
time (sec) 

CEP [135]  
FEP [135]  
MFEP [135] 
IFEP [135]  
NPSO-LRS [145]  
MDE [146] 
GA [146] 
CBPSO-RVM[147] 
PS [136]  
FAPSO-NM [148] 
EP-SQP[134] 
PSO [134]  
PSO-SQP [134]  
MPSO[149] 
ESO[138]  
DEC(2)-SQP(1) [138] 
TM [151]  
APSO [146] 
TS [153] 
ACO [153] 
BB-BC 
HBB-BC 

123488.29 
122679.71 
122647.57 
122624.35 
121664.43 
121414.79 
121996.40 
121555.32 
121415.14 
121418.3 
122323.97 
123930.45 
122094.67 
122252.27 
122122.16 
121741.98 
122477.78 
121663.52 
122288.38 
121811.37 
121523.57 
121471.72 

124793.5 
124119.4 
123489.7 
123382.0 
122209.31 
121418.44 
123807.97 
122281.14 
122332.7 
121418.80 
122379.6 
124155 
122245.3 

- 
122524.1 
122295.1 
123078.2 
122153.67 
122590.89 
121930.58 
122026.09 
121984.24 

126902.9 
127245.6 
124356.5 
125740.6 
122981.59 
121466.04 
122919.77 
123094.98 
125486.3 
121419.8 

- 
- 
- 
- 

123143.1 
122839.3 
124693.8 
122912.39 
122424.81 
122048.06 
122908.85 
122137.42 

1956.9 
1039.1 
2196.1 
1167.3 

19.8 
- 

320.31 
- 

42.98 
40 

997.73 
933.39 
733.97 

- 
- 

14.26 
94.28 
 5.05 

 238.35 
 92.54 
38.63 
16.52  
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V.7.2.4. Test System 4: IEEE 30 standard Environmental/economic power dispatch : 
The proposed algorithm is tested on standard IEEE 30-bus test for solving the CEED 

problem, the values of fuel cost, emission coefficients and The loss coefficients β 

matrices are given in appendix.5. 
 

Table  V.30 : Solutions of minimum fuel cost in IEEE 30 bus system (case 2). 
Objectives ED 

Method MOPSO 
[159] 

SPEA [160] LP 
[161] 

HBB-BC 

Generation cost ($/h) 
Emission (kg/h) 

loss (MW) 
P1 
P2 
P3 
P4 
P5 
P6 

CPU time (s) 

608.10 
0.22276 

3.05 
0.1689 
0.2738 
0.6026 
0.9349 
0.4923 
0.392 
9.85 

607.807 
0.22015 

3.38 
0.1086 
 0.3056  
0.5818  
0.9846 
 0.5288  
0.3584 
14.22 

606.314 
0.22330 

2.60 
0.1500 
0.3000 
0.5500 
1.0500 
0.4600 
0.3500 

- 

605.624 
0.2204 

2.42 
0.1280 
0.2931 
0.5649 
0.9945 
0.5294 
0.3483 

8.55 

 

The result obtained from proposed method has been compared with other methods 

and their best solutions in tables V.30, V.31 and V.32. A convergence characteristic of 

the IEEE 30-bus test system in is shown in figs. V.39, V.40 and V.41. 
 

 
Figure V.39 : Convergence characteristic of minimum fuel cost in IEEE 30 bus system  for 10 run. 
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Table  V.31 : Solutions of minimum Emission in IEEE 30 bus system. 

Objectives EED 
Method MOPS 

[159] 
SPEA 
[160] 

LP 
[161] 

HBB-BC 

Generation cost ($/h) 
Emission (kg/h) 

loss (MW) 
P1 
P2 
P3 
P4 
P5 
P6 

CPU time (s) 

644.27 
0.19357 

3.05 
0.3832 
0.5152 
0.5616 
0.3994 
0.5248 
0.4803 

9.85 

642.603 
0.19422 

3.05 
0.4043 
0.4525 
0.5525 
0.4079 
0.5468 
0.5005 
14.22 

639.60 
0.1942 

1.60 
0.4000 
0.4500 
0.5500 
0.4000 
0.5500 
0.5000 

- 

646.518 
0.19419 

3.54 
0.4132 
0.4595 
0.5345 
0.3879 
0.5551 
0.5191 
08.25 

 

 

CEED solution for the IEEE 30-bus test system is solved using HBB-BC algorithms. 

tables V.30, V.31 and V.32 summarize all the results for best fuel cost, best emission and 

combined economic and emission dispatch respectively. Convergence for best fuel cost, 

best emission and fuel cost and emission objective functions when optimized individually 

are  shown in figs. V.39, V.40 and V.41 respectively. 

From  this tables, it can be deduced  that the HBB-BC is equally capable of finding 

the best solution for each objective when two conflicting objectives are considered 

simultaneously.  

 
Figure V.40 : Convergence characteristic of minimum Emission in IEEE 30 bus system  for 10 run. 
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Table  V.32: Solutions combined economic and emission  dispatch  in IEEE 30 bus system. 
Objectives CEED 

Method MOPS 
[159] 

SPEA 
[160] 

NSGA 
[161] 

HBB-BC 

Fuel cost ($/h) 
Emission (kg/h) 
Cost total ($/h) 

loss (MW) 
P1 
P2 
P3 
P4 
P5 
P6 

CPU time (s) 

614.81 
0.20216 
1221.29 

3.04 
0.2106  
0.3854 
 0.5620 
 0.7260  
0.5247 
 0.4558 
10.27 

616.069 
0.20118 
1219.60 
9.299 
0.2594 
 0.3848 
 0.5645 
 0.7030 
 0.5431 
 0.4091  
14.22 

617.80 
0.2002 
1218.40 

2.95 
0.2935 
0.3645 
0.5833 
0.6763 
0.5383 
0.4076 
0.727 

623.763 
 0.19705 
1214.5 
 2.85 

0.2998 
0.4213 
0.5480 
0.5909 
0.5393 
0.4632 
 08.65 

 
 

 
Figure V.41 : Convergence characteristic of minimum Emission in IEEE 30 bus system  for 10 run. 

 
Figure V.43 : Pareto-optimal front for fuel cost and emissions. 
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Considering two objective functions: fuel cost and emission simultaneously, 

simulations results for the Pareto-optimal front were obtained as shown in the fig. V.43. 

The comparisons of computational time of the methods in case combined economic 

and emission dispatch are shown in table V.32. Clearly, the computational time of the 

NSGA algorithm method is lowest in comparison followed in the second rank HBB-BC 

to those of the other methods. 

The comparison of numerical results of combined economic and emission dispatch 

problem (CEED) using the HBB-BC method with the results obtained by other heuristic 

approaches are performed to demonstrate the robustness of the present algorithm. 

The results show that the optimal dispatch solutions determined by HBB-BC lead to 

lower active power loss then that found by other heuristic methods, which confirms that 

the HBB-BC is well capable of determining the global or near global optimum dispatch 

solution.  
 

V.8. Conclusion : 

In this chapter, a different metaheuristics algorithms (GA, PSO, PS, BB–BC, ABC) 

were implemented for solving different types of the economic dispatch problems, also we 

propose a new hybrid algorithm (GA–PS, PSO–PS, HBB–BC) for solving the EDP, the 

proposed methods are tested and validated on various electrical test systems and cases 

taking into different constraints, the results show that the optimal dispatch solutions 

determined, which confirms that the different algorithms are well capable of determining 

the global or near global optimum dispatch solution. The comparison of numerical results 

with those that reported in the literature recently is performed to demonstrate the 

robustness of the proposed techniques and confirmed its potential for solving practical 

economic dispatch problems. 

The comparative study between the solvers is carried out in terms of absolute cost, 

computational complexity, and fitness value achieved by the GA, PSO, PS, BB-BC, 

ABC, GA-PS, PSO-PS and HBB-BC algorithms, the hybrid algorithms are found to be 

better than that of global and local search techniques applied independently for all 

variants of EDPs.  
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CHAPTER VI 
Thermal Unit Commitment solution applying 

Genetic Algorithms (GAs) 

 
VI.1. Introduction : 
 In this chapter, a genetic algorithm (GA) is proposed to solve thermal unit commitment 

(UC) problem. The objective of UC is to determine the optimal generation of the 

committed units to meet the load demand and spinning reserve at each time interval, such 

that the overall cost of generation is minimized, while satisfying different operational 

constraints.  

Also, we applied a crossover operator ring crossover for genetic algorithm (RCGA) 

to solve the unit commitment (UC) problem, UC is the process of determining which 

generators should be operated each day to meet the daily demand of the system. 

Economic dispatch and unit commitment are widely used for the real time operation of 

power system. Many constraints can be placed on the unit commitment problem such as 

spinning reserve constraint, thermal unit constraint and other constraints. The results 

obtained show that, with the application of the proposed method (RCGA) to the unit 

commitment problem, better convergences and solutions are obtained than with the 

application of conventional genetic algorithm. 
 

VI.2. A genetic algorithm to solve thermal UC problem : 
The optimum economic operation and planning of electric power generation systems is 

an important issue in electric power industry. Unit commitment (UC) [162] plays a vital 

role in generation resource management. It is an optimization problem of determining the 

schedule of generating units within a power system in or-der to minimize fuel cost while 

satisfying a number of constraints such as unit capacity limit, ramp rate limits, spinning 

reserve constraints, minimum up time and down time constraints. However, UC problem 

not only minimizes the fuel cost (production costs) but also minimize the transition costs 
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(start-up/shut-down costs). The spinning reserve constraint used in UC, describes the 

reliability requirement by taking the generator outages into consideration [163]. 

Well known traditional techniques such as integer programming (IP) [31, 164], 

dynamic programming (DP) [165-166], branch and bound [167], Bender’s 

decomposition [168], and Lagrangian relaxation (LR) [169, 170] have been used to solve 

the UCP. More recently, metaheuristic approaches have been used such as simulated 

annealing (SA) [171], tabu search [172], and genetic algorithms (GA) [58, 173]. Other 

problem-specific heuristics can be found in [174-176]. 

Genetic algorithms (GAs) represent general-purpose search and optimization 

technique based on evolutionary ideas of natural selection and genetics [177]. They 

simulate natural processes based on principles of Lamarck and Darwin. In 1975, Holland 

developed this idea in his book “Adaptation in natural and artificial systems”. He 

described how to apply the principles of natural evolution to optimization problems and 

built the first GAs. Holland’s theory has been further developed and now GAs standup as 

a powerful tool for solving search and optimization problems. GAs are based on the 

principle of genetics and evolution [178]. Today, there exists many variations on GAs 

and term “genetic algorithm” is used to describe concepts sometimes very far from 

Holland’s original idea [179]. The two most commonly employed genetic search 

operators are crossover and mutation. Crossover produces offspring by recombining the 

information from two parents [177]. Mutation prevents convergence of the population by 

flipping a small number of randomly selected bits to continuously introduce variation. 

The driving force behind GAs is the unique cooperation between selection, crossover and 

mutation operator. A genetic operator is a process used in GAs to maintain genetic 

diversity. The most widely used genetic operators are recombination, crossover and 

mutation [177]. 

The main goal of this section is to use the GA algorithm to solve the unit-scheduling 

problem, and the Lambda-iteration method is used to solve the economic dispatch 

problem. Two systems are presented to investigate the efficiency of the proposed method. 

With the proposed method, the total generation cost can be remarkably reduced while 

considering various constraints reflecting the practical system. 
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VI.2.1. A GA to solve the UC problem : 

GA for the solution of UC problem have been earlier proposed by various researchers 

[58, 173], most of them differing in the method of representation, decoding and 

evaluation. However, earlier approaches do not provide sufficient or any information 

regarding the handling of constraints and other objectives. Since a UC problem is 

incomplete without the consideration of the minimum up time (MUT) and minimum 

down time (MDT) constraints, a detailed methodology for obtaining the complete 

solution with constraints is described in this paper [59]. 

To resolve the UCP using the GA method proposed, the implementation consists of 

initialization, cost calculations, elitism, reproduction, crossover, mutation, economic 

dispatch (ED) calculations, swap mutation operator and repair operator of the UC 

schedules.  A flowchart of the algorithm is given in fig. VI.1  [57]. 

A member of the population consists of a matrix with dimension equal to the number 

of generators by the number of scheduling periods. This matrix represents the on/off 

status of the generating units. The first step of initialization consist of  finding the 

cheapest economic dispatches for each hour that meet system demand and a 10% 

spinning reserve. A member of the population is then created by randomly choosing one 

of the cheapest economic dispatches for each hour [57]. 

Different steps of UC based GA algorithm is mentioned below: 
 

VI.2.1.1 Initial Population :  

A number of NP initial binary-coded solutions (genotype) are produced at random to 

form the initial population. Each population is evaluated, and its fitness value is 

calculated from equation (III.3). With the initial population produced and evaluated, 

genetic evolution takes place by means of three genetic operators namely Selection, 

Crossover and Mutation. 
 

VI.2.1.2. Roulette wheel parent selection : 

After the evolution of the initial randomly generated population the GA begins the 

creation of the new generation of solutions. Two genotypes are selected from parent 

genotypes with a probability proportional to the genotypes relative fitness within the 

population [180]. 
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VI.2.1.3. Crossover : 

To get the new patterns of genetic strings during the evolution process, crossover 

operator: ring crossover is used. 
 

VI.2.1.4. Mutation :  

With a small probability, randomly chosen bits of the offspring genotypes change from 

‘0’ to ‘1’ and vice versa [180]. 
 

VI.2.1.5. Selection :  

The entire population, including parent and offspring are arranged in descending order. 

The first NP solutions survive and are transcribed along with their elements to form the 

basis of the next generation.  

The above process is repeated until the given maximum generation count is reached. 

In addition, some advanced GA features are also implemented including Elitism, 

Turn-off generator mutation, Swap mutation  operator and Repair operator [180]. 
 

VI.2.1.6. Elitism :  

The best solution of every generation is copied to the next so that the possibility of its 

destruction through a genetic operator is eliminated.  
 

 
Figure VI.1 : GA flowchart. 
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VI.2.1.7. Swap mutation operator :  

Based upon the full load average production cost of the units bits where exchanged for 

each scheduled of a genotype with some probability to avoid the local convergence [58]. 
 

VI.2.1.8. Repair operator : 

All the individuals of the new population are subjected to a mechanism intended to repair 

violations of the constraints of minimum start-up and shut-down times. This process is 

only carried out in one randomly selected generating unit [181]. 
 

VI.2. Experimental results : 

In this section, the GA is applied to solve UC problems. For implementing GA technique 

to solve UC problem, population size of 40 and the maximum number of generation 

(iterations) of 300 are taken. Software is developed in MATLAB to solve seven different 

UC problems and tested on a Pentium IV, 3-GHz personal computer with 4 GB RAM. 

The algorithm is tested in two systems (Small-scale and Large-scale UC problem) and the 

results of the proposed method is compared to another GA methods GA [182], GA [60], 

GA [59], SGA [180], TLGA [180], FPGA [183], GA [58] and ICGA [184], and 

compared with other metaheuristic methods BPSO [60], GA [60],  APSO [185],  BP 

[186],  TSGB [186], IPSO [187], and Hybrid  PSO-SQP [87] 

In all experiments, parameters of GA for experiments were as following: Gaussian 

mutation with Pm mutation coefficient of 0.2 and crossover rate Pc of 0.9 was used, initial 

population NP of size 40 was randomly created and used in experiments. 
  

VI.2.1. Small-scale UC problem (ten-unit) : 

In this case, 10 units system has been tested in order to prove the applicability of the 

proposed method for solving the UC problem. The fuel cost data along with generation 

constraints of 10 units system and Power demands for 24 h are taken from [60] and also 

given in Appendix. 6 (A .11 and A.12, respectively). In the simulation, the reserve is 

required to be 5% and 10% of the power demand. The proposed GA approach is applied 

to solve the UC problem considering all constraints such as generator constraints, reserve 

constraint and minimum up time and minimum down time. Scheduling of the generation 

obtained by the proposed GA method for 10 units system is given in table VI.1 for case 

with 5% of spinning reserve and in table VI.2 for case with 10% of spinning reserve. To 
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show the advantages of the proposed method, we will compare the performance of the 

proposal method with other met-heuristic methods in table VI.3 and table VI.4, also 

shows that the average and worst cost produced by GA is least compared to other 

methods emphasizing its superiority in terms of robustness; results of table VI.4 also 

shows that proposed GA method takes acceptable average computational time (CT) than 

other algorithms. Figs. VI.2 and VI.3 shows the convergence tendency of the best 

evaluation value in the population during GA processing for 10 unit system with different 

spinning reserve. 

 
Figure VI.2 : Typical performance of the GA in case with 5% of  spinning  reserve. 

 
Figure VI.3 : Typical performance of the GA in case with 10% of spinning reserve. 

Table VI.3 : Simulation results of 10 unit system with 5% of spinning reserve. 
Methods Best  ($) Average  ($) Worst  ($) 

BPSO [60] 
GA [60]   
APSO [185]   
BP [186]   
TSGB [186]  
IPSO [187]   
Hybrid  PSO-SQP [87]  
GA 

565,804 
570,781 
561,586 
565,450 

560,263.92 
558,114.80 
568,032.30 
560,013.87 

566,992 
574,280 

─ 
─ 
─ 
─ 
─ 

563,302.10 

567,251 
576,791 

─ 
─ 
─ 
─ 
─ 

565,933.22 
                                               Sign (─) means that no amount has been reported. 
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Table VI.1 : Best individual-Generation schedule and costs obtained by GA for 10 unit system with 5% 
of spinning reserve. 

 
Hou

r 

Unit 
Schedule 

Production 
Cost ($) 

Transiti
on 

Cost ($) 

Spinning 
Reserve 
[MW] 

Generation schedule (MW) 

Unit 1      Unit 2          Unit 3       Unit 4        Unit 5        Unit 6         Unit 7       Unit 8    Unit 9     Unit 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1100000000 
1100000000 
1100100000 
1100100000 
1100100000 
1101100000 
1101101000 
1101101000 
1111101000 
1111101100 
1111111001 
1111111011 
1111111000 
1111110000 
1101110000 
1101100000 
1101100000 
1101100000 
1101110000 
1111110110 
1111110000 
1111000000 
1110000000 
1110000000 

13683.12 
14554.49 
16809.44 
18597.66 
19608.53 
21860.28 
23541.20 
24569.98 
26842.13 
29807.79 
31253.39 
33286.59 
30057.55 
26588.96 
24318.01 
20895.88 
20020.01 
21860.28 
24318.01 
30164.02 
26588.96 
21879.33 
17795.28 
16052.85 

0 
0 

900 
0 
0 

1120 
520 

0 
1100 

60 
400 
60 
60 
0 
0 
0 
0 
0 

170 
670 

0 
0 
0 
0 

210 
160 
222 
122 
72 

102 
137 
87 

117 
72 

102 
107 
152 
112 
82 

152 
202 
102 
82 

122 
112 
70 

140 
240 

455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 

245 
295 
370 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
440 
390 
455 
455 
455 
455 
385 
315 
215 

0  
0  
0  
0  
0  
0  
0  
0  
130  
130  
130  
130  
130  
130  
0  
0  
0  
0  
0  
130  
130  
130  
130  
130 

0  
0  
0  
0  
0  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
 0  
 0 

0 
0 
25 
40 
90  
60  
85 
135 
105 
162 
162 
162 
162 
110 
140 
25 
25 
60 
140 
162 
110 
 0 
 0 
 0 

0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
80  
80  
33  
20  
20  
0  
0  
0  
20  
48  
20  
0  
0  
0 

0  
0  
0  
0  
0  
0  
25  
25  
25  
25  
28 
25  
25  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
43 
0 
0 
10 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 

0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
53  
0  
0  
0  
0  
0  
0  
0  
10  
0  
0  
0  
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Total                      554,953.87     5060        3078 Total generation cost ($):                560,013.8727 
 
Table VI.2 : Best individual-Generation schedule and costs obtained by GA for 10 unit system with 10% 

of spinning reserve 
 

Hour 
Unit 

Schedule 
Production 

Cost ($) 
Transition 
Cost ($) 

Spinning 
Reserve 
[MW] 

Generation schedule (MW) 

Unit 1   Unit 2      Unit 3    Unit 4    Unit 5    Unit 6     Unit 7  Unit 8    Unit 9  Unit 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1100000000 
1100000000 
1100100000 
1100100000 
1101100000 
1111100000 
1111100000 
1111100000 
1111110001 
1111111001 
1111111011 
1111111111 
1111111001 
1111110100 
1111100000 
1111100000 
1111100000 
1111100000 
1111100000 
1111110111 
1111110010 
1101110000 
1100010000 
1100000000 

13683.12 
14554.49 
16809.44 
18597.66 
20020.01 
22387.04 
23261.97 
24150.34 
27331.67 
30086.01 
31944.52 
33890.16 
30086.01 
27303.21 
24150.34 
21513.65  
20641.82 
22387.04 
24150.34 
30883.37 
27321.52 
22276.37 
17645.36 
15427.41 

0 
0 

900 
0 

560 
1100 

0 
0 

400 
520 
60 
60 
0 
30 
0 
0 
0 
0 
0 

350 
0 
0 
0 
0 

210 
160 
222 
122 
202 
232 
182 
132 
167 
152 
157 
162 
152 
167 
132 
282 
332 
232 
132 
177 
167 
182 
90 
110 

455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 

245 
295 
370 
455 
390 
360 
410 
455 
455 
455 
455 
455 
455 
455 
455 
310 
260 
360 
455 
455 
455 
455 
425 
345 

0  
0  
0  
0  
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 
0 

0  
0  
0  
0  
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 

0 
0 
25 
40 
25 
25 
25 
30 
100 
162 
162 
162 
162 
100 
30 
25  
25  
25 
30 
162 
100 
40 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
20 
33 
73 
80 
33 
20 
0 
0 
0 
0 
0 
38 
20 
20 
20 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
25 
25 
25 
25 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
43  
0  
10  
0  
0  
0  
0  
0 
10  
0  
0  
0  
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
0 
0 
0 
0 
0 
0 
0 
10 
10 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
10 
10 
10 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 

Total                       560,503.01   3980         4255 Total generation cost ($):                  563,478.541239          
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Table VI.4 : Comparison of solution quality with other GA methods with 10% of spinning reserve. 

Methods Best  
generation 

 cost ($) 

Average  
generation   

cost ($) 

Worst  
generation 
   cost ($) 

Standard 
 deviation 

(%) 

The 
computation 

time (sec.) 

GA [182] 
GA [60] 
GA [59] 
SGA [180]  
TLGA [180]  
FPGA [183]  
GA [58]  
ICGA [184]  
GA 

565,866 
570,781 

609,023.69  
565,121 
56,4426 
564,094 
565,825 
566,404 

564,483.01 

567,329 
574,280 

─ 
─ 
─ 

566,675  
─ 
─ 

567,136.23 

571,336 
576,791 

─ 
622,846 
566,182 
569,237 

─ 
─ 

 569,5750.11 

0.26 (%) 
1549.9 ($) 

─ 
9.27 (%) 
0.31 (%) 
0.33 (%) 

─ 
─ 

0.42 (%) 

113 
62.29 
73.68 
462.31 
439.313 

─ 
─ 
─ 

112.52 

 

VI.2.2. Large-scale UC problem (20  units) :  

To verify the effectiveness and efficiency of the proposed GA method in solving large-

scale UC problem, the proposed method is applied on 20 unit systems. For 20 units, the 

initial 10 units are duplicated and the demand is multiplied by 2. The statistical results 

obtained by different algorithms of 20 units test system are shown in table VI.5. 
 

 
Figure VI.4 : Convergence characteristic of fuel cost using GA for 20-units based UC problem. 

 

From the simulation results, it is very evident that GA not only has found the highest 

quality results among the all algorithms compared. The best UC schedule of the 20-unit 

test system on 24-h scheduling horizon with one-hour interval are shown in table VI.6. 

To illustrate the convergence property of the proposed algorithm, fuel cost values over 

300 iterations for 20 units systems are plotted in fig. VI.4. 
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Table VI.5 : Simulation results of 20-unit system with 10% of spinning reserve. 

Methods Best generation 
 cost ($) 

Average generation   
cost ($) 

Worst generation 
   cost ($) 

ICGA [184]   
LRGA [188]   
GA [58]  
LR [58]  
EP [189]  
AG [190]  
BCGA [184]  
UCC-GA [191]  
DPLR [60]  
SF [192]  
EALR [60]  
CR-GA [193]   
Proposed 

─ 
─ 

1,126,243 
1,130,660 
1,125,494 

─ 
1,130,291 
1,125,516 
1,128,098 
1,125,161 
1,123,297 

─ 
1,126,185 

1,127,244 
1,122,622 

─ 
─ 

1,127,257 
1,124,651 

─ 
─ 
─ 
─ 
─ 

1,236,981 
1,127,268 

─ 
─ 

1,132,059 
─ 

1,129,793 
─ 
─ 
─ 
─ 
─ 
─ 
─ 

1,1307,64 
 

Table VI.6 : Best UC schedule of the 20-unit test system on 24 h scheduling horizon with 1 hour interval 

Hour Generating Unit 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

455 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 

245 
295 
382.5 
417.5 
402.5 
427.5 
455 
450 
455 
455 
455 
455 
455 
455 
455 
310 
260 
360 
455 
455 
455 
417.5 
432.5 
345 

0 
0 
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 

0 
0 
0 
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 

0 
0 
25 
25 
25 
25 
35 
25 
95 
162 
162 
162 
162 
100 
30 
25 
25 
25 
30 
162 
105 
25 
25 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
33 
73 
80 
33 
0 
0 
0 
0 
0 
0 
43 
20 
20 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
25 
25 
25 
25 
25 
25 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
43 
0 
10 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
0 
0 
0 
0 
0 
0 
0 
10 
10 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
10 
10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

455 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 
445 

245 
295 
382.5 
417.5 
402.5 
427.5 
455 
449.5 
455 
455 
455 
455 
455 
455 
455 
310 
260 
360 
455 
455 
455 
417.5 
432.5 
345 

0 
0 
0 
0 
0 
0 
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 

0 
0 
0 
0 
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 
0 

0 
0 
0 
0 
0 
0 
35 
25 
95 
162 
162 
162 
162 
100 
30 
25 
25 
25 
30 
162 
105 
0 
0 
0 

0 
0 
0 
0 
0 
20 
20 
20 
20 
33 
73 
80 
33 
0 
0 
0 
0 
0 
0 
43 
20 
20 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
25 
25 
25 
25 
25 
25 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
43 
0 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 

 
 

This section presents a genetic algorithm for solving the thermal unit commitment 

(UC) problem. The proposed algorithm is applied on two test systems using 10 and 20 

thermal units in a scheduling period of 24 hours with different types of constraints and 

load profile in specific scheduling period. The test results demonstrate the effectiveness 

of the GA in searching global or near global optimal solution to the UC problem. Also the 

results show a good convergence and higher precision. 

A disadvantage of the GAs is that, since they are stochastic optimization algorithms, 

the optimality of the solution they  provide cannot be guaranteed, another disadvantage of 

GA-UC algorithms is their high execution time.  
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VI.3. Optimal UC using Genetic Algorithm based Ring Crossover :  
The main goal of this section is to use the RCGA algorithm to solve the unit-

scheduling problem, and the Lambda-iteration method is used to solve the economic 

dispatch problem. A matrix representation of the chromosome representing each 

scheduled unit's status during all scheduling period is adopted. The calculation processes 

of the RCGA algorithm involved in solving the UC problem are explained in detail. 
 

VI.3.1. The Proposed Method :  

VI.3.1.1. Overview of genetic algorithms :   

Genetic Algorithms are inspired by the study of genetics. They are conceptually based on 

naturally evolution mechanisms working on populations of solutions in contrast to other 

search techniques that work on a single solution [194]. The algorithm starts with the 

creation of a combination of coded structures called Chromosomes (solutions) which 

make up the initial population. The criterion which evaluates the quality of each 

Chromosome, is given by the Fitness corresponding to the evaluation of each individual 

for the objective function. Once the fitness of each of the individuals in the population is 

known, it is subjected to a Selection process in which the best evaluated individuals have 

a greater probability of being chosen as Parents for the exchange of genetic information 

called Crossover. Then a percentage of the Offspring’s (individuals generated in the 

crossover) are subjected to the Mutation process in which a random change is generated 

in the chromosome. This mutation process provides greater diversity between the 

individuals in the population. When the crossover and mutation processes are complete a 

new population is generated which replaces the original population. This must be 

repeated until one of the convergence criteria defined for the problem is met. Each of 

these cycles is known as a Generation [181]. 
 

VI.3.1.2. Crossover operators :  

The crossover operator is a genetic operator that combines two chromosomes 

(parents) to produce a new chromosome (offspring). The idea behind crossover is that the 

new chromosome may be better than both of the parents if it takes the best characteristics 

from each of the parents [195].  
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VI.3.1.3. Single Point Crossover :  

When performing crossover, both parental chromosomes are split at a randomly 

determined crossover point. Subsequently, a new child genotype is created by appending 

the first part of the first parent with the second  part of the second parent [196197]. A 

single crossover point on both parents' organism strings is selected. All data beyond that 

point in either organism string is swapped between  the two parent organisms. Fig. VI.5 

shows the single point crossover (SPC) process [177]. 
 

    
Figure VI.5 : Single point crossover. 

 

VI.3.1.4. Two Point Crossover :  

Apart from SPC, many different crossover algorithms have been devised, often involving 

more than one cut point. It should be noted that adding further crossover points reduces 

the performance of the GA. The problem with adding additional crossover points is that 

building blocks are more likely to be disrupted. However, an advantage of having more 

crossover points is that the problem space may be searched more thoroughly. In two-

point crossover (TPC), two crossover points are chosen and the contents between these 

points are exchanged between two mated parents [198199]. 

In fig. VI.6, the arrows indicate the crossover points. Thus, the contents between 

these points are exchanged between the parents to produce new children for mating in the 

next generation. 
 

   
 Figure VI.6 : Two point crossover. 

A C B D E F G H 

H F G E D C B A 

D C B A A C B D 
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B A E F 

G H 
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VI.3.1.5. Crossover Operator: Ring Crossover : 

Y. Kaya, M. Uyar and R. Tekin in their paper [177] have shown a new method of 

crossover that operates on a circular method. The experimental results did show that a 

good diversity was preserved because of the operator and the performance of this 

algorithm was much better than other operators. 

                 
 

Figure VI.7 : Ring crossover. 
 

The steps of the Ring Crossover operator are shown in fig. VI.7, this is the crossover 

operator (RC) that will be used for our problem UC. 
 

VI.3.2. Unit Commitment Using RCGA Method : 

GA for the solution of UC problem have been earlier proposed by various researchers 

[58], [200], most of them differing in the method of representation, decoding and 

evaluation. However, earlier approaches do not provide sufficient or any information 

regarding the handling of constraints and other objectives. Since a UC problem is 

incomplete without the consideration of the minimum up time (MUT) and minimum 

down time (MDT) constraints, a detailed methodology for obtaining the complete 

solution with constraints is described in this paper [201]. 
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To resolve the UCP using the RCGA method proposed, the solution may be 

represented, as shown in fig. VI.8, as a matrix of states of order NxH where N is the total 

number of generating units and H is the total number of hours in the study period. A 

binary code is used in which 1 represents state of the unit as On and 0 represents the state 

of the unit as Off. 
hour 

 1 2 3 4 … 23 24 

1 

2 

3 

⁞ 

 

N 

1 

1 
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⁞ 

1 

0 

1 

0 
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⁞ 
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0 

1 

1 

1 

⁞ 

0 

0 

1 

1 

0 

⁞ 

1 

0 

… 

… 

… 
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… 

1 

0 

0 

⁞ 

1 

0 

0 

1 

0 

⁞ 

0 

0 
 

 

Figure VI.8 : Solution representation. 
 

In this section the proposed algorithm is applied to solve the UC problem. To apply 

the RCGA, the following steps have to be taken [180]. 

Step 1: Initial Population: A number of NP initial binary-coded solutions (genotype) are 

produced at random to form the initial population. Each population is evaluated, and its 

fitness value is calculated from equation (III.3). With the initial population produced and 

evaluated, genetic evolution takes place by means of three genetic operators namely 

Selection, Crossover and Mutation. 

Step 2: Roulette wheel parent selection: After the evolution of the initial randomly generated 

population the GA begins the creation of the new generation of solutions. Two genotypes 

are selected from parent genotypes with a probability proportional to the genotypes 

relative fitness within the population. 

Step 3: Crossover: To get the new patterns of genetic strings during the evolution process, 

crossover operator: ring crossover is used. 

Step 4: Mutation: With a small probability, randomly chosen bits of the offspring genotypes 

change from ‘0’ to ‘1’ and vice versa. 

Step 5: Selection: The entire population, including parent and offspring are arranged in 

descending order. The first NP solutions survive and are transcribed along with their 

elements to form the basis of the next generation. 

Step 6: Elitism: The best solution of every generation is copied to the next so that the possibility 

of its destruction through a genetic operator is eliminated.  

Step 7: Turn-off generator mutation: This mutation operator turns off a generator for the 

un
it 
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scheduling period. The operator to be turned off was randomly determined. This operator 

is performed with some probability [57].  

Step 8: Repair operator: All the individuals of the new population are subjected to a mechanism 

intended to repair violations of the constraints of minimum start-up and shut-down times. 

This process is only carried out in one randomly selected generating unit [181]. 

 

            
Figure VI.9 : Binary representation of an individual xi in the population for a UC problem 

solution [43]. 
 

Figure VI.9 shows a matrix representation of an individual xi in the population. 

When the size of the population is NP, the dimension of the population is equal to 

10×24×NP. We can use the row values of the matrix to judge whether each scheduled-

unit satisfies the MUT/MDT constraints, and to solve the transition cost during all 

scheduled period. We can use the column values to solve the ED solution and the 

production cost [43]. 
 

 

 

 

Unit-scheduled problem 
Objective: 

Feasible combinations &Transition cost 
Constraints: 

Minimum up time (MUT). 
Minimum down  time (MDT). 

Method: 
Using      RCGA   method      searches      feasible 

combinations and satisfies the system constraints. 

Economic Dispatch problem 
Objective: 

Min. Production cost. 
Constraints: 

Power balance, Spinning reserve and Generating units limits. 
Method: 

Using the Lambda-iteration solves the allocation of generation form 
those scheduled units and satisfies the units constraints. 

 

UC problem 
Objective function: 

Min. (Production cost + Transition cost). 
Subject to: 

System constraints./ Generating units limits. 

Individual xi 

Population  

Unit 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

      1 
      2 
      3 
     4 
     5 
     6 
     7 
     8 
    9  

10 

1  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
1  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 
0  0  0  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1   1   1   1   0   0   0 
0  0  0  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1   1   1   1   0   0   0 
0  0  0  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1   1   1   1   1   0   0 
0  0  0  0  0  0  0  0  1  1   1   1   1   1   1   1   0   1   1   1   1   1   0   0 
0  0  0  0  0  0  0  0  0  1   1   1   1   1   0   0   0   0   1   1   0   0   0   0 
0  0  0  0  0  0  0  0  0  0   1   1   1   0   0   0   0   0   0   0   0   0   0   0 
0  0  0  0  0  0  0  0  0  0   1   1   1   0   0   0   0   0   0   0   0   0   0   0 
0  0  0  0  0  0  0  0  0  0   0   1   1   0   0   0   0   0   0   0   0   0   0   0 
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VI.3.2. Numerical tests : 

The RCGA is applied to UC problems for realistic power systems of different sizes, along 

with hourly load demands. Also, their results are compared with those of previous works 

which used the same test. For each test case, 30 independent trials are conducted to 

compare the solution quality and convergence characteristics. The algorithm of this 

method was programmed in MATLAB environment and have been executed on a 

Pentium IV, 3-GHz computer with 4 GB RAM. 

In all experiments, parameters of GA for experiments were as following: with 

mutation rate Pm of 0.3 and crossover rate Pc of 0.8 was used, initial population NP of 

size 40 was randomly created. 
 

VI.3.2.1. Test system 1 (Wood and Wollenberg 1996) : 

The algorithm was tuned using a small test problem (Wood and Wollenberg 1996) 

consisting of four units and a time horizon of eight hours and adding a quadratic fuel cost 

term. The new system has an optimal solution of $74,476.075. The system data is given 

in appendix. 7 (A.13 and A.14). 
  

Table VI.7: Load distribution data for generator. 
 

Unit Pmin 
MW 

Pmax 
MW 

Hour 

1 2 3 4 5 6 7 8 

Unit 1 
Unit 2 
Unit 3 
Unit 4 
Load/MW 
Hourly cost ($) 
Start up cost ($) 
Total cost  ($) 

300 
250 
80 
60 
 

75 
60 
25 
20 

300 
150 
0 
0 
540 
9145.3 
0 
74,476.075 

300 
205 
25 
0 
530 
10892.2 
150 
 

300 
250 
30 
20 
600 
12570.5 
0,02 
 

300 
215 
25 
0 
540 
11079.3 
0 
 

300 
0 
80 
20 
400 
8531.8 
0 
 

255 
0 
25 
0 
280 
5845.5 
0 
 

265 
0 
25 
0 
290 
6024.7 
0 
 

300 
200 
0 
0 
500 
10066.3 
170 
 

 

Table VI.8: Unit combination schedule. 

 Hour 

 1 2 3 4 5 6 7 8 

Unit 1 
Unit 2 
Unit 3 
Unit 4 

1 
1 
0 
0 

1 
1 
1 
0 

1 
1 
1 
1 

1 
1 
1 
0 

1 
0 
1 
1 

1 
0 
1 
0 

1 
0 
1 
0 

1 
1 
0 
0 

 

Table VI.9: Comparison with other conventional GA. 

Methods  Total cost ($) 
GA [202] 
SGA 
RCGA 

74,675 
74,640.87 
74,476.07 
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 Figure VI.10 : Typical performance of the RCGA versus the conventional GA.  

 
 

Fig. VI.10 shows results obtained by including the ring crossover operator it can be 

observed that the RCGA requires fewer generations to converge than the conventional 

GA. Table VI.7 gives the hourly and total cost distribution data of the 4─generator unit in 

an 8 hours’ time period. for each hour, the expected output of each generator unit is 

evaluated, so that the load requirements are fulfilled. Table VI.8 presents the unit 

combination schedule for the test system, where 0 represents the off state and 1 the on 

state. Fig. V.11 shows the unit commitment schedule derived from this shut-down rule as 

applied to the hourly demands. 
 

 
Figure VI.11 : Unit commitment schedule. 

 

Tables VI.9 show the results of the proposed method comparing with other 

conventional GA method results, the obtained result in this section represents a nearer 

global optimal solution to the problem and verifies the correctness of the proposed 

algorithm. 
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VI.3.2.2. Test system 2 (ten-unit): 

The proposed RCGA is initially tested on a simple ten-unit base system with a 24-h time 

horizon. The unit characteristics of the ten-unit system and the demand are given in 

appendix. 6 (A .11 and A.12, respectively). 

In this simulation, the dimensions of an individual and a population are 10×24 and 

10×24×40, respectively.  
 

 
Figure VI.12 : Load demand for 24 h. 

 

Table VI.10 shows the best combination of scheduled-units in the initial population. 

The total generation cost through the scheduling duration is $572,798.24. Table VI.11 

shows the simulation results including the production cost, transition cost, and spinning 

reserve capacity of each scheduling time interval, unit-scheduled for 24-hour duration 

and the total generation cost. The total generation cost of the best combination of 

scheduled-units is $564,338. The load demand graph shown in fig. VI.12 has 5 sharp 

points including the first and the last hour values. Fig. VI.13 shows the convergence 

tendency of the best evaluation value in the population during RCGA processing with the 

conventional GA. 

 
Figure VI.13 : Typical performance of the RCGA versus the Conventional GA. 
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Table VI.10: Best individual in the initial population. 
 

Hour 
Unit 

Schedule 
Production 

Cost ($) 
Transition 
Cost ($) 

Spinning 
Reserve 
[MW] 

Generation schedule (MW) 
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1100000000 
1100010000 
1101010000 
1101010100 
1111000000 
1111000001 
1111100000 
1111111000 
1111111100 
1111111010 
1111111011 
1111111111 
1111111001 
1111111000 
1111110001 
1111100000 
1111100000 
1111100001 
1111100000 
1111110111 
1111110100 
1111110000 
1110000000 
1110000000 

13683.129 
15023.813 
17361.836 
19851.031 
20132.560 
22652.447 
23261.979 
25341.600 
27967.301 
30075.859 
31944.521 
33890.162 
30086.010 
27251.056 
25378.508 
21513.659 
20641.824 
23160.316 
24150.340 
30883.379 
27303.219 
22855.552 
17795.281 
16052.851 

0 
170 
560 
60 
550 
60 

1800 
690 
60 
60 
60 
60 
0 
0 
30 
0 
0 
60 
0 

320 
0 
0 
0 
0 

210 
240 
270 
225 
170 
125 
182 
297 
252 
152 
157 
162 
152 
197 
267 
282 
332 
287 
132 
177 
167 
312 
140 
240 

455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 

245 
275 
245 
335 
285 
375 
410 
415 
455 
455 
455 
455 
455 
455 
430 
310 
260 
350 
455 
455 
455 
340 
315 
215 

0 
0 
0 
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 

0 
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 

0 
0 
0 
0 
0 
0 
25 
25 
75 
162 
162 
162 
162 
85 
25 
25 
25 
25 
30 
162 
100 
25 
0 
0 

0 
20 
20 
20 
0 
0 
0 
20 
20 
33 
73 
80 
33 
20 
20 
0 
0 
0 
0 
38 
20 
20 
0 
0 

0 
0 
0 
0 
0 
0 
0 
25 
25 
25 
25 
25 
25 
25 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
10 
0 
0 
0 
0 
10 
0 
0 
43 
0 
0 
0 
0 
0 
0 
0 
10 
10 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
10 
0 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 

0 
0 
0 
0 
0 
10 
0 
0 
0 
0 
10 
10 
10 
0 
10 
0 
0 
10 
0 
10 
0 
0 
0 
0 

Total  568,258.24 4150 5127 Total generation cost ($):                    572,798.24534 

 

Table VI.11: Best individual by the proposed RCGA method. 
 

Hour 
Unit 

Schedule 
Production 

Cost ($) 
Transition 
Cost ($) 

Spinning 
Reserve 
[MW] 

Generation schedule (MW) 
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1100000000 
1100000000 
1100000001 
1100100000 
1101100000 
1111100000 
1111100000 
1111100000 
1111111000 
1111111010 
1111111011 
1111111111 
1111111001 
1111111000 
1111100000 
1111100000 
1111100000 
1111100000 
1111100000 
1111111100 
1111111000 
1100111000 
1100010000 
1100000000 

13683.1297 
14554.4997 
17074.9447 
18597.6677 
20020.0195 
22387.0445 
23261.9795 
24150.3407 
27251.0560 
30075.8593 
31944.5211 
33890.1629 
30086.0103 
27251.0560 
24150.3407 
21513.6595 
20641.8245 
22387.0445 
24150.3407 
30057.5503 
27251.0560 
22735.5210 
17645.3637 
15427.4197 

0 
0 
60 
900 
560 
1100 

0 
0 

860 
60 
 60 
60 
0 
0 
0 
0 
0 
0 
0 

 490 
0 
0 
0 
0 

210 
160 
115 
122 
202 
232 
182 
132 
197 
152 
157 
162 
152 
197 
132 
282 
332 
232 
132 
152 
197 
137 
90 

110 

455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 

245 
295 
385 
455 
390 
360 
410 
455 
455 
455 
455 
455 
455 
455 
455 
310 
260 
360 
455 
455 
455 
455 
425 
345 

0 
0 
0 
0 
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 
0 

0 
0 
0 
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0 
0 
0 

0 
0 
0 
40 
25 
25 
25 
30 
85 
162 
162 
162 
162 
85 
30 
25 
25 
25 
30 
162 
85 
145 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
20 
33 
73 
80 
33 
20 
0 
0 
0 
0 
0 
33 
20 
20 
20 
0 

0 
0 
0 
0 
0 
0 
0 
0 
25 
25 
25 
25 
25 
25 
0 
0 
0 
0 
0 
25 
25 
25 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
43 
0 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
10 
0 
0 
0 
0 
0 
0 
0 
10 
10 
10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Total   560,188.412 4150 4168 Total generation cost ($):                    564,338.4127 
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Fig. VI.11 shows a comparison of production cost at each hour between the best 

individual in the initial population and best individual of all generations by the proposed 

RCGA method. 

 

Figure VI.14 : Comparison of fuel cost. 
 

 

Fig. VI.15 shows the results of unit commitment optimization problem for ten-unit 

system by the proposed RCGA with a 24-h time horizon. In fig. VI.14, the amount of 

generators’ supply curve for each unit are normalized according to their maximum 

generation power during an hour. 
 

 
Figure VI.15 : The output data for all 15 units. 

0 5 10 15 20 25
$ 10 000

$ 15 000

$ 20 000

$ 25 000

$ 30 000

$ 35 000

Hour

P
ro

du
ct

io
n 

C
os

t 

 

 

The best in the initial population
The best by RCGA method

0 4 8 12 16 20 24

250
500

Hour

U
1

250
500

U
2

100
200

U
3

100
200

U
4

100
200

U
5

50
100

U
ni

t C
om

bi
na

tio
n 

S
ch

ed
ul

e

U
6

20
40

U
7

25
50

U
8

5
10

U
9

5
10

U
10



Chapter VI                                                                                                Thermal UC solution applying GAs  

130 
 

To show the advantages of the proposed method, we will compare the performance 

of the proposal method with conventional GA and another GA methods [202], [58], [43], 

[201180] and [18336] in table VI.12. 
   

Table VI.12 : Comparison of solution quality with other GA methods.  

Methods Best generation 
cost ($) 

Average generation   
cost ($) 

Worst generation 
cost ($) 

Standard 
deviation (%) 

The computation 
time (sec.) 

GA [202] 
GA [43] 
GA [201] 
SGA [180] 
TLGA [180] 
FPGA [183] 
GA [58] 
ICGA [184] 
RCGA 

565,866 
570,781 
609,023.69  
565,121 
564,426 
564,094 
565,825 
566,404 
564,338.41 

567,329 
574,280 
─ 
─ 
─ 
566,675  
─ 
─ 
566,997.62               

571,336 
576,791 
─ 
622,846 
566,182 
569,237 
─ 
─ 
569,637.25 

0.26 (%) 
1549.9 ($) 
─ 
9.27 (%) 
0.31 (%) 
0.33 (%) 
─ 
─ 
0.34 (%) 

113 
62.29 
73.68 
462.31 
439.313 
─ 
─ 
─ 
85.12 

          Sign (─) means that no amount has been reported. 

 

VI.3.2.3. Large-scale UC problem (20, 40, 60, 80, and 100 units):  

To verify the effectiveness and efficiency of the proposed RCGA method in solving 

large-scale UC problem, the proposed method is applied on 20-100 unit systems, the 20, 

40, 60, 80, and 100 units data are obtained by duplicating the base case (ten units), 

whereas the load demands are adjusted in proportion to the system size. In the simulation, 

the reserve is required to be 10% of the load demand. The statistical results obtained by 

different algorithms are shown in table VI.13, from the simulation results, it is very 

evident that RCGA not only has found the highest quality results among the all 

algorithms compared. The best UC schedule of the tests systems on 24-h scheduling 

horizon with one-hour interval are shown in the tables VI.14, VI.15, VI.16, VI.17 and 

VI.18. To illustrate the convergence property of the proposed algorithm, fuel cost values 

over 300 iterations for 20 units systems are plotted in fig. VI.16. 
 

 Table VI.13 : Comparison of total production costs.  

Units  
Total production costs ($)  

LR[58] GA[58] EP[189] LRGA[191] GAUC[203] DPLR[204] RCGA 
20 
40 
60 
80 

100 

1,130,660 
2,258,503 
3,394,066 
4,526,022 
5,657,277 

1,126,243 
2,251,911 
3,376,625 
4,504,933 
5,627,437 

1,125,494 
2,249,093 
3,371,611 
4,498,479 
5,623,885 

1,122,622 
2,242,178 
3,371,079 
4,501,844 
5,613,127 

1,125,516 
2,249,715 
3,375,065 
4,505,614 
5,626,514 

1,128,098 
2,256,195 
3,384,293 
4,512,391 
5,640,488 

 1,125,141 
2,250,286 
3,370,588 
4,501,739 
5,627,432 
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Figure VI.16 :  Convergence characteristic of fuel cost using RCGA for 20-units. 

 

Table VI.14 : The best unit schedule generated using proposed method for 20 unit system. 
Hour Demand (MW) Commitment schedule  Generation cost ($/h) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1400 
1500 
1700 
1900 
2000 
2200 
2300 
2400 
2600 
2800 
2900 
3000 
2800 
2600 
2400 
2100 
2000 
2200 
2400 
2800 
2600 
2200 
1800 
1600 

11110000000000000000 
11110000000000000000 
11110000100000000000 
11111000100000000000 
11111010100000000000 
11111011100100000000 
11111011110100000000 
11111111110100000000 
11111111111101000000 
11111111111111100010 
11111111111111111010 
11111111111111111111 
11111111111111000101 
11111111111100000010 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111110000000000 
11111111111100011111 
11111111111100001000 
11111110101100000000 
11110000100000000000 
11110000000000000000 

27,366.25 
29,108.99 
34,011.24 
37,778.60 
40,123.83 
45,578.40 
48,226.51 
49,844.13 
54,698.77 
60,783.56 
63,962.27 
67,900.32 
60,161.86 
53,950.44 
48,300.68 
43,027.31 
41,283.64 
44,774.08 
48,300.68 
61,715.51 
53,910.29 
44,617.15 
34,862.50 
30,854.83 

 

Table VI.15 : The best unit schedule generated using proposed method for 40 unit system. 

Hour Demand (MW) Commitment schedule (Unit 1 to 40) CostT ($/h) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2800 
3000 
3400 
3800 
4000 
4400 
4600 
4800 
5200 
5600 
5800 
6000 
5600 
5200 
4800 
4200 
4000 
4400 
4800 
5600 
5200 
4400 
3600 
3200 

1111111100000000000000000000000000000000 
1111111100000000000000000000000000000000 
1111111100000000101100000000000000000000 
1111111100001000101100000000000000000000 
1111111101011010111100000000000000000000 
1111111111011111111100000000000000000000 
1111111111011111111100000000000000000000 
1111111111111111111100000000000000000000 
1111111111111111111110100110000000000011 
1111111111111111111111111111000100000111 
1111111111111111111111111111000011111111 
1111111111111111111111111111111111111111 
1111111111111111111111111011110110010000 
1111111111111111111110111010000000000000 
1111111101111111111100001000000000000000 
1111111101111111111100000000000000000000 
1111111101111111111100000000000000000000 
1111111101111111111100000000000000000000 
1111111101111111111100010001000000000000 
1111111111111111111111111011000011111000 
1111111111011111111111111011000000000000 
1111111110000110101111101010000000000000 
1111111110000000000100000000000000000010 
1111111110000000000000000000000000000000 

54,732.51 
58,217.99 
69,430.08 
74,879.58 
82,702.36 
92,270.50 
92,434.27 
97,701.36 
110,187.5 
122,155.5 
128,078.0 
135,770.6 
120,353.7 
107,269.4 
96,988.10 
85,432.93 
81,941.56 
88,930.50 
97,833.59 
122,468.8 
108,120.7 
89,390.13 
70,665.18 
62,331.18 
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Table VI.16 : The best unit schedule generated using proposed method for 60 unit system. 

Hour Demand (MW) Commitment schedule (Unit 1 to 60) Generation cost ($/h) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2800 
3000 
3400 
3800 
4000 
4400 
4600 
4800 
5200 
5600 
5800 
6000 
5600 
5200 
4800 
4200 
4000 
4400 
4800 
5600 
5200 
4400 
3600 
3200 

111111111111000000000000000000000000000000000000000000000000 
111111111111000000000000000000000000000000000000000000000000 
111111111111000000000000111010000000000000000000000000000000 
111111111111000000010000111110000000000000000000000000000000 
111111111111010101010010111111000000000000000000000000000000 
111111111111111111010110111111000000000000000000000000000000 
111111111111111111010111111111000000000000000000000000000000 
111111111111111111011111111111001000000000000000000000000000 
111111111111111111111111111111111010010000000000000000001111 
111111111111111111111111111111111111111111000000000010101110 
111111111111111111111111111111111111111111000000111111011111 
111111111111111111111111111111111111111111111111111111111101 
111111111111111111111111111111111111011011101100100111000100 
111111111111111111111111111111111010011001000000010000000000 
111111111111111111110111111111010000000000000000000000000000 
111111111111111111110111111111000000000000000000000000000000 
111111111111111111110111111111000000000000000000000000000000 
111111111111111111110111111111000000000000000000000000000000 
111111111111111111110111111111010000000000000000000000000000 
111111111111111111111111111111111111111001100100111011010000 
111111111111111111111111111110111111111001000000000000000000 
111111111111110000101100110010101111111001000000000000000000 
111111111111000000101000110000000000000000000000000000000000 
111111011111000000001000100000000000000000000000000000000000 

82,098.77 
87,326.99 
103,441.3 
112,902.2 
122,738.9 
136,986.5 
139,527.7 
146,520.7 
165,250.0 
183,185.2 
191,342.1 
203,045.7 
180,621.2 
161,463.0 
145,060.7 
128,490.9 
123,255.9 
133,735.2 
145,230.7 
184,169.5 
161,770.4 
134,446.1 
105,247.5 
92,730.84 

 

Table VI.17 : The best unit schedule generated using proposed method for 80 unit system. 

Hour Commitment schedule (Unit 1 to 80) Generation cost ($/h) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

11111111111111110000001000000000000000000000000100000000000000000000000000000000 
11111111111111110000001000000000000000000000001100000000000000000000000000000000 
11111111111111110000001000100000010101010001001100000000000000000000000000000000 
11111111111111110000001000100000110101010001001000000000000000000000000000000000 
11111111111111110110011010101010111111010001000000000000000000000000000000000000 
11111111111111110110111011101110111111010000000000000001000000000000000000000000 
11111111111111110110111011111110111111010000000100000001000000000000000000000000 
11111111111111111110111011111111111111110000000100000001000000000000000000000010 
11111111111111111110111111111111111111111011101101000001000100000000000101001100 
11111111111111111111111111111111111111111111111111101111001000010000000101101110 
11111111111111111111111111111111111111111111111111111111001101111000110111001111 
11111111111111111111111111111111111111111111111111111111111111111111111111011111 
11111111111111111111111111111111111111111111111110111111110010001001000100010001 
11111111111111111111111111111111111111111010111100001000000000010010001000010000 
11111111111111111110111011101111111111111010001100000000000000000000000000000000 
11111111111111111110111011101111111111110000000000000000000000000000000000000000 
11111111111111111110111011101111111111110000000000000000000000000000000000000000 
11111111111111111110111011101111111111110001000000000000000000000000000000000000 
11111111111111111110111011101111111111110001001100000000000000000000000000000001 
11111111111111111111111111111111111111111111111100111011100101011100111100000010 
11111111111111111111111111111111111110111110111100111011000000000000000000000000 
11111111111111110001011111110100100010101110110000111011000000000000000000000000 
11111111110111110001001101110000100010000000000000000000000000000000000000000000 
11111111100111110001000100010000100010000000000000000000000000000000000000000000 

111,283.97 
118,169.72 
139,386.44 
149,998.39 
165,375.29 
180,169.09 
186,003.96 
198,547.60 
219,956.29 
244,605.82 
255,709.48 
270,916.03 
239,967.05 
215,569.06 
194,059.49 
170,277.26 
163,290.49 
177,914.23 
194,792.04 
246,540.22 
215,201.37 
178,490.33 
141,113.78 
124,402.10 

 

Table VI.17 : The best unit schedule generated using proposed method for 80 unit system. 

Hour Commitment schedule (Unit 1 to 80)  Generation cost ($/h) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

11111111111111110000001000000000000000000000000100000000000000000000000000000000 
11111111111111110000001000000000000000000000001100000000000000000000000000000000 
11111111111111110000001000100000010101010001001100000000000000000000000000000000 
11111111111111110000001000100000110101010001001000000000000000000000000000000000 
11111111111111110110011010101010111111010001000000000000000000000000000000000000 
11111111111111110110111011101110111111010000000000000001000000000000000000000000 
11111111111111110110111011111110111111010000000100000001000000000000000000000000 
11111111111111111110111011111111111111110000000100000001000000000000000000000010 
11111111111111111110111111111111111111111011101101000001000100000000000101001100 
11111111111111111111111111111111111111111111111111101111001000010000000101101110 
11111111111111111111111111111111111111111111111111111111001101111000110111001111 
11111111111111111111111111111111111111111111111111111111111111111111111111011111 
11111111111111111111111111111111111111111111111110111111110010001001000100010001 
11111111111111111111111111111111111111111010111100001000000000010010001000010000 
11111111111111111110111011101111111111111010001100000000000000000000000000000000 
11111111111111111110111011101111111111110000000000000000000000000000000000000000 
11111111111111111110111011101111111111110000000000000000000000000000000000000000 
11111111111111111110111011101111111111110001000000000000000000000000000000000000 
11111111111111111110111011101111111111110001001100000000000000000000000000000001 
11111111111111111111111111111111111111111111111100111011100101011100111100000010 
11111111111111111111111111111111111110111110111100111011000000000000000000000000 
11111111111111110001011111110100100010101110110000111011000000000000000000000000 
11111111110111110001001101110000100010000000000000000000000000000000000000000000 
11111111100111110001000100010000100010000000000000000000000000000000000000000000 

111,283.97 
118,169.72    
139,386.44    
149,998.39    
165,375.29 
180,169.09    
186,003.96    
198,547.60    
219,956.29    
244,605.82 
255,709.48    
270,916.03    
239,967.05    
215,569.06    
194,059.49 
170,277.26    
163,290.49   
177,914.23    
194,792.04   
246,540.22 
215,201.37    
178,490.33   
141,113.78  
124,402.10 
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Table VI.18 : The best unit schedule generated using proposed method for 100 unit system. 
Hour Commitment schedule (Unit 1 to 100)      Generation 

        cost ($/h) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

142,239.92 
147,697.26 
174,126.98    
186,908.86    
199,364.02 
227,689.76    
235,365.78    
247,740.15   
276,908.79   
303,643.00 
318,595.03    
338,131.15    
300,316.23    
268,414.45    
243,663.43 
212,533.97  
203,796.09   
221,287.35    
244,076.68    
307,336.64 
269,046.02    
224,536.20    
177,012.96    
157,001.22 

 

VI.4. Conclusion : 
In this chapter, the proposed RCGA is efficiently and effectively implemented to solve 

the UC problem. RCGA total production costs over the scheduled time horizon are less 

expensive than conventional GA, especially on the large number of generating units. The 

proposed algorithm considered various constraints successfully and the genetic operations 

are improved based on the characteristic of power system. The test results demonstrate 

the effectiveness of the RCGA in searching global or near global optimal solution to the 

UC problem. Also the results show a better convergence and higher precision. 
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CHAPTER VII  

A novel Meta-heuristic methods and its 
application in solution of the ED and UC 

problems 
 

VII.1. Introduction 
In this chapter we introduce a new method for optimization that is called root tree 

optimization algorithm (RTO), the robustness and efficiency of the proposed new method 

is validated on nonlinear functions and compared to recent methods addressing the same 

problem, simulation results confirm efficiency and reliability of the proposed RTO 

algorithm for solving complex optimization problem in term of solution quality and 

convergence characteristic. 

The proposed approach RTO has been applied to various test systems with 

incremental fuel cost function, taking into account the valve-point effects, the simulation 

results obtained by the proposed algorithms are compared with the results obtained using 

other recently develop methods available in the literature, from numerical results, it is 

found that the proposed RTO approach is able to provide better solution than other 

reported techniques in terms of fuel cost, furthermore, this algorithm is better in terms of 

robustness than most of the existing algorithms used in this study. 

The second part of the chapter proposed a novel operator for Genetic Algorithms a 

“genetic modification” for solving the UCP, generating unit’s shows that we can find the 

optimal solution effectively and these results are compared with the conventional 

methods and various optimization approaches in the recent literature. 

The proposed algorithm GAGE is efficiently applied to solve the UCP, the total 

production costs of GAGE over the scheduled period are less expensive than the 

conventional genetic algorithm and the algorithms proposed the recent literature. The 

total production costs of GAGE over the scheduled period are less expensive than the 

conventional genetic algorithm and the algorithms proposed the recent literature. 
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VII.2. A new rooted tree optimization algorithm for ED problem : 
In the latest twenty years, the artificial intelligence started to be oriented to the 

simulation of nature, to the way how the human brain functions and the human operations 

thinking. Consequently, a new branch of this artificial intelligence (CI) has emerged 

which studies and designs the intelligent implements that adapt intelligently with their 

environment and they show an cognitive behavior whereas they became able to take 

decision through the recuperation of the acquired information. This intelligence considers 

the human being as an example of these implements, the arithmetic intelligence contains: 

the evaluating computing, fuzzy computing and the neural computing. 

At the beginning of the ninetieth years from the last Century, the researches started 

to be oriented forwards by simulating the less clever creatures which have a limited 

capacities as: the pants, the birds and fishes that show, at the same time, a so clever social 

behavior, in 1990, Diarogo suggested an algorithm of ant colony optimization ACO 

which simulates the ants settlements. In 1995, both of Rusell Eberth and James Kendy 

suggested an algorithm of practical swarm optimization PSO that depends totally on the 

simulation of the birds swarms. The two previous algorithms PSO and ACO were a 

starting point to a new branches of the swarm intelligence SI, the most important 

characteristics of these new branches CI and SI are their dependent on the digital 

treatment, they are not based on the mathematical knowledge, both of CI and SI are 

considered as a complex of algorithms composed of: a specific steps, a known start and 

an end point that led to solve the problem. 

Even with the great enhancement of the computing capacities, there are difficult 

problems. Fortunately, many sensitive research algorithms are developed to find a 

suitable solution to these problems at a reasonable time; they are developed according to 

the evolution of the physiology and biology. One of them is the genetic algorithm GA 

and simulated annealing SA, these techniques are used to solve many problems widely. 

In this section we introduce a new method that is called (rooted tree optimization) 

because it is extracted from the movement of the plants root when they look for the 

nearest place of water, in this algorithm we lean on the behavior of the desert plants 

especially where the water resources lacked. If the vegetal scientist or the biologists 

allow, we can say that the desert root plants smell the places of water (here, we find the 
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intuitive behavior) around it, where these places present the optimal solution for us, to 

determine it we use a group of roots which oriented by a special conducting.  

In this section we are attempting to introduce an algorithm RTO based on that 

intuitive behavior which leads to the water location and has an oriented movement when 

it looking for the best solution. 

Unlike classical search and optimization methods, RTO starts its search with a 

random set of solutions (group of roots), instead of a single solution just like GA.  Each 

population member is then evaluated for the given objective function and is assigned 

fitness. The best fits are entertained for the next generation while the others are discarded 

and compensated by a new set of random solutions in each generation. The far solution 

from the water place is omitted or replaced by a new roots oriented randomly, also it is 

replaced by roots near from the best root of the previous generation. The only stopping 

criterion is the completion of maximum number of cycles or generations. At the end of 

the cycles, the solution of the best fitness is the desired solution. 

The main objective of this study is to present the use of the RTO technique to the 

subject of the ED in power systems. In this section, the RTO method has been proposed 

to solve the ED problem with valve-point effect for 3, 6 and 13 units test systems. In 

general terms, the contribution of this paper is the new efficient RTO approach for the 

ED problem with valve-point effect. The results obtained with the proposed RTO 

approach were analyzed and compared other with optimization results reported in 

literature.  

 

VII.2.2. Method Rooted tree optimization algorithm (RTO) : 

VII.2.2.1. The roots look for water : 

One root has a limited capacity, but a group of roots can find together the best issues to 

get water, and the majority of them are located around this issue or around the way that 

links the plant with the resource of water. To create the algorithm, we add a hypothetical 

behavior which is the way how the roots decide together to choose the orientation 

according to the witness degree where the root head is located, these ones move 

randomly but when they find the wetness they contact between them to intensify their 
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existence around this way, so it becomes a new start point for the majority of the root 

group to get the original place of water.  

 

 

 

 

 

 

 

 

 

Figure VII.1 : the roots of plants behavior when they look for water (the solution). 

The Fig. VII.1 presents the way how the roots of plants behave when they look for 

water -the solution- according to what we have talked about in RTO, where we find that 

the far solution from the water place (which has a less witness degree) is omitted or 

replaced by a new roots oriented randomly, also it is replaced by roots near from the best 

root of the previous generation, whereas the roots which have a considerable witness 

degree preserve their orientation, where we remark that the majority of roots gather at the 

last step next to the best solution- resource of water-.  
 

VII.2.2.2. Rooted tree optimization method : 

The proposed method is similar to the most other methods it begin by creating an initial 

population randomly. But before that, we will introduce some terms which will determine 

the method of moving from initial population to the new population: 

- Root:  is a candidate or the suggested solution.  

- Degree Wetter Dw: it is a term that evaluates the candidate and gives him his 

optimization degree between the rest of population, it seems to the mechanism fitness, it 

is calculated using the equation (VII.4).  

best solution 

initial population 

random root 

degree Wetter 

number of generations 

the continuous root  

the nearest root to water 

iteration N° 01 

iteration N° 04 

initial position 

best solution in 
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A. The rate of the nearest root to water Rn  

It is the rate that represents the number of candidates according to the total population 

that should gather around the wetness or the wetter place (the best solution to the 

previous generation). It will be the successor of the roots which were in a dry places (in 

the witness is so weak) from the previous generation. The new population of the nearest 

root to water is calculated according to the formula: 

It)l/(Nrandn(i)c(It)x1)It(i,x w1
bestnew  D                  (VII.1) 

Where It is the iteration step, 1)(Itx new   is the new candidate for the iteration 

1)(It  , (It)x best  is the best solution to the previous generation, i is the number of 

candidate, N is the population scale, l is the upper limit of the parameter and randn is a 

normal random number between [-1, 1]. Then new point newx is upper and lower 

bounded. 
 

B. The rate of the continuous root in its orientation Rc  

It is the rate of the members that continued the previous way because it appears near from 

water. The new population of the random root is calculated according to the formula: 

)It)x(i,-(It)(xrand(i)DcIt)x(i,1)It(i,x best
w2

new         (VII.2) 

Where x(It)is the previous candidate for the iteration It and randis random number 

between [0, 1]. 
 

C. The rate of the random root Rr                  

It is the rate that represents the number of candidates according to the total population 

that we want that they spread randomly in the research field in order to increase the rate 

of getting the global solution, it replaces also the roots in the wetness degree is so wick 

(weak candidates) from  the last generation. The new population of the random root is 

calculated according to the formula: 

l/Itrandn(i)Dc(It)x1)It(i,x w3r
new                                  (VII.3) 

Where rx  is individual randomly selected from the previous generation, 1c , 2c  and 

3c  is the adjustable parameters. 
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The rates Rn, Rr and Rc are determined by the experiments according to the exposed 

problem, these rates are considered as a variables which affect the convergence and how 

to find solution. The rate Rr is always small in comparison with the rest because it aims to 

reserve the random in order to be far from the local, its role can be presented as a 

mutation in the genetic algorithm. 

We put the Dw value in the research functions of the roots in order to determine a 

space research according to the candidate power. When his power increase (presented by 

the Dw values), our goal is to, assure the step and the type of the used relation to create a 

new generation. 
 

VII.2.2.3. The algorithm RTO :  

Summarizing the steps in RTO yields to: 

Step 1: Creation of primary generation randomly which is composed from N candidate 

with the respect of the variables limits in the research space, and the determination 

of the rates values Rn, Rr and Rc. 

Step 2: We evaluate all the population members in order to measure the witness degree 

Dw by using the objective function following this formula:  

Ni

f
f

f
f

iD

i

i

i

i

w ,...,2,1,
objective minimum for the        

)max(
1

objective maximum for the             
)max()( 











 (VII.4) 

Or we use directly the fitness regardless of the suitable formula. 

Step 3:   Reproduction and replacement by the new population; 

We reorder the population according to the degree wetter Dw in order to replace 

them by the new population according to Rn, Rr and Rc as the following: 
 

 

 

 

 

xnew (i , it+1)=xr+ c3*DW(i)*randn*l/ it 

xnew(i, it+1)=xbest(it)+c1*DW(i)*randn*l /(N*it)              

xnew(i, it+1)=x(i, it)+c2*DW(i)*rand*(xbest(it)-x(i, it)) 

Dw = 0 

Dw = 1 

For i=1, …, N*Rr 

For i= N*Rr +1, …, N*(Rn+ Rr) 

For i= N*(Rn+ Rr) +1, …, N 
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Where Rn + Rr + Rc = 1. We start by the candidate which has the less Dw till we 

get at the one who has a degree wetter equivalent 1. 

Step 4:   Return to step 2 if the stopping criteria is not realized. 
 

The RTO algorithm is a method based on the most of the meta-heuristic algorithms; 

it is a simple evolutionary algorithm that creates new candidate solutions by integrating 

the parent individual with several other individuals in the same population. All candidates 

replace the parent, the rooted tree optimization algorithm is written as the Algorithm.1 

represent the recreation of the new generation concerning the algorithm RTO. 
 

Algorithm.1. RTO Algorithm 
//Initialization: 
Set the rates Rn, Rr and Rc parameters; 
Give the maximum number of iterations, MaxIte, the population scale is theRTOsize ; 
Set iteration counter it =1; 
For i=1 to theRTOsizedo 

Generate the initial population iX randomly within the search range of ( minX , maxX ); 

end for 

Evaluate the fitness for each individual iWD ; 

Reorder the population according to the witness degree; 

Identify the candidate according the wetness place (the best solution) bestX ;  

//Loop: 
While (stop criterion is not satisfied & it < MaxIte) do 

For i =1 to rR  theRTOsizedo 

Selected individual it
rX  randomly from the current population; 

1it
iX  = it

rX  +  randnDc iW1  | maxX - minX |/( it ); 

end for 
For i = rR theRTOsize+1 to  )( nr RR theRTOsizedo 

1it
iX = bestX +  randnDc iW3  | maxX - minX |/( ittheRTOsize ); 

end for 
For i =  )R(1 c theRTOsize+1 to theRTOsizedo 

1it
iX = it

iX +  randDc iW1  ( bestX - it
iX ); 

end for 

Evaluate fitness iWD  for each candidate; 

Update bestX ; 
it = it + 1; 

end while 
 

From the Fig. VII.2 we remark the change of the parameters x1 and x2 according to 

the generation number where the three kinds of roots appear, these kinds represent the 

random roots, and the roots which meet together till they stop these ones represent the 
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near roots from the solution, the rest kind represent those groups which cease when they 

become weak in comparison with the other roots of the same generation. It appears so 

clear in the Fig. VII.3 which represents evaluation the Rastrigin function (N=2) (where N 

is the number of dimension) where the majority of roots gather in the solution -resource 

of water-. 
 

 
Figure VII.2 : The parameters and the roots for 200 iterations (the Rastrigin function (N=2)). 

 

Figure VII.3 : Evaluation The Rastrigin function (N=2) for 200 iterations. 
 

We remark in the Fig. VII.4 the concentration of the roots (candidates) with the 

different rates Rn, Rc and Rr where we can see how every kind looks for water through 

changing the rates values, so the convergence to the solution has a strong relation with 

the different behaviors movements of the roots kinds between them as we have listed 

previously.  
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Figure VII.4 : Evaluation the Rastrigin function for different rates parameters Rn, Rr and Rc. 
 

Algorithm.2. RTO Modified Algorithm (RTOM) 
//Initialization: 
Set the rates Rn, Rr and Rc parameters; 
Give the maximum number of iterations, MaxIte, the population scale is theRTOsize; 
Set iteration counter it =1; 
Generate the initial population Xi randomly within the search range of (Xmin, Xmax);  
Evaluate the fitness for each individual Dwi ; 
Reorder the population according to the witness degree; 
Identify the candidate according the wetness place (the best solution) Xbest;  
//Loop: 
While (stop criterion is not satisfied & it < MaxIte) do 

For i =1 to theRTOsize do 
If Dwi < Rr  do 

Selected individual it
rX  randomly from the current population; 

1it
iX  = it

rX  +  randnDc iW1  | maxX - minX |/( it ); 

Else if Dwi < Rc do 
1it

iX = bestX +  randnDc iW3  | maxX - minX |/( ittheRTOsize ); 

            Else  
1it

iX = it
iX +  randDc iW1  ( bestX - it

iX ); 

          end If 
end If 
Evaluate fitness  Dwi for each candidate; 

Update Xbest; 
it = it + 1; 

end while 

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6
Evaluation The Rastrigin (N=2) Function for Rn=0, Rc=1 and Rr=0.

N° of Iterations 

E
va

lu
at

io
n 

fu
nc

tio
n

0 10 20 30 40 50 60 70 80
0

50

100

150

200

Evaluation function

G
en

er
at

io
n 

nu
m

be
r

0 50 100 150 200

-5
0

5
-10

0

10

N° of Iterations 

parameters of evaluation function

X

Y

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20
Evaluation The Rastrigin (N=2) Function for Rn=0, Rc=0 and Rr=1.

N° of Iterations 

E
va

lu
at

io
n 

fu
nc

tio
n

0 10 20 30 40 50 60 70 80
0

50

100

150

200

Evaluation function

G
en

er
at

io
n 

nu
m

be
r

0 50 100 150 200

-10
-50510

-10

0

10

N° of Iterations 

parameters of evaluation function

X

Y



Chapter VII     A novel Meta-heuristic methods and its application in solution of the ED and UC problems 

143 
 

We suggest the Algorithm.2 which is the same as the other only in the number of 

roots of each kind, where its number changes at any step (iteration) because the number 

of each kind is not stable, but it's likened to the degree wetter Dw of every root and 

according to this we classify its kind and how it behaves. So the convergence will be 

affected as we will see in this section. 
 

VII.2.3. Applying the RTO to the ED problem : 

In this section the proposed algorithm is applied to solve the economic dispatch problem 

with valve-point effect. To apply the RTO, the following steps have to be taken. 

Step.1. Define the input data 
In this step, the input data including the cost coefficients of the generators, output 
generator constraints, transmission loss matrix coefficients and loads, the number 
of iterations (Itermax), the size of the population (candidates), the adjustable 
parameters 1c , 2c  and 3c  and the difference rates Rn, Rr and Rc. 

Step.2. Generate the initial population. 
Initialize randomly the individuals of the population according to the limit of each 
unit including individual dimensions. These initial individuals must be feasible 
candidate solutions that satisfy the practical operation constraints. 

Step.3. To each individual PGi of the population, employ the -coefficient loss formula to 
calculate the transmission loss PL. 

Step.4. Calculate the evaluation value (fitness) of each individual PGi in the population 
using the evaluation function given by (II.16), (Evaluate fitness iWD  for each 
candidate). 

Step.5. Compare each individual’s evaluation value with it's lbestPg is the best fitness of 
the particle up. 

Step.6. Calculate new candidates using (VII.1), (VII.2) and  (VII.3). 

n n to)R- 1(ifor    ,)()()()1(

n)R(R  to1nRifor    ),/()()1(

nR  to1ifor    ,/)()1(

c,2,,

nrr,,1,

r,,3,,







kPkPrandDckPkP

itnPPrandnDckPkP

itPPrandnDckPkP

dGi
best

GdiWdGidGi

MinGdMaxGdiW
best

GddGi

MinGdMaxGdiWdGrdGi

            

(VII.5) 

Where d=1, 2,…, m and )(, kP dGr is individual selected randomly from the current 

population; 
Where n is the population size, m is the number of units, PGd,Max and PGd,Min are 
parameter upper and lower limits and k number of iterations. 
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Step.7. If the number of iterations reaches the maximum, then go to Step 8. Otherwise, go 
to Step 3. 

Step.8. The individual that generates the latest bestPg is the optimal generation power of 
each unit with the minimum total generation cost. 
 

  
 Figure VII.5 : Flowchart of the proposed RTO algorithm.  

Fig. VII.5 depicts the schematic representation of the proposed algorithm to solve the 

ED problem. 
 

VII.2.4. Experimental analysis and numerical results : 

In order to verify the feasibility and efficiency of the proposed algorithm  RTO was 

tested on two tests the first one, is four different benchmarks problems and the second 

one are three test cases for solving ED problem with valve-point effects. These are 3, 6 

and 13 units systems including valve-point loading. 

In these examples, the software was implemented by the MATLAB language, on a 

Pentium IV, 3-GHz personal computer with 4 GB RAM under Windows XP. 
 

Yes 

No 

Initialize random population members (control variables),  
c1, c2 and c3 and the difference rates Rn, Rr and Rc. 

 

Calculate the evaluation value (fitness) of each individual in 
the population using the evaluation function (DWi) 

Identify the candidate according the 
wetness place (the best solution); Xbest 

 

Calculate new candidates using (VII.1), (VII.2) and (VII.3) 

Check for stopping 
Condition 

Increment the generation 
count 

STOP, Print optimal control vector and 
optimal objective function value 

Start 
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VII.2.4.1. Validation (benchmark tests): 

Before solving economic dispatch problems, RTO was benchmarked using four 

numerical examples which are given as follows in detail. The new algorithm RTO has 

been tested and compared with the RTOM on the benchmark problems taken from [205]. 

The difficulty levels of most benchmark functions are adjustable by setting their 

parameters. From the standard set of benchmark problems available in the literature, four 

important functions two of which are unimodal (containing only one optimum) and two 

of which are multimodal (containing many local optima, but only one global optimum) 

are considered to test the efficacy of the proposed methods [206]. This list comprises 

some widely used test functions such as sphere, Rosenbrock, Dejong, Griewangk, and 

Rastrigin functions given in table VII.1 shows the main properties of the selected 

benchmark functions used in the experiments. 

Two criteria are applied to terminate the simulation of the algorithms: reaching 

maximum number of iterations which is set to a constant number and the second criterion 

is getting a minimum error. 

100 candidates were initialized in regions that include the global optimum for a fair 

evaluation. The algorithms were run for 100 times to catch their stochastic properties. In 

this experiment, maximum iteration number was set to 500 and the goal is not to find the 

global optimum values but to find out the potential of the algorithms. Algorithm success 

rate defined by; how often does the algorithm get the exactitude before it completes the 

number of the whole iterations or all 100 trials. 

Table VII.1 : Properties of test problems. 

Function  
name  

Definition  lower  
bound 

upper  
bound 

optimum  
point 

Property 

Rosenbrock 
Dejong 
Griewangk 
Rastrigin 

222
1

1
1 )1()(100 iii

N
i xxx  

  

2
1 i

N
i x  

1)/()4000/( 1
2

1   ixx i
N
ii

N
i  

).2cos(.10(10 2
1 ii

N
i xxN    

-2.048  
-5.12  
-50  
-5.12 

2.048 
5.12  
 50  
 5.12 

0  
0  
0  
0 

Unimodal 
Unimodal 
Multimodal 
Multimodal 

 

We remark that the positive aspect of the RTO method in comparison with RTOM, is 

the probability to get the global solution and to avoid falling in the local one as it appears 

in the table VII.2, all this refers to the stability of the roots number in each kind, so the 

roots stay as they are when they look for water (their behavior)  randomly in same parts 
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of them, (the random orientation when they look for water) integration with the 

convergence towards the solution according to the previous relations, where they stay on 

this orientation even the reach the initial solution, that can be a local solution, opposite to 

RTOM which all the roots to the solution by gathering around the first most witness 

points, but this can make negative to get the local solution, but we can find that these 

roots can get quickly the solution by a less number of iteration than RTO method also 

more powerful in the unimodal functions as Rosenbrock and Dejong, but the RTO find its 

power in the multimodal functions as Griewangk  and Rastrigin where it's so possible to 

get the global solution. 

Table VII.2 : Success rates of different algorithms. 

algorithms RTO  RTOM 

Tolerance 
Rosenbrock (N=10) 
Rosenbrock (N=5) 
Rosenbrock (N=3) 
Dejong        (N=10) 
Dejong        (N=3) 
Griewangk  (N=10) 
Griewangk  (N=5) 
Rastrigin      (N=2) 

1e-5 
100 
100 
100 
100 
100 
100 
100 
77 

1e-5 
100 
100 
100 
100 
100 
100 
100 
58 

1e-6 
98 
100 
100 
100 
100 
100 
100 
51 

1e-7 
98 
100 
100 
100 
100 
100 
100 
45 

1e-8 
96 
100 
100 
100 
100 
100 
100 
40 

1e-9 
96 
100 
100 
100 
100 
100 
100 
37 

1e-6 
98 
100 
100 
100 
100 
100 
100 
75 

1e-7 
98 
100 
100 
100 
100 
100 
100 
72 

1e-8 
97 
100 
100 
100 
100 
100 
100 
68 

1e-9 
87 
99 
100 
100 
100 
100 
100 
65 

 

Table VII.3 : Success rates of RTO algorithms using different rates parameters Rn, Rr and Rc. 

 Rosenbrock 
(N=10) 

Dejong  
(N=10) 

Griewangk 
(N=10) 

Rastrigin 
(N=2) 

Tolerance 
Rn=1.0, Rr=0.0 and Rc=0.0 
Rn=0.7, Rr=0.3 and Rc=0.0 
Rn=0.6, Rr=0.4 and Rc=0.0 
Rn=0.3, Rr=0.7 and Rc=0.0 
Rn=0.0, Rr=1.0 and Rc=0.0 
Rn=0.9, Rr=0.0 and Rc=0.1 
Rn=0.6, Rr=0.3 and Rc=0.1 
Rn=0.3, Rr=0.6 and Rc=0.1 
Rn=0.1, Rr=0.8 and Rc=0.1 
Rn=0.0, Rr=0.9 and Rc=0.1 
Rn=0.7, Rr=0.0 and Rc=0.3 
Rn=0.4, Rr=0.3 and Rc=0.3 
Rn=0.3, Rr=0.4 and Rc=0.3 
Rn=0.0, Rr=0.7 and Rc=0.3 
Rn=0.4, Rr=0.0 and Rc=0.6 
Rn=0.1, Rr=0.0 and Rc=0.9 
Rn=0.0, Rr=0.1 and Rc=0.9 
Rn=0.0, Rr=0.0 and Rc=1.0 

1e-5 
0 
99 
99 
98 
16 
0 
100 
100 
100 
11 
19 
100 
100 
56 
93 
98 
100 
100 

1e-7 
0 
24 
18 
11 
0 
0 
33 
37 
77 
0 
9 
98 
97 
27 
88 
92 
99 
97 

1e-5 
0 
100 
100 
100 
0 
0 
100 
100 
100 
100 
2 
100 
100 
100 
0 
80 
100 
100 

1e-7 
0 
100 
100 
80 
0 
0 
100 
100 
100 
98 
0 
100 
100 
100 
0 
74 
99 
98 

1e-5 
0 
24 
20 
30 
0 
0 
94 
94 
96 
96 
100 
100 
100 
100 
100 
100 
100 
100 

1e-7 
0 
0 
0 
0 
0 
0 
88 
88 
90 
93 
99 
100 
100 
100 
100 
100 
100 
99 

1e-5 
2 
67 
77 
98 
0 
6 
66 
95 
98 
88 
25 
77 
74 
100 
32 
55 
85 
62 

1e-7 
0 
62 
70 
98 
0 
4  
59 
92 
96 
35 
19 
72 
70 
70 
25 
52 
84 
59  



Chapter VII     A novel Meta-heuristic methods and its application in solution of the ED and UC problems 

147 
 

 

The table VII.3 presents the effect of the difference of this rate values Rn, Rr and Rc 

at the convergence to the solution with the different functions and the different 

exactitude, this table clarify the desired rates (by an experiment) that should be taken to 

get exactly the solution according to the kind of problem, it's too important to see that the 

selected rates in the table VII.2 according to this table through the possibility to get the 

global solution and the number of iterations, there is a relation between them when the 

rate of getting solution increase this means that the speed of convergence is so good (the 

number of iterations is few). 

Table VII.4 : comparison of Success rates between different algorithms. 

 BB–BC 
[206] 

BB–CBC 
[206] 

UBB–BC 
[206] 

UBB–CBC 
[206] 

RTO RTOM 

Tolerance 
Rosenbrock (N=100)  
Dejong (N= 3)  
Griewangk (N=2)  
Rastrigin (N=2) 

1e-5 
100 
100 
23  
30 

1e-6 
69  
31  
19 
26 

1e-5 
100 
100 
31 
80 

1e-6 
100 
70  
30  
75 

1e-5 
100  
100  
36 
84 

1e-5 
92 
100 
100 
29 

1e-6 
82 
100 
100 
22 

1e-6 
100  
61  
31  
79 

1e-5 
100  
100  
39 
90 

1e-6 
100 
78 
38 
86 

1e-5 
95 
100 
100 
73 

1e-6 
93 
100 
99 
67 

 

In order to make a fair comparison between our proposed algorithm RTO with other 

heuristic methods [206], 500 iterations are chosen as stopping criteria in the simulations 

and the population size is kept fixed as 40 in the example and the benchmark tests.  

Table VII.4 represents the success rates obtained from RTO, RTOM, BB–BC (Big 

Bang–Big Crunch), BB–CBC (Big Bang–Chaotic Big Crunch optimization), UBB–BC 

(Uniform Big Bang–Big Crunch), and UBB–CBC (Uniform Big Bang–Chaotic Big 

Crunch algorithms) at different quality levels for the benchmark functions. 

 

VII.2.4.2. Economic  dispatch  problems : 

A. Test system 1: small system (3-unit system) :  

This test case study considering three thermal units of generation with effects of valve-

point is given in appendix. 4 (table A. 4). In this case, the load demand expected to be 

determined was PD= 850 MW. 

The simulation parameters for the proposed algorithm are : 

- The number of generation is 50 iterations and Size of population 100 individuals 

(candidates). 
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- Take the difference rate values Rn=0.4, Rr=0.3 and Rc=0.3.  

Rn, Rr and Rc are adjustable parameters controlling the influence of the convergence 

properties of the proposed algorithm. 

 

 
Figure VII.6 : The convergence characteristic of the three-generator systems for different 

adjustable parameters to the  RTO algorithms. 
 

Fig. VII.6 shows the effect of various values for Rn, Rr and Rc on the convergence 

characteristic of the proposed method for three-generating unit system. This figure shows 

that Rn=0.4, Rr=0.3 and Rc=0.3, are suitable values for RTO algorithm. These parameter 

values are used for all other examples presented. 

For this problem, we can make the appropriate choice of the adjustable parameters 

codified somewhat, resulting from experimental and observational limits. 

The results obtained for this case study are listed in table VII.5 the proposed 

algorithm has obtained the optimal solution values for the 3 units test system by 

completing 100 iterations in 0.3008 s, which shows that the RTO algorithm has 

approximately good solution for the power demand of 850 MW. The best fuel cost result 

obtained from the proposed RTO algorithm and other optimization algorithms are 

compared in table VII.6. From table VII.6 it is seen clearly that the PS approach did not 

meet the load demand. 
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Table VII.5 : Results obtained by proposed method for test system 1. 

Units (MW) Proposed RTO 

1 
2  
3  

Total Power Output(MW)  
Total Cost ($/h) 

time (sec) 

300.2536 
149.7485 
399.99  72  
850.000 

8234.07157 
0.3008 

 

Table VII.6 : Comparison of proposed method for test system 1. 

Method P1(MW)  P2(MW)  P3(MW)  PD(MW)  Cost ($/h) 

GA [87]  
EP [87]  
EP-SQP [87] 
PSO [87]  
PSO-SQP [87] 
MPSO [207]  
PS [136]  
GSA [137] 
Proposed RTO 

398.700  
300.264  
300.267  
300.268  
300.267  
300.27  
300.2663  
300.2102 
300.2669 

50.100  
149.736  
149.733  
149.732  
149.733  
149.74 
149.7331  
149.7953 
149.7331 

399.600  
400.000  
400.000  
400.000  
400.000  
400.00  
399.9996 
399.9958 
400.0000 

848.400  
850.000  
850.000  
850.000  
850.000  
850.000  
849.9990  
850.0013 
850.0000 

8222.07  
8234.07  
8234.07  
8234.07  
8234.07  
8234.07  
8234.05  
8234.1 
8234.0717 

 
 

 
Figure VII.7 : Convergence of fitness value for load demand 850 MW. 

 
Figure VII.8 : Distribution of objective function value for 50 Trails. 
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A convergence characteristic of the RTO algorithm for the three generator systems 

shown in figs. VII.7 and VII.8 shows the distribution of the generation cost of the best 

solution for each run in the test system of 3 units. 

 
B. Test System 2: IEEE 30 buses system (6-unit):  

The second test system is a 6-unit system. System (IEEE 30 buses system) with effects of 

valve-point. The required load demands to be met by all the 6 generating units are 283.4 

MW. The data for this system is provided in [8], [25] as given appendix. 1 (tables A.1 

and A.2). In this test system, the transmission losses  are considered and the loss 

coefficients β matrices are shown in appendix. 

The setup for the proposed algorithm is executed with following parameters:  

- The number of generation is 50 iterations and Size of population 100 individuals 

(candidates). 

Table VII.7 shows the obtained results for this system. Results of the proposed 

method  RTO are in bold. Minimum cost, Mean cost and maximum cost over the 50 trial 

runs are compared with the results of combination of modified subgradient MSG and 

harmony search HS algorithms (MSG-HP) [29], PSO [29], the Newton's second order 

approach NSOA [28], combines the genetic algorithm GA with active power 

optimization APO (GA-APO) [28] and genetic algorithm GA [28] in table VII.8. 

 

 

Figure VII. 9 : Convergence of fitness value with valve-point effects. 
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Table VII.7 : Results obtained by proposed method for test system 2. 

 Solution methods 
GA 
[208] 

GA-APO 
[208] 

NSOA 
[208] 

PSO  
[209] 

MSG-HP 
[209] 

RTO 

PG,1 
PG,2 
PG,5 
PG,8 
PG,11 
PG,13 
PG,Total(MW)  
Ftotal (R/h)  
Ploss 
Time (s) 

150.724 
60.8707 
30.8965 
14.2138 
19.4888 
15.9154 
292.1096 
996.0369 
8.7060 
0.5780 

133.9816 
37.2158 
37.7677 
28.3492 
18.7929 
38.0525 
294.1600 
1101.491 
10.7563 
0.156 

182.478 
48.3525 
19.8553 
17.1370 
13.6677 
12.3487 
293.8395 
984.9365 
10.4395 
0.0150 

197.8648 
50.3374 
15.0000 
10.0000 
10.0000 
12.0000 
295.2022 
925.7581 
11.8022 
0.3529 

199.6331 
20.0000 
23.7624 
18.3934 
17.1018 
15.6922 
294.5829 
925.6406 
11.1830 
0.6215 

199.5996 
20.0008 
24.1658 
17.7409 
19.0252 
13.7428 
294.2754 
924.9724 
10.8754 
0.3771 

 

Table VII.8 : Comparison of results  (test system 2)  in the 50 trial tests. 

Solution methods   
GA  
[208] 

GA-APO  
[208] 

NSOA  
[208] 

PSO  
[209] 

MSG-HP  
[209] 

RTO   

996.04 996.04  984.94 925.758 925.641 924.9724 Ftotal (R/h) Min 
0.141  0.156 0.0150 0.35290 0.62151 0.3771 Time (s) 
1117.13 1101.49 992.48 928.427 928.599 943.8712 Ftotal (R/h) Max 
0.5780 0.578 0.0310 0.35591 0.77132 0.3827 Time (s) 
NA NA NA 926.388 926.851 930.17814 Ftotal (R/h) Mean 
NA NA NA 0.35749 0.72484 0.3785 Time (s) 

          NA denotes that the value was not available in the literature. 
 

 

Figure VII. 10 : Distribution of objective function value for 30 Trails. 
 
 

When the adjustable parameters is selected, optimal solution values for the IEEE 

30 buses test system are obtained as 199.5996, 20.0008, 24.1658, 17.7409, 19.0252 and 

13.7428. The proposed algorithm has found the optimal solution values for the test 

system by completing 50 iterations in 0.3771 s. It is observed, through the table VII.7, 

that the RTO algorithm achieves much better optimal solution values when compared to 
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the results in the literature. In other words, the RTO algorithm is 59.9641 R/h better when 

compared to the NSOA with the best solution value in the literature [28], also is 0.6682 

R/h better then MSG-HP algorithm. In fig. VII.9 show that convergence characteristic 

curve of the best case with valve point effect, the fig. VII.10 shows distribution the 

generation cost of the best solution value for 30 trails in the test system. 
 

C. Test System 3: 13-unit system :  

This test system is a 13-generator system with valve-point loading effect. The 

coefficients of fuel cost functions as given appendix. 4 (table A.8) [8], [25]. The ED 

problem is solved for two different load levels (PD= 1800 MW and PD= 2500 MW). 

This test system has many local optima and no global solution has been reported yet. The 

population size and maximum iteration number are fixed to 200 and 100, respectively.  

 

Figure VII.11 : Convergence of fitness value for load demand 1800 MW. 
 

The obtained result for load demand equal to 1800 MW is presented in table VII.9. 

Results of the proposed method are in bold. The results are compared in terms of 

minimum cost, mean cost, and maximum cost over 50 runs with the results of hybrid 

multi-agent based PSO (HMAPSO) [30], modified differential evolution algorithm 

(MDE) [31], self-tuning hybrid differential evolution algorithm (SHDE) [32], pattern 

search method (PSM) [35], hybrid genetic algorithm (HGA) [36], quantum-inspired PSO 

(QPSO) [33], PSO [30] and PSO with time varying acceleration coefficients (PSO-

TVAC) [34]. The results of the aforementioned methods that presented in table VII.10, 

have been directly quoted from their respective references. Convergence characteristic of 
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the RTO for 13-generator test case with load demand of 1800 MW is depicted in fig. 

VII.11. Fig. VII.12 shows distribution the generation cost of the best solution for each run 

in the test System 3. 

 

Figure VII.12 : Distribution of objective function value for 30 Trails (1800 MW). 
 

Table VII.9 : Comparison of simulation results for test system 3 (case I, load = 1800 MW). 
Unit HMAPSO 

[210] 
MDE 
[211] 

SHDE 
[214] 

PSM 
[214] 

HGA 
[142] 

QPSO 
[212] 

PSO 
[210] 

PSO-TVAC 
[213] 

Proposed 
 

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
PG,Total  
Min cost 
Mean cost  
Max cost 

538.5611  
224.4831  
150.0622  
109.8862  
109.9902  
109.8666  
109.9903  
109.8688  
109.8668  
40  
77.4247  
55  
55  
1800  
17969.31  
17969.31  
17969.31 

628.318  
149.594  
222.758  
109.865  
109.864  
109.866  
109.865  
60  
109.866  
40  
40  
55  
55  
1799.996 
17960.39 
17967.19 
17969.09 

628.3172  
149.5986  
222.7987  
109.8673  
109.8418  
60  
109.8641  
109.8547  
109.8576  
40  
40  
55  
55  
1800  
17963.89  
18046.38  
NA 

538.5587  
224.6416  
149.8468  
109.8666  
109.8666  
109.8666  
109.8666  
109.8666  
109.8666  
77.4666  
40.2166  
55.0347  
55.0347  
1799.9993 
17969.17  
18088.84  
18233.52 

628.3185  
222.7491  
149.5996  
109.8665  
109.8665  
109.8665  
109.8665  
60  
109.8665  
40  
40  
55  
55  
1799.9997  
17963.83  
17988.04  
NA 

538.56  
224.7  
150.09  
109.87  
109.87  
109.87  
109.87  
159.753  
109.87  
77.41  
40  
55.01  
55.01  
1800.002  
17969.01  
18075.11  
NA 

538.561  
299.355  
75.037  
159.734  
60.078  
109.864  
109.913  
109.87  
60.069  
40.035  
77.561  
55.042  
55  
1800  
18014.16  
18104.65  
18249.89 

628.319  
149.597 
222.749  
109.867  
109.867  
109.867  
109.867  
109.867  
60  
40  
40  
55  
55  
1800  
17963.879 
18154.562  
18358.31 

628.3072 
224.3420 
297.7060 
60.0000 
109.8529 
60.0000 
60.0000 
109.7956 
60.0002 
40.0000 
40.0000 
55.0000 
55.0000 
1800.0044 
17969.8024 
18056.9358 
18204.6303 

NA denotes that the value was not available in the literature. 
 
 

Also, simulation is done for power demand of 2520 MW. The obtained results are 

presented in table VII.11 and compared with the results of hybrid genetic algorithm 

(HGA) [36], differential evolution (DE) [21], FAPSO-VDE [39], improved coordinated 

aggregation based PSO (ICA-PSO) algorithm [40] and Iteration PSO (IPSO) [41]. The 

0 10 20 30 40 50
$ 17 950

$ 18 000

$ 18 050

$ 18 100

$ 18 150

$ 18 200

$ 18 250

Trails

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

 

 
Fuel cost
Average cost
Best cost
Worst cost



Chapter VII     A novel Meta-heuristic methods and its application in solution of the ED and UC problems 

154 
 

minimum, average and maximum costs presented in table VII.11 are obtained over the 50 

trial runs. Results of the proposed method are in bold. It can be observed from table 

VII.11 that the proposed technique provided almost significantly better results in 

comparison with the previously developed techniques.  
 

Table VII.10: Comparison of proposed method for test system 3 (case I, 1800 MW). 

Method Total Cost ($/h) Method Total Cost ($/h) 

PSO [219]  
EP-SQP [87]  
HDE [214]  
CGA-MU [89]  
PSO-SQP [87]  
PS [136]  
UHGA [220]  
QPSO [141]  

18030.72  
17991.03  
17975.73  
17975.34  
17969.93  
17969.17  
17964.81  
17964 

IGA_MU [89]  
ST-HDE [214]  
HGA [221]  
HQPSO(5) 
[138]  
DE [143]  
GSA [137] 
Proposed RTO 

17963.98  
17963.89  
17963.83  
17963.9571  
17963.83  
17960.3684 
17969.8024 

 

 

Figure VII.13 : Convergence of fitness value for load demand 2520 MW. 
 

 

The convergence behavior of the proposed RTO for power demand of 2520 MW 

is depicted in fig. VII.13. Fig. VII.14 shows distribution the generation cost of the best 

solution for each run in the test System 3. The best fuel cost result obtained from 

proposed RTO and other optimization algorithms are compared in tables VII.10 and 

VII.13 for load demand 1800 and 2520 MW respectively. 
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Table VII.11: Comparison of simulation results for test system 3 (case II , load = 2520 MW). 

Unit HGA 
[142] 

DE 
[215] 

FAPSO-VDE 
[216]  

ICA-PSO  
[217] 

IPSO  
[218] 

RTO 
 

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
PG,Total  
Min cost 
Mean cost  
Max cost 

628.3184  
299.1992  
299.1988  
159.733  
159.7329  
159.7324  
159.733  
159.733  
159.7331  
77.3994  
77.3996  
87.6879  
92.3992  
2519.9999  
24169.9177  
NA  
NA  

628.3185  
299.1993  
299.1993  
159.7331  
159.7331  
159.7331  
159.7331  
159.7331  
159.7331  
77.3999  
77.3999  
92.3999  
87.6845  
2519.9999  
24169.9177 
NA  
NA 

628.3185  
299.1993  
299.1993  
159.7331  
159.7331  
159.7331  
159.7331  
159.7331  
159.7331  
77.3999  
77.3999  
87.6845  
92.3999  
2519.9999  
24169.9176  
24169.9176  
24169.9176 

628.32  
299.19  
294.51  
159.73  
159.73  
159.73  
159.73  
159.73  
159.73  
114.8  
77.4  
55  
92.4  
2520.0000 
24168.910 
24175.34  
24184.92 

628.319 
299.199 
295.878 
159.265 
159.733 
159.733 
159.733 
159.733 
159.733 
77.363 
77.397 
92.397 
91.517 
2520.0000 
24166.8 
24167.37 
24169.41 

628.2518 
299.1535 
296.1073 
159.6753 
159.7332 
159.6176 
159.5445 
159.6311 
159.4948 
77.1423 
77.3767 
92.2554 
92.0241 
2520.0082 
24167.7042 
24273.5221 
24428.1236 

        NA denotes that the value was not available in the literature. 

 

Figure VII.14 : Distribution of objective function value for 30 Trails (2520 MW). 
 

Table VII.13 : Comparison of proposed method for test system 3  (case II , load = 2520 MW). 

Method Total Cost 
($/h) 

Method Total Cost 
($/h) 

SA[87]  
GA [87]  
GA-SA[87]  
EP-SQP [87]  
PSO-SQP[87]  
UHGA [220]  

24970.91  
24398.23  
24275.71  
24266.44  
24261.05  
24172.25  

GA-MU [144] 
IGAMU [144]  
HGA [221]   
DE [216]  
GSA [137] 
Proposed 

24170.755 
24169.979  
24169.92   
24169.9177  
24164.251357 
24167.7042 
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Economic Load dispatch problem with valve-point effects being attempted using 

RTO algorithm for various generator test system evaluates the performance of the 

proposed approach.  

A numerical simulation including comparative studies has been presented to 

demonstrate the performance and applicability of the proposed method. The simulation 

results reveal the superiority of the proposed technique in solving the DE problem with 

valve point effects. Therefore this approach could also be extended to other optimization 

and control problems of power systems.  

 

VII.3. GA based Genetic Engineering operation for solving UCP : 
The objective of the UCP is to minimize operation-cost while satisfying the constraints. 

However, power system operation needs reformulate tasks that reflect the changes due to 

the deregulated power systems to determine generation scheduling from a standpoint of 

maximizing profit under competitive environment. It is hard to solve due to the 

complexity [65]. In this section, a new GA operation is introduced, this new operation 

represents a another kind of crossover its idea derived from genetic engineering 

(modification), aim is to plant the good genes in a children generation, where we import 

these good genes from many parents with good qualities resulting from the crossing 

operation (elite only) for just one child. The purpose of this genetic engineering (GE) 

operation is to exploit the maximum best characteristics from the elite group in each 

generation, 

We present an extension to the standard genetic algorithm (GA), which is based on 

concepts of genetic engineering. The motivation is to discover useful and harmful genetic 

materials and then execute an evolutionary process in such a way that the population 

becomes increasingly composed of useful genetic material and increasingly free of the 

harmful genetic material [222]. Compared to the standard GA, it provides some solution 

quality advantages to our problem. 

In this section, a GA based Genetic Engineering operation (GAGE) is proposed to 

solve the UC problem. The results obtained show that, with the application of the 

proposed method (GAGE) to the unit commitment problem, better convergences and 
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solutions are obtained than with the application of conventional genetic algorithm and the 

algorithms proposed the most-recent literature 
 

VII.3.1. Introduction : 

Genetic algorithms (GAs) are a family of general stochastic search methods, which can 

be viewed as computational models of Darwinian evolution theory. They use the analogs 

of evolutionary operators on a population of states in a search space to find those states 

that optimize a fitness function. The search space consists of character-strings of fixed or 

variable length (chromosomes or genotypes) composed of the elements of a given 

alphabet (alleles). The genotype space is mapped onto another (phenotype) search space. 

The fitness function is defined as a function of a state in the phenotype space [222]. 

Since the biological metaphors (genetic representations, neo-Darwinian evolution 

theory) provide the conceptual basis of GAs, it seems natural to introduce some of the 

concepts of the most modern branch of biology –genetic engineering– into genetic 

algorithms [222]. 

In genetic engineering, recombination can also refer to artificial and deliberate 

recombination of disparate pieces of chromosome (DNA), often from different 

organisms, creating what is called recombinant chromosome. A prime example of such a 

use of genetic recombination is gene targeting, which can be used to add, delete or 

otherwise change an organism's genes. This technique is important to biomedical 

researchers as it allows them to study the effects of specific genes. Techniques based on 

genetic recombination are also applied in protein engineering to develop new proteins of 

biological interest. 

The primary motivation of this work is to identify and use any superior genetic 

material explicitly by means of genetic engineering. It is similar to the practice of genetic 

engineering in the genetics of natural organisms. In genetic engineering, the genetic 

engineer classifies the population into one group that possesses a high level of the 

property of interest or into another group that lacks it. We shall call the first group "elite". 

Then the genetic engineer tries to single out the groups of genes (we shall call them the 

elite genes) in the genotypes that are hypothesized to be responsible for the properties of 
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interest. we attempt to produce the next population whose genetic material contains more 

of these useful elite genes [222].  

This concept is inspired by the practice of genetic engineering in the genetics of natural 

organisms. We will refer to techniques that manipulate genetic material methods as 

genetic engineering operators. 
 

VII.3.2. Modified Genetic Algorithm (GAGE) : 

The GA is modified to include additional genetic engineering operation. The modified 

GA includes cycles where new elite genes are evolved, and a new population that is 

richer in superior genes is generated [222]. 

A library of the descriptions of currently identified elite genes are maintained. As the 

evolution process proceeds, enhanced by the inclusion of the genetic analysis and the 

genetic engineering operators, new elite genes are identified and added to this library. 

The elite genes that have been incorporated into this library earlier are retested against the 

newly generated populations. This involves checking that they are still superior elite 

genes for the current population. Those that do not pass this testing are deleted from the 

library [222]. 

The suggested GAGE models this simple picture of Darwinian evolution enhanced 

by genetic engineering technology. For each generation, the comparisons of genetic 

material of the most fit subpopulations are carried out. This yields current knowledge 

about the useful and harmful genetic features. This knowledge is then used to genetically 

engineer the current population during a pre-reproduction stage [222].  

The GAGE  has the following general structure [222]: 

1. Initialization of the population (randomly) and a library of elite genes – the superior  

genes. 

2. (a) Extraction of the super (highly fit) groups of individuals from the current 

population. 

    (b) Identification of the superior elite genes that distinguish this group from other at 

the genetic level. For example, this could be the most fit 10% of the population. 

(c) Updating the elite genes’ library by adding the newly evolved genes and 

eliminating the ones that test negatively. 
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(d)  Pre-reproduction processing step that includes various direct manipulations of 

genotypes of the population. The goal here is to produce superior genes in the 

genetic pool.  

3. Reproduction. 

4. If the stop conditions (for example, the given number of generations has been 

produced or the population has converged, etc.) are not met, go to step 1. 

Note that steps 1 and 2 of the algorithm may be executed after a fixed number of 

generations at predefined intervals. 

We will try to introduce a set of genes derived from a specific set of generation -with 

the best qualities- and who are in our case they are an elite group, and will be the number 

of genes input to the host randomly and will be the placement of these gene also 

randomly, the choice between the genes that represent the same role with the same who's 

in the genes of an elite group will be the most frequent choice of any dominant quality. 
 

  
  
  
  
  
  
  
  

    
  
  
  
  
  
  
  
  
  

 
 

Figure VII.14 : genetic engineering strategy to create recombinant chromosome by genes 
targeting. 

 
Will be the method of determining the dominant gene in the search algorithm for the 

most frequent as default, and may be a random sorting as a second way, 

In fig. VII.14 provide an example of how the dominant genes transmission from a 

candidate of the elite group to genes of the children , where we transferred the dominant 

0 1 0 0 1 0 1 1 1  0 

  + + + +     

0 1 0 1 1 1 1 0 0 0 

  + + + +     

0 1 1 0 0 0 1 1 0 1 

  + + + +     

1 1 0 0 1 0 0 1 1 1 

 
 
 

     
 

  
 
 
 

  
 

× × 0 0 1 0 × × × × 
 

homologous chromosomes  
from n elite individuals 

recombinant chromosome 

Genes targeting 

࢔/. =  ࢞

൜
૚	ࢌ࢏	࢞ > ૙.૞
૙	ࢌ࢏	࢞ < ૙.૞ 



Chapter VII     A novel Meta-heuristic methods and its application in solution of the ED and UC problems 

160 
 

genes from four members randomly selected of the elite, by identifying the part of the 

chromosome to be transferred (by two points), the gene in host individual will be as the 

following : 
 

 

4
)1  0()1  0()1  0()1  0(   where, 

5.0    if  0
5.0    if  1 4321
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(VII.6) 

 
  

From the previous relation we notice that there is a part of the domain, which is not 

defined when x = 0.5 in this case, we will resort to random choice between the 0 or 1, and 

this is the last stage to be applied on the output of the previous generation mechanisms by 

a predetermined probability PE (probability of engineering). 

 
 

 
 

Figure VII.15 : GAGE flowchart. 
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problems have been chosen to solve using the proposed method to yield a good 

perception of its capabilities. These standard problems are a ten-unit system, twenty-unit 

system, forty-unit system, sixty-unit systems and Algeria test system. 

Total cost of various methods including the proposed method have been compared in 

three worst, average and best columns which have been achieved from several  runs. 

The simulation results have been yield using Matlab® software, and the computer in 

which the simulations have been done has a Pentium IV, 3-GHz computer with 4 GB 

RAM. 
 

VII.3.3.1. Test system 1: standard test : 

The proposed RCGA is initially tested on a simple ten-unit base system with a 24-h time 

horizon. The unit characteristics of the ten-unit system and the demand are given in 

Appendix. 6 (A .11 and A.12, respectively). 

 

Case 1. A system with ten generating units with 10% of spinning reserve has been 

selected to study in this  part. According to the table VII.15, the UC-GAGE surpasses 

other methods in the Best column. One of the widely-used  criterions in qualifying UC 

methods has been the mean value of their solutions over several executions which 

indicates the robustness of those methods. According to this norm, the small average 

amount of the PUC- GAGE is a measure of its robustness in producing similar and high 

quality solutions over ten independent executions. Another noteworthy data in this table 

is successful rate of the solutions produced by the UC part without any modification. 

Table VII.14 shows the best combination of scheduled-units in the initial population. 

The total generation cost through the scheduling duration is $563,937.6874. Table VII.14 

shows the simulation results including the production cost, transition cost, and spinning 

reserve capacity of each scheduling time interval, unit-scheduled for 24-hour duration 

and the total generation cost. The total generation cost of the best combination of 

scheduled-units is $563,937.6874. Fig. VII.16 shows the convergence tendency of the 

best evaluation value in the population during GAGE processing with RCGA and the 

conventional GA. 
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Figure VII.16 : Typical performance of the GAGE versus RCGA and Conventional GA. 

 

 
Figure VI.17 : The output data for all 10 units. 

 

Fig. VII.17 shows the results of unit commitment optimization problem for ten-unit 

system by the proposed GAGE with a 24-h time horizon.  

To show the advantages of the proposed method, we will compare the performance 

of the proposal method GAGE with the various methods of the most recent literature as a 

Methodological  priority  list, a binary-real-coded genetic algorithm, enhanced simulated 

annealing algorithm, advanced quantum-inspired evolutionary algorithm, Muller method, 
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advanced fuzzy controlled binary particle swarm optimization and real coded firefly 

tighter relaxation algorithm in table VI.15. 
 

Table VII.14 : Best individual-Generation schedule and costs obtained by GA for 10 unit system with 10% 
of spinning reserve. 

 
Hour 

Unit 
Schedule 

Production 
Cost ($) 

Transition 
Cost ($) 

Spinning 
Reserve 
[MW] 

Generation schedule (MW) 

Unit1    Unit2   Unit3    Unit4    Unit5    Unit6  Unit7  Unit8  Unit9 Unit10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1100000000 
1100000000 
1100100000 
1100100000 
1101100000 
1111100000 
1111100000 
1111100000 
1111111000 
1111111100 
1111111110 
1111111111 
1111111100 
1111111000 
1111100000 
1111100000 
1111100000 
1111100000 
1111100000 
1111111100 
1111111000 
1100111000 
1100010000 
1100000000 

13683.1297 
14554.4997 
16809.4485  
18597.6677  
20020.0195  
22387.0445  
23261.9795  
24150.3407  
27251.0560  
30057.5503  
31916.0611  
33890.1629  
30057.5503  
27251.0560  
24150.3407  
21513.6595  
20641.8245  
22387.0445  
24150.3407  
30057.5503  
27251.0560  
22735.5210  
17645.3637  
15427.4197  

0 
0 

900 
0 

560 
1100 

0 
0 

860 
60 
60 
60 
0 
0 
0 
0 
0 
0 
0 

490 
0 
0 
0 
0 

210 
160 
222 
122 
202 
232 
182 
132 
197 
152 
157 
162 
152 
197 
132 
282 
332 
232 
132 
152 
197 
137 
90 
110 

455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 
455 

245 
295 
370 
455 
390 
360 
410 
455 
455 
455 
455 
455 
455 
455 
455 
310 
260 
360 
455 
455 
455 
455 
425 
345 

0  
0  
0  
0  
0 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0  
0  
0 

0  
0  
0  
0  
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
130 
0  
0  
0 

0 
0 
25 
40 
25 
25 
25  
30 
85 
162 
162 
162 
162 
85 
30 
25 
25 
25 
30 
162 
85 
145 
0 
0 

0  
0  
0  
0  
0  
0  
0  
0  
20 
33 
73 
80 
33 
20 
0  
0  
0  
0  
0  
33 
20 
20 
20 
0 

0  
0  
0 
0 
0 
0 
0 
0 
25 
25 
25 
25 
25 
25 
0 
0 
0 
0 
0 
25 
25 
25 
0 
0 

0  
0  
0  
0  
0  
0  
0  
0  
0  
10 
10  
43  
10 
0  
0  
0  
0  
0  
0  
10 
0  
0  
0  
0 

0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
10 
10 
0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0 

0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0 
10 
0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0  
0 

Total                   559,847.6874    4090         4275 Total generation cost ($):                  563,937.6874 

 

 
Figure VI.18 : The output data for Generation schedule and minimum and maximum power. 
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From table VI.15, it can be noted that GAGE performs superior to the compared 

algorithms, in terms of solution quality and CPU times, the GAGE can find the optimal 

solution with the lowest costs and mean deviation. Fig. VI.18 shows the output data for 

the generation schedule, minimum and maximum power. 
 

Table VI.15 : Comparison of total cost of the proposed method with recent works for 10-unit system. 

Methods Best cost  ($) Average cost ($) Worst cost ($) Standard 
deviation (%) 

Time (sec.) 

GA [202] 
GA [43] 
GA [201] 
SGA [180] 
TLGA [180] 
FPGA [183] 
ICGA [184] 
EP [189]  
GA [58]  
UCC-GA [201] 
DP  [58]  
LR  [58]  
LRGA [223]  
HPSO [62]  
HASP [188] 
ICGA [184]  
AG  [190] 
EALR [60]  
CR-GA [193]  
MPL [224]  
TSGB [186] 
BCGA [225] 
PSO [61] 
IPSO [61] 
SA [226] 
QEA–UC [227] 
IQEA–UC [227] 
Muller method [228] 
BCPSO [229] 
BRCFF [230] 
GSA [163] 
RM [231] 
RCGA 
GAGE 

565,866 
570,781 
609,023.69  
565,121 
564,426 
564,094 
566,404 
─ 
565,852  
563,977  
565,825  
565,825  
564,800  
563,942.3  
564,029  
─ 
─ 
563,977  
─ 
563,977.1  
568,315 
563,938 
564,212  
563,954  
565,828  
563,938  
563,938  
563,977  
563,947  
563,937  
563,938 
563,977 
564,338.41 
563,937.68 

567,329 
574,280 
─ 
─ 
─ 
566,675  
─ 
565,352  
─ 
─ 
─ 
─ 
─ 
564,772.3  
564,324  
566,404  
564,005  
─ 
563,977  
─ 
─ 
563,938 
565,103   
5564,162 
565,988 
564,012 
563,938  
─ 
564,285 
564,772 
564,008 
─ 
566,997.62  
566,059.95  

571,336 
576,791 
─ 
622,846 
566,182 
569,237 
─ 
─ 
570,032 
565,606 
─ 
─ 
─ 
565,782.3 
564,490 
─ 
─ 
─ 
─ 
─ 
─ 
564,088 
565,783  
564,579  
566,260  
564,711  
563,938  
─ 
565,002  
565,597  
564, 241 
─ 
569,637.25 
567,949.32 

26 (%) 
1549.9 ($) 

─ 
92.7 (%) 
31 (%) 
33 (%) 

─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 

18 (%) 
─ 
─ 

3.35(%) 
─ 
─ 

51.6(%) 
5.54(%) 

─ 
2.89(%) 

─ 
34 (%) 
29 (%) 

113 
62.29 
73.68 
462.31 

439.313 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 
─ 

1.15 
85.12 
93.5 

                 Sign (─) means that no amount has been reported. 

 

Case 2. To verify the effectiveness and efficiency of the proposed RCGA method in 

solving large-scale UC problem, the proposed method is applied on 20-100 unit systems, 

the 20, 40 and 60 units data are obtained by duplicating the base case (ten units), whereas 

the load demands are adjusted in proportion to the system size. In the simulation, the 

reserve is required to be 10% of the load demand. 
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For the three UCPs, the best, mean, worst costs and the standard deviations obtained by 

GAGE are compared with the reported results using SA [226]; GA [58]; EP [189] and the 

improved PSO (IPSO) [61], improved quantum evolutionary algorithm (IQEA) [232], 

quantum-inspired binary PSO (QBPSO) [233], DE [234], BNFO [235] and RCGA in 50 

trials are summarised in table VI.16.  
 

Table VI.16 : Numerical comparison. 

Method Best cost  Mean cost  Worst cost  Std.dev.cost, %  Mean time, s 
20-unit 
GA  
EP  
SA  
DE  
IPSO  
IQEA  
QBPSO  
BNFO 
RCGA 
GAGE 
 
40-unit 
GA  
EP  
SA  
DE  
IPSO  
IQEA  
QBPSO  
BNFO 
RCGA 
GAGE 
 
60-unit 
GA  
EP  
SA  
DE  
IPSO  
IQEA  
QBPSO  
BNFO 
RCGA 
GAGE 

 
1126243 
1125494 
1126251 
1123988 
1125279 
1123890 
1123297 
1123297 
1125141 
1123389  
 
 
2251911 
2249093 
2250063 
2245631 
2248163 
2245151 
2242957 
2242957 
2250286 
2245099 
 
 
3376625 
3371611 
─ 
3366502 
3370979 
3365003 
3361980 
3361527 
3370588 
3363154 

 
─ 
1127257 
1127955 
1124339 
─ 
1124320 
1123981 
1123431 
1126347 
1124032 

 
 
─ 
2252612 
2252125 
2245877 
─ 
2246026 
2244657 
2243241 
2251322 
2247634 
 
 
─ 
3376255 
─ 
3367166 
─ 
3365667 
3363763 
3362137 
3372354 
3364562 

 
1132059 
1129793 
1129112 
1124539 
1127643 
1124504 
1124294 
1123563 
1127654 
1124641 
 
 
2259706 
2256086 
2254539 
2246457 
2252117 
2246701 
2245941 
2244237 
2253456 
2248345  
 
 
3384252 
3381012 
3367612 
─ 
3379125 
3366223 
3365707 
3363251 
3378214 
3365178 

 
0.52 
0.38 
0.25 
0.05 
0.21 
0.05 
0.09 
0.0002 
0.37 
0.32 

 
 
0.35 
0.31 
0.20 
0.04 
0.18 
0.07 
0.13 
0.005 
0.35 
0.39 

 
 
0.23 
0.28 
─ 
0.03 
0.24 
0.04 
0.11 
0.0004 
0.35 
0.30 

 
733 
340 
17 
71 
─ 
42 
50 
29 
264 
272 

 
 
2697 
1176 
88 
153 
─ 
132 
158 
92 
421 
457 

 
 
5840 
─ 
2267 
257 
─ 
273 
328 
193 
756 
785 

 

For the 20-, 40-, and 60-Unit systems, in terms of best cost, mean cost and worst 

cost, GAGE is better than GA, EP, SA, DE, IPSO and IQEA on all the UC problems. 
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CPU time may reflect the difficulty of algorithm implementations when the number 

of unit increases. The mean CPU time shown in table VI.16 may not be directly 

comparable because of different computers used. Therefore it is still substantial to 

compare GAGE with some recent algorithms [16–19] because of same level of CPU 

speed (better than Pentium IV). In table VI.16, the CPU times of GAGE are much better 

than those of other algorithms except SA and DE. Furthermore, it is worth noting that the 

CPU times of GAGE increase approximately linear with respect to the system size of 

UCP, which is favourable for large-scale UCP applications. 

 

VII.3.3.1. Test system 2: the Algerian power network: 

In this case, the proposed method was applied to the electrical network in Algeria (ten-

unit) to assess the suitability of the algorithm. The unit characteristics of the Algerian 

network system and the demand are taken from [236] and also given in Appendix. 8 

(A.15 and A.16, respectively). In the simulation, the reserve is required to be 10% of the 

power demand. Scheduling of the generation obtained by the proposed GA method for 

the system is given in table VII.17. 
Fig. VI.19 shows the convergence tendency of the best evaluation value in the 

population during GAGE processing. 
 

 
Figure VII.19 : Typical performance of the GAGE in case Algerian network system. 
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Table VI.17 : Best individual-Generation schedule and costs obtained by GAGE for Algerian 
network system. 

 
Hour 

Production 
Cost ($) 

Transition 
Cost ($) 

Spinning 
Reserve 
[MW] 

Generation schedule (MW) 

Unit 1  Unit 2        Unit 3         Unit 4        Unit 5       Unit 6       Unit 7     Unit 8    Unit 9         Unit 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

3367.53 
2839.00 
1667.16 
1664.15 
1655.15 
1543.17 
1556.96 
1683.27 
1832.04 
1901.25 
1944.02 
1950.19 
1965.67 
2041.32 
2031.74 
1987.51 
1886.09 
1805.32 
1758.31 
1864.98 
2109.29 
2145.56 
1993.79 
1864.98 

0 
26 

397 
0 
0 

500 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1790 
2720 
1014 
1015 
1018 
1488 
1483 
1438 
1387 
1364 
1350 
1348 
1343 
1319 
1322 
1336 
1369 
1396 
1412 
1376 
1298 
1287 
1334 
1376 

0 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 
72 

0 
0 
15.00 
14.91 
14.65 
10.00  
10.00 
10.40 
14.13  
15.76  
17.05 
17.28 
17.83 
20.50 
20.16 
18.61 
15.42 
13.47 
12.30 
14.94 
22.83 
24.05 
18.83 
14.94 

365.50 
319.00 
88.82 
88.65 
88.14 
73.69 
74.26 
79.63 
87.09 
90.35 
92.94 
93.38 
94.49 
99.83 
99.16 
96.05 
89.66 
85.77 
83.43 
88.70 
104.49 
106.94 
96.49 
88.70 

365.5 
319.0 
88.82 
88.65 
88.14 
73.69 
74.26 
79.63 
87.09 
90.35 
92.94 
93.38 
94.49 
99.83 
99.16 
96.05 
89.66 
85.77 
83.43 
88.70 
104.49 
106.94 
96.49 
88.70 

0 
0 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
15.76 
17.05 
17.28 
17.83 
20.50 
20.16 
18.61 
15.42 
15.00 
15.00 
15.00 
22.83 
24.05 
18.83 
15.00 

0 
0 
15.00 
14.91 
14.65 
10.00 
10.00 
10.40 
14.13 
15.76 
17.05 
17.28 
17.83 
20.50 
20.16 
18.61 
15.42 
13.47 
12.30 
14.94 
22.83 
24.05 
18.83 
14.94 

0 
0 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

0 
0 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

0 
0 
168.34 
167.85 
166.40 
125.46 
127.09 
142.29 
163.43 
172.65 
175.00 
175.00 
175.00 
175.00 
175.00 
175.00 
170.72 
159.70 
153.07 
168.00 
175.00 
175.00 
175.00 
168.00 

0 
0 
0 
0 
0 
73.69 
74.26 
79.63 
87.09 
90.35 
92.94 
93.38 
94.49 
99.83 
99.16 
96.05 
89.66 
85.77 
83.43 
88.70 
104.49 
106.94 
96.49 
88.70 

Total        47,058.5631          923               29524 Total generation cost ($):                47,981.5631 
 

Table VI.19 : Comparison with other variant GA. 

Methods Best  ($) Average  ($) Worst  ($) 

GA   
RCGA  
GAGE 

48,904.64 
48,781.25 
47,981.56 

49,392.22 
48,580.32 
48,102.10 

49,751.77 
49,291.92 
48,533.22 

 

Tables VI.9 show the results of the proposed method comparing with other variant 

GA method results, the obtained result in this section represents a nearer global optimal 

solution to the problem and verifies the correctness of the proposed algorithm. 

 

VII.4. Conclusion : 

In this chapter we try to simulate how the roots look for water under the ground, we try to 

found an algorithm; (RTO) which finds the optimal values to solve such problem. 

We developed by using three kinds of gathered roots which create a new generation 

according to the previous one, the first one is to create a group of roots near from the 
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wetter roots –the best- of the previous generation in order to exist more in that place, the 

second one is the roots which take the same previous direction, these ones are created 

from those roots which have a considerable witness degree with a random addition that 

locked with the augmentation of the generation number, the last one is the random roots 

instead of the weak ones in order to add and to avoid the local solution.    

In the first section we clarify the efficiency of this method by its experiment on some 

known functions and by comparing it to recent techniques, where we find that it can find 

a new way of solution, one of its characteristics is the largest field of research due to the 

behavior of the roots. 

Secondly,  A new algorithm GAGE has been proposed to solve discrete optimisation 

problems, which is inspired by the Genetic Engineering operation on the GA. In GAGE, 

the modified GA includes cycles where new elite genes are evolved, and a new 

population that is richer in superior genes is generated. GAGE is efficiently applied to 

solve the UCP. The propose method is a combination of GAGE and the conventional 

Lambda-iteration method, which includes some other constraints. The total production 

costs of GAGE over the scheduled period are less expensive than the conventional 

genetic algorithm and the algorithms proposed the recent literature. 
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General conclusions  
 

 Introduction 

One of the main objectives when controlling power generation systems, to make the best 

use of available resources of generation to satisfy the instantaneous variations in the load 

demand without violating any of the constraints existing in the system. The various 

constraints arise in a power system from the operational limitations of the generating 

units and their accessories. Active power generated in a power system is controlled in 

tow time based loops: Economic Dispatch and Unit Commitment. Unit Commitment and 

Economic Dispatch loops schedule the generating resources to meet the forecasted load 

demand by continuously monitoring the load variations and adjusting the generation 

accordingly. This also ensures efficient constant frequency operation [237]. 

Review of various existing methods for the scheduling problems in power system is  

carried out. All these methods are proved to be efficient. The main objective of the work 

is to solve the scheduling problems in the power generation using a new and efficient 

method and to propose a simple and improved new algorithm to solve different types of 

ED problem viz, ED with prohibited zones and ramp-rate limit constraints, security 

constrained ED. 
 

 Summary and Major Findings 

The review on the existing solution strategies led to the scope of developing efficient 

scheduling methods in the field of power generation. our proposed methods are a good 

solution strategies and has been used for solution in many optimization tasks. In this 

thesis, efficient solutions are proposed for solution of the dispatch and scheduling 

problems in the power generation sector. 
 

 Economic Dispatch Problem  

As the first stage of the work, Economic load dispatch problem has been solved using 

various algorithms have been proposed such as GA, PSO, PS, BB-BC and ABC. The 

proposed algorithms have been successfully validated with classical and intelligent 

techniques of economic load dispatch and hence has reduced total fuel cost and power 
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loss. The different proposed algorithms are applied in a ED, ED with valve-point effects 

and Combined Economic Emission Dispatch (CEED) environment. The advantages of 

the algorithms is demonstrated through simulations on different IEEE test systems. 

In order to develop a solution strategy to handle larger problems, propose a new 

hybrid algorithm (GA–PS, PSO–PS, HBB–BC) for solving the EDP, the proposed 

methods are tested and validated on various electrical test systems and cases taking into 

different constraints, the results show that the optimal dispatch solutions determined, 

which confirms that the different algorithms are well capable of determining the global or 

near global optimum dispatch solution, the simulation results clearly show that the 

proposed hybrid methods can be used as an optimizer providing satisfactory solutions 

compared to the first methods. 

In this thesis we introduce a new method for optimization that is called root tree 

optimization algorithm (RTO), which was developed and extracted from the movement 

of the plants root when they look for the nearest place of water, in this algorithm we lean 

on the behavior of the desert plants especially where the water resources lacked. The 

robustness and efficiency of the proposed new method is validated on nonlinear functions 

(different IEEE test systems) and compared to recent methods addressing the same 

problem, our simulation results illustrate that the performance of the proposed algorithm 

can efficiently handle stochastic cost functions, also RTO algorithms are found to take 

lesser computation time compared to other stochastic solution methods. 
 

 Unit Commitment Problem  

One of the disadvantages of traditional genetic algorithms is premature convergence 

because the selection operator depends on the quality of the individual, with the result 

that the genetic information of the best individuals tends to dominate the characteristics 

of the population [181]. Furthermore, when the representation of the chromosome is 

linear, the crossover is sensitive to the encoding or depends on the gene position. The 

ends of this type of chromosome have only a very low probability of changing by 

mutation. In this work a genetic algorithm is applied to the unit commitment problem 

using an annular crossover operator where the chromosome is in the shape of a ring, and 

a modified operator. The results obtained show that, with the application of the proposed 
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operators to the unit commitment problem, better convergences and solutions are 

obtained than with the application of traditional genetic operators. 

first of all, an RCGA is developed to solve the UC problem. In the proposed GA, the 

initial populations generated are such that it totally avoids the penalty functions. The 

populations evolved in the consecutive generations are repaired and approximated 

regarding the constraint violation of minimum up/down time constraints and 

demand/spinning reserve constraints. The effectiveness of the proposed algorithm has 

been tested on a number of sample systems. The investigations reveal that the proposed 

RCGA is simple, reliable and efficient. 

Secondly,  A new algorithm GAGE has been proposed to solve discrete optimisation 

problems, which is inspired by the Genetic Engineering operation on the GA. In GAGE, 

the modified GA includes cycles where new elite genes are evolved, and a new 

population that is richer in superior genes is generated. GAGE is efficiently applied to 

solve the UCP. The propose method is a combination of GAGE and the conventional 

Lambda-iteration method, which includes some other constraints. The total production 

costs of GAGE over the scheduled period are less expensive than the conventional 

genetic algorithm and the algorithms proposed the recent literature. 
 

 Scope for future research 

The proposed GAGE to solve the unit commitment problem with security constraints 

could be extended with bus voltage limits, limits on reactive power generation, tap-

changing and phase-shifting transformers. The unit commitment problem could also be 

extended with load shedding and scheduled outages. 

The unit commitment problem can be solved using hybrid artificial intelligent 

techniques to improve the computational speed. Hence the present approach and the 

results presented in this work will encourage further research in this field. 

The RTO and GAGE algorithms developed in this thesis will be extremely useful 

for electric power utilities for enhancing the various types of economic dispatch problems 

and the unit commitment scheduling problem in an electric power system.  
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Appendix 

  
Appendix. 1 :   

Table A.1: Generator cost coefficients for 30 IEEE bus system. 

Bus No Real power output 
limit (MW) 

Cost coefficients 

Min Max a b c 
1 50 200 0.00375 2.00 0 
2 20 80 0.01750 1.75 0 
5 15 50 0.06250 1.00 0 
8 10 35 0.00834 3.25 0 
11 10 30 0.02500 3.00 0 
13 12 40 0.02500 3.00 0 

 
Table A.2: Generator cost coefficients for 30 IEEE bus system 

 
Bus No 

Real power output 
limit (MW) 

Cost coefficients 

Min Max a b c e f 
1 50 200 0.00160 2.00 150 50 0.063 
2 20 80 0.01000 2.50 25 40 0.098 

 

Appendix. 2 :  

Table A.3: Generating unit data of 15 units system. 

 
Unit 

Output limit 
(MW) 

Cost Coefficients 

Min Max a b c 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

150 
150 
20 
20 
150 
135 
135 
60 
25 
25 
20 
20 
25 
15 
15 

455 
455 
130 
130 
470 
460 
465 
300 
162 
160 
80 
80 
85 
55 
55 

671 
574 
374 
374 
461 
630 
548 
227 
173 
175 
186 
230 
225 
309 
323 

10.1 
10.2 
8.8 
8.8 
10.4 
10.1 
9.8 
11.2 
11.2 
10.7 
10.2 
9.9 
13.1 
12.1 
12.4 

0.000299 
0.000183 
0.001126 
0.001126 
0.000205 
0.000301 
0.000364 
0.000338 
0.000807 
0.001203 
0.003586 
0.005513 
0.000371 
0.001929 
0.004447 
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The loss coefficients β matrices of 15 generating units : 
 

























































0.1283   0.0094-   0.0028     0.0028     0.0168    0.0088-  0.0072- 0.0078- 0.0008-  0.0003     0.0003-  0.0026- 0.0028- 0.0002- 0.0001-
0.0094-  0.0578     0.0101-   0.0004-   0.0038-  0.0011-   0.0012-  0.0005  0.0002- 0.0017-   0.0024-   0.0001   0.0111   0.0010   0.0003  
0.0028   0.0101-  0.0103      0.0001-   0.0004     0.0009     0.0007    0.0001  0.0000- 0.0002-   0.0002-  0.0001   0.0026- 0.0004   0.0004  

0.0028   0.0004-  0.0001-    0.0054     0.0001    0.0034-   0.0025- 0.0036- 0.0007    0.0001- 0.0002-  0.0000- 0.0000- 0.0000- 0.0002-
0.0168   0.0038-  0.0004      0.0001     0.0140    0.0027-   0.0021-  0.0023- 0.0005- 0.0011     0.0007    0.0011- 0.0017- 0.0004- 0.0003-

0.0088-  0.0011-  0.0009     0.0034-   0.0027-  0.0200     0.0116    0.0079  0.0009   0.0008-  0.0013-  0.0032   0.0012- 0.0004- 0.0005-
0.0072-  0.0012-  0.0007     0.0025-   0.0021- 0.0116     0.0129   0.0082   0.0015   0.0005-  0.0010-  0.0029   0.0008- 0.0002- 0.0003-
0.0078-  0.0005    0.0001    0.0036-   0.0023-  0.0079    0.0082    0.0168   0.0017   0.0006-  0.0012-  0.0050   0.0000   0.0001   0.0001-

0.0008-  0.0002-  0.0000-   0.0007     0.0005-  0.0009     0.0015    0.0017   0.0015   0.0000-  0.0003-  0.0011   0.0001- 0.0000   0.0001-
0.0003    0.0017-  0.0002-   0.0001-   0.0011   0.0008-  0.0005- 0.0006-  0.0000-  0.0016    0.0014   0.0004- 0.0009- 0.0002- 0.0001-
0.0003-  0.0024-  0.0002-   0.0002-  0.0007    0.0013-  0.0010- 0.0012-  0.0003-  0.0014    0.0090   0.0007- 0.0013- 0.0005- 0.0003-
0.0026-  0.0001     0.0001    0.0000-   0.0011- 0.0032    0.0029     0.0050   0.0011    0.0004- 0.0007-  0.0034    0.0001- 0.0000  0.0001-
0.0028-   0.0111    0.0026-  0.0000-  0.0017- 0.0012-  0.0008-   0.0000   0.0001-  0.0009-  0.0013-  0.0001- 0.0076   0.0013  0.0007  
0.0002-  0.0010     0.0004    0.0000-  0.0004- 0.0004- 0.0002-    0.0001   0.0000   0.0002-  0.0005-  0.0000   0.0013   0.0015  0.0012  
0.0001-  0.0003     0.0004   0.0002-  0.0003-  0.0005    0.0003-   0.0001- 0.0001-  0.0001-  0.0003-  0.0001- 0.0007   0.0012  0.0014  

B

 

Boi=[-0.0001 -0.0002  0.0028 -0.0001  0.0001 -0.0003 -0.0002 -0.0002  0.0006  0.0039 -0.0017 -0.0000 -0.0032  0.0067 -0.0064] 
Boo= 0.055. 

 

Appendix. 3 :  

Table A.4 : Fuel Cost coefficients. 

Generator No   ai        bi         ci     Pmax [p.u] Pmin [p.u] 
1 
2 
3 

100 
120 
40 

200 
150 
180 

10 
10 
20 

0.50 
0.60 
1.00 

0.02 
0.03 
0.05 

 
Table A.5 :  NOx Emission coefficients. 

Generator No giNOx              hiNOx                 kiNOx 
1 
2 
3 

0.5783298 
0.3515338 
0.0884504 

0.00816466 
0.00891174 
0.00903782 

1.6103e-6 
2.1999e-6 
5.4658e-6 

 
Table A.6 : SO2 Emission coefficients. 

Generator No diSO2                    eiSO2                       fiSO2 
1 
2 
3 

0.04373254 
0.055821713 
0.027731524 

-9.4868099e-5 
-9.7252878e-5 
-3.5373734e-4 

1.4721848e-7 
3.0207577e-7 
1.9338531e-6 

 
Appendix. 4 :  

Table A.7 :  Generator data of three unit test system. 
Units  

min
iP   max

iP   a b c e f 

1  
2  
3 

100 
50  
100 

600  
200  
400 

0.001562 
0.004820 
0.001940 

7.92 
7.97 
7.85 

561 
78 
310 

300 
150 
200 

0.0315 
0.063 
0.042 
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Table A.8 :  Generator data of 15 unit test system.  

Units  
min
iP   max

iP   a b c e f 

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13 

0 
0  
0  
60  
60  
60  
60  
60  
60  
40  
40  
55  
55 

680  
360  
360  
180  
180  
180  
180  
180  
180  
120  
120  
120  
120 

0.00028 
0.00056 
0.00056 
0.00324 
0.00324 
0.00324 
0.00324 
0.00324 
0.00324 
0.00284 
0.00284 
0.00284 
0.00284 

8.10  
8.10  
8.10  
7.74  
7.74  
7.74  
7.74  
7.74  
7.74  
8.60  
8.60  
8.60  
8.60 

550  
309  
307  
240  
240  
240  
240  
240  
240  
126  
126  
126  
126 

300  
200  
150  
150  
150  
150  
150  
150  
150  
100  
100  
100  
100 

0.035  
0.042  
0.042  
0.063  
0.063  
0.063  
0.063  
0.063  
0.063  
0.084  
0.084  
0.084  
0.084 

 

Appendix. 5 : 

Generalized loss coefficient for IEEE-30 bus test system: 
 0.1382 - 0.0299    0.0044 - 0.0022 - 0.0010 - 0.0008
-0.0299    0.0487 - 0.0025    0.0004    0.0016   0.0041
 0.0044 - 0.0025    0.0182 - 0.0070 - 0.0066 - 0.0066

 
-0.0022    0.0004 - 0.0070    0.0137   0.0050 

B 
   0.0033

-0.0010    0.0016 - 0.0066    0.0050   0.0109    0.0005
-0.0008    0.0041 - 0.0066    0.0033    0.0005    0.0244
[ - 0.0107    0.0060 - 0.0017  0.0009  0.0002  0.0030 ];Boi

Boo

 
 
 
 
 
 
 
 
  

  9.8573 - 4;e

 

 
Table A.9 :  Cost coefficients IEEE 30-bus test system. 

Generator N° ai        bi       ci Pmax (p.u) Pmin (p.u) 
1 
2 
3 
4 
5 
6 

100 
120 
40 
60 
40 
100 

200 
150 
180 
100 
180 
150 

10 
10 
20 
10 
20 
10 

0.50 
0.60 
1.00 
1.20 
1.00 
0.60 

0.02 
0.03 
0.05 
0.06 
0.05 
0.03 

 

Table A.10 :  Cost emission IEEE 30-bus test system. 

Generator N° αi           βi              γi             ζi             λi 
1 
2 
3 
4 
5 
6 

4.091 
2.543 
4.258 
5.326 
6.131 
4.258 

-5.554 
-6.047 
-5.094 
-3.550 
-5.555 
-5.094 

6.490 
5.638 
4.586 
3.380 
5.151 
4.586 

2.0e-4 
5.0e-4 
1.0e-6 
2.0e-3 
1.0e-6 
1.0e-5 

2.857 
3.333 
8.000 
2.000 
6.667 
8,000 



                                                                                                                                                             Appendix 

175 
 

 
Appendix. 6. 

Table A .11 : Unit data of the 10-unit 24 hour test system. 
 Unit 1  Unit 2  Unit 3  Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

Pmax (MW) 455   455   130   130   162 80   85   55   55   55 
Pmin (MW) 150   150   20   20   25 20   25   10   10 10 

a0 1000   970   700   680   450 370   480   660   665   670 
a1 16.19   17.26   16.60   16.50   19.70 22.26   27.74   25.92   27.27   27.79 
a2 0.00048 0.00031   0.002   0.00211  0.00398 0.00712 0.00079  0.00413   0.00222  0.00173 

tup (h) 8   8   5   5   6 3 3 1 1 1 
tdown (h) 8 8 5 5 6 3 3 1 1 1 

Sh($) (hot start) 4500   5000   550   560   900 170   260   30 30 30 
Sc($) (cold start) 9000   10000   1100   1120   1800 340   520 60 60 60 

tcold start (h) 5  5   4   4   4 2 2 0 0 0 
Initial State (h) 8   8   -5   -5   -6 -3 -3 -1 -1 -1 

 
Table A .12 : Demand of 10 unit 24 hour test system. 

Hour Load  
(MW) Hour Load  

(MW) Hour Load  
(MW) 

1  
2  
3  
4  
5  
6  
7  
8 

700  
750  
850  
950  
1000  
1100  
1150  
1200 

9  
10  
11  
12  
13  
14  
15  
16 

1300  
1400  
1450  
1500  
1400  
1300  
1200  
1050 

17  
18  
19  
20  
21  
22  
23  
24 

1000 
1100 
1200 
1400 
1300 
1100 
900 
800 

 
Appendix. 7. 

Table A .13 : Load and Reserve (Wood and Wollenberg 1996).  

 

 

 

Table A .14 : Test System (Wood and Wollenberg 1996). 

 Unit 1  Unit 2  Unit 3  Unit 4 

Pmax (MW) 300  250  80  60 
Pmin (MW) 75  60  25  20 

a0 684.74  585.62  213.00  252.00 
a1 16.83  16.95  20.74  23.60 
a2 0.0021  0.0042  0.0018  0.0034 

tup (h) 5 5 4 1 
tdown (h) 4 3 2 1 

Sh($) (hot start) 500  170  150  0.00 
Sc($) (cold start) 1100  400  350  0.02 

tcold start (h) 5 5 4 0 
Initial State (h) 8  8  -5  -6 

Hour 1 2 3 4 5 6 7 8 
Demand (MW) 450  530  600  540  400  280  290  500 
Reserve (MW) 45 53 60 54 40 28 29 50 
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Appendix. 8. 

Table A .15 : Unit data of the Algerian network system. 
 Unit 1  Unit 2  Unit 3  Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

Pmax (MW) 72   70   510   400   150 100 100   140   175   450 
Pmin (MW) 8   10   30   20   15 10   10   15 18 30 

a0 0   0   0 0   0 0   0   0   0   0 
a1 1.5 2.5 1.5 1.5 2.5 2.5 2 2 2 1.5 
a2 0.0085 0.0170 0.0085 0.0085 0.0170 0.0170 0.0030 0.0030 0.0030 0.0085 

tup (h) 1   2   5   5   2 2 2 2 2 5 
tdown (h) 1 2 5 5 2 2 2 2 2   1 

Sh($) (hot start) 26   17   500   500   90 55   55 90  90 500 
Sc($) (cold start) 26   17   500   500   90 55   55 90 90 500 

tcold start (h) 2  2   4   4   2 2 2 2 2 4 
Initial State (h) 0 0   0 0 0 0 0 0 0 0 

 
 

Table A .16 : Demand of Algerian network system. 

Hour Load  
(MW) Hour Load  

(MW) Hour Load  
(MW) 

1  
2  
3  
4  
5  
6  
7  
8 

731  
710 
703 
702 
699 
679 
684 
729 

9  
10  
11  
12  
13  
14  
15  
16 

780 
803 
817 
819 
824 
848 
845 
831 

17  
18  
19  
20  
21  
22  
23  
24 

798 
771 
755 
791 
869 
880 
833 
791 
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