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[In the creation of the heavens and the earth and in the alternation of the night
and the day there are indeed Signs for men of understanding (190) who remember
God standing, and sitting, and lying on their sides; and meditate on the creation of

heaven and earth, ...] [Aal‘imraan:190-191]
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Abstract

Optimal management and control of electrical energy
on production sites

Abstract

In recent years, power demand has been increasing with the industrialization
development. Various management and planning tools have been used, but additional
research and development are needed to bring them to the optimal utilization and
control. Unit commitment (UC) and economic dispatch (ED) problems are the
fundamental problem that system operators solve in order to minimize the costs
associated with reliably operating electricity grids. In order to minimize the fuel cost and
keep the power outputs of generators and bus voltages in their secure limits, several
methods metaheuristic have been used in this work namely Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), Pattern Search (PS), Big Bang-Big Crunch
algorithm (BB-BC) and Artificial Bee Colony algorithm (ABC) with their hybrids. In
addition, these methods have been applied to determine the commitment order of the
thermal units in power generation in systems. Two new approaches have been
developed and introduced in the context of our thesis called: root tree optimization
algorithm (RTO) and GAGE. The results obtained by the application of the first
developed method (RTO) for solving various types of ED problem, comparatively to
recent methods that treat the same problem, showed a better solution quality and
reducing CPU time to reach the best solution. The second GAGE based on genetic
engineering operator in genetic algorithm, was developed for solving the UC problem.
Thus, this method show remarkable improvements in total costs for a 10-unit test system

and Algerian electrical network for a 24-hour period.
Keywords: Optimal Power Flow, Power Systems, Economic Dispatch, Unit

Commitment, Pollution Control, emission, Metaheuristic, Hybrid algorithms, PSO, GA,

PS, BB-BC, ABC, RTO, GAGE.
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Abstract

Gestion et controle optimale de 1'énergie électrique sur
les sites de production

Résumé

Au cours des dernieres années, la demande de l'énergie électrique a augmenté avec le
développement de l'industrialisation. Divers outils de gestion et de planification ont été
utilisées, mais la recherche et le développement supplémentaires sont nécessaires pour les
amener a l'utilisation et le controle optimale. L'engagement des unités (UC) et le dispatching
économique (ED) sont les deux fondamentaux problémes que les opérateurs du systeme
résoudre afin de minimiser les cotts d'exploitation des réseaux électriques de maniere
optimale. Afin de minimiser le cotit du carburant et de garder les sorties de puissance de
générateurs et des tensions de bus dans leurs limites stires, plusieurs méthodes
métaheuristiques ont été utilisés dans ce travail, notamment des optimisation par essaims
particulaires (OEP), Algorithme Génétique (AG), Pattern Search (PS) algorithme Big Bang-Big
Crunch (BB-BC) et l'algorithme Artificiel Bee Colony (ABC) avec leurs hybrides. En outre,
ces méthodes ont été appliquées pour déterminer l'ordre d'engagement des unités
thermiques de production d'électricité dans les systemes. Deux nouvelles approches ont été
développées et introduites dans le cadre de notre thése a savoir : algorithme d'optimisation
de l'arbre racine (RTO) et GAGE. Les résultats obtenus par l'application de la premiere
méthode développée (RTO) pour résoudre divers problemes du types ED, comparativement
aux méthodes récentes qui traitent le méme probleme, ont montré une meilleure qualité de
la solution et réduire d'une maniere significative le temps CPU d'exécution. La seconde,
GAGE est basé sur l'opérateur de l'exploitation de l'ingénierie génétique dans l'algorithme
génétique, a été développée pour résoudre le probleme UC. Ainsi, cette méthode montre des
améliorations remarquables dans les cotits totaux pour un systeme de test de 10 unités et le

réseau électrique algérien pour une période de 24 heures.

Mots clés: Optimisation de 1'écoulement de puissance, Réseau, Dispatching Economique,
Engagement d'Unité de production, controle de pollution, émissions, Métaheuristiques,
Algorithmes Hybrids, Optimisation par Essaims de Particules (PSO), Algorithmes
Génétiques (AG), Recherche de motifs (PS), algorithme de Big Bangetde Big Crunch,
Colonie d'Abeilles Artificielle (ABC), algorithme d'Optimisation des Racines des Arbres
(RTO), Algorithmes Génétiques avec mécanisme de Génie Génétique (GAGE).
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General Introduction

General Introduction

Optimization, the best way of doing things, is obviously of great interest in the practical
world of engineering. In recent years, for power system management, many important
decisions are made by describing the system under study as precisely and quantitatively
as possible, selecting some measures of system effectiveness, and then seeking the state
of the system which gives the most desirable solution to the criteria [1]. Modem electric
power systems built with nonlinear characteristics are highly interconnected with wide
geographical distribution. This demands the optimization of a complex objective function
under few practical constraints. Hence power system network optimization involves
maximization or minimization of objective function under certain constraints [1].

operational planning of the power system involves the best utilization of the
available energy resources subjected to various constraints to transfer electrical energy
from generating stations to the consumers with maximum safety of personal/equipment
without interruption of supply at minimum cost [1-4]. In modern complex and highly
interconnected power systems, the operational planning involves steps such as load
forecasting, economic dispatch, unit commitment, maintenance of system frequency and
declared voltage levels as well as interchanges among the interconnected systems in
power pools etc [3-4].

There are three stages in system control, namely generator scheduling or unit
commitment, security analysis and economic dispatch [2].

* Economic dispatch orders the minute-to-minute loading of the connected
generating plant so that the cost of generation is a minimum with due respect to
the satisfaction of the security and other engineering constraints

* Generator scheduling involves the hour-by-hour ordering of generator units
on/off in the system to match the anticipated load and to allow a safety margin.

» With a given power system topology and number of generators on the bars,

security analysis assesses the system response to a set of contingencies and
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provides a set of constraints that should not be violated if the system is to
remain in secure state.

Mathematically well-defined objective and constraint functions and their derivatives
must therefore be developed in order to land at a global optimum in a search procedure
[4]. In order to alleviate the problems associated with traditional strategies, intelligence
techniques are also explored.

This thesis deals with the application of artificial intelligence methods to the inherent
issues, which govern the satisfactory delivery of electric power. It includes economic
load dispatch, combined economic emission load dispatch, economic load dispatch with
prohibited operating zones and unit commitment problem. The proposed work includes
the state-of-the-art methods and procedures necessary for designing and developing an
intelligence system. This work takes into account the theoretical investigations and
practical considerations especially for mutual dependencies between intelligence
techniques such as genetic algorithm, swarm intelligence, pattern search method, big

bang-big crunch optimization and artificial bee colony optimization.

v Objectives of the thesis
The main objectives of the dissertation are :

(a) To provide a mathematical formulation of the various types of economic load
dispatch problems in power systems such as economic load dispatch (ELD)
problem,

(b) To provide an overview of the concept of Unit Commitment (UC) problem with a
bibliographical survey of relevant background, the present state and potential
methodologies used for solving the concern problem,

(c) To presents a comprehensive review of the methodologies, which covers a wide
span of Evolutionary Computation and Meta-heuristic and hybrid approaches such
as GA, PSO, PS, BB-BC, ABC and their hybrid approaches. In terms of
contribution, it formulates the problem clearly and describes appropriate
approaches to solve the problems,

(d) To present our proposed metaheuristic techniques and their applications on

different economic dispatch problem,
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(e) To implement a different types of genetic algorithms for solving unit commitment
problem in a power system, implemented algorithms successfully solves both
small and large scale problems and shows how much more efficient variable
structure genetic algorithm,

(f) To propose a new method for optimization that is called “root tree optimization”
algorithm (RTO), the robustness and efficiency of the proposed new method is
validated, the proposed approach RTO has been applied to various test
systems ED problem solution considering valve-point effect,

(g) To propose a novel operator for Genetic Algorithms a “genetic modification” for
solving the UCP, generating unit’s shows that we can find the optimal solution
effectively and these results are compared with the conventional methods and

various optimization approaches in the recent literature.

v" Organization of The Thesis
After a general introduction to the undertaken work and the presented literature review,
the main body of the thesis is structured as follows:

» A general introduction to the problem of power system optimization is presented
in chapter 1. The need for intelligence based approaches is discussed, and a
review of the traditional optimization strategies is traced. It includes a survey of
the literature and the main objectives of the dissertation.

» Chapter 2 presents the mathematical formulation of the various types of economic
load dispatch problems in power systems such as economic load dispatch (ELD),
combined economic emission dispatch (CEED) and the economic load dispatch
(ELD) with prohibited operating zones considering ramp rate limits.

» Chapter 3 presents formulation the UC problem considering various operating
constraints, such as power balance, spinning reserve, operating limit, and
minimum up/down time.

» Chapter 4 provides a general description of these metaheuristics techniques in
power systems, and we briefly revise the main features of the metaheuristic
approaches, focusing particularly on those used in this thesis such as Genetic

Algorithm (GA), Particle Swarm Optimization algorithm (PSO), Pattern Search
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method (PS), Big Bang—Big Crunch optimization algorithm (BB-BC), Artificial
Bee Colony optimization algorithm (ABC), a hybrid GA-PS method, a hybrid
PSO-PS method and Hybrid BB-BC optimization algorithm.

» Chapter 5 applies the proposed methods to various types of ED problem with
smooth and non-smooth cost functions and it is also compared with other methods
for validating their ability.

» Chapter 6 presents the application of genetic algorithm (GA) in UC problem with
various operating constraints, Also, we applied a crossover operator ring
crossover for genetic algorithm (RCGA) to solve the UC problem, the results
obtained show that, with the application of the proposed RCGA method to the
unit commitment problem, better convergences and solutions are obtained than
with the application of conventional genetic algorithm.

» Chapter 7 introduce a new method for optimization that is called root tree
optimization algorithm (RTO), the robustness and efficiency of the proposed new
method is validated on nonlinear functions and compared to recent methods
addressing the same problem, simulation results confirm efficiency and reliability
of the proposed RTO algorithm for solving complex optimization problem in term
of solution quality and convergence characteristic. The proposed approach RTO
has been applied to various test systems, from numerical results, it is found that

the proposed RTO approach is able to provide better solution than other reported

techniques in terms of fuel cost and time. Secondly, A new algorithm GAGE has
been proposed to solve optimisation problems, which is inspired by the Genetic
Engineering operation on the GA, the modified GAGE is efficiently applied to
solve the UCP, the total production costs of GAGE over the scheduled period are
less expensive than the conventional genetic algorithm and the algorithms
proposed the recent literature.

The contributions of the dissertation along with the scope for future research in this

area find a place in general conclusion.
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CHAPTER I

Survey of research findings

I.1. Introduction :

Modem electric power systems built with nonlinear characteristics are highly
interconnected with wide geographical distribution. This demands the optimization of a
complex objective function under few practical constraints. Hence power system
network optimization involves maximization or minimization of objective function under
certain constraints [4].

The operation of a modem power system has to incorporate in its mission a strategy
that serves to derive the maximum benefits of an improved performance and enhanced
reliability [4]. The power grid networks have been analyzed using conventional and
enumerative techniques for delivering the bulk power. reliably and economically, from
power plants to the consumers. Though well-developed, these conventional approaches
dealt with the local optima. Besides their limitations to handle mixed variables, these
enumerative techniques have relied on special convergence properties and evaluation of
auxiliary functions [5, 6].

The operations of energy management systems can be further optimized through
optimization heuristic approach to the inherent issues, which govern the satisfactory
delivery of electric power. It includes economic load dispatch, combined economic
emission load dispatch and unit commitment problems.

The proposed work includes the state-of-the-art methods and procedures necessary
for designing and developing an intelligence system. This work takes into account the
theoretical investigations and practical considerations especially for mutual dependencies
between intelligence and metaheuristic techniques such as GA, PSO, PS, BB-BC, ABC
and their hybrid approaches.
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I.2. Review Of Traditional Strategies :

Several mathematical optimization techniques have been proposed to solve the power
system problems. In such an optimization problem, the main objective will be to
minimize undesirable factors, such as cost, energy loss and errors, in order to maximize
desirable factors, such as profit, quality and efficiency, subject to available limitations or
constraints [4]. There are a wide range of mathematical programming techniques such as
linear programming (LP)/interior point (IP) method, quadratic Programming (QP),
nonlinear programming (NLP), decomposition technique, integer programming, mixed
integer pogromming and dynamic programming (DP). This section attempts to review the

basic concepts of these techniques.

I.2.1. Linear and Quadratic Programming Methods :

Linear programming (LP) methods have linear objective functions and constraints [7-9].

These methods basically fall into two categories: simplex and integer programming (IP)

[10-17]. The main advantage of simplex method is its high computational efficiency. But

the disadvantage is that number of iterations grows exponentially with problem size. This
disadvantage can be overcome by IP methods.

IP methods do not step from one comer point to the next in the manner of simplex
algorithm, but rather stay within the interior of the constrained region and progressively
move to the optimal point. Both the simplex and IP methods can be extended to have a

linear and quadratic objective function when the constraints are linear. Such methods are

called quadratic programming (QP) [18-19]. LP has been used in various power system

applications such as optimal power flow [S], load flow [8], reactive power planning [20],

and active and reactive power dispatch [21-22].

1.2.2. Nonlinear Programming Methods :

In most of the NLP methods, the approach is to start from initial conditions and
determine the 'descent direction' in which the value of objective function decreases for a
minimization problem. A large number of NLP methods are available that are

distinguishable by their definition and step length. Quasi-Newton method [23] that

6
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attempts to build up an approximation to Hessian matrix exhibits powerful convergence.
If the coefficients of Hessian matrix are available analytically, Newton method [24] can
be applied. Some of the most successful methods in use today are based on applying QP
to solve a local optimization in a nonlinear problem. [P methods originally developed
for LP can be applied to QP and NLP problems. NLP has been applied to solve optimal
power flow [25] and hydrothermal scheduling [26] problems.

1.2.3. Integer and Mixed-Integer Programming Methods :

In cases where the independent variables can take only integer values, such problems are
called integer programming. When some of the variables are continuous, the problem is
called mixed integer programming. Mainly two approaches, namely 'branch and bound'
and 'cutting plane methods', have been used to solve integer problems using mathematical
programming techniques [23]. The size and complexity of integer and mixed-integer
programmes that can be solved in practice depends on the structure of the problem.

Integer/mixed integer programming have been applied to various areas of power systems

such as optimal reactive power planning [27], power system planning [28-29], unit

commitment [30] and generation scheduling [31].

1.2.4. Dynamic Programming Methods :
Dynamic programming (DP) based on the principle of optimality states that a sub-policy
of an optimal policy must in itself be an optimal sub-policy. DP is a very powerful
technique, but it suffers from the curse of dimensionality [32]. DP has been applied to
various areas of power systems such as reactive power control [33], transmission
planning [34] and unit commitment [35].

The main advantage of the intelligence based methods is that it avoids the
complexities in the formulation of mathematical model for the power system
optimization. However, the shortcoming of these methods is generally associated with the

required excessive computational resources. With the advent of fast processors with large

memory, these methods appear to be promising in the future [4] [36-40].
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1.3. Literature Review :

They are reviewed in a systematic way in the following sections.

1.3.1. Economic Load Dispatch Problems :

1.3.1.1. Economic Load Dispatch :

The classical lambda iteration method has been used to solve the ELD problem. This
method utilizes an equal incremental cost criterion for systems without transmission
losses and the penalty factors using 3, matrix for systems with transmission losses. Other
methods such as gradient, Newton, linear programming and interior pint have also been
applied to solve the ELD problems [41].

Zwe-Lee Gaing [42] has proposed a particle swarm optimization (PSO) method for
solving the economic dispatch (ED) problem in power systems. This method made use of
PSO for its global search capability to allocate optimum loading of each generator. The
test results of three different systems have been compared with that of GA-based
approach.

Jayabarathi et al. [43] have adopted a particle swarm optimization technique for
solving the various types of economic dispatch problems. The test results of the sample

systems have been compared with that of other evolutionary computing techniques.

1.3.1.2. Combined Economic Emission Dispatch :

Talaq et al. [44] have formulated an optimal power flow problem with emission
constraints where the main objective was to minimize the fuel cost and the total emission
over a wide time period of different intervals and system demands. The test results of
standard 5-bus and IEEE-30 bus systems display a trade-off relationship between fuel
cost and emission.

Wong et al. [45] have developed an efficient and reliable evolutionary-
programming-based algorithm for solving the environmentally constrained economic
dispatch (ECED) problem. This method made use of acceleration techniques in order to
enhance the speed and robustness of the algorithm.

Venkatesh et al. [46] have built an EP algorithm to solve the CEED problem with

line flow constraints. The line flows in MVA have been computed directly from the
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Newton-Raphson method. A novel modified price penalty factor has been introduced to
find the exact economic emission fuel cost with respect to the load demand. The test
results of IEEE-14, -30 and -118 bus systems have been compared with that of other
evolutionary computing techniques.

Abido [47] has derived a Pareto-based multi-objective evolutionary algorithm
(MOEA) for solving an environmental/economic electric power dispatch problem.

This fuzzy-based hierarchical clustering technique has been implemented in order to
obtain the best solution. The test results of an IEEE-30 bus system have been compared

with that of other traditional multi-objective optimization techniques.

1.3.1.3. Economic Load Dispatch with Prohibited Operating Zones :

Walters et al. [48] have developed a genetic algorithm to solve the economic dispatch
problem with valve-point effects. This algorithm has utilized payoff information of the
candidate solutions to evaluate their optimality. The test results of three units system have
been compared with that of dynamic programming method.

Wong et al. [49] have built an incremental genetic algorithm based approach for the
determination of global or near-global optimum solution. Another technique that
incorporates both incremental genetic theory and simulated annealing has served to
determine the economic loadings of 13 generators in a practical power system with the
effects of valve-point loading and ramping characteristics. The test results have been
found to yield better results when compared with that of simulated annealing based
method.

Chen et al. [50] have presented a GA-based method that uses the incremental cost of
encoded parameter of the system for solving the ED problem taking into account the
network losses, ramp rate limits, valve-point zone and prohibited operating zone. The
numerical results of the method for a large scale 40-unit system have been compared with
that of lambda-iteration method.

Fung et al. [51] have formulated an integrated parallel genetic algorithm
incorporating Tabu Search (TS) and simulated annealing for solving the ED problem.

The parallel computing platform has been based on a network of interconnected

personal computers (PCs) using TCPAP socket communication facilities. The test results
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of a practical power system have been obtained to compute the optimal loading of 13
generators.

El-Gallad et al. [52] have adapted a PSO technique to solve the traditional economic
dispatch problem. The objective function has been formulated as a combination of
piecewise quadratic cost functions with non-differential regions, instead of adopting a
single convex function for each generating unit. This innovation has served to incorporate
practical operating conditions, such as valve-point effects and fuel types. The
effectiveness of the algorithm has been tested on a three unit system and the results have
been compared with that of a numerical method.

El-Gallad et al. [53] have added new constraints to the problem by introducing
system spinning reserve and generator prohibited operating zones. In this formulation,
they have included the same constraints but considered a single convex cost function
[52]. The test results of a 15-unit system in which four units with prohibited operating
zones have been compared with for both conventional method and the Hopfield neural
network.

Lai et al. [54] have applied PSO to solve economic dispatch (ED) of units with non-
smooth input-output characteristic functions. The test results of an IEEE-30 bus system
with six generating units have been compared with that of evolutionary programming
(EP).

Victoire et al. have extended Gaing's research by forming a hybrid optimizer to
tackle the same problem [55]. They have used sequential quadratic programming to fine-
tune the PSO search in finding the optimal solution. The feasibility has been illustrated
by conducting case studies on a 10-unit system with valve-point effects for three different

load-demand patterns and the results have been compared with that obtained using the

EP-SQP method.

1.3.2. Unit Commitment :

Sheble et al. [56] have presented a genetic-based unit commitment (UC) scheduling
algorithm. It has made use of GA with domain specific mutation operators for finding
good unit commitment schedules. The test results of three different electric utilities have

been compared with that of Lagrangian relaxation UC method.

10
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Bakirtzis et al. [57] have developed a genetic algorithm that uses different quality
function techniques to solve the unit commitment problem. The test results up to 100
generator units have been compared with that of dynamic programming and Lagrangian
relaxation methods.

Swarup et al. [58] have employed a new solution methodology to the UC problem
using genetic algorithm. The strategy has been found to be efficient and serve to handle
larger size UC problems.

Zwe-Lee Gaing [59] has built an integrated approach of discrete binary particle
swarm optimization (BPSO) with the lambda-iteration method for solving the UC
problem. It has been solved as two sub problems using BPS0O method for minimization of
the transition cost. The economic dispatch problem has been solved by lambda-iteration
method for the minimization of the production cost. The feasibility of the method has
been demonstrated on a 10- and a 26-unit systems, and the test results have been
compared with that of GA method.

Zhao et al. [60] have presented an improved particle swarm optimization (IPSO)
algorithm for power system UC problem. It has adopted an orthogonal design in order to
generate the initial population that are scattered uniformly over a feasible solution space.
The IPSO algorithm has been tested on a modeled 10-unit system and the performance is
compared with that of GA and EP methods.

Ting et al. [61] have integrated a new approach of hybrid particle swarm
optimization (HPSO) scheme, which is a blend of HPSO, BPSO and real-coded particle
swarm optimization (RCPSO), to solve the UC problem. The UC problem has been
handled by BPSO, whereas the economic load dispatch problem has been solved by
RCPSO.

Funabashi et al. [62] have formulated a twofold simulated annealing method for the
optimization of fuzzy-based UC model. The method has served to offer a robust solution
for UC problem.

Victoire et al. [63] have applied a hybrid PSO and sequential quadratic programming
(SQP) technique, prelude to tabu search (TS) method for solving the UC problem. The
combinational part of the UC problem has been solved using the TS method. The

nonlinear optimization part of economic dispatch problem (EDP) has been solved using a

11
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hybrid PSO-SQP technique. The effectiveness of hybrid optimization technique has been
tested on a NTPS zone-II 7-unit system.

There have been various methods which are based on mathematical programming
and metaheuristic-based for solving the thermal and hydrothermal UC problem in
literature, these major methods are priority list, dynamic programming (DP), mixed-
integer programming, heuristic unit, simulated annealing, tabu search, evolutionary

programming, constraint logic programming, genetic algorithms, LR, interior point

method, memetic algorithm, and neural network [64-71].

I.4. conclusion :

A detailed review of the existing methodologies in the field of power system
scheduling has been carried out in this chapter. Several classical and heuristic
methodologies adopted for the solution of scheduling problems have been looked at.
Even though numerous solution methodologies exist, thinking of more efficient and

computationally faster stochastic strategy is still relevant in the fourth chapter.
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CHAPTER II

Mathematical formulation of the Economic
Dispatch problem

I1.1. Introduction :

The main aim of electric power utilities is to provide high-quality. reliable power supply
to the consumers at the lowest possible cost while operating to meet the limits and
constraints imposed on the generating units. This formulates the economic load dispatch
(ELD) problem for finding the optimal combination of the output power of all the online
generating units that minimizes the total fuel cost, while satisfying an equality constraint
and a set of inequality constraints. As the cost of power generation is exorbitant, an
optimum dispatch results in economy [1, 4].

In recent years, with an increasing awareness of the environmental pollution caused
by thermal power plants, limiting the emission of pollutants is becoming a crucial issue in
economic power dispatch. The conventional economic power dispatch cannot meet the
environmental protection requirements, since it only considers minimizing the total fuel
cost. The multi-objective generation dispatch in electric power systems treats economic
and emission impact as competing objectives, which requires some reasonable tradeoff
among objectives to reach an optimal solution. This formulates the combined economic
emission dispatch (CEED) problem with an objective to dispatch the electric power
considering both economic and environmental concerns [4].

Practically, the real world input/utput characteristics of the generating units are
highly nonlinear, non-smooth and discrete in nature owing to prohibited operating zones,
ramp rate limits and multi-fuel effects. Thus the resultant ELD is a challenging non-
convex optimization problem, which is difficult to solve using traditional methods [1, 4].

In this chapter, we provide a mathematical formulation of the various types of
economic load dispatch problems in power systems such as economic load dispatch
(ELD), combined economic emission dispatch (CEED) and the economic load dispatch

(ELD) with prohibited operating zones considering ramp rate limits.
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I1.2. Economic Load Dispatch Problem :

I1.2.1. Problem Description :

ED is one of the important optimization problems in power system operations, which is
used to determine the optimal combination of power outputs of all generating units to
minimize the total fuel cost while satisfying various constraints over the entire dispatch
periods [72].

The traditional or static ED problem assumes constant power to be supplied by a given
set of units for a given time interval and attempts to minimize the cost of supplying this
energy subject to constraints on the static behavior of the generating units like system

load demand. Shortly, static ED determines the loads of generators in a system that will

meet a power demand during a single scheduling period for the least cost [72-77].

I1.2.2. Objective Function :
Economic load dispatch problem is the sub problem of optimal power flow (OPF). The
main objective of ELD is to minimize the fuel cost while satisfying the load demand with
transmission constraints [47].

The classical ELD with power balance and generation limit constraints has been

formulated as follows.

Minimize F, = > F(P) (IL.1)

i=l
F(P)=a,+bP+cF (I1.2)

Where F; is the total fuel cost of generation,
Fi(P;) is the fuel cost function of jth generator,
a;, b;, c; are the cost coefficients of ith generator,
P; is the real power generation of i generator,
n represents the number of generators connected in the network
The minimum value of the above objective function has to be found by satisfying the

constraints.
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Therefore, it might fail to capture large variations of the load demand due to the
ramp rate limits of the generators. Due to large variation of the customers load demand
and the dynamic nature of the power systems, it became necessary to schedule the load

beforehand so that the system can anticipate sudden changes in demand in the near future

[77].

I1.3. Dynamic Economic dispatch (ED) problem :

Dynamic ED is an extension of static ED to determine the generation schedule of the
committed units so that to meet the predicted load demand over the entire dispatch
periods at minimum operating cost under ramp rate and other constraints [73]. The ramp
rate constraint is a dynamic constraint which used to maintain the life of the generators,
i.e. plant operators, to avoid shortening the life of the generator, try to keep thermal stress
within the turbines safe limits [74]. Since the violations of the ramp rate constraints are
assessed by examining the generators output over a given time interval, this problem
cannot be solved for a single value of MW generation [74]. The objective function of
dynamic ED is formulated as follows

N
D F(R") (I1.3)
i=1

1

Minimize F,(P) =

T
P

Where N is the set of committed units; P; is the generation of unit i; Fi(P;) is the cost
of producing P; from unit i; 7 is the number of intervals in the study period. The fuel cost
functions F;(*) is derived from the fuel consumption function.

The dynamic ED is not only the most accurate formulation of the economic dispatch
problem but also the most difficult to solve because of its large dimensionality [75]. The
DED problem is normally solved by discretization of the entire dispatch period into a
number of small time intervals, over which the load demand is assumed to be constant
and the system is considered to be in a temporal steady state. Over each time interval a
static ED problem is solved under static constraints and the ramp rate constraints are
enforced between the consecutive intervals [76]. In the DED problem the optimization is
done with respect to the dispatchable powers of the units.

Some researchers have considered the ramp rate constraints by solving SED problem

interval by interval and enforcing the ramp rate constraints from one interval to the next.
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However, this approach can lead to suboptimal solutions; moreover, it does not have the
look-ahead capability [77].

Since dynamic ED was introduced, various methods have been used to solve this
problem. However, all of those methods may not be able to provide an optimal solution

and usually getting stuck at a local optimal.

11.4. ED Constraints :

The constrained ED problem is subjected to a variety of constraints depending upon
assumptions and practical implications. Usually, formulation of ED problem includes
such constraints as load generation balance, minimum and maximum capacity
constraints. To maintain system reliability and security, spinning reserve constraints and
security constraints can be added to the dynamic ED problem. The inclusion of the
prohibited zones, ramp-rate limits and other practical constraints results in no-convex ED

of generating units. All these constraints are discussed below [77].

I1.4.1. Load-Generation Balance :

The generated power from all the running units must satisfy the load demand and the

system losses given by (I1-4)
N
Y P =P,+F, t=1,2,.,T (I1.4)
i

1

where P, is the demand and P/ is the system transmission loss. Their sum

represents the effective load to be satisfied at the t" interval. The transmission line losses

can be expressed in terms of the unit outputs:

PLI = iietﬂz/}); +iﬂioet + 00 (IIS)

i=l j=1 i=l

where f;; is the ii"™ element of the loss coefficient square matrix, Sy is the i/ element
of the loss coefficient, and By is the constant loss coefficient. Sometimes the last two
terms are omitted.

In a competitive environment, the load-generation balance constraint is relaxed and

each generating company schedules its production to maximize its profits given a forecast
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of electricity prices for the scheduling period [77]. As a first approximation, each
generating unit could be optimized separately in this problem because of the decoupling
made possible by the availability of prices at each period. Dynamic constraints (such as
ramp rates and minimum up and down time constraints) complicate the problem because
a generating company that owns a portfolio of units must then decide whether to buy

“flexibility” on the market or meet the dynamic constraints with its own resources [78].

I1.4.2. Generation Capacity Constraint :
For normal system operations, real power output of each generator is restricted by lower
and upper bounds as follows:
P +S/ <P™ i=1,2,.,N, t=1,2,..,T (IL.6)
P™<pP i=1,2,.,N, t=1,2,..,T (I1.7)

Where P™™ and P;/"?* are the minimum and maximum power produced by generator

i, S} is the reserve contribution of unit during time interval t.

I1.4.3. Generating Unit Ramp Rate Limits :

One of unpractical assumption that prevailed for simplifying the problem in many of the
earlier research is that the adjustments of the power output are instantaneous [79].
Therefore, the power output of a practical generator cannot be adjusted instantaneously
without limits. The operating range of all online units is restricted by their ramp-rate
limits during each dispatch period. So, the subsequent dispatch output of a generator

should be limited between the constraints of up and down ramp-rates [80] as follows
The power generated, P, by the ith generator in certain interval may not exceed that of
previous interval by P more than a certain amount UR;, the up-ramp limit and neither

may it be less than that of the previous interval by more than some amount DR; the down-
ramp limit of the generator. These give rise to the following constraints.

Generating unit ramp-rate limits:

(IL8)
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Where UR; and DR; are ramp-up and ramp-down rate limits of i unit, respectively and

are expressed in MW/h.

11.4.4. Reserve Contribution :

The maximum reserve contribution has to satisfy following constraints:
0<S/ <8™ i=1,2,.,N, t=1,2,..,T (1I1.9)

Where $;"?* is the maximum contribution of unit i to the reserve capacity.

Maximum-ramp spinning reserve contribution is defined as in (11.10)
0<S/ <UR .At i=12,.,N, t=1,2,.,T (IL.10)

Where S is the spinning reserve of unit i .

I1.4.5. System Spinning Reserve Requirement :

Sufficient spinning reserve is required from all running units to maximize and
maintain system reliability [31]. There are many ways to determine the system spinning
reserve requirement. It can be calculated as the size of the largest unit in operation or as a
percentage of forecast load demand or even as a function of the probability of not having

sufficient generation to meet the load [73]. The spinning reserve can be defined by (I1.11)
N
DS/ 2SR t=1,2,..,T (IL11)
i=1

Where SR’ is the system spinning reserve requirement for time interval .

I1.4.6. Tie-line Limits :
The economic dispatch problem can be extended by importing additional constraint like

transmission line capacity limit given by (I11.12)

P <P, +S, <P

Tjk, min Tjk jk  — % Tjkmax

(IL12)

Where Pr e min and Pr e max specify the tie-line transmission capability, i.e. the
transfer from area j to area k should not exceed the tie-line transfer capacities for security

consideration. Each area has own special load and its spinning reserve [81-82].
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11.4.7. Prohibited Zone :

The generating units may have certain ranges where operation is restricted on the grounds
of physical limitations of machine components or instability, e.g. due to steam valve or
vibration in shaft bearings. So, there is a quest to avoid operation in these zones in order
to economize the production [79]. These ranges are prohibited from operation and a
generator with prohibited regions (zones) has discontinuous fuel-cost characteristics
(Fig.IL.1) [83]. The acceptable operating zones of a generating unit can be formulated as

follows

P™ <P <P (IL13)
P'  <P'<P €6, j=2,3,.,n.t=1,2,..,T (IL.14)
P! <P'<pP™ (IL15)

Where 7; is the number of the prohibited zones in unit i, 6 is the set of units that have

prohibited zones, Pil, j» Pi; are the lower and upper bounds of the ;™ prohibited zone.

PZ : Prohibited Zone

Fuel cost ($)

v

Power output (MW)

Figure I1.1 : Example of cost function with two prohibited operating zones

IL.5. Different Objective Functions :

The dynamic ED problem has been solved with many different forms of the cost
function, such as the smooth quadratic cost function (II.16) or the non-smooth cost

function due to the valve-point effects (II.17). Also, a linear cost function [74] and
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piecewise linear cost function [84, 85] have been employed. For smooth cost function it
is usually assumed that its incremental cost function. In some power systems combined
cycle units are used to supply the base load. For these units the cost function can be given
as linear, piecewise or quadratic with decreasing incremental cost function [85].

For units with prohibited zones, the fuel cost function is discontinuous and non-
conveXx. An interesting departure from this standard formulation is the approach proposed
by Wang and Shahidehpour [86] who include in the objective function a term
representing the reduction in the life of the turbine caused by excessive ramping rates.
This flexible technique makes possible a tradeoff between the system operating cost and

the life cycle cost of the generating units [78].

I1.5.1. Smooth Cost Function :
The most simplified cost function of each generator can be represented as a quadratic
function as given in (II.16) whose solution can be obtained by the conventional

mathematical methods
C,(P)=a,+bP +c,.(P) (11.16)

Where a;, b;, c; are cost coefficients of generator i.

I1.5.2. Non-smooth Cost Functions with Valve-point Effects :
The generating units with multi-valve steam turbines exhibit a greater variation in the
fuel cost functions because in order to meet the increased demand a generator with multi-
valve steam turbines increase its output and various steam valves are to be opened [72].

This valve-opening process produces ripple like effect in the heat-rate curve of the
generator. The inclusion of valve-point loading effects makes the modeling of the
incremental fuel cost function of the generators more practical [87].

Therefore, in reality, the objective function of ED problem has non-differentiable
property.

Consequently, the objective function should be composed of a set of non-smooth
cost functions. Considering non-smooth cost functions of generation units with valve-
point effects, the objective function is generally described as the superposition of

sinusoidal functions and quadratic functions [88].
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$MWh A

A : Primary Valve B : Secondary Valve MW
C : Tertiary Valve D : Quaternary Valve
E : Quinary Valve

Figure 11.2 : Cost function with valve-point effects
C.(P')=a,+b,P +c,(P') +e.sin(h(P™ — P)) (IL.16)

Where e; and 4; are the coefficients of generator i reflecting valve point effects. As
shown in Fig. 1.2, this increases the non-linearity of curve as well as number of local
optima in the solution space [87] compared with the smooth cost function due to the
valve point effects. Also the solution procedure can easily trap in the local optima in the

vicinity of optimal value.

I1.5.3. Non-smooth Cost Functions with Multiple Fuels :
Since the dispatching units are practically supplied with multi-fuel sources, each unit
should be represented with several piecewise quadratic functions reflecting the effects of
fuel type changes, and the generator must identify the most economic fuel to burn. The
resulting cost function is called a “hybrid cost function.” Each segment of the hybrid cost
function implies some information about the fuel being burned or the units operation
[77].

Thus, generally, the fuel cost function is a piecewise quadratic function described as

follows

a, + bill)it + ¢ (])it)2 if
a,+ bi2])it +¢ (Pzt )2 if

t t t
minS])i S])1’,1
t t t

<P <P,

N

C(B")= (IL17)

t t\2 : t t t
a; +binPi +cin(])i) lf Pi,n—l SPI SPz’,max

m

Where are a,y, by, ¢;, the cost coefficients of generator for the p” power level. The

incremental cost functions are illustrated in Fig. I1.3.
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Y
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» Power [MW]

Figure I1.3 : Cost function with multiple fuels

I1.5.4. Non-smooth Cost Functions with Valve-Point Effects and Multiple Fuels :

To obtain an accurate and practical economic dispatch solution, the realistic operation of
the ED problem should consider both valve-point effects and multiple fuels. The
reference [89] proposed an incorporated cost model, which combines the valve-point
loadings and the fuel changes into one frame. Therefore, the cost function should

combine (2—17) with (2—18), and can be realistically represented as shown in (I1.18)

a, +b, P +c,(B) +|e,.sin(h, (PT" =P if

C(P') = a, + biZI)it +¢, (Pzt )2 +"ei2'Sin(hi2 (Pznznn - I)it ))‘ if

1 1

(IL18)

a, +b,P' +c,(P) +|e,.sin(h, (P3" ~P)|  if P, <P <P

m

I1.5.5. Emission Function :
Due to increasing concern over the environmental considerations, society demands
adequate and secure electricity, i.e. not only at the cheapest possible price, but also at

minimum level of pollution. In this case, two conflicting objectives, i.e., operational costs
and pollutant emissions, should be minimized simultaneously [90-92]. The atmospheric
pollutants such as sulphur oxides (SOy) and nitrogen oxides (NOx) caused by fossil-

fueled generating units can be modeled separately or as the total emission of them which

is the sum of a quadratic [90] and an exponential function and can be expressed as

I N
2. 2. B +BE +y,(B) +1,exp(5,F) (IL19)

t=1 i=l
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.. . th . .
Where o;, B, i, : and 6; are emission coefficients of i"" generating unit.

I1.6. Traditional approaches :

11.6.1. The Lambda —Iteration Method :
In Lambda iteration method lambda (1) is the variable introduced in solving constraint
optimization problem and is called Lagrange multiplier. It is important to note that
lambda can be solved at hand by solving systems of equation. Since all the inequality
constraints to be satisfied in each trial the equations are solved by the iterative method
[91],

i) Assume a suitable value of A’ this value should be more than the largest

intercept of the incremental cost characteristic of the various generators,
ii) Compute the individual generations,

iii) Check the equality,

N
P = ZE is satisfied (I1.20)
i=1

1

iv) If not, make the second guess A repeat above steps.

I1.6.2. The Gradient Search Method :
This method works on the principle that the minimum of a function, f{x), can be found by
a series of steps that always take us in a downward direction. From any starting point, x’,
we may find the direction of “steepest descent” by noting that the gradient £, [91]
_i_
Ogcl

F
ox,

Vf =

Always points in the direction of maximum ascent. Therefore, if we want to move in
the direction of maximum descent, we negate the gradient. Then we should go from x” to

1 .
X using:

x'=x"-Vfa (I1.21)
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Where « is a scalar to allow us to guarantee that the process of convergence. The
best value of a must be determined by experiment. In case of power system economic

load dispatch f becomes
N
f=2F(P) (I1.22)
i=1

The object is to drive the function to its minimum. However we have to be concerned

with the constraints function
N

$=(Prps =2, P) (I.23)
i=1

To solve the economic load dispatch problem which involves minimizing the
objective function and keeping the equality constraints, we must apply the gradient
technique directly to the Lagrange function is:

5= Fi(P)+ AP, -3 P) (1124)

i=1

And the gradient of this function is

The problem with the formulation is the lack of a guarantee that the new points
generated each step will lie on the surface ¢.

The economic dispatch algorithm requires a starting A value and starting values for
P, P,, and P;.The gradient for J is calculated as above and the new values of 4, P;,and
P> etc., are found from

¥ =x" = (VI (I1.25)

-ou Lo

Where x is a vector, x=
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11.6.3. Newton’s Method:
Newton’s method goes a step beyond the simple gradient method and tries to solve the
economic dispatch by observing that the aim is to always drive, [91]
V¥x =0
Since this is a vector function, we can formulate the problem as one of finding the
correction that exactly drives the gradient to zero (i.e. to a vector, all of whose elements
are zero). Suppose we wish to drive the function g(x) to zero. The function g is a vector

and the unknown, x are also vectors. Then to use Newton’s method, we observe

g(x+Ax) = g(x) +[g'(¥)|Ax =0 (11.26)

Where g ’(x) is the familiar Jacobian matrix. The adjustment at each step is then,

AX =-[g'(0)] " g(x) (I1.27)

Now, if we let the g function be the gradient vector VWx we get

-1
AX = —[i V‘I’X} V¥ (I1.28)
ox

For the economic load dispatch problem this takes the form:

¥ =Y F(R) 4Py~ 3 P) (1129)

i i=1

The Vy, is a Jacobean matrix which has now second order derivatives is called
Hessian matrix. Generally, Newton’s method will solve for the correction that is much

closer to the minimum generation cost in one cost in one step than would the gradient

method [91].

11.6.4. Economic Dispatch with piecewise linear cost functions :

In this method economic load dispatch problem of those generators are solved whose cost
functions are represented as single or multiple segment linear cost functions. Here for all
units running, we start with all of them at P,,,, then begin to raise the output of the unit

with the lowest incremental cost segment. If this unit hits the right-hand end of a
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segment, or if it hits P,,, we then find the unit with the next lowest incremental cost
segment and raise its output [91, 64].

Eventually, we will reach a point where a units output is being raised and the total of
all unit outputs equal the load, or load plus losses. At that point, we assign the last unit
being adjusted to have a generation which is practically loaded for one segment. to make
this procedure very fast, we can create a table giving each segment of each unit its MW
contribution. Then we order this table by ascending order of incremental cost. By search
in from the top down in this table we do not have to go and look for the next segment
each time a new segment is to be chosen. This is an extremely fast form of economic

dispatch [91].

I1.6.5. Base Point and Participation Factor :

This method assumes that the economic dispatch problem has to be solved repeatedly by
moving the generators from one economically optimum schedule to another as the load
changes by a reasonably small amount. It is started from a given schedule called the base
point . next assumes a load change and investigates how much each generating unit needs

to be moved in order that the new load served at the most economic operating point [91].

I1.6.6. Linear Programming :
Linear programming (LP) is a technique for optimization of a linear objective function

subject to linear equality and linear in-equality constraints. Informally, linear
programming determines the way to achieve the best outcome (such as maximum profit
or lowest cost) in a given mathematical model and given some list of requirements

represented as linear equations. For example if fis function defined as follows [91, 64].
S (X, %5000 X,) =X + X+ F X, +d (IL.30)

A linear programming method will find a point in the optimization surface where this
function has the smallest (or largest) value. Such points may not exist, but if they do,
searching through the optimization surface vertices is guaranteed to find at least one of

them. Linear programs are problems that can be expressed in canonical form,

Maximize C’X
Subject to AX <bh
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X represents the vector of variables (to be determined), while C and b are vectors of
(known) coefficients and 4 is a (known) matrix of coefficients. The expression to be
maximized or minimized is called the objective function (C” in this case). The equations
AX < b are the constraints which specify a convex polyhedron over which the objective

function is to be optimized.

I1.6.7. Dynamic Programming :
When cost functions are no-convex equal incremental cost methodology cannot be
applied [64].

Under such circumstances, there is a way to find an optimum dispatch which use
dynamic programming method. In dynamic Programming is an optimization technique
that transforms a maximization (or minimization) problem involving n decision variables
into n problems having only one decision variable each. This is done by defining a
sequence of Value functions V;, V>, ... V,, with an argument y representing the state of
the system. The definition of V;(y) is the maximum obtainable if decisions 1, 2 ...I are
available and the state of the system is y. The function V| is easy to find. For [=2,...n, V;
at any state y is calculated from Vi, by maximizing, over the /" decision a simple
function (usually the sum) of the gain of decision i and the function V;; at the new state
of the system if this decision is made. Since V;; has already been calculated, for the
needed states, the above operation yields V; for all the needed states. Finally, V, at the
initial state of the system is the value of the optimal solution. The optimal values of the
decision variables can be recovered, one by one, by tracking back the calculations already

performed [91, 64].

I1.7. Optimal Power Flow :

It is very clear from previous section that transmission loss bias the economic dispatch
problem and the coordination equations include the effects of incremental transmission
loss and increased the complexity of problem. Behavior of network elements leads many
effects on system operation. For instance, when network transmission lines are
considered in formulation, it indicates some of the effects like increase in the total

generation demand due to real power losses, adjustments in the generation schedule in
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accordance to the limits on transmission line flows. Thus, it is very important to take into

account the effects of network elements in finding the optimal solution to ensure system
security [92-98].

Optimal power flow (OPF) is an extension to conventional ED problem; it
determines minimal cost by optimal settings of different control variables in the system
[98]. The OPF is a power flow problem in which certain controllable variables are
adjusted to optimize system objectives. Some of the objective functions which are
optimized using OPF formulation are the cost of active power generation, system losses,
emission of generating units etc., while satisfying power flow equations, equipment
operation limits and system security. The controls that an OPF can accommodate are
active and reactive power injections, generator voltages, transformer tap ratios and phase
shifter angles [91-94].

OPF is very different from ordinary power flow. In power flow calculation the
objective is to find bus voltage magnitudes and phase angles at all the buses in the system
[98].

Power flow is a steady state study and gives the snap shot of the whole system
operating state. It is given with scheduled complex loads on all load buses and generated
active powers, voltage magnitudes on all generator buses. The net flow of power from a
bus into the system is termed as injection at that bus. Power flow finds the load bus
voltage magnitudes and phase angles by minimizing the difference between scheduled
injection and calculated injections using techniques like Gauss-Seidal or Newton-
Raphson. Scheduled injection at a bus is the difference between scheduled power
generation if any and the complex load at that particular bus. The power injections at a
bus are derived in the next section and calculated using equations (I1.40) and (11.42). Post
power flow calculations are carried out by system operators using the bus voltage
magnitudes and corresponding phase angles to find the current state of the system. These
calculations involve line power flows, line losses and reactive power generation at
generator buses. Power system operators have to plan the adjustments accordingly if
these values exceed their corresponding limits to ensure system’s secure operation [98].

Optimal power flow is a very large and complex mathematical problem. In general

OPF is posed as minimizing the function F(x,u) while satisfying nonlinear equality
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constraints g(x,u) = 0 and nonlinear inequality constraints 4(x,u) < 0 on the vectors x and
u.

The vector x contains dependent variables including bus voltage magnitudes and
phase angles and the reactive power outputs of generators on voltage controlled buses.
The vector u consists of control variables which are independent and involves active and
reactive power generations, transformer phase shifter angles, transformer tap ratio
settings, load shedding, DC line flow, switched capacitor settings.

OPF problem with the objective function of minimizing the generation cost in
thermal electric power system is discussed here. In the ED solution presented so far,
limits on only minimum and maximum active power generations are observed. In OPF
many more limits on power systems equipment’s can be included like bounds on reactive
power generations, transmission line flows, bus voltage magnitudes. OPF problem finds
an optimal profile of active and reactive power generations along with voltage
magnitudes in such a manner as to minimize the total operating costs [98].

The objective function is same as the one shown in equations (II.1) and (IL.2),
whereas the list of constraints subjected to

1. Power Balance in the network.

2. Unit generation limits.

3. Limits on load bus voltage magnitudes.

4. Limits on transmission line flows, transformer tap settings and phase shifter

angles.

Objective function: The sum of fuel cost of all committed generators is to be
minimized,

Subjected to: Active and reactive power balance in the network,
Pg,—Pd —P =0, i=1,2,..N (1131)
Og,—0d,-0,=0, i=1,2,..,Nb (I1.32)

Where Pg;, Qg; represents active and reactive power generations P;, Q; represents
active and reactive power injections at bus i and Pd;, Qd; represents active and reactive
power demands at bus 7, N is total number of buses and Nb is total number of load buses

in the system.
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Limits on active and reactive power generations on all generator buses:

Pg; in < P2, <Pg ... 1=1,2,.,ng (I1.33)

08 min <98 < 08> 1=1,2,...,n8 (11.34)
Limits on voltage magnitudes and phase angles on all load buses:

I/;,min S V S V

i i,max ?

i=1,2,..,Nb (IL35)

5i,min

<6, S0, s 1=1,2,...,Nb (11.36)

Limits on line flows can be expressed either in MW, Amperes or MVA, if it is

expressed in MW then:
Piin B <B s 1=1,2,..,NI (IL37)

Where Pj is the active power flow between buses i and j. Pjmin, Pimar are
corresponding minimum and maximum limits, N/ is the total number of transmission
lines.

The constraint optimization problem can be transformed into an unconstrained one
by augmenting the equality constraints of active and reactive power balance equations
into the objective function using Lagrange multipliers. The solution of this Lagrangian
function involves first order and second order partial derivates terms called the Jacobian
and Hessian matrices respectively. The complete solution of OPF using Hessian matrix

by Newton’s method is presented in [94].

I1.7.1. Calculation of Bus Injections :

The calculation the power injection at a bus requires basic power equation and the

admittance matrix Y. Apparent power at any node in the network is given by [98]

S, =V, =P+ 0,

Where S; is the apparent power, V; is the complex voltage and /; is the complex
current at bus i And “*’ represents complex conjugate.

For simplicity in calculations the above equation is rewritten as
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S'=V'I,=P-jO (I1.38)

Where /; is the current flowing out at bus 7, and is given as the sum of all the currents

leaving the bus. Using mequivalent model of transmission lines, it can be obtained as

1,=YYV, (IL.39)

N
J=1

Y; represents (i, j) element in the network admittance matrix, can be written in

conductance (G) and suseptance (B) form as Y;;= G;;+jB;;. Thus,
N

P =0 =V.2-5| 2 (G, + BV,
J=1

On separating real and imaginary parts

P= |14|ZN:\V7\(Gij cos(S, —8,)+ B, sin(6, —§,)) (IL.40)
=

0= |K|ZN:\V7\(Gij sin(6, —3,)+ B, cos(s, —3,)) (IL41)
=

Equation (1.40) and (I.41) represents real and reactive power injections respectively

at bus i.

I1.7.2. Calculation of Line Flows
Consider the 7 representation of a line connecting buses i and j shown in the Fig.
I1.4. The figure shows the bus i to be the transformer side bus, with the ratio 1: a . Hence,
Vi=aV;. The representation has a series admittance, y; and shunt admittances, ys; and ys; at
the ends of the line. The power from the bus i to bus j can thus be given as [98]
Sy =B + O, = @V)(L,)
Sy =B, = O, =(a¥)']

g

And
L=1,+I
]i :(aVi _V/)yg +(aVi)ySi
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V, V;

L Vi I Yij Li I;
1 I—GD > > :I—<—~<—| ]
1:a

YSj YSj

Figure 11.4 : Transmission Line m Model.
In polar form the equation becomes
By = jO; =aV £=6,((aV,£-6,—V,£-6,)(g; — jb;) +aV,.£6,(gs — jbs))
On separating real and imaginary parts we arrive at the active and reactive power

flows in the Line

P, =a’lV[ (gs, +g,)—aV,|V |(g, sin(8,— 5 ,) +b,sin(5, - 5,)) (1142)

Q, ==a’[V;[ (bs, +b,) V|V (g, sin(8, = 5,) + b, sin(3, - 5,)) (1143)

I1.8. conclusion :

The optimum load dispatch of power system is discussed in this chapter. When the
problem is to be solved few constraints has to be kept in mind. Various objectives and
different types of constraints are discussed in this chapter. Various traditional methods
applied to solve the economic load dispatch problem is also discussed.

The generalized formulation of the OPF problem is expressed and the OPF

formulation is presented and various constraints are discussed.
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CHAPTER III

The Unit Commitment (UC) problem
formulation

II1.1. Introduction :

Economic operation of power system is very important to return profit on the capital
invested and to subside a part of investment itself through proper planning. More
significantly it is important from the perspective of conserving the irreplaceable fossil
fuels [98].

Economic operation results in maximizing the operating efficiencies which in turn
minimize the cost per kilowatt-hour. Total load on power system varies at every instant
of time, generally being higher during the daytime and early evening when industrial
loads are high, lights are on, and so forth, and lower during the late evening and early
morning when most of the population is asleep. In addition, the use of electric power has
a weekly cycle, the load being lower over weekend days than weekdays. Therefore, the
option of turning ON enough units and leave them online, so that the variable load
demand is met at all times is not viable due to the costs involved. This causes some of the
units to operate near their minimum capacity at times, resulting in lower system
efficiency and increased economics. Thus, if the operation of the system is to be
optimized, units must be shut down as the load goes down and must be brought online as
it goes up again [95].

Electric utilities have to plan their generation to meet this varying load in advance, as
to which among their available generators are to start-up and when to synchronize them
into the network as well as the sequence in which the operating units must be shut down.
The process of making this decision is well known as ‘Unit Commitment’. The word
‘commit’ refers to ‘turn ON’ a unit. Thus, the problem of Unit Commitment is to
schedule the ON and OFF times of the generating units with the overall minimum cost
while ensuring the unit’s operational constraints like minimum up/downtimes, ramp rate

limits, maximum and minimum power generation limits [91, 96].
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Out of the cost incurred in generation, major component is the cost of fuel input per
hour for all the generators, while maintenance cost contributes only to a small extent.
This fuel cost evaluation is more important for thermal and nuclear power stations, which
is not the case with hydro stations where the energy is obtained from storing water in
dams built for irrigation purpose and is apparently free. Fuel cost savings can be obtained
by proper allocation of load among the committed units. But the problem of UC
minimizes the total cost which includes both production cost i.e., the fuel cost and costs
associated with the start-up and shutdown of units. Start-up cost and shutdown cost are
categorized by unit type. A fixed cost is incurred with the shut-down of a unit while the
start-up cost is dependent on the length of time the unit has been down prior to starting.
When performing the unit commitment scheduling a variety of operating constraints and
spinning reserve requirements are observed [91, 96].

The Unit Commitment (UC) is an important research challenge and vital
optimization task in the daily operational planning of modern power systems due to its
combinatorial nature. Because the total load of the power system varies throughout the
day and reaches a different peak value from one day to another, the electric utility has to
decide in advance which generators to start up and when to connect them to the network
and the sequence in which the operating units should be shut down and for how long. The
computational procedure for making such decisions is called unit commitment, and a unit
when scheduled for connection to the system is said to be committed. In this work the
commitment of fossil-fuel units has been considered which have different production
costs because of their dissimilar efficiencies, designs, and fuel types. Unit commitment
plans for the best set of units to be available to supply the predict forecast load of the
system over a future time period [98].

In general, the UC problem may be formulated as a non-linear, large scale, mixed-
integer combinatorial optimization problem with both binary (unit status variable) and
continuous (unit output power) variables. This chapter presents the characteristics of
power generation unit, unit commitment problem formulation, modeling aspects of single

approaches to solve UCP.
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II1.2. Generator characteristics :

Fundamental constituent in economic operation of a wunit is its performance
characteristics, which depicts the relation between input and output. This characteristics
specifies the input energy rate or cost of fuel used per hour as a function of generator
power output. The input-output characteristic of a generating unit is obtained by
combining directly the input-output characteristics of boiler and that of turbine-generator
set [91]. A typical input-output characteristic also called fuel cost curve of a thermal

generating unit is convex as shown in Fig. I11.1.

AF

Input (MBtu/h or $/h)
(@]

P

P Gmin Gmax P G

Output (MW)
Figure I11.1: Input-Output Characteristics of a Thermal Generator

It can be seen that the characteristics are bounded between minimum and maximum
capacities. The minimum power output limitations are generally caused by boiler’s fuel
combustion stability and design [91] whereas maximum limit is determined by the design
capacity of boiler, turbine, generator. These non-linear characteristics are generally
approximated to a quadratic function expressed in terms of unit’s power generation as

shown in eq. (II.1 and 11.2).
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II1.3. Start-up and shut down costs :

As mentioned earlier there exists a cost incurred in starting and shutting down a unit,
apart from fuel cost. Certain amount of energy must be expended to bring a unit online
because the temperature and pressure of the thermal unit must build slowly. This energy
does not result in any MW power output and is considered as start-up cost. There are two
types of start-up costs called hot start-up cost and cold start-up cost. If the unit’s boiler
is allowed to cool down and then heat back up to operating temperature while turning ON
the unit it is called cooling and the corresponding cost is cold start cost. On the other
hand if the boiler is supplied with sufficient energy to just maintain operating temperature
until the unit is brought online again is called as banking and the cost involved is called
hot start cost. This hot start cost varies directly with the duration of unit being offline.
The two costs are as shown, and are compared while determining the UC schedule and a
best approach among them is chosen [95].

Start-up cost for Cold start:
STC=C,(1-¢""“)F+C, (I11.1)
Start-up cost for Hot start:

STC =CiF +C, (I11.2)

Where STC is the Start-up cost, C. is the cold start cost in MBtu, F is the fuel cost,
Cris the fixed cost that includes crew expenses and maintenance expenses, C; is cost in
Mbtu/hour for maintaining the unit at operating temperature, ais the thermal time
constant of the unit and ¢ the time in hours the unit was allowed to cool.

The shut-down cost of a thermal unit is normally small compared with its start-up
cost (Shutdown cost is generally taken as a constant value). A fixed shut-down cost, Dy,
may be used to reflect the labour cost and residual heat. lost involved in shutting down a

unit [98].

I11.4. Constraints :

The list of constraints is by no means exhaustive and depends on the individual utility’s

rules and reliability measures. Some of the constraints which reduce the freedom in the
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choice of starting up and shutting down of units in the system are listed below. These
constraints can be brought in either because of unit technical issues or system operational
requirements [98].

A thermal unit usually undergoes a gradual temperature changes, and this develops
into a time period of some hours required to bring the unit on-line. When a unit is online
its generation cannot be increased or decreased instantaneously owing to mechanical
limitations.

And in general for turning on and turning off a unit in thermal systems requires a

crew to operate. These all issues pose limitations in arriving at optimal UC schedule.

I11.4.1. Minimum up/down Time :

In daily operation there is generally a requirement that a unit runs or stays shut-down for
a certain minimum period of time before it changes status again. There may not be any
technical reason why such restrictions should be imposed. However, frequent start-up and
shut-down will cause the following problems to the station operation. They increase the
thermal stress of the boiler and generator housing and hence reduce the expected
operating life of a generating plant. They reduce the time period between scheduled
maintenance outage and drain the limited resources on crew availability. Minimum

on/off period is therefore generally specified by station managers [98].

Minimum up time :

Once a unit is committed and running, it should not be turned off immediately. It is an
engineering consideration normally requires that a unit be running for at least a certain
amount of time before it is shutdown [98]..

Minimum down time :

Once the unit is decmmitted, there is a minimum time gap before it can be committed and

brought online again.

I11.4.2. Crew constraints :
It is due to the limitation of personnel availability in the plant. If a plant consists of two
or more units, both cannot be scheduled at the same time since there is no enough crew to

attend both units while starting up or shutting down [91].
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I11.4.3. Must run units :
These units include pre-scheduled units which must be on-line. Some units are given a
must-run status during certain times of the year for the reasons of voltage support on the

transmission network i.e. a reliability and/or economic considerations [91].

I11.4.4. Must out units :
Units which are on forced outages and maintenance are unavailable for commitment and

are treated as must-out units [91].

I11.4.5. Units on fixed generation :

These are the units which have been pre-scheduled and have their generation specified
for certain time period. A unit on fixed generation is automatically a must run unit for
the designated time period.

The system operator may pre-schedule certain units to must be “on”, must be “off”
or fixed generation for certain intervals of the study period. Specification of such
requirements are frequently issued by the system operators in the light of new data on the
generation system. Scheduled out or forced out units can therefore be treated as must be
“off” units. Units which are pre-specified on/off will reduce the commitment problem to
certain extend. However, the output level of the must be “on” units affects the generation
levels of the other synchronized units, the must be “on" units are necessarily included in

the unit commitment decision process [98].

111.4.6. Fuel constraints :
These constraints applies in a system in which some units have limited fuel, or else have
constraints that require them to burn a specified amount of fuel in a given time, presents a

most challenging unit commitment problem.

I11.4.7. Maximum and Minimum output limits of a unit :
These define the range in which the unit can actually be dispatched, these limits does not
have any direct influence on the starting up and shutting down of the unit.

These output limits define the allowable output power of the generating units for the

studying period. These limits are normally static, specified by the manufacturer. But as
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the generating unit ages, these limits may vary and must be verified by the power station
manager from time to time. Outage of auxiliary equipment also temporarily affects the
output power range of the plant. GT's outputs are sensitive to ambient temperature. The
maximum output of GTs may need to be estimated in advance in associated with the

forecast weather conditions [98]..

I11.4.8. Ramp rate limits:

These represent the range of change in output over a unit time, used to prevent
undesirable effects on generating units due to rapid changes in loading. When a unit is in
the start-up stage, a pre-warming process must be introduced in order to prevent a brittle
failure, especially when the unit start-up is a long process. Because of the unit physical
limitations, the unit generating capability increases as a ramp function. Similarly, when a
unit is in the shut-down process, it will take a while for the turbine to cool down. Before
the unit generating capability decreases to its lower limit, the residual energy is to be used

to meet the load demand. Therefore, because of the unit physical limitations, the unit

generating capability increases as a ramp function [99-100].

I11.4.9. Spinning Reserve:

Spinning reserve requirements are necessary in the operation of a power system in order
to achieve minimum load interruptions. Spinning reserve is the term used to describe the
total amount of generation available from all units synchronized (i.e., spinning) on the
system, minus the present load and losses being supplied. Spinning reserve must be
carried so that the loss of one or more units does not cause too far a drop in system
frequency. Quite simply, if one unit is lost, there must be ample reserve on the other units
to make up for the loss in a specified time period [95].

Spinning reserve requirements may be specified in terms of excess megawatt
capacity or some form of reliability measures. Typical rules specify that reserve must be
a given percentage of forecasted peak demand, or that reserve must be capable of making
up the loss of the most heavily loaded unit in a given period of time. The amount of

spinning reserve is an important factor in the assurance of uninterrupted supply to the
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customers and so is the distribution of spinning reserve among various generating plants

based upon their responding time and relative distance to the load centers [95].

II1.5. Unit Commitment Formulation :

Unit Commitment Problem is to decide which of the available units has to be turned on
for the next period of time. The decision is subject to the minimization of fuel cost and to
the various system and unit constraints. At the system level, the forecasted load demand
should be satisfied by the units in service. In an interconnected system, the load demand
should also include the interchange power required due to the contractual obligation
between the different connected areas. Spinning reserve is the other system requirement
to be satisfied while selecting the generating units. In addition, individual units are likely
to have status restrictions during any given time period The problem becomes more
complicated when minimum up time and down time requirements are considered, since
they couple commitment decisions of successive hours [100-101].

The main objective of this optimization task is to minimize the total operating cost
over the scheduled time horizon, while satisfying the different operational constraints.
The operating cost includes start-up cost, shut down cost, running cost, maintenance cost
etc. The UCP can be formulated as:

Minimize Operational cost

Subject to

» Generation constraints,

» Reserve constraints,

» Unit capacity limits,

» Minimum Up time constraints,

» Minimum Down time constraints,
» Ramp rate constraints,

> Unit status restrictions,

Objective function: Mathematically the objective function of unit commitment
problem is the sum of fuel costs as well as start-up and shut-down cost of all generating

units over a time frame, which needs to be minimized and can be represented as follows:
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minF={ii(Ci(Py))}xui/+{ZT:§:S4 ui/‘(l_ui/—1)+|:iiDi/‘i|Xui/‘—l(l_*ui/‘)

Production Cost Transition Cost

(ITL.3)
where C;(P;;) fuel cost of unit i for generating power P; at time j; S; start-up cost of
unit i at time j; D; shut-down cost of unit i at time j, usually a fixed cost, Uj

ON('1)/OFF('0") status of unit 7 at time J,

The constraints
The variety of constraints to UCP can be broadly classified as System constraints and
Unit constraints
System Constraints:
» Load demand constraint: The generated power from all the committed or on line

units must satisfy the load balance equation

N
Y PU,=P,; 1<k<T (I11.4)

i=1

where Pp is the load demand at hour .

» Spinning reserve requirement

N

D (P Y xu,; 2 Py + Py (IIL5)
i=1

Where N number of units, 7 scheduling period in hours, Pp; system load demand at

time j, P, system spinning reserve required at time j,

Unit Constraints:
» Generation capacity constraints: (Unit Minimum and Maximum Qutput Limits)
Each generating unit is having the minimum and maximum capacity limit due to

the different operational restriction on the associated boiler and other accessories

P

min(7)

<P, <P

max(i)?

0<i<N-1, 1<k<T (IIL6)
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» Minimum up time/ down time constraint. Minimum up time is the number of
hours unit i must be ON before it can be turned OFF.

Similarly, minimum down time restrict it to turn ON, when it is DOWN.
1% > MUT, (I1L.7)
T > MDT, (IIL.8)

» Ramp rate limits: The ramp rate limits restrict the amount of change of generation

of a unit between two successive hours.

i = Figy = UK (IIL.9)
E(k—l) - Ek = DRi
Where UR; and DR; are the ramp up and ramp down rates of unit i .

» Unit status restrictions: Some of the units will be given the status of 'Must Run' or
Not available' due to the restrictions on the availability of fuel, maintenance
schedule etc.

Where N number of units, 7" scheduling period in hours, Pp; system load demand at

time j, P, system spinning reserve required at time j,
The start-up cost of a unit depends on the length of time the unit has been shut-down

prior to starting up. Without loss of generality, the following start-up cost function is

adopted:

coldi 1L10
CSC, T°" > MDT,+T ( )

cold i

i

{HSQ T < MDT, +T

The start-up cost for a unit depends on its downtime. If it is longer than the related
MDT; plus its predefined Cold-Start hours (7,,,,), Cold-Start cost (CSC;) is needed to
operate it. Else if the i/ unit downtime is shorter than the mentioned duration, Hot-Start

cost (HSC;) is needed to operate it, where T,”*"" is the ON/OFF period of unit / at time j,

and MUT,/MDT; is the minimum up/down time of unit .

According to equation (II.3), when solving the UC problem, it is first necessary to
determine the start-up, shut-down, and generation levels of all units over a specified

period, which we can use the binary-coded evolutionary algorithm to search for feasible
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solutions. In addition, the scheduled units (combinations) must provide proper power for
system demand, subject to power balance, spinning reserve requirement and individual
unit constraints in the given interval. Thus, this is a non-linear problem that can be solved
by advanced methods [101].

Figure II1.2 depicts the various input data required by the unit commitment strategy,
namely, the commitment schedule and the estimated production cost for the forecast load,
the commitment schedule feeds the economic dispatch program for finer tuning of the

load sharing between the committed units.

Generator Forecast
Data Laod
Spinni Must ON/OFF
pinning
R Units
eserve
UNIT | —
Maintenance . Ixea sen
.. COMMITMENT s Unite
Schedule
PROGRAMME
Forced
Derated
: 2 \ Outages
Capacity
Commitment Estimated
Schedule Production Cost
v
ECONOMIC
DISPATCH

Figure I11.2: Input and Output data of Unit Commitment strategy

I11.6. Conclusion :

This chapter presented unit commitment as an operation scheduling function for

management of generation resources for a short time horizon of one day or at most one
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week. Different unit commitment operational constraints were fully addressed and
discussed. Different major procedure in problem formulation, search for a feasible
solution through the minimization of the duality gap, updating the multimplier, and

formalation of single-unit relaxed problems were shown.
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CHAPTER IV

Solution methods: Evolutionary Computation

and Metaheuristics algorithms

IV.1. Introduction :
Metaheuristic algorithms are often nature-inspired, and they are now among the most

widely used algorithms for optimization [122-124]. They have many advantages over

conventional algorithms, as we can see from many case studies presented in later chapters
in this thesis.

In this chapter we present some general information about the metaheuristics that
have been used to solve the economic dispatch and unit commitment problems. The
metaheuristics covered include:

e Genetic Algorithm (GA),

e Particle Swarm Optimization (PSO),

e Pattern Search (PS),

¢ Big Bang—Big Crunch algorithm (BB-BC),

e Artificial Bee Colony algorithm (ABC),

e A hybrid GA—PS method,

e A hybrid PSO-PS method,

e A Hybrid BB-BC method.

In this chapter we provide general description of these metaheuristics, and we briefly
revise the main features of the metaheuristic approaches, focusing particularly on those

used in the following application chapters.

IV.2. Genetic Algorithm :
Genetic algorithm is a search method that employs processes found in natural biological
evolution. These algorithms search or operate on a given population of potential solutions

to find those that approach some specification or criteria. To do this, the genetic
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algorithm applies the principle of survival of the fittest to find better and better
approximations. At each generation, a new set of approximations is created by the
process of selecting individual potential solutions (individuals) according to their level of
fitness in the problem domain and breeding them together using operators borrowed from
natural genetics. This process leads to the evolution of population of individuals that are
better suited to their environment than the individuals that they were created from, just as

in natural adaptation [102].

IV.2.1. Overview of Genetic Algorithm :

Genetic algorithm (GAs) were invented by John Holland in the 1960s and were
developed with his students and colleagues at the University of Michigan in the 70s.
Holland’s original goal was to investigate the mechanisms of adaptation in nature to
develop methods in which these mechanisms could be imported into computer systems
[103].

GA is a method for deriving from one population of “chromosomes” (e.g., strings of
ones and zeroes, or bits) a new population. This is achieved by employing “natural
selection” together with the genetics inspired operators of recombination (crossover),
mutation, and inversion. Each chromosome consists of genes(e.g. bits), and each gene is
an instance of a particular allele (e.g,0 or 1).The selection operator chooses those
chromosomes in the population that will be allowed to reproduce, and on average those
chromosomes that have a higher fitness factor(defined bellow),produce more offspring
than the less fit ones. Crossover swaps subparts of two chromosomes, roughly imitating
biological recombination between two single chromosome (“haploid”) organisms;
mutation randomly changes the allele values of some locations (locus) in the
chromosome; and inversion reverses the order of a contiguous section of chromosome

[103].

IV.2.2. Operators of Genetic Algorithm :

A basic genetic algorithm comprises three genetic operators.
* Selection,
* Crossover,

e Mutation,
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Starting from an initial population of strings (representing possible solutions),the GA
uses these operators to calculate successive generations. First, pairs of individuals of the
current population are selected to mate with each other to form the offspring, which then
form the next generation [104].

IV.2.2.1. Selection :
This operator selects the chromosome in the population for reproduction. The more fit the
chromosome, the higher its probability of being selected for reproduction. The various
methods of selecting chromosomes for parents to crossover are [105],

* Roulette-wheel selection,

* Boltzmann selection,

» Tournament selection,

* Rank selection,

* Steady-state selection,
A. Roulette-wheel selection :
The commonly used reproduction operator is the proportionate reproductive operator
where a string is selected from the mating pool with a probability proportional to P;
where F; is the fitness value for that string. Since the population size is usually kept fixed
in a simple GA, The sum of the probabilities of each string being selected for the mating

pool must be one. The probability of the i selected string is [105]

p=—"1 (IV.1)

Where 7 is the population size.

B. Tournament selection :

GA uses a strategy to select the individuals from population and insert them into a mating
pool. Individuals from the mating pool are used to generate new offspring, which are the
basis for the next generation. As the individuals in the mating pool are the ones whose
genes will be inherited by the next generation, it is desirable that the mating pool consists
of good individuals .A selection strategy in GA is simply a process that the mating pool

consists of good individuals .A selection strategy selection strategy in GA is simply a
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process that favors the selection of better individuals in the population for the mating

pool [105].

IV.2.2.2. Crossover :

The cross over operator involves the swapping of genetic material (bit-values) between
the two parent strings. This operator randomly chooses a locus (a bit position along the
two chromosomes) and exchanges the sub-sequences before and after that locus between
two chromosomes to create two offspring. For example, the strings 1110 0001 0011 and
1000 0110 O111. The crossover operator roughly imitates biological recombination
between two haploid (single chromosome) organisms. The crossover may be a single bit
cross over or two bit cross over. In case of two bit crossover two points are chosen where

the binary digits are swapped [105].

IV .2.2.3. Mutation :

The two individuals (children) resulting from each crossover operation will now be
subjected to the mutation operator in the final step to forming the new generation. This
operator randomly flips or alters one or more bit values at randomly selected locations in
a chromosome. For example, the string 1000 0001 0011 might be mutated in its second
position to yield 1100 0001 0011. Mutation can occur at each bit position in a string with
some probability and in accordance with its biological equivalent; usually this is very
small, for example, 0.001. If 100% mutation occurs, then all of the bits in the
chromosome have been inverted. The mutation operator enhances the ability of the GA to
find a near optimal solution to a given problem by maintaining a sufficient level of
genetic variety in the population, which is needed to make sure that the entire solution
space is used in the search for the best solution. In a sense, it serves as an insurance

policy; it helps prevent the loss of genetic material [105].

IV.2.2.4. Properties of GA : [103]
» Generally good at finding acceptable solutions to a problem reasonably quickly,
* Free of mathematical derivatives,
* No gradient information is required,
* Free of restrictions on the structure of the evaluation function,
* Fairly simple to develop,
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* Do not require complex mathematics to execute,

* Able to vary not only the values, but also the structure of the solution,

» Get a good set of answers, as opposed to a single optimal answer,

» Make no assumptions about the problem space,

* Blind without the fitness function. The fitness function drives the population
toward better,

* Solutions and is the most important part of the algorithm,

» Not guaranteed to find the global optimum solutions,

* Probability and randomness are essential parts of GA,

* Can by hybridized with conventional optimization methods,

* Potential for executing many potential solutions in parallel,

* Deals with large number of variables,

* Provides a list of optimum variables.

Start

v

Define cost function, cost,
Variables, Select GA parameters

v

Generate Initial population

v

> Decode the chromosomes

¥

Find the cost of each chromosome

v

Select mates for reproduction

v

Cross over operation

v

Mutation

NO Check the

convergence

Yes

Stop

Figure IV.1 : Flow chart of GA Algorithm.
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In this part various operators of genetic algorithm like selection, crossover and
mutation are discussed. Advantages and disadvantages of the Genetic Algorithm over the

other optimization technique are also discussed. The Flow chart of GA is also discussed.

IV.3. Particle S warm Optimization :

Particle swarm optimization (PSO) is a population based stochastic optimization
technique developed by Dr. Ebehart and Dr. Kennedy in 1995 [106], inspired by social
behavior of bird flocking or fish schooling. PSO shares many similarities with
evolutionary computation techniques such as Genetic Algorithms (GA). The system is
initialized with a population of random solutions and searches for optima by updating
generations. However, unlike GA, PSO has no evolution operators such as crossover and
mutation. In PSO, the potential solutions, called particles, fly through the problem space
by following the current optimum particles. The detailed information will be given in
following sections. Compared to GA, the advantages of PSO are that PSO is easy to
implement and there are few parameters to adjust. PSO has been successfully applied in
many areas: function optimization, artificial neural network training, fuzzy system

control, and other areas where GA can be applied [105].

IV.3.1. Back ground of Artificial Intelligence :
The term "Artificial Intelligence" (Al) is used to describe research into human-made
systems that possess some of the essential properties of life. Al includes two-folded
research topic [64].
» Al studies how computational techniques can help when studying biological
phenomena,
» Al studies how biological techniques can help out with computational problems,

The focus of this report is on the second topic. Actually, there are already lots of
computational techniques inspired by biological systems. For example, artificial neural
network is a simplified model of human brain; genetic algorithm is inspired by the human
evolution. Here we discuss some types of biological system-social system, more
specifically, the collective behaviors of simple individuals interacting with their
environment and each other. Someone called it as swarm intelligence. All of the
simulations utilized local processes, such as those modeled by cellular automata, and
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might underlie the unpredictable group dynamics of social behavior. Some popular
examples are bees and birds. Both of the simulations were created to interpret the
movement of organisms in a bird flock or fish school. These simulations are normally
used in computer animation or computer aided design. There are two popular swarm
inspired methods in computational intelligence areas: Ant colony optimization (ACO)
and particle swarm optimization (PSO). ACO was inspired by the behaviors of ants and
has many successful applications in discrete optimization problems. The particle swarm
concept originated as a simulation of simplified social system. The original intent was to
graphically simulate the choreography of bird of a bird block or fish school. However, it

was found that particle swarm model could be used as an optimizer [64].

IV.3.2. Particle Swarm Optimization :

PSO simulates the behaviors of bird flocking. Suppose the following scenario: a group of
birds are randomly searching food in an area. There is only one piece of food in the area
being searched. All the birds do not know where the food is. But they know how far the
food is in each iteration. So what's the best strategy to find the food? The effective one is
to follow the bird, which is nearest to the food. PSO learned from the scenario and used it
to solve the optimization problems. In PSO, each single solution is a "bird" in the search
space. We call it "particle". All of particles have fitness values, which are evaluated by
the fitness function to be optimized, and have velocities, which direct the flying of the
particles. The particles fly through the problem space by following the current optimum
particles. PSO is initialized with a group of random particles (solutions) and then
searches for optima by updating generations. In every iteration, each particle is updated
by following two "best" values [4].

The first one is the best solution (fitness) it has achieved so far. (The fitness value is
also stored). This value is called pp.y. Another "best" value that is tracked by the particle
swarm optimizer is the best value, obtained so far by any particle in the population. This
best value is a global best and called g.s.. When a particle takes part of the population as
its topological neighbors, the best value is a local best and is called p_pey. After finding
the two best values, the particle updates its velocity and positions with following equation

(IV.1) and (IV .2).
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Vi = w4 C * rand () * (pbest, — P™) + C, *rand () * (gbest, — P") (IV.2)
Pi(u+]) — Pi(u) + V;(MH) (IV3)

In the above equation [4],
The term rand( )*(ppest i-Pi(1t)) 1s called particle memory influence
The term rand( )*( gpest i -Pi(u)) is called swarm influence.

V; ™ which is the velocity of i” particle at iteration ‘«’ must lie in the range

Vo SV <V, (IV.4)

min max

* The parameter V,,,, determines the resolution, or fitness, with which regions are to be
searched between the present position and the target position.

* If Vyax 1s too high, particles may fly past good solutions. If V., is too small, particles
may not explore sufficiently beyond local solutions.

* In many experiences with PSO, V.. was often set at 10-20% of the dynamic range on
each dimension.

* The constants C; and C; pull each particle towards ppes; and gpes positions.

* Low values allow particles to roam far from the target regions before being tugged
back. On the other hand, high values result in abrupt movement towards, or past, target
regions.

» The acceleration constants C; and C, are often set to be 2.0 according to past
experiences.

» Suitable selection of inertia weight ‘@’ provides a balance between global and local
explorations, thus requiring less iteration on average to find a sufficiently optimal
solution.

* In general, the inertia weight w is set according to the following equation,

wew  —| L~ Wuin | rrpp (IV.5)
ITER,

Where w is the inertia weighting factor,

Wmax - maximum value of weighting factor,

Wmin - minimum value of weighting factor,

Iter 4 - maximum number of iterations,
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Iter - current number of iteration.

Start
\\/2

Initialize particles with random

position, and velocity vectors
A4
For each particle position (p)

2 evaluate the fitness

/2
If fitness (p) is better than fitness
(pbest) then Pbest=p
N\
Set best of pbest as gbest
N\
Pdate particle velocity and position

If gbest is the optimal

solution
Yes

end

Figure IV.2 : Flow chart of PSO Algorithm.

The detail of particle swarm optimization technique is discussed in this section.
Various parameters of PSO and their effects are also discussed. Algorithm of PSO

optimization technique and the flow chart is discussed briefly.

IV.4. Pattern Search method (PS) :

A particular family of global optimization methods, known as Direct Search methods,
originally introduced and developed by researchers in 1960s, has recently received some
attention. The Direct Search methods are simply structured to explore a set of points, in
the vicinity of the current position, looking for a smaller objective function value than the
current one. This family includes Pattern Search (PS) algorithms, Simplex Methods
(SM), Powell Optimization (PO) and others. Direct Search methods, in contrast to more
standard optimization methods, are often called derivative-free as they do not require any
information about the gradient (or higher derivative) of the objective function when

searching for an optimal solution. Therefore Direct Search methods are particularly
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appropriate for solving non-continuous, non-differentiable and multimodal (i.e. multiple
local optima) optimization problems [107].

The Pattern Search (PS) optimization routine is an evolutionary technique that is
suitable to solve a variety of optimization problems that lie outside the scope of the
standard optimization methods. Generally, PS has the advantage of being very simple in
concept, and easy to implement and computationally efficient algorithm. Unlike other
heuristic algorithms, such as GA, PS possesses a flexible and well-balanced operator to
enhance and adapt the global and fine tune local search. A historic discussion of direct
search methods for unconstrained optimization is presented in reference [107].

The Pattern Search (PS), algorithm proceeds by computing a sequence of points that
may or may not approaches to the optimal point. The algorithm starts by establishing a
set of points called mesh, around the given point. This current point could be the initial
starting point supplied by the user or it could be computed from the previous step of the
algorithm.

The mesh is formed by adding the current point to a scalar multiple of a set of
vectors called a pattern. If a point in the mesh is found to improve the objective function
at the current point, the new point becomes the current point at the next iteration.

The Pattern search begins at the initial point X)) that is given as a starting point by the
user. At the first iteration, with a scalar=1 called mesh size, the pattern vectors are
constructed as [0 1], [1 0], [-1 0] and [0 -1], they may be called direction vectors. Then
the Pattern search algorithm adds the direction vectors to the initial point X, to compute

the following mesh points:
X,+[0 1], X,+[1 0], X,+[-1 0] and X,+[0 —1] (IV.6)

Fig. IV.3 illustrates the formation of the mesh and pattern vectors. The algorithm
computes the objective function at the mesh points in the order shown. The algorithm
polls the mesh points by computing their objective function values until it finds one
whose value is smaller than the objective function value of Xj. If there is such point, then
the poll is successful and the algorithm sets this point equal to X; [108].

After a successful poll, the algorithm steps to iteration 2 and multiplies the current

mesh size by 2. The mesh at iteration 2 contains the following points:
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X, +2x[0 1], X, +2x[1 0], X,+2x[-1 0] and X,+2x[0 -1]

The algorithm polls the mesh points until it finds one whose value is smaller the
objective function value of X;. The first such point it finds is called X>, and the poll is
successful. Because the poll is successful, the algorithm multiplies the current mesh size

by 2 to get a mesh size of 4 at the third iteration because the expansion factor =2.

Mesh Points

01 P.P >1’°)

('1’0) Péttgrq’ééarch
T _2Nvectors -

Y-Axix -1 X-Axix

Figure IV.3 : 2N Pattern Vectors which forms the mesh points.

Now if iteration 3, (mesh size = 4), ends up being unsuccessful poll, i.e. none of the
mesh points has a smaller objective function value than the value at X>, so the poll is
called an unsuccessful poll. In this case, the algorithm does not change the current point
at the next iteration. That is, X3 = X,. At the next iteration, the algorithm multiplies the
current mesh size by 0.5, a contraction factor, so that the mesh size at the next iteration is
smaller. The algorithm then polls with a smaller mesh size [108].

2

The PS method generates a sequence of iterates {x , x @, ... x®

, ... / with non-
increasing objective function values. In each iteration £, there are two important steps of
the PS method namely, the SEARCH step and the POLL step. Note that we use the value
r = 2n in the description of the PS method [109].

In the SEARCH step, the objective function is evaluated at a finite number of points
(say a maximum of ¥ points) on a mesh (a discrete subset of ") so as to improve the

current iterate. The mesh at the current iterate, x ¥, is given by
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Mk={meiR"m=x(k)+Aqu:qu:}, Iv.7

Where m is a mesh trial point, Ay > 0 is a mesh size parameter (also known as the
step size control parameter) which depends on the iteration £, and Z: is the set of
nonnegative integers. There are no specific rules on how to generate trial points of the
SEARCH step in the current mesh. Users may generate these points by some heuristic
rules. The aim of the SEARCH step is to find a feasible trial point (on a mesh M) that
yields a lower objective function value than the function value at x*. A SEARCH step is
therefore successful if there exists a feasible trial point m € M; (where m is one of the V'
points) such that f{m) < f(x(k) ). In such a case, m is treated as the new iterate and the step
size Ay is increased so as to choose the next trial points on a magnified mesh than the
previous mesh. If the SEARCH step is unsuccessful in improving the current iterate x ®,
a second step, called the POLL step, is executed around x * with the aim of decreasing
the objective function value. This step must be done before terminating the iteration
[109].

The POLL step generates trial points at the poll set around the current iterate, x, as
shown in fig. IV.3, for the case of a two dimensional problem, where Ay = 1. The poll set
is composed of trial points that are positioned a step A; away from the current iterate x*/,

along the direction designated by the columns of D. This poll set is denoted by P and is
defined by

P = {pi eR'p,=x* +A,d, :d eD,i= 1,...,r}, (Iv.8)

Where p; is a trial point in the POLL step. The order in which the points in P; are
evaluated can also differ and has no effect on convergence. We now present the step by
step description of the PS algorithm [110] using both the SEARCH and the POLL step.

In most implementation of the PS method, the initial step size parameter Ay =1/ is
used and the updating of the step size parameter is carried out by

24, if fip,) < f(x™),forsome p,e P, 6, =2,

a4,,, = V.9
ke ézlk otherwise, ¢, =é av-9)
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IV.5. Big Bang-Big Crunch method :
The Big Bang—Big Crunch (BB-BC) optimization method it is relies on one of the

theories of the evolution of the universe namely, the Big Bang and Big Crunch theory is
introduced by Erol and Eksin which has a low computational time and high convergence
speed. According to this theory, in the Big Bang phase energy dissipation produces
disorder and randomness is the main feature of this phase; whereas, in the Big Crunch
phase, randomly distributed particles are drawn into an order. The Big Bang-Big Crunch
(BB-BC) Optimization method similarly generates random points in the Big Bang phase
and shrinks these points to a single representative point via a center of mass in the Big
Crunch phase. After a number of sequential Big Bangs and Big Crunches where the
distribution of randomness within the search space during the Big Bang becomes smaller
and smaller about the average point computed during the Big Crunch, the algorithm
converges to a solution. The BB-BC method has been shown to outperform the enhanced

classical Genetic Algorithm for many benchmark test functions [111].

IV.5.1. Big Bang—Big Crunch (BB-BC) Optimization Algorithm :

The BB-BC method developed by Erol and Eksin consists of two phases: a Big Bang
phase, and a Big Crunch phase. In the Big Bang phase, candidate solutions are randomly
distributed over the search space. Similar to other evolutionary algorithms, initial
solutions are spread all over the search space in a uniform manner in the first Big Bang.
Erol and Eksin [111] associated the random nature of the Big Bang to energy dissipation
or the transformation from an ordered state (a convergent solution) to a disorder or chaos
state (new set of solution candidates).

Randomness can be seen as equivalent to the energy dissipation in nature while
convergence to a local or global optimum point can be viewed as gravitational attraction.
Since energy dissipation creates disorder from ordered particles, we will use randomness
as a transformation from a converged solution (order) to the birth of totally new solution
candidates (disorder or chaos) [111].

The proposed method is similar to the GA in respect to creating an initial population
randomly. The creation of the initial population randomly is called the Big Bang phase.
In this phase, the candidate solutions are spread all over the search space in an uniform
manner [111].
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The Big Bang phase is followed by the Big Crunch phase. The Big Crunch is a
convergence operator that has many inputs but only one output, which is named as the
“‘center of mass”, since the only output has been derived by calculating the center of
mass. Here, the term mass refers to the inverse of the merit function value [112]. The

point representing the center of mass that is denoted by x. is calculated according to:

N1

2
I3 =% (IV.10)
2.5

where x; is a point within an n-dimensional search space generated, f; is a fitness
function value of this point, N is the population size in Big Bang phase. The convergence
operator in the Big Crunch phase is different from ‘exaggerated’ selection since the
output term may contain additional information (new candidate or member having
different parameters than others) than the participating ones, hence differing from the
population members. This one step convergence is superior compared to selecting two
members and finding their center of gravity. This method takes the population members
as a whole in the Big-Crunch phase that acts as a squeezing or contraction operator; and
it, therefore, eliminates the necessity for two-by-two combination calculations [111].

After the second explosion, the center of mass is recalculated. These successive
explosion and contraction steps are carried repeatedly until a stopping criterion has been
met. The parameters to be supplied to normal random point generator are the center of
mass of the previous step and the standard deviation. The deviation term can be fixed, but
decreasing its value along with the elapsed iterations produces better results.

After the Big Crunch phase, the algorithm creates the new solutions to be used as the
Big Bang of the next iteration step, by using the previous knowledge (center of mass).
This can be accomplished by spreading new off-springs around the center of mass using a
normal distribution operation in every direction, where the standard deviation of this
normal distribution function decreases as the number of iterations of the algorithm

increases [112]:

X" =x"+lrlk (IV.11)

58



Chapter IV Solution methods: Evolutionary Computation and Metaheuristics algorithms

where x stands for center of mass, / is the upper limit of the parameter, r is a normal
random number and k is the iteration step. Then new point x"" is upper and lower
bounded.

The BB-BC approach takes the following steps [111]:

Step.1 Form an initial generation of N candidates in a random manner. Respect the limits
of the search space.

Step.2 Calculate the fitness function values of all the candidate solutions.

Step.3 Find the center of mass according to (IV.10). Best fitness individual can be chosen
as the center of mass.

Step.4 Calculate new candidates around the center of mass by adding or subtracting a
normal random number whose value decreases as the iterations elapse of using
(IV.11).

Step.5 Return to Step 2 until stopping criteria has been met.

Star

v

Initialization Gen=1

Random Initial Population

%

Fitness Function evaluation

v
Gen=Gen+1 Find the center of mass x¢
X v

Calculate new candidates
around the xc using (IV.11)

Plot fitness with generation graph

v

End

Yes

Figure 1V .4: BB—BC computational procedure.
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IV.6. Artificial Bee Colony optimization :

Artificial bee colony (ABC) optimization algorithms are formulated based on the natural
foraging behavior of honey bees. ABC was first developed by Dr. Korba. [113-114]
Some artificial ideas are added to construct a robust ABC. Unlike classical search and
optimization methods, ABC starts its search with a random set of solutions (colony size),
instead of a single solution just like GA. Each population member is then evaluated for
the given objective function and is assigned fitness. The best fits are entertained for the
next generation while the others are discarded and compensated by a new set of random
solutions in each generation. The only stopping criterion is the completion of maximum
no of cycles or generations. At the end of the cycles, the solution of the best fit is the

desired solution.

IV.6.1. ABC foraging behavior :
To find the optimal decision variables, to optimize an objective function and to satisfy the
constraints, the variables are bounded to the limits. Eq. (6) gives a function defined to

take care of variable bounds [113].

V1.6.1.1. Random solution generation :
Food sources which are in their proximity are selected by the employed bees when they
move to a new location. Each employed bee associated with a food source is responsible

for nectar extraction from it [113].

P =P

i imin

+ rand (0, 1) x (P, — P,

imin )7

(IV.12)

Vie {123, ..., ng,
where Pimin and Pimax are the lower and upper bounds of variable P;.. In Eq. (IV.12)
rand (0, 1) represents a random number between 0 and 1.

The solution is represented in a matrix form as

X, =|RR R PP.P| (IV.13)

Similarly the food sources {X|, X,, X;, X,,..., X, } is the set of all the randomly

chosen solutions which satisfies all the defined constraints.
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IV.6.1.2. Evaluation of fitness of solutions :
The food sources are ranked based on the quality and quantity of their nectar. Similarly,

fitness is assigned to each solution, which represents the goodness of each solution [113].

. 1
Fitness (i) = W Vie{l,2,3, ...,ng}, (IV.14)
+

i

where X F, represents the total fuel cost of generation.

1V.6.1.3. Employed bee phase :

Each solution is handled by an employed bee who searches for the food source in
their neighborhood and if a better food source is found it discards its previous food source
and starts exploring the new one until it finds a better food source [113].

Similarly, a mutant solution is generated for each solution using its randomly
selected neighbor and the parameter to be changed. {Xl, X,, X;, X,,..., Xn}is the
solution set where each solution X is represented as

X, =|RRRPPR.E|

A random variable of all n, variables is chosen and a neighbor of all n—1 neighbors is

chosen randomly and a mutant solution is produced as

X =X, () + X, ()—- X,(i))x (2xrand-1), (IV.15)

Imutant

where i and j is the randomly chosen parameter and the neighbor, respectively.

A greedy selection between the mutant and original solutions takes place resulting in
the discard of the least fit solution. This process of selection is repeated for each solution.
The solution whose mutant is less fit increases its trial and may lead to dissertation of the

food source if the trial leads to a threshold limit [113].

IV.6.1.4. Onlooker bee phase :

The onlooker bees in the hive detect a food source by means of the information presented
to them by the employed foragers. A food source is chosen with the probability which is
proportional to its food quality. Different schemes can be used to calculate the probability

values [114]. For example
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Fitness (i)

Probability (i) = ————,
y (@ sum (Fitness)

: (IV.16)
ax Fitness(7)

Probability () = max(Fitness)+b

where a+b =1.

A random number chosen which represents the expectancy of the onlooker bee is
compared with the probability of a solution (food). If the solution meets the expectancy
of the onlooker, then it moves to exploit the food source and becomes an employed bee
and corresponding employed bee of food source retires [114].

The new employed bee starts exploring the neighborhood and repeats the employed
bee behavior.

If the expectancy is not reached, the onlooker chooses other food source (solution)
with different expectancy until it becomes employed. The above procedure repeats while
all the onlooker bees get employed to food source. The food source with the highest
probability will be chosen maximum and the one with least probability is discarded more

times [113].

IV.6.1.5. Scout bee phase :
The scout bee is to explore the search area and it is often represented by a randomly
generated solution. It will replace an employed bee if its trials of mutation exceed a
threshold limit [113].

The scout will encourage the exploration of unexplored area of the search space. The
best solution and fitness values are memorized for every iteration. The above process is
repeated for maximum number of iterations and the result at the end will ensure a global

minimum or maximum [114].

IV.6.2. ABC algorithm :
The proposed ABC algorithm is summarized as follows [113]:

Step 1. Read the line input data; Initialize MaxIterC (maximum iteration count) and base case
as the best solution;

Step 2. Construct initial bee population (solution) X;; as each bee is formed by the open
switches in the configuration and the number of employed bees are equal to onlooker
bees;

Step 3. Evaluate the fitness value for each employed bee by using Eq. (IV.14);
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Step 4. Initialize cycle=1;

Step 5. Generate a new population (solution) ¥} in the neighborhood of X;; for employed bees
using Eq. (IV.15) and evaluate them;

Step 6. Apply the greedy selection process between X; and V;;

Step 7. Calculate the probability values P; for the solutions X; by means of their fitness values
using Eq (IV.16);

Step 8. Produce the new populations V; for the onlookers from the populations X;, selected
depending on P; by applying roulette wheel selection process, and evaluate them;

Step 9. Apply the greedy selection process for the onlookers between X; and V;;

Step 10.Determine the abandoned solution, if exists, and replace it with a new randomly
produced solution X; for the scout bees using Eq. (IV.12);

Step 11.Memorize the best solution achieved so far;

Step 12.Cycle=cycle+1;

Step 13.1f cycle<MIC, go to Step 5, otherwise go to Step 14;

Step 14. Stop.

IV.7. A hybrid GA-PS method :

This section presents a new approach based on a hybrid algorithm consisting of Genetic
Algorithm (GA) and Pattern Search (PS). GA is the main optimizer of the algorithm,
whereas PS are used to fine tune the results of GA to increase confidence in the solution.

The main objective of this study is to introduce a hybrid method that combines the
Genetic Algorithm (GA) and Pattern Search (PS)-referred to as the hybrid GA-PS
method— in the context of power system problem.

All the parameters involved in the Pattern search optimization algorithm can be pre-
defined subject to the nature of the problem being solved.

The above steps and how PS evolves are depicted by the flow chart of fig. IV.5. It
should be noted that all the parameters involved in the pattern search optimization
algorithm can be pre-defined subject to the nature of the problem being solved.

This part describes a novel hybrid approach based on a combination of Genetic
Algorithm (GA) and Pattern Search (PS) to study power system problems. The GA—PS
technique has overcome an important drawback of the PS methods that is the need to
supply a suitable starting point. This shortcoming of the PS methods was highlighted in
the previous work of the authors as it makes any optimization method relying on a good
choice of the initial point possibly more susceptible to getting trapped in local minima,
although the much improved speed of computation allows for additional searches to be

made to increase the confidence in the solution. The hybrid GA-PS algorithm, on the
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other hand, does not require the user to specify the starting point as it is generated
automatically for the PS stage by the initial GA phase. Moreover, the performance of the
proposed hybrid method improves with the increase of size and complexity of the system.
Overall, the proposed algorithm has been shown to perform extremely well for solving

economic dispatch problems.
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Figure IV.5 : Flow chart of GA-PS Algorithm.

IV.8. A hybrid PSO-PS method :
In the proposed PSO-PS, pattern search is employed to conduct exploitation of the

parameters solution space. The hybrid algorithm implemented is inspired in the strategy
suggested in [115-116] of exploring the search space first globally and then locally, using
two different evolutionary algorithms.

In this work, due to the fact that in high dimension problems the PSO is easily

trapped into local optima, resulting in a low optimizing precision or even failure [117],
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the proposal is to use the PSO algorithm to provide a good initial solution as a starting
point for a pattern search algorithm PS.

In this section, the hybridization of PS method and PSO are incorporated in the
optimization process in order to look for the global optimal solution for the fitness
function and decision variables as well as minimum computational CPU time.

Fig. IV.6 depicts the schematic representation of the proposed HPSO-PS algorithm.
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Figure IV.6: Flow chart of HPSO-PS method.

IV.9. A Hybrid Big Bang-Big Crunch Optimization Algorithm :

In this section, a new optimization method relied on one of the theories of the evolution
of the universe namely, the Big Bang and Big Crunch theory is introduced by Erol and
Eksin [118] which has a low computational time and high convergence speed. According
to this theory, in the Big Bang phase energy dissipation produces disorder and
randomness is the main feature of this phase; whereas, in the Big Crunch phase,
randomly distributed particles are drawn into an order. The Big Bang-Big Crunch (BB—
BC) Optimization method similarly generates random points in the Big Bang phase and

shrinks these points to a single representative point via a center of mass in the Big Crunch
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phase. After a number of sequential Big Bangs and Big Crunches where the distribution
of randomness within the search space during the Big Bang becomes smaller and smaller
about the average point computed during the Big Crunch, the algorithm converges to a
solution. The BB-BC method has been shown to outperform the enhanced classical
Genetic Algorithm for many benchmark test functions [112].

The HBB-BC method consists of two phases: a Big Bang phase where candidate
solutions are randomly distributed over the search space, and a Big Crunch phase
working as a convergence operator where the center of mass is generated. Then new
solutions are created by using the center of mass to be used as the next Big Bang [112].
These successive phases are carried repeatedly until a stopping criterion has been met.
This algorithm not only considers the center of mass as the average point in the beginning
of each Big Bang, but also similar to Particle Swarm Optimization-based approaches [6],
utilizes the best position of each particle and the best visited position of all particles. As a
result because of increasing the exploration of the algorithm, the performance of the BB—

BC approach is improved [112].

A hybrid BB-BC algorithm :

The BB-BC method in the process of selection of a new generation depends on
centre of mass only, where we find kind of randomized in this the choice.

Although BB-BC performs well in the exploitation (the fine search around a local
optimum), there are some problems in the exploration (global investigation of the search
place) stage. If all of the candidates in the initial Big Bang are collected in a small part of
search space, the BB-BC method may not find the optimum solution and with a high
probability, it may be trapped in that sub domain [112].

One can consider a large number for candidates to avoid this defect, but it causes an
increase in the function evaluations as well as the computational costs. This paper uses
the Particle Swarm Optimization (PSO) [3] capacities to improve the exploration ability
of the BB-BC algorithm [119].

In order to improve the computational efficiency of BB-BC algorithm, Kaveh and
Talatahari [119] uses the social behavior of bird flocking and fish schooling model in
particle swarm optimization. The swarm’s movement is directed by both their own

experience and the population’s experience. For every iteration, a particle moves towards
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a direction computed from the local best solution and the global best solution. This
concept is used in this research work where the BB-BC algorithm not only utilizes the
center of mass but also employs the global best solution to generate the new solution.

A modified version of eq.(I1.10) is given as
X" =0, X+ (1=a,).(0,. X" +(1-0,).X®*") +a,.Lr/k (Iv.17)

where X, is the best position of the particle up to the iteration k and X is the

gbest
best position among all candidates up to the iteration k; a,, o, and a, are adjustable

parameters controlling the influence of the global best and local best on the new position
of the candidates.

The hybrid BB-BC approach similarly not only uses the center of mass but also
utilizes the best position of each candidate (Pp.s) and the best global position (Gpes) to

Initialize random population members (control variables), set
Generation count = 1

generate a new solution.

Iy »
v

Run a base case load flow for the first generation, form second
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v
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Figure IV.7: Flowchart of the proposed HBB—BC algorithm.

Fig. IV.7 depiction of the schematic representation of the proposed algorithm to
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solve the ED problem.

IV.10. Conclusion:

In this chapter we presented overview and exposes the common and basic concepts
for various metaheuristics techniques based on GA, PSO, PS, BB-BC and ABC and we
briefly discussed the mechanisms and characteristics of these techniques. Next chapter
presents a detailed design of these approaches and their implementation with ED and UC

problems will be provided.
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CHAPTER V

Application of Artificial Intelligence techniques
to Economic Load Dispatch problems

V.1. Introduction :

This chapter presents the performance of various metaheuristic techniques based on
GA, PSO, PS, BB-BC and ABC for solving various types of ED problem for estimation
of the finest combination of generated power in a given system at lowest operating cost
while sustaining the operating condition of system efficiently. The fuel cost is minimized
by satisfying the nonlinear operating conditions of thermal units mainly based on
generation capacity constraints, generator ramp limit, power balance constraints, and
valve point loading effect and by keeping in view the prohibited operating zones,
respectively. About the optimization, a comparative study is made for the various
metaheuristic approaches and their hybrid versions such as GA-PS, PSO-PS and HBB-
BC.

Knowledge-based or Artificial Intelligence techniques are used increasingly as
alternatives to more classical techniques to model environmental systems. Artificial

Intelligence (AI) could be defined as the ability of computer software and hardware to do
those things that we, as humans, recognize as intelligent behaviour [120-125].

To demonstrate the efficiency and applicability of the proposed methods and for the
purposes of comparison, various types of ED problems are examined. The results of this

study show that the proposed approaches are able to find more economical loads than

those determined by other methods.

V.2. EDP using Particle Swarm Optimization (PSO) :

In this section an efficient and particle swarm optimization (PSO) has been presented for

solving the economic dispatch problem. The objective is to minimize the total generation
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fuel and keep the power outputs of generators, bus voltages and transformer tap setting in
their secure limits. The conventional load flow and incorporation of the proposed method
using PSO has been examined and tested for standard IEEE 30 bus system. The PSO
method is demonstrated and compared with conventional OPF method (NR, Quasi
Newton), and the intelligence heuristic algorithms such as genetic algorithm,
evolutionary programming. The results show that PSO is an effective method to solve

OPF problem.

V.2.1. Applied PSO to Optimal Power Flow :
To minimize the cost function Fr (IL.2) is equivalent to getting a minimum fitness value
in the searching process.

The particle that has lower cost function should be assigned a fitness value. The

objective of OPF has to be changed to the maximization of fitness to be used as follows:

F/ ;o >F
-

; otherwise

Start

Initialization Gen=1
Random Initial Population

| Initialize particle population

N

Load flow
I

Fitness Function evaluation

Record Pbest. Gbest
[

Update particle position and velocity

Yes @
| Plot fitness Vs ogeneration oranh |

[
End

Gen=Gen+1 | | I |

Figure V.1 : PSO-OPF computational procedure.
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The PSO-based approach for solving the OPF problem to minimize the cost takes the
following steps:
Step 1: randomly generated initial population.
Step 2: for each particle, the construction operators are applied.
Step 3: the Newton-Raphson routine is applied to each particle.
Step 4: fitness function evaluation.
Step 5: compare particles fitness function and determine Ppey and Gpeg.
Step 6: change of particles velocity and position according to (IV.2) and (IV.3)
respectively.
Step 7: if the iteration number reaches the maximum limit, go to Step 8. Otherwise, set
iteration index k =k + 1, and go back to Step 2.
Step 8: print out the optimal solution to the target problem.

V.2.2. Load Flow Calculation :

Once the reconstruction operators have been applied and the control variables values are
determined for each particle a load flow run is performed. Such flows run allows
evaluating the branches active power flow, the total losses and voltage magnitude this
will provide updated voltages angles and total transmission losses. All these require a fast
and robust load flow program with best convergence properties; the developed load flow

process is upon the full Newton Raphson algorithm.

V.2.3. Simulation Results And Discussion :
The proposed PSO algorithm is tested on standard IEEE 30 bus system shown in fig. V.2.
The test system consists of 6 thermal units, 24 load buses and 41 transmission lines of
which four of the branches (6-9), (6-10), (4-12) and (28-27) are with the tap setting
transformer. The total system demand is 283.4 MW.

The optimal setting of the PSO control parameters are: ¢;=0.5, ¢,=0.5, numbers of
particles is 50 and number of generations is 30; the Inertia weight was kept between 0.4

and 0.9.

71


hp
Line


Chapter V Application of Artificial Intelligence technique to ELD problems

THREE WINDING TRANSFORMER EQUIVALENTS
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Figure V.2 : [EEE 30-BUS Electrical Network.

V.2.3.1. Case 1: The OPF with quadratic fuel cost functions :
In this case the units cost curves are represented by quadratic function. The generator cost
coefficients are given in appendix.l (A.1). The proposed PSO-OPF is applied to standard
IEEE 30 bus system. The obtained results are given in tables V.1 and V.2.

Fig. V.3 shows the cost convergence of PSO based OPF algorithm for various
numbers of generations. It was clearly shown that there is no rapid change in the fuel cost
function value after 30 generations, hence it is clears from the figure that the solution is

converged to a high quality solution at the early iterations (13 iterations).
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cost [$/hr]
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iteration
Figure V.3 : Convergence characteristic of the IEEE 30 bus system.

The minimize cost and power loss obtained by the proposed algorithm is less than
value reported in [127, 128, 129] using the evolutionary techniques, genetic algorithm,

Ant colony optimization for the some test systems. The results gotten including cost and
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power losses are compare with those acquired by others methods and present on tables

V.1l and V.2.

Table V.1 : PSO-OPF compared with N.R and QN-OPF Methods for the IEEE 30-BUS system,

N-R QN-OPF PSO-OPF

Pg; [MW)] 99211 170237  175.6915
Pg, [MW] 80.00 44.947 48.6390
Pgs [MW] 50.00 28.903 21.4494
Pgs [MW] 20.00 17.474 22.7200
Pg,, [MW] 20.00 12.174 12.2302
Pg;; [MW] 20.00 18.468 12.0000
Power Loss [MW] 5.812 8.805 9.3301

Generation cost [$/hr] 901.918 807.782 802.0136

The results show that PSO algorithm gives much better results than the classical
method. The difference in generation cost between these methods clearly shows the
advantage of this method. In addition, it is important to point out that this simple PSO
algorithm OPF converge in an acceptable time. For this system was converged to highly

optimal solutions set after 13 generations.

Table V.2 : Comparison of the PSO-OPF with different evolutionary methods,

IEP EP-OPF SADE_ ALM  PSO-OPF
[127] [128] [129]

Pg; [MW] 176.2358 173.8262 176.1522 175.6915
Pg, [MW] 49.0093 49.998 48.8391 48.6390
Pgs [MW] 21.5023 21386 21.5144 21.4494
Pgs [MW] 218115 22.63 22.1299 22.7200
Pg,, [MW] 12.3387 12.928 12.2435 12.2302
Pg,; [MW] 12.0129 12.00 12.0000 12.0000
Power Loss [MW] 9.5105 9.3683 9.4791 9.3301
Generation cost [$/hr]  802.465 802.5557 802.404 802.0136
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Figure V.4 : The Voltages after optimization for the IEEE 30 bus system.
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The security constraints are also checked for voltage magnitudes and angles.
Simulation results give the voltage magnitudes are from the minimum of 1.0040 p.u to
maximum of 1.06 p.u. No load bus is under 1 pu (fig. V.4). The voltage angles are

between a minimum value -14.065° and maximum value 0° (fig. V.5).
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Figure V.5 : The voltage angles after optimization for the IEEE 30 bus system.
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Figure V.6 : Shows operating states of generating obtained by PSO based OPF algorithm.
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Figure V.7 : Evolution of the fuel cost and the power generated during optimization.

The evolution of the fuel cost function during the optimization process is shown in
fig. V.7. It can be observed the production costs starts from the initial interval [800-950]
$/h. The optimal operating point has been obtained after 10 iterations. The optimal

solution is achieved in 13 iterations as shown in fig. V.3.

V.2.3.2. Case 2: The OPF for units with valve-point effects :

In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by
quadratic functions with rectified sine components using (eq. I1.16). Bus 1 is selected as
the slack bus of the system to allow more accurate control over units with discontinuities
in cost curves. The generator cost coefficients of those two generators are given in
appendix.l (A.2). The simulation results are shown in table V.3 and the outer loop

convergence characteristic is shown in fig. V.8.

Table V.3 : Comparison of the PSO-OPF with different evolutionary methods

IEP [127] SADE-ALM PSO-OPF

[129]
Pg; [MW] 149.7331 193.2903 199.6336
Pg, [MW] 52.0571 52.5735 20.0000
Pgs [MW] 23.2008 17.5458 22.2786
Pgs [MW] 33.4150 10.0000 29.5909
Pg; [MW] 16.5523 10.0000 10.0000
Pg; [MW] 16.0875 12.0000 12.0000
Power Loss [MW] 7.6458 12.0096 10.1031
Generation cost [$/hr] 953.573 944.031 9209775
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Figure V.8 : Convergence plot with valve point effect.

The problem economic problem takes into account valve point effect and cost
function was modified equation (II.16). The losses were calculated using Newton raphson
method for each iteration. Table V.3 summaries the results of the optimal settings as
obtained by different methods. These results show that the optimal dispatch solution
determined by the PSO lead to lower cost, which confirms that the PSO is well capable of
determine the global or near global optimum dispatch solution.

It was found that the convergence of the method is fast and solution converges is less
than 18 iterations.

PSO-OPF problem has been presented and applied to standard IEEE 30 bus system.
The proposed algorithm has shown better result in terms of convergence and lesser
generation cost, the results show that the optimal dispatch solutions determined by PSO
lead to lower active power loss than that found by other methods, which confirms that the

PSO is well capable of determining the global or near global optimum dispatch solution.

V.3. Pattern Search (PS) method to solve EDP :

In this section, a pattern Search method (PS) have been applied to the economic power
dispatch EPD. The feasibility of the proposed method is to demonstrated and compared to
those reported in the literature. The results are promising and show the effectiveness of

the proposed method.
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V.3.1. Simulation Results and Discussion :

The program has been developed and executed under Matlab system. The proposed PS
algorithm is tested on standard on the standard IEEE 30 bus system consists of 6 thermal
units (appendix.1 A.1).

Initially, several runs have been carried out with different values of the key
parameters of PS such as the initial mesh size and the mesh expansion and contraction
factors. In this study, the mesh size and the mesh expansion and contraction factor are
selected as 1, 2 and 0.5, respectively. In addition, a vector of initial points, i.e. Xo, was
randomly generated to provide an initial guess for the PS to proceed. As for the stopping
criteria, all tolerances were set to 10° maximum number of iterations and function
evaluations were set to 50.

The obtained results using PS based OPF are given in tables V.4 and fig. V.9. shows
the cost convergence of PS based OPF algorithm for various numbers of generations. It
was clearly shown that there is no rapid change in the fuel cost function value after 50
generations. Hence it is clears that the solution is converged to a high quality solution at
the early iterations (25 iterations).

Optimal Value: 802.0150 Current Mesh Size: 1.4375e-005
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Figure V.9 : Convergence of PS for Figure V.10 : Convergence of PS
the IEEE 30 bus system. mesh size for the IEEE 30 bus system.

The minimize cost and power loss obtained by the proposed algorithm is less than

value reported in [126, 127, 128].
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Figure V.11 : Objective function value for 50 different starting point.

Table V.4 : Comparison of the PSO-OPF with different evolutionary methods of
optimization viewpoint cost, losses and times of convergence,

IEP EP-OPF SADE-ALM PS

[127] [128] [129]
P, [MW] 176.2358 173.8262 176.1522 175.7276
Py, [MW] 49.0093 49.998 48.8391 48.6812
Py [MW] 215023 21.386 21.5144 21.4282
Py [MW] 218115 22.63 22.1299 22.8313
Py [MW] 12.3387 12.928 12.2435 12.0667
P.i; [MW] 12.0129 12.00 12.0000 12.0000
Power Loss [MW] 9.5105 93683 9.4791 9.3349
Generation cost [$/hr] 802.465 802.5557 802.404 802.0150

The convergence of optimal solution using PS is shown in fig. V.9, where only about
25 iterations were needed to find the optimal solution. However, PS may be allowed to
continue the search in the neighborhood of the optimal point to increase the confidence in
the result. PS stops after 50 more iteration and returns the optimal value.

Fig. V.10 depicts the mesh size throughout the convergence process. It is apparent
form the figure that the mesh size decreases until the algorithm terminates, in this case at
mesh size 1.4375e-005 which is more that the giving as stopping criteria, thus indicating
that this particular run did not terminate using the mesh size tolerance. Fig. V.10 shows
that for the first 8 iteration the poll was successful since the mesh size keeps increasing as
the algorithm had to expand the scope of the search. This is accomplished by multiplying
the current mesh size by the expansion factor, in this study taken as 2. This scenario
continued until iteration number 8 when the mesh size reached 256. At iteration number 9

the mesh size decreased by half due to multiplying the current mesh size by the
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contracting factor, indicating an unsuccessful poll in the previous iteration. This process
continues until reaching one of the termination criteria.

It is worth mentioning that the mean and the maximum costs are higher than those of
the other methods, and this is a certain drawback of the performance of PS in this test.
Moreover, it has been observed that the algorithm is quite sensitive to the initial (starting)
point and how far it is from the global optimal solution. Fig. V.11 illustrates the
sensitivity of PS where a hundred solutions were obtained by PS with different initial
values. The optimal solution has been reached a number of times for initial points around
run number 49.

Pattern search (PS) have been studied and comparisons of the quality of the solution
and performance have been conducted against evolutionary programming (IEP), (EP-

OPF), and hybrid self-adaptive differential evolution methods (SADE-ALM).

V.4. Big Bang—Big Crunch algorithm to solve EDP :

A Big Bang-Big Crunch (BB-BC) optimization algorithm is employed for solving
different types of ED problems. The proposed BB-BC algorithm has been examined and
tested, the results obtained from the BB-BC algorithm have been compared to those that
reported in the literature recently. The simulation results show that the proposed BB—BC
algorithm approaches is able to obtain higher quality solutions efficiently and with less

computational time than the conventional approaches.

V.4.1. Simulation Results and Discussion :
The proposed BB—BC algorithm method, it has been applied to solve various types of the
ED problem on three different power systems (3 units, [IEEE 30 standard bus and 15 units
test system), and a comparison with other heuristic algorithms reported in the literature.
All methods are performed with 30 trials under the same evaluation function and
individual definition in order to compare their solution quality, convergence characteristic
and computation efficiency. In these examples. The software was implemented by the
MATLAB language, on a Pentium 4, 2.4 GHz personal microcomputer with 1GB DDR
RAM under Windows XP.
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According to simulation, the following parameters in the BB-BC algorithms methods
are used: The number of generation is 100 iterations and Size of population 50
individuals (candidates); the individual having minimum cost value is chosen for Big-
Crunch phase; new population (Big Bang phase) is generated by using normal

distribution principle with (eq. IV.11):

PL; = Pest; + (P, — Poingin )-rand /it (V.1)

Where k number of candidates, i number of parameters, Pest* value which falls with

minimum cost, Pgiyax and Pgiin are parameter upper and lower limits and it number of

1terations.

V.4.1.1. Case 1: The OPF with quadratic fuel cost functions :
A. Example 1

The proposed algorithm is tested on standard IEEE 30 bus system.

In this case, each individual P, contains six generator power outputs, which are generated
randomly. For 283.4 MW load demand, the best solutions, which are shown in table V.5,
satisfy the system constraints. The statistical results obtained with 30 trials, such as the

generation cost, computational time and Standard deviation are shown in table V.6.

Table V.5: Best solution of standard IEEE 30 Bus system

Unit power Methods
output
IEP EP-OPF  SADE-ALM BB-BC
[128] [128] [129]
P, (MW) 176.2358  173.8262 176.1522 175.8299
P, (MW) 49.0093 49.998 48.8391 48.6122
Ps (MW) 21.5023 21.386 21.5144 21.1692
Pg (MW) 21.8115 22.63 22.1299 22.6083
Py (MW) 12.3387 12.928 12.2435 12.5263
Pi; (MW) 12.0129 12.00 12.0000 12.0000
Total P, (MW) 2929105  292.7683 292.8791 292.7460
Poss (MW) 9.5105 93683 9.4791 9346

Total cost ($/h) 802.465 802.5557 802.404 802.0207

Fig. V.12 shows the cost convergence of BB-BC based OPF algorithm for various
numbers of generations. It was clearly shown that there is no rapid change in the fuel cost
function value after 100 generations, clearly from the figure that the solution is converged

to the best solution at the early iterations (45 iterations).
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Figure V.12 : Convergence characteristic of the IEEE 30 bus system.
Table V.6 : Comparison of BB-BC performance with other methods.
Methods Fuel Cost ($/hr.) Average
Bestcost  Average cost  Worst cost  Standard deviation ~ computational
time (minutes)
EP [128] 802.907 803.232 803.474 0226 66.693
TS [128] 802.502 802.632 802.746 0.080 86.227
TS/SA[128] 802.788 803.032 803.291 0.187 62.275
ITS [128] 804.556 805.812 806.856 0.754 88.495
IEP [128] 802.465 802.521 802.581 0.039 99.013
SADE_ALM [129] 802.404 802.407 802.411 0.003 15.934
BB-BC 802.020 802.065 802.132 0.033 04.418
802.16
—8— Fuel Cost
802,14 (// Worst cost Average cost
802.12 T
I
L; 802.08
1 1 A A (W1
so2.06 - T -] | I W
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Figure V.13 : Distribution of generation cost for IEEE 30 bus system.

Or the IEEE 30 bus system, the best solutions of the seven methods are given in table
V.6 after performing 30 trials. The results of the BB—BC based OPF algorithm are
compared with those obtained by the EP, TS, TS/SA, ITS, IEP, and SADE-ALM
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algorithms in terms of Worst, Average, Best generation cost, the Standard deviation and
Average computational time as shown in table V.6. Obviously, all methods have
succeeded in finding the near optimum solution presented in [128], [129] with a high
probability of satisfying the equality and inequality constraints.

Fig. V.13 shows distribution the generation cost of the best solution for each run in

the case 0£283.4 MW load demand.

B- Example 2
The system contains 15 thermal units [131] whose characteristics and the loss coefficients
S matrices are given in appendix. 2. The load demand is 2630 MW.
In this case, each individual 15 generator power outputs, which are generated randomly.
which are generated randomly. For 2630 MW load demand, the best solutions, which are
shown in table V.7, satisfy the system constraints. The statistical results obtained with 30
trials, such as the generation cost, standard deviation, computational time and percentage
of approaching near optimal solution, are shown in table V.8.

Fig. V.14. shows the cost convergence of BB-BC based OPF algorithm for various
numbers of generations. It was clearly shown that there is no rapid change in the fuel cost
function value after 100 generations. Hence it is clears from the Fig. V.14 that the

solution is converged to a high quality solution at the early iterations (60 iterations).
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Figure V.14 : Convergence characteristic of the 15 units system.
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Table V.7 : Best solution of 15 units system.
Unitpower output  SA [130] GA [130] TS[130] PSO[130] MTS[130] BB-BC

P; (MW) 453.6646 4455619 453.5374  454.7167 453.9922 454.9991
P, (MW) 377.6091 380.0000 371.9761  376.2002 379.7434 455.0000
P; (MW) 1203744  129.0605  129.7823  129.5547 130.0000 130.0000
Py (MW) 1262668  129.5250  129.3411  129.7083 1299232 130.0000
Ps (MW) 1653048 169.9659 169.5950  169.4407 168.0877 227.1366
Ps (MW) 4592455 458.7544 4579928  458.8153 460.0000 460.0000
P; (MW) 4228619 4179041 426.8879  427.5733 4292253 465.0000
Pg (MW) 1264025  97.8230 95.1680 67.2834 104.3097 60.0000
Py (MW) 54.4742 54.2933 76.8439 752673 35.0358 25.0000
Py (MW) 149.0879 1442214 133.5044  155.5899 155.8829 160.0000
Py (MW) 77.9594 77.3002 68.3087 799522 79.8994 20.0000
Py, (MW) 73.9489 77.0371 79.6815 79.8947 79.9037 20.0000
P;; (MW) 25.0022 31.1537 28.3082 25.2744 25.0220 25.0000
Py (MW) 16.0636 15.0233 17.7661 16.7318 15.2586 15.0000
P;s (MW) 15.0196 33.6125 22.8446 15.1967 15.0796 15.0000
Total output (MW) 2663.29 2661.23 2661.53 2661.19 2661.36 2662.13
Pioss (MW) 33.2737 31.2363 31.4100 31.1697 31.3523 32.1358
Total cost ($/h) 32786.40 32779.81 32762.12  32724.17 32716.87 32659.35

Table V.8 : Comparison of BB-BC performance with other methods.

Methods Fuel Cost ($/hr.) Average
Bestcost  Average Worst Standard computational
cost cost deviation time (s)
SA [130] 32786.40  32869.51  33028.95 112.32 71.25
GA [130] 32779.81 3284121  33041.64 81.22 48.17
TSA[130] 32762.12 32822.84  32942.71 60.59 2641
PSO [130]  32724.17 3280745  32841.38 21.24 13.25
MTS [130] 32716.87 32767.21  32796.15 17.51 3.65
BB-BC 32659.35 32668.51  32673.02 2.69 12.65

For the 15 units system in the case of 2630 MW load demand, after performing 30
trials, the best solutions of the six methods are given in table V.7. The results of the BB-
BC algorithm method in comparison with those of the SA, GA, TS, PSO and MTS [130]
algorithms in terms of worst, average, best generation cost, standard deviation and
average computational time are provided in table V.8.

From Figs. V.15-16 clearly, the BB-BC algorithm method has always better
solutions than those of the other methods. This signifies the higher quality solution
obtained by the proposed algorithm.

The simulation results in the IEEE 30 bus system and 15 units system demonstrate
the feasibility and effectiveness of the proposed method BB-BC in minimizing cost of the
generator. It is useful for obtaining high quality solution in a very less time compared to

other methods EP, TS, TS/SA, ITS, IEP, SADE-ALM, SA, GA, TS, PSO and MTS.
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Figure 15 : Comparison of BB-BC performance  Figure 16 : Comparison of BB-BC performance
with other methods for IEEE 30 bus system. with other methods for 15 units system.

The comparison of numerical results of optimal power flow (OPF) problems using
the BB-BC method with the results obtained by other heuristic approaches are performed
to demonstrate the robustness of the present algorithm. With respect to the BB—BC
approach has better solutions and standard deviations.

The results show that the optimal dispatch solutions determined by BB-BC lead to
lower active power loss then that found by other heuristic methods, which confirms that
the BB-BC is well capable of determining the global or near global optimum dispatch
solution.

The BB-BC optimization has several advantages over other evolutionary methods:
Most significantly, a numerically simple algorithm and heuristic methods with relatively
few control parameters; and the ability to solve problems that depend on large number of

variables.

V.4.1.2. Case 2: The OPF for units with valve-point effects

In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by
quadratic functions with rectified sine components using (I.16). Bus 1 is selected as the
slack bus of the system to allow more accurate control over units with discontinuities in

cost curves. The generator cost coefficients of those two generators are given in

appendix. 1 (A.2).
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The best solutions, which are shown in table V.9, satisfy the system constraints. The
statistical results obtained with ten trials, such as the generation cost, computational time

and Standard deviation are shown in table V.10.

Table V.9 : Best solution of standard IEEE 30 bus system

Methods
Unit power output IEP SADE AILM BB-BC
[127] [129]
P, (MW) 149.7331 193.2903 199.6127
P, (MW) 52.0571 52.5735 20.0000
Ps (MW) 23.2008 17.5458 21.7407
Ps (MW) 33.4150 10.0000 26.2079
Py (MW) 16.5523 10.0000 13.9545
Pi3 (MW) 16.0875 12.0000 12.0000
Total Pg (MW) 291.0458 295.4096 293.5158
Pioss (MW) 7.6458 12.0096 10.1158
Total cost ($/h) 953.573 944.031 920.5089

Fig. V.17 shows the cost convergence of BB-BC based OPF algorithm for various
numbers of generations. It was clearly shown that there is no rapid change in the fuel cost
function value after 100 generations, clearly that the solution is converged to a high

quality solution at the 55 iterations.
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Figure V.178 : Convergence characteristic of ~ Figure V.18 : Distribution of generation cost for
the IEEE 30 bus system (Case?2). IEEE 30 bus system (Case2).

For this case, the results from ten test runs of BB-BC do not violate any constraints.
Table V.10 shows that worst, average, best generation cost, the standard deviation and
average computational time of BB—BC are lower than those obtained by TS, TS/SA, ITS,
EP, IEP and SADE-ALM.

85


hp
Line


Chapter V Application of Artificial Intelligence technique to ELD problems

Fig. V.18 shows distribution the generation cost of the best solution for each run in

the case 0f283.4 MW load demand.
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Figure V.19 : Comparison of computation performance.

The comparisons of computational time of the seven methods in the two cases are
shown in fig. V.19. Clearly, the computational time of the MTS algorithm method is

lowest in comparison to those of the other methods.

Table V.10 : Comparison of BB-BC performance with other methods

Methods Fuel Cost ($/hr.) Average
Best Average Worst Standard  computational
cost cost cost deviation  time (minutes)

EP [127] 955.508 957.709 959379 1.084 61.419

TS [127] 956.498 958.456  960.261 1.070 88.210

TS/SA[127] 959.563 962.889  966.023 2.146 65.109

ITS [127] 969.109 977.170  985.533 6.191 85.138

IEP [127] 953.573 956.460 958263 1.720 93.583

SADE-ALM [129] 944,031 954.800  964.794 5.371 16.160

BB-BC 920.508 920.661  920.920 0.121 5.0472

The simulation results in the IEEE 30 bus system demonstrate the feasibility and
effectiveness of the proposed method BB-BC in minimizing cost of the generator. It is
useful for obtaining high quality solution in a very less time compared to other methods
EP, TS, TS/SA, ITS, IEP and SADE-ALM.

The comparison of numerical results of optimal power flow (OPF) problems with
valve-point effects using the BB-BC method with the results obtained by other heuristic

approaches are performed to demonstrate the robustness of the present algorithm.
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V.4.1.3. Case 3: A multi-objective BB—BC for environmental/economic dispatch
The Combined Economic and Emission Dispatch (CEED) problem where objective
function is highly non-linear, non-differentiable and may have multiple local minima.
Therefore, classical optimization methods may not converge or get trapped to any local
minima. In this case presents a BB-BC method to solve the combined economic and
emission dispatch (CEED), three generator test system was used for testing and validation
purposes, the preference of the BB-BC is compared with other heuristic methods. The
results show, clearly, that the proposed method gives better optimal solution as compared
to the other methods.

During the simulation, the following parameters in the BB-BC algorithms methods
are used :

The number of generation is 100 iterations and size of population 50 individuals
(candidates),

The individual having minimum cost value is chosen for Big-Crunch phase,

New population (Big Bang phase) is generated by using normal distribution

principle.

The proposed BB-BC algorithm is tested on three generator test system whose data
are given below [132], The values of fuel cost and emission coefficients are taken from
reference [133] and are given in appendix.3. The system demand is 850 [MW] in all
simulations

The system transmission losses is calculated using a simplified loss expression:

P, =0.00003P;, +0.00009P2, +0.000122;, MW

Table V.11 : Solutions of minimum fuel cost.

Evolutionary BB_BC Tabu Search NSGA-II
Algorithms [133] [132]

P; [IMW] 4345152 435.69 436.366

P, IMW] 300.7308 298.828 298.187

P; IMW] 130.6044 131.28 131.228
Losses [MW] 15.8505 15.798 15.781

Fuel cost [$/h] 8344.5952 8344.598 8344.606
SO, Emission [Kg/h] 9.02261 9.02146 9.02083
NO, Emission [Kg/h] 0.09871 0.09870 0.09866
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In this study, a developed algorithm has been applied for bi-objective fuel cost , SO:

emission dispatch and NO: emission dispatch. The results for best fuel cost, best SO:

emission and NO. emission dispatch are summarized in tables V.11 to V.I13.

Correspondingly, the convergence for optimized objective functions are shown in figures

V.20 to V.22, respectively.

Table V.12 : Solutions of minimum SO2 Emission.

Evolutionary BB _BC Tabu Search  NSGA-II
Algorithms [133] [132]
P; IMW] 552.7414 549.247 541.308
P, [ MW] 219.0790 234.582 223.249
P; [ MW] 92.6958 81.893 99919
Losses [MW] 14.5164 15.722 14476
Fuel cost [$/h] 8397.023 8403.485 8387.518
SO; Emission [Kg/h] 8.965936 8.874 8.96655
NO, Emission [Kg/h] 0.09684 0.09740 0.09637

Table V.13 : Solutions of minimum NOx Emission

Evolutionary BB_BC Tabu Search  NSGA-II
Algorithms [133] [132]
P; IMW] 508.291 502914 505.810
P, [ MW] 250.600 254.294 252951
P; [IMW] 105.854 108.592 106.023
Losses [MW] 14.747 15.8 14.784
Fuel cost [$/h] 8364.953 8371.143 8363.627
SO, Emission [Kg/h]  8.965936 8.874 8.96655
NO, Emission [Kg/h] 0.09592 0.0958 0.09593
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Figure V.22 : Convergence characteristic of minimum NO, Emission.

The figures V.20 to V.22 show the minimum fuel cost, SO, Emission and NOx
Emission convergence of BB-BC algorithm for various numbers of generations. It was
clearly shown that there is no great change in the fuel cost function value after 100
generations.

The best compromise solution selected using BB-BC algorithm is shown in table

V.14.

Table V.14 : Best compromise solution.

Evolutionary BB-BC
Algorithms
P; IMW] 442.893
P, MW] 305.503
P; [IMW] 117.546
Losses [MW] 15.94
Fuel cost [$/h] 8345.813

SO, Emission [Kg/h] 9.01602
NO, Emission [Kg/h] 0.09776
Cost total ($/h) 25035.140

The simulation results in the test system demonstrate the feasibility and effectiveness
of the proposed method BB-BC in minimizing the operating cost of the generators. It is
useful to compare the BB-BC technique to other methods such as tabu search [133] and
NSGA-II [132] for obtaining and demonstrating high quality solution and validating our

results.
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V.5. ABC optimization for economic dispatch with valve point effect :

In this section we presents the well-known power system ED problem solution
considering valve-point effect by a new optimization algorithm called artificial bee
colony (ABC). The proposed approach has been applied to various test systems with
incremental fuel cost function, taking into account the valve-point effects. The results
show that the proposed approach is efficient and robustness when compared with other
optimization algorithms reported in literature.

In order to verify the feasibility and efficiency of the proposed algorithm, three tests

were conducted for solving ED problem with valve-point effects, which are 3, 13 and 40
unit systems ignoring the transmission loss, including valve-point loading.

The algorithm of this method was programmed in MATLAB 2011Ra environment
and run on a PC with Intel core i3 1.90. GHZ PC and 4 GB of RAM.

V.5.1. Test system 1: small system (3-unit system) :

This test case study considering three thermal units of generation with effects of
valve-point is given in appendix. 4 (A.7) [134]. In this case, the load demand expected to
be determined was Pp= 850 MW.

Table V.15 : Results obtained by proposed method for test system 1.

Units Proposed ABC
1 power output/MW 300.2656

2 power output/MW 149.7344

3 power output/MW 400.0000
Total power output/MW 850.000
Total cost/($-h™") 8234.07245

Table V.16 : Comparison of proposed method for test system 1.

Method P/MW  Py/MW  PyMW  Py/MW  Cost/($-h)
GA [134] 398700  50.100  399.600 848400  8222.07
EP [134] 300264  149.736  400.000  850.000  8234.07
EP-SQP [134] 300267  149.733  400.000  850.000  8234.07
PSO [134] 300268  149.732  400.000  850.000  8234.07
PSO-SQP[134] 300267  149.733  400.000  850.000  8234.07
GAB [135] — — — — 8234.08
GAF [135] — — — — 8234.07
CEP [135] — — — — 8234.07
FEP [135] — — — — 8234.07
MFEP [135] — — — — 8234.08
IFEP [135] — — — — 8234.07
PS [136] 3002663 149.7331 399.9996 849.9990  8234.05
GSA [137] 3002102 149.7953 399.9958  850.0013 8234.1

Proposed ABC 300.2656  149.7344  400.0000  850.000  8234.07245
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The simulation parameters for the proposed algorithm are: colony size (employed
bees + onlooker bees) = 20, food sources = 10, limit=100, and max iterations=500.

The results obtained for this case study are listed in table V.15, which shows that the
ABC algorithm has approximately good solution for the power demand of 850 MW. The
best fuel cost result obtained from the proposed ABC algorithm and other optimization
algorithms are compared in table V.16. From table V.16 it is seen clearly that the GA and
PS approaches did not meet the load demand.

A convergence characteristic of the ABC algorithm for the three generator systems
shown in Figs V.23 and V.24 shows the distribution of the generation cost of the best

solution for each run in the test system of 3 units.

8242

8500
A
8241 'h‘
8450 - —A— Fuel Cost
= 8240 Average cost ”
8400 % 8239 Worst cost
§ Best cost ’ \ I \
= 8238
8350 2 [
§ 8237 ’ \ , \
o
8300 % 8236 ’ \ l \
8 a3 I I |
8250
=== 823 ADAAAADAANDAA A A A AR o]
8200 ' : : ' | : : : : :
0 100 200 300 400 500 8233 5 10 15 20 25 0
iterations Trails
Figure V.23 : Convergence offitness value with Figure V.24 : Distribution of objective
valve-point effects for load demand 8§50 MW, function value for 30 trails.

V.5.2. Test system 2: 13-unit system :

This test case study considering the thirteen thermal units of generation with effects
of valve-point is given in appendix. 4 (A.8) [138, 135].

The complexity and nonlinearity to solution procedure is increased. The required
load demands to be met by all the thirteen generating units are 1800 and 2520 MW.

The results obtained for this case study are given in tables V.17 and V.18, which
show that the simulation results obtained by the ABC algorithm for the best solution for
power demand of 1800 and 2520 MW respectively.

Simulation parameters: colony size = 200, food sources = 100, limit=100, and max

iterations=1000.
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The best fuel cost result obtained from the proposed ABC algorithm and other
optimization algorithms are compared in tables V.19 and V.20 for the load demand of
1800 and 2520 MW respectively. It appears that the proposed algorithm performs better
as the problem becomes larger and more complex. Figs. V.25 and V.27 show the
convergence characteristic curves of the best case with valve point effect for the load

demand of 1800 and 2520 MW respectively.

Table V.17 : Results obtained by proposed method for test system 2 (1800 MW).

Units Proposed ABC  Units Proposed ABC
1 power output/MW 628.2772 9 power output/MW 109.8263

2 power output/MW 148.8823 10 power output/MW 40.0000

3 power output/MW 223.6160 11 power output/MW 40.0000

4 power output/MW 60.0000 12 power output/MW 55.0000

5 power output/MW 109.8531 13 power output/MW 55.0000

6 power output/MW 109.8395 Total power output/MW 1800.0099

7 power output/MW 109.8605 Total cost/($-h™") 17962.4279
8 power output/MW 109.8550

Table V.18 : Results obtained by proposed method for test case 2 (2520 MW).

Units Proposed Units Proposed GSA
GSA

1 power output/MW 6283119 9 power output/MW 159.7309

2 power output/MW 298.9825 10 power output/MW 772108

3 power output/MW 295.7710 11 power output/MW 77.0372

4 power output/MW 159.7329 12 power output/MW 92.2275

5 power output/MW 159.7318 13 power output/MW 92.0833

6 power output/MW 159.7293 Total power output/MW 2520.0092

7 power output/MW 159.7324 Total cost/($-h™") 24166.2199

8 power output/MW 159.7277

Table V.19 : Comparison of proposed method for test system 2 (1800 MW).

Method Total Method Total

cost/($-h ™) cost/($-h™)
CEP [135] 18048.21 UHGA [140] 17964 .81
PSO [134] 18030.72 QPSO [141] 17964
MFEP [135] 18028.09 IGA_MU [135] 17963 .98
FEP [135] 18018.00 ST-HDE [115] 17963.89
IFEP [135] 17994 .07 HGA [142] 17963.83
EP-SQP [134] 17991.03 HQPSO(5) [134] 17963.9571
HDE [115] 17975.73 DE [143] 17963.83
CGA-MU [139] 17975 .34 GSA [137] 17960.3684
PSO-SQP [134] 17969.93 Proposed ABC 17962.4279
PS [136] 17969.17
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Table V.20 : Comparison of proposed method for test case 2 (2520 MW).

Method Total cost/($-h ") | Method Total cost/($-h™")
SA[134] 24970.91 IGAMU [144] 24169.979
GA [134] 24398.23 HGA [142] 24169.92
GA-SA[134] 24275.71 EDSA[135] 24169.92
EP-SQP [134] 24266 .44 DE [143] 241699177
PSO-SQP[134] 24261.05 GSA [137] 24164.251357
UHGA [140] 24172.25 Proposed 24166.2199
GA-MU [144] 24170.755

Figures V.26 to V.28 shows the distribution of the generation cost of the best

solution value for 30 trails for the load demand of 1800 and 2520 MW respectively.
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Figure V.25 : Convergence of fitness value with
valve-point effects for load demand 1800 MW.
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Figure V.27 : Convergence of fitness value with
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Figure V.28 : Distribution of objective function
value for 30 trails.

V.5.3. Test system 3: large system (40-unit system)

This test system consists of 40 generators with valve-point loading effects and has a total

load demand of 10500 MW. The input data are given in ref. [135]. The result obtained
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from the proposed ABC algorithm has been compared with NPSO-LRS [145], MDE
[146], and other methods. The best solutions are tabulated in table V.21 and the
performance parameters are compared in table V.22. A convergence characteristic of the
40-generator systems in case of the ABC algorithm is demonstrated in figs. V.29 and
V.30 shows the distribution of the generation cost of the best solution for each run in the
test system of 40-units.

Simulation parameters: colony size (employed bees + onlooker bees) = 200, food

sources = 100, 1imit=100, and max iterations=1000.

Table V.21 : Best power output for 40-generator system (Load=10500 MW)

Generator power output ABC NPSO_LRS[145] NPSO[145] MDE[146] CBPSO-RVM[147] FAPSO-NM[148]
Pyg/MW 110.7944 113.9761 113.9891 110.831 114 111.38
Pyp/MW 110.7913 113.9986 113.6334 110.815 114 110.93
Py/MW 97.4473 97.4241 97.55 97.399 97.4859 97.41
Pu/MW 179.7417 179.7327 180.0059 179.734 179.7331 179.33
Pys/MW 87.8268 89.6511 97 87.808 97 89.22
Py/MW 139.9897 105.4044 140 140 140 140
Pg/MW 259.5761 259.7502 300 259.6 300 259.62
Py/MW 284.5962 288.4534 300 284.604 300 284.66
Po/MW 284.5294 284.646 284.5797 284.601 286.0079 284.66
Pgod/MW 130.0033 204.812 130.0517 130 130 130
P /MW 168.7903 168.8311 243.7131 168.799 9% 168.82
Py /MW 94.0010 9% 169.0104 168.799 9% 168.82
Pys/MW 215.4183 214.7663 125 214.759 214.7598 214.75
Pyd/MW 394.2843 394.2852 393.9662 394.28 304.5196 394.28
Pys’/MW 394.2274 304.5187 304.7586 394.28 394.2794 304.54
Pyd/MW 394.1741 394.2811 304.512 304.519 394.2794 3943
Pyr/MW 489.2802 489.2807 489.6024 489.279 489.2794 489.29
Pa/MW 489.2863 489.2832 489.6087 489.28 489.2794 489.29
Pyo/MW 511.2606 511.2845 511.7903 511.28 511.2794 511.28
Ppd/MW 511.2471 511.3049 511.2624 511.279 511.2794 511.29
P /MW 523.3126 523.2916 523.3274 523.279 523.2796 523.33
Pp2/MW 523.2619 523.2853 523.2196 523.28 523.2794 523.48
Pps/MW 523.2069 523.2797 523.4707 523.28 523.2797 523.33
Ppd/MW 523.2790 523.2994 523.0661 523.28 523.2802 523.33
Pps’MW 523.2828 523.2865 523.3978 523.281 523.2795 523.33
PpdMW 523.2828 523.2936 523.2897 523.279 523.2794 523.33
Ppi/MW 10.0035 10 10.0208 10 10 10
Pos/MW 10.0601 10.0001 10.0927 10 10 10
Pod/MW 10.0063 10 10.0621 10 10 10
Pgd/MW 88.0050 89.0139 88.9456 92.645 97 88.7
Pg /MW 189.8676 190 189.9951 190 190 190
Pgr/MW 189.9970 190 190 190 190 190
Pgs/MW 179.4734 190 190 189.999 190 190
Pgd/MW 164.8527 199.9998 165.9825 164.831 200 165
Pus’/MW 164.8280 165.1397 172.4153 164.802 166.8603 166
Pud/MW 164.8093 172.0275 191.2978 164.805 200 165
Pgi/MW 109.9733 110 109.9893 109.999 110 110
Pu/MW 109.9999 110 109.9521 109.999 110 110
Pgo/MW 109.9544 93.0962 109.8733 109.999 110 110
Pud/MW 511.2777 511.2996 511.5671 511.278 511.2794 5113
Total cost/($-h™") 121479.6467 121664.43 12170473  121414.79 121555.32 121418.3
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Table V.22 : Comparison of results case 2 load=10500 MW.

Method Minimum Mean Maximum Mean
cost/($-h™) cost/($-h™")  cost/($-h™) time/s
CEP [135] 123488.29 124793.5 126902.9 1956.9
FEP [135] 122679.71 124119.4 127245.6 1039.1
MFEP [135] 122647.57 123489.7 124356.5 2196.1
IFEP [135] 122624.35 123382.0 125740.6 1167.3
NPSO-LRS [145] 121664.43 122209.31 122981.59 19.8
MDE [146] 121414.79 121418.44 121466.04 -
GA [146] 121996.40 123807.97 122919.77 320.31
CBPSO-RVM[147] 121555.32 122281.14 123094.98 —
PS [29] 121415.14 122332.7 125486.3 42.98
FAPSO-NM [148] 121418.3 121418.80 121419.8 40
EP-SQP[134] 122323.97 122379.6 — 997.73
PSO [134] 123930.45 124155 — 933.39
PSO-SQP [134] 122094.67 122245.3 — 733.97
MPSO[149] 122252.27 — — —
ESO[150] 122122.16 122524.1 123143.1 —
DEC(2)-SQP(1) [138] 121741.98 122295.1 122839.3 14.26
TM[151] 122477.78 123078.2 124693.8 94.28
APSO [152] 121663.52 122153.67 122912.39 5.05
TS [153] 122288.38 122590.89 122424.81 238.35
ACO [153] 121811.37 121930.58 122048.06 92.54
ABC 121479.6467 12198424  122137.42 16.52
1218 10’ ; . . ‘ :
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1.2175 Maxi — — ~Mean cost ||
_ cost / \
5 1217
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Figure V.29 : Convergence of fitness value with

: Figure V.30 : Distribution ofobjective function
valve-point effects for load demand 2520 MW.

value for 30 trails.

The comparison confirms the effectiveness, stable convergence characteristic, good
computation efficiency and superiority of the proposed ABC algorithm over the other
techniques in terms of solution quality.

However good choice of the number of iterations, population size, employed and
unemployed bees results in fast computation. The ABC can be modified using operators
of fast computational algorithms to get a hybrid fast computational ABC. The simulation

results reveal the superiority of the proposed technique in solving the DED problem with
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valve point effects. Therefore, this approach could also be extended to other optimization

and control problems of power systems.

V.6. A hybrid GA-PS method to Solve the EDP :

In his study we presents a new approach based on a hybrid algorithm consisting of
genetic algorithm (GA) and pattern search (PS) techniques for solving the economic load
dispatch (ELD) problem. The objective is to minimize the nonlinear function, which is
the total fuel cost of thermal generating units, subject to the usual constraints. GA is the
main optimizer of the algorithm, whereas PS are used to fine tune the results of GA to
increase confidence in the solution. For illustrative purposes, the algorithm has been
applied to various test systems to assess its effectiveness. Furthermore, convergence
characteristics and robustness of the proposed method have been explored through
comparison with results reported in literature. The outcome is very encouraging and
suggests that the hybrid GA-PS algorithm is very efficient in solving power system
economic dispatch problem.

The main objective is to introduce a hybrid method that combines the GA and PS -
referred to as the hybrid GA-PS method- in the context of power system economic
dispatch problem. The proposed hybrid method has eliminated the need to provide a
suitable starting point for PS, this feature led to the reduction of total execution time of
the algorithm when compared to other reported methods, a the hybrid GA—PS method is
presented and used to solve the ELD problem under some equality and inequality
constraints, an application was performed on the IEEE 30 bus and 6 generators test
system. Simulation results confirm the advantage of computation rapidity and solution
accuracy.

The obtained results using hybrid GA—PS algorithm OPF are given in tables V.23.

The parameters of GA : the number of generation is 100 iterations and population
size is 30 invidious with probability of crossover P, = 0.9 and mutation P,, = 0.03.

Fig. V.31 shows the cost convergence of hybrid GA—PS algorithm for various
numbers of generations. It was clearly shown that there is no rapid change in the fuel cost
function value after 50 generations, clearly that the solution is converged to a high quality

solution at the early iterations (25 iterations).
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Figure V.31 : Convergence of PS for Figure V.32 : Convergence of PS mesh
the IEEE 30 bus system. size for the IEEE 30 bus system.

The minimize cost and power loss obtained by the proposed algorithm is less than

value reported in [128-129].
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Figure V.33 : Objective function value for 50 different starting point.

Table V.23 : Comparison of the PSO-OPF with different evolutionary methods of optimization
viewpoint cost, losses and times of convergence.

IEP EP-OPF SADE-ALM PS GA-PS

[128] [128] [129]
P, [MW] 176.2358  173.8262 176.1522 175.7276 75.6627
Py [MW] 49.0093 49.998 48.8391 48.6812 48.6413
P, [MW] 215023 21.386 21.5144 21.4282 21.4222
Py [MW] 218115 22.63 22.1299 22.8313 22.6219
Py [MW] 12.3387 12.928 12.2435 12.0667 12.3806
Py 3 [MW] 12.0129 12.00 12.0000 12.0000 12.0000
Power Loss [MW] 9.5105 9.3683 9.4791 9.3349 9.3286

Generation cost [$/hr] 802.465 802.5557 802.404 802.0150  802.0138
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Fig. V.32 depicts the mesh size throughout the convergence process. It is apparent
form the figure that the mesh size decreases until the algorithm terminates, in this case at
mesh size 1.8512e-004 which is more that the giving as stopping criteria, thus indicating
that this particular run did not terminate using the mesh size tolerance. Fig. V.33
illustrates the sensitivity of PS where a hundred solutions were obtained by PS with
different initial values. The optimal solution has been reached a number of times for
initial points around run number 50.

The GA-PS technique has overcome an important drawback of the PS methods that
is the need to supply a suitable starting point, this shortcoming of the PS methods was
highlighted in the previous work of the authors as it makes any optimization method
relying on a good choice of the initial point possibly more susceptible to getting trapped
in local minima, although the much improved speed of computation allows for additional
searches to be made to increase the confidence in the solution. The hybrid GA-PS
algorithm, on the other hand, does not require the user to specify the starting point as it is
generated automatically for the PS stage by the initial GA phase. Moreover, the
performance of the proposed hybrid method improves with the increase of size and
complexity of the system. Overall, the proposed algorithm has been shown to perform

extremely well for solving economic dispatch problems.

V.7. A HBB-BC optimization algorithm for solving the Different EDP :
In this section, we applied a Hybrid Big Bang-Big Crunch (HBB-BC) optimization
algorithm technique for solving the different economic load dispatch (ELD) problems in
power systems. Many nonlinear characteristics of the generator, such as ramp rate limits,
prohibited operating zone, and non-smooth cost functions are considered using the
proposed method in practical generator operation. The feasibility of the proposed method
is demonstrated for three different systems, and it is compared with Big Bang-Big
Crunch (BB-BC) method and other optimization methods. The experimental results show
that the proposed HBB-BC method was indeed capable of obtaining higher quality
solutions efficiently in ELD problems.

A Hybrid Big Bang-Big Crunch (HBB-BC) Optimization method has been

employed to solve economic dispatch problem. The HBB-BC method consists of two
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phases: a Big Bang phase where candidate solutions are randomly distributed over the
search space, and a Big Crunch phase working as a convergence operator where the
center of mass is generated. Then new solutions are created by using the center of mass to
be used as the next Big Bang [154] .These successive phases are carried repeatedly until a
stopping criterion has been met. This algorithm not only considers the center of mass as
the average point in the beginning of each Big Bang ,but also similar to Particle Swarm
Optimization-based approaches [6], utilizes the best position of each particle and the best
visited position of all particles. As a result because of increasing the exploration of the
algorithm, the performance of the BB-BC approach is improved [154].

The proposed approach has been applied to various test systems, and the results show
that performance of the proposed approach reveal the efficiently and robustness when
with the classical BB-BC method and other optimization algorithms reported in literature

in the solution quality and computation efficiency.

V.7.1. Applying the HBB-BC to the ED problem :

In this section the proposed algorithm is applied to solve the economic dispatch problem.

To apply the HBB-BC, the following steps have to be taken [155].

Step.1. Define the input data
In this step, the input data including the cost coefficients of the generators, output
generator constraints, transmission loss matrix coefficients and loads, the number of
iterations (Itery,y), the size of the population (candidates) and the adjustable parameters
o, o, and a;.

Step.2. Generate the initial population.
Initialize randomly the individuals of the population according to the limit of each unit
including individual dimensions. These initial individuals must be feasible candidate
solutions that satisfy the practical operation constraints.

Step.3. To each individual Pg of the population, employ the B-coefficient loss formula to
calculate the transmission loss P;.

Step.4. Calculate the evaluation value (fitness) of each individual Pg; in the population using the

evaluation function given by (I1.2) or (I1.16).
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Step.5. Compare each individual’s evaluation value with it's Pg”’e'” is the best fitness of the

gbest -

particle up and Pg ** is the best fitness among all candidates and find the center of mass

P, according to (IV.10).
Step.6. Calculate new candidates using eq.(IV.17)
P, (k+1) = a,.Py (k) + (- a).(a, Py (k) + (1= a,).PE™ (k) + &3 (Pyy e = Pog s )-rand | k
(V.2)

Where i=1, 2, ...,n,d=1,2, ... m

Where # is the population size, m is the number of units, Py yaxand Py, are parameter

upper and lower limits, k£ number of iterations and o, ®, and o, is the adjustable

parameters.

Step.7. 1f the number of iterations reaches the maximum, then go to Step 8. Otherwise, go to Step

3.

gbest

Step.8. The individual that generates the latest Pg®™ is the optimal generation power of each

unit with the minimum total generation cost.

V.7.2. Simulation Results and Discussion :
The proposed HBB-BC algorithm has been applied to solve the ELD problem on three
different test cases for verifying its feasibility. which are: a 6-generator system and a 15-
generator system with quadratic cost function and transmission loss, a 40-generator
system generators with valve-point loading effects, and a comparison with Big Bang-Big
Crunch (BB-BC) method and other optimization methods.

In these examples, the software is implemented in MATLAB 2011Ra environment
and run on a PC with Intel core i3 1.90. GHZ PC and 4 GB of RAM.

According to simulation, the following parameters in the HBB-BC algorithms
methods are used:

-The number of generations is 100 and the population size is 100 individuals
(candidates),
- The individual having minimum cost value is chosen for Big-Crunch phase,

- Take the adjustable parameters o,=0.3, a, =0.5 anda; =1.3.
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V.7.2.1. Test System 1: Economic Dispatch of the six-unit system considering losses :

In this case, to demonstrate the effectiveness of the proposed method, the HBB-BC are
applied to solve the 6-unit power system, which considers the prohibited operating zones,
ramp rate limits, and transmission network losses. The input data have been adopted from
[156]. The load demand is 1263 MW. The simulation results are compared with BB-BC
algorithm and various methods reported in literatures, such as the PSO [156], GA [156],
CPSO [157], AIS [79], MTS [130] and BA [158] Their best solutions are shown in table

V.25 and the performance parameters comparisons are shown in table V.26.
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Figure V.34 : The convergence characteristic of the six-generator systems for different
adjustable parameters to the HBB—BC algorithms.

Table V.25 : Comparison of the best results for a 6-unit system for demand of 1263 MW.

Generator HBB-BC BB-BC GA PSO CPSO AIS [79] MTS BA
Power Output [155] [156] [157] [130] [158]
Py (MW) 441.36 45548 47481 44750 43443 458.29 44937 438.65
Py (MW) 175.68 167.30 178.64 173.32 173.32 168.05 182.25 167.90
Ps (MW) 262.82 271.76 262.21 26347 27447 262.52 254.29 262.82
Py (MW) 134.57 147.69 134.28 139.06 128.06 139.06 143.45 136.77
Py (MW) 169.98 163.49 151.90 16548 17948 178.39 161.97 171.76
Py (MW) 91.16 69.67 74.18 87.13 85.93 69.34 86.02 97.67
Power loss (MW) 12.57 12.41 13.02 12.96 12.69 12.65 14.35 12.57
Total Power(MW) 1275.57 1275.41 1276.02 127596  1275.69 1275.65 127735 127557

Total Cost ($/hr) 15444.26 1544834  15459.0 154500 154460  15448.0 15451.6 154459

Fig. V.34 shows the convergence characteristic of the proposed method for six-

generating unit system for different adjustable parameters. a;, o, and a3 are adjustable
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Chapter V Application of Artificial Intelligence technique to ELD problems

parameters controlling the influence of the global best and local best on the new position
of the candidates, respectively.

Using o;= 1.0 allows an initial search of the full range of values for each design
variable. Fig. V.34 shows the effect of various values for a;, o, and a3 on the
convergence characteristic of the proposed method for six-generating unit system. This
figure shows that 0,=0.3, a,=0.5 and as;=1.3, are suitable values for HBB-BC algorithm.
These parameter values are used for all other examples presented.

For this problem, can make the appropriate choice of the adjustable parameters
codified somewhat, resulting from experimental and observational limits, where;

For the parameters a, its values are ranging between 0.5 and 0.1 for the role they
play in a random distribution on the previous point.

And for the parameters a, it is better to be often 0.5 in order to guarantee the
inclusion of best local and global fifty-fifty where both have an equal chance to influence,

And for as are the largest in terms of field can be identified between 0.5 and 2, where
there is no big difference with one of the values of the field, because it represent the size
of the search space, and decreases with an increase the number of iterations. The best
adjustable parameters are a,;=0.3, 0,=0.5 and a3=1.3, it reaches to the optimum point after

around 92 iterations.

Table V.26 : Performance parameters comparison case 1.

Methods Cost ($/hr) Average Standard

Min. Average. Max. CPU time deviation
(s)

GA [159] 15459.00 15469.00 15469.00 41.58 -

PSO [159] 15450.00 15454.00 15492.00 14.86 -

CPSO [157] 15446.00 15449.00 15490.00 8.13 -

AIS [79] 15448.00 15459.70 15472.00 NA -

MTS [130] 15450.06 15451.17 15453.64 598 0.93

TSA[158] 1544920 15495.82 15632.14 1897 35.10

BA [158] 1544587 15448.83 1545292 5.64 1.56

BB-BC 1544834 15495.16 15532.72 6.12 1.81

HBB-BC 1544426 1544646 15448.89 5.6554 1.52

The best results obtained from HBB-BC and other methods are compared in table
V.25. The results show that the proposed approaches have high solution quality than
others method as depicted.
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Figure V.35 : Convergence characteristic of 6-generator system.

Table V.26 shows the effectiveness in term of the solution quality among 100 trials
of proposed methods. The solutions of the proposed methods higher quality than the rest
methods in term of minimum cost, average cost, maximum cost, computational time and
solution deviation. Fig. V.35 shows the convergence characteristic of the proposed

combined methods.

V.7.2.2. Test System 2: 15 units: Economic dispatch considering Transmission loss :

The system contains 15 thermal units whose characteristics are taken from [131]. The
load demand is 2630 MW. The loss coefficients f matrices are shown in Appendix.
Transmission loss has been considered here. The result obtained from the proposed HBB-
BC been compared with different PSO techniques [130], and different GA [130] methods
and their best solutions are shown in table V.27 and the performance parameters
comparisons are shown in table V.28. The convergence characteristic of the 15-generator

systems in case of HBB-BC algorithm is shown in fig. V.36.
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Figure V.36 : Convergence characteristic Figure V.37 : Distribution of objective
of 15-generator system. function value for 20 trails.
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The fig. V.37 shows distribution the generation cost of the best solution for each run

in the test System 15 units.

Table V.28 : Comparison of HBB-BC performance with other methods.

Methods Fuel Cost ($/hr.) Average
Best cost  Average Worst Standard time (s)
cost cost deviation
SA [130] 32786.40  32869.51  33028.95 112.32 71.25
GA [130] 32779.81 3284121  33041.64 81.22 48.17
TSA[130] 32762.12 32822.84 32942.71 60.59 26.41
PSO [130]  32724.17 3280745 32841.38 21.24 13.25
MTS [130] 32716.87 3276721  32796.15 17.51 3.65
BB-BC 32659.35 3271092  32750.92 18.23 13.14
HBB-BC 32554.61 32566.57 32607.71 12.29 12.65

Table V.27 : Best solution of 15 units system.

Unit power output Methods

SA [130] GA TS [130] PSO MTS BB-BC HBB-BC

[130] [130] [130]

P, (MW) 453.6646 4455619 453.5374 454.7167 453.9922 4549991 450.5573
P, (MW) 377.6091 380.0000 3719761 3762002 379.7434 455.0000 455.0000
P3; (MW) 1203744 129.0605 129.7823 129.5547 130.0000 130.0000 130.0000
Py (MW) 126.2668 129.5250 1293411 129.7083 129.9232 130.0000 130.0000
Ps (MW) 1653048 169.9659 169.5950 1694407 168.0877 227.1366 249.5857
Ps (MW) 459.2455 458.7544 457.9928 458.8153 460.0000 460.0000 457.5472
P; (MW) 422.8619 4179041 426.8879 427.5733 429.2253 465.0000 465.0000
Ps (MW) 126.4025 97.8230 95.1680  67.2834 104.3097 60.0000 60.0000
Py (MW) 544742 542933  76.8439 752673 35.0358  25.0000 25.0000
Py (MW) 149.0879 144.2214 133.5044 1555899 155.8829 160.0000 42.0473
Py (MW) 779594 773002 < 68.3087 799522  79.8994  20.0000 65.4235
P, (MW) 73.9489  77.0371 79.6815  79.8947  79.9037  20.0000 72.3239
P13 (MW) 25.0022  31.1537 283082 252744  25.0220  25.0000 25.0000
P14 (MW) 16.0636 15.0233 17.7661 16.7318 15.2586 15.0000 15.0000
Pis (MW) 150196 33.6125 22.8446 15.1967 15.0796 15.0000 15.0000

Total output (MW)  2663.29 266123 266153  2661.19 266136  2662.13  2657.62
Power loss (MW) 332737 312363 314100 31.1697 313523 321358  27.4849
Total cost ($/h) 3278640 32779.81 32762.12 3272417 32716.87 32659.35 32554.61

V.7.2.3. Test System 3: Large system: 40 units with valve-point loading effects :
A system with 40 generators with valve point loading is used here. The input data are

given in [135]. The load demand is 10500 MW.
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Transmission loss has not been considered here. The result obtained from
proposed HBB-BC method has been compared with NPSO-LRS [145], MDE [146], and
other methods. Their best solutions are shown in table V.28 the performance parameters
comparisons are shown in table V.29. The convergence characteristic of the 40-generator

systems in case of HBB-BC algorithm is shown in fig. V.38.

Table V.28 : Best power output for 40-generator system (Load=10500 MW)

Generator Power HBB-BC BB-BC NPSO_LRS NPSO MDE CBPSO-RVM  FAPSO-NM
Output [145] [145] [146] [147] [148]
Py (MW) 114.00 113.9987 113.9761 113.9891 110.831 114 111.38
Py (MW) 114.00 112.2160 113.9986 113.6334 110.815 114 110.93
Py (MW) 97.4243 97.4545 97.4241 97.55 97.399 97.4859 97.41
Poy (MW) 179.7324 179.2473 179.7327 180.0059 179.734 179.7331 179.33
Pys (MW) 88.6784 96.9995 89.6511 97 87.808 97 89.22
Py (MW) 140.00 140.0000 105.4044 140 140 140 140
Py (MW) 300.00 298.2952 259.7502 300 259.6 300 259.62
Py (MW) 284.5997 285.1021 288.4534 300 284.604 300 284.66
Py (MW) 284.5737 284.5527 284.646 284.5797 284.601 286.0079 284.66
Pg10 (MW) 130.00 130.0000 204.812 130.0517 130 130 130
Pgi1 (MW) 94.00 94.000 168.8311 243.7131 168.799 94 168.82
Pg12 (MW) 94.00 94.000 94 169.0104 168.799 94 168.82
Pgi3 (MW) 214.7623 214.7662 214.7663 125 214.759 214.7598 214.75
Pg14 (MW) 304.5196 304.3154 394.2852 393.9662 394.28 304.5196 394.28
Pgis (MW) 394.2794 394.2604 304.5187 304.7586 394.28 394.2794 304.54
Pg16 (MW) 394.2794 394.2604 394.2811 304.512 304.519 394.2794 394.3
Pg17 (MW) 489.2795 489.2795 489.2807 489.6024 489.279 489.2794 489.29
Pg15 (MW) 489.2795 489.2805 489.2832 489.6087 489.28 489.2794 489.29
P19 (MW) 511.2845 511.3045 511.2845 511.7903 511.28 511.2794 511.28
Pgo (MW) 511.2845 511.3045 511.3049 511.2624 511.279 511.2794 511.29
Py (MW) 523.2196 523.2416 523.2916 523.3274 523.279 523.2796 523.33
Py (MW) 523.2196 523.2446 523.2853 523.2196 523.28 523.2794 523.48
Pyp3 (MW) 523.2196 523.2416 523.2797 523.4707 523.28 523.2797 523.33
P4 (MW) 523.2196 523.2416 523.2994 523.0661 523.28 523.2802 523.33
Pyps (MW) 523.2196 523.2416 523.2865 523.3978 523.281 523.2795 523.33
Pys (MW) 523.2196 523.2416 523.2936 523.2897 523.279 523.2794 523.33
Pyp7 (MW) 10.00 10.00 10 10.0208 10 10 10

Pypg (MW) 10.00 10.00 10.0001 10.0927 10 10 10

Py (MW) 10.00 10.00 10 10.0621 10 10 10

Pgo (MW) 89.3218 86.1458 89.0139 88.9456 92.645 97 88.7
Py (MW) 190.00 190.00 190 189.9951 190 190 190
Py, (MW) 190.00 190.00 190 190 190 190 190
P33 (MW) 190.00 190.00 190 190 189.999 190 190
P4 (MW) 200.00 198.6117 199.9998 165.9825 164.831 200 165
Pgs (MW) 200.00 199.2348 165.1397 172.4153 164.802 166.8603 166
Pgs (MW) 200.00 199.9969 172.0275 191.2978 164.805 200 165
Pg7 (MW) 110.00 110.00 110 109.9893 109.999 110 110
Pgg (MW) 110.00 110.00 110 109.9521 109.999 110 110
Pgo (MW) 110.00 110.00 93.0962 109.8733 109.999 110 110
Pgso (MW) 511.2845 511.2634 511.2996 511.5671 511.278 511.2794 511.3
Total Cost ($/hr) 121471.72 121523.57 121664.43 121704.73 121414.79 121555.32 121418.3

The proposed HBB-BC is efficiently and effectively implemented to solve the

different economic load dispatch (ELD) problems, the HBB-BC optimization has several
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advantages over other evolutionary methods: Most significantly, a numerically simple

algorithm and heuristic methods with relatively few control parameters; and the ability to

solve problems that depend on large number of variables.

Total Cost ($/hr)

Figure V.38 : Convergence characteristic of 40-generator system.
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Table V.29 : Comparison of results case 2 load=10500 MW.

30 40

50 60
N° of generations

70 80

90 100

Method Minimum Mean cost Maximum Mean
cost ($/h) ($/h) cost ($/h) time (sec)

CEP [135] 123488.29 124793.5 126902.9 1956.9
FEP [135] 122679.71 124119.4 127245.6 1039.1
MFEP [135] 122647.57 123489.7 124356.5 2196.1
IFEP [135] 122624.35 123382.0 125740.6 1167.3
NPSO-LRS [145] 121664.43 122209.31 122981.59 19.8
MDE [146] 121414.79 121418.44 121466.04 -
GA [146] 121996.40 123807.97 122919.77 320.31
CBPSO-RVM[147] 121555.32 122281.14 123094.98 -
PS [136] 121415.14 122332.7 125486.3 42.98
FAPSO-NM [148] 121418.3 121418.80 121419.8 40
EP-SQP[134] 122323.97 122379.6 - 997.73
PSO [134] 123930.45 124155 - 933.39
PSO-SQP [134] 122094.67 122245.3 - 733.97
MPSO[149] 122252.27 - - -
ESO[138] 122122.16 122524.1 123143.1 -
DEC(2)-SQP(1)[138]  121741.98  122295.1 122839.3 14.26
TM [151] 122477.78 123078.2 124693.8 94.28
APSO [146] 121663.52 122153.67 122912.39 5.05
TS [153] 122288.38 122590.89 12242481 238.35
ACO [153] 121811.37 121930.58 122048.06 92.54
BB-BC 121523.57 122026.09 122908.85 38.63
HBB-BC 121471.72 121984.24 122137.42 16.52
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V.7.2.4. Test System 4: IEEE 30 standard Environmental/economic power dispatch :
The proposed algorithm is tested on standard IEEE 30-bus test for solving the CEED
problem, the values of fuel cost, emission coefficients and The loss coefficients S

matrices are given in appendix.5.

Table V.30 : Solutions of minimum fuel cost in IEEE 30 bus system (case 2).

Objectives ED
Method MOPSO SPEA [160] LP HBB-BC
[159] [161]
Generation cost ($/h) 608.10 607.807 606.314 605.624
Emission (kg/h) 0.22276 022015 0.22330 0.2204
loss (MW) 3.05 3.38 2.60 242
Pl 0.1689 0.1086 0.1500 0.1280
P2 0.2738 0.3056 0.3000 0.2931
P3 0.6026 0.5818 0.5500 0.5649
P4 0.9349 0.9846 1.0500 0.9945
P5 0.4923 0.5288 0.4600 0.5294
P6 0.392 0.3584 0.3500 0.3483
CPU time (s) 9.85 1422 - 8.55

The result obtained from proposed method has been compared with other methods

and their best solutions in tables V.30, V.31 and V.32. A convergence characteristic of
the IEEE 30-bus test system in is shown in figs. V.39, V.40 and V.41.
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Figure V.39 : Convergence characteristic of minimum fuel cost in IEEE 30 bus system for 10 run.
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Table V.31 : Solutions of minimum Emission in IEEE 30 bus system.

Objectives EED
Method MOPS SPEA LP HBB-BC
[159] [160] [161]
Generation cost (§/h) 64427  642.603  639.60 646.518
Emission (kg/h) 0.19357  0.19422  0.1942 0.19419

loss (MW) 3.05 3.05 1.60 3.54
Pl 03832 04043  0.4000 04132
P2 05152 04525  0.4500 0.4595
P3 05616 05525  0.5500 0.5345
P4 03994 04079  0.4000 0.3879
Ps 05248  0.5468  0.5500 0.5551
P6 04803  0.5005  0.5000 0.5191

CPU time (s) 9.85 1422 - 08.25

CEED solution for the IEEE 30-bus test system is solved using HBB-BC algorithms.
tables V.30, V.31 and V.32 summarize all the results for best fuel cost, best emission and
combined economic and emission dispatch respectively. Convergence for best fuel cost,
best emission and fuel cost and emission objective functions when optimized individually
are shown in figs. V.39, V.40 and V.41 respectively.

From this tables, it can be deduced that the HBB-BC is equally capable of finding
the best solution for each objective when two conflicting objectives are considered
simultaneously.
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Figure V.40 : Convergence characteristic of minimum Emission in IEEE 30 bus system for 10 run.
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Table V.32: Solutions combined economic and emission dispatch in IEEE 30 bus system.

Objectives CEED
Method MOPS SPEA NSGA HBB-BC
[159] [160] [161]
Fuel cost ($/h) 614.81 616.069 617.80 623.763
Emission (kg/h) 0.20216 020118 0.2002 0.19705
Cost total ($/h) 122129 1219.60 121840 12145
loss (MW) 3.04 9.299 295 2.85
Pl 0.2106 0.2594 0.2935 0.2998
P2 0.3854 0.3848 0.3645 04213
P3 0.5620 0.5645 0.5833 0.5480
P4 0.7260 0.7030 0.6763 0.5909
P5 0.5247 0.5431 0.5383 0.5393
P6 04558 04091 0.4076 0.4632
CPU time (s) 10.27 1422 0.727 08.65

Solutions combined economic and emission dispatch for 10 runs
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Figure V.41 : Convergence characteristic of minimum Emission in IEEE 30 bus system for 10 run.
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Figure V.43 : Pareto-optimal front for fuel cost and emissions.
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Considering two objective functions: fuel cost and emission simultaneously,
simulations results for the Pareto-optimal front were obtained as shown in the fig. V.43.

The comparisons of computational time of the methods in case combined economic
and emission dispatch are shown in table V.32. Clearly, the computational time of the
NSGA algorithm method is lowest in comparison followed in the second rank HBB-BC
to those of the other methods.

The comparison of numerical results of combined economic and emission dispatch
problem (CEED) using the HBB-BC method with the results obtained by other heuristic
approaches are performed to demonstrate the robustness of the present algorithm.

The results show that the optimal dispatch solutions determined by HBB-BC lead to
lower active power loss then that found by other heuristic methods, which confirms that
the HBB-BC is well capable of determining the global or near global optimum dispatch

solution.

V.8. Conclusion :

In this chapter, a different metaheuristics algorithms (GA, PSO, PS, BB-BC, ABC)
were implemented for solving different types of the economic dispatch problems, also we
propose a new hybrid algorithm (GA-PS, PSO-PS, HBB-BC) for solving the EDP, the
proposed methods are tested and validated on various electrical test systems and cases
taking into different constraints, the results show that the optimal dispatch solutions
determined, which confirms that the different algorithms are well capable of determining
the global or near global optimum dispatch solution. The comparison of numerical results
with those that reported in the literature recently is performed to demonstrate the
robustness of the proposed techniques and confirmed its potential for solving practical
economic dispatch problems.

The comparative study between the solvers is carried out in terms of absolute cost,
computational complexity, and fitness value achieved by the GA, PSO, PS, BB-BC,
ABC, GA-PS, PSO-PS and HBB-BC algorithms, the hybrid algorithms are found to be
better than that of global and local search techniques applied independently for all

variants of EDPs.
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CHAPTER VI
Thermal Unit Commitment solution applying

Genetic Algorithms (GAs)

VI.1. Introduction :

In this chapter, a genetic algorithm (GA) is proposed to solve thermal unit commitment
(UC) problem. The objective of UC is to determine the optimal generation of the
committed units to meet the load demand and spinning reserve at each time interval, such
that the overall cost of generation is minimized, while satisfying different operational
constraints.

Also, we applied a crossover operator ring crossover for genetic algorithm (RCGA)
to solve the unit commitment (UC) problem, UC is the process of determining which
generators should be operated each day to meet the daily demand of the system.
Economic dispatch and unit commitment are widely used for the real time operation of
power system. Many constraints can be placed on the unit commitment problem such as
spinning reserve constraint, thermal unit constraint and other constraints. The results
obtained show that, with the application of the proposed method (RCGA) to the unit
commitment problem, better convergences and solutions are obtained than with the

application of conventional genetic algorithm.

VI.2. A genetic algorithm to solve thermal UC problem :

The optimum economic operation and planning of electric power generation systems is
an important issue in electric power industry. Unit commitment (UC) [162] plays a vital
role in generation resource management. It is an optimization problem of determining the
schedule of generating units within a power system in or-der to minimize fuel cost while
satisfying a number of constraints such as unit capacity limit, ramp rate limits, spinning
reserve constraints, minimum up time and down time constraints. However, UC problem

not only minimizes the fuel cost (production costs) but also minimize the transition costs
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(start-up/shut-down costs). The spinning reserve constraint used in UC, describes the
reliability requirement by taking the generator outages into consideration [163].

Well known traditional techniques such as integer programming (IP) [31, 164],
dynamic programming (DP) [165-166], branch and bound [167], Bender’s

decomposition [168], and Lagrangian relaxation (LR) [169, 170] have been used to solve
the UCP. More recently, metaheuristic approaches have been used such as simulated

annealing (SA) [171], tabu search [172], and genetic algorithms (GA) [58, 173]. Other

problem-specific heuristics can be found in [174-176].

Genetic algorithms (GAs) represent general-purpose search and optimization
technique based on evolutionary ideas of natural selection and genetics [177]. They
simulate natural processes based on principles of Lamarck and Darwin. In 1975, Holland
developed this idea in his book “Adaptation in natural and artificial systems”. He
described how to apply the principles of natural evolution to optimization problems and
built the first GAs. Holland’s theory has been further developed and now GAs standup as
a powerful tool for solving search and optimization problems. GAs are based on the
principle of genetics and evolution [178]. Today, there exists many variations on GAs
and term “genetic algorithm” is used to describe concepts sometimes very far from
Holland’s original idea [179]. The two most commonly employed genetic search
operators are crossover and mutation. Crossover produces offspring by recombining the
information from two parents [177]. Mutation prevents convergence of the population by
flipping a small number of randomly selected bits to continuously introduce variation.
The driving force behind GAs is the unique cooperation between selection, crossover and
mutation operator. A genetic operator is a process used in GAs to maintain genetic
diversity. The most widely used genetic operators are recombination, crossover and
mutation [177].

The main goal of this section is to use the GA algorithm to solve the unit-scheduling
problem, and the Lambda-iteration method is used to solve the economic dispatch
problem. Two systems are presented to investigate the efficiency of the proposed method.
With the proposed method, the total generation cost can be remarkably reduced while

considering various constraints reflecting the practical system.
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VI.2.1. A GA to solve the UC problem :

GA for the solution of UC problem have been earlier proposed by various researchers
[58, 173], most of them differing in the method of representation, decoding and
evaluation. However, earlier approaches do not provide sufficient or any information
regarding the handling of constraints and other objectives. Since a UC problem is
incomplete without the consideration of the minimum up time (MUT) and minimum
down time (MDT) constraints, a detailed methodology for obtaining the complete
solution with constraints is described in this paper [59].

To resolve the UCP using the GA method proposed, the implementation consists of
initialization, cost calculations, elitism, reproduction, crossover, mutation, economic
dispatch (ED) calculations, swap mutation operator and repair operator of the UC
schedules. A flowchart of the algorithm is given in fig. VI.1 [57].

A member of the population consists of a matrix with dimension equal to the number
of generators by the number of scheduling periods. This matrix represents the on/off
status of the generating units. The first step of initialization consist of finding the
cheapest economic dispatches for each hour that meet system demand and a 10%
spinning reserve. A member of the population is then created by randomly choosing one
of the cheapest economic dispatches for each hour [57].

Different steps of UC based GA algorithm is mentioned below:

VI1.2.1.1 Initial Population :

A number of NP initial binary-coded solutions (genotype) are produced at random to
form the initial population. Each population is evaluated, and its fitness value is
calculated from equation (III.3). With the initial population produced and evaluated,
genetic evolution takes place by means of three genetic operators namely Selection,

Crossover and Mutation.

VI1.2.1.2. Roulette wheel parent selection :

After the evolution of the initial randomly generated population the GA begins the
creation of the new generation of solutions. Two genotypes are selected from parent
genotypes with a probability proportional to the genotypes relative fitness within the
population [180].
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VI1.2.1.3. Crossover :
To get the new patterns of genetic strings during the evolution process, crossover

operator: ring crossover is used.

VI1.2.1.4. Mutation :
With a small probability, randomly chosen bits of the offspring genotypes change from

‘0’ to ‘1’ and vice versa [180].

VI1.2.15. Selection :
The entire population, including parent and offspring are arranged in descending order.
The first NP solutions survive and are transcribed along with their elements to form the
basis of the next generation.
The above process is repeated until the given maximum generation count is reached.
In addition, some advanced GA features are also implemented including Elitism,

Tum-off generator mutation, Swap mutation operator and Repair operator [180].

VI1.2.1.6. Elitism :
The best solution of every generation is copied to the next so that the possibility of its

destruction through a genetic operator is eliminated.

Initialization

Generation < Maximum
Generations

Done

Calculate cost of UC Schedule
[

Selection
Elitism
Reproduction
Crossover
Mutation

Swap mutation operator
Repair operator

|
Figure V1.1 : GA flowchart.

114



Chapter VI Thermal UC solution applying GAs

VI1.2.1.7. Swap mutation operator :
Based upon the full load average production cost of the units bits where exchanged for

each scheduled of a genotype with some probability to avoid the local convergence [58].

VI1.2.1.8. Repair operator :
All the individuals of the new population are subjected to a mechanism intended to repair
violations of the constraints of minimum start-up and shut-down times. This process is

only carried out in one randomly selected generating unit [181].

VI1.2. Experimental results :
In this section, the GA is applied to solve UC problems. For implementing GA technique
to solve UC problem, population size of 40 and the maximum number of generation
(iterations) of 300 are taken. Software is developed in MATLAB to solve seven different
UC problems and tested on a Pentium IV, 3-GHz personal computer with 4 GB RAM.
The algorithm is tested in two systems (Small-scale and Large-scale UC problem) and the
results of the proposed method is compared to another GA methods GA [182], GA [60],
GA [59], SGA [180], TLGA [180], FPGA [183], GA [58] and ICGA [184], and
compared with other metaheuristic methods BPSO [60], GA [60], APSO [185], BP
[186], TSGB [186], IPSO [187], and Hybrid PSO-SQP [87]

In all experiments, parameters of GA for experiments were as following: Gaussian
mutation with P,, mutation coefficient of 0.2 and crossover rate P, of 0.9 was used, initial

population NP of size 40 was randomly created and used in experiments.

VI1.2.1. Small-scale UC problem (ten-unit) :

In this case, 10 units system has been tested in order to prove the applicability of the
proposed method for solving the UC problem. The fuel cost data along with generation
constraints of 10 units system and Power demands for 24 h are taken from [60] and also
given in Appendix. 6 (A .11 and A.12, respectively). In the simulation, the reserve is
required to be 5% and 10% of the power demand. The proposed GA approach is applied
to solve the UC problem considering all constraints such as generator constraints, reserve
constraint and minimum up time and minimum down time. Scheduling of the generation
obtained by the proposed GA method for 10 units system is given in table VI.1 for case

with 5% of spinning reserve and in table V1.2 for case with 10% of spinning reserve. To
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show the advantages of the proposed method, we will compare the performance of the
proposal method with other met-heuristic methods in table VI.3 and table V14, also
shows that the average and worst cost produced by GA is least compared to other
methods emphasizing its superiority in terms of robustness; results of table V1.4 also
shows that proposed GA method takes acceptable average computational time (CT) than
other algorithms. Figs. VL2 and VI3 shows the convergence tendency of the best
evaluation value in the population during GA processing for 10 unit system with different

spinning reserve.
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Figure V1.2 : Typical performance of the GA in case with 5% of spinning reserve.

$576 000 T T T
$574 000
$572 000

$570 000

Total Cost

$568 000
$566 000

T —

564 000 ‘ . ! ! !
$ 0 50 100 150 200 250 300

Generation
Figure V1.3 : Typical performance of the GA in case with 10% of spinning reserve.

Table V1.3 : Simulation results of 10 unit system with 5% of spinning reserve.

Methods Best ($) Average ($) Worst ($)
BPSO [60] 565,804 566,992 567,251
GA [60] 570,781 574,280 576,791
APSO [185] 561,586 — -
BP[186] 565,450 - -
TSGB [186] 560,263.92 - —
IPSO [187] 558,114.80 - —
Hybrid PSO-SQP [87] 568,032.30 — -
GA 560,013.87 563,302.10 565,933.22

Sign (—) means that no amount has been reported.
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Table VI.1 : Best individual-Generation schedule and costs obtained by GA for 10 unit system with 5%
of spinning reserve.

Unit Production Transiti Spinning Generation schedule (MW)
Hfu Sl Cost (8) Co‘s)r($) R[:/s[:';/‘ie Unit]  Unit2  Unit3  Unit4  Unit5  Unit6  Unit7  Unit8 Unit9 Unit 10
1 1100000000 13683.12 0 210 455 245 0 0 0 0 0 0 0 0
2 1100000000 14554.49 0 160 455 295 0 0 0 0 0 0 0 0
3 1100100000 16809.44 900 222 455 370 0 0 25 0 0 0 0 0
4 1100100000 18597.66 0 122 455 455 0 0 40 0 0 0 0 0
5 1100100000 19608.53 0 72 455 455 0 0 90 0 0 0 0 0
6 1101100000 21860.28 1120 102 455 455 0 130 60 0 0 0 0 0
7 1101101000 23541.20 520 137 455 455 0 130 85 0 25 0 0 0
8 1101101000 24569.98 0 87 455 455 0 130 135 0 25 0 0 0
9 1111101000 26842.13 1100 117 455 455 130 130 105 0 25 0 0 0
10 1111101100 29807.79 60 72 455 455 130 130 162 0 25 43 0 0
11 1111111001 31253.39 400 102 455 455 130 130 162 80 28 0 0 10
12 1111111011 33286.59 60 107 455 455 130 130 162 80 25 0 53 10
13 1111111000 30057.55 60 152 455 455 130 130 162 33 25 10 0 0
14 1111110000 26588.96 0 112 455 455 130 130 110 20 0 0 0 0
15 1101110000 24318.01 0 82 455 455 0 130 140 20 0 0 0 0
16 1101100000 20895.88 0 152 455 440 0 130 25 0 0 0 0 0
17 1101100000 20020.01 0 202 455 390 0 130 25 0 0 0 0 0
18 1101100000 21860.28 0 102 455 455 0 130 60 0 0 0 0 0
19 1101110000 24318.01 170 82 455 455 0 130 140 20 0 0 0 0
20 1111110110 30164.02 670 122 455 455 130 130 162 48 0 10 10 0
21 1111110000 26588.96 0 112 455 455 130 130 110 20 0 0 0 0
22 1111000000 21879.33 0 70 455 385 130 130 0 0 0 0 0 0
23 1110000000 17795.28 0 140 455 315 130 0 0 0 0 0 0 0
24 1110000000 16052.85 0 240 455 215 130 0 0 0 0 0 0 0
Total 554,953.87 5060 3078 Total generation cost ($): 560,013.8727

Table V1.2 : Best individual-Generation schedule and costs obtained by GA for 10 unit system with 10%
of spinning reserve

Unit Production  Transition  Spinning Generation schedule (MW)
Hour Schedule Cost ($) Cost ($) Reserve - - - - - - - - - -
[MW] Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit 10
1 1100000000 13683.12 0 210 455 245 0 0 0 0 0 0 0 0
2 1100000000 14554.49 0 160 455 295 0 0 0 0 0 0 0 0
3 1100100000 16809.44 900 222 455 370 0 0 25 0 0 0 0 0
4 1100100000 18597.66 0 122 455 455 0 0 40 0 0 0 0 0
5 1101100000 20020.01 560 202 455 390 0 130 25 0 0 0 0 0
6 1111100000 22387.04 1100 232 455 360 130 130 25 0 0 0 0 0
7 1111100000 23261.97 0 182 455 410 130 130 25 0 0 0 0 0
8 1111100000 24150.34 0 132 455 455 130 130 30 0 0 0 0 0
9 1111110001 27331.67 400 167 455 455 130 130 100 20 0 0 0 10
10 1111111001 30086.01 520 152 455 455 130 130 162 33 25 0 0 10
11 1111111011 31944.52 60 157 455 455 130 130 162 73 25 0 100 10
12 111111111 33890.16 60 162 455 455 130 130 162 80 25 43 100 10
13 1111111001 30086.01 0 152 455 455 130 130 162 33 25 0 0 10
14 1111110100 27303.21 30 167 455 455 130 130 100 20 0 10 0 0
15 1111100000 24150.34 0 132 455 455 130 130 30 0 0 0 0 0
16 1111100000 21513.65 0 282 455 310 130 130 25 0 0 0 0 0
17 1111100000 20641.82 0 332 455 260 130 130 25 0 0 0 0 0
18 1111100000 22387.04 0 232 455 360 130 130 25 0 0 0 0 0
19 1111100000 24150.34 0 132 455 455 130 130 30 0 0 0 0 0
20 1111110111 30883.37 350 177 455 455 130 130 162 38 0 10 100 10
21 1111110010 27321.52 0 167 455 455 130 130 100 20 0 0 10 0
22 1101110000 22276.37 0 182 455 455 0 130 40 20 0 0 0 0
23 1100010000 17645.36 0 90 455 425 0 0 0 20 0 0 0 0
24 1100000000 15427.41 0 110 455 345 0 0 0 0 0 0 0 0
Total 560,503.01 3980 4255  Total generation cost ($): 563,478.541239
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Table VI.4 : Comparison of solution quality with other GA methods with 10% of spinning reserve.

Methods Best Average Worst Standard The
generation  generation  generation deviation computation
cost ($) cost ($) cost ($) (%) time (sec.)

GA[182] 565,866 567,329 571,336 0.26 (%) 113
GA [60] 570,781 574,280 576,791 1549.9 (%) 62.29
GA [59] 609,023.69 - - - 73.68
SGAT[180] 565,121 — 622,846 9.27 (%) 462.31
TLGA [180] 56,4426 — 566,182 0.31 (%) 439.313
FPGA [183] 564,094 566,675 569,237 0.33 (%) —

GA [58] 565,825 - - - -
ICGA [184] 566,404 — - - -

GA 564,483.01 567,136.23 569,5750.11 0.42 (%) 112.52

VI1.2.2. Large-scale UC problem (20 units) :

To verify the effectiveness and efficiency of the proposed GA method in solving large-
scale UC problem, the proposed method is applied on 20 unit systems. For 20 units, the
initial 10 units are duplicated and the demand is multiplied by 2. The statistical results

obtained by different algorithms of 20 units test system are shown in table VL.5.
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Figure V1.4 : Convergence characteristic of fuel cost using GA for 20-units based UC problem.

From the simulation results, it is very evident that GA not only has found the highest
quality results among the all algorithms compared. The best UC schedule of the 20-unit
test system on 24-h scheduling horizon with one-hour interval are shown in table VL6.
To illustrate the convergence property of the proposed algorithm, fuel cost values over

300 iterations for 20 units systems are plotted in fig. V1.4.
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Table VL5 : Simulation results of 20-unit system with 10% of spinning reserve.

Methods Best generation Average generation Worst generation
cost ($) cost (%) cost ($)
ICGA [184] - 1,127,244 -
LRGA [188] - 1,122,622 -
GA [58] 1,126,243 - 1,132,059
LR [58] 1,130,660 - -
EP [189] 1,125,494 1,127,257 1,129,793
AG [190] - 1,124,651 -
BCGA [184] 1,130,291 - -
UCC-GA [191] 1,125,516 - -
DPLR [60] 1,128,098 - -
SF [192] 1,125,161 - -
EALR [60] 1,123,297 - -
CR-GA [193] - 1,236,981 -
Proposed 1,126,185 1,127,268 1,1307,64

Table VI.6 : Best UC schedule of the 20-unit test system on 24 h scheduling horizon with 1 hour interval

Hour Generating Unit

1 2 3 4 5 6 78 9 10 11 12 13 14 15 16 17 18 19 20
1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0
2 445 295 0 0 0 0 0 0 0 0 45 295 0 0 0 0 0 0 0 0
3 445 3825 0 0 25 0 0 0 0 0 45 3825 0 0 0 0 0 0 0 0
4 445 4175 130 0 25 0 0 0 0 0 45 4175 0 0 0 0 0 0 0 0
5 445 4025 130 130 25 0 0 0 0 0 45 4025 0 0 0 0 0 0 0 0
6 445 4275 130 130 25 0 0 0 0 0 45 475 0 130 0 20 0 0 0 0
7 445 455 130 130 35 0 0 0 0 0 45 455 0 130 35 20 0 0 0 0
8 445 450 130 130 25 0 0 0 0 0 445 4495 130 130 25 20 0 0 0 0
9 445 455 130 130 95 0 25 0 0 0 45 455 130 130 95 20 25 0 0 0
10 445 455 130 130 162 33 25 10 0 10 445 455 130 130 162 33 25 0 0 0
11 445 455 130 130 162 73 25 10 10 10 445 455 130 130 162 73 25 10 0 0
12 445 455 130 130 162 80 25 43 10 10 445 455 130 130 162 8 25 43 10 10
13 445 455 130 130 162 33 25 0 0 10 445 455 130 130 162 3 25 0 10 0
14 445 455 130 130 100 0 25 10 0 0 445 455 130 130 100 0 25 0 0 0
15 445 455 130 130 30 0 0 0 0 0 45 455 130 130 30 0 0 0 0 0
16 445 310 130 130 25 0 0 0 0 0 45 310 130 130 25 0 0 0 0 0
17 445 260 130 130 25 0 0 0 0 0 45 260 130 130 25 0 0 0 0 0
18 445 360 130 130 25 0 0 0 0 0 45 360 130 130 25 0 0 0 0 0
19 445 455 130 130 30 0 0 0 0 0 45 455 130 130 30 0 0 0 0 0
20 445 455 130 130 162 43 0 10 10 0 445 455 130 130 162 43 0 10 10 10
21 445 455 130 130 105 20 0 0 10 0 445 455 130 130 105 20 0 0 0 0
22 445 4175 130 130 25 20 0 0 0 0 45 4175 1300 0 20 0 0 0 0
23 445 4325 0 0 25 0 0 0 0 0 45 4325 0 0 0 0 0 0 0 0
24 445 345 0 0 0 0 0 0 0 0 445 345 0 0 0 0 0 0 00

This section presents a genetic algorithm for solving the thermal unit commitment
(UC) problem. The proposed algorithm is applied on two test systems using 10 and 20
thermal units in a scheduling period of 24 hours with different types of constraints and
load profile in specific scheduling period. The test results demonstrate the effectiveness
of the GA in searching global or near global optimal solution to the UC problem. Also the
results show a good convergence and higher precision.

A disadvantage of the GAs is that, since they are stochastic optimization algorithms,
the optimality of the solution they provide cannot be guaranteed, another disadvantage of

GA-UC algorithms is their high execution time.
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VI.3. Optimal UC using Genetic Algorithm based Ring Crossover :

The main goal of this section is to use the RCGA algorithm to solve the unit-
scheduling problem, and the Lambda-iteration method is used to solve the economic
dispatch problem. A matrix representation of the chromosome representing each
scheduled unit's status during all scheduling period is adopted. The calculation processes

of the RCGA algorithm involved in solving the UC problem are explained in detail.

VI1.3.1. The Proposed Method :

VI1.3.1.1. Overview of genetic algorithms :

Genetic Algorithms are inspired by the study of genetics. They are conceptually based on
naturally evolution mechanisms working on populations of solutions in contrast to other
search techniques that work on a single solution [194]. The algorithm starts with the
creation of a combination of coded structures called Chromosomes (solutions) which
make up the initial population. The criterion which evaluates the quality of each
Chromosome, is given by the Fitness corresponding to the evaluation of each individual
for the objective function. Once the fitness of each of the individuals in the population is
known, it is subjected to a Selection process in which the best evaluated individuals have
a greater probability of being chosen as Parents for the exchange of genetic information
called Crossover. Then a percentage of the Offspring’s (individuals generated in the
crossover) are subjected to the Mutation process in which a random change is generated
in the chromosome. This mutation process provides greater diversity between the
individuals in the population. When the crossover and mutation processes are complete a
new population is generated which replaces the original population. This must be
repeated until one of the convergence criteria defined for the problem is met. Each of

these cycles is known as a Generation [181].

V1.3.1.2. Crossover operators :

The crossover operator is a genetic operator that combines two chromosomes
(parents) to produce a new chromosome (offspring). The idea behind crossover is that the
new chromosome may be better than both of the parents if it takes the best characteristics

from each of the parents [195].
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V1.3.1.3. Single Point Crossover :

When performing crossover, both parental chromosomes are split at a randomly
determined crossover point. Subsequently, a new child genotype is created by appending
the first part of the first parent with the second part of the second parent [196—-197]. A
single crossover point on both parents' organism strings is selected. All data beyond that
point in either organism string is swapped between the two parent organisms. Fig. VI.5
shows the single point crossover (SPC) process [177].
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Figure VL5 : Single point crossover.

V1.3.14. Two Point Crossover :
Apart from SPC, many different crossover algorithms have been devised, often involving
more than one cut point. It should be noted that adding further crossover points reduces
the performance of the GA. The problem with adding additional crossover points is that
building blocks are more likely to be disrupted. However, an advantage of having more
crossover points is that the problem space may be searched more thoroughly. In two-
point crossover (TPC), two crossover points are chosen and the contents between these
points are exchanged between two mated parents [198—199].

In fig. VI.6, the arrows indicate the crossover points. Thus, the contents between
these points are exchanged between the parents to produce new children for mating in the
next generation.
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Figure V1.6 : Two point crossover.
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VI1.3.1.5. Crossover Operator: Ring Crossover :

Y. Kaya, M. Uyar and R. Tekin in their paper [177] have shown a new method of
crossover that operates on a circular method. The experimental results did show that a
good diversity was preserved because of the operator and the performance of this

algorithm was much better than other operators.
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Figure V1.7 : Ring crossover.

The steps of the Ring Crossover operator are shown in fig. V1.7, this is the crossover

operator (RC) that will be used for our problem UC.

VI1.3.2. Unit Commitment Using RCGA Method :

GA for the solution of UC problem have been earlier proposed by various researchers
[58], [200], most of them differing in the method of representation, decoding and
evaluation. However, earlier approaches do not provide sufficient or any information
regarding the handling of constraints and other objectives. Since a UC problem is
incomplete without the consideration of the minimum up time (MUT) and minimum
down time (MDT) constraints, a detailed methodology for obtaining the complete

solution with constraints is described in this paper [201].
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To resolve the UCP using the RCGA method proposed, the solution may be
represented, as shown in fig. V1.8, as a matrix of states of order NxH where N is the total
number of generating units and H is the total number of hours in the study period. A

binary code is used in which 1 represents state of the unit as On and 0 represents the state

of the unit as Off.

hour

1 2 3 4 23 24

1 1 1 1 1 1 0

2 1 1 1 1

3 0 0 1 0 0 0

.*§ H

1 1 0 1 1 0

N 0 0 0 0 0 0

Figure V1.8 : Solution representation.

In this section the proposed algorithm is applied to solve the UC problem. To apply

the RCGA, the following steps have to be taken [180].

Step 1: Initial Population: A number of NP initial binary-coded solutions (genotype) are
produced at random to form the initial population. Each population is evaluated, and its
fitness value is calculated from equation (II1.3). With the initial population produced and
evaluated, genetic evolution takes place by means of three genetic operators namely
Selection, Crossover and Mutation.

Step 2: Roulette wheel parent selection: After the evolution of the initial randomly generated
population the GA begins the creation of the new generation of solutions. Two genotypes
are selected from parent genotypes with a probability proportional to the genotypes
relative fitness within the population.

Step 3: Crossover: To get the new patterns of genetic strings during the evolution process,
crossover operator: ring crossover is used.

Step 4: Mutation: With a small probability, randomly chosen bits of the offspring genotypes
change from ‘0’ to ‘1’ and vice versa.

Step 5: Selection: The entire population, including parent and offspring are arranged in
descending order. The first NP solutions survive and are transcribed along with their
elements to form the basis of the next generation.

Step 6: Elitism: The best solution of every generation is copied to the next so that the possibility
of its destruction through a genetic operator is eliminated.

Step 7: Turn-off generator mutation: This mutation operator turns off a generator for the
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scheduling period. The operator to be turned off was randomly determined. This operator

is performed with some probability [57].

Step 8: Repair operator: All the individuals of the new population are subjected to a mechanism

intended to repair violations of the constraints of minimum start-up and shut-down times.

This process is only carried out in one randomly selected generating unit [181].
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Figure V1.9 : Binary representation of an individual xi in the population for a UC problem

solution [43].

Figure VI.9 shows a matrix representation of an individual xi in the population.

When the size of the population is NP, the dimension of the population is equal to

10x24xNP. We can use the row values of the matrix to judge whether each scheduled-

unit satisfies the MUT/MDT constraints, and to solve the transition cost during all

scheduled period. We can use the column values to solve the ED solution and the

production cost [43].
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VI1.3.2. Numerical tests :
The RCGA is applied to UC problems for realistic power systems of different sizes, along
with hourly load demands. Also, their results are compared with those of previous works
which used the same test. For each test case, 30 independent trials are conducted to
compare the solution quality and convergence characteristics. The algorithm of this
method was programmed in MATLAB environment and have been executed on a
Pentium IV, 3-GHz computer with 4 GB RAM.

In all experiments, parameters of GA for experiments were as following: with
mutation rate P, of 0.3 and crossover rate P, of 0.8 was used, initial population NP of

size 40 was randomly created.

VI1.3.2.1. Test system 1 (Wood and Wollenberg 1996) :
The algorithm was tuned using a small test problem (Wood and Wollenberg 1996)
consisting of four units and a time horizon of eight hours and adding a quadratic fuel cost

term. The new system has an optimal solution of $74,476.075. The system data is given

in appendix. 7 (A.13 and A.14).

Table V1.7: Load distribution data for generator.

H
Unit Pn B o

MW MW | 2 3 4 5 6 7 8
Unit 1 300 75 300 300 300 300 300 255 265 300
Unit 2 250 60 150 205 250 215 0 0 0 200
Unit 3 80 25 0 25 30 25 80 25 25 0
Unit 4 60 20 0 0 20 0 20 0 0 0
Load/MW 540 530 600 540 400 280 290 500
Hourly cost ($) 9145.3 108922 125705  11079.3  8531.8 58455  6024.7  10066.3
Start up cost ($) 0 150 0,02 0 0 0 0 170
Total cost ($) 74,476,075

Table VI.8: Unit combination schedule.

Hour

Unit 1 1 1 1 1 1 1 1 1
Unit 2 1 1 1 1 0 0 0 1
Unit 3 0 1 1 1 1 1 1 0
Unit 4 0 0 1 0 1 0 0 0

Table V1.9: Comparison with other conventional GA.

Methods  Total cost ($)
GA[202] 74,675

SGA 74,640.87
RCGA 74,476.07
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Figure VI.10 : Typical performance of the RCGA versus the conventional GA.

Fig. VI.10 shows results obtained by including the ring crossover operator it can be
observed that the RCGA requires fewer generations to converge than the conventional
GA. Table V1.7 gives the hourly and total cost distribution data of the 4—generator unit in
an 8 hours’ time period. for each hour, the expected output of each generator unit is
evaluated, so that the load requirements are fulfilled. Table VI8 presents the unit
combination schedule for the test system, where 0 represents the off state and 1 the on

state. Fig. V.11 shows the unit commitment schedule derived from this shut-down rule as

applied to the hourly demands.
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Figure VI.11 : Unit commitment schedule.

Tables VI.9 show the results of the proposed method comparing with other
conventional GA method results, the obtained result in this section represents a nearer
global optimal solution to the problem and verifies the correctness of the proposed
algorithm.
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V1.3.2.2. Test system 2 (ten-unit):
The proposed RCGA is initially tested on a simple ten-unit base system with a 24-h time
horizon. The unit characteristics of the ten-unit system and the demand are given in
appendix. 6 (A .11 and A.12, respectively).

In this simulation, the dimensions of an individual and a population are 10%24 and

10x24%40, respectively.
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Figure VI.12 : Load demand for 24 h.

Table VI.10 shows the best combination of scheduled-units in the initial population.
The total generation cost through the scheduling duration is $572,798.24. Table VI.11
shows the simulation results including the production cost, transition cost, and spinning
reserve capacity of each scheduling time interval, unit-scheduled for 24-hour duration
and the total generation cost. The total generation cost of the best combination of
scheduled-units is $564,338. The load demand graph shown in fig. VI.12 has 5 sharp
points including the first and the last hour values. Fig. VI.13 shows the convergence
tendency of the best evaluation value in the population during RCGA processing with the

conventional GA.
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Figure VI.13 : Typical performance of the RCGA versus the Conventional GA.
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Table VI.10: Best individual in the initial population.

Unit Production Transition ~ Spinning Generation schedule (MW)

Hour Schedule Cost (%) Ci®) R[T\Zevrv\ie Unitl  Unit2  Unit3  Unit4  Unit5  Unit6  Unit7  Unit8  Unit9  Unit10
1 1100000000 13683.129 0 210 455 245 0 0 0 0 0 0 0 0
2 1100010000 15023.813 170 240 455 275 0 0 0 20 0 0 0 0
3 1101010000 17361.836 560 270 455 245 0 130 0 20 0 0 0 0
4 1101010100 19851.031 60 225 455 335 0 130 0 20 0 10 0 0
5 1111000000 20132.560 550 170 455 285 130 130 0 0 0 0 0 0
6 1111000001 22652.447 60 125 455 375 130 130 0 0 0 0 0 10
7 1111100000 23261.979 1800 182 455 410 130 130 25 0 0 0 0 0
8 1111111000 25341.600 690 297 455 415 130 130 25 20 25 0 0 0
9 1111111100 27967.301 60 252 455 455 130 130 75 20 25 10 0 0
10 1111111010 30075.859 60 152 455 455 130 130 162 33 25 0 10 0
11 1111111011 31944.521 60 157 455 455 130 130 162 73 25 0 10 10
12 1111111111 33890.162 60 162 455 455 130 130 162 80 25 43 10 10
13 1111111001 30086.010 0 152 455 455 130 130 162 33 25 0 0 10
14 1111111000 27251.056 0 197 455 455 130 130 85 20 25 0 0 0
15 1111110001 25378.508 30 267 455 430 130 130 25 20 0 0 0 10
16 1111100000 21513.659 0 282 455 310 130 130 25 0 0 0 0 0
17 1111100000 20641.824 0 332 455 260 130 130 25 0 0 0 0 0
18 1111100001 23160.316 60 287 455 350 130 130 25 0 0 0 0 10
19 1111100000 24150.340 0 132 455 455 130 130 30 0 0 0 0 0
20 1111110111 30883.379 320 177 455 455 130 130 162 38 0 10 10 10
21 1111110100 27303.219 0 167 455 455 130 130 100 20 0 10 0 0
22 1111110000 22855.552 0 312 455 340 130 130 25 20 0 0 0 0
23 1110000000 17795.281 0 140 455 315 130 0 0 0 0 0 0 0
24 1110000000 16052.851 0 240 455 215 130 0 0 0 0 0 0 0

Total 568,258.24 4150 5127 Total generation cost ($): 572,798.24534

Table VI.11: Best individual by the proposed RCGA method.
Unit Production Transition ~ Spinning Generation schedule (MW)
Hour Schedule St Cost(§)  Reserve — i o (3 Uatd  Umts  Unts  Umt7  Umes  Umto Um0
[MW]
1 1100000000 13683.1297 0 210 455 245 0 0 0 0 0 0 0 0
2 1100000000 14554.4997 0 160 455 295 0 0 0 0 0 0 0 0
3 1100000001 17074.9447 60 115 455 385 0 0 0 0 0 0 0 10
4 1100100000 18597.6677 900 122 455 455 0 0 40 0 0 0 0 0
5 1101100000 20020.0195 560 202 455 390 0 130 25 0 0 0 0 0
6 1111100000 22387.0445 1100 232 455 360 130 130 25 0 0 0 0 0
7 1111100000 23261.9795 0 182 455 410 130 130 25 0 0 0 0 0
8 1111100000 24150.3407 0 132 455 455 130 130 30 0 0 0 0 0
9 1111111000 27251.0560 860 197 455 455 130 130 85 20 25 0 0 0
10 1111111010 30075.8593 60 152 455 455 130 130 162 33 25 0 10 0
11 1111111011 31944.5211 60 157 455 455 130 130 162 73 25 0 10 10
12 1111111111 33890.1629 60 162 455 455 130 130 162 80 25 43 10 10
13 1111111001 30086.0103 0 152 455 455 130 130 162 33 25 0 0 10
14 1111111000 27251.0560 0 197 455 455 130 130 85 20 25 0 0 0
15 1111100000 24150.3407 0 132 455 455 130 130 30 0 0 0 0 0
16 1111100000 21513.6595 0 282 455 310 130 130 25 0 0 0 0 0
17 1111100000 20641.8245 0 332 455 260 130 130 25 0 0 0 0 0
18 1111100000 22387.0445 0 232 455 360 130 130 25 0 0 0 0 0
19 1111100000 24150.3407 0 132 455 455 130 130 30 0 0 0 0 0
20 1111111100 30057.5503 490 152 455 455 130 130 162 33 25 10 0 0
21 1111111000 27251.0560 0 197 455 455 130 130 85 20 25 0 0 0
22 1100111000 22735.5210 0 137 455 455 0 0 145 20 25 0 0 0
23 1100010000 17645.3637 0 90 455 425 0 0 0 20 0 0 0 0
24 1100000000 15427.4197 0 110 455 345 0 0 0 0 0 0 0 0
Total 560,188.412 4150 4168 Total generation cost ($): 564,338.4127
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Fig. VL.11 shows a comparison of production cost at each hour between the best

individual in the initial population and best individual of all generations by the proposed

RCGA method.
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Figure V1.14 : Comparison of fuel cost.

Fig. VI.15 shows the results of unit commitment optimization problem for ten-unit

system by the proposed RCGA with a 24-h time horizon. In fig. VI.14, the amount of

generators’ supply curve for each unit are normalized according to their maximum

generation power during an hour.
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Figure VI.15 : The output data for all 15 units.
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To show the advantages of the proposed method, we will compare the performance
of the proposal method with conventional GA and another GA methods [202], [58], [43],
[201-180] and [183—36] in table VI.12.

Table VI.12 : Comparison of solution quality with other GA methods.

Best generation

Average generation

Worst generation  Standard

The computation

Methods

cost ($) cost ($) cost ($) deviation (%)  time (sec.)
GA [202] 565,866 567,329 571,336 0.26 (%) 113
GA [43] 570,781 574,280 576,791 1549.9 ($) 62.29
GA [201] 609,023.69 - - - 73.68
SGAT180] 565,121 - 622,846 9.27 (%) 462.31
TLGA [180] 564,426 — 566,182 0.31 (%) 439.313
FPGA [183] 564,094 566,675 569,237 0.33 (%) —
GA [58] 565,825 - - - -
ICGA [184] 566,404 — - - -
RCGA 564,338.41 566,997.62 569,637.25 0.34 (%) 85.12

Sign (—) means that no amount has been reported.

V1.3.2.3. Large-scale UC problem (20, 40, 60, 80, and 100 units):

To verify the effectiveness and efficiency of the proposed RCGA method in solving

large-scale UC problem, the proposed method is applied on 20-100 unit systems, the 20,

40, 60, 80, and 100 units data are obtained by duplicating the base case (ten units),

whereas the load demands are adjusted in proportion to the system size. In the simulation,

the reserve is required to be 10% of the load demand. The statistical results obtained by

different algorithms are shown in table VI.13, from the simulation results, it is very

evident that RCGA not only has found the highest quality results among the all

algorithms compared. The best UC schedule of the tests systems on 24-h scheduling
horizon with one-hour interval are shown in the tables VI.14, VI.15, VI.16, VI.17 and

VI.18. To illustrate the convergence property of the proposed algorithm, fuel cost values

over 300 iterations for 20 units systems are plotted in fig. VI.16.

Table VI1.13 : Comparison of total production costs.

Total production costs ($)

Units LR[58] GA[58] EP[189]  LRGA[I191] GAUC[203] DPLR[204] RCGA
20 1,130,660  1,126243  1,125494 1,122,622 1,125,516 1,128,008 1,125,141
40 2258503 2251911 2249093 2242178 2,249,715 2256,195 2250286
60 3394066 3376625 3371611 3371,079 3,375,065 3,384,293 3,370,588
80 4526022 4504933 4498479 4,501,844 4505614 4512391 4,501,739
100 5657277 5627437 5,623,885  5613,127 5,626,514 5,640,488 5627432
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Figure VI.16 : Convergence characteristic of fuel cost using RCGA for 20-units.

Table VI1.14 : The best unit schedule generated using proposed method for 20 unit system.

Hour  Demand (MW)  Commitment schedule Generation cost ($/h)
1 1400 11110000000000000000 27,366.25
2 1500 11110000000000000000 29,108.99
3 1700 11110000100000000000 34,011.24
4 1900 11111000100000000000 37,778.60
5 2000 11111010100000000000 40,123.83
6 2200 11111011100100000000 45,578.40
7 2300 11111011110100000000 48,226.51
8 2400 11111111110100000000 49,844.13
9 2600 11111111111101000000 54,698.77
10 2800 11111111111111100010 60,783.56
11 2900 11111111111111111010 63,962.27
12 3000 11111111111111111111 67,900.32
13 2800 11111111111111000101 60,161.86
14 2600 11111111111100000010 53,950.44
15 2400 11111111110000000000 48,300.68
16 2100 11111111110000000000 43,027.31
17 2000 11111111110000000000 41,283.64
18 2200 11111111110000000000 44,774.08
19 2400 11111111110000000000 48,300.68
20 2800 11111111111100011111 61,715.51
21 2600 11111111111100001000 53,910.29
22 2200 11111110101100000000 44,617.15
23 1800 11110000100000000000 34,862.50
24 1600 11110000000000000000 30,854.83

Table VI.15 : The best unit schedule generated using proposed method for 40 unit system.

Hour Demand (MW)  Commitment schedule (Unit 1 to 40) Costr ($/h)
1 2800 1111111100000000000000000000000000000000 54,732.51
2 3000 1111111100000000000000000000000000000000 58,217.99
3 3400 1111111100000000101100000000000000000000 69,430.08
4 3800 1111111100001000101100000000000000000000 74,879.58
5 4000 1111111101011010111100000000000000000000 82,702.36
6 4400 1111111111011111111100000000000000000000 92,270.50
7 4600 1111111111011111111100000000000000000000 92,434.27
8 4800 1111111111111111111100000000000000000000 97,701.36
9 5200 1111111111111111111110100110000000000011 110,187.5
10 5600 1111111111111111111111111111000100000111 122,155.5
11 5800 1111111111111111111111111111000011111111 128,078.0
12 6000 1111111111111 1111111 1111111111 135,770.6
13 5600 1111111111111111111111111011110110010000 120,353.7
14 5200 1111111111111111111110111010000000000000 107,269.4
15 4800 1111111101111111111100001000000000000000 96,988.10
16 4200 1111111101111111111100000000000000000000 85,432.93
17 4000 1111111101111111111100000000000000000000 81,941.56
18 4400 1111111101111111111100000000000000000000 88,930.50
19 4800 1111111101111111111100010001000000000000 97,833.59
20 5600 1111111111111111111111111011000011111000 122,468.8
21 5200 1111111111011111111111111011000000000000 108,120.7
22 4400 1111111110000110101111101010000000000000 89,390.13
23 3600 1111111110000000000100000000000000000010 70,665.18
24 3200 1111111110000000000000000000000000000000 62,331.18
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Table VI.16 : The best unit schedule generated using proposed method for 60 unit system.

Hour

Demand (MW)  Commitment schedule (Unit 1 to 60)

Generation cost ($/h)

©C 0T U AW —

1O MM MO B
EON—~S0oxxaank w0 —o

2800 111111111111000000000000000000000000000000000000000000000000
3000 111111111111000000000000000000000000000000000000000000000000
3400 111111111111000000000000111010000000000000000000000000000000
3800 111111111111000000010000111110000000000000000000000000000000
4000 111111111111010101010010111111000000000000000000000000000000
4400 111111111111111111010110111111000000000000000000000000000000
4600 111111111111111111010111111111000000000000000000000000000000
4800 111111111111111111011111111111001000000000000000000000000000
5200 111111111111111111111111111111111010010000000000000000001 111
5600 111111111111111111111111111111111111111111000000000010101110
5800 11111111111 1111111111111111111111111111111000000111111011111
6000 11111111 1111111111 11111111 111111111111 1111111111111111101
5600 111111111111111111111111111111111111011011101100100111000100
5200 111111111111111111111111111111111010011001000000010000000000
4800 111111111111111111110111111111010000000000000000000000000000
4200 111111111111111111110111111111000000000000000000000000000000
4000 111111111111111111110111111111000000000000000000000000000000
4400 111111111111111111110111111111000000000000000000000000000000
4800 111111111111111111110111111111010000000000000000000000000000
5600 111111111111111111111111111111111111111001100100111011010000
5200 111111111111111111111111111110111111111001000000000000000000
4400 111111111111110000101100110010101111111001000000000000000000
3600 111111111111000000101000110000000000000000000000000000000000
3200 111111011111000000001000100000000000000000000000000000000000

82,098.77
87,326.99
103,441.3
112,902.2
122,738.9
136,986.5
139,527.7
146,520.7
165,250.0
183,185.2
191,342.1
203,045.7
180,621.2
161,463.0
145,060.7
128,490.9
123,255.9
133,735.2
145,230.7
184,169.5
161,770.4
134,446.1
105,247.5
92,730.84

Table VI.17 : The best unit schedule generated using proposed method for 80 unit system.

Hour

Commitment schedule (Unit 1 to 80)

Generation cost ($/h)

0 UL AW —

11111111111111110000001000000000000000000000000100000000000000000000000000000000
11111111111111110000001000000000000000000000001 100000000000000000000000000000000
11111111111111110000001000100000010101010001001100000000000000000000000000000000
11111111111111110000001000100000110101010001001000000000000000000000000000000000
11111111111111110110011010101010111111010001000000000000000000000000000000000000
11111111111111110110111011101110111111010000000000000001000000000000000000000000
11111111111111110110111011111110111111010000000 100000001000000000000000000000000
11111111111111111110111011111111111111110000000 100000001000000000000000000000010
11111111111111111110111111111111111111111011101101000001000100000000000101001100
11111111111 1111111111 11111111 111111111111111111111101111001000010000000101101110
11111111111 111111 111111111111 111111 111111111111111111111001101111000110111001111
I I 1 1 1 1 1 11 1 11 11 1111 11111111 111111 111111 1111111110111
11111111111 1111111111 1111111111111 111111111111110111111110010001001000100010001
11111111111111111111111111111111111111111010111100001000000000010010001 000010000
11111111111111111110111011101111111111111010001100000000000000000000000000000000
11111111111111111110111011101111111111110000000000000000000000000000000000000000
11111111111111111110111011101111111111110000000000000000000000000000000000000000
11111111111111111110111011101111111111110001000000000000000000000000000000000000
11111111111111111110111011101111111111110001001100000000000000000000000000000001
11111111111 1111111111 11111111111111111111111111100111011100101011100111100000010
1111111111111111111111111111111111110111110111100111011000000000000000000000000
11111111111111110001011111110100100010101110110000111011000000000000000000000000
11111111110111110001001101110000100010000000000000000000000000000000000000000000
11111111100111110001000100010000100010000000000000000000000000000000000000000000

111,283.97
118,169.72
139,386.44
149,998.39
165,375.29
180,169.09
186,003.96
198,547.60
219,956.29
244,605.82
255,709.48
270,916.03
239,967.05
215,569.06
194,059.49
170,277.26
163,290.49
177,914.23
194,792.04
246,540.22
215,201.37
178,490.33
141,113.78
124,402.10

Table VI.17 : The best unit schedule generated using proposed method for 80 unit system.

jas)
o
g

Commitment schedule (Unit 1 to 80)

Generation cost ($/h)

oI e T R

11111111111111110000001000000000000000000000000100000000000000000000000000000000
11111111111111110000001000000000000000000000001100000000000000000000000000000000
11111111111111110000001000100000010101010001001100000000000000000000000000000000
11111111111111110000001000100000110101010001001000000000000000000000000000000000
1111111111111111011001101010101011111101000 1000000000000000000000000000000000000
11111111111111110110111011101110111111010000000000000001000000000000000000000000
11111111111111110110111011111110111111010000000 10000000 1000000000000000000000000
11111111111111111110111011111111111111110000000 100000001000000000000000000000010
11111111111111111110111111111111111111111011101101000001000100000000000101001100
1111111111111 1111111111 11111111 1111111111111111111101111001000010000000101101110
1111111111111 111111 111111111111 111111 1111111111111111111001101111000110111001111
111111 1 1 1111 11111 1 111 1 111111 1111 111111 11 111111111111 1111111011111
1111111111111 1111111111 111111111111111111111111110111111110010001001000100010001
11111111111111111111111111111111111111111010111100001000000000010010001000010000
11111111111111111110111011101111111111111010001100000000000000000000000000000000
11111111111111111110111011101111111111110000000000000000000000000000000000000000
11111111111111111110111011101111111111110000000000000000000000000000000000000000
11111111111111111110111011101111111111110001000000000000000000000000000000000000
11111111111111111110111011101111111111110001001100000000000000000000000000000001
1111111111111 1111111111 111111111111111111111111100111011100101011100111100000010
11111111111111111111111111111111111110111110111100111011000000000000000000000000
11111111111111110001011111110100100010101110110000111011000000000000000000000000
11111111110111110001001101110000100010000000000000000000000000000000000000000000
11111111100111110001000100010000100010000000000000000000000000000000000000000000

111,283.97
118,169.72
139,386.44
149,998.39
165,375.29
180,169.09
186,003.96
198,547.60
219,956.29
244,605.82
255,709.48
270,916.03
239,967.05
215,569.06
194,059.49
170,277.26
163,290.49
177,914.23
194,792.04
246,540.22
215,201.37
178,490.33
141,113.78
124,402.10

132



Chapter VI Thermal UC solution applying GAs

Table VI.18 : The best unit schedule generated using proposed method for 100 unit system.

Hour Commitment schedule (Unit 1 to 100) ng::igz:)
1 1111111111111111111110000000000000000000100010001000000000000000000000000000000000000000000000000000 142,239.92
2 1111111111111111111110000000000000000000100010001000000000000000000000000000000000000000000000000000 147,697.26
3 1111111111111111111110001000001000000010110011011001000100000000000000000000000000000000000000000000 174,126.98
4 1111111111111111111110001000001000000010110011011001000100000000000000000000000000000000000000000000 186,908.86
5 1111111111111111111110001000001010001010110011011101000100000000000000000000000000000000000000000000 199,364.02
6 1111111111111111111111111110001011001010111011011101000100000000000000000000000000000000000000000000 227,689.76
7 1111111111111111111111111110001111111010111011011101000101000000000001000000000000000000000000000000 235,365.78
8 1111111111111111111111111110001111111111111111011101000111000000000001000000000000000000000000010000 247,740.15
9 1111111111111 11111111° 1111111111111 111111111 111111111101111110000010101000000000000000000000001001000 276,908.79
10 1111111111111 1171111111111 1111°11°11°1111111XP1X1XTX22A211111111111000100001100010100100001001000 303,643.00
11 1111111111111 1111111111111 11°11°1°1°1111111111°1111°1111111111111100001111110111111000011101100 318,595.03
12 1111111111111y PPPPPAIILLLAILITIITIAILIIIIIIII1I11011101 338,131.15
13 1111111111111 11111111 1111111111111 111°111111111111111111111111011101111001000111001000100010000110011 300,316.23
14 1111111111111 111111111111101111111111111111111111111111111111010001000000000000000010000000000000000 268,414.45
15 1111111111111111111110111101001111111110111111111100101100110000001000000000010000000000000000000000 243,663.43
16 1111111111111111111110111101001111111110111111111100000100000000000000000000000000000000000000000000 212,533.97
17 1111111111111111111110111101001111111110111111111100000100000000000000000000000000000000000000000000 203,796.09
18 1111111111111111111110111101001111111110111111111100000100000000000000000000000000000000000000000000 221,287.35
19 1111111111111111111110111111001111111110111111111101110100000000000001000000000000000000000000000000 244,076.68
20 1111111111111 1111 1101111111111 1111111111111111111111111110011011011000010001110011101001010110110 307,336.64
21 1111111111111 11111111 1111111111111 111111101110111111111111110011011011000000000000000000000000000000 269,046.02
22 1111111111111111111101001111110100011011001110111110101011110011011010000000000000000000000000000000 224,536.20
23 1111111111111011111101001010110000000001001110001000001000000000000000000000000000000000000000000000 177,012.96
24 1111011111101011111101001000110000000001001110001000000000000000000000000000000000000000000000000000 157,001.22

VI1.4. Conclusion :

In this chapter, the proposed RCGA is efficiently and effectively implemented to solve
the UC problem. RCGA total production costs over the scheduled time horizon are less
expensive than conventional GA, especially on the large number of generating units. The
proposed algorithm considered various constraints successfully and the genetic operations
are improved based on the characteristic of power system. The test results demonstrate
the effectiveness of the RCGA in searching global or near global optimal solution to the

UC problem. Also the results show a better convergence and higher precision.
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CHAPTER VII

A novel Meta-heuristic methods and its
application in solution of the ED and UC
problems

VII.1. Introduction

In this chapter we introduce a new method for optimization that is called root tree
optimization algorithm (RTO), the robustness and efficiency of the proposed new method
is validated on nonlinear functions and compared to recent methods addressing the same
problem, simulation results confirm efficiency and reliability of the proposed RTO
algorithm for solving complex optimization problem in term of solution quality and
convergence characteristic.

The proposed approach RTO has been applied to various test systems with
incremental fuel cost function, taking into account the valve-point effects, the simulation
results obtained by the proposed algorithms are compared with the results obtained using
other recently develop methods available in the literature, from numerical results, it is
found that the proposed RTO approach is able to provide better solution than other
reported techniques in terms of fuel cost, furthermore, this algorithm is better in terms of
robustness than most of the existing algorithms used in this study.

The second part of the chapter proposed a novel operator for Genetic Algorithms a
“genetic modification” for solving the UCP, generating unit’s shows that we can find the
optimal solution effectively and these results are compared with the conventional
methods and various optimization approaches in the recent literature.

The proposed algorithm GAGE is efficiently applied to solve the UCP, the total
production costs of GAGE over the scheduled period are less expensive than the
conventional genetic algorithm and the algorithms proposed the recent literature. The
total production costs of GAGE over the scheduled period are less expensive than the

conventional genetic algorithm and the algorithms proposed the recent literature.
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VII.2. A new rooted tree optimization algorithm for ED problem :

In the latest twenty years, the artificial intelligence started to be oriented to the
simulation of nature, to the way how the human brain functions and the human operations
thinking. Consequently, a new branch of this artificial intelligence (CI) has emerged
which studies and designs the intelligent implements that adapt intelligently with their
environment and they show an cognitive behavior whereas they became able to take
decision through the recuperation of the acquired information. This intelligence considers
the human being as an example of these implements, the arithmetic intelligence contains:
the evaluating computing, fuzzy computing and the neural computing.

At the beginning of the ninetieth years from the last Century, the researches started
to be oriented forwards by simulating the less clever creatures which have a limited
capacities as: the pants, the birds and fishes that show, at the same time, a so clever social
behavior, in 1990, Diarogo suggested an algorithm of ant colony optimization ACO
which simulates the ants settlements. In 1995, both of Rusell Eberth and James Kendy
suggested an algorithm of practical swarm optimization PSO that depends totally on the
simulation of the birds swarms. The two previous algorithms PSO and ACO were a
starting point to a new branches of the swarm intelligence SI, the most important
characteristics of these new branches CI and SI are their dependent on the digital
treatment, they are not based on the mathematical knowledge, both of CI and SI are
considered as a complex of algorithms composed of: a specific steps, a known start and
an end point that led to solve the problem.

Even with the great enhancement of the computing capacities, there are difficult
problems. Fortunately, many sensitive research algorithms are developed to find a
suitable solution to these problems at a reasonable time; they are developed according to
the evolution of the physiology and biology. One of them is the genetic algorithm GA
and simulated annealing SA, these techniques are used to solve many problems widely.

In this section we introduce a new method that is called (rooted tree optimization)
because it is extracted from the movement of the plants root when they look for the
nearest place of water, in this algorithm we lean on the behavior of the desert plants
especially where the water resources lacked. If the vegetal scientist or the biologists

allow, we can say that the desert root plants smell the places of water (here, we find the
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intuitive behavior) around it, where these places present the optimal solution for us, to
determine it we use a group of roots which oriented by a special conducting.

In this section we are attempting to introduce an algorithm RTO based on that
intuitive behavior which leads to the water location and has an oriented movement when
it looking for the best solution.

Unlike classical search and optimization methods, RTO starts its search with a
random set of solutions (group of roots), instead of a single solution just like GA. Each
population member is then evaluated for the given objective function and is assigned
fitness. The best fits are entertained for the next generation while the others are discarded
and compensated by a new set of random solutions in each generation. The far solution
from the water place is omitted or replaced by a new roots oriented randomly, also it is
replaced by roots near from the best root of the previous generation. The only stopping
criterion is the completion of maximum number of cycles or generations. At the end of
the cycles, the solution of the best fitness is the desired solution.

The main objective of this study is to present the use of the RTO technique to the
subject of the ED in power systems. In this section, the RTO method has been proposed
to solve the ED problem with valve-point effect for 3, 6 and 13 units test systems. In
general terms, the contribution of this paper is the new efficient RTO approach for the
ED problem with valve-point effect. The results obtained with the proposed RTO
approach were analyzed and compared other with optimization results reported in

literature.

VIIL.2.2. Method Rooted tree optimization algorithm (RTO) :

VIL.2.2.1. The roots look for water :

One root has a limited capacity, but a group of roots can find together the best issues to
get water, and the majority of them are located around this issue or around the way that
links the plant with the resource of water. To create the algorithm, we add a hypothetical
behavior which is the way how the roots decide together to choose the orientation
according to the witness degree where the root head is located, these ones move

randomly but when they find the wetness they contact between them to intensify their
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existence around this way, so it becomes a new start point for the majority of the root

group to get the original place of water.

initial populatlon
the continuous root initial posmon

\\
random root

degree Wetter (
& """ \ iteration N° 01

wx ‘

“ 9 T number™f generations
>< X '._
the nearest root to water 4w H l

’
Figure VIIL.1 : the roots of plants behavior when they look for water (the solution).

best solution in

iteration N° 04

best solution —

The Fig. VIIL.1 presents the way how the roots of plants behave when they look for
water -the solution- according to what we have talked about in RTO, where we find that
the far solution from the water place (which has a less witness degree) is omitted or
replaced by a new roots oriented randomly, also it is replaced by roots near from the best
root of the previous generation, whereas the roots which have a considerable witness
degree preserve their orientation, where we remark that the majority of roots gather at the

last step next to the best solution- resource of water-.

VIL.2.2.2. Rooted tree optimization method :

The proposed method is similar to the most other methods it begin by creating an initial
population randomly. But before that, we will introduce some terms which will determine
the method of moving from initial population to the new population:

- Root: is a candidate or the suggested solution.

- Degree Wetter Dy: it is a term that evaluates the candidate and gives him his
optimization degree between the rest of population, it seems to the mechanism fitness, it

is calculated using the equation (VIL.4).
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A. The rate of the nearest root to water R,

It is the rate that represents the number of candidates according to the total population
that should gather around the wetness or the wetter place (the best solution to the
previous generation). It will be the successor of the roots which were in a dry places (in
the witness is so weak) from the previous generation. The new population of the nearest

root to water is calculated according to the formula:
X"V (1,1t +1) = x"* (It)+ ¢, x D,, (i) x randnx I/(N x It) (VIL1)

new

Where It is the iteration step, x™" (It+1) is the new candidate for the iteration

(It+1), x"(It) is the best solution to the previous generation, i is the number of
candidate, Nis the population scale, /is the upper limit of the parameter and randn is a

normal random number between [-1, 1]. Then new point x™"Vis upper and lower

bounded.

B. The rate of the continuous root in its orientation R,
It is the rate of the members that continued the previous way because it appears near from

water. The new population of the random root is calculated according to the formula:
X"V (1,1t +1) = x(i,It)+ ¢, x D (i) x randx (x** (It)- x(,It))  (VIL.2)

Where x(It)is the previous candidate for the iteration Itand randis random number
between [0, 1].
C. The rate of the random root R,
It is the rate that represents the number of candidates according to the total population
that we want that they spread randomly in the research field in order to increase the rate
of getting the global solution, it replaces also the roots in the wetness degree is so wick

(weak candidates) from the last generation. The new population of the random root is

calculated according to the formula:

X" (1,It+1)=x,(It)+c, xD, (i) x randnx /It (VIL3)
Where x, is individual randomly selected from the previous generation,c,, ¢, and

c, is the adjustable parameters.
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The rates R, R, and R; are determined by the experiments according to the exposed
problem, these rates are considered as a variables which affect the convergence and how
to find solution. The rate R; is always small in comparison with the rest because it aims to
reserve the random in order to be far from the local, its role can be presented as a
mutation in the genetic algorithm.

We put the Dy, value in the research functions of the roots in order to determine a
space research according to the candidate power. When his power increase (presented by
the Dy, values), our goal is to, assure the step and the type of the used relation to create a

new generation.

VII1.2.2.3. The algorithm RTO :

Summarizing the steps in RTO yields to:

Step 1: Creation of primary generation randomly which is composed from N candidate
with the respect of the variables limits in the research space, and the determination
of the rates values R,, R;and R..

Step 2: We evaluate all the population members in order to measure the witness degree

Dy, by using the objective function following this formula:

/i for the maximum objective

D, (i) = ™ f) . i=12,., N (VIL4)
1 1

- for the minimum objective
max(f;)
Or we use directly the fitness regardless of the suitable formula.
Step 3: Reproduction and replacement by the new population;
We reorder the population according to the degree wetter Dy, in order to replace

them by the new population according to R,, R; and R as the following:

D, =0
Xpew (i, it+1)=x+ c3*Dw(i) *randn*l/ it } Fori=1, .., N*R,
Xnew(i, it+1)=xbest(it)+ ¢ *Dw(E) *randn*1 /(N *it) } Fori=N*R,+1, .., N*(R,+R,)
Xoew(d, it+1)=x(, it)+c*Dw(i) *rand*(xvest(it)-x (i, it)) } Fori= N*(R,+R;) +1, .., N
D,=1
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Where R, + R; + R, = 1. We start by the candidate which has the less Dy, till we
get at the one who has a degree wetter equivalent 1.

Step 4: Return to step 2 if the stopping criteria is not realized.

The RTO algorithm is a method based on the most of the meta-heuristic algorithms;
it is a simple evolutionary algorithm that creates new candidate solutions by integrating
the parent individual with several other individuals in the same population. All candidates
replace the parent, the rooted tree optimization algorithm is written as the Algorithm.1

represent the recreation of the new generation concerning the algorithm RTO.

Algorithm.1. RTO Algorithm

//Initialization:

Set the rates R, R, and R. parameters;

Give the maximum number of iterations, MaxIte, the population scale is theRTOsize;
Set iteration counter it =1;

For i=1to theRTOsizedo

Generate the initial population X; randomly within the search range of ( X Xmax )

min’
end for

Evaluate the fitness for each individual Dy i

Reorder the population according to the witness degree;

Identify the candidate according the wetness place (the best solution) X best’

W
//Loop:
While (stop criterion is not satisfied & it < Maxite) do

For [ =1to R, x theRTOsizedo
Selected individual X ;" randomly from the current population;
X}”] =xit+¢ x Dyy; xrandnx | Xmax - X . 1/(it );
end for

For [ = R, X theRTOsize+1to (R, + R, )x theRTOsizedo

jt+1 o
X = Xyt €3 XDy xrandn x| Xpnax- X . |/( theRTOsizex it );

end for
For [ =(1—R_.)x theRTOsize+1 to theRTOsizedo

jt+1 it it ).
Xt = x! +cpx Dy xrandx (Xbest'X; );
end for

Evaluate fitness DWI‘ for each candidate;

Update X, = ;

tmite 1 hest
end while
From the Fig. VII.2 we remark the change of the parameters x; and x, according to

the generation number where the three kinds of roots appear, these kinds represent the

random roots, and the roots which meet together till they stop these ones represent the
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near roots from the solution, the rest kind represent those groups which cease when they
become weak in comparison with the other roots of the same generation. It appears so
clear in the Fig. VIL.3 which represents evaluation the Rastrigin function (N=2) (where N
is the number of dimension) where the majority of roots gather in the solution -resource

of water-.

parameters for evaluation function

200

100

-10
X 0 Generation Number

Figure VIL.2 : The parameters and the roots for 200 iterations (the Rastrigin function (N=2)).

Evaluation The Rastrigin (N=2) Function for 200 iterations

Generation Number

Evaluation function

0 20 40 60 80 100 120 140 160 180 200
Evaluation Function N° of Iterations

Figure VIL3 : Evaluation The Rastrigin function (N=2) for 200 iterations.

We remark in the Fig. VII.4 the concentration of the roots (candidates) with the
different rates R;, R, and R, where we can see how every kind looks for water through
changing the rates values, so the convergence to the solution has a strong relation with
the different behaviors movements of the roots kinds between them as we have listed

previously.
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Evaluation The Rastrigin (N=2) Function for Rn=0, RC=1 and Rr=0. Evaluation The Rastrigin (N=2) Function for Rn:O, RC:O and Rr:1.
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Figure VIL4 : Evaluation the Rastrigin function for different rates parameters,; R,, R, and R..

Algorithm.2. RTO Modified Algorithm (RTOy)

//Initialization:
Set the rates R, R, and R. parameters;
Give the maximum number of iterations, Maxlte, the population scale is theRTOsize;
Set iteration counter it =1;
Generate the initial population X; randomly within the search range of (Xmin, Xmax);
Evaluate the fitness for each individual Dw; ;
Reorder the population according to the witness degree;
Identify the candidate according the wetness place (the best solution) Xpes,
//Loop:
While (stop criterion is not satisfied & it < Maxite) do
For [ =1 to theRTOsize do
If Dw; <R, do

Selected individual X ﬁ’ randomly from the current population;

)(l’."+1 =x"sepx Dyy; xrandnx | Xmpax- X o /it );
Else if Dw; < R. do

it+1
Xilt+ =X oot €3 %X Dy xrandnx | Xax- X |/( theRTOsizex it );

min
Else
Xf’+1=Xf’+c]xDWixrandx (X -Xii[);
end If
end If
Evaluate fitness Dw;for each candidate;

best

Update Xpest;
it=it+1;

end while
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We suggest the Algorithm.2 which is the same as the other only in the number of
roots of each kind, where its number changes at any step (iteration) because the number
of each kind is not stable, but it's likened to the degree wetter Dy, of every root and
according to this we classify its kind and how it behaves. So the convergence will be

affected as we will see in this section.

VIIL.2.3. Applying the RTO to the ED problem :

In this section the proposed algorithm is applied to solve the economic dispatch problem
with valve-point effect. To apply the RTO, the following steps have to be taken.

Step.1. Define the input data

In this step, the input data including the cost coefficients of the generators, output
generator constraints, transmission loss matrix coefficients and loads, the number
of iterations (Iterm,y), the size of the population (candidates), the adjustable

parameters c,, ¢, and c, and the difference rates R,,, R; and R..
Step.2. Generate the initial population.

Initialize randomly the individuals of the population according to the limit of each
unit including individual dimensions. These initial individuals must be feasible
candidate solutions that satisfy the practical operation constraints.

Step.3. To each individual Pg; of the population, employ the B-coefficient loss formula to
calculate the transmission loss P;.

Step.4. Calculate the evaluation value (fitness) of each individual Pg; in the population
using the evaluation function given by (IL.16), (Evaluate fitness D,,, for each
candidate).

Step.5. Compare each individual’s evaluation value with it's Pg”*'is the best fitness of
the particle up.

Step.6. Calculate new candidates using (VIL.1), (VIL.2) and (VIL3).

P, (k+1) =P, (k) +c; + Dy, xrandm|P,

'd,Max - PGd,Min

/it, fori=1toR xn

Py (k+1)= P (k) + ¢, + Dy, Xrandm| Py, = o) /i), fori=R, xn+1to(R, +R,)xn

Py (k+1)= Py, (k) +c, + Dy, xrandx| Pl (k)= P, (k)
(VILS)

Where d=1, 2,..., m and P, ,(k)is individual selected randomly from the current

, fori=(1-R_ )xnton

population;
Where 7 is the population size, m is the number of units, Pgguax and Pggin are
parameter upper and lower limits and & number of iterations.
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Step.7. If the number of iterations reaches the maximum, then go to Step 8. Otherwise, go
to Step 3.

best :

Step.8. The individual that generates the latest Pg™is the optimal generation power of

each unit with the minimum total generation cost.

Initialize random population members (control variables),
¢y, 2 and c; and the difference rates Rn, Rr and Rc.

A
r y
Calculate the evaluation value (fitness) of each individual in
the population using the evaluation function (D)

count
7

Increment the generation I

wetness place (the best solution); Xpest

Identify the candidate according the I

Y
Calculate new candidates using (VII.1), (VII.2) and (VII.3) I

Check for stopping
Condition

+ Yes

STOP, Print optimal control vector and I

optimal objective function value

Figure VILS : Flowchart of the proposed RTO algorithm.

Fig. VIL5 depicts the schematic representation of the proposed algorithm to solve the

ED problem.

VIIL.2.4. Experimental analysis and numerical results :

In order to verify the feasibility and efficiency of the proposed algorithm RTO was
tested on two tests the first one, is four different benchmarks problems and the second
one are three test cases for solving ED problem with valve-point effects. These are 3, 6
and 13 units systems including valve-point loading.

In these examples, the software was implemented by the MATLAB language, on a
Pentium IV, 3-GHz personal computer with 4 GB RAM under Windows XP.
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VI1.2.4.1. Validation (benchmark tests):

Before solving economic dispatch problems, RTO was benchmarked using four
numerical examples which are given as follows in detail. The new algorithm RTO has
been tested and compared with the RTOy on the benchmark problems taken from [205].
The difficulty levels of most benchmark functions are adjustable by setting their
parameters. From the standard set of benchmark problems available in the literature, four
important functions two of which are unimodal (containing only one optimum) and two
of which are multimodal (containing many local optima, but only one global optimum)
are considered to test the efficacy of the proposed methods [206]. This list comprises
some widely used test functions such as sphere, Rosenbrock, Dejong, Griewangk, and
Rastrigin functions given in table VII.1 shows the main properties of the selected
benchmark functions used in the experiments.

Two criteria are applied to terminate the simulation of the algorithms: reaching
maximum number of iterations which is set to a constant number and the second criterion
1s getting a minimum error.

100 candidates were initialized in regions that include the global optimum for a fair
evaluation. The algorithms were run for 100 times to catch their stochastic properties. In
this experiment, maximum iteration number was set to 500 and the goal is not to find the
global optimum values but to find out the potential of the algorithms. Algorithm success
rate defined by; how often does the algorithm get the exactitude before it completes the

number of the whole iterations or all 100 trials.

Table VII.1 : Properties of test problems.

Function Definition lower upper optimum Property
name bound bound  point

Rosenbrock 2y 100(x;,, —x7)* +(1-x, )’ 2.048 2048 0 Unimodal
Dejong Nox? 512 512 0 Unimodal
Griewangk ¥ (x2/4000)—TTY, (x, /+i)+1 -0 50 0 Multimodal
Rastrigin 10xN+XY (x7 =10.cos2m.x;,) 512 512 0 Multimodal

We remark that the positive aspect of the RTO method in comparison with RTOM, is
the probability to get the global solution and to avoid falling in the local one as it appears
in the table VII.2, all this refers to the stability of the roots number in each kind, so the

roots stay as they are when they look for water (their behavior) randomly in same parts
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of them, (the random orientation when they look for water) integration with the
convergence towards the solution according to the previous relations, where they stay on
this orientation even the reach the initial solution, that can be a local solution, opposite to
RTOwm which all the roots to the solution by gathering around the first most witness
points, but this can make negative to get the local solution, but we can find that these
roots can get quickly the solution by a less number of iteration than RTO method also
more powerful in the unimodal functions as Rosenbrock and Dejong, but the RTO find its
power in the multimodal functions as Griewangk and Rastrigin where it's so possible to

get the global solution.

Table VIIL.2 : Success rates of different algorithms.

algorithms RTO RTOy,
Tolerance le5 1e5 1e6 1le-7 1e-8 | 1e9 1le-6 1le-7 1e-8 1e9
Rosenbrock (N=10) 100 100 98 98 96 96 98 98 97 87
Rosenbrock (N=5) 100 100 100 100 100 | 100 100 100 100 99
Rosenbrock (N=3) 100 100 100 100 100 | 100 100 100 100 100
Dejong (N=10) 100 100 100 100 100 | 100 100 100 100 100
Dejong (N=3) 100 100 100 100 100 | 100 100 100 100 100
Griewangk (N=10) 100 100 100 100 100 | 100 100 100 100 100
Griewangk (N=5) 100 100 100 100 100 | 100 100 100 100 100
Rastrigin ~ (N=2) 77 58 51 45 40 37 75 72 68 65

Table VIL3 : Success rates of RTO algorithms using different rates parameters; R,,, R, and R..

Rosenbrock Dejong Griewangk Rastrigin

(N=10) (N=10) (N=10) (N=2)
Tolerance le-5 le-7 le-5 1le-7 le-5 le-7 le-5 1le-7
R,=1.0,R=0.0and R.=0.0 0 0 0 0 0 0 2 0
R,=0.7,R,=0.3 and R.=0.0 99 24 100 100 24 0 67 62
R,=0.6,R,=04and R.=0.0 99 18 100 100 20 0 77 70
R,=0.3,R,=0.7 and R.=0.0 98 11 100 80 30 0 98 98
R,=0.0, R,=1.0 and R.=0.0 16 0 0 0 0 0 0 0
R,=09,R,=0.0andR.=0.1 0 0 0 0 0 0 6 4
R,=0.6, R,=0.3 and R.=0.1 100 33 100 100 94 88 66 59
R,=0.3, R,=0.6 and R.=0.1 100 37 100 100 94 88 95 92
R,=0.1, R,=0.8 and R.=0.1 100 77 100 100 96 90 98 96
R,=0.0, R,=0.9 and R .=0.1 11 0 100 98 96 93 88 35
R,=0.7, R,=0.0 and R.=0.3 19 9 2 0 100 99 25 19
R,=0.4, R,=0.3 and R .=0.3 100 98 100 100 100 100 77 72
R,=0.3, R,=0.4 and R.=0.3 100 97 100 100 100 100 74 70
R,=0.0,R,=0.7 and R.=0.3 56 27 100 100 100 100 100 70
R,=0.4,R,=0.0and R.=0.6 93 88 0 0 100 100 32 25
R,=0.1,R,=0.0and R.=0.9 98 92 80 74 100 100 55 52
R,=0.0, R,=0.1 and R.=0.9 100 99 100 99 100 100 85 84
R,=0.0,R,=0.0 and R.=1.0 100 97 100 98 100 99 62 59
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The table VII.3 presents the effect of the difference of this rate values R,, R, and R,
at the convergence to the solution with the different functions and the different
exactitude, this table clarify the desired rates (by an experiment) that should be taken to
get exactly the solution according to the kind of problem, it's too important to see that the
selected rates in the table VII.2 according to this table through the possibility to get the
global solution and the number of iterations, there is a relation between them when the
rate of getting solution increase this means that the speed of convergence is so good (the

number of iterations is few).

Table VII.4 : comparison of Success rates between different algorithms.

BB-BC BB-CBC UBB-BC UBB-CBC RTO RTOy
[206] [206] [206] [206]
Tolerance le-5 1le-6 1le-5 1le-6 1le5 1e5 1e6 1le6 1le-5 1le6 1leS 1le6
Rosenbrock (N=100) 100 69 100 100 100 92 82 100 100 100 95 93
Dejong (N= 3) 100 31 100 70 100 100 100 61 100 78 100 100
Griewangk (N=2) 23 19 31 30 36 100 100 31 39 38 100 99
Rastrigin (N=2) 30 26 80 75 84 29 22 79 90 86 73 67

In order to make a fair comparison between our proposed algorithm RTO with other
heuristic methods [206], 500 iterations are chosen as stopping criteria in the simulations
and the population size is kept fixed as 40 in the example and the benchmark tests.

Table VIL.4 represents the success rates obtained from RTO, RTOy, BB-BC (Big
Bang—Big Crunch), BB-CBC (Big Bang—Chaotic Big Crunch optimization), UBB-BC
(Uniform Big Bang-Big Crunch), and UBB-CBC (Uniform Big Bang—Chaotic Big

Crunch algorithms) at different quality levels for the benchmark functions.

VI1.2.4.2. Economic dispatch problems :
A. Test system 1: small system (3-unit system) :
This test case study considering three thermal units of generation with effects of valve-
point is given in appendix. 4 (table A. 4). In this case, the load demand expected to be
determined was Pp= 850 MW.

The simulation parameters for the proposed algorithm are :

- The number of generation is 50 iterations and Size of population 100 individuals

(candidates).
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- Take the difference rate values R,;=0.4, R=0.3 and R.=0.3.
Ry, R; and R, are adjustable parameters controlling the influence of the convergence

properties of the proposed algorithm.
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Figure VIL.6 : The convergence characteristic of the three-generator systems for different
adjustable parameters to the RTO algorithms.

Fig. VIL6 shows the effect of various values for R, R; and R, on the convergence
characteristic of the proposed method for three-generating unit system. This figure shows
that R,;=0.4, R,=0.3 and R=0.3, are suitable values for RTO algorithm. These parameter
values are used for all other examples presented.

For this problem, we can make the appropriate choice of the adjustable parameters
codified somewhat, resulting from experimental and observational limits.

The results obtained for this case study are listed in table VIL5 the proposed
algorithm has obtained the optimal solution values for the 3 units test system by
completing 100 iterations in 0.3008 s, which shows that the RTO algorithm has
approximately good solution for the power demand of 850 MW. The best fuel cost result
obtained from the proposed RTO algorithm and other optimization algorithms are
compared in table VII.6. From table VIL6 it is seen clearly that the PS approach did not

meet the load demand.
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Table VILS : Results obtained by proposed method for test system 1.

Units (MW) Proposed RTO
1 300.2536
2 149.7485
3 399.9972
Total Power Output(MW) 850.000
Total Cost ($/h) 8234.07157
time (sec) 0.3008

Table VIIL.6 : Comparison of proposed method for test system 1.

Method P,(MW) P,(MW) Py(MW) Pp(MW)  Cost ($/h)
GA [87] 398700  50.100  399.600 848400  8222.07
EP [87] 300264 149736 400.000  850.000  8234.07
EP-SQP [87] 300267 149733 400.000  850.000  8234.07
PSO [87] 300268  149.732  400.000  850.000  8234.07

PSO-SQP [87]  300.267 149.733 400.000  850.000 8234.07
MPSO [207] 300.27 149.74 400.00 850.000 8234.07
PS[136] 3002663  149.7331  399.9996  849.9990 8234.05
GSA [137] 3002102  149.7953  399.9958 850.0013 8234.1
Proposed RTO  300.2669  149.7331  400.0000 850.0000 8234.0717
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Figure VIL.7 : Convergence of fitness value for load demand 850 MW.
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A convergence characteristic of the RTO algorithm for the three generator systems
shown in figs. VII.7 and VIL8 shows the distribution of the generation cost of the best

solution for each run in the test system of 3 units.

B. Test System 2: IEEE 30 buses system (6-unit):

The second test system is a 6-unit system. System (IEEE 30 buses system) with effects of
valve-point. The required load demands to be met by all the 6 generating units are 283.4
MW. The data for this system is provided in [8], [25] as given appendix. 1 (tables A.1
and A.2). In this test system, the transmission losses are considered and the loss
coefficients £ matrices are shown in appendix.

The setup for the proposed algorithm is executed with following parameters:

- The number of generation is 50 iterations and Size of population 100 individuals
(candidates).

Table VII.7 shows the obtained results for this system. Results of the proposed
method RTO are in bold. Minimum cost, Mean cost and maximum cost over the 50 trial
runs are compared with the results of combination of modified subgradient MSG and
harmony search HS algorithms (MSG-HP) [29], PSO [29], the Newton's second order
approach NSOA [28], combines the genetic algorithm GA with active power
optimization APO (GA-APO) [28] and genetic algorithm GA [28] in table VILS.
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Figure VII. 9 : Convergence of fitness value with valve-point effects.
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Table VIL.7 : Results obtained by proposed method for test system 2.

Solution methods

GA GA-APO  NSOA PSO MSG-HP  RTO

[208] [208] [208] [209] [209]
Pg, 150.724 1339816  182.478 197.8648  199.6331  199.5996
Pga 60.8707 37.2158 483525 503374 20.0000 20.0008
Pgs 30.8965 37.7677 19.8553 15.0000 23.7624 24.1658
Pgs 142138 28.3492 17.1370 10.0000 18.3934 17.7409
P11 19.4888 18.7929 13.6677 10.0000 17.1018 19.0252
Pgis 159154 38.0525 12.3487 12.0000 15.6922 13.7428
Poro(MW) 2921096 294.1600  293.8395 2952022  294.5829 2942754
Fio1 (R/h) 996.0369 1101491 9849365  925.7581  925.6406  924.9724
Poss 8.7060 10.7563 104395 11.8022 11.1830 10.8754
Time (s) 0.5780 0.156 0.0150 0.3529 0.6215 0.3771

Table VIL.8 : Comparison of results (test system 2) in the 50 trial tests.

Solution methods

RTO MSG-HP  PSO NSOA  GA-APO  GA
[209] [209] [208] [208] [208]
Min  Foa(R/h) 9249724 925641 925758 98494  996.04 996.04
Time (s)  0.3771 0.62151 035290  0.0150  0.156 0.141
Max  Foa(R/h) 9438712  928.599 928427 99248  1101.49 1117.13
Time (s)  0.3827 077132 035591 00310  0.578 0.5780
Mean  Fo(R/M)  930.17814 926851 926388 NA NA NA
Time (s)  0.3785 0.72484 035749 NA NA NA

NA denotes that the value was not available in the literature.
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Figure VIIL. 10 : Distribution of objective function value for 30 Trails.

When the adjustable parameters is selected, optimal solution values for the IEEE

30 buses test system are obtained as 199.5996, 20.0008, 24.1658, 17.7409, 19.0252 and

13.7428. The proposed algorithm has found the optimal solution values for the test

system by completing 50 iterations in 0.3771 s. It is observed, through the table VIL.7,

that the RTO algorithm achieves much better optimal solution values when compared to
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the results in the literature. In other words, the RTO algorithm is 59.9641 R/h better when
compared to the NSOA with the best solution value in the literature [28], also is 0.6682
R/h better then MSG-HP algorithm. In fig. VII.9 show that convergence characteristic
curve of the best case with valve point effect, the fig. VII.10 shows distribution the

generation cost of the best solution value for 30 trails in the test system.

C. Test System 3: 13-unit system :

This test system is a 13-generator system with valve-point loading effect. The
coefficients of fuel cost functions as given appendix. 4 (table A.8) [8], [25]. The ED
problem is solved for two different load levels (PD= 1800 MW and PD= 2500 MW).
This test system has many local optima and no global solution has been reported yet. The

population size and maximum iteration number are fixed to 200 and 100, respectively.
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Figure VIL.11 : Convergence of fitness value for load demand 1800 MW.

The obtained result for load demand equal to 1800 MW is presented in table VIL9.
Results of the proposed method are in bold. The results are compared in terms of
minimum cost, mean cost, and maximum cost over 50 runs with the results of hybrid
multi-agent based PSO (HMAPSO) [30], modified differential evolution algorithm
(MDE) [31], self-tuning hybrid differential evolution algorithm (SHDE) [32], pattern
search method (PSM) [35], hybrid genetic algorithm (HGA) [36], quantum-inspired PSO
(QPSO) [33], PSO [30] and PSO with time varying acceleration coefficients (PSO-
TVAC) [34]. The results of the aforementioned methods that presented in table VII10,

have been directly quoted from their respective references. Convergence characteristic of

152



Chapter VII A novel Meta-heuristic methods and its application in solution of the ED and UC problems

the RTO for 13-generator test case with load demand of 1800 MW is depicted in fig.
VIL11. Fig. VII.12 shows distribution the generation cost of the best solution for each run
in the test System 3.
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Figure VII.12 : Distribution of objective function value for 30 Trails (1800 MW).

Table VIL9 : Comparison of simulation results for test system 3 (case I, load = 1800 MW).

Unit HMAPSO MDE SHDE PSM HGA QPSO PSO PSO-TVAC  Proposed
[210] [211] [214] [214] [142] [212] [210] [213]

1 5385611 628318 6283172 5385587 6283185  538.56 538561 628319 6283072
2 2244831  149.594 1495986 224.6416 2227491 2247 299355  149.597 224.3420
3 1500622 222758 2227987 149.8468  149.5996  150.09 75.037 222.749 297.7060
4 109.8862  109.865  109.8673  109.8666  109.8665  109.87 159.734  109.867 60.0000
5 1099902 109.864  109.8418  109.8666  109.8665  109.87 60.078 109.867 109.8529
6 109.8666  109.866 60 109.8666  109.8665  109.87 109.864  109.867 60.0000
7 1099903  109.865  109.8641  109.8666  109.8665  109.87 109913 109.867 60.0000
8 109.8688 60 109.8547  109.8666 60 159.753  109.87 109.867 109.7956
9 109.8668  109.866  109.8576  109.8666  109.8665  109.87 60.069 60 60.0002
10 40 40 40 77.4666 40 77.41 40.035 40 40.0000
11 774247 40 40 40.2166 40 40 77.561 40 40.0000
12 55 55 55 55.0347 55 55.01 55.042 55 55.0000
13 55 55 55 55.0347 55 55.01 55 55 55.0000
PG Total 1800 1799.996 1800 1799.9993  1799.9997  1800.002 1800 1800 1800.0044

Min cost 17969.31 17960.39  17963.89  17969.17 17963.83 17969.01  18014.16 17963.879 17969.8024
Mean cost  17969.31 17967.19  18046.38  18088.84 17988.04 18075.11  18104.65 18154.562 18056.9358
Max cost 17969.31 17969.09 NA 18233.52 NA NA 18249.89 18358.31 18204.6303

NA denotes that the value was not available in the literature.

Also, simulation is done for power demand of 2520 MW. The obtained results are
presented in table VIL.11 and compared with the results of hybrid genetic algorithm
(HGA) [36], differential evolution (DE) [21], FAPSO-VDE [39], improved coordinated
aggregation based PSO (ICA-PSO) algorithm [40] and Iteration PSO (IPSO) [41]. The
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minimum, average and maximum costs presented in table VII.11 are obtained over the 50
trial runs. Results of the proposed method are in bold. It can be observed from table
VIL.11 that the proposed technique provided almost significantly better results in

comparison with the previously developed techniques.

Table VII.10: Comparison of proposed method for test system 3 (case I, 1800 MW).

Method Total Cost ($/h) ~ Method Total Cost ($/h)
PSO [219] 18030.72 IGA_MU [89] 17963.98
EP-SQP [87] 17991.03 ST-HDE [214] 17963.89

HDE [214] 17975.73 HGA [221] 17963.83
CGA-MU [89] 17975.34 HQPSO(5) 17963.9571
PSO-SQP [87]  17969.93 [138] 17963.83

PS [136] 17969.17 DE [143] 17960.3684
QPSO [141] 17964 Proposed RTO
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Figure VIL13 : Convergence of fitness value for load demand 2520 MW.

The convergence behavior of the proposed RTO for power demand of 2520 MW
is depicted in fig. VII.13. Fig. VII.14 shows distribution the generation cost of the best
solution for each run in the test System 3. The best fuel cost result obtained from
proposed RTO and other optimization algorithms are compared in tables VII.10 and
VII.13 for load demand 1800 and 2520 MW respectively.
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Table VII.11: Comparison of simulation results for test system 3 (case Il , load = 2520 MW).

Unit HGA DE FAPSO-VDE ICA-PSO IPSO RTO
[142] [215] [216] [217] [218]
1 628.3184 628.3185 628.3185 628.32 628.319 628.2518
2 299.1992 299.1993 299.1993 299.19 299.199 299.1535
3 299.1988 299.1993 299.1993 29451 295.878 296.1073
4 159.733 159.7331 159.7331 159.73 159.265 159.6753
5 159.7329 159.7331 159.7331 159.73 159.733 159.7332
6 159.7324 159.7331 159.7331 159.73 159.733 159.6176
7 159.733 159.7331 159.7331 159.73 159.733 159.5445
8 159.733 159.7331 159.7331 159.73 159.733 159.6311
9 159.7331 159.7331 159.7331 159.73 159.733 159.4948
10 77.3994 77.3999 77.3999 114.8 77.363 77.1423
11 77.3996 77.3999 77.3999 77.4 77.397 77.3767
12 87.6879 92.3999 87.6845 55 92.397 92.2554
13 92.3992 87.6845 92.3999 92.4 91.517 92.0241
PG Total 2519.9999  2519.9999 2519.9999 2520.0000 2520.0000 2520.0082
Min cost 241699177 241699177 241699176 24168910 24166.8 24167.7042
Mean cost NA NA 241699176 2417534 24167.37 24273.5221
Max cost NA NA 241699176 2418492 2416941 24428.1236
NA denotes that the value was not available in the literature.
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Figure VII1.14 : Distribution of objective function value for 30 Trails (2520 MW).

Table VII.13 : Comparison of proposed method for test system 3 (case II , load = 2520 MW).

Method Total Cost Method Total Cost
($/h) $/h)
SA[87] 2497091 GA-MU [144] 24170.755
GA [87] 24398.23 IGAMU [144] 24169.979
GA-SA[87] 2427571 HGA [221] 24169.92
EP-SQP [87] 24266.44 DE [216] 241699177
PSO-SQP[87] 24261.05 GSA [137] 24164251357
UHGA [220] 24172.25 Proposed 24167.7042
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Economic Load dispatch problem with valve-point effects being attempted using
RTO algorithm for various generator test system evaluates the performance of the
proposed approach.

A numerical simulation including comparative studies has been presented to
demonstrate the performance and applicability of the proposed method. The simulation
results reveal the superiority of the proposed technique in solving the DE problem with
valve point effects. Therefore this approach could also be extended to other optimization

and control problems of power systems.

VIL.3. GA based Genetic Engineering operation for solving UCP :

The objective of the UCP is to minimize operation-cost while satisfying the constraints.
However, power system operation needs reformulate tasks that reflect the changes due to
the deregulated power systems to determine generation scheduling from a standpoint of
maximizing profit under competitive environment. It is hard to solve due to the
complexity [65]. In this section, a new GA operation is introduced, this new operation
represents a another kind of crossover its idea derived from genetic engineering
(modification), aim is to plant the good genes in a children generation, where we import
these good genes from many parents with good qualities resulting from the crossing
operation (elite only) for just one child. The purpose of this genetic engineering (GE)
operation is to exploit the maximum best characteristics from the elite group in each
generation,

We present an extension to the standard genetic algorithm (GA), which is based on
concepts of genetic engineering. The motivation is to discover useful and harmful genetic
materials and then execute an evolutionary process in such a way that the population
becomes increasingly composed of useful genetic material and increasingly free of the
harmful genetic material [222]. Compared to the standard GA, it provides some solution
quality advantages to our problem.

In this section, a GA based Genetic Engineering operation (GAGE) is proposed to
solve the UC problem. The results obtained show that, with the application of the

proposed method (GAGE) to the unit commitment problem, better convergences and
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solutions are obtained than with the application of conventional genetic algorithm and the

algorithms proposed the most-recent literature

VIL.3.1. Introduction :

Genetic algorithms (GAs) are a family of general stochastic search methods, which can
be viewed as computational models of Darwinian evolution theory. They use the analogs
of evolutionary operators on a population of states in a search space to find those states
that optimize a fitness function. The search space consists of character-strings of fixed or
variable length (chromosomes or genotypes) composed of the elements of a given
alphabet (alleles). The genotype space is mapped onto another (phenotype) search space.
The fitness function is defined as a function of a state in the phenotype space [222].

Since the biological metaphors (genetic representations, neo-Darwinian evolution
theory) provide the conceptual basis of GAs, it seems natural to introduce some of the
concepts of the most modern branch of biology —genetic engineering— into genetic
algorithms [222].

In genetic engineering, recombination can also refer to artificial and deliberate
recombination of disparate pieces of chromosome (DNA), often from different
organisms, creating what is called recombinant chromosome. A prime example of such a
use of genetic recombination is gene targeting, which can be used to add, delete or
otherwise change an organism's genes. This technique is important to biomedical
researchers as it allows them to study the effects of specific genes. Techniques based on
genetic recombination are also applied in protein engineering to develop new proteins of
biological interest.

The primary motivation of this work is to identify and use any superior genetic
material explicitly by means of genetic engineering. It is similar to the practice of genetic
engineering in the genetics of natural organisms. In genetic engineering, the genetic
engineer classifies the population into one group that possesses a high level of the
property of interest or into another group that lacks it. We shall call the first group "elite".
Then the genetic engineer tries to single out the groups of genes (we shall call them the

elite genes) in the genotypes that are hypothesized to be responsible for the properties of
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interest. we attempt to produce the next population whose genetic material contains more
of these useful elite genes [222].

This concept is inspired by the practice of genetic engineering in the genetics of natural
organisms. We will refer to techniques that manipulate genetic material methods as

genetic engineering operators.

VIL.3.2. Modified Genetic Algorithm (GAGE) :

The GA is modified to include additional genetic engineering operation. The modified
GA includes cycles where new elite genes are evolved, and a new population that is
richer in superior genes is generated [222].

A library of the descriptions of currently identified elite genes are maintained. As the
evolution process proceeds, enhanced by the inclusion of the genetic analysis and the
genetic engineering operators, new elite genes are identified and added to this library.
The elite genes that have been incorporated into this library earlier are retested against the
newly generated populations. This involves checking that they are still superior elite
genes for the current population. Those that do not pass this testing are deleted from the
library [222].

The suggested GAGE models this simple picture of Darwinian evolution enhanced
by genetic engineering technology. For each generation, the comparisons of genetic
material of the most fit subpopulations are carried out. This yields current knowledge
about the useful and harmful genetic features. This knowledge is then used to genetically
engineer the current population during a pre-reproduction stage [222].

The GAGE has the following general structure [222]:

1. Initialization of the population (randomly) and a library of elite genes — the superior
genes.

2. (a) Extraction of the super (highly fit) groups of individuals from the current
population.
(b) Identification of the superior elite genes that distinguish this group from other at
the genetic level. For example, this could be the most fit 10% of the population.
(c)Updating the elite genes’ library by adding the newly evolved genes and

eliminating the ones that test negatively.
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(d) Pre-reproduction processing step that includes various direct manipulations of
genotypes of the population. The goal here is to produce superior genes in the
genetic pool.

3. Reproduction.

4. If the stop conditions (for example, the given number of generations has been
produced or the population has converged, etc.) are not met, go to step 1.

Note that steps 1 and 2 of the algorithm may be executed after a fixed number of
generations at predefined intervals.

We will try to introduce a set of genes derived from a specific set of generation -with
the best qualities- and who are in our case they are an elite group, and will be the number
of genes input to the host randomly and will be the placement of these gene also
randomly, the choice between the genes that represent the same role with the same who's

in the genes of an elite group will be the most frequent choice of any dominant quality.
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Figure VI11.14 : genetic engineering strategy to create recombinant chromosome by genes
targeting.
Will be the method of determining the dominant gene in the search algorithm for the
most frequent as default, and may be a random sorting as a second way,
In fig. VIL.14 provide an example of how the dominant genes transmission from a

candidate of the elite group to genes of the children , where we transferred the dominant
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genes from four members randomly selected of the elite, by identifying the part of the
chromosome to be transferred (by two points), the gene in host individual will be as the

following :

Lif x)0.5 o= geng(0orl)+ geng(0orl)+ geng(0orl)+geng(0orl) (VIL6)

genQargetingz{O lf x<0‘5: whe 4

From the previous relation we notice that there is a part of the domain, which is not
defined when x = 0.5 in this case, we will resort to random choice between the 0 or 1, and
this is the last stage to be applied on the output of the previous generation mechanisms by

a predetermined probability P (probability of engineering).

Initialization

eneration < Maximum
Generations

Done

Calculate cost of UC Schedule
[

Selection
Elitism
Reproduction
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Mutation

Swap mutation operator
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Figure VII.15 : GAGE flowchart.

VIL.3.3. Simulation results :
In this section efficiency of the proposed method GAGE has been tested by solving some
standard and Algeria test system UC problems. However a very widely used ten-unit

system has been the only standard UC problem solved in many papers, variety of
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problems have been chosen to solve using the proposed method to yield a good
perception of its capabilities. These standard problems are a ten-unit system, twenty-unit
system, forty-unit system, sixty-unit systems and Algeria test system.

Total cost of various methods including the proposed method have been compared in
three worst, average and best columns which have been achieved from several runs.
The simulation results have been yield using Matlab® software, and the computer in
which the simulations have been done has a Pentium IV, 3-GHz computer with 4 GB

RAM.

VIIL.3.3.1. Test system 1: standard test :
The proposed RCGA is initially tested on a simple ten-unit base system with a 24-h time
horizon. The unit characteristics of the ten-unit system and the demand are given in

Appendix. 6 (A .11 and A.12, respectively).

Case 1. A system with ten generating units with 10% of spinning reserve has been
selected to study in this part. According to the table VII.15, the UC-GAGE surpasses
other methods in the Best column. One of the widely-used criterions in qualifying UC
methods has been the mean value of their solutions over several executions which
indicates the robustness of those methods. According to this norm, the small average
amount of the PUC- GAGE is a measure of its robustness in producing similar and high
quality solutions over ten independent executions. Another noteworthy data in this table
is successful rate of the solutions produced by the UC part without any modification.
Table VII.14 shows the best combination of scheduled-units in the initial population.
The total generation cost through the scheduling duration is $563,937.6874. Table VII.14
shows the simulation results including the production cost, transition cost, and spinning
reserve capacity of each scheduling time interval, unit-scheduled for 24-hour duration
and the total generation cost. The total generation cost of the best combination of
scheduled-units is $563,937.6874. Fig. VIL.16 shows the convergence tendency of the
best evaluation value in the population during GAGE processing with RCGA and the

conventional GA.
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Figure V1.17 : The output data for all 10 units.

Fig. VII.17 shows the results of unit commitment optimization problem for ten-unit
system by the proposed GAGE with a 24-h time horizon.

To show the advantages of the proposed method, we will compare the performance
of the proposal method GAGE with the various methods of the most recent literature as a
Methodological priority list, a binary-real-coded genetic algorithm, enhanced simulated

annealing algorithm, advanced quantum-inspired evolutionary algorithm, Muller method,
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advanced fuzzy controlled binary particle swarm optimization and real coded firefly

tighter relaxation algorithm in table VI.15.

Table VII.14 : Best individual-Generation schedule and costs obtained by GA for 10 unit system with 10%
of spinning reserve.

Unit Production  Transition  Spinning Generation schedule (MW)
Hour
Silizdlulls Cost ($) Cost(§)  Reserve =t Uity Unit, Unit, Unite Unity Units Unity Unit
[MW]
1 1100000000  13683.1297 0 210 455 245 0 0 0 0 0 0 0 0
2 1100000000  14554.4997 0 160 455 295 0 0 0 0 0 0 0 0
3 1100100000  16809.4485 900 222 455 370 0 0 25 0 0 0 0 0
4 1100100000  18597.6677 0 122 455 455 0 0 40 0 0 0 0 0
5 1101100000  20020.0195 560 202 455 390 0 130 25 0 O O 0 0
6 1111100000  22387.0445 1100 232 455 360 130 130 25 O O O O O
7 1111100000  23261.9795 0 182 455 410 130 130 25 O O O O O
8 1111100000  24150.3407 0 132 455 455 130 130 30 O O 0 O O
9 1111111000  27251.0560 860 197 455 455 130 130 8 20 25 O O O
10 1111111100  30057.5503 60 152 455 455 130 130 162 33 25 10 O O
11 1111111110 31916.0611 60 157 455 455 130 130 162 73 25 10 10 O
12 1111111111 33890.1629 60 162 455 455 130 130 162 80 25 43 10 10
13 1111111100  30057.5503 0 152 455 455 130 130 162 33 25 10 O O
14 1111111000  27251.0560 0 197 455 455 130 130 8 20 25 0O O O
15 1111100000  24150.3407 0 132 455 455 130 130 30 O O 0 O O
16 1111100000 21513.6595 0 282 455 310 130 130 25 O O O O O
17 1111100000  20641.8245 0 332 455 260 130 130 25 O O O O O
18 1111100000  22387.0445 0 232 455 360 130 130 25 O O O O O
19 1111100000  24150.3407 0 132 455 455 130 130 30 O O 0 O O
20 1111111100  30057.5503 490 152 455 455 130 130 162 33 25 10 O O
21 1111111000  27251.0560 0 197 455 455 130 130 8 20 25 O O O
22 1100111000  22735.5210 0 137 455 455 0 0 145 20 25 0 0 0
23 1100010000  17645.3637 0 90 455 425 0 0 0 20 0 0 0 O
24 1100000000  15427.4197 0 110 455 345 0 0 0 0 0 0 0 0
Total 559,847.6874 4090 4275 Total generation cost ($): 563,937.6874
Max
1800 T T Generation T
1600 Min 4
=
= 1400+ e
o
3 1200 -
(0]
S 1000]- i
w
c
S 800t -
©
2 o0t |
(o)
O]
4007_’_'_'_’_,—_'—\—._\—’—._\_\_\_,
200 L L L L
0 5 10 15 20 25

Hours

Figure VI.18 : The output data for Generation schedule and minimum and maximum power.
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From table VI.15, it can be noted that GAGE performs superior to the compared
algorithms, in terms of solution quality and CPU times, the GAGE can find the optimal
solution with the lowest costs and mean deviation. Fig. VI.18 shows the output data for

the generation schedule, minimum and maximum power.

Table VI.15 : Comparison of total cost of the proposed method with recent works for 10-unit system.

Methods Best cost (§)  Average cost ($) Worst cost ($) Standard Time (sec.)
deviation (%)
GA [202] 565,866 567,329 571,336 26 (%) 113
GA [43] 570,781 574,280 576,791 1549.9 ($) 6229
GA [201] 609,023.69 - - - 73.68
SGA [180] 565,121 - 622,846 92.7 (%) 462.31
TLGA [180] 564,426 - 566,182 31 (%) 439313
FPGA [183] 564,094 566,675 569,237 33 (%) -
ICGA [184] 566,404 - - - -
EP [189] - 565,352 - - -
GA [58] 565,852 - 570,032 - -
UCC-GA [201] 563,977 - 565,606 - -
DP [58] 565,825 - - - -
R [58] 565,825 - - - -
LRGA [223] 564,800 - - - -
HPSO [62] 563,942.3 564,772.3 565,782.3 - -
HASP [188] 564,029 564,324 564,490 - -
ICGA [184] - 566,404 - - -
AG [190] - 564,005 - - -
EALR [60] 563,977 - - - -
CR-GA [193] - 563,977 - - -
MPL [224] 563,977.1 - - - -
TSGB [186] 568,315 - - - -
BCGA [225] 563,938 563,938 564,088 18 (%) -
PSO [61] 564,212 565,103 565,783 - -
IPSO [61] 563,954 5564,162 564,579 - -
SA [226] 565,828 565,988 566,260 3.35(%) -
QEA-UC [227] 563,938 564,012 564,711 - -
IQEA-UC [227] 563,938 563,938 563,938 - -
Muller method [228] 563,977 - - 51.6(%) -
BCPSO [229] 563,947 564,285 565,002 5.54(%) -
BRCFF [230] 563,937 564,772 565,597 - -
GSA [163] 563,938 564,008 564,241 2.89(%) -
RM [231] 563,977 - - - 1.15
RCGA 564,338.41 566,997.62 569,637.25 34 (%) 85.12
GAGE 563,937.68 566,059.95 567,949.32 29 (%) 93.5

Sign (—) means that no amount has been reported.

Case 2. To verify the effectiveness and efficiency of the proposed RCGA method in
solving large-scale UC problem, the proposed method is applied on 20-100 unit systems,
the 20, 40 and 60 units data are obtained by duplicating the base case (ten units), whereas
the load demands are adjusted in proportion to the system size. In the simulation, the

reserve is required to be 10% of the load demand.
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For the three UCPs, the best, mean, worst costs and the standard deviations obtained by
GAGE are compared with the reported results using SA [226]; GA [58]; EP [189] and the
improved PSO (IPSO) [61], improved quantum evolutionary algorithm (IQEA) [232],
quantum-inspired binary PSO (QBPSO) [233], DE [234], BNFO [235] and RCGA in 50

trials are summarised in table VI.16.

Table VI.16 : Numerical comparison.

Method Best cost Mean cost Worst cost Std.dev.cost, %  Mean time, s

20-unit

GA 1126243 - 1132059 0.52 733
EP 1125494 1127257 1129793 0.38 340
SA 1126251 1127955 1129112 0.25 17
DE 1123988 1124339 1124539 0.05 71
IPSO 1125279 - 1127643 0.21 -
IQEA 1123890 1124320 1124504 0.05 42
QBPSO 1123297 1123981 1124294 0.09 50
BNFO 1123297 1123431 1123563 0.0002 29
RCGA 1125141 1126347 1127654 0.37 264
GAGE 1123389 1124032 1124641 0.32 272
40-unit

GA 2251911 - 2259706 0.35 2697
EP 2249093 2252612 2256086 0.31 1176
SA 2250063 2252125 2254539 0.20 88
DE 2245631 2245877 2246457 0.04 153
IPSO 2248163 - 2252117 0.18 -
IQEA 2245151 2246026 2246701 0.07 132
QBPSO 2242957 2244657 2245941 0.13 158
BNFO 2242957 2243241 2244237 0.005 92
RCGA 2250286 2251322 2253456 0.35 421
GAGE 2245099 2247634 2248345 0.39 457
60-unit

GA 3376625 - 3384252 0.23 5840
EP 3371611 3376255 3381012 0.28 -
SA - - 3367612 - 2267
DE 3366502 3367166 - 0.03 257
IPSO 3370979 - 3379125 0.24 -
IQEA 3365003 3365667 3366223 0.04 273
QBPSO 3361980 3363763 3365707 0.11 328
BNFO 3361527 3362137 3363251 0.0004 193
RCGA 3370588 3372354 3378214 0.35 756
GAGE 3363154 3364562 3365178 0.30 785

For the 20-, 40-, and 60-Unit systems, in terms of best cost, mean cost and worst

cost, GAGE is better than GA, EP, SA, DE, IPSO and IQEA on all the UC problems.
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CPU time may reflect the difficulty of algorithm implementations when the number
of unit increases. The mean CPU time shown in table VI.16 may not be directly
comparable because of different computers used. Therefore it is still substantial to
compare GAGE with some recent algorithms [16-19] because of same level of CPU
speed (better than Pentium IV). In table VI.16, the CPU times of GAGE are much better
than those of other algorithms except SA and DE. Furthermore, it is worth noting that the
CPU times of GAGE increase approximately linear with respect to the system size of

UCP, which is favourable for large-scale UCP applications.

VIIL.3.3.1. Test system 2: the Algerian power network:
In this case, the proposed method was applied to the electrical network in Algeria (ten-
unit) to assess the suitability of the algorithm. The unit characteristics of the Algerian
network system and the demand are taken from [236] and also given in Appendix. 8
(A.15 and A.16, respectively). In the simulation, the reserve is required to be 10% of the
power demand. Scheduling of the generation obtained by the proposed GA method for
the system is given in table VIIL.17.

Fig. VLI.19 shows the convergence tendency of the best evaluation value in the

population during GAGE processing.

x 10
7 T T T
6.5 i
&
= 6r —
1]
o
(@]
© L 4
2 55
|—
5 |- -
\
45 L L L L L
50 100 150 200 250 300
Generatios

Figure VIL.19 : Typical performance of the GAGE in case Algerian network system.
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Table VI.17 : Best individual-Generation schedule and costs obtained by GAGE for Algerian
network system.

Production Transition Spinning Generation schedule (MW)
Hour Cost ($) Cost ($) Reserve ) ) ) - - ) . . . .
[MW] Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit8 Unit9 Unit 10
1 3367.53 0 1790 0 0 365.50 365.5 0 0 0 0 0 0
2 2839.00 26 2720 72 0 319.00 319.0 0 0 0 0 0 0
3 1667.16 397 1014 72 15.00 88.82 88.82 15.00 15.00 100 100 168.34 0
4 1664.15 0 1015 72 14.91 88.65 88.65 15.00 14.91 100 100 167.85 O
5 1655.15 0 1018 72 14.65 88.14 88.14 15.00 14.65 100 100 166.40 0
6 1543.17 500 1488 72 10.00 73.69 73.69 15.00 10.00 100 100 125.46  73.69
7 1556.96 0 1483 72 10.00 74.26 74.26 15.00 10.00 100 100 127.09  74.26
8 1683.27 0 1438 72 10.40 79.63 79.63 15.00 1040 100 100 142.29  79.63
9 1832.04 0 1387 72 14.13 87.09 87.09 15.00 14.13 100 100 163.43  87.09
10 1901.25 0 1364 72 15.76 90.35 90.35 15.76 15.76 100 100 172.65 90.35
11 1944.02 0 1350 72 17.05 92.94 92.94 17.05 17.05 100 100 175.00 92.94
12 1950.19 0 1348 72 17.28 93.38 93.38 17.28 17.28 100 100 175.00 93.38
13 1965.67 0 1343 72 17.83 94.49 94.49 17.83 17.83 100 100 175.00 94.49
14 2041.32 0 1319 72 20.50 99.83 99.83 20.50 20.50 100 100 175.00 99.83
15 2031.74 0 1322 72 20.16 99.16 99.16 20.16 20.16 100 100 175.00 99.16
16 1987.51 0 1336 72 18.61 96.05 96.05 18.61 18.61 100 100 175.00  96.05
17 1886.09 0 1369 72 15.42 89.66 89.66 1542 1542 100 100 170.72  89.66
18 1805.32 0 1396 72 13.47 85.77 85.77 15.00 1347 100 100 159.70  85.77
19 1758.31 0 1412 72 12.30 83.43 83.43 15.00 1230 100 100 153.07 83.43
20 1864.98 0 1376 72 14.94 88.70 88.70 15.00 1494 100 100 168.00 88.70
21 2109.29 0 1298 72 22.83 104.49 104.49 22.83 2283 100 100 175.00 104.49
22 2145.56 0 1287 72 24.05 106.94 106.94 24.05 24.05 100 100 175.00 106.94
23 1993.79 0 1334 72 18.83 96.49 96.49 18.83 18.83 100 100 175.00  96.49
24 1864.98 0 1376 72 14.94 88.70 88.70 15.00 14.94 100 100 168.00  88.70
Total 47,058.5631 923 29524 Total generation cost ($): 47,981.5631

Table VI.19 : Comparison with other variant GA.

Methods  Best ($) Average () Worst (%)
GA 48,904.64 49,392.22 49,751.77
RCGA 48,781.25 48,580.32 49,291.92
GAGE 47,981.56 48,102.10 48,533.22

Tables V1.9 show the results of the proposed method comparing with other variant

GA method results, the obtained result in this section represents a nearer global optimal

solution to the problem and verifies the correctness of the proposed algorithm.

VI1.4. Conclusion :

In this chapter we try to simulate how the roots look for water under the ground, we try to

found an algorithm; (RTO) which finds the optimal values to solve such problem.

We developed by using three kinds of gathered roots which create a new generation

according to the previous one, the first one is to create a group of roots near from the
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wetter roots —the best- of the previous generation in order to exist more in that place, the
second one is the roots which take the same previous direction, these ones are created
from those roots which have a considerable witness degree with a random addition that
locked with the augmentation of the generation number, the last one is the random roots
instead of the weak ones in order to add and to avoid the local solution.

In the first section we clarify the efficiency of this method by its experiment on some
known functions and by comparing it to recent techniques, where we find that it can find
a new way of solution, one of its characteristics is the largest field of research due to the
behavior of the roots.

Secondly, A new algorithm GAGE has been proposed to solve discrete optimisation
problems, which is inspired by the Genetic Engineering operation on the GA. In GAGE,
the modified GA includes cycles where new elite genes are evolved, and a new
population that is richer in superior genes is generated. GAGE is efficiently applied to
solve the UCP. The propose method is a combination of GAGE and the conventional
Lambda-iteration method, which includes some other constraints. The total production
costs of GAGE over the scheduled period are less expensive than the conventional

genetic algorithm and the algorithms proposed the recent literature.
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General conclusions

v Introduction

One of the main objectives when controlling power generation systems, to make the best
use of available resources of generation to satisfy the instantaneous variations in the load
demand without violating any of the constraints existing in the system. The various
constraints arise in a power system from the operational limitations of the generating
units and their accessories. Active power generated in a power system is controlled in
tow time based loops: Economic Dispatch and Unit Commitment. Unit Commitment and
Economic Dispatch loops schedule the generating resources to meet the forecasted load
demand by continuously monitoring the load variations and adjusting the generation
accordingly. This also ensures efficient constant frequency operation [237].

Review of various existing methods for the scheduling problems in power system is
carried out. All these methods are proved to be efficient. The main objective of the work
is to solve the scheduling problems in the power generation using a new and efficient
method and to propose a simple and improved new algorithm to solve different types of
ED problem viz, ED with prohibited zones and ramp-rate limit constraints, security

constrained ED.

v" Summary and Major Findings

The review on the existing solution strategies led to the scope of developing efficient
scheduling methods in the field of power generation. our proposed methods are a good
solution strategies and has been used for solution in many optimization tasks. In this
thesis, efficient solutions are proposed for solution of the dispatch and scheduling

problems in the power generation sector.

e Economic Dispatch Problem

As the first stage of the work, Economic load dispatch problem has been solved using
various algorithms have been proposed such as GA, PSO, PS, BB-BC and ABC. The
proposed algorithms have been successfully validated with classical and intelligent

techniques of economic load dispatch and hence has reduced total fuel cost and power
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loss. The different proposed algorithms are applied in a ED, ED with valve-point effects
and Combined Economic Emission Dispatch (CEED) environment. The advantages of
the algorithms is demonstrated through simulations on different IEEE test systems.

In order to develop a solution strategy to handle larger problems, propose anew
hybrid algorithm (GA-PS, PSO-PS, HBB-BC) forsolving the EDP, the proposed
methods are tested and validated on various electrical test systems and cases taking into
different constraints, the results show that the optimal dispatch solutions determined,
which confirms that the different algorithms are well capable of determining the global or
near global optimum dispatch solution, the simulation results clearly show that the
proposed hybrid methods can be used as an optimizer providing satisfactory solutions
compared to the first methods.

In this thesis we introduce a new method for optimization that is called root tree
optimization algorithm (RTO), which was developed and extracted from the movement
of the plants root when they look for the nearest place of water, in this algorithm we lean
on the behavior of the desert plants especially where the water resources lacked. The
robustness and efficiency of the proposed new method is validated on nonlinear functions
(different IEEE test systems) and compared to recent methods addressing the same
problem, our simulation results illustrate that the performance of the proposed algorithm
can efficiently handle stochastic cost functions, also RTO algorithms are found to take

lesser computation time compared to other stochastic solution methods.

e Unit Commitment Problem

One of the disadvantages of traditional genetic algorithms is premature convergence
because the selection operator depends on the quality of the individual, with the result
that the genetic information of the best individuals tends to dominate the characteristics
of the population [181]. Furthermore, when the representation of the chromosome is
linear, the crossover is sensitive to the encoding or depends on the gene position. The
ends of this type of chromosome have only a very low probability of changing by
mutation. In this work a genetic algorithm is applied to the unit commitment problem
using an annular crossover operator where the chromosome is in the shape of a ring, and

a modified operator. The results obtained show that, with the application of the proposed
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operators to the unit commitment problem, better convergences and solutions are
obtained than with the application of traditional genetic operators.

first of all, an RCGA is developed to solve the UC problem. In the proposed GA, the
initial populations generated are such that it totally avoids the penalty functions. The
populations evolved in the consecutive generations are repaired and approximated
regarding the constraint violation of minimum up/down time constraints and
demand/spinning reserve constraints. The effectiveness of the proposed algorithm has
been tested on a number of sample systems. The investigations reveal that the proposed
RCGA is simple, reliable and efficient.

Secondly, A new algorithm GAGE has been proposed to solve discrete optimisation
problems, which is inspired by the Genetic Engineering operation on the GA. In GAGE,
the modified GA includes cycles where new elite genes are evolved, and a new
population that is richer in superior genes is generated. GAGE is efficiently applied to
solve the UCP. The propose method is a combination of GAGE and the conventional
Lambda-iteration method, which includes some other constraints. The total production
costs of GAGE over the scheduled period are less expensive than the conventional

genetic algorithm and the algorithms proposed the recent literature.

v" Scope for future research

The proposed GAGE to solve the unit commitment problem with security constraints
could be extended with bus voltage limits, limits on reactive power generation, tap-
changing and phase-shifting transformers. The unit commitment problem could also be
extended with load shedding and scheduled outages.

The unit commitment problem can be solved using hybrid artificial intelligent
techniques to improve the computational speed. Hence the present approach and the
results presented in this work will encourage further research in this field.

The RTO and GAGE algorithms developed in this thesis will be extremely useful
for electric power utilities for enhancing the various types of economic dispatch problems

and the unit commitment scheduling problem in an electric power system.
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Appendix. 1 :
Table A.1: Generator cost coefficients for 30 IEEE bus system.
Bus N° | Real power output Cost coefficients
limit (MW)
Min Max a b c
1 50 200 0.00375 2.00 0
2 20 80 0.01750 1.75 0
5 15 50 0.06250 1.00 0
8 10 35 0.00834 3.25 0
11 10 30 0.02500 3.00 0
13 12 40 0.02500 3.00 0
Table A.2: Generator cost coefficients for 30 IEEE bus system
Real power output Cost coefficients
Bus N° limit (MW)
Min Max a b c e f
1 50 200 0.00160 2.00 150 50 0.063
2 20 80 0.01000 2.50 25 40 0.098
Appendix. 2 :

Table A.3: Generating unit data of 15 units system.

Output limit Cost Coefficients
Unit (MW)

Min Max a b c
1 150 455 671 10.1 0.000299
2 150 455 574 102 0.000183
3 20 130 374 88 0.001126
4 20 130 374 88 0.001126
5 150 470 461 104 0.000205
6 135 460 630 10.1 0.000301
7 135 465 548 9.8 0.000364
8 60 300 227 112 0.000338
9 25 162 173 112 0.000807
10 25 160 175 10.7 0.001203
11 20 80 186 102 0.003586
12 20 80 230 9.9 0.005513
13 25 85 225 13.1 0.000371
14 15 55 309 12.1 0.001929
15 15 55 323 124 0.004447
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The loss coefficients f matrices of 15 generating units :

S
Il

[ 0.0014 0.0012 0.0007-0.0001 -0.0003 -0.0001 -0.0001-0.0001 -0.0003 0.0005 -0.0003 -0.0002 0.0004 0.0003 -0.0001
0.0012 0.0015 0.0013 0.0000 - 0.0005 -0.0002 0.0000 0.0001 -0.0002-0.0004-0.0004 -0.0000 0.0004 0.0010 -0.0002
0.0007 0.0013 0.0076-0.0001 -0.0013 -0.0009 - 0.0001 0.0000 -0.0008 -0.0012-0.0017 -0.0000 -0.0026 0.0111 -0.0028

-0.0001 0.0000-0.0001 0.0034 -0.0007-0.0004 0.0011 0.0050 0.0029 0.0032-0.0011 -0.0000 0.0001 0.0001-0.0026

-0.0003-0.0005-0.0013-0.0007 0.0090 0.0014 -0.0003 -0.0012-0.0010 -0.0013 0.0007 -0.0002 -0.0002 -0.0024 -0.0003

-0.0001-0.0002-0.0009-0.0004 0.0014 0.0016 -0.0000 -0.0006-0.0005 -0.0008 0.0011 -0.0001 -0.0002-0.0017 0.0003

-0.0001 0.0000-0.0001 0.0011 -0.0003 -0.0000 0.0015 0.0017 0.0015 0.0009 -0.0005 0.0007 -0.0000 -0.0002 -0.0008

-0.0001 0.0001 0.0000 0.0050 -0.0012 -0.0006 0.0017 0.0168 0.0082 0.0079 -0.0023 -0.0036 0.0001 0.0005 -0.0078

-0.0003-0.0002-0.0008 0.0029 -0.0010 -0.0005 0.0015 0.0082 0.0129 0.0116-0.0021 -0.0025 0.0007 -0.0012 -0.0072

-0.0005-0.0004-0.0012 0.0032 -0.0013 -0.0008 0.0009 0.0079 0.0116 0.0200 -0.0027 -0.0034 0.0009 -0.0011-0.0088

-0.0003-0.0004-0.0017-0.0011 0.0007 0.0011-0.0005-0.0023 -0.0021 -0.0027 0.0140 0.0001 0.0004 -0.0038 0.0168

-0.0002-0.0000-0.0000-0.0000 - 0.0002-0.0001 0.0007-0.0036-0.0025 -0.0034 0.0001 0.0054 -0.0001-0.0004 0.0028
0.0004 0.0004-0.0026 0.0001-0.0002 -0.0002-0.0000 0.0001 0.0007 0.0009 0.0004 -0.0001 0.0103-0.0101 0.0028
0.0003 0.0010 0.0111 0.0001 -0.0024 -0.0017-0.0002 0.0005 -0.0012 -0.0011 -0.0038 -0.0004 -0.0101 0.0578 -0.0094

|- 0.0001-0.0002-0.0028-0.0026 -0.0003  0.0003 -0.0008-0.0078-0.0072 -0.0088 0.0168 0.0028 0.0028 -0.0094 0.1283 |

B,=[-0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 -0.0017 -0.0000 -0.0032 0.0067 -0.0064]
B,,= 0.055.

Appendix. 3 :
Table A.4 : Fuel Cost coefficients.
Generator N  a; b; Ci P,..[pu]l P, [p.u]
1 100 200 10 0.50 0.02
2 120 150 10 0.60 0.03
3 40 180 20 1.00 0.05
Table A.5 : NO, Emission coefficients.
Generator N° Zinox hinox kinox
1 0.5783298 0.00816466 1.6103e-6
2 0.3515338 0.00891174  2.1999e-6
3 0.0884504 0.00903782  5.4658e-6
Table A.6 : SO2 Emission coefficients.
Generator N°  dis; eisor fisoz
1 0.04373254 -9.4868099¢-5 1.4721848e-7
2 0.055821713 -9.7252878e-5 3.0207577e-7
3 0.027731524  -3.5373734e-4 1.9338531e-6
Appendix. 4 :
Table A.7 : Generator data of three unit test system.
Units  pi. P a b c e f
1 100 600 0.001562 7.92 561 300 0.0315
50 200 0.004820 7.97 78 150 0.063
3 100 400 0.001940 7.85 310 200 0.042
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Appendix. 5 :

Table A.8 : Generator data of 15 unit test system.

Units Pr:Iin Pr:Iax a b c e f

1 0 680  0.00028 8.10 550 300 0.035
2 0 360  0.00056 8.10 309 200 0.042
3 0 360  0.00056 8.10 307 150 0.042
4 60 180  0.00324 7.74 240 150 0.063
5 60 180  0.00324 7.74 240 150 0.063
6 60 180  0.00324 7.74 240 150 0.063
7 60 180  0.00324 7.74 240 150 0.063
8 60 180  0.00324 7.74 240 150 0.063
9 60 180  0.00324 7.74 240 150 0.063
10 40 120  0.00284 8.60 126 100 0.084
11 40 120  0.00284 8.60 126 100 0.084
12 55 120  0.00284 8.60 126 100 0.084
13 55 120  0.00284 8.60 126 100 0.084

Generalized loss coefficient for IEEE-30 bus test system:

[ 0.1382 -0.0299
-0.0299  0.0487
0.0044 -0.0025
-0.0022  0.0004
-0.0010 0.0016

0.0044

-0.0025

0.0182

-0.0070

-0.0022

0.0004

-0.0070

0.0137

-0.0010 -0.0008 |

-0.0066 -0.0066

0.0016 0.0041

0.0050 0.0033

1-0.0008  0.0041

Boi =[ -0.0107 0.0060 -0.0017 0.0009 0.0002
Boo = 9.8573¢ - 4;

-0.0066
-0.0066

0.0050
0.0033

0.0109
0.0005

0.0005
0.0244
0.0030 1;

Table A.9 : Cost coefficients IEEE 30-bus test system.

Generator N° | a; bi  ci | Poax (p) | Poin (p00)
1 100 | 200 | 10 0.50 0.02
2 120 | 150 | 10 0.60 0.03
3 40 | 180 | 20 1.00 0.05
4 60 | 100 | 10 1.20 0.06
5 40 | 180 | 20 1.00 0.05
6 100 | 150 | 10 0.60 0.03

Table A.10 : Cost emission IEEE 30-bus test system.

Generator N° o Bi Vi G Ai
1 4.091 | -5.554 | 6.490 | 2.0e-4 | 2.857
2 2.543 | -6.047 | 5.638 | 5.0e-4 | 3.333
3 4258 | -5.094 | 4.586 | 1.0e-6 | 8.000
4 5326 | -3.550 | 3.380 | 2.0e-3 | 2.000
5 6.131 | -5.555 | 5151 | 1.0e-6 | 6.667
6 4258 | -5.094 | 4.586 | 1.0e-5 | 8,000
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Appendix. 6.
Table A .11 : Unit data of the 10-unit 24 hour test system.

Unit 1 Unit 2 Unit3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit9  Unit 10
P™™ (MW) 455 455 130 130 162 80 85 55 55 55
P™" (MW) 150 150 20 20 25 20 25 10 10 10
a, 1000 970 700 680 450 370 480 660 665 670
a; 16.19 17.26 16.60 16.50 19.70 22.26 27.74 2592 27.27 27.79
a, 0.00048  0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173
ty, (h) 8 8 5 5 6 3 3 1 1 1
taown (h) 8 8 5 5 6 3 3 1 1 1
Su($) (hot start) 4500 5000 550 560 900 170 260 30 30 30
Sc($) (cold start) 9000 10000 1100 1120 1800 340 520 60 60 60
Leold start (h) 5 5 4 4 4 2 2 0 0 0
Initial State (h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1

Table A .12 : Demand of 10 unit 24 hour test system.

Load Load Load
Hour (MW) Hour (MW) Hour (MW)
1 700 9 1300 17 1000
2 750 10 1400 18 1100
3 850 11 1450 19 1200
4 950 12 1500 20 1400
5 1000 13 1400 21 1300
6 1100 14 1300 22 1100
7 1150 15 1200 23 900
8 1200 16 1050 24 800

Appendix. 7.

Table A .13 : Load and Reserve (Wood and Wollenberg 1996).

Hour 1 2 3 4 5 6 7 8
Demand (MW) 450 530 600 540 400 280 290 500
Reserve (MW) 45 53 60 54 40 28 29 50

Table A .14 : Test System (Wood and Wollenberg 1996).

Unit 1 Unit 2 Unit 3 Unit 4
P™X (MW) 300 250 80 60
P (MW) 75 60 25 20
ag 684.74 585.62 213.00 252.00
a 16.83 16.95 20.74 23.60
a 0.0021 0.0042 0.0018 0.0034
tp (h) 5 5 4 1
taown (h) 4 3 2 1
SK($) (hot start) 500 170 150 0.00
S«($) (cold start) 1100 400 350 0.02
teotdstart () 5 5 4 0
Initial State (h) 8 8 -5 -6
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Appendix. 8.
Table A .15 : Unit data of the Algerian network system.
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit6  Unit7 Unit8  Unit9 Unit10
P™™ (MW) 72 70 510 400 150 100 100 140 175 450
P™" (MW) 8 10 30 20 15 10 10 15 18 30
a, 0 0 0 0 0 0 0 0 0 0
a, 1.5 2.5 1.5 1.5 2.5 2.5 2 2 2 1.5
a 0.0085 0.0170  0.0085  0.0085 0.0170 0.0170  0.0030  0.0030  0.0030  0.0085
tup (h) 1 2 5 5 2 2 2 2 2 5
taown (h) 1 2 5 5 2 2 2 2 2 1
Su(8$) (hot start) 26 17 500 500 90 55 55 90 90 500
Sc($) (cold start) 26 17 500 500 90 55 55 90 90 500
teotd stare () 2 2 4 4 2 2 2 2 2 4
Initial State (h) 0 0 0 0 0 0 0 0 0 0

Table A .16 : Demand of Algerian network system.

Load Load Load
Hour (MW) Hour (MW) Hour (MW)
1 731 9 780 17 798
2 710 10 803 18 771
3 703 11 817 19 755
4 702 12 819 20 791
5 699 13 824 21 869
6 679 14 848 22 880
7 684 15 845 23 833
8 729 16 831 24 791
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