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Abstract

In engineering applications, it is well known that the minimum weight criteria with high per-

formance is essential in the design of certain structures like aircraft components, aerospace

vehicles and civil structures.. etc. This task could be a challenge especially when the design

of wing structures such as aircraft wings, rotor blades, robotic arms is the subject. The be-

havior of such structures is highly nonlinear due to the deformation of their geometry. The

solution of such problems becomes very complex, especially with the use of composite mate-

rials. The effects of large displacements may play a primary role in the correct prediction of

the behavior of these structural members, which continue to be modeled as a flexible beams. In

this way, another difficult task can be imposed here when some structural elements like plates

and shells which can undergo inplane thermo-mechanical stresses that affect their dynamic and

static behaviors. This problem has stimulated several researchers to work on the subject to

provide accurate predictions of free vibration of laminated plates, subjected to inplane thermal

or mechanical stresses. The main aim of the present work is the contribution in the analytical,

experimental and numerical analysis of nonlinear behavior of some structural elements. The

nonlinearities considered in this thesis are geometric nonlinearities arising from the large dis-

placements and nonlinearities arising when a part of structure as plates, may lose their stiffness

under inplane thermal or mechanical loading effect. An analytical model has been developed

for beams large deflection analysis followed by an experimental program for the same purpose.

Furthermore, a beam finite element based on Euler-Bernoulli beam theory, taking in consid-

eration composite material has been formulated for nonlinear bending analysis. A four noded

finite element based on first order shear deformation theory has been used to study the effect of

thermal and mechanical inplane loading on dynamic behavior of laminated plates.The obtained

results have been verified and validated with the available results in the literature.

Keywords: Nonlinear analysis, Composite material, Analytical, Experimental, beams, Lami-

nated plates, Finite element.
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 ملخص 
 

الفضائية  لطائرات ،المركبات  من المعروف في التطبيقات الهندس ية، أأن معيار الحد الأدنى للوزن مع الأداء العالي،  يعد ضرورة في تصميم  بعض الهياكل  مثل مكونات ا

يكون  سلوك مثل هذه الهياكل   .الآلية  ذرع، الأ والهياكل المدنية. هذه المهمة س تكون تحديا خصوصا عند تصميم هياكل الأجنحة  مثل أأجنحة الطائرات، شفرات الدوار

تاأثيرات الاإزاحات الكبرى  غير خطي بدرجة كبيرة بسبب تشوه شكلها الهندسي فيصبح حل هذه المشكلات معقدًا للغاية ، لا س يما مع اس تخدام المواد المركبة. قد تلعب  

لتي لا تزال تعتبر كروافد مرنة. و يزداد الأمر صعوبة  عندما تتعرض بعض هده  العناصر الهيكلية ، واالهيكلية  دورًا رئيس يًا في التنبؤ الصحيح لسلوك هؤلاء الأعضاء

لى الاجهادات الحرارية أأو الميكانيكية الداخلية التي تؤثر على سلوكها الديناميكي و الس تاتيكي.  و ق د حفزت هذه المشكلة العديد من  مثل الألواح والهياكل القشرية اإ

السلوك غير الخطي    مل على الاهتزاز الحر للألواح المصفحة المعرضة  للاجهادات  الحرارية و الميكانيكية. الهدف الرئيسي من العمل  هو المساهمة في دراسةالباحثين للع

الناش ئة عن عمليات الاإزاحات الكبرى و    لبعض العناصر الهيكلية ، تحليليا و تجريبيا ورقميا. اللاخطية التي تم اعتبارها  في هذه الأطروحة هي اللاخطية الهندس ية

طوير نموذج تحليلي من أأجل  اللاخطية الهندس ية التي تنشاأ عندمايتعرض جزء من الهيكل كالصفائح ، لفقدان  صلابته تحت تاأثير التحميل الحراري أأو الميكانيكي.  تم ت

بالاإضافة الى، تم صياغة عنصر محدود استنادا على نظريه برنولي للروافد   من أأجل  دراسة الاإزاحات الكبرى للروافد متبوع ببرنامج تجريبي من أأجل نفس الهدف.  

و الميكانيكي على السلوك الديناميكي للألواح المصفحة باس تع دراسة تاأثير التحميل الحراري  و فد تم  مال طريقة العناصر المحدودة دراسة الانحناء الاخطي  للروافد.  

 للألواح    المصفحة.  تم التحقق من النتائج التي تم الحصول عليها و التحقق من صحتها مع النتائج المتاحة  . الدرجة الأولىاستنادا لنظرية تشوه القص من 

اللوحات المصفحة، العناصر المحدودة.  ،الروافد خطي ، المواد المركبة، التحليلي،تجريبي،لاال التحليل:  الكلمات المفتاحية    
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General Introduction

Material is the basic element of all natural and man-made structures. Figuratively speaking it

materializes the structural conception. Technological progress is associated with continuous

improvement of existing material properties as well as with expansion of structural material

classes and types. Usually, new materials emerge due to necessity to improve the structure

efficiency and performance, but as a rule, new materials themselves in turn provide new oppor-

tunities to develop updated structures and technology, while the latter presents material science

with new problems and tasks. One of the best manifestations of this interrelated process in

development of materials, structures, and technology is associated with composite materials.

Because of their high strength-to-weight ratio, long fatigue life, resistance to corrosion, high

damping, structural simplicity, and possible use for aeroelastic tailoring, advanced laminated

structures made of fiber-reinforced composite materials, such as boron-epoxy, graphite-epoxy,

and boron-aluminum, etc. . . , have emerged as primary malerials for advanced aerospace ve-

hicle structures, automotive parts, civil engineering. They show great promise for improved

performance. Moreover, the inherent anisotropy is an important property of composite materi-

als and one of the basic reasons for their success.

Engineers and scientists from applied sciences are involved in one or more of the following

activities:

• Studying engineering systems or their components.

• Developing mathematical models of physical systems.

• Carry out numerical simulations of the mathematical models.
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• Conduct experiments to determine and understand characteristics of the system.

• Design the components of a system.

• Manufacture the components and integrate them to build a system.

Manufacturing a system or its components can take place only after the components are

designed to meet the functionality and other requirements. On the other hand, design is an

iterative process of selecting materials and configurations to meet the design requirements and

cost-effectiveness. During each stage of the design, analysis is carried out for the selected con-

figuration (i.e. geometry, materials and loads). Analysis is deterministic and involves analyti-

cally determining the response of the system or its components with the help of a mathematical

model and a numerical method. A mathematical model of a system or its components is a

collection of relationships - algebraic, differential, and/or integral - among the quantities that

describe the response.

The minimum weight criteria with high performance is essential in the design of aircraft,

aerospace vehicles and civil structures until today. This task will be a challenge, especially

when the design of wing structures such as aircraft wings, rotor blades, robotic arms or some

kind of bridges, is the subject. The behavior of such structures is highly nonlinear due to the

deformation of their geometry and the solution of such problems becomes very complex, es-

pecially with the use of composite materials. The effects of large displacements may play a

primary role in the correct prediction of the behavior of these members, which continue to be

modeled as flexible beams. In this way, another difficult task can be imposed here when some

structural elements as plates and shells can undergo inplane thermo-mechanical stresses that

affect their stiffness (eg: high speed aircrafts, rockets and launch vehicles, traines) and con-

sequently, their dynamic and static behavior. This problem has stimulated the researchers to

provide an accurate prediction of free vibration of laminated plates, subjected to inplane ther-

mal or mechanical stresses.
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The search for ways to represent the true nonlinearity of structures goes back to Renais-

sance times, and presents theories of nonlinear elastic and inelastic behavior are the result of

approximately more than two hundred years of steady development. But recently the computer

has made it possible to put much of this knowledge in use in the design . In recent years, non-

linear mechanics has gained an important position in our modern technology, and its need and

importance to our future technology is growing at a much faster rate. In order to understand

material and structural behavior and determine the nonlinear response and of structures, we

must develop new methodologies and mathematical modeling that adequately represent such

types of problems [1, 2, 3, 4]. The nonlinearities considered in this thesis are geometric non-

linearities arising from the large displacements and moderate rotations considering small strain

case of composite beams. In addition, geometric nonlinearities arising when a part of structure

as plates, may lose their stiffness under inplane thermal or mechanical loading, which affect

their dynamic and static behavior.

Thesis objectives

The main objective of the present work is to contribute in nonlinear behavior analysis of beams

and plates. This investigation will be carried out analytically, experimentally and numerically.

This work is divided in two parts. The first part is destined for beams analysis, which an ana-

lytical model is firstly developed to analyze the large deflection of laminated cantilever beams.

Secondly, an experimental program is prepared in order to carried out several bending experi-

ments on isotropic and composite cantilever beams. In addition, a finite element beam based on

the Euler-Bernoulli beam theory, will be formulated for beams large deflection analysis. In the

second part, the effect of thermo-mechanical loading on free vibration of laminated composite

plates is investigated.
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The general lay-out of the thesis is as follows:

• Chapter 1 presents basic concepts of nonlinear phenomena. Different types of nonlin-

earities in solid mechanics are introduced, including geometric, material, kinematic, and

force nonlinearities. The importance of nonlinear analysis in structural mechanics is also

addressed. In addition, general solving procedures of nonlinear equations system have

been presented.

• In Chapter 2, brief historical review on analytical analysis of large deflection isotropic

beams is given. A few available papers on analytical analysis of large deflection com-

posite beams are also presented. Previous works on geometrically nonlinear analysis

of isotropic, anisotropic, sandwich and functionally graded beams using finite element

method have been reviewed. In addition, the nonlinear dynamic responce analysis of

isotropic and composite beams are presented. Free vibration analysis of composite plates

under inplane thermo-mechanical loading have been finelly reviewed.

• In Chapter 3, several bending experiments are carried out on isotropic and compos-

ite cantilever beams to verify the analytical as well as the finite element formulations

in chapters 4 and 5, respectively. Three different types of materials are considered for

these experiments, where the manufacturing of materials and the preparation of speci-

mens are firstly addressed. The characterization of used materials is also presented and

described by the measurement of their properties through a series of static tensile tests.

Furthermore, a calcination has been carried out to define more properties that could not

be measured by tensile tests. The experiments setup are described in detail and their re-

sults are presented and commented.
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• An analytical formulation has been carried out in Chapter 4, to analyze the large deflec-

tion of composite beams. The proposed formulation is based on the elastica beam model,

according to the classical Euler-Bernoulli beam theory. The present formulation is pre-

pared to be able to deal with symmetric and non-symmetric laminated beams. Simpson

method has been used to solve the nonlinear equations. Subsequently, for the purpose of

validation, the obtained results have been compared with both analytical models and ex-

perimental studies existing in the literature. Furthermore, for the sake of comparison, the

obtained results of the present formulation have been also compared with those obtained

from the performed experiments in chapter 3. In addition, the varying parameters, such

as fiber orientation angle, anisotropic ratio E1/E2 and slenderness ratio are examined

in order to discover and understand their effect on the deflections variation of laminated

beams.

• In Chapter 5, one-dimensional finite element formulation, based on the Euler-Bernoulli

beam theory has been developed for the nonlinear bending analysis of symmetric and

non-symmetric laminated beams. The present element has been defined by two nodes

and three degree of freedom per node. The principle of total potential energy has been

used for the derivation of stiffness and geometrical matrices. The direct iterative method

has been used to solve the nonlinear equations. Subsequently, for the purpose of valida-

tion the present element has been compared with the available analytical models, exper-

imental studies from the literature as well as the present analytical model presented in

chapter 4. In addition, a parametric study is presented in order to examinate the effect of

some parameters such as fiber orientation angle and slenderness ratio on the deflection

variation of laminated beams with different boundary conditions.

• Free vibration of laminated composite plates under thermal and mechanical loading ef-

fect have been analyzed in Chapter 6, using a four-nodded rectangular finite element

based on first order shear deformation theory with assumed natural shear strain. Total

potential energy and Hamilton’ principles have been used to derivate stiffness, geometric
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and mass matrices. The convergence of the natural frequency for unloaded plates case

and the critical temperature as well as the buckling critical load has been checked. The

effects of thickness to side ratio, anisotropy degree of single layer and fibers orientation

angle, on free vibration and critical temperature and critical buckling load have been also

analyzed.

• Finally, the General Conclusion contains summary and conclusions of the present re-

search. It also presents contributions and suggestions for the future work.
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Literature Review
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Chapter1

Basic Concepts of Nonlinear Phenomena

1.1 Introduction

"No problem in nonlinear engineering is simple no matter how small or how unimportant it

may appear to be. Its the nonlinear behavior is the one that makes this problem complex and

you need to have a complete understanding of this nonlinear behavior in order to provide a

reasonable solution."

Modern technological advances challenge engineers to carry out increasingly complex and

costly projects, which are subject to severe reliability and safety constraints. These projects

cover domains such as space travel, aeronautics and high constructions, where reliability and

safety are of crucial importance. One of the main responsibilities in such domains is the design

of structural components task. The practicing design engineer, who deals with the design of

structural components in general, is often confronted with a challenging problems that could

appear with the introduction of any new technology, especially the design of lighter compo-

nents with high performance because it is important to say that one of the main interests in the

design phase of these projects is the minimum weight criteria.
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CHAPTER 1. BASIC CONCEPTS OF NONLINEAR PHENOMENA

In this light, for a proper understanding, analysts need mathematical models that allow them

to simulate the behavior of complex physical systems. These models are then used during the

design phase of the projects. Nonlinear analysis is a broad, interdisciplinary field characterized

by a mixture of analysis, topology, and applications. Its concepts and techniques provide the

tools for developing more realistic and accurate models for a variety of phenomena encountered

in fields ranging from engineering [4].

The future of engineering is becoming increasingly nonlinear, and both the engineering stu-

dent and the practicing engineer should be prepared for it. The material (informations) included

in this chapter is carefully selected in order to provide a good start in understanding and com-

prehending important aspects of nonlinear analysis, so that the engineering student can start

preparing himself for the very challenging nonlinear problems of the present and the future.

In order to understand nonlinearity in solid mechanics, it is important to define and under-

stand linearity first. A linear system is defined such that the relationship between input and

output is linear. Specifically, in structural mechanics, the relationship between applied loads

(input) and displacements (output) is linear. When an applied load is doubled, the displacement

will also be doubled. So, response is directly proportional to load. Mathematically, linearity

can be explained using a linear operator [5]. Linearity may be a good representation of the

reality or may only be the inevitable result of assumptions made for analysis purposes. In the

following, the fundamental assumptions of linear analysis of structures.

• The structures are composed of linearly elastic material; that is, the stress-strain relation-

ship for the structural material follows Hooke’s law, which stress is directly proportional

to strain.

• The deformations of the structures are so small that the squares and higher powers of

member slopes, rotations, and axial strains are negligible in comparison with unity, and

the equations of equilibrium can be based on the undeformed geometry of the structure.
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CHAPTER 1. BASIC CONCEPTS OF NONLINEAR PHENOMENA

The reason for making these assumptions is to obtain linear relationships between ap-

plied loads and the resulting structural deformations. An important advantage of linear force-

deformation relations is that the principle of superposition can be used in the analysis. This

principle states essentially that the combined effect of several loads acting simultaneously on a

structure equals the algebraic sum of the effects of each load acting individually on the struc-

ture.

Figure 1.1: Linearity in structural systems [5].

We are fortunate that so many practical problems can be solved by so simple an approxima-

tion. However, any of the convenient assumptions that lead to a linear analysis may be at odds

with reality and many physical situations present nonlinearities too large to be ignored, such

as:

• Adjacent parts may make or break contact.

• A contact area may changes as load changes.

• Elastic material may become plastic, or the material may not have a linear stress-strain

relations at any stress level.

• Part of the structure may lose stiffness because of the buckling or the failure of the

material.

• Displacement and rotations may become large enough that equilibrium equations must

be written for the deformed configuration rather than the original configuration.
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CHAPTER 1. BASIC CONCEPTS OF NONLINEAR PHENOMENA

• Large rotations cause pressure loads to change in direction, and also to change in magni-

tude if there is the change in a area to which they are applied [6].

We do not have to abandon the treatment of many physical problems from the linear point

of view. It certainly depends upon the problem and to what extent the results are going to be

used. If one is looking for accurate results or some phenomena that will be missed by the linear

analysis, then a nonlinear analysis is required.

Linearized formulations are insufficient to explain many phenomena, for example, the min-

imum wieght criteria in the design of aircraft, aerospace vehicles,coupled with the evergrowing

use of light polymeric materials that can undergo large displacement without exceeding their

specific elastic limits, prompted a renewed interest in the nonlinear analysis of structures sub-

jected to various static and dynamic loading conditions. Due to the geometry of deformation,

the behavior of such structures is highly nonlinear and the solution of such problems must be

obtained using the nonlinear theories. It must be noted, however, that nonlinear analysis proce-

dures are more complex and therefore more computing time consuming. Significant advances

have been made in the last decade or so, thanks to the availability of high speed computers,

in developing various analytic and numerical techniques to solve different type of nonlinear

problems in structural mechanics [7].

In nonlinear analysis the aim is to trace the history of all material points in structure as

it undergoes progressive loading. We have argued that, generally, the only practical way to

do this is by a series of linear analyses [8]. Nonlinearity makes a problem more complicated

because equations that describe the solution must incorporate conditions not fully known until

the solution is known, the actual configuration,loading conditions, state of stress, and support

conditions. The solution cannot be obtained in a single step of analysis. We must take several

steps, update the tentative solution after each step, and repeat until a convergence test is sat-

isfied. The usual linear analysis is only the first step in this sequence. Nonlinear analysis can

treat a great variety of problems. But in a sense it is more restritive than linear analysis because

the principle of superposition does not apply, we cannot scale results in proportion to load or

combine results from different load cases as in linear analysis. Accordingly, each different
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CHAPTER 1. BASIC CONCEPTS OF NONLINEAR PHENOMENA

load case requiries a separate analysis. Also, if a loading consists of component loads that are

squentially applied, results may not be independent of the order in which loads are applied [6].

In nonlinear analysis an attempt is made to improve the analytical simulation of the behavior

of the structures in some respect. The fundamental aim to improve the quality of design by

providing the engineer with a more reliable prediction of the performance of the system that

is under design or investigation. In making this closer link between stractural analysis and

actual behavior, the traditional destinction between the terms "analysis" the determination of

forces and displacements under given loads and "design" the proportioning of memebers and

connections to resist the determined effects-becomes blurred [8].

In using nonlinear analysis the uncertainly regarding actual behavior may be reduced. In the

process, However, the element of art in modeling the structure and in handling the equations of

analysis is increased. In modeling the analyst must decide what source of nonlinearity are apt

to be significant and how to represent them. In dealing with the resulting nonlinear equations,

decisions must be made regarding how to reduce them to a system suitabe for practical com-

putation and,then, the method for solving the reduced system [8]. Thus we see that nonlinear

effects may vary in type and may be mild or severe. An analyst must understand the physical

problem and must be acquainted with various solution strategies. A single strategy will not

always work well, and may not work at all for some problems. Several attempts may be needed

in order to obtain a satisfactory results [9].

1.2 Sources of Nonlinearity

In general, there are many different ways of categorizing different nonlinearities. However, it

is generally accepted that four different sources of nonlinearity can exist in solid mechanics.

The occurrence of this nonlinearities in their relation among applied loads, stresses, strains,

displacements,and boundary conditions Figure 1.2, [5].
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In linear elastic analysis the material is assumed to be unyielding and its properties invari-

able, and the equations of equilibrium are formulated on the geometry of undeformed structure

or, in the case of self-strained structures, on an initial reference configuration. Subsequent de-

formations are assumed to be so small as to be insignificant in their effect on the equilibrium

and the mode of system response.

Nonlinear analysis offers several options for addressing problems resulting from the above

assumptions. We may consider only the geometric nonlinearity. That is,we may continue to

treat the structural material as elastic but include the effects of deformations and finite dis-

placements in formulating the equations of equilibrium. It is also possible to consider only the

material nonlinearity, that is, the effect of changes member material properties under load. And,

as third general option, we may include effects of both geometric and material nonlinearity in

the analysis. In each case, the possibility of coupling of internal actions must be considered, it

may be a dominant feature of the analysis [8].

Figure 1.2: Nonlinearities in solid mechanics [5].

1.2.1 Geometric nonlinearities

In dealing with the nonlinear behavior of deformable bodies, such as beams, plates, shells,

the relationship between strains and displacements is nonlinear. This type of nonlinearity

is the most commonly treated in literature. As a direct consequence of the nonlinear strain-

displacment relations, the governing differential equations will turn out to be nonlinear.
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This is true in spite of the fact that the relationship between curvatures and displacement com-

ponents are assumed to be linear. Another way of looking in this, consider the total strain

energy of the deformable elastic body, which is in the form of the extensional and the bending

energy. The extensional strain energy involves higher order nonlinear terms than quadratic in

the normal displacement component, whereas the bending strain energy remains quadratic in

the displacement components [7].

By other words, When the deformation of a solid reaches a state for which the undeformed

and deformed shapes are substantially different a state of finite deformation occurs. In this

case it is no longer possible to write linear strain–displacement or equilibrium equations on the

undeformed geometry [10]. Thus, geometric nonlinearities are associated with the effect of

a change in geometry due to load application on the overall structural response. In general,

geometric nonlinearities represent the cases when the relations among kinematics quantities

(displacements-strains) are nonlinear, which Such nonlinearities occur when displacements are

large.

1.2.2 Material nonlinearities

The introduction of new materials and their application at severe thermal and mechanical envi-

ronments to highly deformable structural elements have generated an interest in nonlinear anal-

ysis techniques. These techniques together with the availability of high-speed computers have

made the solutions of materially nonlinear problems a reality [7]. Material or physical nonlin-

earity represents the case when the relation between stress and strain is not linear. The simplest

form of non-linear material behaviour is that of elasticity for which the stress is not linearly

proportional to the strain. More general situations are those in which the loading and unload-

ing response of the material is different. Typical here is the case of classical elastic–plastic

behaviour [10]. Thus, the generalized Hooke’s low is not valid any more in treatment of the

nonlinear stress-strain behavior of the material of the deformable body. The effect of mate-

rial nonlinearity on the behavior of structures components is an important consideration in the

analysis of structural systems.
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1.2.3 Kinematic nonlinearity

Kinematic nonlinearity is also called boundary nonlinearity, as the displacement boundary con-

ditions depend on the deformations of the structure. In general, structural equations solve for

unknown displacements in the domain with given applied loads and prescribed displacement

boundary conditions. When the boundary conditions change as a function of displacements,

both the displacements and boundary conditions are unknown. In such a case, it is difficult

to solve the structural equations as both sides have unknown terms. In general, there are two

possible cases for kinematic nonlinearity. The first one is when the location on the boundary

where boundary conditions are applied is known, but the values are unknown. The second case

is that both the location on the boundary where boundary conditions are applied and the values

on the boundary conditions are unknown. The most common example is the contact constraint

between two bodies. As two bodies are in contact, the displacements on the contact boundary

are limited such that they cannot penetrate each other. At the same time, it is usually unknown

which part of the boundary will be in contact. This kind of of problem is more difficult than

the first one [5].

1.2.4 Force nonlinearity

Similar to kinematic nonlinearity, force nonlinearity occurs when the applied force depend on

deformation. Since force is a vector, its magnitude and/or direction can change according to

the deformation of the structure. Force nonlinearity is often accompanied by geometric non-

linearity. The most common example in solid mechanics is pressure loads of fluids. In the

deployment of an airbag, for exmaple, the direction and magnitude of pressure loads vary ac-

cording to the deployment shape of the airbag. Although the contact condition is considered as

boundary nonlinearity, the contact force can also be considered as force nonlineartity. As con-

tact boundary varies, the contact force on boundary also varies. Thus, in the contact problem,

both the contact boundary and contact forces are unknown [5].
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1.3 Importance of Nonlinear Analysis

The advent of powerful computers in recent years has paved the way for the development and

implementation of several nonlinear analysis methods, which vary in terms of applicability,

efficiency, and accuracy. The main motivation behind such developments has been the urgent

need for such tools in the field of structural design as well as in experimental and theoretical

research.

The use of nonlinear analysis in the design of structures has not so far been utilized to its full

potential. Despite its considerable demand on computing resources, accurate nonlinear analy-

sis allows a better assessment of structural safety and reliability than can be achieved by other

simplified methods. This realization represents a major drive behind the efforts to improve the

efficiency of nonlinear analysis methods, and will combine with the rapid advancements in the

field of computing to lead to the inevitable inclusion of nonlinear analysis as part of the design

process.

A more immediate application of nonlinear analysis is in experimental and theoretical re-

search work, where the main concern is to establish accurate rather than efficient solutions. On

the experimental side, nonlinear analysis can be employed in the design of test setups, as well

as in the choice of test specimens and loading configurations. On the theoretical side, nonlinear

analysis can be instrumental in achieving better understanding of complex structural behaviour,

and provides an abundance of information for parametric studies on realistic engineering prob-

lems.

Another factor that calls for the necessity of nonlinear analysis can be attributed to the

development of high-strength materials in areas such as aerospace engineering, mechanical en-

gineering, and high-rise building construction, where the weight of the structure design is of

major concern. Application of such materials in these areas, though enabling structural engi-

neers to achieve a lighter design, will normally introduce certain degrees of nonlinearity in the

structural response. It is the responsibility of structural engineers to ensure that all the oper-

ational functions of the design structure are not impaired by such nonlinear effects under the
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working or extreme loading conditions. Obviously, the role of nonlinear analysis has become

much more important than ever due to the increasing use of light, high-strength materials in

industry. It should be noted that, in addition to the stringent design requirements, the advance-

ment in solution methods,the expansion in computer memory, and, most directly, the drastic

decline in computing costs are other factors that make room for nonlinear analysis.

1.4 Solution of Nonlinear Systems

Many phenomena in physics shows nonlinear behaviors, and linear systems are approximation

of nonlinear systems under limited conditions. For example, the relation between the deflection

of a beam and applied load at its tip is linear when the deflection is small. This includes small

strain, small displacement, and small rotation in solid mechanics. However,as the deflection

becomes large, the relation becomes nonlinear. In this sense, a linear system is an approxima-

tion of a nonlinear one [5].

In addition, solving linear system has several advantages compared to solving nonlinear

ones. First, linear systems are easier to solve. All the linear systems can be solved using the

system of linear equations. On the other hand, nonlinear systems, cannot be solved in such

simple form. In fact, nonlinear systems are often solved using a sequence of linear equations.

Thus, the computational cost of a linear analysis usually much less than that nonlinear analysis.

Second, once the problem is well posed, the solution of linear system always exists and it is

unique. However, there is no guarantee that nonlinear system has a unique solution [5].

Nonlinearties appear in the formulation of physical problems for two reasons :

• The physical parametrs that are supposedly independent of displacements in linear model,

such as Young’s mosulus, The coefficients of condutivity,ect,muy become functions of

displacements.

• Terms that are nonlinear in relation to the unkowns of the problem appear in the partial

differentiel equation, even when the physical properties are independent of displacemnts.
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There are many numerical procedures used to solve nonlinear problems, which are iterative

in nature. Here three iterative procedures are presented in the following.

If we suppose that we wish to solve the nonlinear matrix equation

[
A

({
U

})]{
U

}
=

{
F

}
(1.1)

Assuming that the solution
{
U

}(r−1)

at the (r−1)st iteration is known, and we researching

the solution
{
U

}(r)

at the rth iteration.So
{
U

}(r)

is the solution to be determined. At the

beginning of the iteration, that is, when r=1, the solution
{
U

}(0)

is guessed consistent with

the problem data. Using the solution from the (r − 1)st, we compute the coefficient matrix[
A

({
U

}(r−1))]
. Since

[
A

]
is evaluated using estimated vector

{
U

}
, in general

[
A

({
U

}(r−1))]{
U

}(r)

6=
{
F

}
(1.2)

Hence, we are left with a residual

{
R

}
≡
[
A

({
U

}(r−1))]{
U

}(r)

−
{
F

}
(1.3)

A plot of the equilibrium path,
{
R

}
=0, is shown in Figure 1.3 . For any value

{
U

}(r)

,[
A

({
U

}(r))]
denotes the secant of the curve at

{
U

}(r−1)

=
{
U

}(r)

, and
(

∂R

∂U r−1

)∣∣∣∣
Ur

de-

notes the tangent of the curve at
{
U

}(r−1)

=
{
U

}(r)

. F is the known force.
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Figure 1.3: Typical force displacement curve [3].

The objective of the iteration process is to reduce this residual to a very small negligible

value, ε:

√
ΣN
I=1R

2
I ≤ ε (1.4)

Alternatively, the iteration may proceed until the difference between the solutions from two

consecutive iterations, is less than the tolerance ε

√√√√ΣN
I=1(U

(r)
I − U

(r−1)
I )2

ΣN
I=1(U

(r)
I )2

≤ ε (1.5)

1.4.1 Direct iteration method

The direct iteration technique, also known as the Picard iteration method of successive sub-

stitution, is the simplest iterative procedure here. We begin with an initial guess for u, say

u(0),u(0)=0 and determine the first approximation of u by solving the equation

u(1) = (K(u(0)))−1F (1.6)
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u(1) 6= u, and a second approximation for u is sought by using the last approximation to

evaluate K

u(2) = (K(u(1)))−1F (1.7)

Figure 1.4: Direct iteration scheme [3].

This procedure is continued until the difference between two consecutive approximations

of u differ by a preselected value. Thus, the algorithm and criterion for convergence can be

written as

Algorithm

u(r) = (K(u(r−1)))−1F (1.8)

Convergence Criterion

√
(u(r) − u(r−1))2

(u(r))2
≤ ε (1.9)
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1.4.2 Newton-Raphson method

The most popular technique for solving nonlinear algebraic equations that results from dis-

cretization of a structure is the Newton-Raphson method. This iterative technique uses the

tangent stiffness at a point on the equilibrium curve to approximate a point further a long the

curve at particular load or displacement. The unknown load or displacement at this intermedi-

ate is back out of the equilibrium equation, a new tangent stiffness is computed, and iteration

continues until the load or displacement value is achieved within a specified tolerance. An in-

teresting historical development of the Newton-Raphson method and its origins is given in [11].

Suppose that the solution u(r−1) is known at (r − 1)st iteration and the residual
{
R

}
is

expanded about the known solution u(r−1) in Taylor’s series,

{
R

}
= R(u(r−1)) +

(
∂R

∂u

)∣∣∣∣
u(r−1)

δu+
1

2

(
∂2R

∂u2

)∣∣∣∣
u(r−1)

(δu)2 + ... = 0 (1.10)

Where δu is the increment,

δu(r) = u(r) − u(r−1) (1.11)

Omitting the terms of order 2 and higher

(
∂R

∂u

)∣∣∣∣
u(r−1)

δu = −R(u(r−1)) (1.12)

(
KT (u)(r−1)

)∣∣∣∣
u(r−1)

δu = −R(u(r−1)) (1.13)

Where KT is the slope (tangent) of the curve
{
R

}
at u(r−1)

KT (u)(r−1) =
∂R

∂u

∣∣∣∣
u(r−1)

(1.14)
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The residual or imbalanced force, R(ur−1) is gradually reduced to zero if the procedure

converges. The solution at rth iteration is given by

u(r) = u(r−1) + δu(r) (1.15)

Figure 1.5: The Newton-Raphson scheme [3].

A variation is the modified Newton-Raphson technique in which the tangent stiffness ma-

trix is kept constant and not updated for iterations within an increment. The approach often

takes more iterations to obtain convergence.
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Figure 1.6: The Modefied Newton-Raphson scheme [3].

1.4.3 Riks method

Difficulties arise because Newton-Raphson method fails to trace the nonlinear equilibrium path

at limit points where the tangent stiffness matrix becomes singular and the iteration procedure

diverges. Near horizontal limit points,displacement control traverses the singularities since a

unique load exists for each displacement. Likewise,near vertical limit points load control passes

limit points because unique displacement for each load. Riks [12] and Wempner [13] suggested

a procedure to predict the nonlinear equilibruim path through limit points. The method, known

as the Riks-Wempner method provides the Newton-Raphson method and its modifications with

a technique to control progress along the equilibruim path. Also, Sabir and Lock [14] have de-

vised a code capable to switching between load and displacement control to traverse any limit

point.

23



CHAPTER 1. BASIC CONCEPTS OF NONLINEAR PHENOMENA

A more elegant, but more complex, technique has been formulated by Riks [15]. Riks adds

a constraint equation to the system equations which prescribes a fixed distance from the starting

point about which the solution is sought.

Figure 1.7: The Riks method, normal plane scheme [3].

Riks’ method has been reformulated for finite elements by Crisfield [16] and Ramm [17].

Crisfield [16] suggested using a circular arc in place of the normal.

We wich to solve Eq (1.1) for u as a function of the sources term F . If F is independent of

the geometry, we can write it as

F = λF (1.16)

Where λ is a scalar, called load parameter, which is considered as an unknown parameter.

Eq (1.3) becomes

{
R

}
= K(u)u− λF (1.17)

Now suppose that the solution (u
(r−1)
n , λ

(r−1)
n )at (r − 1) st iteration of thenth load step is

known and we wish to determine the solution (u
(r)
n , λ

(r)
n ) at the rth iteration. ExpandingR

which is now a function of λ and u,in Taylor’s series about the known solution, we have
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Figure 1.8: The Riks method, circular arc scheme [3].

R(u(r)
n , λ(r)

n ) = R(u(r−1)
n , λ(r−1)

n ) +

(
∂R

∂λ

)(r−1)

δλ(r)
n +

(
∂R

∂u

)(r−1)

δu(r)
n + .... = 0 (1.18)

Omitting the higher-order terms involving the increments δλ(r)
n and δu(r)

n , we obtain

0 = R(r−1)
n − Fδλ(r)

n + (KT )(r−1)δu(r)
n (1.19)

The incremental solution at the current iteration of the nth load step is given by

δu(r)
n = −K−1

T (R(r−1)
n )− Fδλ(r)

n ) (1.20)

≡ δu(r)
n + δλ(r)

n δûn

Where δu(r)
n is the usual increment in displacement due to known out-of-balance force

vector R(r−1)
n with known λ(r−1)

n and KT is the tangent at the beginning of the current load

increment
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δu(r)
n = −K−1

T R(r−1)
n (1.21)

δûn is the tangential solution

δûn = K−1
T F (1.22)

Note that KT is evaluated using the converged solution un−1 of the last load step

KT =

(
∂R

∂u

)∣∣∣∣
u=un−1

= K(un−1) +

(
∂k

∂u

)∣∣∣∣
u=un−1

u(n−1) (1.23)

and δûn is computed at the beginning of each load step.

The solution at therth iteration of the current load step is given by

un = un−1 + ∆u(r)
n (1.24)

∆u(r)
n = ∆u(r−1)

n + δu(r)
n , λ(r)

n = λ(r−1)
n + δλ(r)

n (1.25)
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1.5 Conclusion

Basic concepts of nonlinear phenomena are given in this introductory chapter. Different types

of nonlinearities in solid mechanics are introduced, including geometric, material, kinematic,

and force nonlinearities. The importance of nonlinear analysis in structural mechanics is also

addressed. General solving procedures of nonlinear equations system have been presented.

It has been concluded that the role of nonlinear analysis has become much more important

than ever due to the increasing use of light, high-strength materials in industry. Thus, the

geometric nonlinearity is the most important nonlinearity that could appear in the design of

some structural elements also the most commonly treated in literature.
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Chapter2

Previous Works on Nonlinear Analysis of

Composite Beams and Plates

2.1 Introduction

One of the most important thing engineers and scientists do is to model natural phenomena.

They develop conceptual and mathematical models to simulate physical events, whether they

are aerospace, biological, chemical, geological, or mechanical. The mathematical models are

developed using lows of physics and they are often described in terms of algebraic, differential,

and/or integral equations relating various quantities of interest. A mathematical model can be

broadly defined as a set of relatioships between variables that express the essential features of

a physical system or process in analytical terms. The relationships that govern the system take

the form of algebraic, differential and integral equations. Mathematical models of physical

phenomena are often based on fundamental scientific lows of physics such as the principale

of conservation of mass, the principale of conservation of energy. Note that the engineering

systems are governed by lows of continuum mechanics. Mathematical models of engineer-

ing systems are often characterized by a very complex equations that posed on geometrically

regions. Consequently, many of the mathematical models, untel the advent of electronic com-

putation, were drastically simplified in the interest of analytically solving them. Over the last

three decades, the computer has made it possible, with the help of methematical models and
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numerical methods, to solve many practical problems of science and engineering. A new and

growing body of knowledge connected with the use of numerical methods and computers exists

to analyze mathematical models of physical systems, and this body is known as computational

mechanics [3].

The minimum weight criteria with high performance has been essential in the design of

aircraft, aerospace vehicles and civil structures until today. This task will be a challenge es-

pecially when the design of wing structures such as aircraft wings, rotor blades,robotic arms

or bridges is the subject. The behavior of such structures is highly nonlinear due to the defor-

mation of their geometry and the solution of such problems becomes very complex, especially

with the use of composite materials. The effects of large displacements may play a primary

role in the correct prediction of the behavior of these members, which continue to be modeling

as a flexible beams.

In this way, another difficult task can be imposed here when some structural elements as

plates and shells can undergo inplane thermo-mechanical stresses that affect their stiffness, (eg:

high speed aircrafts, rockets and launch vehicles, trains) and consequently, their dynamic and

static behavior. This problem has stimulated the researchers to provide an accurate prediction of

free vibration of laminated plates, subjected to inplane thermal or mechanical stresses [18,19].

In this light, much of work has been done in order to better understanding as well as improve

the description of such complex behaviors, where some of chosen papers from the literature

available are presented in this chapter as a review includes:

• Analytical beams analysis: brief historical review.

• Nonlinear finite element beam analysis.

• Nonlinear dynamics of beams.

• Free vibration of composite laminated plates under thermo-mechanical loading.
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2.2 Composite Beams Analysis

2.2.1 Analytical analysis: brief historical review

The geometrical nonlinear analysis of elastic structures has been among fundamental topics in

structural mechanics and continue to be an important axis of research attract an immense num-

ber of researchers especially when the large displacements of beams is the subject. It has been

observed by looking into past development on the subject that an excellent analytical model was

presented for geometrically nonlinear analysis by the so-called elastica. The elastica addresses

flexural beams problems which the analysis was basically concentrated on the determination

of the exact shape of deflection curve. This task has been performed using different types of

analytical techniques, such as elliptic integrals as well as various kinds of numerical methods of

analysis.Numerical procedures were also extensively used to solve the complicated differential

equations when analytical methods were used.

The history of beams theory dates from 16th century. The differential equation of the deflec-

tion was first derived by the brothers, Jacob and Johann Bernoulli, of the well-known Bernoulli

family of mathematicians. However, because the constant of proportionality was not correctly

evaluated, it was rederived later by the suggestion of Daniel Bernoulli, L. Euler (1707–1783)

and proceeded to solve the various problems of the elastica. Interested readers can find more

details about the history of theory of structures in [20]. After the works of Bernoulli on the de-

flection curve, large deflection of elastic beams has been the focus of many researchers, since

1940’s.

In 1945, The large deflection problem of elastic cantilever beam under tip concentrated ver-

tical load at the free end was studied classically for the first time by Bisshopp and Drucker [21].

Lau [22] also investigated the flexible uniform cantilever beam loaded with the combined load-

ing, consisting of a uniformly distributed load along its span and a concentrated load at its free

end, by using the power series method. He proved that superposition does not apply to large
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Figure 2.1: Deflection curves;(a)Bernoulli’s description ,(b)Euler’s investigation [20].

deflection theory, and he plotted some load–deflection curves for engineering applications.Rao

et al. [23, 24] studied in detail large deflections of uniform and non-uniform cantilever beams

under tip rotational loads using the elliptic function solution. Kimball and Tsai [25] solved the

large deflection problem of cantilever beam under combined end loadings using elliptic inte-

grals and differential geometry. A new integral approach is proposed by Li Chen [26] to solve

the large deflection cantilever beam problem using the moment integral treatment, which may

be applicable for complex loading and variable beam properties.In 1947 Large deflection of

simply supported beam was studied by Conway [27]. Raja and Rao [28] studied Large deflec-

tions of simply supported beams when the transverse loading consists of a uniformly distributed

load plus a centrally concentrated load. Seide [29] investigated the large deflection of an ex-

tensional simply supported beam loaded by a bending moment at its end, and he found that

reasonable results are obtained by the linear theory for relatively large rotations of the loaded

end. Zhang and Yang [30] studied the equilibrium of a clamped-simply supported elastic under

a concentrated force using elliptic integrals. For a simply-supported beam, elliptic integrals

are applied to calculate large deflections for a centrally-loaded simply-supported beam (Wang
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et al. [31], Tari [32], Batista [33]). When a simply-supported beam is subjected to moment at

ends, large deflections have been calculated by Chucheepsakul et al. [34, 35].

Because of the difficulties involved in solving the nonlinear differential equations, elliptic

integral solutions have imposed challenges in the solution evaluations and as well as imple-

mentations which have led the researchers in employing, or in some cases devising alternative

approaches such as numerical integration methods.

Moreover, a simple numerical method was proposed by wang [36, 37] to solved nonlin-

ear bending of cantilever and simply supported beams under tip concentrated and uniformly

distributed loads. Schile and Sierakowski [38] studied large deflection of simply supported

beams in four-point bending. Ohtsuki [39] also studied the same problem numerically using

the Runge–Kutta method in combination with elliptic integrals to analyze a thin elastic simply

supported beam under a symmetrical three-point bending. Shooting optimization technique

was utilized by Wang and Kitipornchai [40] to determine large deflections of beam under both

concentrated forces and uniformly distributed loading. Numerical methods are developed by

Lee and Oh [41] for solving the elastica and buckling load of simply supported tapered beam

subjected to compressive end load. Lee [42] used a numerical integration procedure to analyze

Post-buckling of uniform column under a combined load consisting of a uniformly distributed

axial load and concentrated load at the free end. Lee [43] investigated numerically the large

deflection of cantilever beams made of a Ludwick type material subjected to combined con-

centrated vertical tip point and uniformly distributed forces. The same problem was recently

studied by Solano-canillo [44] with a bending moment formulation. Beléndez et al [45,46] also

studied large deflection of beams, both theoretically and experimentally. The genetic algorithm

was suggested by Kumar et al. [47] and numerically explored in the context of large deflec-

tion analysis of elastic beams. A new technique was developed by Dado and Al-sadder [48] to

analyze large deflection of non-prismatic beam when the angle of rotation was represented by

polynomial function on the variable position along the deflected beam axis. Shvartsman [49]

solved numerically large deflection problem of non-uniform cantilever beam under tip con-

centrated follower load. Wang et al. [50] applied the homotopy analysis method (HAM) to

investigate the large deflection of a cantilever beam under a vertical tip point load. Banerjee
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et al. [51] employed non-linear shooting and Adomian’s decomposition methods to approxi-

mate large deflection solution a cantilever beam under arbitrary loading. Mutyalarao et al [52]

used numerical integration to solve large deflection of uniform beam under tip concentrated

follower load, which the effect of inclination of load in relation with the angle of rotation was

studied. Nallathambi et al. [53] studied large deflection of curved cantilever beam by fourth

order Runge-Kutta method, whereas Shvartsman [54] studied the same problem by direct nu-

merical method. A new perturbation method was proposed by He et al. [55] to solve nonlinear

large deflection problem of initially curved beams under two different boundary conditions.

A detailed look at the works mentioned above reveals that most of the publication based

on the Euler-Bernoulli beam theory which assume that shear rigidity sufficiently large during

the process of bending deformation. In other words, the effect of shear deformations of the

cross-section of a beam is neglected.For this phenomena Timoshenko beam theory taken into

account the effect of shear deformations.

Large deflection problems of shear deformable cantilever beams were studied by Sinclair

[56] using the Timoshenko theory. Goto et al. [57] published a closed form solutions for elastic

beam with axial and shear deformations, using elliptic integrals. However, the authors were

adopted the Timoshenko beam theory of finite displacements with finite strains and that with

small strains.Atanackovic and Spasic [58] proposed a new shear model for plane elastica. For

large deflection analysis based on the Timoshenko beam theory, Li and Song [59] solved large

thermal deflections of Timoshenko beams under transverse non-uniform temperature rise. Mo-

hyeddin and Fereidoon [60] formulated a method for calculating large deflections of a beam

under three-point bending. Li and Lee [61] analyzed the effect of the horizontal reaction force

at the support position on the large deflection of short simply-supported Timoshenko beams

subjected to general transverse loading. Large deflection and rotation of simply supported

beam based on Timoshenko beam theory have been studied by Li and Li [61].
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It has been shown in the literature that when the large deflection of composite beams stud-

ied analytically the work is rare. Thus, a few available papers are presented in the following.

Minguet and Dugundji [62] have developed a theory to predict large deflections of laminated

beams. Also some experiments using flat composite cantilevered beams have been performed.

Minguet and Dugundji employed an updated Lagrangian elemental coordinate system which

represents rigid body motion of the element exactly via Euler angles. The midplane is allowed

to stretch but higher-order terms are not included. A unified methodology based on geometri-

cally nonlinear and three-dimensional elasticity, for nonhomogeneous, anisotropic beams anal-

ysis was presented by Atilgan and Hodges [63]. An exact solution for the bending of thin and

thick cross-ply laminated beams was investigated by Khdeif and Reddy [64].

2.2.2 Nonlinear finite element beams analysis

On the other hand, numerical methods are extremely powerful tools for engineering analysis.

With the advent of computers, there has been a tremendous explosion in the development and

use of numerical methods. Of these, the nonlinear finite element analysis has recieved much

attention by many researchers due to new industrial needs especially in the mechanical and

aerospace fields.

2.2.2.1 Isotropic beams analysis

The first application of finite element method in nonlinear analysis of structurs was proposed

in 1960 by Turner et al. [65]. Authors have originally presented an incremental approach

to analyze the structures geometrically nonlinear using finite element method. In the fol-

lowing, several excellent books for interesting readers. These books either fully devoted to

nonlinear finite elements or partially containing significant sections on the subject. Books

dealing only with nonlinear finite element analysis include Oden,1972 [66], Crisfield ,1991

[67],Kleiber,1989 [68], and Zhong,1993 [69]. In addition, some of books which partially de-

voted the subject are Bathe,1982 [70], Belytschko and Hughes,1983 [71] and Cook, Plesha and

Malkus,1989 [9],Zienkiewicz and Taylor,2000 [10].
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Moreover, Tada and Lee [72] adopted nodal coordinates and direction cosines of a tangent

vector regarding the deformed configuration of elastic flexible beams. The stiffness matrices

were obtained by using the equations of equilibrium and Galerkin’s method. Their method

was applied to a flexible cantilever beam loaded at the free end. Yang [73] proposed a matrix

displacement formulation for the analysis of elastica problems related to beams and frames.

Wood and Zienkiewicz [74] used a continuum mechanics approach with a Lagrangian coor-

dinate system and isoparametric element for beams, frames, arches, and axisymmetric shells.

The Newton–Raphson method was used to solve the nonlinear equilibrium equations. Large

displacement with small strain analysis of structures with rotational degrees of freedom was

investigated by Argyris et al [75]. Argyris and Symeonidis [76] presented a nonlinear finite el-

ement analysis of elastic structures subject to nonconservative forces. An updated Lagrangian

and a total Lagrangian formulation of a three-dimensional beam element for large displace-

ment and large rotation analysis are presented by Bathe and Bolourchi [70]. Crisfield [16, 77]

proposed a new Incremental/iterative solution procedures for non-linear structural analysis. A

new arc-length method including line searches and accelerations is presented by Crisfield [78],

which it is applied to the geometrically nonlinear analysis of beams. A consistent co-rotational

formulation is presented by Crisfield [79] for non-linear three-dimensional beams analysis.

Ramm and Osterrieder [17] carried out the geometric and material nonlinear analysis of open-

sectioned and thin-walled rectilinear beams using an updated Lagrangian formulation. Batoz

and Jameux [80,81] obtained an exact displacement field for 2D beam and arch structures, and

four different strain expressions with the Total Lagrangian Description are used to show the

importance of displacement and strain expressions. Ramm and Osterrieder [17] carried out the

geometric and material nonlinear analysis of open-section and thin-walled rectilinear beams

using an updated Lagrangian formulation. Hsiao and Hou [82] used the small deflection beam

theory, by including the axial force, to solve the large rotation of frame problems by assuming

that the strains are small. The total stiffness matrix was formulated by superimposing the bend-

ing, geometric, and linear beam stiffness matrices. An incremental iterative method based on

the Newton–Raphson method,combined with a constant arc length control method, was used
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for the solution of the nonlinear equilibrium equations. Chajes [83] applied the linear and non-

linear incremental methods, as well as the direct method, to investigate the geometrically non-

linear behavior of elastic structures. The governing equations were derived for each method,

and a procedure outline was provided regarding the plotting of the load–deflection curves. An

incremental Total Lagrangian Formulation for curved beam elements that includes the effect of

large rotation increments is developed by Dvorkin et al. [84]. The geometrically nonlinear for-

mulation of three-dimensional curved beam elements with large rotations has been investigated

by Lo [85]. Three-dimensional curved beam elements were presented by Ibrahimbegovic [86]

for geometrically nonlinear analysis. Also, a finite element formulation for three-dimensional

beams undergoing large displacement and large rotations but small strains was proposed by

Mikdad and Ibrahimbegovic [87]. A three-dimensional elastoplastic beam element being ca-

pable of incorporating large displacement and large rotation is developed and examined by

Park and Lee [19]. A geometrical nonlinear analysis eccentric 3D-beam cross-sections ele-

ment with arbitrary cross-section has been investigated by Gruttmann et al. [88]. Co-rotational

and Lagrangian formulations have been addressed by Teh and Clarke [89] for elastic three-

dimensional beam finite elements. Large displacements tests and total-Lagrangian finite ele-

ment analyses of flexible beams have been studied by Pai et al. [90]. A new finite element

formulation for geometrically nonlinear three-dimensionel beam theories based on interpola-

tion of strain measures has been developed by Zupan and Saje [91]. A new 2D Euler–Bernoulli

beam element for large displacement analysis using the total Lagrangian formulation has been

proposed by Nanakorn and Vu [92]. Magisano et al. [93] investigated the geometrically nonlin-

ear analysis of beams and shells using solid finite elements and highlighted the advantages of

mixed stress/displacement formulations when applied to the path-following analysis and Koiter

asymptotic method. By using the Carrera Unified Formulation (CUF) and a total Lagrangian

approach, the unified theory of beams including geometrical nonlinearities has been introduced

by Pagani and Carrera [94].
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2.2.2.2 Anisotropic beams analysis

All works mentioned in the previous section have been basically focused on addressing the

geometrically nonlinear finite element isotropic beams analysis, However, there are another

problems have been emerging when composite materials are used. Thus, many efforts have

been made in order to solve the large deflection problem of composite laminated beams, where

are presented by the availabe papers in this section.

A more complete review on nonlinear laminated composites beams available has been given

by Hodges [95]. A large displacement formulation for anisotropic beam analysis was presented

by Borri and Merlini [96]. Singh et al. [97] considered the same theory using Von-Karman

strain and one-dimensional finite element having twelve degrees of freedom per node to study

the nonlinear bending of thin and thick unsymmetrically laminated beams. In contrast, the

flexural linear and nonlinear analysis of composite beams under transverse loading based on

higher order shear deformation theory is studied by Chandrashekhra and Bengera [98], wherein

geometric nonlinearity is incorporated in the formulation by considering Von-Karman strain.

A Nonlinear formulation and a finite-differences based numerical solution for a generic or-

thotropic beams of solid cross-sections was presented by Rand [99]. Furthermore, Creaghan

and Palazotto [100] considered a finite element potential energy approach for large displace-

ments and moderate rotations of composite beam structures, which it has been extended by

Miller and Palazotto [101] using a large rotation theory. Also, the bending of thin and thick

cross-ply laminated beams has been presented by Khdeif and Reddy [64]. An experimental

and theoretical model on Aeroelastic Response of High-Aspect-Ratio Wings has been devel-

oped by Tang and Dowell [102]. A weighted residual formulation of equilibrium equations for

nonlinear laminated beams analysis has been presented by Zielinski and Frey [103]. Also, the

existing statically beam finite element based on FSDT was recently used to study the geomet-

ric nonlinear effects on static and dynamic responses in isotropic, composite and functionally

graded material beams by Agarwal et al. [104]. Large deflection of multilayered Timoshenko

beams using Von-Karman strain–displacement relations has been carried out by Di Sciuva and

Icardi [105]. A geometric nonlinear model for composite beams with partial interaction has
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been developed by Ranzi et al. [106] Yu and Blair [107] developed Geometrically Exact Beam

Theory (GEBT) to give a general-purpose tool for nonlinear analysis of composite slender

structures. Sofi et al. [108] presented a beam model based on Von Kármán’s nonlinear the-

ory and the classical lamination theory for the geometrically nonlinear analysis of laminated

composite frame Structures. Nonlinear aeroelastic behaviors of curved laminated composite

panels are investigated by An et al. [109]. An efficient nonlinear finite element model based on

higher-order beam theory for two layered composite beams was developed by Alhaz Uddin et

al. [110]. On the other hand, Pagani and Carrera [94] employed the Carrera Unified Formula-

tion (CUF) to deal with the geometric nonlinear analysis of solid cross-section and thin-walled

metallic beams. The promising results provided enough confidence for using the capabilities of

that methodology to deal with the large displacements and post-buckling response of composite

laminated beam [111].

2.2.2.3 Sandwich beams analysis

In 1992 Frostig et al. [112] presented a new theory based on variational principle for sandwich

panels with flexible core, named high order sandwich panel theory (HSAPT). Geometrical non-

linearities were also considered in many papers to increase the accuracy of HSAPT. The large

number of literatures that emphasis on nonlinear HSAPT are based on kinematic relations that

assume large displacements with moderate rotations for face sheets and small deformations for

core. For example in [113,114,115]. The nonlinear behavior of a composite sandwich beam in

three-point bending was investigated by Gdoutos et al. [116].Experimental and analytical study

of geometrically nonlinear bending response of sandwich beams is presented by Sokolinsky et

al. [117]. In the work of phan et al. [118], the face sheets undergo large displacements with

moderate rotations, whereas the core strains assume to be linear and nonlinear von-Karman

strain in two cases. The first and linear one was a case that loads just apply on face sheets

and the second and nonlinear one was a case that a uniform compressive strain through the

thickness is applied to sandwich beam. A new geometrically nonlinear high order theory for

orthotropic sandwich beams is presented by Dariushi and Sadighi [119].
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2.2.2.4 Functionally graded beams analysis

Although the laminated composite materials may offer various different solutions and provide

the design flexibility to achieve desirable stiffness and strength, they have some disadvantages

such as the geometric discontinuities that can lead to damage in the form of delamination, ma-

trix cracking, and adhesive bond separation. These problems arise due to the discontinuity of

the material properties within the structure. As a solution, materials that consist of two phases

with continuous transition, so-called Functionally Graded Materials (FGM).

Functionally graded materials (FGMs) are inhomogeneous composites that have smooth

and continuous variation of material properties in space. In most of the existing and potential

future applications and in the simplest form, FGMs is mainly considered as a mixture of two

different material ingredients change gradually from one to other as illustrated in Figure 2.2(a).

The material ingredients can also change in a discontinuous way such as the stepwise gradation

illustrated in Figure 2.2(b). This type of structure can also be considered an FGM. The most

familiar FGM is compositionally graded from a refractory ceramic to a metal. it can incorpo-

rate incompatible functions such as the heat, wear, oxidation resistance of ceramics with the

high toughness, high strength, machinability, and bonding capability of metals without severe

internal thermal stress [120].

Figure 2.2: (a) Continuous and (b) stepwise graded structures.

Historically, the general idea of structural gradients first was advanced for composites and

polymeric materials in 1972 [121, 122]. Various models were suggested for gradients for com-

position, in filament concentration, and in polymerization along with possible applications for

the resulting graded structures. However, there was no actual investigation about how to de-

39



CHAPTER 2. PREVIOUS WORKS ON NONLINEAR ANALYSIS OF COMPOSITE
BEAMS AND PLATES

sign, fabricate, and evaluate graded structures until the 1980s. In 1985, Niino et al. [123] have

proposed the use of continuous texture control in order to increase the adhesion strength and

minimize the thermal stress in the ceramic coatings and joints being developed for the resuable

rocket engine. In 1986, these types of materials were termed functionally gradient materials,

Which soon became abbreviated to the now familiar,FGM. In 1995, as a consequence of a

discussion at the Third International Symposium on FGMs held in Lausanne in 1994, it was

decided to change the full name to functionally graded materials because it is more accurate

both descriptively and grammatically [120].

Bringing it all together, it is fair to say that geometric nonlinear and large deflection analysis

of FGM structures is an important subject in modern structural engineering, especially, FGM

beams play an important role not only in classical structural applications, but we can find many

applications in thermal, electric-thermal or electric-thermal–structural systems. In literature,

a huge amount of papers can be found which deal with modeling and simulation of nonlinear

static and dynamic problems of FGM beams. For example,an elasticity problem of function-

ally graded beam subjected to transverse loads has been solved by Sankar [124]. Agarwal

at al. [125] studied the geometrically non-linear static and dynamic responses of functionally

graded beams based on the total Lagrangian finite element formulation with the von Kármán’s

geometric non-linearity. Kang and Li [126] examined the large deflection of a straight can-

tilever beam subjected to an end force. Material of the beam is assumed to be functionally

graded, and nonlinear effects of material variation was investigated. Birman and Byrd [127]

presented a review of the main developments in FGMs with an emphasis on the recent work

published since 2000. Large deflections analysis of a FGM cantilever beam subjected to an end

moment was investigated by Kang and Li [128]. Rahimi and Davoodinik [129] discussed the

large deflection of a functionally graded cantilever beam under inclined end loading by fully

accounting for geometric nonlinearities using analytical and Adomian decomposition methods,

then Davoodinik and Rahimi [130] extended their works to the semi-analytical analysis of the

flexible tapered functionally graded cantilever beam. Nonlinear static analyses of a cantilever

Timoshenko beam composed of FGM under non-follower transversal uniformly distributed

loads with large displacements and rotations has been studied by Kocatürk et al. [131]. Govern-
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ing equations for Euler–Bernoulli and Timoshenko beams have been developed by Reddy [132]

using von Kármán nonlinear strains for functionally graded beams. Almeida et al. [133] pre-

sented a finite element formulation based on the Total Lagrangian approach to analyze large

deflections of straight FGM beams. Soleimani and Saadatfar [134] studied numerically the

large deflection of FGM beams subjected to arbitrary loading conditions. Ma and Lee [135]

gave exact solutions for nonlinear static responses of a shear deformable FGM beam under an

in-plane thermal loading. Zamanzadeh et al. [136] studied a stability of FGM micro-beams

subjected to non-linear electrostatic pressure and thermal changes. Based on a physical neutral

surface and high order shear deformation theory nonlinear bending analysis of FGM beams has

been inversigated by Zhang [137]. Large deflections of slender nonlinearly elastic function-

ally graded composite beams subjected to a combined loading have been presented by Sitar et

al [138]. Kien and Gan [139] used the first order shear deformation assumption to study the

large deflection of tapered cantilever beams made of FGM, and subjected to an end force. Au-

thors [140] presented in the same year a finite element procedure for the large deflection anal-

ysis of functionally graded beams resting on a two-parameter elastic foundation. Kien [141]

studied the large displacement behaviour of tapered Euler-Bernoulli cantilever beams made of

FGM and subjected to end forces. Under the effect of both thermal, and mechanical loads

nonlinear bending analysis of tapered FGM beams have been studeied by Nikham et al. [142].

Yoon et al. [143] presented a geometrically nonlinear finite element formulation for analysis

of 3D FGM beams. A novel beam model has been derived by Li et al. [59] to investigate the

nonlinearized bending behaviors of a two-dimensionally functionally graded (FG) beam based

on the Euler–Bernoulli beam kinematic theory. An analytical investigation on the thermally

induced non-linear response of slightly curved beams made of functionally graded materials

has been presented by Dehrouyeh-Semnani [144].
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2.2.3 Nonlinear dynamics of beams

If modern nonlinear dynamics has a father, it is Henri Poincare (1854-1912). Dynamic studies,

prior to his studies in the 1880s, concentrated on obtaining analytic solutions of dynamic equa-

tions, as characterized by many astronomical investigations of planetary motions and by Lord

Rayleigh’s ubiquitous studies of nearly every moving mechanical system [145]. Since Poincare

a huge number of investigators focused their efforts to prform on nonlinear dynamics analysis,

especially, the nonlinear vibration of beams, where some of research work is discussed and

presented in this section.

2.2.3.1 Isotropic beams vibration

Fertis [4, 146] and Fertis and Afonta [147, 148] applied the method of the equivalent systems

to determine the free vibration of variable stiffness flexible members. Fertis [4,146], and Fertis

and Lee [149, 150] developed a method to be used for the nonlinear vibration and instabili-

ties of elastically supported beams with axial restraints. They have also provided solutions for

the inelastic response of variable stiffness members subjected to cyclic loadings. Wionowsky-

Krieger [151] was the first one to analyze the nonlinear free vibration of hinged beams with

an axial force. Prathap [152] worked on the nonlinear vibration of beams with variable axial

restraints. Also, Prathap and Varadan [153] worked on the large amplitude vibration of tapered

clamped beams. They used the actual nonlinear equilibrium equations and the exact nonlin-

ear expression for the curvature. Mei and Decha-Umphai [154] developed a finite element

approach in order to evaluate the geometric nonlinearities of large amplitude free- and forced-

beam vibrations. Mei [155] Evensen [156], and other researchers also worked on nonlinear

vibrations of beams.

Furthermore, a Galerkin finite element method has been presented for studying nonlinear

vibrations of beams describable in terms of moderately large bending theory by Bhashyam and

Prathap [157]. An analytical method for determining the vibration modes of geometrically

nonlinear beams under various edge conditions has been presented by Qaisi [158]. Nayfeh

and Nayfeh [159] have obtained the nonlinear modes and natural frequencies of a simply sup-
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ported Euler–Bernoulli beam resting on an elastic foundation with distributed quadratic and

cubic nonlinearities using the method of multiple scales and the invariant manifold approach.

Also, the nonlinear vibrations of an Euler–Bernoulli beam with a concentrated mass attached

to it are investigated by Karlik et al [160]. Azrar et al. [161] have developed a semi-analytical

approach to the nonlinear dynamic response problem of beams based on Lagrange’s principle

and the harmonic balance method. Authors [162] extended thier works, which semi-analytical

approach to the non-linear dynamic response of beams based on multimode analysis has been

presented. Nonlinear modal analysis approach based on invariant manifold method to obtain

the nonlinear normal modes of a clamped-clamped beam for large amplitude displacements

has been presented by Xie et al. [163]. Zhong and Guo [69] investigated the large-amplitude

free vibration of simply supported Timoshenko beams with immovable ends. Pirbodaghi et

al. [164] have used the first-order approximation of the homotopy analysis method to investi-

gate the nonlinear free vibration analysis of Euler–Bernoulli beam.

2.2.3.2 Anisotropic beams vibration

On the other hand, the nonlinear vibration and dynamic response analysis of composite beams

have been studied extensively over the years. For example, Singh and Rao [165], Kapania and

Racitij [166] presented nonlinear vibration analysis of unsymmetrically laminated beams by

using FEM based on refined classical lamination theory, first order shear deformation theory

and higher order shear deformation theory, respectively. Ganapathi et al. [167] studied nonlin-

ear free flexural vibration of cross-ply laminated beams using a cubic B-spline shear flexible

straight/curved element. Patel et al. [168] studied nonlinear free flexural vibration and post-

buckling of cross-ply laminated beams on a two parameter elastic foundation by using a three-

noded shear flexible beam element. Malekzadeh and Vosoughi [169] studied a large amplitude

vibration of symmetric laminated beams on nonlinear elastic foundationsby using differential

quadrature method (DQM) based on the classical lamination theory. Gunda et al. [170] studied

a large amplitude vibration of cross-ply laminated composite beams with axially immovable

ends with symmetric and asymmetric layup orientations by using the Ritz and finite element
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methods based on the classical lamination theory. Also, large amplitude free vibration and

postbuckling of cross-ply laminated beams on a nonlinearelastic foundation by using varia-

tional iteration method based on the classical lamination theory have been studied by Baghani

et al. [171]. Slimani et al. [172] studied nonlinear vibration of cross-ply laminated beams by

using polynomial finite element method with shape functions based on Legendre polynomials

or sinusoidal functions. Li and Qiao [59] studied a large amplitude vibration of anisotropic lam-

inated beams resting on a two-parameter elastic foundation by using a perturbation technique

based on a refined higher order shear deformation theory. The nonlinear dynamic response

of symmetric laminated composite beams subjected to combined in-plane and uniform lateral

loadings have been investigated by Latifi et al. [173].

2.2.3.3 Functionally graded beams vibration

Moreover, in the following some of considerable research work was performed on nonlinear

vibration of functionally graded beams. Kitipornchai et al. [174] studied the non-linear free vi-

bration of functionally graded Timoshenko beams containing an open edge crack based on von

Kármán geometric non-linearity. Ke et al. [175] studied the nonlinear vibration of function-

ally graded beams based on the Euler–Bernoulli beam theory and considering the von Karma’n

geometric nonlinearity. Based on the Euler–Bernoulli beam theory, authors [176] studied the

nonlinear vibration of FGM beams with either exponential function or power law distribution of

the material properties through the thickness direction, and presented that the vibration behav-

ior of the FGM beams was different from the homogenous beams due to the stretching-bending

coupling effect. Simsek [177] studied the non-linear transient analysis of a functionally graded

(FG) beams with pinned–pinned supports due to a moving harmonic loading. Shooshtari and

Rafiee [178] gave the nonlinear forced vibration of the FGM beams by using multiple time

scales. Fallah and Aghdam [179, 180] presented large amplitude free vibration analysis of

FGM Euler–Bernoulli beams resting on nonlinear elastic foundation subjected to both me-

chanical and thermal loadings. In addition, Fu et al. [181] carried out nonlinear free vibration

analysis of piezoelectric FGM beams under thermal environment employing Euler–Bernoulli
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beam theory. Lai et al. [182] obtained the accurate analytical solutions for large amplitude

vibration of thin FGM beams using Euler–Bernoulli beam theory. Also, based on the same

theory, Yaghoobi and Torabi [183] studied the nonlinear vibration behavior of FGM beams

resting on nonlinear elastic foundation subjected to axial force. A theoretical study on free

vibration behavior of pre-stressed FGM Timoshenko beam under large transverse deflection by

a variational method has been investigated by Paul and Das [184].

2.3 Composite Plates Analysis

Stiff, strong and lightweight composite materials are being widely used in many structural

members, such as multilayered composite beams, plates and shells. Since their first applica-

tions, composite laminated plates have been more and more employed in aeronautic, space

and automotive industry. More in detail, layered composite plates are widely applied in exter-

nal surface of aircrafts, ships, trains and other vehicles. This use can impose problems when

these structural elements can undergo inplane thermo-mechanical streses that affect their stiff-

ness, and consequently ,their dynamic and static behavior. This problem has stimulated the

researchers to provide an accurate prediction of free vibration of laminated plates, subjected to

thermal or mechanical stresses [18, 19, 185].

Numerous works have been presented for isothermal stress free vibration, using analytic

and finite elements methods. Srinivas et al. [186] presented a three-dimensional elasticity so-

lution for the analysis of simply supported homogeneous and laminated rectangular plates. In

1973, Srinivas [187] presented a refined analysis of composite laminates for static and dynamic

analyses of composite laminates. Noor [188] used a three-dimensional elasticity solution to

investigate the free vibrations of multilayered composite plates. Reddy and Kuppusamy [189]

presented a study related to the free vibration of laminated anisotropic plates. Di Sciuva [190]

used a new displacement model for the analysis of bending, buckling and vibration of simply

supported thick multilayered plates. Nayak et al. [191] used Reddy’s high-order theory for the

analysis of dynamic behavior of composite sandwich plates. Zhen et al. [192] used a precise

high-order theory finite element model to investigate the free vibration of laminates composite
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and sandwich plates. Kant and Swaminathan [193] presented an analytical solution based on

higher-order refined theory, for the free vibration of composite laminated and sandwich plates.

Thermal buckling behavior has been of a great interest for various researchers in the past and

in the present. Among the first studies that dealt with investigating thermal buckling of plates

is that carried out by Gossard et al. [194]. Rayleigh–Ritz method has been used to calculate

the critical buckling temperature of simply supported isotropic rectangular plates. Noor and

Burton [195] used analytic three-dimensional elasticity solutions to tackle the thermal buckling

problem of antisymmetric multilayered anisotropic plates analysis. Whitney and Ashton [196]

used energy formulation for thermal buckling of simply supported symmetric, angle-ply lay-

ered composite plates. Zhen and Wanji [197] presented a study on buckling response of angle-

ply laminated composite and sandwich plates using the global local higher-order theory with

combination of geometric stiffness matrix. In 2013, Singh et al. [198] studied the buckling

of laminated composite plates, subjected to mechanical and thermal loading, using meshless

collocations. And recently, in 2017, Cetkovic [199] presented a study on thermal buckling of

laminated composite plates, hinging on Reddy’s layerwise theory and its new version.

However, works carried out for thermally stressed laminated plates, free vibration, are rather

less numerous in comparison with those devoted to thermal buckling and isothermal free vi-

bration. Among the earlier works carried out on the vibration of laminated plates, subjected to

thermal stresses is that presented by Lurie [200] on the lateral vibration as related to structural

stability. Noor and Burton [201] used three-dimensional solutions to investigate the free vi-

brations and buckling of multilayered angle-ply anti-symmetric composite plates subjected to

thermal stresses. They have presented numerical results displaying the effects of variations in

both material characteristics and fiber orientation of different layers, in addition to the effects

of initial thermal deformations on the vibration and buckling responses of the plates. Zhou

et al. [202] observed the vibration of the thermally buckled composite plate, taking into ac-

count the initial deflection. They used a triangle-shaped finite element founded on the classical

plate theory. Lee and Lee [203] studied the vibration of the thermally post-buckled composite

plate by means of the theory of the first-order shear deformation plate (FSDT). Park et al. [19]
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used the nonlinear finite element based on the FSDT to investigate the vibration of thermally

post-buckled composite plates embedded with shape memory alloy fibers. Matsunaga pre-

sented [204] a first study on the vibration and stability of cross-ply laminated composite plates

using a global higher-order plate theory, followed in 2001 [205] by a study on the vibration and

stability of angle-ply laminated composite plates subjected to in-plane stresses. In 2005, [206]

the author presented a two-dimensional global higher-order deformation theory used in the free

vibration and stability problems of angle-ply laminated composite and sandwich plates sub-

jected to thermal loading.

Recently, Khanna and Kaur [207] presented a study looking into the outcome of thermal

gradient on vibration of nonuniform visco-elastic rectangular plates. Thus, to examine the

effect of bilinear temperature on vibration of rectangular plate that is non-homogenous visco-

elastic and of a nonuniform thickness, the authors used a theoretical model. They applied

Rayleigh–Ritz technique to compute the deflection conforming to the first two modes of vi-

bration, for different plate’s parameters, namely taper constant, aspect ratio, non-homogeneity

constants and thermal gradient.

The first attention to the plates in pre-loaded configuration was given by Hermann and Ar-

menakas [208, 209]. In their works, the authors identified a relationship between the equations

of motion of a plate under initial stress and the general three-dimensional description obtained

by considering the displacement field and a variational principle for elastic bodies. Buckling

and lateral vibration of rectangutar plates subjected to inplane loads have been investigated

by Bassily and Dickinso [210], using Ritz method. Brunelle and Robertson [211] have inves-

tigated the the vibrational behavior of a thick, simply supported rectangular plate subjected

to initial stress. Gianetti et al. [212] studied the transverse vibrations of rectangular plates

with elastically restrained edges, subjected to inplane shear forces. Based on Higher-Order

Deformation Theory, Doong and Chen [213, 214] investigated the vibration and the stability

of an initially stressed laminated plate. The same problem has been studied by Dawe and

Craig [215] for symmetrically laminated plates.In addition, The characteristics of fundamental

modes of free vibration of initially stressed composite laminated plates have been presented
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by Dhanaraj and Palaninathan [216]. Free vibration of isotropic and orthotropic square plates

with square cutouts subjected to inplane forces have been analyzed by Lee and Lim [217].

Also, Natural frequencies, modal displacements and stresses of cross-ply laminated composite

plates subjected to initial in-plane stresses have been analyzed by Matsunaga [218]. Chen and

Fung [219] studied the non-linear vibration of initially stressed hybrid composite plates. The

effects of inplane loading on vibration of composite plates have been studied by Carrera et

al. [185].

2.4 Conclusion

Brief historical review on analytical analysis of large deflection isotropic beams is firstly given

in this chapter.Some of the available papers on analytical analysis of large deflection of compos-

ite beams are also presented. Previous works on geometrically nonlinear analysis of isotropic,

anisotropic, sandwich and functionally graded beams using finite element method have been

reviewed. In addition, from the literature the nonlinear dynamic responce analysis of isotropic

and composite beams are presented. Free vibration analysis of composite plates under inplane

thermo-mechanical loading have been finelly mentioned. It has been observed that the large de-

flection beam anlysis problem is rarely studied in the literature, especially when the composite

materials are used.
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Chapter3

Experimental Study

3.1 Introduction

In this work, several bending experiments were carried out on isotropic and composite can-

tilever beams to verify the analytical as well as the finite element formulations, which are

presented in chapters 4 and 5 subsequently. Three different types of materials were considered

for these experiments, where the manufacturing of materials and the preparation of specimens

are firstly addressed in the current chapter. The characterization of used materials is also pre-

sented and described by the measurement of their properties through a series of static tensile

tests. Furthermore, a calcination has been carried out to define more properties that could not

be measured by tensile tests. In addition, the experiments setup are described in detail and their

results are presented and commented.
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3.2 Material Manufacture and Specimen Preparation

Three different types of materials were considered in this work. An isotropic Plexiglass (PG), a

composite of random short fiber with unsaturated polyester resin (RSF). Also, laminated spec-

imens of four layers with different fiber orientation angles(GFP) were fabricated by contact

molding method. The initial materials, E-glass fiber with a density of 2.6g/m3 and polyester

resin with a density of 1.2g/cm3, used in the manufacturing of the (GFP) specimens, were

purchased from MPI (Maghreb Pipe Industries, Algeria). Figure 3.1, presents the initial used

materials and E-glass fiber preparation steps.

Figure 3.1: The initial materials, E-glass fiber, polyester resin.

Rectangular metallic mold with a length of 600mm and a width of 400mm is used for

molding. Mold release agent is first applied to the mold for getting a high-quality surfaces and

facilitate the release of the laminate from the mold. A long unidirectional glass fiber are pre-

pared for two different angles orientation, [0◦] fiber orientation for the first and the last layers

then [90◦] for the second and the third layrs. When the agent has cured sufficiently, the fiber is

manually placed on the mold. In the next step, the resin is applied by brushing. A metallic roller

is used to consolidate the laminate and removing the entrapped air. The three layers remaining

are added by the same way above the first one to build a symmetric laminate [0/90/90/0]. The
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laminate was preserved at room temperature for a week to dry up. The thickness of individual

ply is 0.5mm see Figure 3.2.

Figure 3.2: Laminated plate [0/90/90/0].

The completed laminated plate was carefully released from the mold and it has been checked

to to ensure good quality without defects and then cut into specimens in a different fiber orien-

tation angles, using a dedicated cutting machine Figure 3.3.

Figure 3.3: Dedicated cutting machine.
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3.2.1 Material characterization

A series of static tensile tests were performed, using a universal testing machine (INSTRON-

5969) in order to measure the mechanical properities of used materials. First, three specimens

were prepared for each of the (PG) and (RSF) of size (100×10×2mm3). The (GFP) laminate,

plate of a single layer with unidirectional glass fiber was fabricated by the same way in order

to measure the mechanical properities, such as laminate Young’s modulus E1, E2, Poisson

ratio ν12. Also, six identical specimens of size (100 × 12 × 2mm3) were prepared for static

tensile testing in the longitudinal [0◦] and transverse [90◦] unidirectional fiber orientation. The

tests were conducted on specimens in the longitudinal way. The ends of the specimens were

carefully mounted in the wedge grips of the machine to make sure that the specimen is aligned

and centered. The specimens were loaded in tension to failure and during the loading, the

whole test process was carefully recorded by the force/displacement as well as the strain/stress

curves. Also, failure tensile stress, strain and specimens failure load were obtained. Figure 3.4,

shows the tensile tests of both (PG) and (RSF) specimens.

Figure 3.4: Static tensile tests of (PG) and (RSF) specimens.

Tensile modulus of elasticity, failure stress and strain of each specimen of used materials

were determined. The obtained results of each material under consideration are averaged to

eliminate the error and summarized in Table 3.1.
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Table 3.1: Mechanical properties of materials.

property (PG) (RSF) (GFP)
0◦ 90◦

Failure tensile stress (MPa) 34.193 59.747 92.462 1.077
Failure tensile strain (mm/mm) 0.0195 0.0144 0.0228 0.0126
Specimen failure load (N) 1105.116 2537.905 1823.117 28.943
Modulus of elasticity (MPa) 2336.921 5711.623 5382.956-E1 1914.862-E2

Figure 3.6 to Figure 3.9 , show tensile stress-strain curves for three (PG) and (RSF) speci-

mens as well as six specimens for (GFP) laminate used for material characterization.

Tests observations

• It can be seen from the stress/strain curves that the specimens of each material under

consideration have identical behavior and the curves were practically superposed in the

elastic region.

• In this study the used materials behave in two distinct phases, the first is the intial elastic

region where the behavior is linear.This linear elastic phase is characterized by the elas-

tic modulus. At the end of the elastic region the curves shows an elbow espetially for

composite material. Following this part, with increase of tensile stress the strain increase

up to the brutal failure.

• The failure positions of the most specimens were near the center. Some specimens were

clearly failed in the end of the grips. Then for (GFP) speimens, the damage mechanism

was following the fibers direction. The following figures presents the final fracture of

some specimens.
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Figure 3.5: The final fracture of some specimens.

Figure 3.6: Tensile stress-strain tests for (PG) specimens.
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Figure 3.7: Tensile stress-strain tests for (RSF) specimens.

Figure 3.8: Tensile stress-strain tests for [0] specimens.
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Figure 3.9: Tensile stress-strain tests for [90] specimens.

Furthermore, calcination has also been carried out in order to measure the(GPF) laminate’s

properties. From location on the single layer of unidirectional glass fiber that was fabricated

early, a square specimen of size (50× 50× 1.5mm3) was cut to be representative of material.

It was cut using dedicated cuting machine. Also, a melting pot is used for heat treatment of

prepared specimen. The first step was to weight the used specimen as well as a melting pot

and both specimen with melting pot using a balance with (0.001g) of precision. The obtained

weights are (110.714)gfor melting pot and (4.430g) for specimen then (115.143g) for both of

them. Then, the prepared specimen was put in a melting pot and baked in the temperature of

750 ºC for approximately 2 hours. The next step was after the heat treatment of specimen,

which we remarked that the polyester resin burnt and evaporated. However, The glass fibers

remained the same in the melting pot. Then, the weight of the fibers was determined (0.822g).

The mentioned steps above are summarized and presented in the following Figure 3.10.
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Figure 3.10: Calcination steps.
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The Young’s modulus and Poisson’s ratio of glass fiber/polyester specimen can be expressed

in term of the modulus, Poisson’s ratios and volume fractions of the constituents and are calcu-

lated using the following mixing lows

E1 = EfVf + EmVm (3.1)

E2 =
EfEm

VmEf + VfEm
(3.2)

υ12 = νmVm + νfVf (3.3)

G12 =
GmGf

VmGf + VfGm

(3.4)

Where

Ef = modulus of the fiber;Em = modulus of the matrix

Vf = fiber volume fraction;Vm = matrix volume fraction

νf = Poisson’s ratio of the fiber; νm = Poisson’s ratio of the matrix

In this study, the calcination of a specimen under consideration aimed to measure the weight

of glass fiber as well as polyester matrix in order to calculate the mechanical properties of

(GFP) laminate. The obtained results are summarized in Table 3.2.

Table 3.2: Mechanical properties of (GFP) laminate.

Material E1(MPa) E2(MPa) G12(MPa) υ12

(GFP) laminate 9754 4797.87 1680.55 0.353
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3.3 Experimental Set-Up

In this work, several bending experiments were performed on several cantelivered beams. For

these experiments different beams size were cut and prepared of the used materials. The first

group of beams consisted four (PG) specimens with a length of L = 500mm, a width of

W = 20mm, a thickness of t = 2mm. In the second group of beams, twelve (RSF) specimens

with a length of L = 250mm, a width of W = 15mm, a thickness of t = 3mm were prepared.

The third group was for (GFP) laminates, which several specimens with different fiber orienta-

tion angles [0/90/90/0], [90/0/0/90], [45/− 45/− 45/45], [−45/45/45/− 45] were cut with

a length of L = 240mm,a width of W = 20mm, a thickness of t = 2mm. . All specimens are

numbered to be differentiated from each other.

A vertical metallic stand was used, in order to conduct the bending experiments on (PG) as

well as (RSF) specimens. A serie of different metallic masses whith a metallic axis are used for

loading. A graph paper sheet was placed on a vertical metallic stand, then a pencil was fixed on

the tip of the beams. The pencil is used in order to drawing the deflection curve on the graph

paper during the experiments. First, the beams were accuratly fixed from one end in the stand

using a metallic bolt and loaded from the free end. The horizontality of beams was checked

before loading, then an horizontal line was drawn on the graph paper with the undeformed

beam’s level in order to make a reference with for deflection curve. The beams were loaded by

hand carefully then after each load a point was marked on the graph paper with the level of the

tip of deflected beams in order to record the corresponding displacements of each load. Then,

the horizontal and the vertical displacements of each point were measured from the deflection

curve drawn on the graph. The following figures show the bending experiments for (PG) as

well as for (RSF) beams.
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Figure 3.11: Bending experiments for (PG) beams.

Figure 3.12: Bending experiments for (RSF) beams.
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The accuracy of displacements measurement is one of the main problems that we can ob-

serve during the experiments. This is because the difficulties that can be appear when the

beams behave in large deflection, especially the displacements measurement of the first part of

loading. Also, It has been observed that during the loading when the beams move, the friction

between the pencil at the tip of the beams and the graph paper may effect the displacements

measurement. On the other hand, it has also been observed that the position of load also may

effect the displacements measurement, because it is difficult to ensure the position of load with

beam’s neutral axis,especially with load increasing.

As result of all observations mentioned early, we have thought how to minimize experi-

ments mistakes from the first side and how to improve the accuracy of displacements measure-

ment from the other side. So, first we have been looking another alternative solution for (GFP)

laminated specimens in order to optimize the displacements measurement. Therefore, the sug-

gest idea is to measure the displacements by remote. So, we omitted the graph paper from the

metallic stand and change it by a laser electronic telemeter.

It can be seen from Figure 3.13, two laser electronic telemeters with a precision of (+or −

2mm) were used for the new way of experiments. A vertical and horizontal metallic rods with

a circular section were provided and fixed on a metallic stand. Then, Two metallic cubes with

holes were used, in order to place the laser electronic telemeters on rods as well as make a ver-

tical and an horizotal mechanism for displacements measurement, where we can move or fixe

the telemeters by hand during the experiments,using a metallic bolt. Also, for loading a serie

of different metallic masses whith a metallic axis are used. However, in this case, the metallic

axis was hanged at the tip of specimens using a thread, where it was fixed by using a needle

during the preparation of specimens. It can be observed that the laser light pass through the

specimens because the transparency of laminates, and to avoid this problem a white paper was

pasted at the tip of each specimen to insure laser light point from the vertical telemeter. First,

the beams were accuratly fixed from one end in the stand using a metallic bolt and loaded from

the free end. Then before loading the horizontal and the vertical distances between the laser
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telemeters and the tip of beams were measured as a references for displacements measurement.

The next step was the loading by hand, where the vertical telemeter was moved carefully until

we make sure that laser light point on white paper at the tip of specimens then we measure the

vertical and the horizontal distances.

Figure 3.13: Bending experiments for (GFP) laminated beams.

3.4 Experiments Results

In this section, the experimental results from the bending experiments of all materials under

consideration in this study are presented. First, the results of (PG)specimens are described and

commented. The measured horizontal and vertical displacements u andw are plotted versus the

tip load. Note that, these displacements are measured at the tip of beams and that u is actually

negative for these experiments.
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Figure 3.14, shows the obtained displacements u and w for four (PG) specimens subjected

to tip concentrated load. From Figure 3.14 , we can see clearly that w is quasi-linear. However,

u is started small and tends to be curve as load increasing.

Figure 3.14: Experimental tip displacements for (PG) specimens.

Concerning the results of the second group of specimens Figure 3.15, plots displcements

curves obtained for six (RSF) specimens versus the tip load. As mentioned early, twelve (RSF)

specimens were prepared for these experiments. However,here we present just the results of

six specimens. Thus, from these curves it can be seen that all of them show a similar plot. The

behavior for w presents a small initial linear part and start to be an organized curve with load

increasing. Also, u shows initialy small linear part and tends to be curve in parallel with w.
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Figure 3.15: Experimental tip displacements for (RSF) specimens.
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For the resulting plot of the last group of specimens, Figure 3.16, shows the obtained dis-

placements u,w curves for four (GFP) laminate specimens with different fiber orientations.

Regarding the first and the second [0/90/90/0] laminated specimens, the curves shows that the

initial behavior for w is fairly linear and tends to be disorganized curve with load increasing,

this is because the new way of displacements measurement and the difficulties that can appear

during setting laser electronic telemeters especially for the first ones.u is initially very small

and the tip of beams starts moving on towards the root when significant bending slopes are ob-

tained. However, for the third [45/− 45/− 45/45] laminated specimen the curves demonstrate

an improvement in displacements measurement especially for u. Concerning the last specimen

[0/90/90/0] the curves show more improvements for both displacements u,w.

Figure 3.16: Experimental tip displacements for (GFP) specimens.
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3.5 Conclusion

Several bending experiments were carried out on isotropic and composite cantilever beams in

the present experimental program. An isotropic (PG), composite (RSF) and (GFP) laminated

specimens were used in this investigation. In addition, the properties of used materials were

measured through a series of static tensile tests. Furthermore, a calcination was carried out to

define more properties. In the following, the important points that can be concluded from these

experiments.

• It has been shown that the curves for (PG)specimens group the vertical displacement is

quasi-linear. However, the horizontal displacement is started small and tends to be curve

as load increasing.

• Concerning the second group of (RSF) specimens, the behavior presented a small initial

linear part for the vertical displacement and it started to be an organized curve with load

increasing. The horizontal displacement has shown initially small linear part and tends

to be curve in parallel with the vertical displacement.

• Regarding the first and the second [0/90/90/0] (GFP) laminated specimens, the curves

shows that the initial behavior for w is fairly linear and tends to be disorganized curve

with load increasing, this is because the new way of displacements measurement and the

difficulties that can appear during setting laser electronic telemeters especially for the first

ones.The horizontal displacement is initially very small and the tip of beams starts mov-

ing on towards the root when significant bending slopes are obtained. However, for the

third [45/−45/−45/45] laminated specimen the curves demonstrate an improvement in

displacements measurement especially for u. Concerning the last specimen [0/90/90/0]

the curves show more improvements for both displacements u,w.

67



Chapter4

Analytical Model for Composite Beams

4.1 Introduction

In this chapter, an analytical formulation has been carried out to analyze the large deflection of

composite beams. The proposed formulation is based on the elastica beam model, according

to the classical Euler-Bernoulli beam theory, which is prepared to be able to dealing with sym-

metric and non-symmetric laminated beams. Subsequently, for the purpose of validation, it has

been compared with both analytical models and experimental studies existing in the literature.

Furthermore, for the sake of comparison, the present formulation has been also compared with

the obtained results from the performed experiments in the previous chapter. Also, the vary-

ing parameters, such as fiber orientation angle, anisotropic ratio E1/E2 and slenderness ratio

are examined to discover and understand their effect on the deflections variation of laminated

beams.
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4.2 Theoretical Approach

An analytical formulation has been carried out in order to analyze the large deflection of com-

posite cantilever beam, subjected to point load applied at its free end. In rectangular coordinates

(x, z), the curvature of bent beam is given by the well known relation from analytical geometry

by the following equation:

1

ρ
= −

d2w
dx2

[1 + (dw
dx

)2]
3
2

(4.1)

Where ρ is the curvature radius.

Figure 4.1, depicts a deformed geometry of a cantilever beam in x−z plane, which is deformed

due to some loading, where Ψ is the rotation angle of any beam section.

We have also according to Figure 4.1, the relation

dw

dx
= tgΨ (4.2)

By differentiating the right side of Eq(4.2) we can have

d

dx
(tgΨ) =

dΨ
dx

cos2Ψ
= (1 + tg2Ψ)

dΨ

dx
(4.3)

By substituting Eq(4.2) and Eq(4.3) into Eq(4.1), the curvature can be re-written as a func-

tion of Ψ as follows

1

ρ
= −cosΨdΨ

dx
(4.4)

According to Figure 4.1, we can also have

1

ρ
=
dΨ

ds
(4.5)
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Figure 4.1: Deformed geometry of a cantilever beam.

While finitely the Euler-Bernoulli beam theory may be used in such practical problems, it

will be essential and very popular when the the large deflection problem is studied. Neglecting

shear deformation, the Euler-Bernoulli kinematics can be expressed in the following way.

u(x, z) = u0(x)− zsinΨ (4.6)

w(x, z) = w0(x)

Where u0 and w0 are the axial and transverse displacements of a point on the neutral axis

The strain-displacement relationship is given by

Exx =
du

dx
=
du0

dx
− zcosΨ

dΨ

dx
(4.7)

From Eqs (4.4) and (4.5), Eq (4.7) can be rewritten as follows

Exx =
du0

dx
+ z

dΨ

ds
(4.8)

This expression can be rewritten as follows

Exx = ε0
xx + zKs (4.9)
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4.2.1 Constitutive equations

The constitutive equations for an orthotropic kth layer of a laminated in the local coordinate

system (1,2,3)can be written in terms of stresses-strains relationships Figure 4.2, as follows


σk11

σk22

σk12

 =


Qk

11 Qk
12 0

Qk
12 Qk

22 0

0 0 Qk
66




Ek11

Ek22

Ek12

 (4.10)

Where subscripts 1 and 2 indicate the fibers direction and in-plane transverse to the fibers

direction, respectively; subscript 3 is the direction normal to the plate Figure 4.2. The reduced

stiffness components are given by

Qk
11 =

Ek1
1− υk12υ

k
21

Qk
22 =

Ek2
1− υk12υ

k
21

Qk
12 =

υk21Ek1
1− υk12υ

k
21

Qk
66 = Gk

12

This equation can be rewritten as follows

{
σk
}

=

[
Qk

]{
Ek
}

(4.11)
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In the material coordinates (X, Y, Z), the constitutive equations of each layer can be given

by


σkxx

σkyy

σkxy

 =


Q
k

11 Q
k

12 Q
k

16

Q
k

12 Q
k

22 Q
k

26

Q
k

16 Q
k

26 Q
k

66




Ekxx

Ekyy

Ekxy

 (4.12)

Figure 4.2: A lamina with reference axes (X,Y,Z) and fiber axes (1,2,3).

This equation can be rewritten as follows

{
σk
}

=

[
Q
k

]{
Ek
}

(4.13)

Where

{
σk
}

=


σkxx

σkyy

σkxy

 ,

{
Ek
}

=


Ekxx

Ekyy

Ekxy

 (4.14)
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And

[Q
k
] = [T ]−1[Qk][T ] (4.15)

[T ] is the transformation matrix

[
T

]
=


c2 s2 2cs

s2 c2 −cs

−2cs 2cs c2 − s2

 (4.16)

The componentsQij are the stiffness coefficients of a layer in the global coordinates system

(X, Y, Z) of the laminate forming an angle θ with the local coordinates system of the lamina,

with c = cosθ and s = sinθ. θ is the fiber orientation angle with respect to material coordinates

system.

The stiffness coefficients are given by the following

Q
k

11 = Qk
11c

4 +Qk
22s

4 + 2(Qk
12 + 2Qk

66)s2c2

Q
k

22 = Qk
11s

4 +Qk
22c

4 + 2(Qk
12 + 2Qk

66)s2c2

Q
k

12 = (Qk
11 +Qk

22 − 4Qk
66)s2c2 +Qk

12(s4 + c4) (4.17)

Q
k

66 = (Qk
11 +Qk

22 − 2Qk
12 − 2Qk

66)s2c2 +Qk
66(s4 + c4)

Q
k

16 = (Qk
11 −Qk

12 − 2Qk
66)sc3 − (Qk

11 −Qk
12 − 2Qk

66)s3c

Q
k

26 = (Qk
11 −Qk

12 − 2Qk
66)s3c− (Qk

11 −Qk
12 − 2Qk

66)sc3

In case of beams, and accordingly to Bernoulli theory, it may have the following equation

σyy = σxy = 0 (4.18)
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This may lead to have the following equation

σkxx = Q
k

eqE
k
xx (4.19)

Where the equivalent stiffness coefficient of a layer is expressed as

Q
k

eq = Q
k

11 +Q
k

12

[
− Q
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12Q
k

66 −Q
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16Q
k

26
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k

22Q
k
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4.2.2 Resultant efforts

By integrating the stress through the thickness, the force and moment resultants are obtained as

follows

N =

∫ h
2

−h
2

σxx.dz =
k=n∑
k=1

(∫ zk+1

zk
Q
k

eq.Exxdz
)

(4.21)

N =
k=n∑
k=1

∫ zk+1

zk
Q
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eq
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ε0
xx− z

dΨ
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0
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−
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zk
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eq.z
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(4.22)

The force resultant can be written

N = A.ε0
xx + B.Ks (4.23)

M =

∫ h
2

−h
2

σxx.zdz =
k=n∑
k=1
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zk
Q
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eq.Exxzdz
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(4.24)
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The moment resultant can be written

M = B.ε0
xx + D.Ks (4.26)

Where n is the layers number, with A, B and D are the extensional, coupling and bending

rigidity scalars, respectively, and are defined as

A =
k=n∑
k=1

Q
k

eq(hk − hk−1) (4.27)

B =
1

2

k=n∑
k=1

Q
k

eq(h2
k − h2

k−1) (4.28)

D =
1

3

k=n∑
k=1

Q
k

eq(h3
k − h3

k−1) (4.29)

4.2.3 Neutral axis position change

Figure 4.3: Neutral axis positions.

When the asymmetric laminated section is considered, the neutral axis is not located at the

middle of the beam section as shown in Figure 4.3, which this shift between them is expressed

by the coupling rigidity. For purpose omitting the coupling rigidity and in order to determine

the position of the neutral axis, a new coordinate system z′ = z− e is considered as follows

x = x′

z = z′ + e
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Where e is the distance between the median axis of the beam section and the neutral

axis,Figure 4.3

Then, to calculate the distance , the coupling rigidity with respect to axis z′ must be 0

B′ =
n∑
k=1

∫ z′k

z′k−1

Qk
eqz
′dz′ = 0 (4.30)

B′ =
n∑
k=1

∫ z′k

z′k−1

Qk
eq(z− e)dz =

n∑
k=1

∫ z′k

z′k−1

Qk
eqzdz −

n∑
k=1

∫ z′k

z′k−1

Qk
eq.edz = 0 (4.31)

B′ = B− eA (4.32)

This leads to

e =
B
A

(4.33)

Once e is determined, the new bending stiffness with respect to z′ can be given by

D′ =
n∑
k=1

∫ z′k

z′k−1

Qk
eqz
′2dz′ =

1

3

n∑
k=1

Qk
eq[(hk − e)3 − (hk−1 − e)3] (4.34)

4.2.4 Cantilever beam with tip concentrated load

Laminated cantilever beam, subjected to a concentrated load P at the free end, is shown on

Figure 4.4. To determine the horizontal and vertical displacements ∆x and ∆z respectively of

the free end of the beam, the bending moment-curvature relation is used. [45].

Relation is given by

D′
dΨ

ds
= −M(x) (4.35)
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Figure 4.4: Schematic view of a cantilever.

M(x) is the bending moment at location x,which can be expressed as

M(x) = −P (L−∆x − x) (4.36)

The derivation of Eq.(4.35) with respect to s, yields to

D′
d2Ψ

ds2
= −dM(x)

ds
(4.37)

Substituting the bending moment expression in Eq.(4.37)we can have

D′
d2Ψ

ds2
= PcosΨ (4.38)

Multiplying the above Eq. by dΨ
ds

we can have

D′
d2Ψ

ds2

dΨ

ds
+ PcosΨ

dΨ

ds
= 0 (4.39)

Integrating Eq.(4.39), can be re-written in the following form

d

ds

[
1

2
D′
(
dΨ

ds

)2

+ PsinΨ

]
= 0 (4.40)
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Integrating Eq.(4.40) and evaluating the constant of integration by using the following

boundary conditions (dΨ/ds) = 0 and (Ψ = Ψm) at (s = L), which Ψm the unkown quantity

at free-end, Figure 4.4.

Eq (4.40) becomes

(
dΨ

ds

)2

=
2

D′
(PsinΨm − PsinΨ) (4.41)

By integrating Eq.(4.41),assuming that the beam’s length will not change during bending,

we can have

√
2P

D′

∫ L

0

ds =

∫ Ψm

0

√
sinΨm − sinΨdΨ (4.42)

So we can have the expression which makes it possible to obtain the value of the rotation

of the free end of the beam Ψm

L =

√
D′

2P

∫ Ψm

0

dΨ√
sinΨm − sinΨ

(4.43)

Once the rotation angle Ψm is obtained, the horizontal and vertical displacements ∆x and

∆z can be calculated by using the following equations

∆x = L− 2

√
D′

2P
[sinΨm] (4.44)

∆z =

√
D′

2P

∫ Ψ

0

sinΨdΨ√
sinΨm − sinΨ

(4.45)
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4.3 Simpson’s Rule

Simpson’s rule is one of the most commonly used numerical method to approximate the value

of a definite integral using quadratic polynomials. It is used primarily for cases where exact

integration is very difficult or impossible to obtain [4, 220]. Of these, it has been used in order

to solving Eqs (4.44) and (4.45).

Consider,for example, the integral

∫ b

a

f(x)dx (4.46)

Figure 4.5: Simpson’s 1/3 rule [220].

Simpson’s 1/3 rule can be obtained by passing a parabolic interpolant through three adjacent

nodes, as shown in Figure 4.5. The area under the parabola,which represents an approximation

of Eq (4.46), is

I =
h

3

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
(4.47)

To obtain the composite Simpson’s 1/3 rule,the integration range (a, b) is divided into n−1

panels of width h = (b− a)/(n− 1) each, as indicated in figure 4.6.

Applying Eq(4.47) to two adjacent panels, we have
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Figure 4.6: Composite Simpson’s 1/3 rule [220].

∫ xi+2

xi

f(x)dx ≈ h

3
[f(xi) + 4f(xi+1) + f(xi+2)] (4.48)

Substituting Eq(4.48)into the following Eq

∫ b

a

f(x)dx =

∫ xn

x1

f(x)dx =
n−1∑

i=1,3,...

[ ∫ xi+2

xi

f(x)dx

]
(4.49)

yields

∫ b

a

f(x)dx ≈ I =
h

3
[f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ... (4.50)

...+ 2f(xn−2) + 4f(xn−1) + f(xn)]
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4.4 Validation of the Analytical Formulation

In order to validate the analytical formulation, three different tests of cantilever beams are

considered in this section. The present examples are compared with the available analytical

appraoches from the literature for isotropic and composite cantilever beams. Furthermore, for

the sake of confrontation, the present formulation has been also compared with the obtained

results from the performed experiments in the previous chapter.

4.4.1 Isotropic cantilever beam subjected to tip concentrated load

An isotropic cantilever beam subjected to tip load is considered for the first case as illustrated

in Figure 4.7. The horizontal and vertical deflections are computed for deferent load parameter

value, where the obtained results are presented in Table 4.1. Figure 4.8, show the present

analytical results compared with the analytical results obtained by Mattiasson [221] and Kumar

et al. [47]. The curves show that the obtained results are clearly in excellent agreement with

those results.

Figure 4.7: Cantilever beam subjected to tip load.
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Table 4.1: Non-dimensional deflections as a function of load parameter for isotropic cantilever
beam subjected to tip load.

PL2

EI

Mattiasson Kumar et al. Present analytical
u w u w u w

1 0,0564 0,3017 0,0566 0,3019 0,0812 0,3018
2 0,1606 0,4934 0,1616 0,4939 0,1616 0,4936
3 0,2544 0,6032 0,2554 0,6038 0,2453 0,6368
4 0,3289 0,6699 0,3292 0,6704 0,3117 0,6934
5 0,3876 0,7137 0,3882 0,7146 0,3767 0,7322
6 0,4345 0,7445 0,4423 0,7454 0,4273 0,7606
7 0,4729 0,7673 0,4821 0,7682 0,4679 0,7852
8 0,5048 0,7849 0,511 0,7861 0,5013 0,7971
9 0,5318 0,799 0,5428 0,803 0,5293 0,8118
10 0,555 0,8106 0,5621 0,8206 0,5531 0,8262

Figure 4.8: Non-dimensional deflections as a function of load parameter for isotropic cantilever
beam subjected to tip load.
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4.4.2 Composite cantilever beams subjected to tip concentrated load

Another two cases for composite laminated cantilever beams subjected to tip load are now

presented. The second case considered for validation is a symmetric 12-layer cross-ply [0/90]3s

cantilever beam of length L = 550mm, width W = 30mm, and thickness t = 0.124mm. The

third case is an antisymmetric cantilever beam [20/− 702/20]2a of length L = 560mm, width

W = 30mm, and thickness t = 0.134mm. The mechanical properties of the material used, are

as follows: E1 = 142GPa, E2 = 9.8GPa, υ12 = 0.3 and G12 = 6GPa. The cantilever beam

was loaded at free end, where the vertical and the horizontal displacements are measured at a

distance a = 50mm from the free end as shown in Figure 4.9.

Figure 4.9: Laminated cantilever beam subjected to tip load.

Table 4.2 and Table 4.3, shows the horizontal and the vertical displacements obtained by the

present analytical formulation with those obtained analytically and experimentally by Minguet

et al. [62]. Figures 4.10 and 4.11, show the present analytical results compared with the ex-

perimental and the analytical results obtained by Minguet et al. [62]. The curves show that

the results compare well for a symmetric beam. However, there are some differences in the

results of vertical displacement in case of antisymmetric beam. The large deflection shapes of

the symmetrical 12-layer cross-ply cantilever beam subjected to various vertical concentrated

loads at free end respectively are shown in Figure 4.12.
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Table 4.2: Analytical horizontal and vertical displacements of symmetric laminated
[0/90]3scantilever beam end.

Load (g)
Experimental [62] Present analytical Analytical [62]
u (mm) w (mm) u (mm) w (mm) u (mm) w (mm)

77.58 2.81 50.56 3.86 47.61 2.8 47.75
103.44 4.77 68.1 2.68 63.91 5.61 61.79
146.55 8.02 94.91 4.55 89.47 11.23 89.88
202.58 19.66 125.01 14.35 116.7 18.25 117.97
405.17 58.8 206.46 50.55 201.2 57.58 202.24

Table 4.3: Comparison Analytical horizontal and vertical displacements of antysimmetric lam-
inated [20/− 702/20]2acantilever beam end.

Load (g)
Experimental [62] Present analytical Analytical [62]
u (mm) w (mm) u (mm) w (mm) u (mm) w (mm)

51.61 1.82 27.37 1.69 39.02 1.5 27.37
103.22 5.47 52.91 7.78 74.8 4.74 49.27
206.45 16.42 102.18 17.38 139.7 9.12 93.06
303.22 32.84 144.16 39.83 187.2 21.89 131.38
406.45 49.27 178.83 64.79 225.9 34.67 167.88
516.12 65.69 208.02 87.21 259.4 49.27 198.91

Figure 4.10: Load-displacement curves for a [0/90]3s cantilever beam.
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Figure 4.11: Load-displacement curves for a [20/− 702/20]2a cantilever beam.

Figure 4.12: Deflection shape of a [0/90]3s cantilever beam for various loads.
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4.4.3 Comparison with the current experimental large displacements of

(PG) and (RSF) beams.

In the previous section, the analytical formulation has been validated by comparing the obtained

results with those obtained analytically and experimentally in the literature. The formulation

is preceded in the previous chapter by an experimental analysis of bending of (PG) and (RSF)

beams, to determine the horizontal and the vertical displacements measured at the tip of the

beams. For comparison purpose, the experimental results in terms of horizontal and vertical

displacements and those obtained using the present analytical formulation for both (PG) and

(RSF) beams, are presented in this section in. Table 4.4 and Table 4.5.

Figure 4.13, compares the horizontal and vertical displacements, of (PG) beam end, ob-

tained experimentally and those obtained, using the present formulation. The curves, having

the same paces, show the well agreement between the two approaches especially the horizontal

displacement. Figure 4.14 depicts the comparison between the load-displacements curves of

the analytical and the experimental analysis for (RSF) cantilever beam. It can be seen that the

analytical curves are going well with the experimental ones.

Table 4.4: Horizontal and vertical displacements of (PG) cantilever beam end.

Load (N)
Present analytical Present experimental
u (mm) w (mm) u (mm) w (mm)

0.12 2.4 43 4 38
0.15 4.3 54.1 5.5 48
0.18 6 64.4 7 57
0.21 8 75 9 66
0.24 10.11 84.2 11 75
0.27 11.27 95 12.5 83
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Table 4.5: Horizontal and vertical displacements of (RSF) cantilever beam end.

Load (N)
Present analytical Present experimental
u (mm) w (mm) u (mm) w (mm)

0.7 4.31 38.28 7 36
1.5 13.15 70.86 16 64.5
1.6 15.03 74.72 17.5 69
1.8 17.72 82.04 21 76
2 20.16 88.74 23.5 82
2.2 24.07 95.35 27 89
2.4 27.56 102.2 30 94
2.9 33.83 117.6 37 105
3.4 40.43 129.4 44 117
3.9 46.41 138.7 51 130
4.4 53.83 144.9 57 137
4.9 62.45 153.1 64 145
5.4 68.02 158.2 71 152
5.9 73.92 163.1 75 157
6.4 79.91 168.6 83 164

Figure 4.13: Load-displacements curves for a (PG) cantilever beam.
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Figure 4.14: Load-displacements curves for a (RSF) cantilever beam.

4.5 Factors affecting large displacements variation

After validating the performance of the analytical formulation in the prvious section, by com-

paring the obtained results with some analytical solutions available in the literature. This sec-

tion is aimed to discover and understand the effect of fiber orientation angle, anisotropic ratio,

slenderness ratio on the horizontal and the vertical diplacements in symmetric and nonsymmet-

ric laminated beams under tip load.

4.5.1 Effect of fiber orientation

For our examples here, the mechanical properties of the fabricated long glass fiber/polyester

resin (GFP) laminates that were presented in the previous chapter are considered. A symmetric

four layers [θ/ − θ/ − θ/θ] and anti-symmetric eight layers [θ/ − θ/θ/ − θ/θ/ − θ/θ/ − θ]

cantilever beams under tip load are considered for the first two examples respectively. The

horizontal and vertical displacements corresponding to fiber orientation angle ranging from 0◦

to 90◦ are shown in Figures 4.15 and 4.16 respectively.
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Figure 4.15: Effect of fiber orientation angle on non-dimensional deflections for a symmetric
angle-ply (GFP) beam under tip load.

Figure 4.16: Effect of fiber orientation angle on non-dimensional deflections for antisymmetric
angle-ply (GFP) beam under tip load.
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As shown in Figures 4.15 and 4.16, we can see that that the effect of fiber orientation angle

on displacements is similar for both symmetric and anti-symmetric laminates.It is observed

that with an increase in fiber orientation angle, there is an increase in deflections values until

the angle θ = 45◦ where the deflections reaches its maximum values, then it decrease slowly

toward the angle θ = 90◦, and we can also note that for θ = 0◦ the deflections have the

minimum value, which means that the beam’s rigidity is at the maximum value.

4.5.2 Effect of degree of anisotropic

It has been found from our examples in the previous section that the deflection values vary as

the fiber orientation changes. Additionally, the deflection values also change,depending on the

ratio the elasticity modulus of the fiber direction to the transverse one, E1/E2. Thus, the effect

of modulus ratio E1/E2 on the deflection values on symmetric and antisymmetric angle-ply

beams under tip load corresponding to fiber orientation angle ranging from 0◦ to 90◦. The

material proprieties in this study are E1 = 1δ,E2 = 1,G12 = 0.5,υ12 = 0.25, with δ ranging

from 1 to 80. Consediring these examples, the effect of modulus ratio on non-dimensional

deflection for a symmetric and antisymmetric angle-ply beam with various fiber orientation

angles under tip load are presented in Figures 4.17 and 4.18, repectively.

As shown in Figures 4.17 and 4.18, both of symmetric and antisymmetric beams behave in a

similar way.It is seen that, the deflection values are affected by the changes of E1/E2 when the

fiber orientations are between 0◦ and 45◦, the deflection decrease with the increase in modulus

ratio until E1/E2 = 30 for 0◦ and E1/E2 = 10 for 15◦,30◦,45◦ the deflection is not affected

much by the increase in modulus ratio. However, when the angle values are 60◦ 75◦,90◦ the

deflection values are not affected by the changes of modulus ratio.
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Figure 4.17: Effect of modulus ratio on non-dimensional deflections for a symmetric angle-ply
beam with various fiber orientation angles under tip load.

Figure 4.18: Effect of modulus ratio on non-dimensional deflections for antisymmetric angle-
ply beam with various fiber orientation angles under tip load.

91



CHAPTER 4. ANALYTICAL MODEL FOR COMPOSITE BEAMS

4.5.3 Effect of slenderness ratio

Another important parameter which can effect the behavior of the beams is the slenderness

ratio.Different anisotropy ratio values are considered. A four (GFP) layers with a symmet-

ric as well as antisymmetric angle-ply cantilever beams subjected to tip load are considered

here for our two examples respectively. The anisotropy ratio E1/E2 values are ranging from

1 to 5. The effect of slenderness ratio on non-dimensional deflections values for laminated

(GFP) cantilever beams under tip load are shown in Figures 4.19 and 4.20, for symmetric and

antisymmetric angle-ply laminated beam respectively.

Figure 4.19: Effect of slenderness ratio on non-dimensional deflections for a symmetric angle-
ply (GFP) beam under tip load with various orthotropy ratio values.
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Figure 4.20: Effect of slenderness ratio on non-dimensional deflections for antisymmetric
angle-ply (GFP) beam under tip load with various orthotropy ratio values.

Considering these two cases, we can note from both Figures 4.19 and 4.20, that the curves

are consistent for all anisotropy ratio values. It is also observed that the deflections values

increase with the increase of slenderness ratio, the deflections values also are increasing. Then,

as shown in Figures, we can see that there is a decrease in deflection values with the increase

in anisotropy ratio values.

4.6 Conclusion

An analytical formulation has been carried out in this chapter, to analyze the large deflection

of composite beams. The proposed formulation is based on the elastica beam model, accord-

ing to the classical Euler-Bernoulli beam theory, which is prepared to be able to dealing with

symmetric and non-symmetric laminated beams. Subsequently, for the purpose of validation,

the obtained results have been compared with both analytical models and experimental studies

existing in the literature. It has been shown that for isotropic beam case the obtained results

are clearly in excellent agreement with those obtained in the literature. Also, for symmetric
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as well as antisymmetric laminated beams cases the results are compare well with those. Fur-

thermore, for the sake of comparison, the present formulation has been also compared with

the obtained results from the performed experiments in the previous chapter. It has been seen

that the present analytical results are going well with the experimental ones. In addition, the

varying parameters, such as fiber orientation angle, anisotropic ratio E1/E2 and slenderness

ratio were examined to discover and understand their effect on the deflections variation of lam-

inated beams. As result, some of the important observations from the parametric study are in

the following points

• It has been seen, that the effect of fiber orientation angle on displacements is similar

for both symmetric and antisymmetric laminates. It has been also observed that with

an increase in fiber orientation angle, there is an increase in deflections values until the

angle θ = 45◦ where the deflections reaches its maximum values, then it decrease slowly

toward the angle θ = 90◦, and we can also note that for θ = 0◦ the deflections have the

minimum value, which means that the beam’s rigidity is at the maximum value.

• It has been seen that, the deflection values are affected by the changes ofE1/E2 when the

fiber orientations are between 0 degree and 45◦, the deflection decrease with the increase

in modulus ratio untilE1/E2 = 30 for 0◦ andE1/E2 = 10 for 15◦, 30◦, 45◦ the deflection

is not affected much by the increase in modulus ratio. However, when the angle values

are 60◦,75◦, 90◦ the deflection values are not affected by the changes of modulus ratio.

• It has been observed, that the deflections values increase with the increase of slenderness

ratiofor different values of anisotropy ratio.
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Chapter5

Numerical Analysis of Nonlinear Bending

of Beams

5.1 Introduction

In this chapter, one-dimensional finite element formulation based on the Euler-Bernoulli beam

theory has been developed for the nonlinear bending analysis of symmetric and non-symmetric

laminated beams. The present element has been defined by two nodes and three degree of

freedom per node.The principle of total potential energy has been used for the derivation of

stiffness and geometrical matrices.The direct iterative method has been used to solve the non-

linear equations. Subsequently, for the purpose of validation the present element has been

compared with the available analytical models, experimental studies from the literature as well

as the present analytical model presented in the previous chapter. In addition, a parametric

study is presented in order to examinate the effect of some parameters such as fiber orienta-

tion angle and slenderness ratio on the deflection variation of laminated beams with different

boundary conditions.
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5.2 Strain Tensor (Measures of Deformations)

The forces that act on a solid body produce its deformation. One of the basic problems in con-

tinuum mechanics is to describe,quantitatively, the deformation that the body undergoes. This

is achieved by introduction of measures of deformations. Measures of deformation are based

on geometrical quantities that describe deformation of the body. When the body is in motion, in

general, its points experience displacement; that is, the position vector of an arbitrary particle

changes, with respect to a fixed coordinate, system. One way to describe, quantitatively, the

deformation at a given point, P , is to determine relative changes of length of linear elements

originating at P as well as changes in the angle between any pair of linear elements originating

at P . In differential geometry it is shown that the length of linear elements as well as the angle

between them could be determined if the metric is known at a given point. Thus, to define

measures of deformation we have to calculate the metric at P in the undeformed and deformed

states and then compare those two metrics [222].

Figure 5.1: Transformation of a point and a vector.

The point P of the undeformed configuration Ci becomes P of the deformed configuration

Cc Figure 5.1.

96



CHAPTER 5. NUMERICAL ANALYSIS OF NONLINEAR BENDING OF BEAMS

−→
OP = x~i + z~k (5.1)

−→
OP = x~i + z~k (5.2)

The displacement vector of the point P is defined as

~u =
−→
PP =

−→
OP −

−→
OP = u~i + w~k (5.3)

The coordinates x, z of point P can be written using the Lagrange representation as

x(x, z)

z(x, z)

 =

xz
+

u(x, z)

w(x, z)

 (5.4)

The infinitely vector d~x at P becomes d~x at P in the deformed configuration Cc Figures 5.2

and 5.3.

d~x = d~x+ d~u (5.5)

dxdz
 =

dxdz
+


∂u

∂x
dx+

∂u

∂z
dz

∂w

∂x
dx+

∂w

∂z
dz

 (5.6)

The vector d~x can be given in matrix form by the following

{dx} = {dx}+ {du} = ([I] + [L])dx = [F]dx (5.7)

The above equation can be written
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Figure 5.2: Transformation of a vector.

dxdz
 =

1 +
∂u

∂x

∂u

∂z
∂w

∂x
1 +

∂w

∂z
dz


dxdz

 (5.8)

Where [F] is the transformation gradient tensor and [L] is the deformation gradient tensor

[
L

]
=

 ∂u∂x ∂u

∂z
∂w

∂x

∂w

∂z

 (5.9)

• Dilatation tensor

Figure 5.3: Transformation of a vectors.

Consider two infinitely vectors d~x andd~x′ at point P figure 5.3,becomes d~x and d~x′ in the

deformed configuration Cc.
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{dx} = [F]{dx} (5.10)

{dx′} = [F]{dx′}

The multiplication of vectors d~x and d~x′ can be written as

{dx}T{dx′} = {dx}T [F]T [F]{dx′} (5.11)

= {dx}T [C]{dx′}

Where the dilatation tensor [C] can be given by the following

[C] = [F]T [F] = ([L]T + [I])([L] + [I]) = [L]T [L] + [L]T + [L] + [I] (5.12)

Let ds be the length of the vector d~x andds the length of the vector d~x

ds2 = d~x.d~x = {dx}T .{dx} (5.13)

ds2 = d~x.d~x = {dx}T .{dx}

The difference ds2 − ds2 can be written by the following

ds2 − ds2 = d~x.d~x− d~x.d~x (5.14)

= {dx}T .{dx} − {dx}T .{dx} = {dx}T ([C]− [I]){dx}

= {dx}T (2[E]){dx}
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Where E is The Green-Lagrange strain tensor defined by

[E] =
[L]T + [L]

2︸ ︷︷ ︸
Linear−terms

+
[L]T [L]

2︸ ︷︷ ︸
Nonlinear−terms

(5.15)

By substituting Eq (5.9) in Eq(5.15) it can be written

Exx =
∂u

∂x
+

1

2

[(
∂u

∂x

)2

+

(
∂w

∂x

)2]
Ezz =

∂w

∂z
+

1

2

[(
∂u

∂z

)2

+

(
∂w

∂z

)2]
(5.16)

Exz =
1

2

(
∂u

∂z
+
∂w

∂x

)
+

1

2

[
∂u

∂x

∂u

∂z
+
∂w

∂x

∂w

∂z

]

By omitting the large strain terms and retaining only the square of ∂w/∂x, which represents

the rotation of a transverse normal line in the beam, we obtain the so-called von Karaman

strains, where it is used as a nonlinear strain-displacement relations for the formulation of the

present finite element in the following.

5.3 Finite Element Formulation

5.3.1 Displacement field

The governing equations of the nonlinear bending of beams are developed from basic consid-

erations. Based on the Euler-Bernoulli hypothesis, the bending of beams with large displace-

ments and moderately large rotations considering small strains case, can be derived, using the

following displacement field.

u(x, z) = u0(x)− z
∂w

∂x
(5.17)

w(x, z) = w0(x)
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Where u and w are the total displacements along the coordinates in x and z directions

respectively, while u0 and w0 denote the axial and transverse displacements of a point of the

neutral axis.

5.3.2 Strain-displacement relationships

Using the nonlinear von-karman strain-displacement relationship, the strain component is given

by

Exx =
∂u0

∂x
− z

∂w2

∂x2
+

1

2

(
∂w

∂x

)2

(5.18)

Or in other term

Exx = ε0 + zKx (5.19)

Where

ε0 = ε0
0 + ε0

nl (5.20)

ε0
0 =

∂u0

∂x
(5.21)

ε0
nl =

1

2

(
∂w

∂x

)2

(5.22)

Kx = −∂w
2

∂x2
(5.23)

5.3.3 Stress-strain relationships

The constitutive equations for an orthotropic kth layer of a laminated in the local coordinates

system (1,2,3) can be written in terms of stresses-strains relationships Figure 5.4 as follows
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
σk11

σk22

σk12

 =


Qk

11 Qk
12 0

Qk
12 Qk

22 0

0 0 Qk
66




Ek11

Ek22

Ek12

 (5.24)

Where subscripts 1 and 2 indicate the fibers direction and in-plane transverse to the fibers

direction, respectively; subscript 3 is the direction normal to the plate Figure 5.4. The reduced

stiffness components are given by

Qk
11 =

Ek1
1− υk12υ

k
21

Qk
22 =

Ek2
1− υk12υ

k
21

Qk
12 =

υk21Ek1
1− υk12υ

k
21

(5.25)

Qk
66 = Gk

12

This equation can be rewritten as follows

{
σk
}

=

[
Qk

]{
Ek
}

(5.26)

In the material coordinates (x, y, z), the constitutive equations can be given by


σkxx

σkyy

σkxy

 =


Q
k

11 Q
k

12 Q
k

16

Q
k

12 Q
k

22 Q
k

26

Q
k

16 Q
k

26 Q
k

66




Ekxx

Ekyy

Ekxy

 (5.27)

This equation can be rewritten as follows
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Figure 5.4: A lamina with reference axes (x,y,z) and fiber axes (1,2,3).

{
σk
}

=

[
Q
k

]{
Ek
}

(5.28)

Where

{
σk
}

=


σkxx

σkyy

σkxy

 ,

{
Ek
}

=


Ekxx

Ekyy

Ekxy

 (5.29)

And

[Q
k
] = [T ]−1[Qk][T ] (5.30)

[T ] is the transformation matrix

[
T

]
=


c2 s2 2cs

s2 c2 −cs

−2cs 2cs c2 − s2

 (5.31)
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The components Qij are the stiffness coefficients of a layer in the global coordinate system

(x, y, z) of the laminate forming an angle θ with the local coordinates system of the lamina,with

c = cosθ and s = sinθ. θ is the fiber orientation angle with respect to material coordinates

system.

The stiffness coefficients are given by

Q
k

11 = Qk
11c

4 +Qk
22s

4 + 2(Qk
12 + 2Qk

66)s2c2

Q
k

22 = Qk
11s

4 +Qk
22c

4 + 2(Qk
12 + 2Qk

66)s2c2

Q
k

12 = (Qk
11 +Qk

22 − 4Qk
66)s2c2 +Qk

12(s4 + c4) (5.32)

Q
k

66 = (Qk
11 +Qk

22 − 2Qk
12 − 2Qk

66)s2c2 +Qk
66(s4 + c4)

Q
k

16 = (Qk
11 −Qk

12 − 2Qk
66)sc3 − (Qk

11 −Qk
12 − 2Qk

66)s3c

Q
k

26 = (Qk
11 −Qk

12 − 2Qk
66)s3c− (Qk

11 −Qk
12 − 2Qk

66)sc3

In case of beams, and accordingly to Bernoulli theory, we can have the following

σyy = σxy = 0 (5.33)

This may lead to have the following equation

σkxx = Q
k

eqE
k
xx (5.34)

Where the equivalent stiffness coefficient of a layer is expressed as

Q
k

eq = Q
k

11 +Q
k

12

[
− Q

k

12Q
k

66 −Q
k

16Q
k

26

Q
k

22Q
k

66 − (Q
k

26)2

]
+Q

k

16

[
− Q

k

16

Q
k

66

]
−Qk

26

[
− Q

k

66Q
k

12 +Q
k

26Q
k

16

Q
k

66(Q
k

22Q
k

66 − (Q
k

26)2)

]
(5.35)
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5.3.3.1 Resultant efforts

By integrating the stress through the thickness, the axial force and moment resultants are ob-

tained as follows

N =

∫ h
2

−h
2

σxx.dz =
k=n∑
k=1

(∫ zk+1

zk
Q
k

eq.Exxdz
)

(5.36)

N =
k=n∑
k=1

∫ zk+1

zk
Q
k

eq

(
ε0 + zKx

)
dz =

k=n∑
k=1

(∫ zk+1

zk
Q
k

eq.ε0dz

)
+

k=n∑
k=1

(∫ zk+1

zk
Q
k

eq.zKx

)
(5.37)

The axial force resultant can be written

N = A.ε0 + B.Kx (5.38)

M =

∫ h
2

−h
2

σxx.zdz =
k=n∑
k=1

(∫ zk+1

zk
Q
k

eq.Exxzdz
)

(5.39)

M =
k=n∑
k=1

∫ zk+1

zk
Q
k

eqz

(
ε0 +zKx

)
dz =

k=n∑
k=1

(∫ zk+1

zk
Q
k

eq.ε0zdz

)
+
k=n∑
k=1

(∫ zk+1

zk
Q
k

eq.z
2Kxdz

)
(5.40)

The moment resultant can be written

M = B.ε0 + D.Kx (5.41)

Where n is the layers number, with A, B and D are the extensional, coupling and bending

rigidity scalars, respectively, and are defined as

A =
k=n∑
k=1

Q
k

eq(hk − hk−1) (5.42)
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B =
1

2

k=n∑
k=1

Q
k

eq(h2
k − h2

k−1) (5.43)

D =
1

3

k=n∑
k=1

Q
k

eq(h3
k − h3

k−1) (5.44)

Kx = −∂w
2

∂x2
(5.45)

5.3.3.2 Neutral axis position change

Figure 5.5: Neutral axis position.

When the atisymmetric laminated section is considered, the neutral axis is not located at the

middle of the beam section as shown in Figure 5.5, which this shift between them is expressed

by the coupling rigidity. For purpose omitting the coupling rigidity and in order to determine

the position of the neutral axis, a new coordinates system (z′ = z− e) is considered

x = x′

z = z′ + e

With e is the distance between the median axis of the beam section and the neutral axis,Figure 5.5

Then, to calculate the distance , the coupling rigidity with respect to axis z′ must be 0

B′ =
n∑
k=1

∫ z′k

z′k−1

Qk
eqz
′dz′ = 0 (5.46)
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B′ =
n∑
k=1

∫ z′k

z′k−1

Qk
eq(z− e)dz =

n∑
k=1

∫ z′k

z′k−1

Qk
eqzdz −

n∑
k=1

∫ z′k

z′k−1

Qk
eq.edz = 0 (5.47)

B′ = B− eA (5.48)

This leads to

e =
B
A

(5.49)

Once e is determined, the new bending stiffness with respect to z′ can be given by

D′ =
n∑
k=1

∫ z′k

z′k−1

Qk
eqz
′2dz′ =

1

3

n∑
k=1

Qk
eq[(hk − e)3 − (hk−1 − e)3] (5.50)

5.3.4 Displacement interpolation and shape functions

The displacements field vector of the present finite element can be defined in the following

form

δ(x) =
n∑
i=1

N(x)δi (5.51)

where δ(x) is the displacement vector of a given point along the element.

δi = {uiwiφi}T is the nodal displacement vector,i is the number of the considered node(i =

1, 2) and Nk(x) are the Lagrange and Hermit shape functions given in the following
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N1 = 1− x

L

N2 =
x

L

N3 = 1− 3

L2
x2 +

2

L3
x3

N4 = x− 2

L
x2 +

x3

L2

N5 =
3

L2
x2 − 2

L3
x3

N6 = − 1

L
x2 +

1

L2
x3

(5.52)

The strain-displacement relationship of Eqs.(5.18)and (5.19) can be rewritten as follows

{ε0} = [Bm]{δ}

{Kx} = [Bf ]{δ}
∂w

∂x
= [G]{δ}

{εnl} =
1

2
{δ}T [G]T [G]{δ} (5.53)

Where

[
Bm

]
=

[
∂N1

∂x
0 0

∂N2

∂x
0 0

]
(5.54)

[
Bf

]
=

[
0

∂N2
2

∂x2

∂N2
3

∂x2
0

∂N2
5

∂x2

∂N2
6

∂x2

]
(5.55)

[
Bm

]
and

[
Bf

]
are (1× 6) matrices,and the subscripts m and f denote the membrane and

the bending strains, respectively.
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5.3.5 Evaluation of stiffness matrix

The principle of total potential energy is used to derivate the elementary stiffness matrix of the

element. It is defined by

Π = U −W (5.56)

U and W are the deformation potential energy and the external forces work, respectively.

In order to establish the relationships between displacements and forces, the first variation of

the total potential energy must be equal 0.

∂Π = ∂U − ∂W = 0 (5.57)

The potential energy of deformation can be given by

U =
1

2

∫
v

σxxεxxdv (5.58)

Where

U =
1

2

∫ L

0

Nε0dx+
1

2

∫ L

0

MKxdx (5.59)

By substituting Eq(5.38)and (5.41)into the above equation, it can be written as

U =
1

2

∫ L

0

({ε0}T [Aε0 +BKx])dx+
1

2

∫ L

0

({Kx}T [Bε0 +DKx])dx (5.60)

And

U =
1

2

∫ L

0

({ε0}TA{ε0})dx+
1

2

∫ L

0

({ε0}TB{Kx})dx

+
1

2

∫ L

0

({Kx}TB{ε0})dx+

∫ L

0

({Kx})TD({Kx})dx (5.61)
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By substituting Eq (5.20)into Eq (5.61) it can be written as

U =
1

2

∫ L

0

({ε0
0}+ {ε0

nl})TA({ε0
0}+ {ε0

nl})dx+
1

2

∫ L

0

({ε0
0}+ {ε0

nl})TB({Kx})dx

+
1

2

∫ L

0

({Kx})TB({ε0
0}+ {ε0

nl})dx+
1

2

∫ L

0

({Kx})TD({Kx})dx (5.62)

In the present formulation,a new position of the beam neutral axis had been determined

for omitting the coupling rigidity purpose. Then, with respect to the new coordinates, a new

bending stiffness D′ had been determined at the new neutral axis. Of these, even when the

laminated section is considered as an non-symmetric, the coupling rigidity is equal zeroB = 0.

So, in this case the axial resultant force and the resultant moment are given by

N = Aε0

M = D′Kx (5.63)

By substituting Eq (5.63) in Eq (5.61), the Eq (5.62) become

U =
1

2

∫ L

0

({ε0
0}TA{ε0

0})dx+
1

2

∫ L

0

({ε0
0}TA{ε0

nl})dx+
1

2

∫ L

0

({ε0
nl}TA{ε0

0})dx

+
1

2

∫ L

0

({ε0
nl}TA{ε0

nl})dx+
1

2

∫ L

0

({Kx}TD′{Kx})dx (5.64)

substituting the strain-displacement relationship Eqs (5.53) in the above equation, we find

U =
1

2

∫
L

(
({δ}T [Bm]TA[Bm]{δ}) + ({δ}T [Bm]TA

1

2
{δ}T [G]T [G]{δ})

+ (
1

2
{δ}T [G]T [G]{δ}A[Bm]{δ}) + (

1

2
{δ}T [G]T [G]{δ}A1

2
{δ}T [G]T [G]{δ})

+ ([Bf ]
TD′[Bf ]) + ([G]TN [G])

)
dx (5.65)
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The stiffness matrix can be given by

[Ke] =

∫ L

0

(
([Bm]TA[Bm])︸ ︷︷ ︸
Linear−membrane

+
3

4
([Bm]TA{δ}T [G]T [G])︸ ︷︷ ︸

Nonlinear−membrane

+
3

4
([G]T [G]{δ}A[Bm])︸ ︷︷ ︸
Nonlinear−membrane

+
1

2
([G]T [G]{δ}A{δ}T [G]T [G])︸ ︷︷ ︸

Nonlinear−membrane

+ ([Bf ]
TD′[Bf ])︸ ︷︷ ︸

Linear−flexional

+([G]TN [G])
)
dx (5.66)

5.4 Resolution Method

The iterative solution method and the calculation steps used to solve the present nonlinear

finite element equations are presented here. Consider the nonlinear finite element equilibrium

equation can be written as

K(δ)δ = F (5.67)

Where δ is the unknown to be determined,K(δ) is a function of δ,F is the known force.

The nonlinear Eq (5.67) can be linearized using the iterative procedure. We begin with an

initial guess for δ, say δ(0),(δ(0) = 0) and determine the first approximation to δ by solving the

equation

δ(1) = (K(δ(0)))−1F (5.68)

δ(1) 6= δ, and a second approximation for δ sought by using the last approximation to

evatuate K

δ(2) = (K(δ(1)))−1F (5.69)

This procedure is continued until the difference between two consecutive approximations

of δ differ by a preselected value.
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5.4.1 Load increments

Examining the expression (5.36) for the axial forceN , it is clear that the rotation of a transverse

normal contributes to tensile component of N irrespective of the sign of load. As result, beam

becomes increasingly stiff with an increase in load. Hence, for large loads the nonlinearity may

be too large for the numerical scheme to yeild convergent solution. Therefore, it is necessary

to divide the total load F into several smaller load increaments δF1, δF2, ...., δFn such that

F =
n∑
i=1

δFi (5.70)

For the first load inceament step F1 = δF1, the obtained solution is linear and it is used as

the intial "guess" vector for the next load inceament F2 = δF2. This is continued until the total

load is reached. Note that the element coordinates are updated after each step.

5.5 Validation of The Present Finite Element

In this section, different tests are considered in order to validate the performance of the present

finite element. The obtained results are compared with those obtained analytically, experimen-

tally and numerically approaches available in the literature. Isotropic and composite cantilever

beams are considered.Furthermore, for the sake of comparison it has been compared with the

obtained results from the analytical formulation presented in the previous chapter.

5.5.1 Isotropic cantilever beam subjected to tip concentrated load

An isotropic cantilever beam subjected to tip load is considered for the first case as illustrated

in Figure 5.6.As shown in Figure 5.6, the effort N explained that there is an extension in the

length of the beam during loading, because the present finite element was formulated by the

requirement that the beam is extensible. The vertical deflections are computed for deferent load

parameter value, where the obtained results are presented in Table 5.1. Figure 5.7, show the

present finite element results compared with the present analytical and the results obtained by

Mattiasson [221], Kumar et al. [47] and Nanakorn and Vu [92]. The curves show that the obtain
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results are in good agreement with those results.

Figure 5.6: Cantilever beam under tip load.

Table 5.1: Non-dimensional deflections as a function of load parameter for isotropic cantilever
beam subjected to tip load.

PL2

EI

Mattiasson Kumar et al. Present analy Nanakorn and Vu Present finite elem.
w w w w w

1 0,3017 0,3019 0,3018 0.29946 0,31639
2 0,4934 0,4939 0,4936 0.48748 0,55262
3 0,6032 0,6038 0,6368 0.59534 0,69509
4 0,6699 0,6704 0,6934 0.66126 0,77223
5 0,7137 0,7146 0,7322 0.70479 0,8134
6 0,7445 0,7454 0,7606 0.73550 0,83675
7 0,7673 0,7682 0,7852 0.75831 0,85162
8 0,7849 0,7861 0,7971 0.77597 0,86247
9 0,799 0,803 0,8118 0.79011 0,87136
10 0,8106 0,8206 0,8262 0.80173 0,87923
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Figure 5.7: Load-deflections curves for cantilever beam with tip load.

5.5.2 Composite cantilever beams subjected to tip concentrated load

Another case for composite laminated cantilever beams subjected to tip load are now presented.

The second case considered for validation is a symmetric 12-layer cross-ply [0/90]3s cantilever

beam of lengthL = 550mm, widthW = 30mm, and thickness t = 0.124mm. The mechanical

properties of the used material, are as follows: E1 = 142GPa, E2 = 9.8GPa, υ12 = 0.3 and

G12 = 6GPa. The cantilever beam was loaded at free end, where the vertical and the horizontal

displacements are measured at a distance a = 50mm from the free end as shown in Figure 5.8.

Figure 5.8: Laminated cantilever beam under tip load.
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Table 5.2 show the horizontal and the vertical displacements obtained by the present finite

element and analytical formulation with the results obtained analytically and experimentally by

Minguet et al. [62]. Figure 5.9 show the load-deflections curves of the present numerical and

analytical compared with the experimental and the analytical results obtained by Minguet et

al. [62]. The curves show that the results are clearly compared well for a symmetric laminated

beam.

Table 5.2: Horizontal and vertical displacements of symmetric laminated [0/90]3scantilever
beam .

Load (g)
Experimental [62] Present analytical Analytical [62] Present finite element
u (mm) w (mm) u (mm) w (mm) u (mm) w (mm) u (mm) w (mm)

77.58 2.81 50.56 3.86 47.61 2.8 47.75 4.2856 59.632
103.44 4.77 68.1 2.68 63.91 5.61 61.79 7.5606 79.047
146.55 8.02 94.91 4.55 89.47 11.23 89.88 14.913 110.52
202.58 19.66 125.01 14.35 116.7 18.25 117.97 27.627 149.25
405.17 58.8 206.46 50.55 201.2 57.58 202.24 92.697 262.15

Figure 5.9: Load-deflections curves for[0/90]3s cantilever beam.
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5.6 Parametric Study

After validating the performance of the present element in the previous section, by comparing

the obtained results with the analytical and the numerical solutions available in the literature.

This section is aimed to discover and understand the effect of fiber orientation angle, anisotropic

ratio, slenderness ratio on the horizontal and the vertical diplacements for symmetric and non-

symmetric laminated beams with different boundary conditions.

5.6.1 Effect of fiber orientation angle

For our examples here, the mechanical properties of the fabricated long glass fiber/polyester

resin (GFP) laminates that were presented in the third chapter are considered. A symmetric

[θ/ − θ/ − θ/θ] and antisymmetric [−θ/θ/ − θ/θ] are considered for the first two examples

for simply supported beam under concentrated load and cantilever beams under tip load, re-

spectively Figures 5.10 and 5.11 . The corresponding horizontal and vertical displacements

corresponding to fiber orientation angle ranging from 0◦ to 90◦ are shown in Figures 5.12

and 5.13 respectively.

Figure 5.10: Simply supported laminated beam under concentrated load.
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Figure 5.11: Cantilever laminated beam under tip load.

Figure 5.12: Effect of fiber orientation angle on non-dimensional deflections for a symmetric
angle-ply (GFP) simply supported beam under concentrated load.
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Figure 5.13: Effect of fiber orientation angle on non-dimensional deflections for anitsymmetric
angle-ply (GFP) beam under tip load.

As shown in Figures 5.12 and 5.13, we can see that the behavior under fiber orientation

angle affecting is similar for both symmetric and antisymmetric laminates as well as for both

considered boundary conditions. It is observed that with an increase in fiber orientation angle,

there is an increase in deflections values until the angle θ = 45◦ which the deflections reaches

the maximum values, then it decrease slowly toward the angle θ = 90◦, and we can also note

that for θ = 0◦ the deflections are in the minimum value.

5.6.2 Effect of slenderness ratio

Now we complete our parametric study here with another imoprtant parameter which is the

effect of slenderness ratio on deflections values with different anisotropy ratio values. A four

(GFP) layers with a symmetric as well as antisymmetric angle-ply cantilever beams subjected

to tip load and simply supported beam under concentrated load are considered here for our

two examples respectively. The anisotropy ratio E1/E2 values are ranging from 1 to 5. The

effect of slenderness ratio on non-dimensional deflections values for (GFP) laminated beams

are shown in Figures 5.14 and 5.15, for symmetric and antisymmetric angle-ply respectively.
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Figure 5.14: Effect of slenderness ratio on non-dimensional deflections for a symmetric angle-
ply (GFP) beam under tip load with various anisotropy ratio values.

Figure 5.15: Effect of slenderness ratio on non-dimensional deflections for antisymmetric
angle-ply (GFP) simply supported beam under concentrated load with various anisotropy ratio
values.
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Considering these two cases, we can note from both figures that the curves are consistent

for all anisotropy ratio values. Also, it is observed that with the increase in slenderness ratio,

the deflections values also are increasing. Then, as shown in Figures, we can see that there is a

decrease in deflection values with the increase in orthotropy ratio values.

5.7 Conclusion

One-dimensional finite element formulation based on the Euler-Bernoulli beam theory has been

developed in this chapter, for the nonlinear bending analysis of composite laminated beams.

The present finite element, has been defined by two nodes and three degree of freedom per node.

The performance and the reliability of the developed element have been evaluated through some

applications on nonlinear bending analysis of isotropic and symmetric laminated beams. The

obtained results have been compared with the available results obtained analytically and experi-

mentally in the literature as well as the results of the present analytical model. The applications

demonstrate that the results goes well with those obtained in the literature. However, it can

be seen, that there is some difference with the analytical results, probably because the present

element has been formulated, taking in consideration the axial loading effect, while the ana-

lytical model have been formulated supposing the inextensibility of the beam. A parametric

study was presented to examinte the effect of some parameters such as fiber orientation angle

and slenderness ratio on the deflection variation of laminated beams with different boundary

conditions. As consequence, Some of the important observations in the following points

• It has been seen, that similar effect of fiber orientation angle on both symmetric and

antisymmetric laminates behaviors for both considered boundary conditions cases. With

an increase in fiber orientation angle, there is an increase in deflections values until θ =

45◦ when the deflections reaches the maximum values, then it decrease slowly until θ =

90◦. We can also note that for θ = 0◦ the deflection at its minimum value.

• It has been observed, that with the increase in slenderness ratio, the deflections values

also are increasing. Also, it can be seen that there is a decrease in deflection values with

the increase in orthotropy ratio values.
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Nonlinear Plates Analysis
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Chapter6

Numerical Analysis of

Thermo-mechanical Loading Effect on

Free Vibration of Laminated Composite

Plates

6.1 Introduction

Free vibration of angle-ply laminated composite plates under thermal and mechanical loading

effect have been analyzed in the current chapter, using a four-nodded rectangular finite element

based on first order shear deformation with assumed natural shear strain. Total potential energy

and Hamilton’ principles have been used to derivate stiffness, geometric and mass matrices. To

take into account the large displacements aspect due to thermal and mechanical pre-buckling of

laminates composite plates, the von Karman strain tensor has been used. Furthermore, assumed

natural strain method has been introduced to elevate the shear locking phenomenon. The con-

vergence of the natural frequency for unloaded plates case and the critical temperature as well

as the buckling critical load has been checked. The effects of thickness to side ratio, anisotropy

degree of single layer and fibers orientation angle, on free vibration and critical temperature

and critical buckling load have been also analyzed.
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6.2 Mathematical Formulation

6.2.1 Displacement field and kinematics

According to first-order formulation, the displacement components vector u, v and w in x, y

and z directions, respectively, of a point of coordinates (x, y, z) within the laminate, are given

by

u ≡ u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t)

v ≡ v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t) (6.1)

w ≡ w(x, y, z, t) = w0(x, y, t)

Where, u0 and v0 are the in-plane displacement vector components at any point (x, y, 0)

in x and y directions, respectively. The transverse displacement w0(x, y) is considered to be

constant across the thickness of the plate.

The state of strain at any point in the overall plate is given by the following two strain vectors

{E}T = {Exx, Eyy, γxy} (6.2)

{γs}T = {γxz, γxz}

Using the von Karman strain-displacement relationship, the strain vector components are

given by
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Exx =
∂u

∂x
+

1

2

(
∂w

∂x

)2
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∂u0

∂x
+ z
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+
1

2

(
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+

1

2

(
∂w
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∂y
+ z
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1

2

(
∂w
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(
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∂y
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∂x

)
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∂w
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∂w
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∂x
= ϕx +

∂w

∂x

γyz =
∂v

∂z
+
∂w

∂y
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∂w

∂y

or in other term

{E} = {ε0}+ z{K}+ {εnl} (6.3)

{γz} =

γxzγyz


Where

{ε0} =
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xy
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∂u0
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∂v0

∂x
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{K} =


Kx

Ky

Kxy
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(6.5)
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εnlx
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(
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)2
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(6.6)
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6.2.2 Constitutive equations

The constitutive equations for an orthotropic layer in the local coordinates system (1, 2, 3), by

neglecting σk3 = 0 of kth layer, are expressed as:


σk11

σk22

τ k12

 =


Qk

11 Qk
12 0

Qk
12 Qk

22 0

0 0 Qk
66


(

Ek11

Ek22

γk12

−

αk1

αk2

0


)

∆T (6.7)

τ
k
13

τ k23

 =

Qk
44 0

0 Q5k◦
55


γ

k
13

γk23

 (6.8)

where subscripts 1 and 2 indicate the fibers direction and in-plane transverse to the fibers

direction, respectively; subscript 3 is the direction normal to the plate, αk1 and αk2 are thermal

expansion coefficients of kth layer, and ∆T is the temperature rise. The reduced stiffness

components Qk◦
ij are given by:

Qk
11 =

Ek1
1− υk12υ

k
21

Qk
22 =

Ek2
1− υk12υ

k
21

Qk
12 =

υk21Ek1
1− υk12υ

k
21

Qk
66 = Gk

12

Qk
44 = Gk

13

Qk
44 = Gk

23

(6.9)
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Where Ek1 and Ek2 denote the Young modulus of the material in the 1 and 2 directions,

respectively,Gk
12,Gk

23 and Gk
13 are the elasticity transverse modulus in the 1–2, 2–3 and 1–3

planes, respectively,υk12,υk21 are Poisson’s ratios.

The stress–strain relationship of each layer in the global coordinate system (x, y, z) is given by:


σkxx

σkyy

τ kxy
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∆T (6.10)

And

τ
k
xz

τ kyz

 =

Qk

44 Q
k

45

Q
k

54 Q
k
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
γ

′k
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γ′kyz

 (6.11)

Where

αkx = αk11cos
2θ + αk22sin

2θ

αky = αk22cos
2θ + αk11sin

2θ (6.12)

αkxy = (αk11 − αk11)cosθsinθ
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And
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θ is the fiber orientation angle with respect to material coordinate system.

6.2.3 Stress resultants

The stress resultants through thickness of the laminated plate are given by:

[NM] =
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where n is the layers number.
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The earlier equations can be rewritten in the matrix form as follows:


N

M

Q
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(6.16)

The elasticity matrices components Aij,Bij,Dij,Hij can be written as follows:

(Aij,Bij,Dij) =
k=n∑
k=1

∫ zk+1

zk
Q
k

ij(1zz
2)dz (6.17)

(Hij) =
k=n∑
k=1

∫ zk+1

zk
Q
k

ij.dz (6.18)

The above equations can be rewritten in the following form:

Aij =
k=n∑
k=1

Q
k

ij(hk − hk−1)

Bij =
1

2

k=n∑
k=1

Q
k

ij(h2
k − h2

k−1)

Dij =
1

3

k=n∑
k=1

Q
k

ij(h3
k − h3

k−1) (6.19)

Hij =
k=n∑
k=1

Q
k

ij(hk − hk−1)

6.3 Finite Element Formulation

A four-noded rectangular finite element having five degrees of freedom per node, based on the

first-order shear deformation theory, is formulated.
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6.3.1 Displacement interpolation and shape functions

The displacements field vector of the present finite element can be defined in the following

form Figure 6.1.

Figure 6.1: Geometry and nodal variables of the element.

δi(x, y) =
4∑

α=1

Nα(x, y)δαi (i = 1, 5) (6.20)

where δi(x, y) is the displacement vector of a given point M(x, y) within the element.

δαi and Nα are displacement vector and the bilinear Lagrange shape functions associated

with node α, respectively.

δα = uα, vα, wα, ϕαx or ϕαy (a = 1, 2, 3, 4)
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And

N1(x, y) =
1

4ab
(a− x)(b− y)

N2(x, y) =
1

4ab
(a+ x)(b− y)

N3(x, y) =
1

4ab
(a+ x)(b+ y)

N4(x, y) =
1

4ab
(a− x)(b+ y)

(6.21)

6.3.2 Strain-displacement relationship matrices

The strain-displacement relationship of Eq (6.3) can be rewritten as follows:

{ε0} = [Bm]{δ}

{K} = [Bb]{δ}

{γ} = [Bs]{δ} (6.22)
∂w

∂x
∂w

∂y

 = [G]{δ}
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Where

[
Bm

]
=


∂Ni

∂x
0 0 0 0

0
∂Ni

∂y
0 0 0

∂Ni

∂y

∂Ni
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0 0 0

 (i = 1, 2, 3, 4) (6.23)

[
Bb

]
=


0 0 0

∂Ni

∂x
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0 0 0 0
∂Ni
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0 0 0
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∂Ni

∂x
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[
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]
=

0 0
∂Ni

∂x
Ni 0

0 0
∂Ni

∂y
0 Ni

 (i = 1, 2, 3, 4) (6.25)

[
G

]
=

0 0
∂Ni

∂x
0 0

0 0
∂Ni

∂y
0 0

 (i = 1, 2, 3, 4) (6.26)

[
Bm

]
and

[
Bb

]
are (3 × 20) matrices, and the subscripts m and b denote the membrane

and the bending strains, respectively.
[

Bs

]
and

[
D

]
are (2× 20) matrices, and the subscript “s”

denotes the shear strain.

And
{
δ

}
is (20× 1) matrix, given by:

{
δ

}T
=

{
uα vα wα ϕxα ϕyα

}
(α = 1, 2, 3, 4)

6.3.3 Derivation of the elementary matrices

The total potential energy principle is used to derivate the elementary stiffness matrix of the

element.
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It is defined by:

Π = U −W (6.27)

U and W are the deformation potential energy and the external forces work, respectively.

Eq(6.27)can be written in terms of stress resultants and the corresponding strains as follows:

Π =
1

2

∫
A

({
ε0

}t{
N

}
+

{
K

}t{
M

}
+

{
γz

}t{
Q

})
dA+

1

2

∫
A

{
εnl

}t{
N

}
dA (6.28)

where A is the element area.

Using Eqs.(6.16),(6.23),(6.24) and (6.25), the total potential energy can be written as

Π =
1

2

(∫ b

−b

∫ a

−a
{δ}t

[
Bm

]t [
A

] [
Bm

]
+

[
Bm

]t [
B

] [
Bb

]
+

[
Bb

]t [
B

] [
Bm

]
+

[
Bb

]t [
D

] [
Bb

]
+ .........+

[
Bs

]t [
H

] [
Bs

]){
δ

}
dxdy

+

∫ b

−b

∫ a

−a

1

2

{
q

}t [
G

]t [
N

] [
G

]{
δ

}
dxdy (6.29)

Where

[
N

]
=

Nx Nxy

Nxy Ny

 (6.30)

The cancelation of the second variation of the total potential energy, with respect to the

nodal values
{
δ

}
, leads to the following eigenvalue problem
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([
Ke

]
+

[
Ke
g

]){
δ

}
= 0 (6.31)

Using the loading factor λ,
[

N

]
=

[
N0

]
.

The eigenvalue problem used to evaluate the critical temperature or the critical load can be

given by

det

([
Ke

]
+ λ

[
Ke
g0

])
= 0 (6.32)

and the critical temperature rise is given by

∆Tcr = λcr.∆T (6.33)

The critical load is given by

Ncr = λcr.∆TcrN
0 (6.34)

where
[
Ke

]
and

[
Ke
g0

]
are the elementary stiffness matrix and the elementary geometrical

matrix, respectively.

The stiffness matrix
[
Ke

]
is the sum of five matrices as follows:

[
Ke

]
=

[
Km
e

]
+

[
Kc1
e

]
+

[
Kc2
e

]
+

[
Kb
e

]
+

[
Ks
e

]
(6.35)

in which
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[
Km
e

]
=

∫ b

−b

∫ a

−a
([Bm]T [A][Bm])dxdy[

Kc1
e

]
=

∫ b

−b

∫ a

−a
([Bm]T [A][Bb])dxdy[

Kc2
e

]
=

∫ b

−b

∫ a

−a
([Bb]

T [A][Bm])dxdy (6.36)[
Kb
e

]
=

∫ b

−b

∫ a

−a
([Bb]

T [A][Bb])dxdy[
Ks
e

]
=

∫ b

−b

∫ a

−a
([Bs]

T [A][Bs])dxdy

The geometrical matrix can be written as

[
Ke
g0

]
=

∫ b

−b

∫ a

−a
([G]T [N0][G])dxdy (6.37)

Where
[

N0

]
=

N0
x N0

xy

N0
xy N0

y

.

6.3.4 Assumed natural shear strain method

To alleviate the locking phenomenon, the assumed strain method is employed.

For natural assumed transverse shear strainsγAxz and γAyzthe following sampling points are

employed as shown in Figure 6.2 [42].

According to Figure 6.2,the sampling point coordinates are given as

γAxz : (0, b)and(0,−b)γAyz : (a, 0)and(−a, 0) (6.38)

The assumed natural strains can be defined as follows by

γ(0)A
xz =

2∑
1

Pi(y)γixz, γ
(0)A
yz =

2∑
1

Qi(x)γiyz (6.39)
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in which i denotes the position of the sampling point and Pi(y) and Qi(x) are the interpo-

lation functions given by

P1(y) =
1

2b
(b+ y), P2(y) =

1

2b
(b− y)

Q1(x) =
1

2a
(a+ x), Q2(x) =

1

2a
(a− x) (6.40)

The relations of Eq.(6.39)can be rewritten in the following matrix form

{
γz

}
=

[
Bs

]{
δ

}
(6.41)

Where
[
Bs

]
is the assumed natural strain–displacement relationship matrix, given by

[
Bs

]
=

{
P1(y) Q1(x)

}0 0
∂Ni

∂x
(0, b) Ni(0, b) 0

0 0
∂Ni

∂y
(a, 0) 0 Ni(a, 0)


+

{
P2(y) Q2(x)

}0 0
∂Ni

∂x
(0,−b) Ni(0,−b) 0

0 0
∂Ni

∂y
(−a, 0) 0 Ni(−a, 0)

 (6.42)

[
Bs

]
is substituted by

[
Bs

]
in the shear stiffness matrix

[
Ks
e

]

6.3.5 Natural vibration of pre-stressed plates

Hamilton principle is defined by

δ

∫ t2

t1

(Π− T )dt = 0 (6.43)

where T is the kinetic energy and t1 and t2 are initial and final instant,respectively.

Using Lagrange equation, the equation of motion can be expressed by

[
M

]{
δ̈

}
+

[
KT

]{
δ

}
= 0 (6.44)
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Figure 6.2: Sampling point γAxz and γAyz.

where
[
M

]
is the mass matrix,

[
KT

]
is the stiffness matrix, including the thermal effect

and
{
δ̈

}
=

d2

dt2

{
δ

}
[
KT

]
=

[
Ke

]
+

[
Ke
g

]
(6.45)

• Derivation of mass matrix

The variation of kinetic energy, with respect to time, is given by

δT =

∫
v

ρ(ü.δu+ v̈.δv + ẅ.δw)dV (6.46)

where ρ and V are the material density and element volume, respectively.

This expression can be rewritten as

δT =

∫
A

I0(ü0.δu0 + v̈0.δv0 + ẅ.δw) + I1(ü0δϕx + ϕ̈xδu0 + v̈0δϕy + ϕ̈yδv0

+ I2(ϕ̈xδϕx + ϕ̈yδϕy))dA (6.47)
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Where

(I0, I1, I2) =

∫ h

2

−
h

2

ρ(1, z, z2)dz (6.48)

The inertia matrix is given by

[
m

]
=



I0 0 0 I1 0

0 I0 0 0 I1

0 0 I0 0 0

I1 0 0 I2 0

0 I1 0 0 I2


(6.49)

The mass matrix is given by

[
M

]
=

∫ b

−b

∫ a

−a
([N ]T [m][N ])dxdy (6.50)

Substituting
{
δ̈

}
by −ω2

{
δ

}
in Eq(6.43), we obtain the following eigenvalue problem

([
Ke

]
+

[
Ke
g

]
− ω2

[
M

]){
δ

}
= 0 (6.51)

6.4 Effect of Thermal Loading on Free Vibration of Angle-

Ply Laminated Composite Plates

In this section, the finite element, based on the first order shear deformation theory with as-

sumed natural strain method, is used to analyze the effect of temperature load on the funda-

mental natural frequencies of laminated plates. The general geometry of the plate and boundary

conditions considered in the present analysis are shown in Figure 6.3.
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Boundary conditions, employed in numerical tests, are as follows

Simply supported plate at all edges

u0 = v0 = w = ϕy = 0 at x = 0, x = L

u0 = v0 = w = ϕx = 0 at y = 0, y = l

The material properties of the individual layer are taken as follows

E1

E2

= 15,
G12

E2

=
G13

E2

= 0.5,
G23

E2

= 0.3356, υ12 = 0.3,
α1

α0

= 0.015,
α2

α0

= 1, ρ = 1

Where α0 is a normalization factor of thermal expansion coefficients.

Subscripts 1 and 2 stand for parallel and perpendicular directions to the fibers,respectively.

The dimensionless temperature rise is defined as

λ = α0∆T

and the dimensionless critical temperature is defined as

λcr = α0∆Tcr

The natural frequencies are normalized by the following equation

$ = ω × h
√

ρ

E2

and for Figures 6.4, 6.5 and 6.6, $ = ω × L
√

ρ

E2

.
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Figure 6.3: Geometry and boundary conditions.

6.4.1 Convergence of the first natural frequency

A simply supported 10-layered anti-symmetric cross-ply(0/90/.. . . /0/90)10 square plate with

(L/h = 5) is analyzed to check the convergence of the first natural frequencies, for k = 0 and

for different degree of anisotropy values. Four cases with 4×4,8×8, 12×12 and 16×16 meshes

are considered. The numerical results of the dimensionless first natural frequency, obtained by

the present element and those obtained by 3D analysis of Noor [188], are given in Table6.1.

Table 6.1: Convergence of non-dimensional natural frequency $ × 10 for λ of 10-layer cross-
ply [0/90/. . . ]10 square laminated composite plate with (L/h = 5)

E1/E2 3 10 20 30 40
4× 4 2.7640 3.6111 4.2520 4.5431 4.8785
8× 8 2.6608 3.4641 4.0939 4.4676 4.7159
12× 12 2.6457 3.4409 4.0645 4.4362 4.6861
16× 16 2.6457 3.4292 4.0546 4.4272 4.6736
3D (Noor) [188] 2.6583 3.4250 4.0497 4.4011 4.6498
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6.4.2 Convergence of the critical temperature

Critical temperature of cross-ply 0/90/0, simply supported plate, subjected to uniform temper-

ature rise is analyzed for different side-to-thickness ratio. The plate is analyzed with4 × 4,

8 × 8,12 × 12 and 16 × 16 mesh divisions. Table 6.2 shows that the results obtained by the

present element are in agreement with Cetkovic [199], 3D [188], and HDST [198, 206].

Table 6.2: Convergence of non-dimensional critical temperatures λcrof 3-layer cross-ply
[0/90/0] square laminated composite plates for different L/h ratios

L/h 5 10 20 100
4× 4 0.1934 0.08220 0.02540 0.001100
8× 8 0.1865 0.07770 0.02360 0.001000
12× 12 0.1853 0.07570 0.02320 0.001000
16× 16 0.1791 0.07530 0.02310 0.001000
3D [188] 0.1763 0.07467 0.02308 0.000996
Cetkovic [199] 0.1784 0.07498 0.02303 0.000996
HSDT [206] 0.1763 0.07442 0.02297 0.000996
HSDT [198] 0.1828 0.07439 0.02308 0.000992

6.4.3 Free vibration of angle-ply laminated composite plates, under ther-

mal loading

Free vibration of angle-ply simply supported square laminated composite plates are analyzed

under dimensionless thermal loading λ, for different side-to-thickness ratios (L/h). The same

previous material proprieties are used.

Tables 6.3,6.4,6.5 show the values of the square of the first natural frequency$2,corresponding

to dimensionless temperature rise λ. The results show that $2 decrease with the increase in λ.

Thus, this shows that the plate loses its rigidity until reaching 0 for λ = λcr.
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Table 6.3: Effect of the non-dimensional temperature λ on non-dimensional natural frequency
($2)L/h = 100.

θ = 15◦ θ = 30◦ θ = 45◦

λ $2 λ $2 λ $2

0.0000000 0.01801 0.000000 0.02347 0.00000 0.02619
0.0002272 0.01455 0.000308 0.01877 0.000338 0.02104
0.0004544 0.01109 0.000616 0.01408 0.000677 0.01588
0.0006816 0.00763 0.000924 0.00940 0.001015 0.01073
0.0009088 0.00417 0.001232 0.00470 0.001354 0.00556
0.001136 0.00000 0.001540 0.00000 0.001692 0.00000

Table 6.4: Effect of the non-dimensional temperature λ on non-dimensional natural frequency
($2)L/h = 10.

θ = 15◦ θ = 30◦ θ = 45◦

λ $2 λ $2 λ $2

0.0000 1.3600 0.00000 1.7100 0.00000 1.8700
0.0164 1.1200 0.02262 1.3700 0.02470 1.5000
0.0328 0.8700 0.04524 1.0300 0.04941 1.1300
0.0492 0.6300 0.06786 0.6900 0.07412 0.7500
0.0656 0.3800 0.09048 0.3500 0.09883 0.3800
0.0817 0.0000 0.11309 0.0000 0.12354 0.0000

Table 6.5: Effect of the non-dimensional temperature λ on non-dimensional natural frequency
($2)L/h = 5.

θ = 15◦ θ = 30◦ θ = 45◦

λ $2 λ $2 λ $2

0.000000 3.2400 0.00000 3.8600 0.000000 4.1000
0.036444 2.7000 0.04972 3.1100 0.053996 3.2900
0.072888 2.1500 0.09944 2.1700 0.107992 2.4700
0.109332 1.6100 0.14916 1.6200 0.161988 1.6600
0.145776 1.0700 0.19888 0.8700 0.215984 0.8500
0.182220 0.0000 0.24860 0.0000 0.269928 0.0000
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The square of the first natural frequency $2 is plotted with respect to the temperature

parameter λ in Figures 6.4, 6.5 and 6.6, respectively. The frequency curves are shown for

θ = 15◦, 30◦ and 45◦. The curves are linear for all side-to-thickness ratios and for all fiber

orientations angle, and the value of $2 vanishes when λ reaches the value of the dimensionless

critical temperature λcr. According to curves of Figures 6.4, 6.5 and 6.6, the linear relation

between the square of the first natural frequencies $2 and the dimensionless temperature rise

λ can be given by the following expression:

$2

$2
0

= 1− λ

λcr

Where $2
0 is the square of the first natural frequency of the unloaded plates. The above

expression is coincided with that given by Noor and Burton [201], Matsunaga [223] and previ-

ously by Lurie in 1952 [200].

Figure 6.4: Natural frequency $2 vs temperature λ of 10-layer angle-ply square laminated
composite plates (L/h = 5)

142



CHAPTER 6. NUMERICAL ANALYSIS OF THERMO-MECHANICAL LOADING
EFFECT ON FREE VIBRATION OF LAMINATED COMPOSITE PLATES

Figure 6.5: Natural frequency $2 vs temperature λ of 10-layer angle-ply square laminated
composite plates (L/h = 10)

Figure 6.6: Natural frequency $2 vs temperature λ of 10-layer angle-ply square laminated
composite plates (L/h = 100)
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6.4.4 Effect of the side-to-thickness ratio on fundamental natural fre-

quency

A simply supported 10-layered angle-ply (θ/ − θ/. . . /θ/ − θ)10 square plate is considered

to analyze the effect of the plate side-to-thickness ratio, on first natural frequency, for λ = 0

and for different fibers orientation angles (θ = 15◦, 30◦ and 45◦). The dimensionless first

natural frequencies obtained by the present finite element and those obtained by Matsunaga

[223] are presented in Table6.6 which shows that the results are in good agreement for all

side-to-thickness ratio.

Table 6.6: Non-dimensional frequency ω for(λ = 0) of 10-layer angle-ply square laminated
composite plates.

L/h
θ = 15◦ θ = 30◦ θ = 45◦

Present Matsunaga [223] Present Matsunaga [223] Present Matsunaga [223]
5 0.358900 0.359200 0.391400 0.390500 0.403500 0.401700
10 0.116600 0.116300 0.130700 0.129800 0.136700 0.135500
20 0.032400 0.032020 0.036400 0.036230 0.038407 0.038140
50 0.005339 0.005286 0.006085 0.006009 0.006324 0.006342
100 0.001342 0.001328 0.001532 0.001510 0.001618 0.001595

6.4.5 Effect of side-to-thickness ratio on the critical temperature

The dimensionless critical temperature kcr of 10-layer angle-ply [θ/ − θ/. . . ]10 square lami-

nated composite plates for different fiber orientations and for various side-tothickness ratios is

analyzed. Tables 6.7,6.8 show that the obtained results are in good agreement with those of 3D

solution of Noor [201] and those of Matsunaga [223].

Table 6.7: Non-dimensional critical temperatures λcr of 10-layer angle-ply [θ/−θ/. . . ]10 square
laminated composite plates (θ = 0◦, 15◦).

L/h
θ = 0◦ θ = 15◦

Present NOOR [201] Matsunaga [223] Present NOOR [201] Matsunaga [223]
5 0.14410 0.14360 – 0.182220 0.17530 0.212400
6.67 0.10300 0.10290 – 0.137440 0.132200 –
10 0.05764 0.05780 – 0.081700 0.079040 0.088990
20 0.01740 0.01739 – 0.025900 0.025280 0.027000
100 0.75449× 103 0.74800× 1010 – 0.001136 0.001115 0.001161
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Table 6.8: Non-dimensional critical temperatures λcr of 10-layer angle-ply [θ/−θ/. . . ]10 square
laminated composite plates (θ = 30◦, 45◦).

L/h
θ = 15◦ θ = 30◦ θ = 45◦

Present Matsunaga [223] Present Matsunaga [223] Present Matsunaga [223]
5 0.2486 0.2377 0.251100 0.269928 – 0.2656
6.67 0.192200 0.185900 – 0.206453 0.1981 –
10 0.113090 0.110000 0.111000 0.123537 0.1194 0.120900
20 0.035209 0.034460 0.034560 0.039056 0.3810 0.038260
100 0.001540 0.001502 0.001502 0.001692 0.001674 0.001675

6.5 Effect of Mechanical Loading on Free Vibration of Angle-

Ply Laminated Composite Plates

The effet of in plane compression load on the fundamental natural frequencies of laminated

plates is analyzed here using the present finite element. The geometry of the plate and the

boundary conditions considered in the present analysis are shown in Figure 6.7.

The plates are simply supported at all edges. In following, boundary conditions which are

given as

w = ϕy = 0 at x = 0, x = L

v0 = w = ϕx = 0 at y = 0, y = l

The material properties of the individual layer are taken as follows

E1

E2

= 40,
G12

E2

=
G13

E2

=
G23

E2

= 0.5, υ12 = 0.25, ρ = 1

The dimensionless critical load is defined as

Kcr =
Ncra

2

E2h3

The natural frequencies are normalized by the following equation

$ =
ωa2

h

√
ρ

E2
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Figure 6.7: Geometry and boundary conditions.

6.5.1 Convergence of the first natural frequency

A simply supported 4-layered anti-symmetric cross-ply (θ/ − θ/θ/ − θ) and 2-layered anti-

symmetric angle-ply (θ/ − θ) square plates with different fiber orientation angle and (L/h)

values are analysed here to check the convergence of the first natural frequencies. Five cases

with 4× 4,8× 8,12× 12,16× 16,20× 20 meshes are considered. The numerical results of the

dimensionless first natural frequency, obtained by the present element and those obtained by

Reddy [224], Bert [225] and Viswanathan [226] are given in Tables 6.9, 6.10
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Table 6.9: Convergence of non-dimensional natural frequency of 4-layered angle-ply square
laminated composite plate with different (L/h) values.

θ 30 45
(L/h) 10 50 10 50
4× 4 18.139 23.393 19.037 24.755
8× 8 17.468 22.251 18.350 23.582
12× 12 17.347 22.048 18.226 23.302
16× 16 17.305 21.978 18.183 23.302
20× 20 17.286 21.945 18.163 23.268
Reddy [224] 17.689 - 18.609 24.343
Bert [225] 17.630 - 18.460 23.24
Viswanathan [226] - - 23.24 24.348

Table 6.10: Convergence of non-dimensional natural frequency of 2-layered angle-ply square
laminated composite plate with different (L/h) values.

θ 30 45
(L/h) 10 10
4× 4 13.283 13.689
8× 8 12.703 13.111
12× 12 12.598 13.007
16× 16 12.562 12.971
20× 20 12.545 12.954
Reddy [224] 15.001 15.714
Bert [225] 12.680 13.04
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6.5.2 Convergence of buckling critical Load

Buckling critical load of 2-layers anti-symmetric cross-ply (θ/−θ) and 4-layers anti-symmetric

angle-ply (θ/−θ/θ/−θ) simply supported square plates, subjected to in plane compression load

are analyzed here to check the convergence of buckling critical load. The plates are analyzed

with 4 × 4,8 × 8,12 × 12,16 × 16and20 × 20 mesh divisions. Tables 6.11,6.12 shows that the

results obtained by the present element are in good agreement with Moita et al. [227] ,Jones et

al. [228] and Senthilnathan et al. [229]

Table 6.11: Convergence of non-dimensional buckling critical load of 2-layered angle-ply
square laminated composite plate with different fiber orientation angle and different (L/h)
ratios.

θ 0◦ 30◦ 45◦ 60◦

(L/h) 100 10 100 10 100 10 100 10
4× 4 39.449 21.618 19.073 17.028 23.524 18.78 21.782 16.558
8× 8 36.465 20.682 20.195 16.150 22.292 17.678 20.156 14.393
12× 12 35.954 20.516 19.706 16.384 21.840 17.342 19.740 13.552
16× 16 35.779 20.459 19.856 15.932 21.754 17.287 19.511 13.453
20× 20 35.698 20.432 20.027 15.896 21.715 17.262 19.405 13.407
Moita et al. [227] 36.076 24.203 19.932 16.789 21.642 16.400 19.247 12.668
Jones et al. [228] 35.831 - 20.441 - 21.709 - 19.392 -
Senthilnathan et al. [229] - - - - 21.666 18.154 - -

Table 6.12: Convergence of non-dimensional buckling critical load of 4-layered angle-ply
square laminated composite plate with different fiber orientation angle and different (L/h)
ratios.

θ 0◦ 30◦ 45◦ 60◦

(L/h) 100 10 100 10 100 10 100 10
4× 4 39.449 21.618 53.937 31.922 60.340 32.774 53.762 23.950
8× 8 36.465 20.683 51.843 30.738 56.808 30.088 46.781 21.710
12× 12 35.954 20.516 49.825 30.576 56.194 29.700 45.702 21.431
16× 16 35.779 20.459 49.553 30.507 55.982 29.560 45.340 21.341
20× 20 35.698 20.432 49.485 30.413 55.884 29.500 45.177 21.300
Moita et al. [227] 35.789 22.550 49.126 29.222 55.285 27.996 44.873 19.910
Jones et al. [228] 35.831 - 49.824 - 56.088 - 45.434
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6.5.3 Free vibration of angle-ply laminated composite plates, under me-

chanical loading

Free vibration of angle-ply simply supported square laminated composite plates are analysed

here under in plane compression load, for different side-to-thickness ratio (L/h). The same

previous material proprieties are used. The square of the first natural frequency $2 is plotted

with respect to in plane compession load parameter N/Ncr in Figures 6.8, 6.9, 6.10 and 6.11,

respectively. The frequency curves are shown for θ = 0◦, 30◦ , 45◦ and 60◦. The curves are

linear for all side-to-thickness ratios and for all fiber orientations angle, and the value of $2

vanishes when N reaches the value of the buckling critical load (N/Ncr = 1), which, show

that the plate lose its stiffness.

Figure 6.8: Natural frequency $2 vs in plane compression load N/Ncr of anti-symmetric 2
layers square laminated plate (L/h = 10).
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Figure 6.9: Natural frequency $2 vs in plane compression load N/Ncr of anti-symmetric 4
layers square laminated plate (L/h = 10).

Figure 6.10: Natural frequency $2 vs in plane compression load N/Ncr of anti-symmetric 2
layers square laminated plate (L/h = 100).
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Figure 6.11: Natural frequency $2 vs in plane compression load N/Ncr of anti-symmetric 4
layers square laminated plate (L/h = 100).

6.6 Conclusion

Free vibration of laminated composite plates under thermal and mechanical loading effect have

been analyzed, using a four-nodded rectangular finite element based on first order shear de-

formation with assumed natural shear strain. Total potential energy and Hamilton’ principles

have been used to derivate stiffness, geometric and mass matrices. Convergence of the natural

frequency for unloaded plates case and the critical temperature as well as the buckling critical

load is very good, indicating reasonably less number of elements required to get the desired

results. The effects of thickness to side ratio, anisotropy degree of single layer and fibers ori-

entation angle, on free vibration, critical buckling temperature and critical buckling load have

been also analyzed. The analysis of the effects of thermal and mechanical loading rise on free

vibration of angle-ply laminates composite for different thickness to side ratios and for different

fibers orientations, shows that the natural frequency decreases in linear way with the increase

of loading rise and vanishes for critical value. This relation coincides with the one found in the

literature.
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General Conclusion

The minimum weight criteria with high performance is essential in the design of aircraft,

aerospace vehicles and civil structures until today. This task will be a challenge, especially

when the design of wing structures such as aircraft wings, rotor blades, robotic arms or some

kind of bridges, is the subject. The behavior of such structures is highly nonlinear due to the

deformation of their geometry and the solution of such problems becomes very complex, es-

pecially with the use of composite materials. The effects of large displacements may play a

primary role in the correct prediction of the behavior of these members, which continue to

be modeled as flexible beams. In this way, another difficult task can be imposed here when

some structural elements as plates and shells can undergo inplane thermo-mechanical stresses

that affect their stiffness and consequently, their dynamic and static behavior. This problem

has stimulated the researchers to provide an accurate prediction of free vibration of laminated

plates, subjected to inplane thermal or mechanical stresses.

The main objective of the present work was to contribute in nonlinear behavior analysis of

beams and plates. This investigation was carried out analytically, experimentally and numeri-

cally. This work was divided in two parts. The first part was destined for beams analysis, which

an analytical model was firstly developed to analyze the large deflection of laminated cantilever

beams. Secondly, an experimental program was prepared in order to carried out several bending

experiments on isotropic and composite cantilever beams. In addition, a finite element beam

based on the Euler-Bernoulli beam theory, was formulated for beams large deflection analysis.

In the second part, the effect of thermo-mechanical loading on free vibration of laminated com-

posite plates was investigated.
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In the first chapter of the thesis, basic concepts of nonlinear phenomena were presented.

Different types of nonlinearities in solid mechanics were introduced, including geometric, ma-

terial, kinematic, and force nonlinearities. The importance of nonlinear analysis in structural

mechanics was also presented. General solving procedures of nonlinear equations system had

been introduced. It was concluded that the geometric nonlinearity is the most important nonlin-

earity that could appear in the design of some structural elements. Previous works on geomet-

rically nonlinear analysis had been presented in the second chapter which it was concluded that

when the large deflection analysis of beams using composite materials, the work is rare in the

literature. Several bending experiments were carried out on isotropic and composite cantilever

beams in chapter three. In the following, the important points that can be concluded from these

experiments.

• It has been shown that the curves for (PG) specimens group the vertical displacement is

quasi-linear. However, the horizontal displacement is started small and tends to be curve

as load increasing.

• Concerning the second group of (RSF) specimens, the behavior presented a small initial

linear part for the vertical displacement and it started to be an organized curve with load

increasing. The horizontal displacement has shown initially small linear part and tends

to be curve in parallel with the vertical displacement.

• Regarding the first and the second [0/90/90/0] (GFP) laminated specimens, the curves

shows that the initial behavior for w is fairly linear and tends to be disorganized curve

with load increasing, this is because the new way of displacements measurement and the

difficulties that can appear during setting laser electronic telemeters especially for the first

ones.The horizontal displacement is initially very small and the tip of beams starts mov-

ing on towards the root when significant bending slopes are obtained. However, for the

third [45/−45/−45/45] laminated specimen the curves demonstrate an improvement in

displacements measurement especially for u. Concerning the last specimen [0/90/90/0]

the curves show more improvements for both displacements u,w.
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An analytical formulation has been carried out in chapter four, to analyze the large de-

flection of composite beams. The proposed formulation is based on the elastica beam model,

according to the classical Euler-Bernoulli beam theory, which was prepared to be able to deal-

ing with symmetric and non-symmetric laminated beams. Subsequently, for the purpose of

validation, the obtained results were compared with both analytical models and experimental

studies existing in the literature. It had been shown, that for isotropic beam case the obtained

results were clearly in excellent agreement with those obtained in the literature. Also, for sym-

metric as well as antisymmetric laminated beams cases the results were compared well with

those. Furthermore, for the sake of comparison, the present formulation were also compared

with the obtained results from the performed experiments. It has been seen, that the present

analytical results were going well with the experimental ones. In addition, the varying param-

eters, such as fiber orientation angle, anisotropic ratio E1/E2 and slenderness ratio were exam-

ined to discover and understand their effect on the deflections variation of laminated beams. As

result, some of the important observations from the parametric study are in the following points

• It has been seen, that the effect of fiber orientation angle on displacements is similar

for both symmetric and antisymmetric laminates. It has been also observed that with

an increase in fiber orientation angle, there is an increase in deflections values until the

angle θ = 45◦ where the deflections reaches its maximum values, then it decrease slowly

toward the angle θ = 90◦, and we can also note that for θ = 0◦ the deflections have the

minimum value, which means that the beam’s rigidity is at the maximum value.

• It has been seen that, the deflection values are affected by the changes ofE1/E2 when the

fiber orientations are between 0 degree and 45◦, the deflection decrease with the increase

in modulus ratio untilE1/E2 = 30 for 0◦ andE1/E2 = 10 for 15◦, 30◦, 45◦ the deflection

is not affected much by the increase in modulus ratio. However, when the angle values

are 60◦,75◦, 90◦ the deflection values are not affected by the changes of modulus ratio.

• It has been observed, that the deflections values increase with the increase of slenderness

ratiofor different values of anisotropy ratio.
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In chapter five, One-dimensional finite element formulation based on the Euler-Bernoulli

beam theory has been developed, for the nonlinear bending analysis of composite laminated

beams. The present finite element, has been defined by two nodes and three degree of freedom

per node. The performance and the reliability of the developed element have been evaluated

through some applications on nonlinear bending analysis of isotropic and symmetric laminated

beams. The obtained results were compared with the available results obtained analytically and

experimentally in the literature as well as the results of the present analytical model. The ap-

plications demonstrate that the results goes well with those obtained in the literature. However,

it can be seen, that there is some difference with the analytical results, probably because the

present element has been formulated, taking in consideration the axial loading effect, while the

analytical model have been formulated supposing the inextensibility of the beam. A parametric

study was presented to examinte the effect of some parameters such as fiber orientation angle

and slenderness ratio on the deflection variation of laminated beams with different boundary

conditions. As consequence, Some of the important observations in the following points

• It has been seen, that similar effect of fiber orientation angle on both symmetric and

antisymmetric laminates behaviors for both considered boundary conditions cases. With

an increase in fiber orientation angle, there is an increase in deflections values until θ =

45◦ when the deflections reaches the maximum values, then it decrease slowly until θ =

90◦. We can also note that for θ = 0◦ the deflection at its minimum value.

• It has been observed, that with the increase in slenderness ratio, the deflections values

also are increasing. Also, it can be seen that there is a decrease in deflection values with

the increase in orthotropy ratio values.

Free vibration of laminated composite plates under thermal and mechanical loading effect

were analyzed the sixth chapter, using a four-nodded rectangular finite element based on first

order shear deformation with assumed natural shear strain. Total potential energy and Hamil-

ton’ principles were used to derivate stiffness, geometric and mass matrices. Convergence of

the natural frequency for unloaded plates case and the critical temperature as well as the buck-

ling critical load was very good, indicating reasonably less number of elements required to get
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the desired results. The effects of thickness to side ratio, anisotropy degree of single layer and

fibers orientation angle, on free vibration, critical buckling temperature and critical buckling

load were also analyzed. The analysis of the effects of thermal and mechanical loading rise

on free vibration of angle-ply laminates composite for different thickness to side ratios and for

different fibers orientations, were shown that the natural frequency decreases in linear way with

the increase of loading rise and vanishes for critical value. This relation coincides with the one

found in the literature.

Suggestions for Future Works

• The analytical model as well as the beam finite element can be extended for functionally

graded materials analysis.

• The experimental program can be extended for the dynamic behavior.
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